SemaDecl.cpp revision af2094e7cecadf36667deb61a83587ffdd979bd3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // DependentNameType node to describe the type.
92        // FIXME: Record somewhere that this DependentNameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getDependentNameType(ETK_None,
202                                     UUDecl->getTargetNestedNameSpecifier(),
203                                     &II);
204  } else {
205    // If it's not plausibly a type, suppress diagnostics.
206    Result.suppressDiagnostics();
207    return 0;
208  }
209
210  return T.getAsOpaquePtr();
211}
212
213/// isTagName() - This method is called *for error recovery purposes only*
214/// to determine if the specified name is a valid tag name ("struct foo").  If
215/// so, this returns the TST for the tag corresponding to it (TST_enum,
216/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
217/// where the user forgot to specify the tag.
218DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
219  // Do a tag name lookup in this scope.
220  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
221  LookupName(R, S, false);
222  R.suppressDiagnostics();
223  if (R.getResultKind() == LookupResult::Found)
224    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
225      switch (TD->getTagKind()) {
226      case TagDecl::TK_struct: return DeclSpec::TST_struct;
227      case TagDecl::TK_union:  return DeclSpec::TST_union;
228      case TagDecl::TK_class:  return DeclSpec::TST_class;
229      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
230      }
231    }
232
233  return DeclSpec::TST_unspecified;
234}
235
236bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
237                                   SourceLocation IILoc,
238                                   Scope *S,
239                                   const CXXScopeSpec *SS,
240                                   TypeTy *&SuggestedType) {
241  // We don't have anything to suggest (yet).
242  SuggestedType = 0;
243
244  // There may have been a typo in the name of the type. Look up typo
245  // results, in case we have something that we can suggest.
246  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
247                      NotForRedeclaration);
248
249  // FIXME: It would be nice if we could correct for typos in built-in
250  // names, such as "itn" for "int".
251
252  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
253    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
254    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
255        !Result->isInvalidDecl()) {
256      // We found a similarly-named type or interface; suggest that.
257      if (!SS || !SS->isSet())
258        Diag(IILoc, diag::err_unknown_typename_suggest)
259          << &II << Lookup.getLookupName()
260          << FixItHint::CreateReplacement(SourceRange(IILoc),
261                                          Result->getNameAsString());
262      else if (DeclContext *DC = computeDeclContext(*SS, false))
263        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
264          << &II << DC << Lookup.getLookupName() << SS->getRange()
265          << FixItHint::CreateReplacement(SourceRange(IILoc),
266                                          Result->getNameAsString());
267      else
268        llvm_unreachable("could not have corrected a typo here");
269
270      Diag(Result->getLocation(), diag::note_previous_decl)
271        << Result->getDeclName();
272
273      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
274      return true;
275    }
276  }
277
278  // FIXME: Should we move the logic that tries to recover from a missing tag
279  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
280
281  if (!SS || (!SS->isSet() && !SS->isInvalid()))
282    Diag(IILoc, diag::err_unknown_typename) << &II;
283  else if (DeclContext *DC = computeDeclContext(*SS, false))
284    Diag(IILoc, diag::err_typename_nested_not_found)
285      << &II << DC << SS->getRange();
286  else if (isDependentScopeSpecifier(*SS)) {
287    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
288      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
289      << SourceRange(SS->getRange().getBegin(), IILoc)
290      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
291    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
292  } else {
293    assert(SS && SS->isInvalid() &&
294           "Invalid scope specifier has already been diagnosed");
295  }
296
297  return true;
298}
299
300// Determines the context to return to after temporarily entering a
301// context.  This depends in an unnecessarily complicated way on the
302// exact ordering of callbacks from the parser.
303DeclContext *Sema::getContainingDC(DeclContext *DC) {
304
305  // Functions defined inline within classes aren't parsed until we've
306  // finished parsing the top-level class, so the top-level class is
307  // the context we'll need to return to.
308  if (isa<FunctionDecl>(DC)) {
309    DC = DC->getLexicalParent();
310
311    // A function not defined within a class will always return to its
312    // lexical context.
313    if (!isa<CXXRecordDecl>(DC))
314      return DC;
315
316    // A C++ inline method/friend is parsed *after* the topmost class
317    // it was declared in is fully parsed ("complete");  the topmost
318    // class is the context we need to return to.
319    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
320      DC = RD;
321
322    // Return the declaration context of the topmost class the inline method is
323    // declared in.
324    return DC;
325  }
326
327  if (isa<ObjCMethodDecl>(DC))
328    return Context.getTranslationUnitDecl();
329
330  return DC->getLexicalParent();
331}
332
333void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
334  assert(getContainingDC(DC) == CurContext &&
335      "The next DeclContext should be lexically contained in the current one.");
336  CurContext = DC;
337  S->setEntity(DC);
338}
339
340void Sema::PopDeclContext() {
341  assert(CurContext && "DeclContext imbalance!");
342
343  CurContext = getContainingDC(CurContext);
344}
345
346/// EnterDeclaratorContext - Used when we must lookup names in the context
347/// of a declarator's nested name specifier.
348///
349void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
350  // C++0x [basic.lookup.unqual]p13:
351  //   A name used in the definition of a static data member of class
352  //   X (after the qualified-id of the static member) is looked up as
353  //   if the name was used in a member function of X.
354  // C++0x [basic.lookup.unqual]p14:
355  //   If a variable member of a namespace is defined outside of the
356  //   scope of its namespace then any name used in the definition of
357  //   the variable member (after the declarator-id) is looked up as
358  //   if the definition of the variable member occurred in its
359  //   namespace.
360  // Both of these imply that we should push a scope whose context
361  // is the semantic context of the declaration.  We can't use
362  // PushDeclContext here because that context is not necessarily
363  // lexically contained in the current context.  Fortunately,
364  // the containing scope should have the appropriate information.
365
366  assert(!S->getEntity() && "scope already has entity");
367
368#ifndef NDEBUG
369  Scope *Ancestor = S->getParent();
370  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
371  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
372#endif
373
374  CurContext = DC;
375  S->setEntity(DC);
376}
377
378void Sema::ExitDeclaratorContext(Scope *S) {
379  assert(S->getEntity() == CurContext && "Context imbalance!");
380
381  // Switch back to the lexical context.  The safety of this is
382  // enforced by an assert in EnterDeclaratorContext.
383  Scope *Ancestor = S->getParent();
384  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
385  CurContext = (DeclContext*) Ancestor->getEntity();
386
387  // We don't need to do anything with the scope, which is going to
388  // disappear.
389}
390
391/// \brief Determine whether we allow overloading of the function
392/// PrevDecl with another declaration.
393///
394/// This routine determines whether overloading is possible, not
395/// whether some new function is actually an overload. It will return
396/// true in C++ (where we can always provide overloads) or, as an
397/// extension, in C when the previous function is already an
398/// overloaded function declaration or has the "overloadable"
399/// attribute.
400static bool AllowOverloadingOfFunction(LookupResult &Previous,
401                                       ASTContext &Context) {
402  if (Context.getLangOptions().CPlusPlus)
403    return true;
404
405  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
406    return true;
407
408  return (Previous.getResultKind() == LookupResult::Found
409          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
410}
411
412/// Add this decl to the scope shadowed decl chains.
413void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
414  // Move up the scope chain until we find the nearest enclosing
415  // non-transparent context. The declaration will be introduced into this
416  // scope.
417  while (S->getEntity() &&
418         ((DeclContext *)S->getEntity())->isTransparentContext())
419    S = S->getParent();
420
421  // Add scoped declarations into their context, so that they can be
422  // found later. Declarations without a context won't be inserted
423  // into any context.
424  if (AddToContext)
425    CurContext->addDecl(D);
426
427  // Out-of-line definitions shouldn't be pushed into scope in C++.
428  // Out-of-line variable and function definitions shouldn't even in C.
429  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
430      D->isOutOfLine())
431    return;
432
433  // Template instantiations should also not be pushed into scope.
434  if (isa<FunctionDecl>(D) &&
435      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
436    return;
437
438  // If this replaces anything in the current scope,
439  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
440                               IEnd = IdResolver.end();
441  for (; I != IEnd; ++I) {
442    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
443      S->RemoveDecl(DeclPtrTy::make(*I));
444      IdResolver.RemoveDecl(*I);
445
446      // Should only need to replace one decl.
447      break;
448    }
449  }
450
451  S->AddDecl(DeclPtrTy::make(D));
452  IdResolver.AddDecl(D);
453}
454
455bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
456  return IdResolver.isDeclInScope(D, Ctx, Context, S);
457}
458
459static bool isOutOfScopePreviousDeclaration(NamedDecl *,
460                                            DeclContext*,
461                                            ASTContext&);
462
463/// Filters out lookup results that don't fall within the given scope
464/// as determined by isDeclInScope.
465static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
466                                 DeclContext *Ctx, Scope *S,
467                                 bool ConsiderLinkage) {
468  LookupResult::Filter F = R.makeFilter();
469  while (F.hasNext()) {
470    NamedDecl *D = F.next();
471
472    if (SemaRef.isDeclInScope(D, Ctx, S))
473      continue;
474
475    if (ConsiderLinkage &&
476        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
477      continue;
478
479    F.erase();
480  }
481
482  F.done();
483}
484
485static bool isUsingDecl(NamedDecl *D) {
486  return isa<UsingShadowDecl>(D) ||
487         isa<UnresolvedUsingTypenameDecl>(D) ||
488         isa<UnresolvedUsingValueDecl>(D);
489}
490
491/// Removes using shadow declarations from the lookup results.
492static void RemoveUsingDecls(LookupResult &R) {
493  LookupResult::Filter F = R.makeFilter();
494  while (F.hasNext())
495    if (isUsingDecl(F.next()))
496      F.erase();
497
498  F.done();
499}
500
501static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
502  if (D->isInvalidDecl())
503    return false;
504
505  if (D->isUsed() || D->hasAttr<UnusedAttr>())
506    return false;
507
508  // White-list anything that isn't a local variable.
509  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
510      !D->getDeclContext()->isFunctionOrMethod())
511    return false;
512
513  // Types of valid local variables should be complete, so this should succeed.
514  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
515
516    // White-list anything with an __attribute__((unused)) type.
517    QualType Ty = VD->getType();
518
519    // Only look at the outermost level of typedef.
520    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
521      if (TT->getDecl()->hasAttr<UnusedAttr>())
522        return false;
523    }
524
525    if (const TagType *TT = Ty->getAs<TagType>()) {
526      const TagDecl *Tag = TT->getDecl();
527      if (Tag->hasAttr<UnusedAttr>())
528        return false;
529
530      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
531        if (!RD->hasTrivialConstructor())
532          return false;
533        if (!RD->hasTrivialDestructor())
534          return false;
535      }
536    }
537
538    // TODO: __attribute__((unused)) templates?
539  }
540
541  return true;
542}
543
544void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
545  if (S->decl_empty()) return;
546  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
547         "Scope shouldn't contain decls!");
548
549  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
550       I != E; ++I) {
551    Decl *TmpD = (*I).getAs<Decl>();
552    assert(TmpD && "This decl didn't get pushed??");
553
554    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
555    NamedDecl *D = cast<NamedDecl>(TmpD);
556
557    if (!D->getDeclName()) continue;
558
559    // Diagnose unused variables in this scope.
560    if (ShouldDiagnoseUnusedDecl(D) &&
561        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
562      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
563
564    // Remove this name from our lexical scope.
565    IdResolver.RemoveDecl(D);
566  }
567}
568
569/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
570/// return 0 if one not found.
571///
572/// \param Id the name of the Objective-C class we're looking for. If
573/// typo-correction fixes this name, the Id will be updated
574/// to the fixed name.
575///
576/// \param RecoverLoc if provided, this routine will attempt to
577/// recover from a typo in the name of an existing Objective-C class
578/// and, if successful, will return the lookup that results from
579/// typo-correction.
580ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
581                                              SourceLocation RecoverLoc) {
582  // The third "scope" argument is 0 since we aren't enabling lazy built-in
583  // creation from this context.
584  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
585
586  if (!IDecl && !RecoverLoc.isInvalid()) {
587    // Perform typo correction at the given location, but only if we
588    // find an Objective-C class name.
589    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
590    if (CorrectTypo(R, TUScope, 0) &&
591        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
592      Diag(RecoverLoc, diag::err_undef_interface_suggest)
593        << Id << IDecl->getDeclName()
594        << FixItHint::CreateReplacement(RecoverLoc, IDecl->getNameAsString());
595      Diag(IDecl->getLocation(), diag::note_previous_decl)
596        << IDecl->getDeclName();
597
598      Id = IDecl->getIdentifier();
599    }
600  }
601
602  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
603}
604
605/// getNonFieldDeclScope - Retrieves the innermost scope, starting
606/// from S, where a non-field would be declared. This routine copes
607/// with the difference between C and C++ scoping rules in structs and
608/// unions. For example, the following code is well-formed in C but
609/// ill-formed in C++:
610/// @code
611/// struct S6 {
612///   enum { BAR } e;
613/// };
614///
615/// void test_S6() {
616///   struct S6 a;
617///   a.e = BAR;
618/// }
619/// @endcode
620/// For the declaration of BAR, this routine will return a different
621/// scope. The scope S will be the scope of the unnamed enumeration
622/// within S6. In C++, this routine will return the scope associated
623/// with S6, because the enumeration's scope is a transparent
624/// context but structures can contain non-field names. In C, this
625/// routine will return the translation unit scope, since the
626/// enumeration's scope is a transparent context and structures cannot
627/// contain non-field names.
628Scope *Sema::getNonFieldDeclScope(Scope *S) {
629  while (((S->getFlags() & Scope::DeclScope) == 0) ||
630         (S->getEntity() &&
631          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
632         (S->isClassScope() && !getLangOptions().CPlusPlus))
633    S = S->getParent();
634  return S;
635}
636
637void Sema::InitBuiltinVaListType() {
638  if (!Context.getBuiltinVaListType().isNull())
639    return;
640
641  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
642  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
643  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
644  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
645}
646
647/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
648/// file scope.  lazily create a decl for it. ForRedeclaration is true
649/// if we're creating this built-in in anticipation of redeclaring the
650/// built-in.
651NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
652                                     Scope *S, bool ForRedeclaration,
653                                     SourceLocation Loc) {
654  Builtin::ID BID = (Builtin::ID)bid;
655
656  if (Context.BuiltinInfo.hasVAListUse(BID))
657    InitBuiltinVaListType();
658
659  ASTContext::GetBuiltinTypeError Error;
660  QualType R = Context.GetBuiltinType(BID, Error);
661  switch (Error) {
662  case ASTContext::GE_None:
663    // Okay
664    break;
665
666  case ASTContext::GE_Missing_stdio:
667    if (ForRedeclaration)
668      Diag(Loc, diag::err_implicit_decl_requires_stdio)
669        << Context.BuiltinInfo.GetName(BID);
670    return 0;
671
672  case ASTContext::GE_Missing_setjmp:
673    if (ForRedeclaration)
674      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
675        << Context.BuiltinInfo.GetName(BID);
676    return 0;
677  }
678
679  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
680    Diag(Loc, diag::ext_implicit_lib_function_decl)
681      << Context.BuiltinInfo.GetName(BID)
682      << R;
683    if (Context.BuiltinInfo.getHeaderName(BID) &&
684        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
685          != Diagnostic::Ignored)
686      Diag(Loc, diag::note_please_include_header)
687        << Context.BuiltinInfo.getHeaderName(BID)
688        << Context.BuiltinInfo.GetName(BID);
689  }
690
691  FunctionDecl *New = FunctionDecl::Create(Context,
692                                           Context.getTranslationUnitDecl(),
693                                           Loc, II, R, /*TInfo=*/0,
694                                           FunctionDecl::Extern, false,
695                                           /*hasPrototype=*/true);
696  New->setImplicit();
697
698  // Create Decl objects for each parameter, adding them to the
699  // FunctionDecl.
700  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
701    llvm::SmallVector<ParmVarDecl*, 16> Params;
702    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
703      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
704                                           FT->getArgType(i), /*TInfo=*/0,
705                                           VarDecl::None, 0));
706    New->setParams(Params.data(), Params.size());
707  }
708
709  AddKnownFunctionAttributes(New);
710
711  // TUScope is the translation-unit scope to insert this function into.
712  // FIXME: This is hideous. We need to teach PushOnScopeChains to
713  // relate Scopes to DeclContexts, and probably eliminate CurContext
714  // entirely, but we're not there yet.
715  DeclContext *SavedContext = CurContext;
716  CurContext = Context.getTranslationUnitDecl();
717  PushOnScopeChains(New, TUScope);
718  CurContext = SavedContext;
719  return New;
720}
721
722/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
723/// same name and scope as a previous declaration 'Old'.  Figure out
724/// how to resolve this situation, merging decls or emitting
725/// diagnostics as appropriate. If there was an error, set New to be invalid.
726///
727void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
728  // If the new decl is known invalid already, don't bother doing any
729  // merging checks.
730  if (New->isInvalidDecl()) return;
731
732  // Allow multiple definitions for ObjC built-in typedefs.
733  // FIXME: Verify the underlying types are equivalent!
734  if (getLangOptions().ObjC1) {
735    const IdentifierInfo *TypeID = New->getIdentifier();
736    switch (TypeID->getLength()) {
737    default: break;
738    case 2:
739      if (!TypeID->isStr("id"))
740        break;
741      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
742      // Install the built-in type for 'id', ignoring the current definition.
743      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
744      return;
745    case 5:
746      if (!TypeID->isStr("Class"))
747        break;
748      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
749      // Install the built-in type for 'Class', ignoring the current definition.
750      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
751      return;
752    case 3:
753      if (!TypeID->isStr("SEL"))
754        break;
755      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
756      // Install the built-in type for 'SEL', ignoring the current definition.
757      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
758      return;
759    case 8:
760      if (!TypeID->isStr("Protocol"))
761        break;
762      Context.setObjCProtoType(New->getUnderlyingType());
763      return;
764    }
765    // Fall through - the typedef name was not a builtin type.
766  }
767
768  // Verify the old decl was also a type.
769  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
770  if (!Old) {
771    Diag(New->getLocation(), diag::err_redefinition_different_kind)
772      << New->getDeclName();
773
774    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
775    if (OldD->getLocation().isValid())
776      Diag(OldD->getLocation(), diag::note_previous_definition);
777
778    return New->setInvalidDecl();
779  }
780
781  // If the old declaration is invalid, just give up here.
782  if (Old->isInvalidDecl())
783    return New->setInvalidDecl();
784
785  // Determine the "old" type we'll use for checking and diagnostics.
786  QualType OldType;
787  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
788    OldType = OldTypedef->getUnderlyingType();
789  else
790    OldType = Context.getTypeDeclType(Old);
791
792  // If the typedef types are not identical, reject them in all languages and
793  // with any extensions enabled.
794
795  if (OldType != New->getUnderlyingType() &&
796      Context.getCanonicalType(OldType) !=
797      Context.getCanonicalType(New->getUnderlyingType())) {
798    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
799      << New->getUnderlyingType() << OldType;
800    if (Old->getLocation().isValid())
801      Diag(Old->getLocation(), diag::note_previous_definition);
802    return New->setInvalidDecl();
803  }
804
805  // The types match.  Link up the redeclaration chain if the old
806  // declaration was a typedef.
807  // FIXME: this is a potential source of wierdness if the type
808  // spellings don't match exactly.
809  if (isa<TypedefDecl>(Old))
810    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
811
812  if (getLangOptions().Microsoft)
813    return;
814
815  if (getLangOptions().CPlusPlus) {
816    // C++ [dcl.typedef]p2:
817    //   In a given non-class scope, a typedef specifier can be used to
818    //   redefine the name of any type declared in that scope to refer
819    //   to the type to which it already refers.
820    if (!isa<CXXRecordDecl>(CurContext))
821      return;
822
823    // C++0x [dcl.typedef]p4:
824    //   In a given class scope, a typedef specifier can be used to redefine
825    //   any class-name declared in that scope that is not also a typedef-name
826    //   to refer to the type to which it already refers.
827    //
828    // This wording came in via DR424, which was a correction to the
829    // wording in DR56, which accidentally banned code like:
830    //
831    //   struct S {
832    //     typedef struct A { } A;
833    //   };
834    //
835    // in the C++03 standard. We implement the C++0x semantics, which
836    // allow the above but disallow
837    //
838    //   struct S {
839    //     typedef int I;
840    //     typedef int I;
841    //   };
842    //
843    // since that was the intent of DR56.
844    if (!isa<TypedefDecl >(Old))
845      return;
846
847    Diag(New->getLocation(), diag::err_redefinition)
848      << New->getDeclName();
849    Diag(Old->getLocation(), diag::note_previous_definition);
850    return New->setInvalidDecl();
851  }
852
853  // If we have a redefinition of a typedef in C, emit a warning.  This warning
854  // is normally mapped to an error, but can be controlled with
855  // -Wtypedef-redefinition.  If either the original or the redefinition is
856  // in a system header, don't emit this for compatibility with GCC.
857  if (getDiagnostics().getSuppressSystemWarnings() &&
858      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
859       Context.getSourceManager().isInSystemHeader(New->getLocation())))
860    return;
861
862  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
863    << New->getDeclName();
864  Diag(Old->getLocation(), diag::note_previous_definition);
865  return;
866}
867
868/// DeclhasAttr - returns true if decl Declaration already has the target
869/// attribute.
870static bool
871DeclHasAttr(const Decl *decl, const Attr *target) {
872  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
873    if (attr->getKind() == target->getKind())
874      return true;
875
876  return false;
877}
878
879/// MergeAttributes - append attributes from the Old decl to the New one.
880static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
881  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
882    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
883      Attr *NewAttr = attr->clone(C);
884      NewAttr->setInherited(true);
885      New->addAttr(NewAttr);
886    }
887  }
888}
889
890/// Used in MergeFunctionDecl to keep track of function parameters in
891/// C.
892struct GNUCompatibleParamWarning {
893  ParmVarDecl *OldParm;
894  ParmVarDecl *NewParm;
895  QualType PromotedType;
896};
897
898
899/// getSpecialMember - get the special member enum for a method.
900static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
901                                               const CXXMethodDecl *MD) {
902  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
903    if (Ctor->isDefaultConstructor())
904      return Sema::CXXDefaultConstructor;
905    if (Ctor->isCopyConstructor())
906      return Sema::CXXCopyConstructor;
907  }
908
909  if (isa<CXXDestructorDecl>(MD))
910    return Sema::CXXDestructor;
911
912  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
913  return Sema::CXXCopyAssignment;
914}
915
916/// canREdefineFunction - checks if a function can be redefined. Currently,
917/// only extern inline functions can be redefined, and even then only in
918/// GNU89 mode.
919static bool canRedefineFunction(const FunctionDecl *FD,
920                                const LangOptions& LangOpts) {
921  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
922          FD->isInlineSpecified() &&
923          FD->getStorageClass() == FunctionDecl::Extern);
924}
925
926/// MergeFunctionDecl - We just parsed a function 'New' from
927/// declarator D which has the same name and scope as a previous
928/// declaration 'Old'.  Figure out how to resolve this situation,
929/// merging decls or emitting diagnostics as appropriate.
930///
931/// In C++, New and Old must be declarations that are not
932/// overloaded. Use IsOverload to determine whether New and Old are
933/// overloaded, and to select the Old declaration that New should be
934/// merged with.
935///
936/// Returns true if there was an error, false otherwise.
937bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
938  // Verify the old decl was also a function.
939  FunctionDecl *Old = 0;
940  if (FunctionTemplateDecl *OldFunctionTemplate
941        = dyn_cast<FunctionTemplateDecl>(OldD))
942    Old = OldFunctionTemplate->getTemplatedDecl();
943  else
944    Old = dyn_cast<FunctionDecl>(OldD);
945  if (!Old) {
946    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
947      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
948      Diag(Shadow->getTargetDecl()->getLocation(),
949           diag::note_using_decl_target);
950      Diag(Shadow->getUsingDecl()->getLocation(),
951           diag::note_using_decl) << 0;
952      return true;
953    }
954
955    Diag(New->getLocation(), diag::err_redefinition_different_kind)
956      << New->getDeclName();
957    Diag(OldD->getLocation(), diag::note_previous_definition);
958    return true;
959  }
960
961  // Determine whether the previous declaration was a definition,
962  // implicit declaration, or a declaration.
963  diag::kind PrevDiag;
964  if (Old->isThisDeclarationADefinition())
965    PrevDiag = diag::note_previous_definition;
966  else if (Old->isImplicit())
967    PrevDiag = diag::note_previous_implicit_declaration;
968  else
969    PrevDiag = diag::note_previous_declaration;
970
971  QualType OldQType = Context.getCanonicalType(Old->getType());
972  QualType NewQType = Context.getCanonicalType(New->getType());
973
974  // Don't complain about this if we're in GNU89 mode and the old function
975  // is an extern inline function.
976  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
977      New->getStorageClass() == FunctionDecl::Static &&
978      Old->getStorageClass() != FunctionDecl::Static &&
979      !canRedefineFunction(Old, getLangOptions())) {
980    Diag(New->getLocation(), diag::err_static_non_static)
981      << New;
982    Diag(Old->getLocation(), PrevDiag);
983    return true;
984  }
985
986  // If a function is first declared with a calling convention, but is
987  // later declared or defined without one, the second decl assumes the
988  // calling convention of the first.
989  //
990  // For the new decl, we have to look at the NON-canonical type to tell the
991  // difference between a function that really doesn't have a calling
992  // convention and one that is declared cdecl. That's because in
993  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
994  // because it is the default calling convention.
995  //
996  // Note also that we DO NOT return at this point, because we still have
997  // other tests to run.
998  const FunctionType *OldType = OldQType->getAs<FunctionType>();
999  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1000  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1001  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1002  if (OldTypeInfo.getCC() != CC_Default &&
1003      NewTypeInfo.getCC() == CC_Default) {
1004    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1005    New->setType(NewQType);
1006    NewQType = Context.getCanonicalType(NewQType);
1007  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1008                                     NewTypeInfo.getCC())) {
1009    // Calling conventions really aren't compatible, so complain.
1010    Diag(New->getLocation(), diag::err_cconv_change)
1011      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1012      << (OldTypeInfo.getCC() == CC_Default)
1013      << (OldTypeInfo.getCC() == CC_Default ? "" :
1014          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1015    Diag(Old->getLocation(), diag::note_previous_declaration);
1016    return true;
1017  }
1018
1019  // FIXME: diagnose the other way around?
1020  if (OldType->getNoReturnAttr() &&
1021      !NewType->getNoReturnAttr()) {
1022    NewQType = Context.getNoReturnType(NewQType);
1023    New->setType(NewQType);
1024    assert(NewQType.isCanonical());
1025  }
1026
1027  if (getLangOptions().CPlusPlus) {
1028    // (C++98 13.1p2):
1029    //   Certain function declarations cannot be overloaded:
1030    //     -- Function declarations that differ only in the return type
1031    //        cannot be overloaded.
1032    QualType OldReturnType
1033      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1034    QualType NewReturnType
1035      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1036    if (OldReturnType != NewReturnType) {
1037      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1038      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1039      return true;
1040    }
1041
1042    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1043    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1044    if (OldMethod && NewMethod) {
1045      if (!NewMethod->getFriendObjectKind() &&
1046          NewMethod->getLexicalDeclContext()->isRecord()) {
1047        //    -- Member function declarations with the same name and the
1048        //       same parameter types cannot be overloaded if any of them
1049        //       is a static member function declaration.
1050        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1051          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1052          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1053          return true;
1054        }
1055
1056        // C++ [class.mem]p1:
1057        //   [...] A member shall not be declared twice in the
1058        //   member-specification, except that a nested class or member
1059        //   class template can be declared and then later defined.
1060        unsigned NewDiag;
1061        if (isa<CXXConstructorDecl>(OldMethod))
1062          NewDiag = diag::err_constructor_redeclared;
1063        else if (isa<CXXDestructorDecl>(NewMethod))
1064          NewDiag = diag::err_destructor_redeclared;
1065        else if (isa<CXXConversionDecl>(NewMethod))
1066          NewDiag = diag::err_conv_function_redeclared;
1067        else
1068          NewDiag = diag::err_member_redeclared;
1069
1070        Diag(New->getLocation(), NewDiag);
1071        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1072      } else {
1073        if (OldMethod->isImplicit()) {
1074          Diag(NewMethod->getLocation(),
1075               diag::err_definition_of_implicitly_declared_member)
1076          << New << getSpecialMember(Context, OldMethod);
1077
1078          Diag(OldMethod->getLocation(),
1079               diag::note_previous_implicit_declaration);
1080          return true;
1081        }
1082      }
1083    }
1084
1085    // (C++98 8.3.5p3):
1086    //   All declarations for a function shall agree exactly in both the
1087    //   return type and the parameter-type-list.
1088    // attributes should be ignored when comparing.
1089    if (Context.getNoReturnType(OldQType, false) ==
1090        Context.getNoReturnType(NewQType, false))
1091      return MergeCompatibleFunctionDecls(New, Old);
1092
1093    // Fall through for conflicting redeclarations and redefinitions.
1094  }
1095
1096  // C: Function types need to be compatible, not identical. This handles
1097  // duplicate function decls like "void f(int); void f(enum X);" properly.
1098  if (!getLangOptions().CPlusPlus &&
1099      Context.typesAreCompatible(OldQType, NewQType)) {
1100    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1101    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1102    const FunctionProtoType *OldProto = 0;
1103    if (isa<FunctionNoProtoType>(NewFuncType) &&
1104        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1105      // The old declaration provided a function prototype, but the
1106      // new declaration does not. Merge in the prototype.
1107      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1108      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1109                                                 OldProto->arg_type_end());
1110      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1111                                         ParamTypes.data(), ParamTypes.size(),
1112                                         OldProto->isVariadic(),
1113                                         OldProto->getTypeQuals(),
1114                                         false, false, 0, 0,
1115                                         OldProto->getExtInfo());
1116      New->setType(NewQType);
1117      New->setHasInheritedPrototype();
1118
1119      // Synthesize a parameter for each argument type.
1120      llvm::SmallVector<ParmVarDecl*, 16> Params;
1121      for (FunctionProtoType::arg_type_iterator
1122             ParamType = OldProto->arg_type_begin(),
1123             ParamEnd = OldProto->arg_type_end();
1124           ParamType != ParamEnd; ++ParamType) {
1125        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1126                                                 SourceLocation(), 0,
1127                                                 *ParamType, /*TInfo=*/0,
1128                                                 VarDecl::None, 0);
1129        Param->setImplicit();
1130        Params.push_back(Param);
1131      }
1132
1133      New->setParams(Params.data(), Params.size());
1134    }
1135
1136    return MergeCompatibleFunctionDecls(New, Old);
1137  }
1138
1139  // GNU C permits a K&R definition to follow a prototype declaration
1140  // if the declared types of the parameters in the K&R definition
1141  // match the types in the prototype declaration, even when the
1142  // promoted types of the parameters from the K&R definition differ
1143  // from the types in the prototype. GCC then keeps the types from
1144  // the prototype.
1145  //
1146  // If a variadic prototype is followed by a non-variadic K&R definition,
1147  // the K&R definition becomes variadic.  This is sort of an edge case, but
1148  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1149  // C99 6.9.1p8.
1150  if (!getLangOptions().CPlusPlus &&
1151      Old->hasPrototype() && !New->hasPrototype() &&
1152      New->getType()->getAs<FunctionProtoType>() &&
1153      Old->getNumParams() == New->getNumParams()) {
1154    llvm::SmallVector<QualType, 16> ArgTypes;
1155    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1156    const FunctionProtoType *OldProto
1157      = Old->getType()->getAs<FunctionProtoType>();
1158    const FunctionProtoType *NewProto
1159      = New->getType()->getAs<FunctionProtoType>();
1160
1161    // Determine whether this is the GNU C extension.
1162    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1163                                               NewProto->getResultType());
1164    bool LooseCompatible = !MergedReturn.isNull();
1165    for (unsigned Idx = 0, End = Old->getNumParams();
1166         LooseCompatible && Idx != End; ++Idx) {
1167      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1168      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1169      if (Context.typesAreCompatible(OldParm->getType(),
1170                                     NewProto->getArgType(Idx))) {
1171        ArgTypes.push_back(NewParm->getType());
1172      } else if (Context.typesAreCompatible(OldParm->getType(),
1173                                            NewParm->getType())) {
1174        GNUCompatibleParamWarning Warn
1175          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1176        Warnings.push_back(Warn);
1177        ArgTypes.push_back(NewParm->getType());
1178      } else
1179        LooseCompatible = false;
1180    }
1181
1182    if (LooseCompatible) {
1183      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1184        Diag(Warnings[Warn].NewParm->getLocation(),
1185             diag::ext_param_promoted_not_compatible_with_prototype)
1186          << Warnings[Warn].PromotedType
1187          << Warnings[Warn].OldParm->getType();
1188        Diag(Warnings[Warn].OldParm->getLocation(),
1189             diag::note_previous_declaration);
1190      }
1191
1192      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1193                                           ArgTypes.size(),
1194                                           OldProto->isVariadic(), 0,
1195                                           false, false, 0, 0,
1196                                           OldProto->getExtInfo()));
1197      return MergeCompatibleFunctionDecls(New, Old);
1198    }
1199
1200    // Fall through to diagnose conflicting types.
1201  }
1202
1203  // A function that has already been declared has been redeclared or defined
1204  // with a different type- show appropriate diagnostic
1205  if (unsigned BuiltinID = Old->getBuiltinID()) {
1206    // The user has declared a builtin function with an incompatible
1207    // signature.
1208    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1209      // The function the user is redeclaring is a library-defined
1210      // function like 'malloc' or 'printf'. Warn about the
1211      // redeclaration, then pretend that we don't know about this
1212      // library built-in.
1213      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1214      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1215        << Old << Old->getType();
1216      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1217      Old->setInvalidDecl();
1218      return false;
1219    }
1220
1221    PrevDiag = diag::note_previous_builtin_declaration;
1222  }
1223
1224  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1225  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1226  return true;
1227}
1228
1229/// \brief Completes the merge of two function declarations that are
1230/// known to be compatible.
1231///
1232/// This routine handles the merging of attributes and other
1233/// properties of function declarations form the old declaration to
1234/// the new declaration, once we know that New is in fact a
1235/// redeclaration of Old.
1236///
1237/// \returns false
1238bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1239  // Merge the attributes
1240  MergeAttributes(New, Old, Context);
1241
1242  // Merge the storage class.
1243  if (Old->getStorageClass() != FunctionDecl::Extern &&
1244      Old->getStorageClass() != FunctionDecl::None)
1245    New->setStorageClass(Old->getStorageClass());
1246
1247  // Merge "pure" flag.
1248  if (Old->isPure())
1249    New->setPure();
1250
1251  // Merge the "deleted" flag.
1252  if (Old->isDeleted())
1253    New->setDeleted();
1254
1255  if (getLangOptions().CPlusPlus)
1256    return MergeCXXFunctionDecl(New, Old);
1257
1258  return false;
1259}
1260
1261/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1262/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1263/// situation, merging decls or emitting diagnostics as appropriate.
1264///
1265/// Tentative definition rules (C99 6.9.2p2) are checked by
1266/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1267/// definitions here, since the initializer hasn't been attached.
1268///
1269void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1270  // If the new decl is already invalid, don't do any other checking.
1271  if (New->isInvalidDecl())
1272    return;
1273
1274  // Verify the old decl was also a variable.
1275  VarDecl *Old = 0;
1276  if (!Previous.isSingleResult() ||
1277      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1278    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1279      << New->getDeclName();
1280    Diag(Previous.getRepresentativeDecl()->getLocation(),
1281         diag::note_previous_definition);
1282    return New->setInvalidDecl();
1283  }
1284
1285  MergeAttributes(New, Old, Context);
1286
1287  // Merge the types
1288  QualType MergedT;
1289  if (getLangOptions().CPlusPlus) {
1290    if (Context.hasSameType(New->getType(), Old->getType()))
1291      MergedT = New->getType();
1292    // C++ [basic.link]p10:
1293    //   [...] the types specified by all declarations referring to a given
1294    //   object or function shall be identical, except that declarations for an
1295    //   array object can specify array types that differ by the presence or
1296    //   absence of a major array bound (8.3.4).
1297    else if (Old->getType()->isIncompleteArrayType() &&
1298             New->getType()->isArrayType()) {
1299      CanQual<ArrayType> OldArray
1300        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1301      CanQual<ArrayType> NewArray
1302        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1303      if (OldArray->getElementType() == NewArray->getElementType())
1304        MergedT = New->getType();
1305    } else if (Old->getType()->isArrayType() &&
1306             New->getType()->isIncompleteArrayType()) {
1307      CanQual<ArrayType> OldArray
1308        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1309      CanQual<ArrayType> NewArray
1310        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1311      if (OldArray->getElementType() == NewArray->getElementType())
1312        MergedT = Old->getType();
1313    }
1314  } else {
1315    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1316  }
1317  if (MergedT.isNull()) {
1318    Diag(New->getLocation(), diag::err_redefinition_different_type)
1319      << New->getDeclName();
1320    Diag(Old->getLocation(), diag::note_previous_definition);
1321    return New->setInvalidDecl();
1322  }
1323  New->setType(MergedT);
1324
1325  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1326  if (New->getStorageClass() == VarDecl::Static &&
1327      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1328    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1329    Diag(Old->getLocation(), diag::note_previous_definition);
1330    return New->setInvalidDecl();
1331  }
1332  // C99 6.2.2p4:
1333  //   For an identifier declared with the storage-class specifier
1334  //   extern in a scope in which a prior declaration of that
1335  //   identifier is visible,23) if the prior declaration specifies
1336  //   internal or external linkage, the linkage of the identifier at
1337  //   the later declaration is the same as the linkage specified at
1338  //   the prior declaration. If no prior declaration is visible, or
1339  //   if the prior declaration specifies no linkage, then the
1340  //   identifier has external linkage.
1341  if (New->hasExternalStorage() && Old->hasLinkage())
1342    /* Okay */;
1343  else if (New->getStorageClass() != VarDecl::Static &&
1344           Old->getStorageClass() == VarDecl::Static) {
1345    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1346    Diag(Old->getLocation(), diag::note_previous_definition);
1347    return New->setInvalidDecl();
1348  }
1349
1350  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1351
1352  // FIXME: The test for external storage here seems wrong? We still
1353  // need to check for mismatches.
1354  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1355      // Don't complain about out-of-line definitions of static members.
1356      !(Old->getLexicalDeclContext()->isRecord() &&
1357        !New->getLexicalDeclContext()->isRecord())) {
1358    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1359    Diag(Old->getLocation(), diag::note_previous_definition);
1360    return New->setInvalidDecl();
1361  }
1362
1363  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1364    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1365    Diag(Old->getLocation(), diag::note_previous_definition);
1366  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1367    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1368    Diag(Old->getLocation(), diag::note_previous_definition);
1369  }
1370
1371  // C++ doesn't have tentative definitions, so go right ahead and check here.
1372  const VarDecl *Def;
1373  if (getLangOptions().CPlusPlus &&
1374      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1375      (Def = Old->getDefinition())) {
1376    Diag(New->getLocation(), diag::err_redefinition)
1377      << New->getDeclName();
1378    Diag(Def->getLocation(), diag::note_previous_definition);
1379    New->setInvalidDecl();
1380    return;
1381  }
1382
1383  // Keep a chain of previous declarations.
1384  New->setPreviousDeclaration(Old);
1385
1386  // Inherit access appropriately.
1387  New->setAccess(Old->getAccess());
1388}
1389
1390/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1391/// no declarator (e.g. "struct foo;") is parsed.
1392Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1393  // FIXME: Error on auto/register at file scope
1394  // FIXME: Error on inline/virtual/explicit
1395  // FIXME: Warn on useless __thread
1396  // FIXME: Warn on useless const/volatile
1397  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1398  // FIXME: Warn on useless attributes
1399  Decl *TagD = 0;
1400  TagDecl *Tag = 0;
1401  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1402      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1403      DS.getTypeSpecType() == DeclSpec::TST_union ||
1404      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1405    TagD = static_cast<Decl *>(DS.getTypeRep());
1406
1407    if (!TagD) // We probably had an error
1408      return DeclPtrTy();
1409
1410    // Note that the above type specs guarantee that the
1411    // type rep is a Decl, whereas in many of the others
1412    // it's a Type.
1413    Tag = dyn_cast<TagDecl>(TagD);
1414  }
1415
1416  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1417    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1418    // or incomplete types shall not be restrict-qualified."
1419    if (TypeQuals & DeclSpec::TQ_restrict)
1420      Diag(DS.getRestrictSpecLoc(),
1421           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1422           << DS.getSourceRange();
1423  }
1424
1425  if (DS.isFriendSpecified()) {
1426    // If we're dealing with a class template decl, assume that the
1427    // template routines are handling it.
1428    if (TagD && isa<ClassTemplateDecl>(TagD))
1429      return DeclPtrTy();
1430    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1431  }
1432
1433  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1434    // If there are attributes in the DeclSpec, apply them to the record.
1435    if (const AttributeList *AL = DS.getAttributes())
1436      ProcessDeclAttributeList(S, Record, AL);
1437
1438    if (!Record->getDeclName() && Record->isDefinition() &&
1439        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1440      if (getLangOptions().CPlusPlus ||
1441          Record->getDeclContext()->isRecord())
1442        return BuildAnonymousStructOrUnion(S, DS, Record);
1443
1444      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1445        << DS.getSourceRange();
1446    }
1447
1448    // Microsoft allows unnamed struct/union fields. Don't complain
1449    // about them.
1450    // FIXME: Should we support Microsoft's extensions in this area?
1451    if (Record->getDeclName() && getLangOptions().Microsoft)
1452      return DeclPtrTy::make(Tag);
1453  }
1454
1455  if (!DS.isMissingDeclaratorOk() &&
1456      DS.getTypeSpecType() != DeclSpec::TST_error) {
1457    // Warn about typedefs of enums without names, since this is an
1458    // extension in both Microsoft an GNU.
1459    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1460        Tag && isa<EnumDecl>(Tag)) {
1461      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1462        << DS.getSourceRange();
1463      return DeclPtrTy::make(Tag);
1464    }
1465
1466    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1467      << DS.getSourceRange();
1468    return DeclPtrTy();
1469  }
1470
1471  return DeclPtrTy::make(Tag);
1472}
1473
1474/// We are trying to inject an anonymous member into the given scope;
1475/// check if there's an existing declaration that can't be overloaded.
1476///
1477/// \return true if this is a forbidden redeclaration
1478static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1479                                         Scope *S,
1480                                         DeclContext *Owner,
1481                                         DeclarationName Name,
1482                                         SourceLocation NameLoc,
1483                                         unsigned diagnostic) {
1484  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1485                 Sema::ForRedeclaration);
1486  if (!SemaRef.LookupName(R, S)) return false;
1487
1488  if (R.getAsSingle<TagDecl>())
1489    return false;
1490
1491  // Pick a representative declaration.
1492  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1493  if (PrevDecl && Owner->isRecord()) {
1494    RecordDecl *Record = cast<RecordDecl>(Owner);
1495    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1496      return false;
1497  }
1498
1499  SemaRef.Diag(NameLoc, diagnostic) << Name;
1500  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1501
1502  return true;
1503}
1504
1505/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1506/// anonymous struct or union AnonRecord into the owning context Owner
1507/// and scope S. This routine will be invoked just after we realize
1508/// that an unnamed union or struct is actually an anonymous union or
1509/// struct, e.g.,
1510///
1511/// @code
1512/// union {
1513///   int i;
1514///   float f;
1515/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1516///    // f into the surrounding scope.x
1517/// @endcode
1518///
1519/// This routine is recursive, injecting the names of nested anonymous
1520/// structs/unions into the owning context and scope as well.
1521bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1522                                               RecordDecl *AnonRecord) {
1523  unsigned diagKind
1524    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1525                            : diag::err_anonymous_struct_member_redecl;
1526
1527  bool Invalid = false;
1528  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1529                               FEnd = AnonRecord->field_end();
1530       F != FEnd; ++F) {
1531    if ((*F)->getDeclName()) {
1532      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1533                                       (*F)->getLocation(), diagKind)) {
1534        // C++ [class.union]p2:
1535        //   The names of the members of an anonymous union shall be
1536        //   distinct from the names of any other entity in the
1537        //   scope in which the anonymous union is declared.
1538        Invalid = true;
1539      } else {
1540        // C++ [class.union]p2:
1541        //   For the purpose of name lookup, after the anonymous union
1542        //   definition, the members of the anonymous union are
1543        //   considered to have been defined in the scope in which the
1544        //   anonymous union is declared.
1545        Owner->makeDeclVisibleInContext(*F);
1546        S->AddDecl(DeclPtrTy::make(*F));
1547        IdResolver.AddDecl(*F);
1548      }
1549    } else if (const RecordType *InnerRecordType
1550                 = (*F)->getType()->getAs<RecordType>()) {
1551      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1552      if (InnerRecord->isAnonymousStructOrUnion())
1553        Invalid = Invalid ||
1554          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1555    }
1556  }
1557
1558  return Invalid;
1559}
1560
1561/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1562/// anonymous structure or union. Anonymous unions are a C++ feature
1563/// (C++ [class.union]) and a GNU C extension; anonymous structures
1564/// are a GNU C and GNU C++ extension.
1565Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1566                                                  RecordDecl *Record) {
1567  DeclContext *Owner = Record->getDeclContext();
1568
1569  // Diagnose whether this anonymous struct/union is an extension.
1570  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1571    Diag(Record->getLocation(), diag::ext_anonymous_union);
1572  else if (!Record->isUnion())
1573    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1574
1575  // C and C++ require different kinds of checks for anonymous
1576  // structs/unions.
1577  bool Invalid = false;
1578  if (getLangOptions().CPlusPlus) {
1579    const char* PrevSpec = 0;
1580    unsigned DiagID;
1581    // C++ [class.union]p3:
1582    //   Anonymous unions declared in a named namespace or in the
1583    //   global namespace shall be declared static.
1584    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1585        (isa<TranslationUnitDecl>(Owner) ||
1586         (isa<NamespaceDecl>(Owner) &&
1587          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1588      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1589      Invalid = true;
1590
1591      // Recover by adding 'static'.
1592      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1593                             PrevSpec, DiagID);
1594    }
1595    // C++ [class.union]p3:
1596    //   A storage class is not allowed in a declaration of an
1597    //   anonymous union in a class scope.
1598    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1599             isa<RecordDecl>(Owner)) {
1600      Diag(DS.getStorageClassSpecLoc(),
1601           diag::err_anonymous_union_with_storage_spec);
1602      Invalid = true;
1603
1604      // Recover by removing the storage specifier.
1605      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1606                             PrevSpec, DiagID);
1607    }
1608
1609    // C++ [class.union]p2:
1610    //   The member-specification of an anonymous union shall only
1611    //   define non-static data members. [Note: nested types and
1612    //   functions cannot be declared within an anonymous union. ]
1613    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1614                                 MemEnd = Record->decls_end();
1615         Mem != MemEnd; ++Mem) {
1616      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1617        // C++ [class.union]p3:
1618        //   An anonymous union shall not have private or protected
1619        //   members (clause 11).
1620        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1621          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1622            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1623          Invalid = true;
1624        }
1625      } else if ((*Mem)->isImplicit()) {
1626        // Any implicit members are fine.
1627      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1628        // This is a type that showed up in an
1629        // elaborated-type-specifier inside the anonymous struct or
1630        // union, but which actually declares a type outside of the
1631        // anonymous struct or union. It's okay.
1632      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1633        if (!MemRecord->isAnonymousStructOrUnion() &&
1634            MemRecord->getDeclName()) {
1635          // This is a nested type declaration.
1636          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1637            << (int)Record->isUnion();
1638          Invalid = true;
1639        }
1640      } else {
1641        // We have something that isn't a non-static data
1642        // member. Complain about it.
1643        unsigned DK = diag::err_anonymous_record_bad_member;
1644        if (isa<TypeDecl>(*Mem))
1645          DK = diag::err_anonymous_record_with_type;
1646        else if (isa<FunctionDecl>(*Mem))
1647          DK = diag::err_anonymous_record_with_function;
1648        else if (isa<VarDecl>(*Mem))
1649          DK = diag::err_anonymous_record_with_static;
1650        Diag((*Mem)->getLocation(), DK)
1651            << (int)Record->isUnion();
1652          Invalid = true;
1653      }
1654    }
1655  }
1656
1657  if (!Record->isUnion() && !Owner->isRecord()) {
1658    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1659      << (int)getLangOptions().CPlusPlus;
1660    Invalid = true;
1661  }
1662
1663  // Mock up a declarator.
1664  Declarator Dc(DS, Declarator::TypeNameContext);
1665  TypeSourceInfo *TInfo = 0;
1666  GetTypeForDeclarator(Dc, S, &TInfo);
1667  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1668
1669  // Create a declaration for this anonymous struct/union.
1670  NamedDecl *Anon = 0;
1671  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1672    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1673                             /*IdentifierInfo=*/0,
1674                             Context.getTypeDeclType(Record),
1675                             TInfo,
1676                             /*BitWidth=*/0, /*Mutable=*/false);
1677    Anon->setAccess(AS_public);
1678    if (getLangOptions().CPlusPlus)
1679      FieldCollector->Add(cast<FieldDecl>(Anon));
1680  } else {
1681    VarDecl::StorageClass SC;
1682    switch (DS.getStorageClassSpec()) {
1683    default: assert(0 && "Unknown storage class!");
1684    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1685    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1686    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1687    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1688    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1689    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1690    case DeclSpec::SCS_mutable:
1691      // mutable can only appear on non-static class members, so it's always
1692      // an error here
1693      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1694      Invalid = true;
1695      SC = VarDecl::None;
1696      break;
1697    }
1698
1699    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1700                           /*IdentifierInfo=*/0,
1701                           Context.getTypeDeclType(Record),
1702                           TInfo,
1703                           SC);
1704  }
1705  Anon->setImplicit();
1706
1707  // Add the anonymous struct/union object to the current
1708  // context. We'll be referencing this object when we refer to one of
1709  // its members.
1710  Owner->addDecl(Anon);
1711
1712  // Inject the members of the anonymous struct/union into the owning
1713  // context and into the identifier resolver chain for name lookup
1714  // purposes.
1715  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1716    Invalid = true;
1717
1718  // Mark this as an anonymous struct/union type. Note that we do not
1719  // do this until after we have already checked and injected the
1720  // members of this anonymous struct/union type, because otherwise
1721  // the members could be injected twice: once by DeclContext when it
1722  // builds its lookup table, and once by
1723  // InjectAnonymousStructOrUnionMembers.
1724  Record->setAnonymousStructOrUnion(true);
1725
1726  if (Invalid)
1727    Anon->setInvalidDecl();
1728
1729  return DeclPtrTy::make(Anon);
1730}
1731
1732
1733/// GetNameForDeclarator - Determine the full declaration name for the
1734/// given Declarator.
1735DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1736  return GetNameFromUnqualifiedId(D.getName());
1737}
1738
1739/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1740DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1741  switch (Name.getKind()) {
1742    case UnqualifiedId::IK_Identifier:
1743      return DeclarationName(Name.Identifier);
1744
1745    case UnqualifiedId::IK_OperatorFunctionId:
1746      return Context.DeclarationNames.getCXXOperatorName(
1747                                              Name.OperatorFunctionId.Operator);
1748
1749    case UnqualifiedId::IK_LiteralOperatorId:
1750      return Context.DeclarationNames.getCXXLiteralOperatorName(
1751                                                               Name.Identifier);
1752
1753    case UnqualifiedId::IK_ConversionFunctionId: {
1754      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1755      if (Ty.isNull())
1756        return DeclarationName();
1757
1758      return Context.DeclarationNames.getCXXConversionFunctionName(
1759                                                  Context.getCanonicalType(Ty));
1760    }
1761
1762    case UnqualifiedId::IK_ConstructorName: {
1763      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1764      if (Ty.isNull())
1765        return DeclarationName();
1766
1767      return Context.DeclarationNames.getCXXConstructorName(
1768                                                  Context.getCanonicalType(Ty));
1769    }
1770
1771    case UnqualifiedId::IK_ConstructorTemplateId: {
1772      // In well-formed code, we can only have a constructor
1773      // template-id that refers to the current context, so go there
1774      // to find the actual type being constructed.
1775      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1776      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1777        return DeclarationName();
1778
1779      // Determine the type of the class being constructed.
1780      QualType CurClassType = Context.getTypeDeclType(CurClass);
1781
1782      // FIXME: Check two things: that the template-id names the same type as
1783      // CurClassType, and that the template-id does not occur when the name
1784      // was qualified.
1785
1786      return Context.DeclarationNames.getCXXConstructorName(
1787                                       Context.getCanonicalType(CurClassType));
1788    }
1789
1790    case UnqualifiedId::IK_DestructorName: {
1791      QualType Ty = GetTypeFromParser(Name.DestructorName);
1792      if (Ty.isNull())
1793        return DeclarationName();
1794
1795      return Context.DeclarationNames.getCXXDestructorName(
1796                                                           Context.getCanonicalType(Ty));
1797    }
1798
1799    case UnqualifiedId::IK_TemplateId: {
1800      TemplateName TName
1801        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1802      return Context.getNameForTemplate(TName);
1803    }
1804  }
1805
1806  assert(false && "Unknown name kind");
1807  return DeclarationName();
1808}
1809
1810/// isNearlyMatchingFunction - Determine whether the C++ functions
1811/// Declaration and Definition are "nearly" matching. This heuristic
1812/// is used to improve diagnostics in the case where an out-of-line
1813/// function definition doesn't match any declaration within
1814/// the class or namespace.
1815static bool isNearlyMatchingFunction(ASTContext &Context,
1816                                     FunctionDecl *Declaration,
1817                                     FunctionDecl *Definition) {
1818  if (Declaration->param_size() != Definition->param_size())
1819    return false;
1820  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1821    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1822    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1823
1824    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1825                                        DefParamTy.getNonReferenceType()))
1826      return false;
1827  }
1828
1829  return true;
1830}
1831
1832Sema::DeclPtrTy
1833Sema::HandleDeclarator(Scope *S, Declarator &D,
1834                       MultiTemplateParamsArg TemplateParamLists,
1835                       bool IsFunctionDefinition) {
1836  DeclarationName Name = GetNameForDeclarator(D);
1837
1838  // All of these full declarators require an identifier.  If it doesn't have
1839  // one, the ParsedFreeStandingDeclSpec action should be used.
1840  if (!Name) {
1841    if (!D.isInvalidType())  // Reject this if we think it is valid.
1842      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1843           diag::err_declarator_need_ident)
1844        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1845    return DeclPtrTy();
1846  }
1847
1848  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1849  // we find one that is.
1850  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1851         (S->getFlags() & Scope::TemplateParamScope) != 0)
1852    S = S->getParent();
1853
1854  // If this is an out-of-line definition of a member of a class template
1855  // or class template partial specialization, we may need to rebuild the
1856  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1857  // for more information.
1858  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1859  // handle expressions properly.
1860  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1861  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1862      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1863      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1864       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1865       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1866       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1867    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1868      // FIXME: Preserve type source info.
1869      QualType T = GetTypeFromParser(DS.getTypeRep());
1870
1871      DeclContext *SavedContext = CurContext;
1872      CurContext = DC;
1873      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1874      CurContext = SavedContext;
1875
1876      if (T.isNull())
1877        return DeclPtrTy();
1878      DS.UpdateTypeRep(T.getAsOpaquePtr());
1879    }
1880  }
1881
1882  DeclContext *DC;
1883  NamedDecl *New;
1884
1885  TypeSourceInfo *TInfo = 0;
1886  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1887
1888  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1889                        ForRedeclaration);
1890
1891  // See if this is a redefinition of a variable in the same scope.
1892  if (D.getCXXScopeSpec().isInvalid()) {
1893    DC = CurContext;
1894    D.setInvalidType();
1895  } else if (!D.getCXXScopeSpec().isSet()) {
1896    bool IsLinkageLookup = false;
1897
1898    // If the declaration we're planning to build will be a function
1899    // or object with linkage, then look for another declaration with
1900    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1901    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1902      /* Do nothing*/;
1903    else if (R->isFunctionType()) {
1904      if (CurContext->isFunctionOrMethod() ||
1905          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1906        IsLinkageLookup = true;
1907    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1908      IsLinkageLookup = true;
1909    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1910             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1911      IsLinkageLookup = true;
1912
1913    if (IsLinkageLookup)
1914      Previous.clear(LookupRedeclarationWithLinkage);
1915
1916    DC = CurContext;
1917    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1918  } else { // Something like "int foo::x;"
1919    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1920
1921    if (!DC) {
1922      // If we could not compute the declaration context, it's because the
1923      // declaration context is dependent but does not refer to a class,
1924      // class template, or class template partial specialization. Complain
1925      // and return early, to avoid the coming semantic disaster.
1926      Diag(D.getIdentifierLoc(),
1927           diag::err_template_qualified_declarator_no_match)
1928        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1929        << D.getCXXScopeSpec().getRange();
1930      return DeclPtrTy();
1931    }
1932
1933    if (!DC->isDependentContext() &&
1934        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1935      return DeclPtrTy();
1936
1937    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1938      Diag(D.getIdentifierLoc(),
1939           diag::err_member_def_undefined_record)
1940        << Name << DC << D.getCXXScopeSpec().getRange();
1941      D.setInvalidType();
1942    }
1943
1944    LookupQualifiedName(Previous, DC);
1945
1946    // Don't consider using declarations as previous declarations for
1947    // out-of-line members.
1948    RemoveUsingDecls(Previous);
1949
1950    // C++ 7.3.1.2p2:
1951    // Members (including explicit specializations of templates) of a named
1952    // namespace can also be defined outside that namespace by explicit
1953    // qualification of the name being defined, provided that the entity being
1954    // defined was already declared in the namespace and the definition appears
1955    // after the point of declaration in a namespace that encloses the
1956    // declarations namespace.
1957    //
1958    // Note that we only check the context at this point. We don't yet
1959    // have enough information to make sure that PrevDecl is actually
1960    // the declaration we want to match. For example, given:
1961    //
1962    //   class X {
1963    //     void f();
1964    //     void f(float);
1965    //   };
1966    //
1967    //   void X::f(int) { } // ill-formed
1968    //
1969    // In this case, PrevDecl will point to the overload set
1970    // containing the two f's declared in X, but neither of them
1971    // matches.
1972
1973    // First check whether we named the global scope.
1974    if (isa<TranslationUnitDecl>(DC)) {
1975      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1976        << Name << D.getCXXScopeSpec().getRange();
1977    } else {
1978      DeclContext *Cur = CurContext;
1979      while (isa<LinkageSpecDecl>(Cur))
1980        Cur = Cur->getParent();
1981      if (!Cur->Encloses(DC)) {
1982        // The qualifying scope doesn't enclose the original declaration.
1983        // Emit diagnostic based on current scope.
1984        SourceLocation L = D.getIdentifierLoc();
1985        SourceRange R = D.getCXXScopeSpec().getRange();
1986        if (isa<FunctionDecl>(Cur))
1987          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1988        else
1989          Diag(L, diag::err_invalid_declarator_scope)
1990            << Name << cast<NamedDecl>(DC) << R;
1991        D.setInvalidType();
1992      }
1993    }
1994  }
1995
1996  if (Previous.isSingleResult() &&
1997      Previous.getFoundDecl()->isTemplateParameter()) {
1998    // Maybe we will complain about the shadowed template parameter.
1999    if (!D.isInvalidType())
2000      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2001                                          Previous.getFoundDecl()))
2002        D.setInvalidType();
2003
2004    // Just pretend that we didn't see the previous declaration.
2005    Previous.clear();
2006  }
2007
2008  // In C++, the previous declaration we find might be a tag type
2009  // (class or enum). In this case, the new declaration will hide the
2010  // tag type. Note that this does does not apply if we're declaring a
2011  // typedef (C++ [dcl.typedef]p4).
2012  if (Previous.isSingleTagDecl() &&
2013      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2014    Previous.clear();
2015
2016  bool Redeclaration = false;
2017  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2018    if (TemplateParamLists.size()) {
2019      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2020      return DeclPtrTy();
2021    }
2022
2023    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2024  } else if (R->isFunctionType()) {
2025    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2026                                  move(TemplateParamLists),
2027                                  IsFunctionDefinition, Redeclaration);
2028  } else {
2029    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2030                                  move(TemplateParamLists),
2031                                  Redeclaration);
2032  }
2033
2034  if (New == 0)
2035    return DeclPtrTy();
2036
2037  // If this has an identifier and is not an invalid redeclaration or
2038  // function template specialization, add it to the scope stack.
2039  if (Name && !(Redeclaration && New->isInvalidDecl()))
2040    PushOnScopeChains(New, S);
2041
2042  return DeclPtrTy::make(New);
2043}
2044
2045/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2046/// types into constant array types in certain situations which would otherwise
2047/// be errors (for GCC compatibility).
2048static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2049                                                    ASTContext &Context,
2050                                                    bool &SizeIsNegative) {
2051  // This method tries to turn a variable array into a constant
2052  // array even when the size isn't an ICE.  This is necessary
2053  // for compatibility with code that depends on gcc's buggy
2054  // constant expression folding, like struct {char x[(int)(char*)2];}
2055  SizeIsNegative = false;
2056
2057  QualifierCollector Qs;
2058  const Type *Ty = Qs.strip(T);
2059
2060  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2061    QualType Pointee = PTy->getPointeeType();
2062    QualType FixedType =
2063        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2064    if (FixedType.isNull()) return FixedType;
2065    FixedType = Context.getPointerType(FixedType);
2066    return Qs.apply(FixedType);
2067  }
2068
2069  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2070  if (!VLATy)
2071    return QualType();
2072  // FIXME: We should probably handle this case
2073  if (VLATy->getElementType()->isVariablyModifiedType())
2074    return QualType();
2075
2076  Expr::EvalResult EvalResult;
2077  if (!VLATy->getSizeExpr() ||
2078      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2079      !EvalResult.Val.isInt())
2080    return QualType();
2081
2082  llvm::APSInt &Res = EvalResult.Val.getInt();
2083  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2084    // TODO: preserve the size expression in declarator info
2085    return Context.getConstantArrayType(VLATy->getElementType(),
2086                                        Res, ArrayType::Normal, 0);
2087  }
2088
2089  SizeIsNegative = true;
2090  return QualType();
2091}
2092
2093/// \brief Register the given locally-scoped external C declaration so
2094/// that it can be found later for redeclarations
2095void
2096Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2097                                       const LookupResult &Previous,
2098                                       Scope *S) {
2099  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2100         "Decl is not a locally-scoped decl!");
2101  // Note that we have a locally-scoped external with this name.
2102  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2103
2104  if (!Previous.isSingleResult())
2105    return;
2106
2107  NamedDecl *PrevDecl = Previous.getFoundDecl();
2108
2109  // If there was a previous declaration of this variable, it may be
2110  // in our identifier chain. Update the identifier chain with the new
2111  // declaration.
2112  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2113    // The previous declaration was found on the identifer resolver
2114    // chain, so remove it from its scope.
2115    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2116      S = S->getParent();
2117
2118    if (S)
2119      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2120  }
2121}
2122
2123/// \brief Diagnose function specifiers on a declaration of an identifier that
2124/// does not identify a function.
2125void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2126  // FIXME: We should probably indicate the identifier in question to avoid
2127  // confusion for constructs like "inline int a(), b;"
2128  if (D.getDeclSpec().isInlineSpecified())
2129    Diag(D.getDeclSpec().getInlineSpecLoc(),
2130         diag::err_inline_non_function);
2131
2132  if (D.getDeclSpec().isVirtualSpecified())
2133    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2134         diag::err_virtual_non_function);
2135
2136  if (D.getDeclSpec().isExplicitSpecified())
2137    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2138         diag::err_explicit_non_function);
2139}
2140
2141NamedDecl*
2142Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2143                             QualType R,  TypeSourceInfo *TInfo,
2144                             LookupResult &Previous, bool &Redeclaration) {
2145  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2146  if (D.getCXXScopeSpec().isSet()) {
2147    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2148      << D.getCXXScopeSpec().getRange();
2149    D.setInvalidType();
2150    // Pretend we didn't see the scope specifier.
2151    DC = CurContext;
2152    Previous.clear();
2153  }
2154
2155  if (getLangOptions().CPlusPlus) {
2156    // Check that there are no default arguments (C++ only).
2157    CheckExtraCXXDefaultArguments(D);
2158  }
2159
2160  DiagnoseFunctionSpecifiers(D);
2161
2162  if (D.getDeclSpec().isThreadSpecified())
2163    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2164
2165  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2166  if (!NewTD) return 0;
2167
2168  // Handle attributes prior to checking for duplicates in MergeVarDecl
2169  ProcessDeclAttributes(S, NewTD, D);
2170
2171  // Merge the decl with the existing one if appropriate. If the decl is
2172  // in an outer scope, it isn't the same thing.
2173  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2174  if (!Previous.empty()) {
2175    Redeclaration = true;
2176    MergeTypeDefDecl(NewTD, Previous);
2177  }
2178
2179  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2180  // then it shall have block scope.
2181  QualType T = NewTD->getUnderlyingType();
2182  if (T->isVariablyModifiedType()) {
2183    FunctionNeedsScopeChecking() = true;
2184
2185    if (S->getFnParent() == 0) {
2186      bool SizeIsNegative;
2187      QualType FixedTy =
2188          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2189      if (!FixedTy.isNull()) {
2190        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2191        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2192      } else {
2193        if (SizeIsNegative)
2194          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2195        else if (T->isVariableArrayType())
2196          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2197        else
2198          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2199        NewTD->setInvalidDecl();
2200      }
2201    }
2202  }
2203
2204  // If this is the C FILE type, notify the AST context.
2205  if (IdentifierInfo *II = NewTD->getIdentifier())
2206    if (!NewTD->isInvalidDecl() &&
2207        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2208      if (II->isStr("FILE"))
2209        Context.setFILEDecl(NewTD);
2210      else if (II->isStr("jmp_buf"))
2211        Context.setjmp_bufDecl(NewTD);
2212      else if (II->isStr("sigjmp_buf"))
2213        Context.setsigjmp_bufDecl(NewTD);
2214    }
2215
2216  return NewTD;
2217}
2218
2219/// \brief Determines whether the given declaration is an out-of-scope
2220/// previous declaration.
2221///
2222/// This routine should be invoked when name lookup has found a
2223/// previous declaration (PrevDecl) that is not in the scope where a
2224/// new declaration by the same name is being introduced. If the new
2225/// declaration occurs in a local scope, previous declarations with
2226/// linkage may still be considered previous declarations (C99
2227/// 6.2.2p4-5, C++ [basic.link]p6).
2228///
2229/// \param PrevDecl the previous declaration found by name
2230/// lookup
2231///
2232/// \param DC the context in which the new declaration is being
2233/// declared.
2234///
2235/// \returns true if PrevDecl is an out-of-scope previous declaration
2236/// for a new delcaration with the same name.
2237static bool
2238isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2239                                ASTContext &Context) {
2240  if (!PrevDecl)
2241    return 0;
2242
2243  if (!PrevDecl->hasLinkage())
2244    return false;
2245
2246  if (Context.getLangOptions().CPlusPlus) {
2247    // C++ [basic.link]p6:
2248    //   If there is a visible declaration of an entity with linkage
2249    //   having the same name and type, ignoring entities declared
2250    //   outside the innermost enclosing namespace scope, the block
2251    //   scope declaration declares that same entity and receives the
2252    //   linkage of the previous declaration.
2253    DeclContext *OuterContext = DC->getLookupContext();
2254    if (!OuterContext->isFunctionOrMethod())
2255      // This rule only applies to block-scope declarations.
2256      return false;
2257    else {
2258      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2259      if (PrevOuterContext->isRecord())
2260        // We found a member function: ignore it.
2261        return false;
2262      else {
2263        // Find the innermost enclosing namespace for the new and
2264        // previous declarations.
2265        while (!OuterContext->isFileContext())
2266          OuterContext = OuterContext->getParent();
2267        while (!PrevOuterContext->isFileContext())
2268          PrevOuterContext = PrevOuterContext->getParent();
2269
2270        // The previous declaration is in a different namespace, so it
2271        // isn't the same function.
2272        if (OuterContext->getPrimaryContext() !=
2273            PrevOuterContext->getPrimaryContext())
2274          return false;
2275      }
2276    }
2277  }
2278
2279  return true;
2280}
2281
2282static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2283  CXXScopeSpec &SS = D.getCXXScopeSpec();
2284  if (!SS.isSet()) return;
2285  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2286                       SS.getRange());
2287}
2288
2289NamedDecl*
2290Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2291                              QualType R, TypeSourceInfo *TInfo,
2292                              LookupResult &Previous,
2293                              MultiTemplateParamsArg TemplateParamLists,
2294                              bool &Redeclaration) {
2295  DeclarationName Name = GetNameForDeclarator(D);
2296
2297  // Check that there are no default arguments (C++ only).
2298  if (getLangOptions().CPlusPlus)
2299    CheckExtraCXXDefaultArguments(D);
2300
2301  VarDecl *NewVD;
2302  VarDecl::StorageClass SC;
2303  switch (D.getDeclSpec().getStorageClassSpec()) {
2304  default: assert(0 && "Unknown storage class!");
2305  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2306  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2307  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2308  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2309  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2310  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2311  case DeclSpec::SCS_mutable:
2312    // mutable can only appear on non-static class members, so it's always
2313    // an error here
2314    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2315    D.setInvalidType();
2316    SC = VarDecl::None;
2317    break;
2318  }
2319
2320  IdentifierInfo *II = Name.getAsIdentifierInfo();
2321  if (!II) {
2322    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2323      << Name.getAsString();
2324    return 0;
2325  }
2326
2327  DiagnoseFunctionSpecifiers(D);
2328
2329  if (!DC->isRecord() && S->getFnParent() == 0) {
2330    // C99 6.9p2: The storage-class specifiers auto and register shall not
2331    // appear in the declaration specifiers in an external declaration.
2332    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2333
2334      // If this is a register variable with an asm label specified, then this
2335      // is a GNU extension.
2336      if (SC == VarDecl::Register && D.getAsmLabel())
2337        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2338      else
2339        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2340      D.setInvalidType();
2341    }
2342  }
2343  if (DC->isRecord() && !CurContext->isRecord()) {
2344    // This is an out-of-line definition of a static data member.
2345    if (SC == VarDecl::Static) {
2346      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2347           diag::err_static_out_of_line)
2348        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2349    } else if (SC == VarDecl::None)
2350      SC = VarDecl::Static;
2351  }
2352  if (SC == VarDecl::Static) {
2353    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2354      if (RD->isLocalClass())
2355        Diag(D.getIdentifierLoc(),
2356             diag::err_static_data_member_not_allowed_in_local_class)
2357          << Name << RD->getDeclName();
2358    }
2359  }
2360
2361  // Match up the template parameter lists with the scope specifier, then
2362  // determine whether we have a template or a template specialization.
2363  bool isExplicitSpecialization = false;
2364  if (TemplateParameterList *TemplateParams
2365        = MatchTemplateParametersToScopeSpecifier(
2366                                  D.getDeclSpec().getSourceRange().getBegin(),
2367                                                  D.getCXXScopeSpec(),
2368                        (TemplateParameterList**)TemplateParamLists.get(),
2369                                                   TemplateParamLists.size(),
2370                                                  isExplicitSpecialization)) {
2371    if (TemplateParams->size() > 0) {
2372      // There is no such thing as a variable template.
2373      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2374        << II
2375        << SourceRange(TemplateParams->getTemplateLoc(),
2376                       TemplateParams->getRAngleLoc());
2377      return 0;
2378    } else {
2379      // There is an extraneous 'template<>' for this variable. Complain
2380      // about it, but allow the declaration of the variable.
2381      Diag(TemplateParams->getTemplateLoc(),
2382           diag::err_template_variable_noparams)
2383        << II
2384        << SourceRange(TemplateParams->getTemplateLoc(),
2385                       TemplateParams->getRAngleLoc());
2386
2387      isExplicitSpecialization = true;
2388    }
2389  }
2390
2391  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2392                          II, R, TInfo, SC);
2393
2394  if (D.isInvalidType())
2395    NewVD->setInvalidDecl();
2396
2397  SetNestedNameSpecifier(NewVD, D);
2398
2399  if (D.getDeclSpec().isThreadSpecified()) {
2400    if (NewVD->hasLocalStorage())
2401      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2402    else if (!Context.Target.isTLSSupported())
2403      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2404    else
2405      NewVD->setThreadSpecified(true);
2406  }
2407
2408  // Set the lexical context. If the declarator has a C++ scope specifier, the
2409  // lexical context will be different from the semantic context.
2410  NewVD->setLexicalDeclContext(CurContext);
2411
2412  // Handle attributes prior to checking for duplicates in MergeVarDecl
2413  ProcessDeclAttributes(S, NewVD, D);
2414
2415  // Handle GNU asm-label extension (encoded as an attribute).
2416  if (Expr *E = (Expr*) D.getAsmLabel()) {
2417    // The parser guarantees this is a string.
2418    StringLiteral *SE = cast<StringLiteral>(E);
2419    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2420  }
2421
2422  // Diagnose shadowed variables before filtering for scope.
2423  if (!D.getCXXScopeSpec().isSet())
2424    CheckShadow(S, NewVD, Previous);
2425
2426  // Don't consider existing declarations that are in a different
2427  // scope and are out-of-semantic-context declarations (if the new
2428  // declaration has linkage).
2429  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2430
2431  // Merge the decl with the existing one if appropriate.
2432  if (!Previous.empty()) {
2433    if (Previous.isSingleResult() &&
2434        isa<FieldDecl>(Previous.getFoundDecl()) &&
2435        D.getCXXScopeSpec().isSet()) {
2436      // The user tried to define a non-static data member
2437      // out-of-line (C++ [dcl.meaning]p1).
2438      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2439        << D.getCXXScopeSpec().getRange();
2440      Previous.clear();
2441      NewVD->setInvalidDecl();
2442    }
2443  } else if (D.getCXXScopeSpec().isSet()) {
2444    // No previous declaration in the qualifying scope.
2445    Diag(D.getIdentifierLoc(), diag::err_no_member)
2446      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2447      << D.getCXXScopeSpec().getRange();
2448    NewVD->setInvalidDecl();
2449  }
2450
2451  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2452
2453  // This is an explicit specialization of a static data member. Check it.
2454  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2455      CheckMemberSpecialization(NewVD, Previous))
2456    NewVD->setInvalidDecl();
2457
2458  // attributes declared post-definition are currently ignored
2459  if (Previous.isSingleResult()) {
2460    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2461    if (Def && (Def = Def->getDefinition()) &&
2462        Def != NewVD && D.hasAttributes()) {
2463      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2464      Diag(Def->getLocation(), diag::note_previous_definition);
2465    }
2466  }
2467
2468  // If this is a locally-scoped extern C variable, update the map of
2469  // such variables.
2470  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2471      !NewVD->isInvalidDecl())
2472    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2473
2474  return NewVD;
2475}
2476
2477/// \brief Diagnose variable or built-in function shadowing.  Implements
2478/// -Wshadow.
2479///
2480/// This method is called whenever a VarDecl is added to a "useful"
2481/// scope.
2482///
2483/// \param S the scope in which the shadowing name is being declared
2484/// \param R the lookup of the name
2485///
2486void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2487  // Return if warning is ignored.
2488  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2489    return;
2490
2491  // Don't diagnose declarations at file scope.  The scope might not
2492  // have a DeclContext if (e.g.) we're parsing a function prototype.
2493  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2494  if (NewDC && NewDC->isFileContext())
2495    return;
2496
2497  // Only diagnose if we're shadowing an unambiguous field or variable.
2498  if (R.getResultKind() != LookupResult::Found)
2499    return;
2500
2501  NamedDecl* ShadowedDecl = R.getFoundDecl();
2502  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2503    return;
2504
2505  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2506
2507  // Only warn about certain kinds of shadowing for class members.
2508  if (NewDC && NewDC->isRecord()) {
2509    // In particular, don't warn about shadowing non-class members.
2510    if (!OldDC->isRecord())
2511      return;
2512
2513    // TODO: should we warn about static data members shadowing
2514    // static data members from base classes?
2515
2516    // TODO: don't diagnose for inaccessible shadowed members.
2517    // This is hard to do perfectly because we might friend the
2518    // shadowing context, but that's just a false negative.
2519  }
2520
2521  // Determine what kind of declaration we're shadowing.
2522  unsigned Kind;
2523  if (isa<RecordDecl>(OldDC)) {
2524    if (isa<FieldDecl>(ShadowedDecl))
2525      Kind = 3; // field
2526    else
2527      Kind = 2; // static data member
2528  } else if (OldDC->isFileContext())
2529    Kind = 1; // global
2530  else
2531    Kind = 0; // local
2532
2533  DeclarationName Name = R.getLookupName();
2534
2535  // Emit warning and note.
2536  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2537  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2538}
2539
2540/// \brief Check -Wshadow without the advantage of a previous lookup.
2541void Sema::CheckShadow(Scope *S, VarDecl *D) {
2542  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2543                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2544  LookupName(R, S);
2545  CheckShadow(S, D, R);
2546}
2547
2548/// \brief Perform semantic checking on a newly-created variable
2549/// declaration.
2550///
2551/// This routine performs all of the type-checking required for a
2552/// variable declaration once it has been built. It is used both to
2553/// check variables after they have been parsed and their declarators
2554/// have been translated into a declaration, and to check variables
2555/// that have been instantiated from a template.
2556///
2557/// Sets NewVD->isInvalidDecl() if an error was encountered.
2558void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2559                                    LookupResult &Previous,
2560                                    bool &Redeclaration) {
2561  // If the decl is already known invalid, don't check it.
2562  if (NewVD->isInvalidDecl())
2563    return;
2564
2565  QualType T = NewVD->getType();
2566
2567  if (T->isObjCInterfaceType()) {
2568    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2569    return NewVD->setInvalidDecl();
2570  }
2571
2572  // Emit an error if an address space was applied to decl with local storage.
2573  // This includes arrays of objects with address space qualifiers, but not
2574  // automatic variables that point to other address spaces.
2575  // ISO/IEC TR 18037 S5.1.2
2576  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2577    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2578    return NewVD->setInvalidDecl();
2579  }
2580
2581  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2582      && !NewVD->hasAttr<BlocksAttr>())
2583    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2584
2585  bool isVM = T->isVariablyModifiedType();
2586  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2587      NewVD->hasAttr<BlocksAttr>() ||
2588      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2589      // However, this turns on the scope checker for everything with a variable
2590      // which may impact compile time.  See if we can find a better solution
2591      // to this, perhaps only checking functions that contain gotos in C++?
2592      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2593    FunctionNeedsScopeChecking() = true;
2594
2595  if ((isVM && NewVD->hasLinkage()) ||
2596      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2597    bool SizeIsNegative;
2598    QualType FixedTy =
2599        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2600
2601    if (FixedTy.isNull() && T->isVariableArrayType()) {
2602      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2603      // FIXME: This won't give the correct result for
2604      // int a[10][n];
2605      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2606
2607      if (NewVD->isFileVarDecl())
2608        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2609        << SizeRange;
2610      else if (NewVD->getStorageClass() == VarDecl::Static)
2611        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2612        << SizeRange;
2613      else
2614        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2615        << SizeRange;
2616      return NewVD->setInvalidDecl();
2617    }
2618
2619    if (FixedTy.isNull()) {
2620      if (NewVD->isFileVarDecl())
2621        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2622      else
2623        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2624      return NewVD->setInvalidDecl();
2625    }
2626
2627    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2628    NewVD->setType(FixedTy);
2629  }
2630
2631  if (Previous.empty() && NewVD->isExternC()) {
2632    // Since we did not find anything by this name and we're declaring
2633    // an extern "C" variable, look for a non-visible extern "C"
2634    // declaration with the same name.
2635    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2636      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2637    if (Pos != LocallyScopedExternalDecls.end())
2638      Previous.addDecl(Pos->second);
2639  }
2640
2641  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2642    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2643      << T;
2644    return NewVD->setInvalidDecl();
2645  }
2646
2647  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2648    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2649    return NewVD->setInvalidDecl();
2650  }
2651
2652  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2653    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2654    return NewVD->setInvalidDecl();
2655  }
2656
2657  if (!Previous.empty()) {
2658    Redeclaration = true;
2659    MergeVarDecl(NewVD, Previous);
2660  }
2661}
2662
2663/// \brief Data used with FindOverriddenMethod
2664struct FindOverriddenMethodData {
2665  Sema *S;
2666  CXXMethodDecl *Method;
2667};
2668
2669/// \brief Member lookup function that determines whether a given C++
2670/// method overrides a method in a base class, to be used with
2671/// CXXRecordDecl::lookupInBases().
2672static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2673                                 CXXBasePath &Path,
2674                                 void *UserData) {
2675  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2676
2677  FindOverriddenMethodData *Data
2678    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2679
2680  DeclarationName Name = Data->Method->getDeclName();
2681
2682  // FIXME: Do we care about other names here too?
2683  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2684    // We really want to find the base class constructor here.
2685    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2686    CanQualType CT = Data->S->Context.getCanonicalType(T);
2687
2688    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2689  }
2690
2691  for (Path.Decls = BaseRecord->lookup(Name);
2692       Path.Decls.first != Path.Decls.second;
2693       ++Path.Decls.first) {
2694    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2695      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2696        return true;
2697    }
2698  }
2699
2700  return false;
2701}
2702
2703/// AddOverriddenMethods - See if a method overrides any in the base classes,
2704/// and if so, check that it's a valid override and remember it.
2705void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2706  // Look for virtual methods in base classes that this method might override.
2707  CXXBasePaths Paths;
2708  FindOverriddenMethodData Data;
2709  Data.Method = MD;
2710  Data.S = this;
2711  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2712    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2713         E = Paths.found_decls_end(); I != E; ++I) {
2714      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2715        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2716            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2717            !CheckOverridingFunctionAttributes(MD, OldMD))
2718          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2719      }
2720    }
2721  }
2722}
2723
2724NamedDecl*
2725Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2726                              QualType R, TypeSourceInfo *TInfo,
2727                              LookupResult &Previous,
2728                              MultiTemplateParamsArg TemplateParamLists,
2729                              bool IsFunctionDefinition, bool &Redeclaration) {
2730  assert(R.getTypePtr()->isFunctionType());
2731
2732  DeclarationName Name = GetNameForDeclarator(D);
2733  FunctionDecl::StorageClass SC = FunctionDecl::None;
2734  switch (D.getDeclSpec().getStorageClassSpec()) {
2735  default: assert(0 && "Unknown storage class!");
2736  case DeclSpec::SCS_auto:
2737  case DeclSpec::SCS_register:
2738  case DeclSpec::SCS_mutable:
2739    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2740         diag::err_typecheck_sclass_func);
2741    D.setInvalidType();
2742    break;
2743  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2744  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2745  case DeclSpec::SCS_static: {
2746    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2747      // C99 6.7.1p5:
2748      //   The declaration of an identifier for a function that has
2749      //   block scope shall have no explicit storage-class specifier
2750      //   other than extern
2751      // See also (C++ [dcl.stc]p4).
2752      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2753           diag::err_static_block_func);
2754      SC = FunctionDecl::None;
2755    } else
2756      SC = FunctionDecl::Static;
2757    break;
2758  }
2759  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2760  }
2761
2762  if (D.getDeclSpec().isThreadSpecified())
2763    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2764
2765  bool isFriend = D.getDeclSpec().isFriendSpecified();
2766  bool isInline = D.getDeclSpec().isInlineSpecified();
2767  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2768  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2769
2770  // Check that the return type is not an abstract class type.
2771  // For record types, this is done by the AbstractClassUsageDiagnoser once
2772  // the class has been completely parsed.
2773  if (!DC->isRecord() &&
2774      RequireNonAbstractType(D.getIdentifierLoc(),
2775                             R->getAs<FunctionType>()->getResultType(),
2776                             diag::err_abstract_type_in_decl,
2777                             AbstractReturnType))
2778    D.setInvalidType();
2779
2780  // Do not allow returning a objc interface by-value.
2781  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2782    Diag(D.getIdentifierLoc(),
2783         diag::err_object_cannot_be_passed_returned_by_value) << 0
2784      << R->getAs<FunctionType>()->getResultType();
2785    D.setInvalidType();
2786  }
2787
2788  bool isVirtualOkay = false;
2789  FunctionDecl *NewFD;
2790
2791  if (isFriend) {
2792    // C++ [class.friend]p5
2793    //   A function can be defined in a friend declaration of a
2794    //   class . . . . Such a function is implicitly inline.
2795    isInline |= IsFunctionDefinition;
2796  }
2797
2798  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2799    // This is a C++ constructor declaration.
2800    assert(DC->isRecord() &&
2801           "Constructors can only be declared in a member context");
2802
2803    R = CheckConstructorDeclarator(D, R, SC);
2804
2805    // Create the new declaration
2806    NewFD = CXXConstructorDecl::Create(Context,
2807                                       cast<CXXRecordDecl>(DC),
2808                                       D.getIdentifierLoc(), Name, R, TInfo,
2809                                       isExplicit, isInline,
2810                                       /*isImplicitlyDeclared=*/false);
2811  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2812    // This is a C++ destructor declaration.
2813    if (DC->isRecord()) {
2814      R = CheckDestructorDeclarator(D, SC);
2815
2816      NewFD = CXXDestructorDecl::Create(Context,
2817                                        cast<CXXRecordDecl>(DC),
2818                                        D.getIdentifierLoc(), Name, R,
2819                                        isInline,
2820                                        /*isImplicitlyDeclared=*/false);
2821      NewFD->setTypeSourceInfo(TInfo);
2822
2823      isVirtualOkay = true;
2824    } else {
2825      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2826
2827      // Create a FunctionDecl to satisfy the function definition parsing
2828      // code path.
2829      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2830                                   Name, R, TInfo, SC, isInline,
2831                                   /*hasPrototype=*/true);
2832      D.setInvalidType();
2833    }
2834  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2835    if (!DC->isRecord()) {
2836      Diag(D.getIdentifierLoc(),
2837           diag::err_conv_function_not_member);
2838      return 0;
2839    }
2840
2841    CheckConversionDeclarator(D, R, SC);
2842    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2843                                      D.getIdentifierLoc(), Name, R, TInfo,
2844                                      isInline, isExplicit);
2845
2846    isVirtualOkay = true;
2847  } else if (DC->isRecord()) {
2848    // If the of the function is the same as the name of the record, then this
2849    // must be an invalid constructor that has a return type.
2850    // (The parser checks for a return type and makes the declarator a
2851    // constructor if it has no return type).
2852    // must have an invalid constructor that has a return type
2853    if (Name.getAsIdentifierInfo() &&
2854        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2855      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2856        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2857        << SourceRange(D.getIdentifierLoc());
2858      return 0;
2859    }
2860
2861    bool isStatic = SC == FunctionDecl::Static;
2862
2863    // [class.free]p1:
2864    // Any allocation function for a class T is a static member
2865    // (even if not explicitly declared static).
2866    if (Name.getCXXOverloadedOperator() == OO_New ||
2867        Name.getCXXOverloadedOperator() == OO_Array_New)
2868      isStatic = true;
2869
2870    // [class.free]p6 Any deallocation function for a class X is a static member
2871    // (even if not explicitly declared static).
2872    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2873        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2874      isStatic = true;
2875
2876    // This is a C++ method declaration.
2877    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2878                                  D.getIdentifierLoc(), Name, R, TInfo,
2879                                  isStatic, isInline);
2880
2881    isVirtualOkay = !isStatic;
2882  } else {
2883    // Determine whether the function was written with a
2884    // prototype. This true when:
2885    //   - we're in C++ (where every function has a prototype),
2886    //   - there is a prototype in the declarator, or
2887    //   - the type R of the function is some kind of typedef or other reference
2888    //     to a type name (which eventually refers to a function type).
2889    bool HasPrototype =
2890       getLangOptions().CPlusPlus ||
2891       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2892       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2893
2894    NewFD = FunctionDecl::Create(Context, DC,
2895                                 D.getIdentifierLoc(),
2896                                 Name, R, TInfo, SC, isInline, HasPrototype);
2897  }
2898
2899  if (D.isInvalidType())
2900    NewFD->setInvalidDecl();
2901
2902  SetNestedNameSpecifier(NewFD, D);
2903
2904  // Set the lexical context. If the declarator has a C++
2905  // scope specifier, or is the object of a friend declaration, the
2906  // lexical context will be different from the semantic context.
2907  NewFD->setLexicalDeclContext(CurContext);
2908
2909  // Match up the template parameter lists with the scope specifier, then
2910  // determine whether we have a template or a template specialization.
2911  FunctionTemplateDecl *FunctionTemplate = 0;
2912  bool isExplicitSpecialization = false;
2913  bool isFunctionTemplateSpecialization = false;
2914  if (TemplateParameterList *TemplateParams
2915        = MatchTemplateParametersToScopeSpecifier(
2916                                  D.getDeclSpec().getSourceRange().getBegin(),
2917                                  D.getCXXScopeSpec(),
2918                           (TemplateParameterList**)TemplateParamLists.get(),
2919                                                  TemplateParamLists.size(),
2920                                                  isExplicitSpecialization)) {
2921    if (TemplateParams->size() > 0) {
2922      // This is a function template
2923
2924      // Check that we can declare a template here.
2925      if (CheckTemplateDeclScope(S, TemplateParams))
2926        return 0;
2927
2928      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2929                                                      NewFD->getLocation(),
2930                                                      Name, TemplateParams,
2931                                                      NewFD);
2932      FunctionTemplate->setLexicalDeclContext(CurContext);
2933      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2934    } else {
2935      // This is a function template specialization.
2936      isFunctionTemplateSpecialization = true;
2937
2938      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
2939      if (isFriend && isFunctionTemplateSpecialization) {
2940        // We want to remove the "template<>", found here.
2941        SourceRange RemoveRange = TemplateParams->getSourceRange();
2942
2943        // If we remove the template<> and the name is not a
2944        // template-id, we're actually silently creating a problem:
2945        // the friend declaration will refer to an untemplated decl,
2946        // and clearly the user wants a template specialization.  So
2947        // we need to insert '<>' after the name.
2948        SourceLocation InsertLoc;
2949        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
2950          InsertLoc = D.getName().getSourceRange().getEnd();
2951          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
2952        }
2953
2954        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
2955          << Name << RemoveRange
2956          << FixItHint::CreateRemoval(RemoveRange)
2957          << FixItHint::CreateInsertion(InsertLoc, "<>");
2958      }
2959    }
2960
2961    // FIXME: Free this memory properly.
2962    TemplateParamLists.release();
2963  }
2964
2965  // C++ [dcl.fct.spec]p5:
2966  //   The virtual specifier shall only be used in declarations of
2967  //   nonstatic class member functions that appear within a
2968  //   member-specification of a class declaration; see 10.3.
2969  //
2970  if (isVirtual && !NewFD->isInvalidDecl()) {
2971    if (!isVirtualOkay) {
2972       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2973           diag::err_virtual_non_function);
2974    } else if (!CurContext->isRecord()) {
2975      // 'virtual' was specified outside of the class.
2976      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2977        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
2978    } else {
2979      // Okay: Add virtual to the method.
2980      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2981      CurClass->setMethodAsVirtual(NewFD);
2982    }
2983  }
2984
2985  // C++ [dcl.fct.spec]p6:
2986  //  The explicit specifier shall be used only in the declaration of a
2987  //  constructor or conversion function within its class definition; see 12.3.1
2988  //  and 12.3.2.
2989  if (isExplicit && !NewFD->isInvalidDecl()) {
2990    if (!CurContext->isRecord()) {
2991      // 'explicit' was specified outside of the class.
2992      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2993           diag::err_explicit_out_of_class)
2994        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
2995    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2996               !isa<CXXConversionDecl>(NewFD)) {
2997      // 'explicit' was specified on a function that wasn't a constructor
2998      // or conversion function.
2999      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3000           diag::err_explicit_non_ctor_or_conv_function)
3001        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3002    }
3003  }
3004
3005  // Filter out previous declarations that don't match the scope.
3006  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3007
3008  if (isFriend) {
3009    // DC is the namespace in which the function is being declared.
3010    assert((DC->isFileContext() || !Previous.empty()) &&
3011           "previously-undeclared friend function being created "
3012           "in a non-namespace context");
3013
3014    // For now, claim that the objects have no previous declaration.
3015    if (FunctionTemplate) {
3016      FunctionTemplate->setObjectOfFriendDecl(false);
3017      FunctionTemplate->setAccess(AS_public);
3018    } else {
3019      NewFD->setObjectOfFriendDecl(false);
3020    }
3021
3022    NewFD->setAccess(AS_public);
3023  }
3024
3025  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3026      !CurContext->isRecord()) {
3027    // C++ [class.static]p1:
3028    //   A data or function member of a class may be declared static
3029    //   in a class definition, in which case it is a static member of
3030    //   the class.
3031
3032    // Complain about the 'static' specifier if it's on an out-of-line
3033    // member function definition.
3034    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3035         diag::err_static_out_of_line)
3036      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3037  }
3038
3039  // Handle GNU asm-label extension (encoded as an attribute).
3040  if (Expr *E = (Expr*) D.getAsmLabel()) {
3041    // The parser guarantees this is a string.
3042    StringLiteral *SE = cast<StringLiteral>(E);
3043    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3044  }
3045
3046  // Copy the parameter declarations from the declarator D to the function
3047  // declaration NewFD, if they are available.  First scavenge them into Params.
3048  llvm::SmallVector<ParmVarDecl*, 16> Params;
3049  if (D.getNumTypeObjects() > 0) {
3050    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3051
3052    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3053    // function that takes no arguments, not a function that takes a
3054    // single void argument.
3055    // We let through "const void" here because Sema::GetTypeForDeclarator
3056    // already checks for that case.
3057    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3058        FTI.ArgInfo[0].Param &&
3059        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3060      // Empty arg list, don't push any params.
3061      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3062
3063      // In C++, the empty parameter-type-list must be spelled "void"; a
3064      // typedef of void is not permitted.
3065      if (getLangOptions().CPlusPlus &&
3066          Param->getType().getUnqualifiedType() != Context.VoidTy)
3067        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3068      // FIXME: Leaks decl?
3069    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3070      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3071        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3072        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3073        Param->setDeclContext(NewFD);
3074        Params.push_back(Param);
3075      }
3076    }
3077
3078  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3079    // When we're declaring a function with a typedef, typeof, etc as in the
3080    // following example, we'll need to synthesize (unnamed)
3081    // parameters for use in the declaration.
3082    //
3083    // @code
3084    // typedef void fn(int);
3085    // fn f;
3086    // @endcode
3087
3088    // Synthesize a parameter for each argument type.
3089    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3090         AE = FT->arg_type_end(); AI != AE; ++AI) {
3091      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3092                                               SourceLocation(), 0,
3093                                               *AI, /*TInfo=*/0,
3094                                               VarDecl::None, 0);
3095      Param->setImplicit();
3096      Params.push_back(Param);
3097    }
3098  } else {
3099    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3100           "Should not need args for typedef of non-prototype fn");
3101  }
3102  // Finally, we know we have the right number of parameters, install them.
3103  NewFD->setParams(Params.data(), Params.size());
3104
3105  // If the declarator is a template-id, translate the parser's template
3106  // argument list into our AST format.
3107  bool HasExplicitTemplateArgs = false;
3108  TemplateArgumentListInfo TemplateArgs;
3109  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3110    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3111    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3112    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3113    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3114                                       TemplateId->getTemplateArgs(),
3115                                       TemplateId->NumArgs);
3116    translateTemplateArguments(TemplateArgsPtr,
3117                               TemplateArgs);
3118    TemplateArgsPtr.release();
3119
3120    HasExplicitTemplateArgs = true;
3121
3122    if (FunctionTemplate) {
3123      // FIXME: Diagnose function template with explicit template
3124      // arguments.
3125      HasExplicitTemplateArgs = false;
3126    } else if (!isFunctionTemplateSpecialization &&
3127               !D.getDeclSpec().isFriendSpecified()) {
3128      // We have encountered something that the user meant to be a
3129      // specialization (because it has explicitly-specified template
3130      // arguments) but that was not introduced with a "template<>" (or had
3131      // too few of them).
3132      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3133        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3134        << FixItHint::CreateInsertion(
3135                                   D.getDeclSpec().getSourceRange().getBegin(),
3136                                                 "template<> ");
3137      isFunctionTemplateSpecialization = true;
3138    } else {
3139      // "friend void foo<>(int);" is an implicit specialization decl.
3140      isFunctionTemplateSpecialization = true;
3141    }
3142  } else if (isFriend && isFunctionTemplateSpecialization) {
3143    // This combination is only possible in a recovery case;  the user
3144    // wrote something like:
3145    //   template <> friend void foo(int);
3146    // which we're recovering from as if the user had written:
3147    //   friend void foo<>(int);
3148    // Go ahead and fake up a template id.
3149    HasExplicitTemplateArgs = true;
3150    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3151    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3152  }
3153
3154  // If it's a friend (and only if it's a friend), it's possible
3155  // that either the specialized function type or the specialized
3156  // template is dependent, and therefore matching will fail.  In
3157  // this case, don't check the specialization yet.
3158  if (isFunctionTemplateSpecialization && isFriend &&
3159      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3160    assert(HasExplicitTemplateArgs &&
3161           "friend function specialization without template args");
3162    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3163                                                     Previous))
3164      NewFD->setInvalidDecl();
3165  } else if (isFunctionTemplateSpecialization) {
3166    if (CheckFunctionTemplateSpecialization(NewFD,
3167                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3168                                            Previous))
3169      NewFD->setInvalidDecl();
3170  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3171    if (CheckMemberSpecialization(NewFD, Previous))
3172      NewFD->setInvalidDecl();
3173  }
3174
3175  // Perform semantic checking on the function declaration.
3176  bool OverloadableAttrRequired = false; // FIXME: HACK!
3177  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3178                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3179
3180  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3181          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3182         "previous declaration set still overloaded");
3183
3184  if (isFriend && Redeclaration) {
3185    AccessSpecifier Access = NewFD->getPreviousDeclaration()->getAccess();
3186    if (FunctionTemplate) {
3187      FunctionTemplate->setObjectOfFriendDecl(true);
3188      FunctionTemplate->setAccess(Access);
3189    } else {
3190      NewFD->setObjectOfFriendDecl(true);
3191    }
3192    NewFD->setAccess(Access);
3193  }
3194
3195  // If we have a function template, check the template parameter
3196  // list. This will check and merge default template arguments.
3197  if (FunctionTemplate) {
3198    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3199    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3200                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3201             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3202                                                : TPC_FunctionTemplate);
3203  }
3204
3205  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3206    // Fake up an access specifier if it's supposed to be a class member.
3207    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3208      NewFD->setAccess(AS_public);
3209
3210    // An out-of-line member function declaration must also be a
3211    // definition (C++ [dcl.meaning]p1).
3212    // Note that this is not the case for explicit specializations of
3213    // function templates or member functions of class templates, per
3214    // C++ [temp.expl.spec]p2.
3215    if (!IsFunctionDefinition && !isFriend &&
3216        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3217      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3218        << D.getCXXScopeSpec().getRange();
3219      NewFD->setInvalidDecl();
3220    } else if (!Redeclaration &&
3221               !(isFriend && CurContext->isDependentContext())) {
3222      // The user tried to provide an out-of-line definition for a
3223      // function that is a member of a class or namespace, but there
3224      // was no such member function declared (C++ [class.mfct]p2,
3225      // C++ [namespace.memdef]p2). For example:
3226      //
3227      // class X {
3228      //   void f() const;
3229      // };
3230      //
3231      // void X::f() { } // ill-formed
3232      //
3233      // Complain about this problem, and attempt to suggest close
3234      // matches (e.g., those that differ only in cv-qualifiers and
3235      // whether the parameter types are references).
3236      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3237        << Name << DC << D.getCXXScopeSpec().getRange();
3238      NewFD->setInvalidDecl();
3239
3240      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3241                        ForRedeclaration);
3242      LookupQualifiedName(Prev, DC);
3243      assert(!Prev.isAmbiguous() &&
3244             "Cannot have an ambiguity in previous-declaration lookup");
3245      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3246           Func != FuncEnd; ++Func) {
3247        if (isa<FunctionDecl>(*Func) &&
3248            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3249          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3250      }
3251    }
3252  }
3253
3254  // Handle attributes. We need to have merged decls when handling attributes
3255  // (for example to check for conflicts, etc).
3256  // FIXME: This needs to happen before we merge declarations. Then,
3257  // let attribute merging cope with attribute conflicts.
3258  ProcessDeclAttributes(S, NewFD, D);
3259
3260  // attributes declared post-definition are currently ignored
3261  if (Redeclaration && Previous.isSingleResult()) {
3262    const FunctionDecl *Def;
3263    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3264    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3265      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3266      Diag(Def->getLocation(), diag::note_previous_definition);
3267    }
3268  }
3269
3270  AddKnownFunctionAttributes(NewFD);
3271
3272  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3273    // If a function name is overloadable in C, then every function
3274    // with that name must be marked "overloadable".
3275    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3276      << Redeclaration << NewFD;
3277    if (!Previous.empty())
3278      Diag(Previous.getRepresentativeDecl()->getLocation(),
3279           diag::note_attribute_overloadable_prev_overload);
3280    NewFD->addAttr(::new (Context) OverloadableAttr());
3281  }
3282
3283  // If this is a locally-scoped extern C function, update the
3284  // map of such names.
3285  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3286      && !NewFD->isInvalidDecl())
3287    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3288
3289  // Set this FunctionDecl's range up to the right paren.
3290  NewFD->setLocEnd(D.getSourceRange().getEnd());
3291
3292  if (FunctionTemplate && NewFD->isInvalidDecl())
3293    FunctionTemplate->setInvalidDecl();
3294
3295  if (FunctionTemplate)
3296    return FunctionTemplate;
3297
3298
3299  // Keep track of static, non-inlined function definitions that
3300  // have not been used. We will warn later.
3301  // FIXME: Also include static functions declared but not defined.
3302  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3303      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3304      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3305    UnusedStaticFuncs.push_back(NewFD);
3306
3307  return NewFD;
3308}
3309
3310/// \brief Perform semantic checking of a new function declaration.
3311///
3312/// Performs semantic analysis of the new function declaration
3313/// NewFD. This routine performs all semantic checking that does not
3314/// require the actual declarator involved in the declaration, and is
3315/// used both for the declaration of functions as they are parsed
3316/// (called via ActOnDeclarator) and for the declaration of functions
3317/// that have been instantiated via C++ template instantiation (called
3318/// via InstantiateDecl).
3319///
3320/// \param IsExplicitSpecialiation whether this new function declaration is
3321/// an explicit specialization of the previous declaration.
3322///
3323/// This sets NewFD->isInvalidDecl() to true if there was an error.
3324void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3325                                    LookupResult &Previous,
3326                                    bool IsExplicitSpecialization,
3327                                    bool &Redeclaration,
3328                                    bool &OverloadableAttrRequired) {
3329  // If NewFD is already known erroneous, don't do any of this checking.
3330  if (NewFD->isInvalidDecl())
3331    return;
3332
3333  if (NewFD->getResultType()->isVariablyModifiedType()) {
3334    // Functions returning a variably modified type violate C99 6.7.5.2p2
3335    // because all functions have linkage.
3336    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3337    return NewFD->setInvalidDecl();
3338  }
3339
3340  if (NewFD->isMain())
3341    CheckMain(NewFD);
3342
3343  // Check for a previous declaration of this name.
3344  if (Previous.empty() && NewFD->isExternC()) {
3345    // Since we did not find anything by this name and we're declaring
3346    // an extern "C" function, look for a non-visible extern "C"
3347    // declaration with the same name.
3348    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3349      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3350    if (Pos != LocallyScopedExternalDecls.end())
3351      Previous.addDecl(Pos->second);
3352  }
3353
3354  // Merge or overload the declaration with an existing declaration of
3355  // the same name, if appropriate.
3356  if (!Previous.empty()) {
3357    // Determine whether NewFD is an overload of PrevDecl or
3358    // a declaration that requires merging. If it's an overload,
3359    // there's no more work to do here; we'll just add the new
3360    // function to the scope.
3361
3362    NamedDecl *OldDecl = 0;
3363    if (!AllowOverloadingOfFunction(Previous, Context)) {
3364      Redeclaration = true;
3365      OldDecl = Previous.getFoundDecl();
3366    } else {
3367      if (!getLangOptions().CPlusPlus) {
3368        OverloadableAttrRequired = true;
3369
3370        // Functions marked "overloadable" must have a prototype (that
3371        // we can't get through declaration merging).
3372        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3373          Diag(NewFD->getLocation(),
3374               diag::err_attribute_overloadable_no_prototype)
3375            << NewFD;
3376          Redeclaration = true;
3377
3378          // Turn this into a variadic function with no parameters.
3379          QualType R = Context.getFunctionType(
3380                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3381                     0, 0, true, 0, false, false, 0, 0,
3382                     FunctionType::ExtInfo());
3383          NewFD->setType(R);
3384          return NewFD->setInvalidDecl();
3385        }
3386      }
3387
3388      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3389      case Ovl_Match:
3390        Redeclaration = true;
3391        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3392          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3393          Redeclaration = false;
3394        }
3395        break;
3396
3397      case Ovl_NonFunction:
3398        Redeclaration = true;
3399        break;
3400
3401      case Ovl_Overload:
3402        Redeclaration = false;
3403        break;
3404      }
3405    }
3406
3407    if (Redeclaration) {
3408      // NewFD and OldDecl represent declarations that need to be
3409      // merged.
3410      if (MergeFunctionDecl(NewFD, OldDecl))
3411        return NewFD->setInvalidDecl();
3412
3413      Previous.clear();
3414      Previous.addDecl(OldDecl);
3415
3416      if (FunctionTemplateDecl *OldTemplateDecl
3417                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3418        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3419        FunctionTemplateDecl *NewTemplateDecl
3420          = NewFD->getDescribedFunctionTemplate();
3421        assert(NewTemplateDecl && "Template/non-template mismatch");
3422        if (CXXMethodDecl *Method
3423              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3424          Method->setAccess(OldTemplateDecl->getAccess());
3425          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3426        }
3427
3428        // If this is an explicit specialization of a member that is a function
3429        // template, mark it as a member specialization.
3430        if (IsExplicitSpecialization &&
3431            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3432          NewTemplateDecl->setMemberSpecialization();
3433          assert(OldTemplateDecl->isMemberSpecialization());
3434        }
3435      } else {
3436        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3437          NewFD->setAccess(OldDecl->getAccess());
3438        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3439      }
3440    }
3441  }
3442
3443  // Semantic checking for this function declaration (in isolation).
3444  if (getLangOptions().CPlusPlus) {
3445    // C++-specific checks.
3446    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3447      CheckConstructor(Constructor);
3448    } else if (CXXDestructorDecl *Destructor =
3449                dyn_cast<CXXDestructorDecl>(NewFD)) {
3450      CXXRecordDecl *Record = Destructor->getParent();
3451      QualType ClassType = Context.getTypeDeclType(Record);
3452
3453      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3454      // type is dependent? Both gcc and edg can handle that.
3455      if (!ClassType->isDependentType()) {
3456        DeclarationName Name
3457          = Context.DeclarationNames.getCXXDestructorName(
3458                                        Context.getCanonicalType(ClassType));
3459        if (NewFD->getDeclName() != Name) {
3460          Diag(NewFD->getLocation(), diag::err_destructor_name);
3461          return NewFD->setInvalidDecl();
3462        }
3463      }
3464
3465      Record->setUserDeclaredDestructor(true);
3466      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3467      // user-defined destructor.
3468      Record->setPOD(false);
3469
3470      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3471      // declared destructor.
3472      // FIXME: C++0x: don't do this for "= default" destructors
3473      Record->setHasTrivialDestructor(false);
3474    } else if (CXXConversionDecl *Conversion
3475               = dyn_cast<CXXConversionDecl>(NewFD)) {
3476      ActOnConversionDeclarator(Conversion);
3477    }
3478
3479    // Find any virtual functions that this function overrides.
3480    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3481      if (!Method->isFunctionTemplateSpecialization() &&
3482          !Method->getDescribedFunctionTemplate())
3483        AddOverriddenMethods(Method->getParent(), Method);
3484    }
3485
3486    // Additional checks for the destructor; make sure we do this after we
3487    // figure out whether the destructor is virtual.
3488    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3489      if (!Destructor->getParent()->isDependentType())
3490        CheckDestructor(Destructor);
3491
3492    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3493    if (NewFD->isOverloadedOperator() &&
3494        CheckOverloadedOperatorDeclaration(NewFD))
3495      return NewFD->setInvalidDecl();
3496
3497    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3498    if (NewFD->getLiteralIdentifier() &&
3499        CheckLiteralOperatorDeclaration(NewFD))
3500      return NewFD->setInvalidDecl();
3501
3502    // In C++, check default arguments now that we have merged decls. Unless
3503    // the lexical context is the class, because in this case this is done
3504    // during delayed parsing anyway.
3505    if (!CurContext->isRecord())
3506      CheckCXXDefaultArguments(NewFD);
3507  }
3508}
3509
3510void Sema::CheckMain(FunctionDecl* FD) {
3511  // C++ [basic.start.main]p3:  A program that declares main to be inline
3512  //   or static is ill-formed.
3513  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3514  //   shall not appear in a declaration of main.
3515  // static main is not an error under C99, but we should warn about it.
3516  bool isInline = FD->isInlineSpecified();
3517  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3518  if (isInline || isStatic) {
3519    unsigned diagID = diag::warn_unusual_main_decl;
3520    if (isInline || getLangOptions().CPlusPlus)
3521      diagID = diag::err_unusual_main_decl;
3522
3523    int which = isStatic + (isInline << 1) - 1;
3524    Diag(FD->getLocation(), diagID) << which;
3525  }
3526
3527  QualType T = FD->getType();
3528  assert(T->isFunctionType() && "function decl is not of function type");
3529  const FunctionType* FT = T->getAs<FunctionType>();
3530
3531  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3532    // TODO: add a replacement fixit to turn the return type into 'int'.
3533    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3534    FD->setInvalidDecl(true);
3535  }
3536
3537  // Treat protoless main() as nullary.
3538  if (isa<FunctionNoProtoType>(FT)) return;
3539
3540  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3541  unsigned nparams = FTP->getNumArgs();
3542  assert(FD->getNumParams() == nparams);
3543
3544  bool HasExtraParameters = (nparams > 3);
3545
3546  // Darwin passes an undocumented fourth argument of type char**.  If
3547  // other platforms start sprouting these, the logic below will start
3548  // getting shifty.
3549  if (nparams == 4 &&
3550      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3551    HasExtraParameters = false;
3552
3553  if (HasExtraParameters) {
3554    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3555    FD->setInvalidDecl(true);
3556    nparams = 3;
3557  }
3558
3559  // FIXME: a lot of the following diagnostics would be improved
3560  // if we had some location information about types.
3561
3562  QualType CharPP =
3563    Context.getPointerType(Context.getPointerType(Context.CharTy));
3564  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3565
3566  for (unsigned i = 0; i < nparams; ++i) {
3567    QualType AT = FTP->getArgType(i);
3568
3569    bool mismatch = true;
3570
3571    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3572      mismatch = false;
3573    else if (Expected[i] == CharPP) {
3574      // As an extension, the following forms are okay:
3575      //   char const **
3576      //   char const * const *
3577      //   char * const *
3578
3579      QualifierCollector qs;
3580      const PointerType* PT;
3581      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3582          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3583          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3584        qs.removeConst();
3585        mismatch = !qs.empty();
3586      }
3587    }
3588
3589    if (mismatch) {
3590      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3591      // TODO: suggest replacing given type with expected type
3592      FD->setInvalidDecl(true);
3593    }
3594  }
3595
3596  if (nparams == 1 && !FD->isInvalidDecl()) {
3597    Diag(FD->getLocation(), diag::warn_main_one_arg);
3598  }
3599}
3600
3601bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3602  // FIXME: Need strict checking.  In C89, we need to check for
3603  // any assignment, increment, decrement, function-calls, or
3604  // commas outside of a sizeof.  In C99, it's the same list,
3605  // except that the aforementioned are allowed in unevaluated
3606  // expressions.  Everything else falls under the
3607  // "may accept other forms of constant expressions" exception.
3608  // (We never end up here for C++, so the constant expression
3609  // rules there don't matter.)
3610  if (Init->isConstantInitializer(Context))
3611    return false;
3612  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3613    << Init->getSourceRange();
3614  return true;
3615}
3616
3617void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3618  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3619}
3620
3621/// AddInitializerToDecl - Adds the initializer Init to the
3622/// declaration dcl. If DirectInit is true, this is C++ direct
3623/// initialization rather than copy initialization.
3624void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3625  Decl *RealDecl = dcl.getAs<Decl>();
3626  // If there is no declaration, there was an error parsing it.  Just ignore
3627  // the initializer.
3628  if (RealDecl == 0)
3629    return;
3630
3631  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3632    // With declarators parsed the way they are, the parser cannot
3633    // distinguish between a normal initializer and a pure-specifier.
3634    // Thus this grotesque test.
3635    IntegerLiteral *IL;
3636    Expr *Init = static_cast<Expr *>(init.get());
3637    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3638        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3639      CheckPureMethod(Method, Init->getSourceRange());
3640    else {
3641      Diag(Method->getLocation(), diag::err_member_function_initialization)
3642        << Method->getDeclName() << Init->getSourceRange();
3643      Method->setInvalidDecl();
3644    }
3645    return;
3646  }
3647
3648  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3649  if (!VDecl) {
3650    if (getLangOptions().CPlusPlus &&
3651        RealDecl->getLexicalDeclContext()->isRecord() &&
3652        isa<NamedDecl>(RealDecl))
3653      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3654        << cast<NamedDecl>(RealDecl)->getDeclName();
3655    else
3656      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3657    RealDecl->setInvalidDecl();
3658    return;
3659  }
3660
3661  // A definition must end up with a complete type, which means it must be
3662  // complete with the restriction that an array type might be completed by the
3663  // initializer; note that later code assumes this restriction.
3664  QualType BaseDeclType = VDecl->getType();
3665  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3666    BaseDeclType = Array->getElementType();
3667  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3668                          diag::err_typecheck_decl_incomplete_type)) {
3669    RealDecl->setInvalidDecl();
3670    return;
3671  }
3672
3673  // The variable can not have an abstract class type.
3674  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3675                             diag::err_abstract_type_in_decl,
3676                             AbstractVariableType))
3677    VDecl->setInvalidDecl();
3678
3679  const VarDecl *Def;
3680  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3681    Diag(VDecl->getLocation(), diag::err_redefinition)
3682      << VDecl->getDeclName();
3683    Diag(Def->getLocation(), diag::note_previous_definition);
3684    VDecl->setInvalidDecl();
3685    return;
3686  }
3687
3688  // Take ownership of the expression, now that we're sure we have somewhere
3689  // to put it.
3690  Expr *Init = init.takeAs<Expr>();
3691  assert(Init && "missing initializer");
3692
3693  // Capture the variable that is being initialized and the style of
3694  // initialization.
3695  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3696
3697  // FIXME: Poor source location information.
3698  InitializationKind Kind
3699    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3700                                                   Init->getLocStart(),
3701                                                   Init->getLocEnd())
3702                : InitializationKind::CreateCopy(VDecl->getLocation(),
3703                                                 Init->getLocStart());
3704
3705  // Get the decls type and save a reference for later, since
3706  // CheckInitializerTypes may change it.
3707  QualType DclT = VDecl->getType(), SavT = DclT;
3708  if (VDecl->isBlockVarDecl()) {
3709    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3710      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3711      VDecl->setInvalidDecl();
3712    } else if (!VDecl->isInvalidDecl()) {
3713      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3714      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3715                                          MultiExprArg(*this, (void**)&Init, 1),
3716                                                &DclT);
3717      if (Result.isInvalid()) {
3718        VDecl->setInvalidDecl();
3719        return;
3720      }
3721
3722      Init = Result.takeAs<Expr>();
3723
3724      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3725      // Don't check invalid declarations to avoid emitting useless diagnostics.
3726      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3727        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3728          CheckForConstantInitializer(Init, DclT);
3729      }
3730    }
3731  } else if (VDecl->isStaticDataMember() &&
3732             VDecl->getLexicalDeclContext()->isRecord()) {
3733    // This is an in-class initialization for a static data member, e.g.,
3734    //
3735    // struct S {
3736    //   static const int value = 17;
3737    // };
3738
3739    // Attach the initializer
3740    VDecl->setInit(Init);
3741
3742    // C++ [class.mem]p4:
3743    //   A member-declarator can contain a constant-initializer only
3744    //   if it declares a static member (9.4) of const integral or
3745    //   const enumeration type, see 9.4.2.
3746    QualType T = VDecl->getType();
3747    if (!T->isDependentType() &&
3748        (!Context.getCanonicalType(T).isConstQualified() ||
3749         !T->isIntegralType())) {
3750      Diag(VDecl->getLocation(), diag::err_member_initialization)
3751        << VDecl->getDeclName() << Init->getSourceRange();
3752      VDecl->setInvalidDecl();
3753    } else {
3754      // C++ [class.static.data]p4:
3755      //   If a static data member is of const integral or const
3756      //   enumeration type, its declaration in the class definition
3757      //   can specify a constant-initializer which shall be an
3758      //   integral constant expression (5.19).
3759      if (!Init->isTypeDependent() &&
3760          !Init->getType()->isIntegralType()) {
3761        // We have a non-dependent, non-integral or enumeration type.
3762        Diag(Init->getSourceRange().getBegin(),
3763             diag::err_in_class_initializer_non_integral_type)
3764          << Init->getType() << Init->getSourceRange();
3765        VDecl->setInvalidDecl();
3766      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3767        // Check whether the expression is a constant expression.
3768        llvm::APSInt Value;
3769        SourceLocation Loc;
3770        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3771          Diag(Loc, diag::err_in_class_initializer_non_constant)
3772            << Init->getSourceRange();
3773          VDecl->setInvalidDecl();
3774        } else if (!VDecl->getType()->isDependentType())
3775          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3776      }
3777    }
3778  } else if (VDecl->isFileVarDecl()) {
3779    if (VDecl->getStorageClass() == VarDecl::Extern)
3780      Diag(VDecl->getLocation(), diag::warn_extern_init);
3781    if (!VDecl->isInvalidDecl()) {
3782      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3783      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3784                                          MultiExprArg(*this, (void**)&Init, 1),
3785                                                &DclT);
3786      if (Result.isInvalid()) {
3787        VDecl->setInvalidDecl();
3788        return;
3789      }
3790
3791      Init = Result.takeAs<Expr>();
3792    }
3793
3794    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3795    // Don't check invalid declarations to avoid emitting useless diagnostics.
3796    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3797      // C99 6.7.8p4. All file scoped initializers need to be constant.
3798      CheckForConstantInitializer(Init, DclT);
3799    }
3800  }
3801  // If the type changed, it means we had an incomplete type that was
3802  // completed by the initializer. For example:
3803  //   int ary[] = { 1, 3, 5 };
3804  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3805  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3806    VDecl->setType(DclT);
3807    Init->setType(DclT);
3808  }
3809
3810  Init = MaybeCreateCXXExprWithTemporaries(Init);
3811  // Attach the initializer to the decl.
3812  VDecl->setInit(Init);
3813
3814  if (getLangOptions().CPlusPlus) {
3815    // Make sure we mark the destructor as used if necessary.
3816    QualType InitType = VDecl->getType();
3817    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3818      InitType = Context.getBaseElementType(Array);
3819    if (const RecordType *Record = InitType->getAs<RecordType>())
3820      FinalizeVarWithDestructor(VDecl, Record);
3821  }
3822
3823  return;
3824}
3825
3826/// ActOnInitializerError - Given that there was an error parsing an
3827/// initializer for the given declaration, try to return to some form
3828/// of sanity.
3829void Sema::ActOnInitializerError(DeclPtrTy dcl) {
3830  // Our main concern here is re-establishing invariants like "a
3831  // variable's type is either dependent or complete".
3832  Decl *D = dcl.getAs<Decl>();
3833  if (!D || D->isInvalidDecl()) return;
3834
3835  VarDecl *VD = dyn_cast<VarDecl>(D);
3836  if (!VD) return;
3837
3838  QualType Ty = VD->getType();
3839  if (Ty->isDependentType()) return;
3840
3841  // Require a complete type.
3842  if (RequireCompleteType(VD->getLocation(),
3843                          Context.getBaseElementType(Ty),
3844                          diag::err_typecheck_decl_incomplete_type)) {
3845    VD->setInvalidDecl();
3846    return;
3847  }
3848
3849  // Require an abstract type.
3850  if (RequireNonAbstractType(VD->getLocation(), Ty,
3851                             diag::err_abstract_type_in_decl,
3852                             AbstractVariableType)) {
3853    VD->setInvalidDecl();
3854    return;
3855  }
3856
3857  // Don't bother complaining about constructors or destructors,
3858  // though.
3859}
3860
3861void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3862                                  bool TypeContainsUndeducedAuto) {
3863  Decl *RealDecl = dcl.getAs<Decl>();
3864
3865  // If there is no declaration, there was an error parsing it. Just ignore it.
3866  if (RealDecl == 0)
3867    return;
3868
3869  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3870    QualType Type = Var->getType();
3871
3872    // C++0x [dcl.spec.auto]p3
3873    if (TypeContainsUndeducedAuto) {
3874      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3875        << Var->getDeclName() << Type;
3876      Var->setInvalidDecl();
3877      return;
3878    }
3879
3880    switch (Var->isThisDeclarationADefinition()) {
3881    case VarDecl::Definition:
3882      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3883        break;
3884
3885      // We have an out-of-line definition of a static data member
3886      // that has an in-class initializer, so we type-check this like
3887      // a declaration.
3888      //
3889      // Fall through
3890
3891    case VarDecl::DeclarationOnly:
3892      // It's only a declaration.
3893
3894      // Block scope. C99 6.7p7: If an identifier for an object is
3895      // declared with no linkage (C99 6.2.2p6), the type for the
3896      // object shall be complete.
3897      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3898          !Var->getLinkage() && !Var->isInvalidDecl() &&
3899          RequireCompleteType(Var->getLocation(), Type,
3900                              diag::err_typecheck_decl_incomplete_type))
3901        Var->setInvalidDecl();
3902
3903      // Make sure that the type is not abstract.
3904      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3905          RequireNonAbstractType(Var->getLocation(), Type,
3906                                 diag::err_abstract_type_in_decl,
3907                                 AbstractVariableType))
3908        Var->setInvalidDecl();
3909      return;
3910
3911    case VarDecl::TentativeDefinition:
3912      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3913      // object that has file scope without an initializer, and without a
3914      // storage-class specifier or with the storage-class specifier "static",
3915      // constitutes a tentative definition. Note: A tentative definition with
3916      // external linkage is valid (C99 6.2.2p5).
3917      if (!Var->isInvalidDecl()) {
3918        if (const IncompleteArrayType *ArrayT
3919                                    = Context.getAsIncompleteArrayType(Type)) {
3920          if (RequireCompleteType(Var->getLocation(),
3921                                  ArrayT->getElementType(),
3922                                  diag::err_illegal_decl_array_incomplete_type))
3923            Var->setInvalidDecl();
3924        } else if (Var->getStorageClass() == VarDecl::Static) {
3925          // C99 6.9.2p3: If the declaration of an identifier for an object is
3926          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3927          // declared type shall not be an incomplete type.
3928          // NOTE: code such as the following
3929          //     static struct s;
3930          //     struct s { int a; };
3931          // is accepted by gcc. Hence here we issue a warning instead of
3932          // an error and we do not invalidate the static declaration.
3933          // NOTE: to avoid multiple warnings, only check the first declaration.
3934          if (Var->getPreviousDeclaration() == 0)
3935            RequireCompleteType(Var->getLocation(), Type,
3936                                diag::ext_typecheck_decl_incomplete_type);
3937        }
3938      }
3939
3940      // Record the tentative definition; we're done.
3941      if (!Var->isInvalidDecl())
3942        TentativeDefinitions.push_back(Var);
3943      return;
3944    }
3945
3946    // Provide a specific diagnostic for uninitialized variable
3947    // definitions with incomplete array type.
3948    if (Type->isIncompleteArrayType()) {
3949      Diag(Var->getLocation(),
3950           diag::err_typecheck_incomplete_array_needs_initializer);
3951      Var->setInvalidDecl();
3952      return;
3953    }
3954
3955   // Provide a specific diagnostic for uninitialized variable
3956   // definitions with reference type.
3957   if (Type->isReferenceType()) {
3958     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3959       << Var->getDeclName()
3960       << SourceRange(Var->getLocation(), Var->getLocation());
3961     Var->setInvalidDecl();
3962     return;
3963   }
3964
3965    // Do not attempt to type-check the default initializer for a
3966    // variable with dependent type.
3967    if (Type->isDependentType())
3968      return;
3969
3970    if (Var->isInvalidDecl())
3971      return;
3972
3973    if (RequireCompleteType(Var->getLocation(),
3974                            Context.getBaseElementType(Type),
3975                            diag::err_typecheck_decl_incomplete_type)) {
3976      Var->setInvalidDecl();
3977      return;
3978    }
3979
3980    // The variable can not have an abstract class type.
3981    if (RequireNonAbstractType(Var->getLocation(), Type,
3982                               diag::err_abstract_type_in_decl,
3983                               AbstractVariableType)) {
3984      Var->setInvalidDecl();
3985      return;
3986    }
3987
3988    const RecordType *Record
3989      = Context.getBaseElementType(Type)->getAs<RecordType>();
3990    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
3991        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
3992      // C++03 [dcl.init]p9:
3993      //   If no initializer is specified for an object, and the
3994      //   object is of (possibly cv-qualified) non-POD class type (or
3995      //   array thereof), the object shall be default-initialized; if
3996      //   the object is of const-qualified type, the underlying class
3997      //   type shall have a user-declared default
3998      //   constructor. Otherwise, if no initializer is specified for
3999      //   a non- static object, the object and its subobjects, if
4000      //   any, have an indeterminate initial value); if the object
4001      //   or any of its subobjects are of const-qualified type, the
4002      //   program is ill-formed.
4003      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4004    } else {
4005      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4006      InitializationKind Kind
4007        = InitializationKind::CreateDefault(Var->getLocation());
4008
4009      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4010      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4011                                              MultiExprArg(*this, 0, 0));
4012      if (Init.isInvalid())
4013        Var->setInvalidDecl();
4014      else if (Init.get())
4015        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4016    }
4017
4018    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4019      FinalizeVarWithDestructor(Var, Record);
4020  }
4021}
4022
4023Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4024                                                   DeclPtrTy *Group,
4025                                                   unsigned NumDecls) {
4026  llvm::SmallVector<Decl*, 8> Decls;
4027
4028  if (DS.isTypeSpecOwned())
4029    Decls.push_back((Decl*)DS.getTypeRep());
4030
4031  for (unsigned i = 0; i != NumDecls; ++i)
4032    if (Decl *D = Group[i].getAs<Decl>())
4033      Decls.push_back(D);
4034
4035  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4036                                                   Decls.data(), Decls.size()));
4037}
4038
4039
4040/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4041/// to introduce parameters into function prototype scope.
4042Sema::DeclPtrTy
4043Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4044  const DeclSpec &DS = D.getDeclSpec();
4045
4046  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4047  VarDecl::StorageClass StorageClass = VarDecl::None;
4048  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4049    StorageClass = VarDecl::Register;
4050  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4051    Diag(DS.getStorageClassSpecLoc(),
4052         diag::err_invalid_storage_class_in_func_decl);
4053    D.getMutableDeclSpec().ClearStorageClassSpecs();
4054  }
4055
4056  if (D.getDeclSpec().isThreadSpecified())
4057    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4058
4059  DiagnoseFunctionSpecifiers(D);
4060
4061  // Check that there are no default arguments inside the type of this
4062  // parameter (C++ only).
4063  if (getLangOptions().CPlusPlus)
4064    CheckExtraCXXDefaultArguments(D);
4065
4066  TypeSourceInfo *TInfo = 0;
4067  TagDecl *OwnedDecl = 0;
4068  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4069
4070  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4071    // C++ [dcl.fct]p6:
4072    //   Types shall not be defined in return or parameter types.
4073    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4074      << Context.getTypeDeclType(OwnedDecl);
4075  }
4076
4077  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4078  IdentifierInfo *II = D.getIdentifier();
4079  if (II) {
4080    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4081                   ForRedeclaration);
4082    LookupName(R, S);
4083    if (R.isSingleResult()) {
4084      NamedDecl *PrevDecl = R.getFoundDecl();
4085      if (PrevDecl->isTemplateParameter()) {
4086        // Maybe we will complain about the shadowed template parameter.
4087        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4088        // Just pretend that we didn't see the previous declaration.
4089        PrevDecl = 0;
4090      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4091        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4092        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4093
4094        // Recover by removing the name
4095        II = 0;
4096        D.SetIdentifier(0, D.getIdentifierLoc());
4097        D.setInvalidType(true);
4098      }
4099    }
4100  }
4101
4102  // Parameters can not be abstract class types.
4103  // For record types, this is done by the AbstractClassUsageDiagnoser once
4104  // the class has been completely parsed.
4105  if (!CurContext->isRecord() &&
4106      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4107                             diag::err_abstract_type_in_decl,
4108                             AbstractParamType))
4109    D.setInvalidType(true);
4110
4111  QualType T = adjustParameterType(parmDeclType);
4112
4113  // Temporarily put parameter variables in the translation unit, not
4114  // the enclosing context.  This prevents them from accidentally
4115  // looking like class members in C++.
4116  DeclContext *DC = Context.getTranslationUnitDecl();
4117
4118  ParmVarDecl *New
4119    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
4120                          T, TInfo, StorageClass, 0);
4121
4122  if (D.isInvalidType())
4123    New->setInvalidDecl();
4124
4125  // Parameter declarators cannot be interface types. All ObjC objects are
4126  // passed by reference.
4127  if (T->isObjCInterfaceType()) {
4128    Diag(D.getIdentifierLoc(),
4129         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4130    New->setInvalidDecl();
4131  }
4132
4133  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4134  if (D.getCXXScopeSpec().isSet()) {
4135    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4136      << D.getCXXScopeSpec().getRange();
4137    New->setInvalidDecl();
4138  }
4139
4140  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4141  // duration shall not be qualified by an address-space qualifier."
4142  // Since all parameters have automatic store duration, they can not have
4143  // an address space.
4144  if (T.getAddressSpace() != 0) {
4145    Diag(D.getIdentifierLoc(),
4146         diag::err_arg_with_address_space);
4147    New->setInvalidDecl();
4148  }
4149
4150
4151  // Add the parameter declaration into this scope.
4152  S->AddDecl(DeclPtrTy::make(New));
4153  if (II)
4154    IdResolver.AddDecl(New);
4155
4156  ProcessDeclAttributes(S, New, D);
4157
4158  if (New->hasAttr<BlocksAttr>()) {
4159    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4160  }
4161  return DeclPtrTy::make(New);
4162}
4163
4164void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4165  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4166  Param->setDeclContext(CurContext);
4167}
4168
4169void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4170                                           SourceLocation LocAfterDecls) {
4171  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4172         "Not a function declarator!");
4173  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4174
4175  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4176  // for a K&R function.
4177  if (!FTI.hasPrototype) {
4178    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4179      --i;
4180      if (FTI.ArgInfo[i].Param == 0) {
4181        llvm::SmallString<256> Code;
4182        llvm::raw_svector_ostream(Code) << "  int "
4183                                        << FTI.ArgInfo[i].Ident->getName()
4184                                        << ";\n";
4185        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4186          << FTI.ArgInfo[i].Ident
4187          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4188
4189        // Implicitly declare the argument as type 'int' for lack of a better
4190        // type.
4191        DeclSpec DS;
4192        const char* PrevSpec; // unused
4193        unsigned DiagID; // unused
4194        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4195                           PrevSpec, DiagID);
4196        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4197        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4198        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4199      }
4200    }
4201  }
4202}
4203
4204Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4205                                              Declarator &D) {
4206  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4207  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4208         "Not a function declarator!");
4209  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4210
4211  if (FTI.hasPrototype) {
4212    // FIXME: Diagnose arguments without names in C.
4213  }
4214
4215  Scope *ParentScope = FnBodyScope->getParent();
4216
4217  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4218                                  MultiTemplateParamsArg(*this),
4219                                  /*IsFunctionDefinition=*/true);
4220  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4221}
4222
4223static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4224  // Don't warn about invalid declarations.
4225  if (FD->isInvalidDecl())
4226    return false;
4227
4228  // Or declarations that aren't global.
4229  if (!FD->isGlobal())
4230    return false;
4231
4232  // Don't warn about C++ member functions.
4233  if (isa<CXXMethodDecl>(FD))
4234    return false;
4235
4236  // Don't warn about 'main'.
4237  if (FD->isMain())
4238    return false;
4239
4240  // Don't warn about inline functions.
4241  if (FD->isInlineSpecified())
4242    return false;
4243
4244  // Don't warn about function templates.
4245  if (FD->getDescribedFunctionTemplate())
4246    return false;
4247
4248  // Don't warn about function template specializations.
4249  if (FD->isFunctionTemplateSpecialization())
4250    return false;
4251
4252  bool MissingPrototype = true;
4253  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4254       Prev; Prev = Prev->getPreviousDeclaration()) {
4255    // Ignore any declarations that occur in function or method
4256    // scope, because they aren't visible from the header.
4257    if (Prev->getDeclContext()->isFunctionOrMethod())
4258      continue;
4259
4260    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4261    break;
4262  }
4263
4264  return MissingPrototype;
4265}
4266
4267Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4268  // Clear the last template instantiation error context.
4269  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4270
4271  if (!D)
4272    return D;
4273  FunctionDecl *FD = 0;
4274
4275  if (FunctionTemplateDecl *FunTmpl
4276        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4277    FD = FunTmpl->getTemplatedDecl();
4278  else
4279    FD = cast<FunctionDecl>(D.getAs<Decl>());
4280
4281  // Enter a new function scope
4282  PushFunctionScope();
4283
4284  // See if this is a redefinition.
4285  // But don't complain if we're in GNU89 mode and the previous definition
4286  // was an extern inline function.
4287  const FunctionDecl *Definition;
4288  if (FD->getBody(Definition) &&
4289      !canRedefineFunction(Definition, getLangOptions())) {
4290    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4291    Diag(Definition->getLocation(), diag::note_previous_definition);
4292  }
4293
4294  // Builtin functions cannot be defined.
4295  if (unsigned BuiltinID = FD->getBuiltinID()) {
4296    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4297      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4298      FD->setInvalidDecl();
4299    }
4300  }
4301
4302  // The return type of a function definition must be complete
4303  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4304  QualType ResultType = FD->getResultType();
4305  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4306      !FD->isInvalidDecl() &&
4307      RequireCompleteType(FD->getLocation(), ResultType,
4308                          diag::err_func_def_incomplete_result))
4309    FD->setInvalidDecl();
4310
4311  // GNU warning -Wmissing-prototypes:
4312  //   Warn if a global function is defined without a previous
4313  //   prototype declaration. This warning is issued even if the
4314  //   definition itself provides a prototype. The aim is to detect
4315  //   global functions that fail to be declared in header files.
4316  if (ShouldWarnAboutMissingPrototype(FD))
4317    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4318
4319  if (FnBodyScope)
4320    PushDeclContext(FnBodyScope, FD);
4321
4322  // Check the validity of our function parameters
4323  CheckParmsForFunctionDef(FD);
4324
4325  bool ShouldCheckShadow =
4326    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4327
4328  // Introduce our parameters into the function scope
4329  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4330    ParmVarDecl *Param = FD->getParamDecl(p);
4331    Param->setOwningFunction(FD);
4332
4333    // If this has an identifier, add it to the scope stack.
4334    if (Param->getIdentifier() && FnBodyScope) {
4335      if (ShouldCheckShadow)
4336        CheckShadow(FnBodyScope, Param);
4337
4338      PushOnScopeChains(Param, FnBodyScope);
4339    }
4340  }
4341
4342  // Checking attributes of current function definition
4343  // dllimport attribute.
4344  if (FD->getAttr<DLLImportAttr>() &&
4345      (!FD->getAttr<DLLExportAttr>())) {
4346    // dllimport attribute cannot be applied to definition.
4347    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4348      Diag(FD->getLocation(),
4349           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4350        << "dllimport";
4351      FD->setInvalidDecl();
4352      return DeclPtrTy::make(FD);
4353    }
4354
4355    // Visual C++ appears to not think this is an issue, so only issue
4356    // a warning when Microsoft extensions are disabled.
4357    if (!LangOpts.Microsoft) {
4358      // If a symbol previously declared dllimport is later defined, the
4359      // attribute is ignored in subsequent references, and a warning is
4360      // emitted.
4361      Diag(FD->getLocation(),
4362           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4363        << FD->getNameAsCString() << "dllimport";
4364    }
4365  }
4366  return DeclPtrTy::make(FD);
4367}
4368
4369Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4370  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4371}
4372
4373Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4374                                              bool IsInstantiation) {
4375  Decl *dcl = D.getAs<Decl>();
4376  Stmt *Body = BodyArg.takeAs<Stmt>();
4377
4378  FunctionDecl *FD = 0;
4379  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4380  if (FunTmpl)
4381    FD = FunTmpl->getTemplatedDecl();
4382  else
4383    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4384
4385  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4386
4387  if (FD) {
4388    FD->setBody(Body);
4389    if (FD->isMain()) {
4390      // C and C++ allow for main to automagically return 0.
4391      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4392      FD->setHasImplicitReturnZero(true);
4393      WP.disableCheckFallThrough();
4394    }
4395
4396    if (!FD->isInvalidDecl())
4397      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4398
4399    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4400      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4401
4402    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4403  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4404    assert(MD == getCurMethodDecl() && "Method parsing confused");
4405    MD->setBody(Body);
4406    MD->setEndLoc(Body->getLocEnd());
4407    if (!MD->isInvalidDecl())
4408      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4409  } else {
4410    Body->Destroy(Context);
4411    return DeclPtrTy();
4412  }
4413
4414  // Verify and clean out per-function state.
4415
4416  // Check goto/label use.
4417  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4418       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4419    LabelStmt *L = I->second;
4420
4421    // Verify that we have no forward references left.  If so, there was a goto
4422    // or address of a label taken, but no definition of it.  Label fwd
4423    // definitions are indicated with a null substmt.
4424    if (L->getSubStmt() != 0)
4425      continue;
4426
4427    // Emit error.
4428    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4429
4430    // At this point, we have gotos that use the bogus label.  Stitch it into
4431    // the function body so that they aren't leaked and that the AST is well
4432    // formed.
4433    if (Body == 0) {
4434      // The whole function wasn't parsed correctly, just delete this.
4435      L->Destroy(Context);
4436      continue;
4437    }
4438
4439    // Otherwise, the body is valid: we want to stitch the label decl into the
4440    // function somewhere so that it is properly owned and so that the goto
4441    // has a valid target.  Do this by creating a new compound stmt with the
4442    // label in it.
4443
4444    // Give the label a sub-statement.
4445    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4446
4447    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4448                               cast<CXXTryStmt>(Body)->getTryBlock() :
4449                               cast<CompoundStmt>(Body);
4450    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4451                                          Compound->body_end());
4452    Elements.push_back(L);
4453    Compound->setStmts(Context, Elements.data(), Elements.size());
4454  }
4455
4456  if (Body) {
4457    // C++ constructors that have function-try-blocks can't have return
4458    // statements in the handlers of that block. (C++ [except.handle]p14)
4459    // Verify this.
4460    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4461      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4462
4463    // Verify that that gotos and switch cases don't jump into scopes illegally.
4464    // Verify that that gotos and switch cases don't jump into scopes illegally.
4465    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4466      DiagnoseInvalidJumps(Body);
4467
4468    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4469      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4470                                             Destructor->getParent());
4471
4472    // If any errors have occurred, clear out any temporaries that may have
4473    // been leftover. This ensures that these temporaries won't be picked up for
4474    // deletion in some later function.
4475    if (PP.getDiagnostics().hasErrorOccurred())
4476      ExprTemporaries.clear();
4477    else if (!isa<FunctionTemplateDecl>(dcl)) {
4478      // Since the body is valid, issue any analysis-based warnings that are
4479      // enabled.
4480      QualType ResultType;
4481      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4482        ResultType = FD->getResultType();
4483      }
4484      else {
4485        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4486        ResultType = MD->getResultType();
4487      }
4488      AnalysisWarnings.IssueWarnings(WP, dcl);
4489    }
4490
4491    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4492  }
4493
4494  if (!IsInstantiation)
4495    PopDeclContext();
4496
4497  PopFunctionOrBlockScope();
4498
4499  // If any errors have occurred, clear out any temporaries that may have
4500  // been leftover. This ensures that these temporaries won't be picked up for
4501  // deletion in some later function.
4502  if (getDiagnostics().hasErrorOccurred())
4503    ExprTemporaries.clear();
4504
4505  return D;
4506}
4507
4508/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4509/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4510NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4511                                          IdentifierInfo &II, Scope *S) {
4512  // Before we produce a declaration for an implicitly defined
4513  // function, see whether there was a locally-scoped declaration of
4514  // this name as a function or variable. If so, use that
4515  // (non-visible) declaration, and complain about it.
4516  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4517    = LocallyScopedExternalDecls.find(&II);
4518  if (Pos != LocallyScopedExternalDecls.end()) {
4519    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4520    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4521    return Pos->second;
4522  }
4523
4524  // Extension in C99.  Legal in C90, but warn about it.
4525  if (II.getName().startswith("__builtin_"))
4526    Diag(Loc, diag::warn_builtin_unknown) << &II;
4527  else if (getLangOptions().C99)
4528    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4529  else
4530    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4531
4532  // Set a Declarator for the implicit definition: int foo();
4533  const char *Dummy;
4534  DeclSpec DS;
4535  unsigned DiagID;
4536  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4537  Error = Error; // Silence warning.
4538  assert(!Error && "Error setting up implicit decl!");
4539  Declarator D(DS, Declarator::BlockContext);
4540  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4541                                             0, 0, false, SourceLocation(),
4542                                             false, 0,0,0, Loc, Loc, D),
4543                SourceLocation());
4544  D.SetIdentifier(&II, Loc);
4545
4546  // Insert this function into translation-unit scope.
4547
4548  DeclContext *PrevDC = CurContext;
4549  CurContext = Context.getTranslationUnitDecl();
4550
4551  FunctionDecl *FD =
4552 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4553  FD->setImplicit();
4554
4555  CurContext = PrevDC;
4556
4557  AddKnownFunctionAttributes(FD);
4558
4559  return FD;
4560}
4561
4562/// \brief Adds any function attributes that we know a priori based on
4563/// the declaration of this function.
4564///
4565/// These attributes can apply both to implicitly-declared builtins
4566/// (like __builtin___printf_chk) or to library-declared functions
4567/// like NSLog or printf.
4568void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4569  if (FD->isInvalidDecl())
4570    return;
4571
4572  // If this is a built-in function, map its builtin attributes to
4573  // actual attributes.
4574  if (unsigned BuiltinID = FD->getBuiltinID()) {
4575    // Handle printf-formatting attributes.
4576    unsigned FormatIdx;
4577    bool HasVAListArg;
4578    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4579      if (!FD->getAttr<FormatAttr>())
4580        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4581                                               HasVAListArg ? 0 : FormatIdx+2));
4582    }
4583
4584    // Mark const if we don't care about errno and that is the only
4585    // thing preventing the function from being const. This allows
4586    // IRgen to use LLVM intrinsics for such functions.
4587    if (!getLangOptions().MathErrno &&
4588        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4589      if (!FD->getAttr<ConstAttr>())
4590        FD->addAttr(::new (Context) ConstAttr());
4591    }
4592
4593    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4594      FD->setType(Context.getNoReturnType(FD->getType()));
4595    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4596      FD->addAttr(::new (Context) NoThrowAttr());
4597    if (Context.BuiltinInfo.isConst(BuiltinID))
4598      FD->addAttr(::new (Context) ConstAttr());
4599  }
4600
4601  IdentifierInfo *Name = FD->getIdentifier();
4602  if (!Name)
4603    return;
4604  if ((!getLangOptions().CPlusPlus &&
4605       FD->getDeclContext()->isTranslationUnit()) ||
4606      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4607       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4608       LinkageSpecDecl::lang_c)) {
4609    // Okay: this could be a libc/libm/Objective-C function we know
4610    // about.
4611  } else
4612    return;
4613
4614  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4615    // FIXME: NSLog and NSLogv should be target specific
4616    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4617      // FIXME: We known better than our headers.
4618      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4619    } else
4620      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4621                                             Name->isStr("NSLogv") ? 0 : 2));
4622  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4623    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4624    // target-specific builtins, perhaps?
4625    if (!FD->getAttr<FormatAttr>())
4626      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4627                                             Name->isStr("vasprintf") ? 0 : 3));
4628  }
4629}
4630
4631TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4632                                    TypeSourceInfo *TInfo) {
4633  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4634  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4635
4636  if (!TInfo) {
4637    assert(D.isInvalidType() && "no declarator info for valid type");
4638    TInfo = Context.getTrivialTypeSourceInfo(T);
4639  }
4640
4641  // Scope manipulation handled by caller.
4642  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4643                                           D.getIdentifierLoc(),
4644                                           D.getIdentifier(),
4645                                           TInfo);
4646
4647  if (const TagType *TT = T->getAs<TagType>()) {
4648    TagDecl *TD = TT->getDecl();
4649
4650    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4651    // keep track of the TypedefDecl.
4652    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4653      TD->setTypedefForAnonDecl(NewTD);
4654  }
4655
4656  if (D.isInvalidType())
4657    NewTD->setInvalidDecl();
4658  return NewTD;
4659}
4660
4661
4662/// \brief Determine whether a tag with a given kind is acceptable
4663/// as a redeclaration of the given tag declaration.
4664///
4665/// \returns true if the new tag kind is acceptable, false otherwise.
4666bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4667                                        TagDecl::TagKind NewTag,
4668                                        SourceLocation NewTagLoc,
4669                                        const IdentifierInfo &Name) {
4670  // C++ [dcl.type.elab]p3:
4671  //   The class-key or enum keyword present in the
4672  //   elaborated-type-specifier shall agree in kind with the
4673  //   declaration to which the name in theelaborated-type-specifier
4674  //   refers. This rule also applies to the form of
4675  //   elaborated-type-specifier that declares a class-name or
4676  //   friend class since it can be construed as referring to the
4677  //   definition of the class. Thus, in any
4678  //   elaborated-type-specifier, the enum keyword shall be used to
4679  //   refer to an enumeration (7.2), the union class-keyshall be
4680  //   used to refer to a union (clause 9), and either the class or
4681  //   struct class-key shall be used to refer to a class (clause 9)
4682  //   declared using the class or struct class-key.
4683  TagDecl::TagKind OldTag = Previous->getTagKind();
4684  if (OldTag == NewTag)
4685    return true;
4686
4687  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4688      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4689    // Warn about the struct/class tag mismatch.
4690    bool isTemplate = false;
4691    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4692      isTemplate = Record->getDescribedClassTemplate();
4693
4694    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4695      << (NewTag == TagDecl::TK_class)
4696      << isTemplate << &Name
4697      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
4698                              OldTag == TagDecl::TK_class? "class" : "struct");
4699    Diag(Previous->getLocation(), diag::note_previous_use);
4700    return true;
4701  }
4702  return false;
4703}
4704
4705/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4706/// former case, Name will be non-null.  In the later case, Name will be null.
4707/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4708/// reference/declaration/definition of a tag.
4709Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4710                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4711                               IdentifierInfo *Name, SourceLocation NameLoc,
4712                               AttributeList *Attr, AccessSpecifier AS,
4713                               MultiTemplateParamsArg TemplateParameterLists,
4714                               bool &OwnedDecl, bool &IsDependent) {
4715  // If this is not a definition, it must have a name.
4716  assert((Name != 0 || TUK == TUK_Definition) &&
4717         "Nameless record must be a definition!");
4718
4719  OwnedDecl = false;
4720  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4721
4722  // FIXME: Check explicit specializations more carefully.
4723  bool isExplicitSpecialization = false;
4724  if (TUK != TUK_Reference) {
4725    if (TemplateParameterList *TemplateParams
4726          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4727                        (TemplateParameterList**)TemplateParameterLists.get(),
4728                                              TemplateParameterLists.size(),
4729                                                    isExplicitSpecialization)) {
4730      if (TemplateParams->size() > 0) {
4731        // This is a declaration or definition of a class template (which may
4732        // be a member of another template).
4733        OwnedDecl = false;
4734        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4735                                               SS, Name, NameLoc, Attr,
4736                                               TemplateParams,
4737                                               AS);
4738        TemplateParameterLists.release();
4739        return Result.get();
4740      } else {
4741        // The "template<>" header is extraneous.
4742        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4743          << ElaboratedType::getNameForTagKind(Kind) << Name;
4744        isExplicitSpecialization = true;
4745      }
4746    }
4747
4748    TemplateParameterLists.release();
4749  }
4750
4751  DeclContext *SearchDC = CurContext;
4752  DeclContext *DC = CurContext;
4753  bool isStdBadAlloc = false;
4754  bool Invalid = false;
4755
4756  RedeclarationKind Redecl = ForRedeclaration;
4757  if (TUK == TUK_Friend || TUK == TUK_Reference)
4758    Redecl = NotForRedeclaration;
4759
4760  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4761
4762  if (Name && SS.isNotEmpty()) {
4763    // We have a nested-name tag ('struct foo::bar').
4764
4765    // Check for invalid 'foo::'.
4766    if (SS.isInvalid()) {
4767      Name = 0;
4768      goto CreateNewDecl;
4769    }
4770
4771    // If this is a friend or a reference to a class in a dependent
4772    // context, don't try to make a decl for it.
4773    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4774      DC = computeDeclContext(SS, false);
4775      if (!DC) {
4776        IsDependent = true;
4777        return DeclPtrTy();
4778      }
4779    }
4780
4781    if (RequireCompleteDeclContext(SS))
4782      return DeclPtrTy::make((Decl *)0);
4783
4784    DC = computeDeclContext(SS, true);
4785    SearchDC = DC;
4786    // Look-up name inside 'foo::'.
4787    LookupQualifiedName(Previous, DC);
4788
4789    if (Previous.isAmbiguous())
4790      return DeclPtrTy();
4791
4792    if (Previous.empty()) {
4793      // Name lookup did not find anything. However, if the
4794      // nested-name-specifier refers to the current instantiation,
4795      // and that current instantiation has any dependent base
4796      // classes, we might find something at instantiation time: treat
4797      // this as a dependent elaborated-type-specifier.
4798      if (Previous.wasNotFoundInCurrentInstantiation()) {
4799        IsDependent = true;
4800        return DeclPtrTy();
4801      }
4802
4803      // A tag 'foo::bar' must already exist.
4804      Diag(NameLoc, diag::err_not_tag_in_scope)
4805        << Kind << Name << DC << SS.getRange();
4806      Name = 0;
4807      Invalid = true;
4808      goto CreateNewDecl;
4809    }
4810  } else if (Name) {
4811    // If this is a named struct, check to see if there was a previous forward
4812    // declaration or definition.
4813    // FIXME: We're looking into outer scopes here, even when we
4814    // shouldn't be. Doing so can result in ambiguities that we
4815    // shouldn't be diagnosing.
4816    LookupName(Previous, S);
4817
4818    // Note:  there used to be some attempt at recovery here.
4819    if (Previous.isAmbiguous())
4820      return DeclPtrTy();
4821
4822    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4823      // FIXME: This makes sure that we ignore the contexts associated
4824      // with C structs, unions, and enums when looking for a matching
4825      // tag declaration or definition. See the similar lookup tweak
4826      // in Sema::LookupName; is there a better way to deal with this?
4827      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4828        SearchDC = SearchDC->getParent();
4829    }
4830  }
4831
4832  if (Previous.isSingleResult() &&
4833      Previous.getFoundDecl()->isTemplateParameter()) {
4834    // Maybe we will complain about the shadowed template parameter.
4835    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4836    // Just pretend that we didn't see the previous declaration.
4837    Previous.clear();
4838  }
4839
4840  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4841      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4842    // This is a declaration of or a reference to "std::bad_alloc".
4843    isStdBadAlloc = true;
4844
4845    if (Previous.empty() && StdBadAlloc) {
4846      // std::bad_alloc has been implicitly declared (but made invisible to
4847      // name lookup). Fill in this implicit declaration as the previous
4848      // declaration, so that the declarations get chained appropriately.
4849      Previous.addDecl(StdBadAlloc);
4850    }
4851  }
4852
4853  // If we didn't find a previous declaration, and this is a reference
4854  // (or friend reference), move to the correct scope.  In C++, we
4855  // also need to do a redeclaration lookup there, just in case
4856  // there's a shadow friend decl.
4857  if (Name && Previous.empty() &&
4858      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4859    if (Invalid) goto CreateNewDecl;
4860    assert(SS.isEmpty());
4861
4862    if (TUK == TUK_Reference) {
4863      // C++ [basic.scope.pdecl]p5:
4864      //   -- for an elaborated-type-specifier of the form
4865      //
4866      //          class-key identifier
4867      //
4868      //      if the elaborated-type-specifier is used in the
4869      //      decl-specifier-seq or parameter-declaration-clause of a
4870      //      function defined in namespace scope, the identifier is
4871      //      declared as a class-name in the namespace that contains
4872      //      the declaration; otherwise, except as a friend
4873      //      declaration, the identifier is declared in the smallest
4874      //      non-class, non-function-prototype scope that contains the
4875      //      declaration.
4876      //
4877      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4878      // C structs and unions.
4879      //
4880      // It is an error in C++ to declare (rather than define) an enum
4881      // type, including via an elaborated type specifier.  We'll
4882      // diagnose that later; for now, declare the enum in the same
4883      // scope as we would have picked for any other tag type.
4884      //
4885      // GNU C also supports this behavior as part of its incomplete
4886      // enum types extension, while GNU C++ does not.
4887      //
4888      // Find the context where we'll be declaring the tag.
4889      // FIXME: We would like to maintain the current DeclContext as the
4890      // lexical context,
4891      while (SearchDC->isRecord())
4892        SearchDC = SearchDC->getParent();
4893
4894      // Find the scope where we'll be declaring the tag.
4895      while (S->isClassScope() ||
4896             (getLangOptions().CPlusPlus &&
4897              S->isFunctionPrototypeScope()) ||
4898             ((S->getFlags() & Scope::DeclScope) == 0) ||
4899             (S->getEntity() &&
4900              ((DeclContext *)S->getEntity())->isTransparentContext()))
4901        S = S->getParent();
4902    } else {
4903      assert(TUK == TUK_Friend);
4904      // C++ [namespace.memdef]p3:
4905      //   If a friend declaration in a non-local class first declares a
4906      //   class or function, the friend class or function is a member of
4907      //   the innermost enclosing namespace.
4908      SearchDC = SearchDC->getEnclosingNamespaceContext();
4909
4910      // Look up through our scopes until we find one with an entity which
4911      // matches our declaration context.
4912      while (S->getEntity() &&
4913             ((DeclContext *)S->getEntity())->getPrimaryContext() != SearchDC) {
4914        S = S->getParent();
4915        assert(S && "No enclosing scope matching the enclosing namespace.");
4916      }
4917    }
4918
4919    // In C++, look for a shadow friend decl.
4920    if (getLangOptions().CPlusPlus) {
4921      Previous.setRedeclarationKind(ForRedeclaration);
4922      LookupQualifiedName(Previous, SearchDC);
4923    }
4924  }
4925
4926  if (!Previous.empty()) {
4927    assert(Previous.isSingleResult());
4928    NamedDecl *PrevDecl = Previous.getFoundDecl();
4929    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4930      // If this is a use of a previous tag, or if the tag is already declared
4931      // in the same scope (so that the definition/declaration completes or
4932      // rementions the tag), reuse the decl.
4933      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4934          isDeclInScope(PrevDecl, SearchDC, S)) {
4935        // Make sure that this wasn't declared as an enum and now used as a
4936        // struct or something similar.
4937        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4938          bool SafeToContinue
4939            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4940               Kind != TagDecl::TK_enum);
4941          if (SafeToContinue)
4942            Diag(KWLoc, diag::err_use_with_wrong_tag)
4943              << Name
4944              << FixItHint::CreateReplacement(SourceRange(KWLoc),
4945                                              PrevTagDecl->getKindName());
4946          else
4947            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4948          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4949
4950          if (SafeToContinue)
4951            Kind = PrevTagDecl->getTagKind();
4952          else {
4953            // Recover by making this an anonymous redefinition.
4954            Name = 0;
4955            Previous.clear();
4956            Invalid = true;
4957          }
4958        }
4959
4960        if (!Invalid) {
4961          // If this is a use, just return the declaration we found.
4962
4963          // FIXME: In the future, return a variant or some other clue
4964          // for the consumer of this Decl to know it doesn't own it.
4965          // For our current ASTs this shouldn't be a problem, but will
4966          // need to be changed with DeclGroups.
4967          if (TUK == TUK_Reference || TUK == TUK_Friend)
4968            return DeclPtrTy::make(PrevTagDecl);
4969
4970          // Diagnose attempts to redefine a tag.
4971          if (TUK == TUK_Definition) {
4972            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4973              // If we're defining a specialization and the previous definition
4974              // is from an implicit instantiation, don't emit an error
4975              // here; we'll catch this in the general case below.
4976              if (!isExplicitSpecialization ||
4977                  !isa<CXXRecordDecl>(Def) ||
4978                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4979                                               == TSK_ExplicitSpecialization) {
4980                Diag(NameLoc, diag::err_redefinition) << Name;
4981                Diag(Def->getLocation(), diag::note_previous_definition);
4982                // If this is a redefinition, recover by making this
4983                // struct be anonymous, which will make any later
4984                // references get the previous definition.
4985                Name = 0;
4986                Previous.clear();
4987                Invalid = true;
4988              }
4989            } else {
4990              // If the type is currently being defined, complain
4991              // about a nested redefinition.
4992              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4993              if (Tag->isBeingDefined()) {
4994                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4995                Diag(PrevTagDecl->getLocation(),
4996                     diag::note_previous_definition);
4997                Name = 0;
4998                Previous.clear();
4999                Invalid = true;
5000              }
5001            }
5002
5003            // Okay, this is definition of a previously declared or referenced
5004            // tag PrevDecl. We're going to create a new Decl for it.
5005          }
5006        }
5007        // If we get here we have (another) forward declaration or we
5008        // have a definition.  Just create a new decl.
5009
5010      } else {
5011        // If we get here, this is a definition of a new tag type in a nested
5012        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5013        // new decl/type.  We set PrevDecl to NULL so that the entities
5014        // have distinct types.
5015        Previous.clear();
5016      }
5017      // If we get here, we're going to create a new Decl. If PrevDecl
5018      // is non-NULL, it's a definition of the tag declared by
5019      // PrevDecl. If it's NULL, we have a new definition.
5020    } else {
5021      // PrevDecl is a namespace, template, or anything else
5022      // that lives in the IDNS_Tag identifier namespace.
5023      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5024          isDeclInScope(PrevDecl, SearchDC, S)) {
5025        // The tag name clashes with a namespace name, issue an error and
5026        // recover by making this tag be anonymous.
5027        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5028        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5029        Name = 0;
5030        Previous.clear();
5031        Invalid = true;
5032      } else {
5033        // The existing declaration isn't relevant to us; we're in a
5034        // new scope, so clear out the previous declaration.
5035        Previous.clear();
5036      }
5037    }
5038  }
5039
5040CreateNewDecl:
5041
5042  TagDecl *PrevDecl = 0;
5043  if (Previous.isSingleResult())
5044    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5045
5046  // If there is an identifier, use the location of the identifier as the
5047  // location of the decl, otherwise use the location of the struct/union
5048  // keyword.
5049  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5050
5051  // Otherwise, create a new declaration. If there is a previous
5052  // declaration of the same entity, the two will be linked via
5053  // PrevDecl.
5054  TagDecl *New;
5055
5056  if (Kind == TagDecl::TK_enum) {
5057    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5058    // enum X { A, B, C } D;    D should chain to X.
5059    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5060                           cast_or_null<EnumDecl>(PrevDecl));
5061    // If this is an undefined enum, warn.
5062    if (TUK != TUK_Definition && !Invalid)  {
5063      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5064                                              : diag::ext_forward_ref_enum;
5065      Diag(Loc, DK);
5066    }
5067  } else {
5068    // struct/union/class
5069
5070    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5071    // struct X { int A; } D;    D should chain to X.
5072    if (getLangOptions().CPlusPlus) {
5073      // FIXME: Look for a way to use RecordDecl for simple structs.
5074      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5075                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5076
5077      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5078        StdBadAlloc = cast<CXXRecordDecl>(New);
5079    } else
5080      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5081                               cast_or_null<RecordDecl>(PrevDecl));
5082  }
5083
5084  // Maybe add qualifier info.
5085  if (SS.isNotEmpty()) {
5086    NestedNameSpecifier *NNS
5087      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5088    New->setQualifierInfo(NNS, SS.getRange());
5089  }
5090
5091  if (Kind != TagDecl::TK_enum) {
5092    // Handle #pragma pack: if the #pragma pack stack has non-default
5093    // alignment, make up a packed attribute for this decl. These
5094    // attributes are checked when the ASTContext lays out the
5095    // structure.
5096    //
5097    // It is important for implementing the correct semantics that this
5098    // happen here (in act on tag decl). The #pragma pack stack is
5099    // maintained as a result of parser callbacks which can occur at
5100    // many points during the parsing of a struct declaration (because
5101    // the #pragma tokens are effectively skipped over during the
5102    // parsing of the struct).
5103    if (unsigned Alignment = getPragmaPackAlignment())
5104      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5105  }
5106
5107  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5108    // C++ [dcl.typedef]p3:
5109    //   [...] Similarly, in a given scope, a class or enumeration
5110    //   shall not be declared with the same name as a typedef-name
5111    //   that is declared in that scope and refers to a type other
5112    //   than the class or enumeration itself.
5113    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5114                        ForRedeclaration);
5115    LookupName(Lookup, S);
5116    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5117    NamedDecl *PrevTypedefNamed = PrevTypedef;
5118    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5119        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5120          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5121      Diag(Loc, diag::err_tag_definition_of_typedef)
5122        << Context.getTypeDeclType(New)
5123        << PrevTypedef->getUnderlyingType();
5124      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5125      Invalid = true;
5126    }
5127  }
5128
5129  // If this is a specialization of a member class (of a class template),
5130  // check the specialization.
5131  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5132    Invalid = true;
5133
5134  if (Invalid)
5135    New->setInvalidDecl();
5136
5137  if (Attr)
5138    ProcessDeclAttributeList(S, New, Attr);
5139
5140  // If we're declaring or defining a tag in function prototype scope
5141  // in C, note that this type can only be used within the function.
5142  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5143    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5144
5145  // Set the lexical context. If the tag has a C++ scope specifier, the
5146  // lexical context will be different from the semantic context.
5147  New->setLexicalDeclContext(CurContext);
5148
5149  // Mark this as a friend decl if applicable.
5150  if (TUK == TUK_Friend)
5151    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5152
5153  // Set the access specifier.
5154  if (!Invalid && SearchDC->isRecord())
5155    SetMemberAccessSpecifier(New, PrevDecl, AS);
5156
5157  if (TUK == TUK_Definition)
5158    New->startDefinition();
5159
5160  // If this has an identifier, add it to the scope stack.
5161  if (TUK == TUK_Friend) {
5162    // We might be replacing an existing declaration in the lookup tables;
5163    // if so, borrow its access specifier.
5164    if (PrevDecl)
5165      New->setAccess(PrevDecl->getAccess());
5166
5167    DeclContext *DC = New->getDeclContext()->getLookupContext();
5168    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5169    if (Name) // can be null along some error paths
5170      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5171        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5172  } else if (Name) {
5173    S = getNonFieldDeclScope(S);
5174    PushOnScopeChains(New, S);
5175  } else {
5176    CurContext->addDecl(New);
5177  }
5178
5179  // If this is the C FILE type, notify the AST context.
5180  if (IdentifierInfo *II = New->getIdentifier())
5181    if (!New->isInvalidDecl() &&
5182        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5183        II->isStr("FILE"))
5184      Context.setFILEDecl(New);
5185
5186  OwnedDecl = true;
5187  return DeclPtrTy::make(New);
5188}
5189
5190void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5191  AdjustDeclIfTemplate(TagD);
5192  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5193
5194  // Enter the tag context.
5195  PushDeclContext(S, Tag);
5196}
5197
5198void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5199                                           SourceLocation LBraceLoc) {
5200  AdjustDeclIfTemplate(TagD);
5201  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5202
5203  FieldCollector->StartClass();
5204
5205  if (!Record->getIdentifier())
5206    return;
5207
5208  // C++ [class]p2:
5209  //   [...] The class-name is also inserted into the scope of the
5210  //   class itself; this is known as the injected-class-name. For
5211  //   purposes of access checking, the injected-class-name is treated
5212  //   as if it were a public member name.
5213  CXXRecordDecl *InjectedClassName
5214    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5215                            CurContext, Record->getLocation(),
5216                            Record->getIdentifier(),
5217                            Record->getTagKeywordLoc(),
5218                            Record);
5219  InjectedClassName->setImplicit();
5220  InjectedClassName->setAccess(AS_public);
5221  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5222      InjectedClassName->setDescribedClassTemplate(Template);
5223  PushOnScopeChains(InjectedClassName, S);
5224  assert(InjectedClassName->isInjectedClassName() &&
5225         "Broken injected-class-name");
5226}
5227
5228// Traverses the class and any nested classes, making a note of any
5229// dynamic classes that have no key function so that we can mark all of
5230// their virtual member functions as "used" at the end of the translation
5231// unit. This ensures that all functions needed by the vtable will get
5232// instantiated/synthesized.
5233static void
5234RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5235                                      SourceLocation Loc) {
5236  // We don't look at dependent or undefined classes.
5237  if (Record->isDependentContext() || !Record->isDefinition())
5238    return;
5239
5240  if (Record->isDynamicClass()) {
5241    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5242
5243    if (!KeyFunction)
5244      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5245                                                                   Loc));
5246
5247    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5248        && Record->getLinkage() == ExternalLinkage)
5249      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5250  }
5251  for (DeclContext::decl_iterator D = Record->decls_begin(),
5252                               DEnd = Record->decls_end();
5253       D != DEnd; ++D) {
5254    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5255      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5256  }
5257}
5258
5259void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5260                                    SourceLocation RBraceLoc) {
5261  AdjustDeclIfTemplate(TagD);
5262  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5263  Tag->setRBraceLoc(RBraceLoc);
5264
5265  if (isa<CXXRecordDecl>(Tag))
5266    FieldCollector->FinishClass();
5267
5268  // Exit this scope of this tag's definition.
5269  PopDeclContext();
5270
5271  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5272    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5273                                          RBraceLoc);
5274
5275  // Notify the consumer that we've defined a tag.
5276  Consumer.HandleTagDeclDefinition(Tag);
5277}
5278
5279void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5280  AdjustDeclIfTemplate(TagD);
5281  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5282  Tag->setInvalidDecl();
5283
5284  // We're undoing ActOnTagStartDefinition here, not
5285  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5286  // the FieldCollector.
5287
5288  PopDeclContext();
5289}
5290
5291// Note that FieldName may be null for anonymous bitfields.
5292bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5293                          QualType FieldTy, const Expr *BitWidth,
5294                          bool *ZeroWidth) {
5295  // Default to true; that shouldn't confuse checks for emptiness
5296  if (ZeroWidth)
5297    *ZeroWidth = true;
5298
5299  // C99 6.7.2.1p4 - verify the field type.
5300  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5301  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5302    // Handle incomplete types with specific error.
5303    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5304      return true;
5305    if (FieldName)
5306      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5307        << FieldName << FieldTy << BitWidth->getSourceRange();
5308    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5309      << FieldTy << BitWidth->getSourceRange();
5310  }
5311
5312  // If the bit-width is type- or value-dependent, don't try to check
5313  // it now.
5314  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5315    return false;
5316
5317  llvm::APSInt Value;
5318  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5319    return true;
5320
5321  if (Value != 0 && ZeroWidth)
5322    *ZeroWidth = false;
5323
5324  // Zero-width bitfield is ok for anonymous field.
5325  if (Value == 0 && FieldName)
5326    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5327
5328  if (Value.isSigned() && Value.isNegative()) {
5329    if (FieldName)
5330      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5331               << FieldName << Value.toString(10);
5332    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5333      << Value.toString(10);
5334  }
5335
5336  if (!FieldTy->isDependentType()) {
5337    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5338    if (Value.getZExtValue() > TypeSize) {
5339      if (FieldName)
5340        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5341          << FieldName << (unsigned)TypeSize;
5342      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5343        << (unsigned)TypeSize;
5344    }
5345  }
5346
5347  return false;
5348}
5349
5350/// ActOnField - Each field of a struct/union/class is passed into this in order
5351/// to create a FieldDecl object for it.
5352Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5353                                 SourceLocation DeclStart,
5354                                 Declarator &D, ExprTy *BitfieldWidth) {
5355  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5356                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5357                               AS_public);
5358  return DeclPtrTy::make(Res);
5359}
5360
5361/// HandleField - Analyze a field of a C struct or a C++ data member.
5362///
5363FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5364                             SourceLocation DeclStart,
5365                             Declarator &D, Expr *BitWidth,
5366                             AccessSpecifier AS) {
5367  IdentifierInfo *II = D.getIdentifier();
5368  SourceLocation Loc = DeclStart;
5369  if (II) Loc = D.getIdentifierLoc();
5370
5371  TypeSourceInfo *TInfo = 0;
5372  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5373  if (getLangOptions().CPlusPlus)
5374    CheckExtraCXXDefaultArguments(D);
5375
5376  DiagnoseFunctionSpecifiers(D);
5377
5378  if (D.getDeclSpec().isThreadSpecified())
5379    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5380
5381  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5382                                         ForRedeclaration);
5383
5384  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5385    // Maybe we will complain about the shadowed template parameter.
5386    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5387    // Just pretend that we didn't see the previous declaration.
5388    PrevDecl = 0;
5389  }
5390
5391  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5392    PrevDecl = 0;
5393
5394  bool Mutable
5395    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5396  SourceLocation TSSL = D.getSourceRange().getBegin();
5397  FieldDecl *NewFD
5398    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5399                     AS, PrevDecl, &D);
5400
5401  if (NewFD->isInvalidDecl())
5402    Record->setInvalidDecl();
5403
5404  if (NewFD->isInvalidDecl() && PrevDecl) {
5405    // Don't introduce NewFD into scope; there's already something
5406    // with the same name in the same scope.
5407  } else if (II) {
5408    PushOnScopeChains(NewFD, S);
5409  } else
5410    Record->addDecl(NewFD);
5411
5412  return NewFD;
5413}
5414
5415/// \brief Build a new FieldDecl and check its well-formedness.
5416///
5417/// This routine builds a new FieldDecl given the fields name, type,
5418/// record, etc. \p PrevDecl should refer to any previous declaration
5419/// with the same name and in the same scope as the field to be
5420/// created.
5421///
5422/// \returns a new FieldDecl.
5423///
5424/// \todo The Declarator argument is a hack. It will be removed once
5425FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5426                                TypeSourceInfo *TInfo,
5427                                RecordDecl *Record, SourceLocation Loc,
5428                                bool Mutable, Expr *BitWidth,
5429                                SourceLocation TSSL,
5430                                AccessSpecifier AS, NamedDecl *PrevDecl,
5431                                Declarator *D) {
5432  IdentifierInfo *II = Name.getAsIdentifierInfo();
5433  bool InvalidDecl = false;
5434  if (D) InvalidDecl = D->isInvalidType();
5435
5436  // If we receive a broken type, recover by assuming 'int' and
5437  // marking this declaration as invalid.
5438  if (T.isNull()) {
5439    InvalidDecl = true;
5440    T = Context.IntTy;
5441  }
5442
5443  QualType EltTy = Context.getBaseElementType(T);
5444  if (!EltTy->isDependentType() &&
5445      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5446    InvalidDecl = true;
5447
5448  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5449  // than a variably modified type.
5450  if (!InvalidDecl && T->isVariablyModifiedType()) {
5451    bool SizeIsNegative;
5452    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5453                                                           SizeIsNegative);
5454    if (!FixedTy.isNull()) {
5455      Diag(Loc, diag::warn_illegal_constant_array_size);
5456      T = FixedTy;
5457    } else {
5458      if (SizeIsNegative)
5459        Diag(Loc, diag::err_typecheck_negative_array_size);
5460      else
5461        Diag(Loc, diag::err_typecheck_field_variable_size);
5462      InvalidDecl = true;
5463    }
5464  }
5465
5466  // Fields can not have abstract class types
5467  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5468                                             diag::err_abstract_type_in_decl,
5469                                             AbstractFieldType))
5470    InvalidDecl = true;
5471
5472  bool ZeroWidth = false;
5473  // If this is declared as a bit-field, check the bit-field.
5474  if (!InvalidDecl && BitWidth &&
5475      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5476    InvalidDecl = true;
5477    DeleteExpr(BitWidth);
5478    BitWidth = 0;
5479    ZeroWidth = false;
5480  }
5481
5482  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5483                                       BitWidth, Mutable);
5484  if (InvalidDecl)
5485    NewFD->setInvalidDecl();
5486
5487  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5488    Diag(Loc, diag::err_duplicate_member) << II;
5489    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5490    NewFD->setInvalidDecl();
5491  }
5492
5493  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5494    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5495
5496    if (!T->isPODType())
5497      CXXRecord->setPOD(false);
5498    if (!ZeroWidth)
5499      CXXRecord->setEmpty(false);
5500
5501    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5502      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5503
5504      if (!RDecl->hasTrivialConstructor())
5505        CXXRecord->setHasTrivialConstructor(false);
5506      if (!RDecl->hasTrivialCopyConstructor())
5507        CXXRecord->setHasTrivialCopyConstructor(false);
5508      if (!RDecl->hasTrivialCopyAssignment())
5509        CXXRecord->setHasTrivialCopyAssignment(false);
5510      if (!RDecl->hasTrivialDestructor())
5511        CXXRecord->setHasTrivialDestructor(false);
5512
5513      // C++ 9.5p1: An object of a class with a non-trivial
5514      // constructor, a non-trivial copy constructor, a non-trivial
5515      // destructor, or a non-trivial copy assignment operator
5516      // cannot be a member of a union, nor can an array of such
5517      // objects.
5518      // TODO: C++0x alters this restriction significantly.
5519      if (Record->isUnion()) {
5520        // We check for copy constructors before constructors
5521        // because otherwise we'll never get complaints about
5522        // copy constructors.
5523
5524        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5525
5526        CXXSpecialMember member;
5527        if (!RDecl->hasTrivialCopyConstructor())
5528          member = CXXCopyConstructor;
5529        else if (!RDecl->hasTrivialConstructor())
5530          member = CXXDefaultConstructor;
5531        else if (!RDecl->hasTrivialCopyAssignment())
5532          member = CXXCopyAssignment;
5533        else if (!RDecl->hasTrivialDestructor())
5534          member = CXXDestructor;
5535        else
5536          member = invalid;
5537
5538        if (member != invalid) {
5539          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5540          DiagnoseNontrivial(RT, member);
5541          NewFD->setInvalidDecl();
5542        }
5543      }
5544    }
5545  }
5546
5547  // FIXME: We need to pass in the attributes given an AST
5548  // representation, not a parser representation.
5549  if (D)
5550    // FIXME: What to pass instead of TUScope?
5551    ProcessDeclAttributes(TUScope, NewFD, *D);
5552
5553  if (T.isObjCGCWeak())
5554    Diag(Loc, diag::warn_attribute_weak_on_field);
5555
5556  NewFD->setAccess(AS);
5557
5558  // C++ [dcl.init.aggr]p1:
5559  //   An aggregate is an array or a class (clause 9) with [...] no
5560  //   private or protected non-static data members (clause 11).
5561  // A POD must be an aggregate.
5562  if (getLangOptions().CPlusPlus &&
5563      (AS == AS_private || AS == AS_protected)) {
5564    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5565    CXXRecord->setAggregate(false);
5566    CXXRecord->setPOD(false);
5567  }
5568
5569  return NewFD;
5570}
5571
5572/// DiagnoseNontrivial - Given that a class has a non-trivial
5573/// special member, figure out why.
5574void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5575  QualType QT(T, 0U);
5576  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5577
5578  // Check whether the member was user-declared.
5579  switch (member) {
5580  case CXXDefaultConstructor:
5581    if (RD->hasUserDeclaredConstructor()) {
5582      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5583      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5584        const FunctionDecl *body = 0;
5585        ci->getBody(body);
5586        if (!body ||
5587            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5588          SourceLocation CtorLoc = ci->getLocation();
5589          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5590          return;
5591        }
5592      }
5593
5594      assert(0 && "found no user-declared constructors");
5595      return;
5596    }
5597    break;
5598
5599  case CXXCopyConstructor:
5600    if (RD->hasUserDeclaredCopyConstructor()) {
5601      SourceLocation CtorLoc =
5602        RD->getCopyConstructor(Context, 0)->getLocation();
5603      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5604      return;
5605    }
5606    break;
5607
5608  case CXXCopyAssignment:
5609    if (RD->hasUserDeclaredCopyAssignment()) {
5610      // FIXME: this should use the location of the copy
5611      // assignment, not the type.
5612      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5613      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5614      return;
5615    }
5616    break;
5617
5618  case CXXDestructor:
5619    if (RD->hasUserDeclaredDestructor()) {
5620      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5621      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5622      return;
5623    }
5624    break;
5625  }
5626
5627  typedef CXXRecordDecl::base_class_iterator base_iter;
5628
5629  // Virtual bases and members inhibit trivial copying/construction,
5630  // but not trivial destruction.
5631  if (member != CXXDestructor) {
5632    // Check for virtual bases.  vbases includes indirect virtual bases,
5633    // so we just iterate through the direct bases.
5634    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5635      if (bi->isVirtual()) {
5636        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5637        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5638        return;
5639      }
5640
5641    // Check for virtual methods.
5642    typedef CXXRecordDecl::method_iterator meth_iter;
5643    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5644         ++mi) {
5645      if (mi->isVirtual()) {
5646        SourceLocation MLoc = mi->getSourceRange().getBegin();
5647        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5648        return;
5649      }
5650    }
5651  }
5652
5653  bool (CXXRecordDecl::*hasTrivial)() const;
5654  switch (member) {
5655  case CXXDefaultConstructor:
5656    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5657  case CXXCopyConstructor:
5658    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5659  case CXXCopyAssignment:
5660    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5661  case CXXDestructor:
5662    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5663  default:
5664    assert(0 && "unexpected special member"); return;
5665  }
5666
5667  // Check for nontrivial bases (and recurse).
5668  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5669    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5670    assert(BaseRT && "Don't know how to handle dependent bases");
5671    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5672    if (!(BaseRecTy->*hasTrivial)()) {
5673      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5674      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5675      DiagnoseNontrivial(BaseRT, member);
5676      return;
5677    }
5678  }
5679
5680  // Check for nontrivial members (and recurse).
5681  typedef RecordDecl::field_iterator field_iter;
5682  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5683       ++fi) {
5684    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5685    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5686      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5687
5688      if (!(EltRD->*hasTrivial)()) {
5689        SourceLocation FLoc = (*fi)->getLocation();
5690        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5691        DiagnoseNontrivial(EltRT, member);
5692        return;
5693      }
5694    }
5695  }
5696
5697  assert(0 && "found no explanation for non-trivial member");
5698}
5699
5700/// TranslateIvarVisibility - Translate visibility from a token ID to an
5701///  AST enum value.
5702static ObjCIvarDecl::AccessControl
5703TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5704  switch (ivarVisibility) {
5705  default: assert(0 && "Unknown visitibility kind");
5706  case tok::objc_private: return ObjCIvarDecl::Private;
5707  case tok::objc_public: return ObjCIvarDecl::Public;
5708  case tok::objc_protected: return ObjCIvarDecl::Protected;
5709  case tok::objc_package: return ObjCIvarDecl::Package;
5710  }
5711}
5712
5713/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5714/// in order to create an IvarDecl object for it.
5715Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5716                                SourceLocation DeclStart,
5717                                DeclPtrTy IntfDecl,
5718                                Declarator &D, ExprTy *BitfieldWidth,
5719                                tok::ObjCKeywordKind Visibility) {
5720
5721  IdentifierInfo *II = D.getIdentifier();
5722  Expr *BitWidth = (Expr*)BitfieldWidth;
5723  SourceLocation Loc = DeclStart;
5724  if (II) Loc = D.getIdentifierLoc();
5725
5726  // FIXME: Unnamed fields can be handled in various different ways, for
5727  // example, unnamed unions inject all members into the struct namespace!
5728
5729  TypeSourceInfo *TInfo = 0;
5730  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5731
5732  if (BitWidth) {
5733    // 6.7.2.1p3, 6.7.2.1p4
5734    if (VerifyBitField(Loc, II, T, BitWidth)) {
5735      D.setInvalidType();
5736      DeleteExpr(BitWidth);
5737      BitWidth = 0;
5738    }
5739  } else {
5740    // Not a bitfield.
5741
5742    // validate II.
5743
5744  }
5745
5746  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5747  // than a variably modified type.
5748  if (T->isVariablyModifiedType()) {
5749    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5750    D.setInvalidType();
5751  }
5752
5753  // Get the visibility (access control) for this ivar.
5754  ObjCIvarDecl::AccessControl ac =
5755    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5756                                        : ObjCIvarDecl::None;
5757  // Must set ivar's DeclContext to its enclosing interface.
5758  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
5759  ObjCContainerDecl *EnclosingContext;
5760  if (ObjCImplementationDecl *IMPDecl =
5761      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5762    // Case of ivar declared in an implementation. Context is that of its class.
5763    EnclosingContext = IMPDecl->getClassInterface();
5764    assert(EnclosingContext && "Implementation has no class interface!");
5765  } else {
5766    if (ObjCCategoryDecl *CDecl =
5767        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5768      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
5769        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5770        return DeclPtrTy();
5771      }
5772    }
5773    EnclosingContext = EnclosingDecl;
5774  }
5775
5776  // Construct the decl.
5777  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5778                                             EnclosingContext, Loc, II, T,
5779                                             TInfo, ac, (Expr *)BitfieldWidth);
5780
5781  if (II) {
5782    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5783                                           ForRedeclaration);
5784    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5785        && !isa<TagDecl>(PrevDecl)) {
5786      Diag(Loc, diag::err_duplicate_member) << II;
5787      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5788      NewID->setInvalidDecl();
5789    }
5790  }
5791
5792  // Process attributes attached to the ivar.
5793  ProcessDeclAttributes(S, NewID, D);
5794
5795  if (D.isInvalidType())
5796    NewID->setInvalidDecl();
5797
5798  if (II) {
5799    // FIXME: When interfaces are DeclContexts, we'll need to add
5800    // these to the interface.
5801    S->AddDecl(DeclPtrTy::make(NewID));
5802    IdResolver.AddDecl(NewID);
5803  }
5804
5805  return DeclPtrTy::make(NewID);
5806}
5807
5808void Sema::ActOnFields(Scope* S,
5809                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5810                       DeclPtrTy *Fields, unsigned NumFields,
5811                       SourceLocation LBrac, SourceLocation RBrac,
5812                       AttributeList *Attr) {
5813  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5814  assert(EnclosingDecl && "missing record or interface decl");
5815
5816  // If the decl this is being inserted into is invalid, then it may be a
5817  // redeclaration or some other bogus case.  Don't try to add fields to it.
5818  if (EnclosingDecl->isInvalidDecl()) {
5819    // FIXME: Deallocate fields?
5820    return;
5821  }
5822
5823
5824  // Verify that all the fields are okay.
5825  unsigned NumNamedMembers = 0;
5826  llvm::SmallVector<FieldDecl*, 32> RecFields;
5827
5828  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5829  for (unsigned i = 0; i != NumFields; ++i) {
5830    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5831
5832    // Get the type for the field.
5833    Type *FDTy = FD->getType().getTypePtr();
5834
5835    if (!FD->isAnonymousStructOrUnion()) {
5836      // Remember all fields written by the user.
5837      RecFields.push_back(FD);
5838    }
5839
5840    // If the field is already invalid for some reason, don't emit more
5841    // diagnostics about it.
5842    if (FD->isInvalidDecl()) {
5843      EnclosingDecl->setInvalidDecl();
5844      continue;
5845    }
5846
5847    // C99 6.7.2.1p2:
5848    //   A structure or union shall not contain a member with
5849    //   incomplete or function type (hence, a structure shall not
5850    //   contain an instance of itself, but may contain a pointer to
5851    //   an instance of itself), except that the last member of a
5852    //   structure with more than one named member may have incomplete
5853    //   array type; such a structure (and any union containing,
5854    //   possibly recursively, a member that is such a structure)
5855    //   shall not be a member of a structure or an element of an
5856    //   array.
5857    if (FDTy->isFunctionType()) {
5858      // Field declared as a function.
5859      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5860        << FD->getDeclName();
5861      FD->setInvalidDecl();
5862      EnclosingDecl->setInvalidDecl();
5863      continue;
5864    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5865               Record && Record->isStruct()) {
5866      // Flexible array member.
5867      if (NumNamedMembers < 1) {
5868        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5869          << FD->getDeclName();
5870        FD->setInvalidDecl();
5871        EnclosingDecl->setInvalidDecl();
5872        continue;
5873      }
5874      // Okay, we have a legal flexible array member at the end of the struct.
5875      if (Record)
5876        Record->setHasFlexibleArrayMember(true);
5877    } else if (!FDTy->isDependentType() &&
5878               RequireCompleteType(FD->getLocation(), FD->getType(),
5879                                   diag::err_field_incomplete)) {
5880      // Incomplete type
5881      FD->setInvalidDecl();
5882      EnclosingDecl->setInvalidDecl();
5883      continue;
5884    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5885      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5886        // If this is a member of a union, then entire union becomes "flexible".
5887        if (Record && Record->isUnion()) {
5888          Record->setHasFlexibleArrayMember(true);
5889        } else {
5890          // If this is a struct/class and this is not the last element, reject
5891          // it.  Note that GCC supports variable sized arrays in the middle of
5892          // structures.
5893          if (i != NumFields-1)
5894            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5895              << FD->getDeclName() << FD->getType();
5896          else {
5897            // We support flexible arrays at the end of structs in
5898            // other structs as an extension.
5899            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5900              << FD->getDeclName();
5901            if (Record)
5902              Record->setHasFlexibleArrayMember(true);
5903          }
5904        }
5905      }
5906      if (Record && FDTTy->getDecl()->hasObjectMember())
5907        Record->setHasObjectMember(true);
5908    } else if (FDTy->isObjCInterfaceType()) {
5909      /// A field cannot be an Objective-c object
5910      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5911      FD->setInvalidDecl();
5912      EnclosingDecl->setInvalidDecl();
5913      continue;
5914    } else if (getLangOptions().ObjC1 &&
5915               getLangOptions().getGCMode() != LangOptions::NonGC &&
5916               Record &&
5917               (FD->getType()->isObjCObjectPointerType() ||
5918                FD->getType().isObjCGCStrong()))
5919      Record->setHasObjectMember(true);
5920    // Keep track of the number of named members.
5921    if (FD->getIdentifier())
5922      ++NumNamedMembers;
5923  }
5924
5925  // Okay, we successfully defined 'Record'.
5926  if (Record) {
5927    Record->completeDefinition();
5928  } else {
5929    ObjCIvarDecl **ClsFields =
5930      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5931    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5932      ID->setLocEnd(RBrac);
5933      // Add ivar's to class's DeclContext.
5934      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5935        ClsFields[i]->setLexicalDeclContext(ID);
5936        ID->addDecl(ClsFields[i]);
5937      }
5938      // Must enforce the rule that ivars in the base classes may not be
5939      // duplicates.
5940      if (ID->getSuperClass())
5941        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5942    } else if (ObjCImplementationDecl *IMPDecl =
5943                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5944      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5945      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5946        // Ivar declared in @implementation never belongs to the implementation.
5947        // Only it is in implementation's lexical context.
5948        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5949      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5950    } else if (ObjCCategoryDecl *CDecl =
5951                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5952      // case of ivars in class extension; all other cases have been
5953      // reported as errors elsewhere.
5954      // FIXME. Class extension does not have a LocEnd field.
5955      // CDecl->setLocEnd(RBrac);
5956      // Add ivar's to class extension's DeclContext.
5957      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5958        ClsFields[i]->setLexicalDeclContext(CDecl);
5959        CDecl->addDecl(ClsFields[i]);
5960      }
5961    }
5962  }
5963
5964  if (Attr)
5965    ProcessDeclAttributeList(S, Record, Attr);
5966}
5967
5968/// \brief Determine whether the given integral value is representable within
5969/// the given type T.
5970static bool isRepresentableIntegerValue(ASTContext &Context,
5971                                        llvm::APSInt &Value,
5972                                        QualType T) {
5973  assert(T->isIntegralType() && "Integral type required!");
5974  unsigned BitWidth = Context.getTypeSize(T);
5975
5976  if (Value.isUnsigned() || Value.isNonNegative())
5977    return Value.getActiveBits() < BitWidth;
5978
5979  return Value.getMinSignedBits() <= BitWidth;
5980}
5981
5982// \brief Given an integral type, return the next larger integral type
5983// (or a NULL type of no such type exists).
5984static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5985  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5986  // enum checking below.
5987  assert(T->isIntegralType() && "Integral type required!");
5988  const unsigned NumTypes = 4;
5989  QualType SignedIntegralTypes[NumTypes] = {
5990    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5991  };
5992  QualType UnsignedIntegralTypes[NumTypes] = {
5993    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5994    Context.UnsignedLongLongTy
5995  };
5996
5997  unsigned BitWidth = Context.getTypeSize(T);
5998  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5999                                            : UnsignedIntegralTypes;
6000  for (unsigned I = 0; I != NumTypes; ++I)
6001    if (Context.getTypeSize(Types[I]) > BitWidth)
6002      return Types[I];
6003
6004  return QualType();
6005}
6006
6007EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6008                                          EnumConstantDecl *LastEnumConst,
6009                                          SourceLocation IdLoc,
6010                                          IdentifierInfo *Id,
6011                                          ExprArg val) {
6012  Expr *Val = (Expr *)val.get();
6013
6014  unsigned IntWidth = Context.Target.getIntWidth();
6015  llvm::APSInt EnumVal(IntWidth);
6016  QualType EltTy;
6017  if (Val) {
6018    if (Enum->isDependentType() || Val->isTypeDependent())
6019      EltTy = Context.DependentTy;
6020    else {
6021      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6022      SourceLocation ExpLoc;
6023      if (!Val->isValueDependent() &&
6024          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6025        Val = 0;
6026      } else {
6027        if (!getLangOptions().CPlusPlus) {
6028          // C99 6.7.2.2p2:
6029          //   The expression that defines the value of an enumeration constant
6030          //   shall be an integer constant expression that has a value
6031          //   representable as an int.
6032
6033          // Complain if the value is not representable in an int.
6034          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6035            Diag(IdLoc, diag::ext_enum_value_not_int)
6036              << EnumVal.toString(10) << Val->getSourceRange()
6037              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6038          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6039            // Force the type of the expression to 'int'.
6040            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6041
6042            if (Val != val.get()) {
6043              val.release();
6044              val = Val;
6045            }
6046          }
6047        }
6048
6049        // C++0x [dcl.enum]p5:
6050        //   If the underlying type is not fixed, the type of each enumerator
6051        //   is the type of its initializing value:
6052        //     - If an initializer is specified for an enumerator, the
6053        //       initializing value has the same type as the expression.
6054        EltTy = Val->getType();
6055      }
6056    }
6057  }
6058
6059  if (!Val) {
6060    if (Enum->isDependentType())
6061      EltTy = Context.DependentTy;
6062    else if (!LastEnumConst) {
6063      // C++0x [dcl.enum]p5:
6064      //   If the underlying type is not fixed, the type of each enumerator
6065      //   is the type of its initializing value:
6066      //     - If no initializer is specified for the first enumerator, the
6067      //       initializing value has an unspecified integral type.
6068      //
6069      // GCC uses 'int' for its unspecified integral type, as does
6070      // C99 6.7.2.2p3.
6071      EltTy = Context.IntTy;
6072    } else {
6073      // Assign the last value + 1.
6074      EnumVal = LastEnumConst->getInitVal();
6075      ++EnumVal;
6076      EltTy = LastEnumConst->getType();
6077
6078      // Check for overflow on increment.
6079      if (EnumVal < LastEnumConst->getInitVal()) {
6080        // C++0x [dcl.enum]p5:
6081        //   If the underlying type is not fixed, the type of each enumerator
6082        //   is the type of its initializing value:
6083        //
6084        //     - Otherwise the type of the initializing value is the same as
6085        //       the type of the initializing value of the preceding enumerator
6086        //       unless the incremented value is not representable in that type,
6087        //       in which case the type is an unspecified integral type
6088        //       sufficient to contain the incremented value. If no such type
6089        //       exists, the program is ill-formed.
6090        QualType T = getNextLargerIntegralType(Context, EltTy);
6091        if (T.isNull()) {
6092          // There is no integral type larger enough to represent this
6093          // value. Complain, then allow the value to wrap around.
6094          EnumVal = LastEnumConst->getInitVal();
6095          EnumVal.zext(EnumVal.getBitWidth() * 2);
6096          Diag(IdLoc, diag::warn_enumerator_too_large)
6097            << EnumVal.toString(10);
6098        } else {
6099          EltTy = T;
6100        }
6101
6102        // Retrieve the last enumerator's value, extent that type to the
6103        // type that is supposed to be large enough to represent the incremented
6104        // value, then increment.
6105        EnumVal = LastEnumConst->getInitVal();
6106        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6107        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6108        ++EnumVal;
6109
6110        // If we're not in C++, diagnose the overflow of enumerator values,
6111        // which in C99 means that the enumerator value is not representable in
6112        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6113        // permits enumerator values that are representable in some larger
6114        // integral type.
6115        if (!getLangOptions().CPlusPlus && !T.isNull())
6116          Diag(IdLoc, diag::warn_enum_value_overflow);
6117      } else if (!getLangOptions().CPlusPlus &&
6118                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6119        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6120        Diag(IdLoc, diag::ext_enum_value_not_int)
6121          << EnumVal.toString(10) << 1;
6122      }
6123    }
6124  }
6125
6126  if (!EltTy->isDependentType()) {
6127    // Make the enumerator value match the signedness and size of the
6128    // enumerator's type.
6129    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6130    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6131  }
6132
6133  val.release();
6134  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6135                                  Val, EnumVal);
6136}
6137
6138
6139Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6140                                        DeclPtrTy lastEnumConst,
6141                                        SourceLocation IdLoc,
6142                                        IdentifierInfo *Id,
6143                                        SourceLocation EqualLoc, ExprTy *val) {
6144  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6145  EnumConstantDecl *LastEnumConst =
6146    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6147  Expr *Val = static_cast<Expr*>(val);
6148
6149  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6150  // we find one that is.
6151  S = getNonFieldDeclScope(S);
6152
6153  // Verify that there isn't already something declared with this name in this
6154  // scope.
6155  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
6156                                         ForRedeclaration);
6157  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6158    // Maybe we will complain about the shadowed template parameter.
6159    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6160    // Just pretend that we didn't see the previous declaration.
6161    PrevDecl = 0;
6162  }
6163
6164  if (PrevDecl) {
6165    // When in C++, we may get a TagDecl with the same name; in this case the
6166    // enum constant will 'hide' the tag.
6167    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6168           "Received TagDecl when not in C++!");
6169    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6170      if (isa<EnumConstantDecl>(PrevDecl))
6171        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6172      else
6173        Diag(IdLoc, diag::err_redefinition) << Id;
6174      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6175      if (Val) Val->Destroy(Context);
6176      return DeclPtrTy();
6177    }
6178  }
6179
6180  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6181                                            IdLoc, Id, Owned(Val));
6182
6183  // Register this decl in the current scope stack.
6184  if (New) {
6185    New->setAccess(TheEnumDecl->getAccess());
6186    PushOnScopeChains(New, S);
6187  }
6188
6189  return DeclPtrTy::make(New);
6190}
6191
6192void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6193                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6194                         DeclPtrTy *Elements, unsigned NumElements,
6195                         Scope *S, AttributeList *Attr) {
6196  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6197  QualType EnumType = Context.getTypeDeclType(Enum);
6198
6199  if (Attr)
6200    ProcessDeclAttributeList(S, Enum, Attr);
6201
6202  if (Enum->isDependentType()) {
6203    for (unsigned i = 0; i != NumElements; ++i) {
6204      EnumConstantDecl *ECD =
6205        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6206      if (!ECD) continue;
6207
6208      ECD->setType(EnumType);
6209    }
6210
6211    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6212    return;
6213  }
6214
6215  // TODO: If the result value doesn't fit in an int, it must be a long or long
6216  // long value.  ISO C does not support this, but GCC does as an extension,
6217  // emit a warning.
6218  unsigned IntWidth = Context.Target.getIntWidth();
6219  unsigned CharWidth = Context.Target.getCharWidth();
6220  unsigned ShortWidth = Context.Target.getShortWidth();
6221
6222  // Verify that all the values are okay, compute the size of the values, and
6223  // reverse the list.
6224  unsigned NumNegativeBits = 0;
6225  unsigned NumPositiveBits = 0;
6226
6227  // Keep track of whether all elements have type int.
6228  bool AllElementsInt = true;
6229
6230  for (unsigned i = 0; i != NumElements; ++i) {
6231    EnumConstantDecl *ECD =
6232      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6233    if (!ECD) continue;  // Already issued a diagnostic.
6234
6235    const llvm::APSInt &InitVal = ECD->getInitVal();
6236
6237    // Keep track of the size of positive and negative values.
6238    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6239      NumPositiveBits = std::max(NumPositiveBits,
6240                                 (unsigned)InitVal.getActiveBits());
6241    else
6242      NumNegativeBits = std::max(NumNegativeBits,
6243                                 (unsigned)InitVal.getMinSignedBits());
6244
6245    // Keep track of whether every enum element has type int (very commmon).
6246    if (AllElementsInt)
6247      AllElementsInt = ECD->getType() == Context.IntTy;
6248  }
6249
6250  // Figure out the type that should be used for this enum.
6251  // FIXME: Support -fshort-enums.
6252  QualType BestType;
6253  unsigned BestWidth;
6254
6255  // C++0x N3000 [conv.prom]p3:
6256  //   An rvalue of an unscoped enumeration type whose underlying
6257  //   type is not fixed can be converted to an rvalue of the first
6258  //   of the following types that can represent all the values of
6259  //   the enumeration: int, unsigned int, long int, unsigned long
6260  //   int, long long int, or unsigned long long int.
6261  // C99 6.4.4.3p2:
6262  //   An identifier declared as an enumeration constant has type int.
6263  // The C99 rule is modified by a gcc extension
6264  QualType BestPromotionType;
6265
6266  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6267
6268  if (NumNegativeBits) {
6269    // If there is a negative value, figure out the smallest integer type (of
6270    // int/long/longlong) that fits.
6271    // If it's packed, check also if it fits a char or a short.
6272    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6273      BestType = Context.SignedCharTy;
6274      BestWidth = CharWidth;
6275    } else if (Packed && NumNegativeBits <= ShortWidth &&
6276               NumPositiveBits < ShortWidth) {
6277      BestType = Context.ShortTy;
6278      BestWidth = ShortWidth;
6279    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6280      BestType = Context.IntTy;
6281      BestWidth = IntWidth;
6282    } else {
6283      BestWidth = Context.Target.getLongWidth();
6284
6285      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6286        BestType = Context.LongTy;
6287      } else {
6288        BestWidth = Context.Target.getLongLongWidth();
6289
6290        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6291          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6292        BestType = Context.LongLongTy;
6293      }
6294    }
6295    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6296  } else {
6297    // If there is no negative value, figure out the smallest type that fits
6298    // all of the enumerator values.
6299    // If it's packed, check also if it fits a char or a short.
6300    if (Packed && NumPositiveBits <= CharWidth) {
6301      BestType = Context.UnsignedCharTy;
6302      BestPromotionType = Context.IntTy;
6303      BestWidth = CharWidth;
6304    } else if (Packed && NumPositiveBits <= ShortWidth) {
6305      BestType = Context.UnsignedShortTy;
6306      BestPromotionType = Context.IntTy;
6307      BestWidth = ShortWidth;
6308    } else if (NumPositiveBits <= IntWidth) {
6309      BestType = Context.UnsignedIntTy;
6310      BestWidth = IntWidth;
6311      BestPromotionType
6312        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6313                           ? Context.UnsignedIntTy : Context.IntTy;
6314    } else if (NumPositiveBits <=
6315               (BestWidth = Context.Target.getLongWidth())) {
6316      BestType = Context.UnsignedLongTy;
6317      BestPromotionType
6318        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6319                           ? Context.UnsignedLongTy : Context.LongTy;
6320    } else {
6321      BestWidth = Context.Target.getLongLongWidth();
6322      assert(NumPositiveBits <= BestWidth &&
6323             "How could an initializer get larger than ULL?");
6324      BestType = Context.UnsignedLongLongTy;
6325      BestPromotionType
6326        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6327                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6328    }
6329  }
6330
6331  // Loop over all of the enumerator constants, changing their types to match
6332  // the type of the enum if needed.
6333  for (unsigned i = 0; i != NumElements; ++i) {
6334    EnumConstantDecl *ECD =
6335      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6336    if (!ECD) continue;  // Already issued a diagnostic.
6337
6338    // Standard C says the enumerators have int type, but we allow, as an
6339    // extension, the enumerators to be larger than int size.  If each
6340    // enumerator value fits in an int, type it as an int, otherwise type it the
6341    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6342    // that X has type 'int', not 'unsigned'.
6343
6344    // Determine whether the value fits into an int.
6345    llvm::APSInt InitVal = ECD->getInitVal();
6346
6347    // If it fits into an integer type, force it.  Otherwise force it to match
6348    // the enum decl type.
6349    QualType NewTy;
6350    unsigned NewWidth;
6351    bool NewSign;
6352    if (!getLangOptions().CPlusPlus &&
6353        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6354      NewTy = Context.IntTy;
6355      NewWidth = IntWidth;
6356      NewSign = true;
6357    } else if (ECD->getType() == BestType) {
6358      // Already the right type!
6359      if (getLangOptions().CPlusPlus)
6360        // C++ [dcl.enum]p4: Following the closing brace of an
6361        // enum-specifier, each enumerator has the type of its
6362        // enumeration.
6363        ECD->setType(EnumType);
6364      continue;
6365    } else {
6366      NewTy = BestType;
6367      NewWidth = BestWidth;
6368      NewSign = BestType->isSignedIntegerType();
6369    }
6370
6371    // Adjust the APSInt value.
6372    InitVal.extOrTrunc(NewWidth);
6373    InitVal.setIsSigned(NewSign);
6374    ECD->setInitVal(InitVal);
6375
6376    // Adjust the Expr initializer and type.
6377    if (ECD->getInitExpr())
6378      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6379                                                      CastExpr::CK_IntegralCast,
6380                                                      ECD->getInitExpr(),
6381                                                      /*isLvalue=*/false));
6382    if (getLangOptions().CPlusPlus)
6383      // C++ [dcl.enum]p4: Following the closing brace of an
6384      // enum-specifier, each enumerator has the type of its
6385      // enumeration.
6386      ECD->setType(EnumType);
6387    else
6388      ECD->setType(NewTy);
6389  }
6390
6391  Enum->completeDefinition(BestType, BestPromotionType);
6392}
6393
6394Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6395                                            ExprArg expr) {
6396  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6397
6398  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6399                                                   Loc, AsmString);
6400  CurContext->addDecl(New);
6401  return DeclPtrTy::make(New);
6402}
6403
6404void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6405                             SourceLocation PragmaLoc,
6406                             SourceLocation NameLoc) {
6407  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6408
6409  if (PrevDecl) {
6410    PrevDecl->addAttr(::new (Context) WeakAttr());
6411  } else {
6412    (void)WeakUndeclaredIdentifiers.insert(
6413      std::pair<IdentifierInfo*,WeakInfo>
6414        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6415  }
6416}
6417
6418void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6419                                IdentifierInfo* AliasName,
6420                                SourceLocation PragmaLoc,
6421                                SourceLocation NameLoc,
6422                                SourceLocation AliasNameLoc) {
6423  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6424  WeakInfo W = WeakInfo(Name, NameLoc);
6425
6426  if (PrevDecl) {
6427    if (!PrevDecl->hasAttr<AliasAttr>())
6428      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6429        DeclApplyPragmaWeak(TUScope, ND, W);
6430  } else {
6431    (void)WeakUndeclaredIdentifiers.insert(
6432      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6433  }
6434}
6435