SemaDecl.cpp revision b048c9835969c4f7fe06264748be18ed4b442116
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
36  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
37
38  if (IIDecl && (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl)))
39    return IIDecl;
40  return 0;
41}
42
43void Sema::PushDeclContext(DeclContext *CD) {
44  assert(CD->getParent() == CurContext &&
45      "The next DeclContext should be directly contained in the current one.");
46  CurContext = CD;
47}
48
49void Sema::PopDeclContext() {
50  assert(CurContext && "DeclContext imbalance!");
51  CurContext = CurContext->getParent();
52}
53
54void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
55  if (S->decl_empty()) return;
56  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
57
58  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
59       I != E; ++I) {
60    Decl *TmpD = static_cast<Decl*>(*I);
61    assert(TmpD && "This decl didn't get pushed??");
62    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
63    assert(D && "This decl isn't a ScopedDecl?");
64
65    IdentifierInfo *II = D->getIdentifier();
66    if (!II) continue;
67
68    // Unlink this decl from the identifier.  Because the scope contains decls
69    // in an unordered collection, and because we have multiple identifier
70    // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
71    if (II->getFETokenInfo<Decl>() == D) {
72      // Normal case, no multiple decls in different namespaces.
73      II->setFETokenInfo(D->getNext());
74    } else {
75      // Scan ahead.  There are only three namespaces in C, so this loop can
76      // never execute more than 3 times.
77      ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
78      while (SomeDecl->getNext() != D) {
79        SomeDecl = SomeDecl->getNext();
80        assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
81      }
82      SomeDecl->setNext(D->getNext());
83    }
84
85    // This will have to be revisited for C++: there we want to nest stuff in
86    // namespace decls etc.  Even for C, we might want a top-level translation
87    // unit decl or something.
88    if (!CurFunctionDecl)
89      continue;
90
91    // Chain this decl to the containing function, it now owns the memory for
92    // the decl.
93    D->setNext(CurFunctionDecl->getDeclChain());
94    CurFunctionDecl->setDeclChain(D);
95  }
96}
97
98/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
99/// return 0 if one not found.
100ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
101  // The third "scope" argument is 0 since we aren't enabling lazy built-in
102  // creation from this context.
103  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
104
105  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
106}
107
108/// LookupDecl - Look up the inner-most declaration in the specified
109/// namespace.
110Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
111                       Scope *S, bool enableLazyBuiltinCreation) {
112  if (II == 0) return 0;
113  Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
114
115  // Scan up the scope chain looking for a decl that matches this identifier
116  // that is in the appropriate namespace.  This search should not take long, as
117  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
118  for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
119    if (D->getIdentifierNamespace() == NS)
120      return D;
121
122  // If we didn't find a use of this identifier, and if the identifier
123  // corresponds to a compiler builtin, create the decl object for the builtin
124  // now, injecting it into translation unit scope, and return it.
125  if (NS == Decl::IDNS_Ordinary) {
126    if (enableLazyBuiltinCreation) {
127      // If this is a builtin on this (or all) targets, create the decl.
128      if (unsigned BuiltinID = II->getBuiltinID())
129        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
130    }
131    if (getLangOptions().ObjC1) {
132      // @interface and @compatibility_alias introduce typedef-like names.
133      // Unlike typedef's, they can only be introduced at file-scope (and are
134      // therefore not scoped decls). They can, however, be shadowed by
135      // other names in IDNS_Ordinary.
136      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
137      if (IDI != ObjCInterfaceDecls.end())
138        return IDI->second;
139      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
140      if (I != ObjCAliasDecls.end())
141        return I->second->getClassInterface();
142    }
143  }
144  return 0;
145}
146
147void Sema::InitBuiltinVaListType()
148{
149  if (!Context.getBuiltinVaListType().isNull())
150    return;
151
152  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
153  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
154  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
155  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
156}
157
158/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
159/// lazily create a decl for it.
160ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
161                                      Scope *S) {
162  Builtin::ID BID = (Builtin::ID)bid;
163
164  if (BID == Builtin::BI__builtin_va_start ||
165       BID == Builtin::BI__builtin_va_copy ||
166       BID == Builtin::BI__builtin_va_end)
167    InitBuiltinVaListType();
168
169  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
170  FunctionDecl *New = FunctionDecl::Create(Context, CurContext,
171                                           SourceLocation(), II, R,
172                                           FunctionDecl::Extern, false, 0);
173
174  // Find translation-unit scope to insert this function into.
175  if (Scope *FnS = S->getFnParent())
176    S = FnS->getParent();   // Skip all scopes in a function at once.
177  while (S->getParent())
178    S = S->getParent();
179  S->AddDecl(New);
180
181  // Add this decl to the end of the identifier info.
182  if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
183    // Scan until we find the last (outermost) decl in the id chain.
184    while (LastDecl->getNext())
185      LastDecl = LastDecl->getNext();
186    // Insert before (outside) it.
187    LastDecl->setNext(New);
188  } else {
189    II->setFETokenInfo(New);
190  }
191  return New;
192}
193
194/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
195/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
196/// situation, merging decls or emitting diagnostics as appropriate.
197///
198TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
199  // Verify the old decl was also a typedef.
200  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
201  if (!Old) {
202    Diag(New->getLocation(), diag::err_redefinition_different_kind,
203         New->getName());
204    Diag(OldD->getLocation(), diag::err_previous_definition);
205    return New;
206  }
207
208  // Allow multiple definitions for ObjC built-in typedefs.
209  // FIXME: Verify the underlying types are equivalent!
210  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
211    return Old;
212
213  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
214  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
215  // *either* declaration is in a system header. The code below implements
216  // this adhoc compatibility rule. FIXME: The following code will not
217  // work properly when compiling ".i" files (containing preprocessed output).
218  SourceManager &SrcMgr = Context.getSourceManager();
219  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
220  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
221  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
222  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
223  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
224
225  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
226  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
227       NewDirType != DirectoryLookup::NormalHeaderDir) ||
228      getLangOptions().Microsoft)
229    return New;
230
231  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
232  // TODO: This is totally simplistic.  It should handle merging functions
233  // together etc, merging extern int X; int X; ...
234  Diag(New->getLocation(), diag::err_redefinition, New->getName());
235  Diag(Old->getLocation(), diag::err_previous_definition);
236  return New;
237}
238
239/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
240static bool DeclHasAttr(const Decl *decl, const Attr *target) {
241  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
242    if (attr->getKind() == target->getKind())
243      return true;
244
245  return false;
246}
247
248/// MergeAttributes - append attributes from the Old decl to the New one.
249static void MergeAttributes(Decl *New, Decl *Old) {
250  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
251
252// FIXME: fix this code to cleanup the Old attrs correctly
253  while (attr) {
254     tmp = attr;
255     attr = attr->getNext();
256
257    if (!DeclHasAttr(New, tmp)) {
258       New->addAttr(tmp);
259    } else {
260       tmp->setNext(0);
261       delete(tmp);
262    }
263  }
264}
265
266/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
267/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
268/// situation, merging decls or emitting diagnostics as appropriate.
269///
270FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
271  // Verify the old decl was also a function.
272  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
273  if (!Old) {
274    Diag(New->getLocation(), diag::err_redefinition_different_kind,
275         New->getName());
276    Diag(OldD->getLocation(), diag::err_previous_definition);
277    return New;
278  }
279
280  MergeAttributes(New, Old);
281
282
283  QualType OldQType = Old->getCanonicalType();
284  QualType NewQType = New->getCanonicalType();
285
286  // Function types need to be compatible, not identical. This handles
287  // duplicate function decls like "void f(int); void f(enum X);" properly.
288  if (Context.functionTypesAreCompatible(OldQType, NewQType))
289    return New;
290
291  // A function that has already been declared has been redeclared or defined
292  // with a different type- show appropriate diagnostic
293  diag::kind PrevDiag;
294  if (Old->getBody())
295    PrevDiag = diag::err_previous_definition;
296  else if (Old->isImplicit())
297    PrevDiag = diag::err_previous_implicit_declaration;
298  else
299    PrevDiag = diag::err_previous_declaration;
300
301  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
302  // TODO: This is totally simplistic.  It should handle merging functions
303  // together etc, merging extern int X; int X; ...
304  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
305  Diag(Old->getLocation(), PrevDiag);
306  return New;
307}
308
309/// equivalentArrayTypes - Used to determine whether two array types are
310/// equivalent.
311/// We need to check this explicitly as an incomplete array definition is
312/// considered a VariableArrayType, so will not match a complete array
313/// definition that would be otherwise equivalent.
314static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
315  const ArrayType *NewAT = NewQType->getAsArrayType();
316  const ArrayType *OldAT = OldQType->getAsArrayType();
317
318  if (!NewAT || !OldAT)
319    return false;
320
321  // If either (or both) array types in incomplete we need to strip off the
322  // outer VariableArrayType.  Once the outer VAT is removed the remaining
323  // types must be identical if the array types are to be considered
324  // equivalent.
325  // eg. int[][1] and int[1][1] become
326  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
327  // removing the outermost VAT gives
328  //     CAT(1, int) and CAT(1, int)
329  // which are equal, therefore the array types are equivalent.
330  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
331    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
332      return false;
333    NewQType = NewAT->getElementType().getCanonicalType();
334    OldQType = OldAT->getElementType().getCanonicalType();
335  }
336
337  return NewQType == OldQType;
338}
339
340/// MergeVarDecl - We just parsed a variable 'New' which has the same name
341/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
342/// situation, merging decls or emitting diagnostics as appropriate.
343///
344/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
345/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
346///
347VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
348  // Verify the old decl was also a variable.
349  VarDecl *Old = dyn_cast<VarDecl>(OldD);
350  if (!Old) {
351    Diag(New->getLocation(), diag::err_redefinition_different_kind,
352         New->getName());
353    Diag(OldD->getLocation(), diag::err_previous_definition);
354    return New;
355  }
356
357  MergeAttributes(New, Old);
358
359  // Verify the types match.
360  if (Old->getCanonicalType() != New->getCanonicalType() &&
361      !areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) {
362    Diag(New->getLocation(), diag::err_redefinition, New->getName());
363    Diag(Old->getLocation(), diag::err_previous_definition);
364    return New;
365  }
366  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
367  if (New->getStorageClass() == VarDecl::Static &&
368      (Old->getStorageClass() == VarDecl::None ||
369       Old->getStorageClass() == VarDecl::Extern)) {
370    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
371    Diag(Old->getLocation(), diag::err_previous_definition);
372    return New;
373  }
374  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
375  if (New->getStorageClass() != VarDecl::Static &&
376      Old->getStorageClass() == VarDecl::Static) {
377    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
378    Diag(Old->getLocation(), diag::err_previous_definition);
379    return New;
380  }
381  // We've verified the types match, now handle "tentative" definitions.
382  FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
383  FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
384
385  if (OldFSDecl && NewFSDecl) {
386    // Handle C "tentative" external object definitions (C99 6.9.2).
387    bool OldIsTentative = false;
388    bool NewIsTentative = false;
389
390    if (!OldFSDecl->getInit() &&
391        (OldFSDecl->getStorageClass() == VarDecl::None ||
392         OldFSDecl->getStorageClass() == VarDecl::Static))
393      OldIsTentative = true;
394
395    // FIXME: this check doesn't work (since the initializer hasn't been
396    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
397    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
398    // thrown out the old decl.
399    if (!NewFSDecl->getInit() &&
400        (NewFSDecl->getStorageClass() == VarDecl::None ||
401         NewFSDecl->getStorageClass() == VarDecl::Static))
402      ; // change to NewIsTentative = true; once the code is moved.
403
404    if (NewIsTentative || OldIsTentative)
405      return New;
406  }
407  if (Old->getStorageClass() != VarDecl::Extern &&
408      New->getStorageClass() != VarDecl::Extern) {
409    Diag(New->getLocation(), diag::err_redefinition, New->getName());
410    Diag(Old->getLocation(), diag::err_previous_definition);
411  }
412  return New;
413}
414
415/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
416/// no declarator (e.g. "struct foo;") is parsed.
417Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
418  // TODO: emit error on 'int;' or 'const enum foo;'.
419  // TODO: emit error on 'typedef int;'
420  // if (!DS.isMissingDeclaratorOk()) Diag(...);
421
422  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
423}
424
425bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
426  // Get the type before calling CheckSingleAssignmentConstraints(), since
427  // it can promote the expression.
428  QualType InitType = Init->getType();
429
430  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
431  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
432                                  InitType, Init, "initializing");
433}
434
435bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
436                         QualType ElementType) {
437  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
438  if (CheckSingleInitializer(expr, ElementType))
439    return true; // types weren't compatible.
440
441  if (savExpr != expr) // The type was promoted, update initializer list.
442    IList->setInit(slot, expr);
443  return false;
444}
445
446bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
447  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
448    // C99 6.7.8p14. We have an array of character type with unknown size
449    // being initialized to a string literal.
450    llvm::APSInt ConstVal(32);
451    ConstVal = strLiteral->getByteLength() + 1;
452    // Return a new array type (C99 6.7.8p22).
453    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
454                                         ArrayType::Normal, 0);
455  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
456    // C99 6.7.8p14. We have an array of character type with known size.
457    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
458      Diag(strLiteral->getSourceRange().getBegin(),
459           diag::warn_initializer_string_for_char_array_too_long,
460           strLiteral->getSourceRange());
461  } else {
462    assert(0 && "HandleStringLiteralInit(): Invalid array type");
463  }
464  // Set type from "char *" to "constant array of char".
465  strLiteral->setType(DeclT);
466  // For now, we always return false (meaning success).
467  return false;
468}
469
470StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
471  const ArrayType *AT = DeclType->getAsArrayType();
472  if (AT && AT->getElementType()->isCharType()) {
473    return dyn_cast<StringLiteral>(Init);
474  }
475  return 0;
476}
477
478// CheckInitializerListTypes - Checks the types of elements of an initializer
479// list. This function is recursive: it calls itself to initialize subelements
480// of aggregate types.  Note that the topLevel parameter essentially refers to
481// whether this expression "owns" the initializer list passed in, or if this
482// initialization is taking elements out of a parent initializer.  Each
483// call to this function adds zero or more to startIndex, reports any errors,
484// and returns true if it found any inconsistent types.
485bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
486                                     bool topLevel, unsigned& startIndex) {
487  bool hadError = false;
488
489  if (DeclType->isScalarType()) {
490    // The simplest case: initializing a single scalar
491    if (topLevel) {
492      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
493           IList->getSourceRange());
494    }
495    if (startIndex < IList->getNumInits()) {
496      Expr* expr = IList->getInit(startIndex);
497      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
498        // FIXME: Should an error be reported here instead?
499        unsigned newIndex = 0;
500        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
501      } else {
502        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
503      }
504      ++startIndex;
505    }
506    // FIXME: Should an error be reported for empty initializer list + scalar?
507  } else if (DeclType->isVectorType()) {
508    if (startIndex < IList->getNumInits()) {
509      const VectorType *VT = DeclType->getAsVectorType();
510      int maxElements = VT->getNumElements();
511      QualType elementType = VT->getElementType();
512
513      for (int i = 0; i < maxElements; ++i) {
514        // Don't attempt to go past the end of the init list
515        if (startIndex >= IList->getNumInits())
516          break;
517        Expr* expr = IList->getInit(startIndex);
518        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
519          unsigned newIndex = 0;
520          hadError |= CheckInitializerListTypes(SubInitList, elementType,
521                                                true, newIndex);
522          ++startIndex;
523        } else {
524          hadError |= CheckInitializerListTypes(IList, elementType,
525                                                false, startIndex);
526        }
527      }
528    }
529  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
530    if (DeclType->isStructureType() || DeclType->isUnionType()) {
531      if (startIndex < IList->getNumInits() && !topLevel &&
532          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
533                                     DeclType)) {
534        // We found a compatible struct; per the standard, this initializes the
535        // struct.  (The C standard technically says that this only applies for
536        // initializers for declarations with automatic scope; however, this
537        // construct is unambiguous anyway because a struct cannot contain
538        // a type compatible with itself. We'll output an error when we check
539        // if the initializer is constant.)
540        // FIXME: Is a call to CheckSingleInitializer required here?
541        ++startIndex;
542      } else {
543        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
544
545        // If the record is invalid, some of it's members are invalid. To avoid
546        // confusion, we forgo checking the intializer for the entire record.
547        if (structDecl->isInvalidDecl())
548          return true;
549
550        // If structDecl is a forward declaration, this loop won't do anything;
551        // That's okay, because an error should get printed out elsewhere. It
552        // might be worthwhile to skip over the rest of the initializer, though.
553        int numMembers = structDecl->getNumMembers() -
554                         structDecl->hasFlexibleArrayMember();
555        for (int i = 0; i < numMembers; i++) {
556          // Don't attempt to go past the end of the init list
557          if (startIndex >= IList->getNumInits())
558            break;
559          FieldDecl * curField = structDecl->getMember(i);
560          if (!curField->getIdentifier()) {
561            // Don't initialize unnamed fields, e.g. "int : 20;"
562            continue;
563          }
564          QualType fieldType = curField->getType();
565          Expr* expr = IList->getInit(startIndex);
566          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
567            unsigned newStart = 0;
568            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
569                                                  true, newStart);
570            ++startIndex;
571          } else {
572            hadError |= CheckInitializerListTypes(IList, fieldType,
573                                                  false, startIndex);
574          }
575          if (DeclType->isUnionType())
576            break;
577        }
578        // FIXME: Implement flexible array initialization GCC extension (it's a
579        // really messy extension to implement, unfortunately...the necessary
580        // information isn't actually even here!)
581      }
582    } else if (DeclType->isArrayType()) {
583      // Check for the special-case of initializing an array with a string.
584      if (startIndex < IList->getNumInits()) {
585        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
586                                                     DeclType)) {
587          CheckStringLiteralInit(lit, DeclType);
588          ++startIndex;
589          if (topLevel && startIndex < IList->getNumInits()) {
590            // We have leftover initializers; warn
591            Diag(IList->getInit(startIndex)->getLocStart(),
592                 diag::err_excess_initializers_in_char_array_initializer,
593                 IList->getInit(startIndex)->getSourceRange());
594          }
595          return false;
596        }
597      }
598      int maxElements;
599      if (DeclType->isIncompleteArrayType()) {
600        // FIXME: use a proper constant
601        maxElements = 0x7FFFFFFF;
602      } else if (const VariableArrayType *VAT =
603                                DeclType->getAsVariableArrayType()) {
604        // Check for VLAs; in standard C it would be possible to check this
605        // earlier, but I don't know where clang accepts VLAs (gcc accepts
606        // them in all sorts of strange places).
607        Diag(VAT->getSizeExpr()->getLocStart(),
608             diag::err_variable_object_no_init,
609             VAT->getSizeExpr()->getSourceRange());
610        hadError = true;
611        maxElements = 0x7FFFFFFF;
612      } else {
613        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
614        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
615      }
616      QualType elementType = DeclType->getAsArrayType()->getElementType();
617      int numElements = 0;
618      for (int i = 0; i < maxElements; ++i, ++numElements) {
619        // Don't attempt to go past the end of the init list
620        if (startIndex >= IList->getNumInits())
621          break;
622        Expr* expr = IList->getInit(startIndex);
623        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
624          unsigned newIndex = 0;
625          hadError |= CheckInitializerListTypes(SubInitList, elementType,
626                                                true, newIndex);
627          ++startIndex;
628        } else {
629          hadError |= CheckInitializerListTypes(IList, elementType,
630                                                false, startIndex);
631        }
632      }
633      if (DeclType->isIncompleteArrayType()) {
634        // If this is an incomplete array type, the actual type needs to
635        // be calculated here
636        if (numElements == 0) {
637          // Sizing an array implicitly to zero is not allowed
638          // (It could in theory be allowed, but it doesn't really matter.)
639          Diag(IList->getLocStart(),
640               diag::err_at_least_one_initializer_needed_to_size_array);
641          hadError = true;
642        } else {
643          llvm::APSInt ConstVal(32);
644          ConstVal = numElements;
645          DeclType = Context.getConstantArrayType(elementType, ConstVal,
646                                                  ArrayType::Normal, 0);
647        }
648      }
649    } else {
650      assert(0 && "Aggregate that isn't a function or array?!");
651    }
652  } else {
653    // In C, all types are either scalars or aggregates, but
654    // additional handling is needed here for C++ (and possibly others?).
655    assert(0 && "Unsupported initializer type");
656  }
657
658  // If this init list is a base list, we set the type; an initializer doesn't
659  // fundamentally have a type, but this makes the ASTs a bit easier to read
660  if (topLevel)
661    IList->setType(DeclType);
662
663  if (topLevel && startIndex < IList->getNumInits()) {
664    // We have leftover initializers; warn
665    Diag(IList->getInit(startIndex)->getLocStart(),
666         diag::warn_excess_initializers,
667         IList->getInit(startIndex)->getSourceRange());
668  }
669  return hadError;
670}
671
672bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
673  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
674  // of unknown size ("[]") or an object type that is not a variable array type.
675  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
676    return Diag(VAT->getSizeExpr()->getLocStart(),
677                diag::err_variable_object_no_init,
678                VAT->getSizeExpr()->getSourceRange());
679
680  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
681  if (!InitList) {
682    // FIXME: Handle wide strings
683    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
684      return CheckStringLiteralInit(strLiteral, DeclType);
685
686    if (DeclType->isArrayType())
687      return Diag(Init->getLocStart(),
688                  diag::err_array_init_list_required,
689                  Init->getSourceRange());
690
691    return CheckSingleInitializer(Init, DeclType);
692  }
693  unsigned newIndex = 0;
694  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
695}
696
697Sema::DeclTy *
698Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
699  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
700  IdentifierInfo *II = D.getIdentifier();
701
702  // All of these full declarators require an identifier.  If it doesn't have
703  // one, the ParsedFreeStandingDeclSpec action should be used.
704  if (II == 0) {
705    Diag(D.getDeclSpec().getSourceRange().getBegin(),
706         diag::err_declarator_need_ident,
707         D.getDeclSpec().getSourceRange(), D.getSourceRange());
708    return 0;
709  }
710
711  // The scope passed in may not be a decl scope.  Zip up the scope tree until
712  // we find one that is.
713  while ((S->getFlags() & Scope::DeclScope) == 0)
714    S = S->getParent();
715
716  // See if this is a redefinition of a variable in the same scope.
717  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
718  ScopedDecl *New;
719  bool InvalidDecl = false;
720
721  QualType R = GetTypeForDeclarator(D, S);
722  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
723
724  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
725    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
726    if (!NewTD) return 0;
727
728    // Handle attributes prior to checking for duplicates in MergeVarDecl
729    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
730                         D.getAttributes());
731    // Merge the decl with the existing one if appropriate. If the decl is
732    // in an outer scope, it isn't the same thing.
733    if (PrevDecl && S->isDeclScope(PrevDecl)) {
734      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
735      if (NewTD == 0) return 0;
736    }
737    New = NewTD;
738    if (S->getParent() == 0) {
739      // C99 6.7.7p2: If a typedef name specifies a variably modified type
740      // then it shall have block scope.
741      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
742        // FIXME: Diagnostic needs to be fixed.
743        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
744        InvalidDecl = true;
745      }
746    }
747  } else if (R.getTypePtr()->isFunctionType()) {
748    FunctionDecl::StorageClass SC = FunctionDecl::None;
749    switch (D.getDeclSpec().getStorageClassSpec()) {
750      default: assert(0 && "Unknown storage class!");
751      case DeclSpec::SCS_auto:
752      case DeclSpec::SCS_register:
753        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
754             R.getAsString());
755        InvalidDecl = true;
756        break;
757      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
758      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
759      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
760      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
761    }
762
763    bool isInline = D.getDeclSpec().isInlineSpecified();
764    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
765                                               D.getIdentifierLoc(),
766                                               II, R, SC, isInline,
767                                               LastDeclarator);
768    // Handle attributes.
769    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
770                         D.getAttributes());
771
772    // Merge the decl with the existing one if appropriate. Since C functions
773    // are in a flat namespace, make sure we consider decls in outer scopes.
774    if (PrevDecl) {
775      NewFD = MergeFunctionDecl(NewFD, PrevDecl);
776      if (NewFD == 0) return 0;
777    }
778    New = NewFD;
779  } else {
780    if (R.getTypePtr()->isObjCInterfaceType()) {
781      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
782           D.getIdentifier()->getName());
783      InvalidDecl = true;
784    }
785
786    VarDecl *NewVD;
787    VarDecl::StorageClass SC;
788    switch (D.getDeclSpec().getStorageClassSpec()) {
789    default: assert(0 && "Unknown storage class!");
790    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
791    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
792    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
793    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
794    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
795    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
796    }
797    if (S->getParent() == 0) {
798      // C99 6.9p2: The storage-class specifiers auto and register shall not
799      // appear in the declaration specifiers in an external declaration.
800      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
801        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
802             R.getAsString());
803        InvalidDecl = true;
804      }
805      NewVD = FileVarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
806                                  II, R, SC,
807                                  LastDeclarator);
808    } else {
809      NewVD = BlockVarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
810                                   II, R, SC,
811                                   LastDeclarator);
812    }
813    // Handle attributes prior to checking for duplicates in MergeVarDecl
814    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
815                         D.getAttributes());
816
817    // Emit an error if an address space was applied to decl with local storage.
818    // This includes arrays of objects with address space qualifiers, but not
819    // automatic variables that point to other address spaces.
820    // ISO/IEC TR 18037 S5.1.2
821    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
822      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
823      InvalidDecl = true;
824    }
825    // Merge the decl with the existing one if appropriate. If the decl is
826    // in an outer scope, it isn't the same thing.
827    if (PrevDecl && S->isDeclScope(PrevDecl)) {
828      NewVD = MergeVarDecl(NewVD, PrevDecl);
829      if (NewVD == 0) return 0;
830    }
831    New = NewVD;
832  }
833
834  // If this has an identifier, add it to the scope stack.
835  if (II) {
836    New->setNext(II->getFETokenInfo<ScopedDecl>());
837    II->setFETokenInfo(New);
838    S->AddDecl(New);
839  }
840  // If any semantic error occurred, mark the decl as invalid.
841  if (D.getInvalidType() || InvalidDecl)
842    New->setInvalidDecl();
843
844  return New;
845}
846
847bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
848  SourceLocation loc;
849  // FIXME: Remove the isReference check and handle assignment to a reference.
850  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
851    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
852    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
853    return true;
854  }
855  return false;
856}
857
858void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
859  Decl *RealDecl = static_cast<Decl *>(dcl);
860  Expr *Init = static_cast<Expr *>(init);
861  assert(Init && "missing initializer");
862
863  // If there is no declaration, there was an error parsing it.  Just ignore
864  // the initializer.
865  if (RealDecl == 0) {
866    delete Init;
867    return;
868  }
869
870  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
871  if (!VDecl) {
872    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
873         diag::err_illegal_initializer);
874    RealDecl->setInvalidDecl();
875    return;
876  }
877  // Get the decls type and save a reference for later, since
878  // CheckInitializerTypes may change it.
879  QualType DclT = VDecl->getType(), SavT = DclT;
880  if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
881    VarDecl::StorageClass SC = BVD->getStorageClass();
882    if (SC == VarDecl::Extern) { // C99 6.7.8p5
883      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
884      BVD->setInvalidDecl();
885    } else if (!BVD->isInvalidDecl()) {
886      if (CheckInitializerTypes(Init, DclT))
887        BVD->setInvalidDecl();
888      if (SC == VarDecl::Static) // C99 6.7.8p4.
889        CheckForConstantInitializer(Init, DclT);
890    }
891  } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
892    if (FVD->getStorageClass() == VarDecl::Extern)
893      Diag(VDecl->getLocation(), diag::warn_extern_init);
894    if (!FVD->isInvalidDecl())
895      if (CheckInitializerTypes(Init, DclT))
896        FVD->setInvalidDecl();
897
898    // C99 6.7.8p4. All file scoped initializers need to be constant.
899    CheckForConstantInitializer(Init, DclT);
900  }
901  // If the type changed, it means we had an incomplete type that was
902  // completed by the initializer. For example:
903  //   int ary[] = { 1, 3, 5 };
904  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
905  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
906    VDecl->setType(DclT);
907    Init->setType(DclT);
908  }
909
910  // Attach the initializer to the decl.
911  VDecl->setInit(Init);
912  return;
913}
914
915/// The declarators are chained together backwards, reverse the list.
916Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
917  // Often we have single declarators, handle them quickly.
918  Decl *GroupDecl = static_cast<Decl*>(group);
919  if (GroupDecl == 0)
920    return 0;
921
922  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
923  ScopedDecl *NewGroup = 0;
924  if (Group->getNextDeclarator() == 0)
925    NewGroup = Group;
926  else { // reverse the list.
927    while (Group) {
928      ScopedDecl *Next = Group->getNextDeclarator();
929      Group->setNextDeclarator(NewGroup);
930      NewGroup = Group;
931      Group = Next;
932    }
933  }
934  // Perform semantic analysis that depends on having fully processed both
935  // the declarator and initializer.
936  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
937    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
938    if (!IDecl)
939      continue;
940    FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
941    BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
942    QualType T = IDecl->getType();
943
944    // C99 6.7.5.2p2: If an identifier is declared to be an object with
945    // static storage duration, it shall not have a variable length array.
946    if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
947      if (T->getAsVariableArrayType()) {
948        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
949        IDecl->setInvalidDecl();
950      }
951    }
952    // Block scope. C99 6.7p7: If an identifier for an object is declared with
953    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
954    if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
955      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
956        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
957             T.getAsString());
958        IDecl->setInvalidDecl();
959      }
960    }
961    // File scope. C99 6.9.2p2: A declaration of an identifier for and
962    // object that has file scope without an initializer, and without a
963    // storage-class specifier or with the storage-class specifier "static",
964    // constitutes a tentative definition. Note: A tentative definition with
965    // external linkage is valid (C99 6.2.2p5).
966    if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
967                                   FVD->getStorageClass() == VarDecl::None)) {
968      if (T->isIncompleteArrayType()) {
969        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
970        // array to be completed. Don't issue a diagnostic.
971      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
972        // C99 6.9.2p3: If the declaration of an identifier for an object is
973        // a tentative definition and has internal linkage (C99 6.2.2p3), the
974        // declared type shall not be an incomplete type.
975        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
976             T.getAsString());
977        IDecl->setInvalidDecl();
978      }
979    }
980  }
981  return NewGroup;
982}
983
984// Called from Sema::ParseStartOfFunctionDef().
985ParmVarDecl *
986Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI,
987                           Scope *FnScope) {
988  IdentifierInfo *II = PI.Ident;
989  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
990  // Can this happen for params?  We already checked that they don't conflict
991  // among each other.  Here they can only shadow globals, which is ok.
992  if (/*Decl *PrevDecl = */LookupDecl(II, Decl::IDNS_Ordinary, FnScope)) {
993
994  }
995
996  // FIXME: Handle storage class (auto, register). No declarator?
997  // TODO: Chain to previous parameter with the prevdeclarator chain?
998
999  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1000  // Doing the promotion here has a win and a loss. The win is the type for
1001  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1002  // code generator). The loss is the orginal type isn't preserved. For example:
1003  //
1004  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1005  //    int blockvardecl[5];
1006  //    sizeof(parmvardecl);  // size == 4
1007  //    sizeof(blockvardecl); // size == 20
1008  // }
1009  //
1010  // For expressions, all implicit conversions are captured using the
1011  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1012  //
1013  // FIXME: If a source translation tool needs to see the original type, then
1014  // we need to consider storing both types (in ParmVarDecl)...
1015  //
1016  QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
1017  if (parmDeclType->isArrayType()) {
1018    // int x[restrict 4] ->  int *restrict
1019    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1020  } else if (parmDeclType->isFunctionType())
1021    parmDeclType = Context.getPointerType(parmDeclType);
1022
1023  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, PI.IdentLoc, II,
1024                                         parmDeclType,
1025                                         VarDecl::None, 0);
1026
1027  if (PI.InvalidType)
1028    New->setInvalidDecl();
1029
1030  // If this has an identifier, add it to the scope stack.
1031  if (II) {
1032    New->setNext(II->getFETokenInfo<ScopedDecl>());
1033    II->setFETokenInfo(New);
1034    FnScope->AddDecl(New);
1035  }
1036
1037  HandleDeclAttributes(New, PI.AttrList, 0);
1038  return New;
1039}
1040
1041Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1042  assert(CurFunctionDecl == 0 && "Function parsing confused");
1043  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1044         "Not a function declarator!");
1045  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1046
1047  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1048  // for a K&R function.
1049  if (!FTI.hasPrototype) {
1050    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1051      if (FTI.ArgInfo[i].TypeInfo == 0) {
1052        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1053             FTI.ArgInfo[i].Ident->getName());
1054        // Implicitly declare the argument as type 'int' for lack of a better
1055        // type.
1056        FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
1057      }
1058    }
1059
1060    // Since this is a function definition, act as though we have information
1061    // about the arguments.
1062    if (FTI.NumArgs)
1063      FTI.hasPrototype = true;
1064  } else {
1065    // FIXME: Diagnose arguments without names in C.
1066
1067  }
1068
1069  Scope *GlobalScope = FnBodyScope->getParent();
1070
1071  // See if this is a redefinition.
1072  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1073                             GlobalScope);
1074  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
1075    if (FD->getBody()) {
1076      Diag(D.getIdentifierLoc(), diag::err_redefinition,
1077           D.getIdentifier()->getName());
1078      Diag(FD->getLocation(), diag::err_previous_definition);
1079    }
1080  }
1081  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1082  FunctionDecl *FD = cast<FunctionDecl>(decl);
1083  CurFunctionDecl = FD;
1084  PushDeclContext(FD);
1085
1086  // Create Decl objects for each parameter, adding them to the FunctionDecl.
1087  llvm::SmallVector<ParmVarDecl*, 16> Params;
1088
1089  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
1090  // no arguments, not a function that takes a single void argument.
1091  if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1092      !QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getCVRQualifiers() &&
1093      QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) {
1094    // empty arg list, don't push any params.
1095  } else {
1096    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1097      ParmVarDecl *parmDecl;
1098
1099      parmDecl = ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i],
1100                                      FnBodyScope);
1101      // C99 6.7.5.3p4: the parameters in a parameter type list in a function
1102      // declarator that is part of a function definition of that function
1103      // shall not have incomplete type.
1104      if (parmDecl->getType()->isIncompleteType() &&
1105          !parmDecl->isInvalidDecl()) {
1106        Diag(parmDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1107             parmDecl->getType().getAsString());
1108        parmDecl->setInvalidDecl();
1109      }
1110      Params.push_back(parmDecl);
1111    }
1112  }
1113
1114  FD->setParams(&Params[0], Params.size());
1115
1116  return FD;
1117}
1118
1119Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1120  Decl *dcl = static_cast<Decl *>(D);
1121  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1122    FD->setBody((Stmt*)Body);
1123    assert(FD == CurFunctionDecl && "Function parsing confused");
1124    CurFunctionDecl = 0;
1125  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1126    MD->setBody((Stmt*)Body);
1127    CurMethodDecl = 0;
1128  }
1129  PopDeclContext();
1130  // Verify and clean out per-function state.
1131
1132  // Check goto/label use.
1133  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1134       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1135    // Verify that we have no forward references left.  If so, there was a goto
1136    // or address of a label taken, but no definition of it.  Label fwd
1137    // definitions are indicated with a null substmt.
1138    if (I->second->getSubStmt() == 0) {
1139      LabelStmt *L = I->second;
1140      // Emit error.
1141      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1142
1143      // At this point, we have gotos that use the bogus label.  Stitch it into
1144      // the function body so that they aren't leaked and that the AST is well
1145      // formed.
1146      if (Body) {
1147        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1148        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1149      } else {
1150        // The whole function wasn't parsed correctly, just delete this.
1151        delete L;
1152      }
1153    }
1154  }
1155  LabelMap.clear();
1156
1157  return D;
1158}
1159
1160/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1161/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1162ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1163                                           IdentifierInfo &II, Scope *S) {
1164  if (getLangOptions().C99)  // Extension in C99.
1165    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1166  else  // Legal in C90, but warn about it.
1167    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1168
1169  // FIXME: handle stuff like:
1170  // void foo() { extern float X(); }
1171  // void bar() { X(); }  <-- implicit decl for X in another scope.
1172
1173  // Set a Declarator for the implicit definition: int foo();
1174  const char *Dummy;
1175  DeclSpec DS;
1176  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1177  Error = Error; // Silence warning.
1178  assert(!Error && "Error setting up implicit decl!");
1179  Declarator D(DS, Declarator::BlockContext);
1180  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1181  D.SetIdentifier(&II, Loc);
1182
1183  // Find translation-unit scope to insert this function into.
1184  if (Scope *FnS = S->getFnParent())
1185    S = FnS->getParent();   // Skip all scopes in a function at once.
1186  while (S->getParent())
1187    S = S->getParent();
1188
1189  FunctionDecl *FD =
1190    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
1191  FD->setImplicit();
1192  return FD;
1193}
1194
1195
1196TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1197                                    ScopedDecl *LastDeclarator) {
1198  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1199  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1200
1201  // Scope manipulation handled by caller.
1202  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1203                                           D.getIdentifierLoc(),
1204                                           D.getIdentifier(),
1205                                           T, LastDeclarator);
1206  if (D.getInvalidType())
1207    NewTD->setInvalidDecl();
1208  return NewTD;
1209}
1210
1211/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1212/// former case, Name will be non-null.  In the later case, Name will be null.
1213/// TagType indicates what kind of tag this is. TK indicates whether this is a
1214/// reference/declaration/definition of a tag.
1215Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1216                             SourceLocation KWLoc, IdentifierInfo *Name,
1217                             SourceLocation NameLoc, AttributeList *Attr) {
1218  // If this is a use of an existing tag, it must have a name.
1219  assert((Name != 0 || TK == TK_Definition) &&
1220         "Nameless record must be a definition!");
1221
1222  Decl::Kind Kind;
1223  switch (TagType) {
1224  default: assert(0 && "Unknown tag type!");
1225  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1226  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1227//case DeclSpec::TST_class:  Kind = Decl::Class; break;
1228  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1229  }
1230
1231  // If this is a named struct, check to see if there was a previous forward
1232  // declaration or definition.
1233  if (TagDecl *PrevDecl =
1234          dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1235
1236    // If this is a use of a previous tag, or if the tag is already declared in
1237    // the same scope (so that the definition/declaration completes or
1238    // rementions the tag), reuse the decl.
1239    if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
1240      // Make sure that this wasn't declared as an enum and now used as a struct
1241      // or something similar.
1242      if (PrevDecl->getKind() != Kind) {
1243        Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1244        Diag(PrevDecl->getLocation(), diag::err_previous_use);
1245      }
1246
1247      // If this is a use or a forward declaration, we're good.
1248      if (TK != TK_Definition)
1249        return PrevDecl;
1250
1251      // Diagnose attempts to redefine a tag.
1252      if (PrevDecl->isDefinition()) {
1253        Diag(NameLoc, diag::err_redefinition, Name->getName());
1254        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1255        // If this is a redefinition, recover by making this struct be
1256        // anonymous, which will make any later references get the previous
1257        // definition.
1258        Name = 0;
1259      } else {
1260        // Okay, this is definition of a previously declared or referenced tag.
1261        // Move the location of the decl to be the definition site.
1262        PrevDecl->setLocation(NameLoc);
1263        return PrevDecl;
1264      }
1265    }
1266    // If we get here, this is a definition of a new struct type in a nested
1267    // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1268    // type.
1269  }
1270
1271  // If there is an identifier, use the location of the identifier as the
1272  // location of the decl, otherwise use the location of the struct/union
1273  // keyword.
1274  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1275
1276  // Otherwise, if this is the first time we've seen this tag, create the decl.
1277  TagDecl *New;
1278  switch (Kind) {
1279  default: assert(0 && "Unknown tag kind!");
1280  case Decl::Enum:
1281    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1282    // enum X { A, B, C } D;    D should chain to X.
1283    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1284    // If this is an undefined enum, warn.
1285    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1286    break;
1287  case Decl::Union:
1288  case Decl::Struct:
1289  case Decl::Class:
1290    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1291    // struct X { int A; } D;    D should chain to X.
1292    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1293    break;
1294  }
1295
1296  // If this has an identifier, add it to the scope stack.
1297  if (Name) {
1298    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1299    // we find one that is.
1300    while ((S->getFlags() & Scope::DeclScope) == 0)
1301      S = S->getParent();
1302
1303    // Add it to the decl chain.
1304    New->setNext(Name->getFETokenInfo<ScopedDecl>());
1305    Name->setFETokenInfo(New);
1306    S->AddDecl(New);
1307  }
1308
1309  HandleDeclAttributes(New, Attr, 0);
1310  return New;
1311}
1312
1313/// ActOnField - Each field of a struct/union/class is passed into this in order
1314/// to create a FieldDecl object for it.
1315Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *tagDecl,
1316                               SourceLocation DeclStart,
1317                               Declarator &D, ExprTy *BitfieldWidth) {
1318  IdentifierInfo *II = D.getIdentifier();
1319  Expr *BitWidth = (Expr*)BitfieldWidth;
1320  Decl *TagDecl = static_cast<Decl *>(tagDecl);
1321  SourceLocation Loc = DeclStart;
1322  if (II) Loc = D.getIdentifierLoc();
1323
1324  // FIXME: Unnamed fields can be handled in various different ways, for
1325  // example, unnamed unions inject all members into the struct namespace!
1326
1327
1328  if (BitWidth) {
1329    // TODO: Validate.
1330    //printf("WARNING: BITFIELDS IGNORED!\n");
1331
1332    // 6.7.2.1p3
1333    // 6.7.2.1p4
1334
1335  } else {
1336    // Not a bitfield.
1337
1338    // validate II.
1339
1340  }
1341
1342  QualType T = GetTypeForDeclarator(D, S);
1343  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1344  bool InvalidDecl = false;
1345
1346  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1347  // than a variably modified type.
1348  if (T->isVariablyModifiedType()) {
1349    // FIXME: This diagnostic needs work
1350    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1351    InvalidDecl = true;
1352  }
1353  // FIXME: Chain fielddecls together.
1354  FieldDecl *NewFD;
1355
1356  if (isa<RecordDecl>(TagDecl))
1357    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1358  else if (isa<ObjCInterfaceDecl>(TagDecl) ||
1359           isa<ObjCImplementationDecl>(TagDecl) ||
1360           isa<ObjCCategoryDecl>(TagDecl) ||
1361           // FIXME: ivars are currently used to model properties, and
1362           // properties can appear within a protocol.
1363           // See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl.
1364           isa<ObjCProtocolDecl>(TagDecl))
1365    NewFD = ObjCIvarDecl::Create(Context, Loc, II, T);
1366  else
1367    assert(0 && "Sema::ActOnField(): Unknown TagDecl");
1368
1369  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1370                       D.getAttributes());
1371
1372  if (D.getInvalidType() || InvalidDecl)
1373    NewFD->setInvalidDecl();
1374  return NewFD;
1375}
1376
1377/// TranslateIvarVisibility - Translate visibility from a token ID to an
1378///  AST enum value.
1379static ObjCIvarDecl::AccessControl
1380TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1381  switch (ivarVisibility) {
1382    case tok::objc_private: return ObjCIvarDecl::Private;
1383    case tok::objc_public: return ObjCIvarDecl::Public;
1384    case tok::objc_protected: return ObjCIvarDecl::Protected;
1385    case tok::objc_package: return ObjCIvarDecl::Package;
1386    default: assert(false && "Unknown visitibility kind");
1387  }
1388}
1389
1390void Sema::ActOnFields(Scope* S,
1391                       SourceLocation RecLoc, DeclTy *RecDecl,
1392                       DeclTy **Fields, unsigned NumFields,
1393                       SourceLocation LBrac, SourceLocation RBrac,
1394                       tok::ObjCKeywordKind *visibility) {
1395  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1396  assert(EnclosingDecl && "missing record or interface decl");
1397  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1398
1399  if (Record && Record->isDefinition()) {
1400    // Diagnose code like:
1401    //     struct S { struct S {} X; };
1402    // We discover this when we complete the outer S.  Reject and ignore the
1403    // outer S.
1404    Diag(Record->getLocation(), diag::err_nested_redefinition,
1405         Record->getKindName());
1406    Diag(RecLoc, diag::err_previous_definition);
1407    Record->setInvalidDecl();
1408    return;
1409  }
1410  // Verify that all the fields are okay.
1411  unsigned NumNamedMembers = 0;
1412  llvm::SmallVector<FieldDecl*, 32> RecFields;
1413  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1414
1415  for (unsigned i = 0; i != NumFields; ++i) {
1416
1417    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1418    assert(FD && "missing field decl");
1419
1420    // Remember all fields.
1421    RecFields.push_back(FD);
1422
1423    // Get the type for the field.
1424    Type *FDTy = FD->getType().getTypePtr();
1425
1426    // If we have visibility info, make sure the AST is set accordingly.
1427    if (visibility)
1428      cast<ObjCIvarDecl>(FD)->setAccessControl(
1429                                TranslateIvarVisibility(visibility[i]));
1430
1431    // C99 6.7.2.1p2 - A field may not be a function type.
1432    if (FDTy->isFunctionType()) {
1433      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1434           FD->getName());
1435      FD->setInvalidDecl();
1436      EnclosingDecl->setInvalidDecl();
1437      continue;
1438    }
1439    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1440    if (FDTy->isIncompleteType()) {
1441      if (!Record) {  // Incomplete ivar type is always an error.
1442        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1443        FD->setInvalidDecl();
1444        EnclosingDecl->setInvalidDecl();
1445        continue;
1446      }
1447      if (i != NumFields-1 ||                   // ... that the last member ...
1448          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1449          !FDTy->isArrayType()) {         //... may have incomplete array type.
1450        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1451        FD->setInvalidDecl();
1452        EnclosingDecl->setInvalidDecl();
1453        continue;
1454      }
1455      if (NumNamedMembers < 1) {  //... must have more than named member ...
1456        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1457             FD->getName());
1458        FD->setInvalidDecl();
1459        EnclosingDecl->setInvalidDecl();
1460        continue;
1461      }
1462      // Okay, we have a legal flexible array member at the end of the struct.
1463      if (Record)
1464        Record->setHasFlexibleArrayMember(true);
1465    }
1466    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1467    /// field of another structure or the element of an array.
1468    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1469      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1470        // If this is a member of a union, then entire union becomes "flexible".
1471        if (Record && Record->getKind() == Decl::Union) {
1472          Record->setHasFlexibleArrayMember(true);
1473        } else {
1474          // If this is a struct/class and this is not the last element, reject
1475          // it.  Note that GCC supports variable sized arrays in the middle of
1476          // structures.
1477          if (i != NumFields-1) {
1478            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1479                 FD->getName());
1480            FD->setInvalidDecl();
1481            EnclosingDecl->setInvalidDecl();
1482            continue;
1483          }
1484          // We support flexible arrays at the end of structs in other structs
1485          // as an extension.
1486          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1487               FD->getName());
1488          if (Record)
1489            Record->setHasFlexibleArrayMember(true);
1490        }
1491      }
1492    }
1493    /// A field cannot be an Objective-c object
1494    if (FDTy->isObjCInterfaceType()) {
1495      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1496           FD->getName());
1497      FD->setInvalidDecl();
1498      EnclosingDecl->setInvalidDecl();
1499      continue;
1500    }
1501    // Keep track of the number of named members.
1502    if (IdentifierInfo *II = FD->getIdentifier()) {
1503      // Detect duplicate member names.
1504      if (!FieldIDs.insert(II)) {
1505        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1506        // Find the previous decl.
1507        SourceLocation PrevLoc;
1508        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1509          assert(i != e && "Didn't find previous def!");
1510          if (RecFields[i]->getIdentifier() == II) {
1511            PrevLoc = RecFields[i]->getLocation();
1512            break;
1513          }
1514        }
1515        Diag(PrevLoc, diag::err_previous_definition);
1516        FD->setInvalidDecl();
1517        EnclosingDecl->setInvalidDecl();
1518        continue;
1519      }
1520      ++NumNamedMembers;
1521    }
1522  }
1523
1524  // Okay, we successfully defined 'Record'.
1525  if (Record) {
1526    Record->defineBody(&RecFields[0], RecFields.size());
1527    Consumer.HandleTagDeclDefinition(Record);
1528  } else {
1529    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1530    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1531      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1532    else if (ObjCImplementationDecl *IMPDecl =
1533               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1534      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1535      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1536      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1537    }
1538  }
1539}
1540
1541Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1542                                      DeclTy *lastEnumConst,
1543                                      SourceLocation IdLoc, IdentifierInfo *Id,
1544                                      SourceLocation EqualLoc, ExprTy *val) {
1545  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
1546  EnumConstantDecl *LastEnumConst =
1547    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1548  Expr *Val = static_cast<Expr*>(val);
1549
1550  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1551  // we find one that is.
1552  while ((S->getFlags() & Scope::DeclScope) == 0)
1553    S = S->getParent();
1554
1555  // Verify that there isn't already something declared with this name in this
1556  // scope.
1557  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
1558    if (S->isDeclScope(PrevDecl)) {
1559      if (isa<EnumConstantDecl>(PrevDecl))
1560        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1561      else
1562        Diag(IdLoc, diag::err_redefinition, Id->getName());
1563      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1564      delete Val;
1565      return 0;
1566    }
1567  }
1568
1569  llvm::APSInt EnumVal(32);
1570  QualType EltTy;
1571  if (Val) {
1572    // Make sure to promote the operand type to int.
1573    UsualUnaryConversions(Val);
1574
1575    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1576    SourceLocation ExpLoc;
1577    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1578      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1579           Id->getName());
1580      delete Val;
1581      Val = 0;  // Just forget about it.
1582    } else {
1583      EltTy = Val->getType();
1584    }
1585  }
1586
1587  if (!Val) {
1588    if (LastEnumConst) {
1589      // Assign the last value + 1.
1590      EnumVal = LastEnumConst->getInitVal();
1591      ++EnumVal;
1592
1593      // Check for overflow on increment.
1594      if (EnumVal < LastEnumConst->getInitVal())
1595        Diag(IdLoc, diag::warn_enum_value_overflow);
1596
1597      EltTy = LastEnumConst->getType();
1598    } else {
1599      // First value, set to zero.
1600      EltTy = Context.IntTy;
1601      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1602    }
1603  }
1604
1605  EnumConstantDecl *New =
1606    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
1607                             Val, EnumVal,
1608                             LastEnumConst);
1609
1610  // Register this decl in the current scope stack.
1611  New->setNext(Id->getFETokenInfo<ScopedDecl>());
1612  Id->setFETokenInfo(New);
1613  S->AddDecl(New);
1614  return New;
1615}
1616
1617void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1618                         DeclTy **Elements, unsigned NumElements) {
1619  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1620  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1621
1622  // TODO: If the result value doesn't fit in an int, it must be a long or long
1623  // long value.  ISO C does not support this, but GCC does as an extension,
1624  // emit a warning.
1625  unsigned IntWidth = Context.Target.getIntWidth();
1626
1627  // Verify that all the values are okay, compute the size of the values, and
1628  // reverse the list.
1629  unsigned NumNegativeBits = 0;
1630  unsigned NumPositiveBits = 0;
1631
1632  // Keep track of whether all elements have type int.
1633  bool AllElementsInt = true;
1634
1635  EnumConstantDecl *EltList = 0;
1636  for (unsigned i = 0; i != NumElements; ++i) {
1637    EnumConstantDecl *ECD =
1638      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1639    if (!ECD) continue;  // Already issued a diagnostic.
1640
1641    // If the enum value doesn't fit in an int, emit an extension warning.
1642    const llvm::APSInt &InitVal = ECD->getInitVal();
1643    assert(InitVal.getBitWidth() >= IntWidth &&
1644           "Should have promoted value to int");
1645    if (InitVal.getBitWidth() > IntWidth) {
1646      llvm::APSInt V(InitVal);
1647      V.trunc(IntWidth);
1648      V.extend(InitVal.getBitWidth());
1649      if (V != InitVal)
1650        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1651             InitVal.toString());
1652    }
1653
1654    // Keep track of the size of positive and negative values.
1655    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1656      NumPositiveBits = std::max(NumPositiveBits,
1657                                 (unsigned)InitVal.getActiveBits());
1658    else
1659      NumNegativeBits = std::max(NumNegativeBits,
1660                                 (unsigned)InitVal.getMinSignedBits());
1661
1662    // Keep track of whether every enum element has type int (very commmon).
1663    if (AllElementsInt)
1664      AllElementsInt = ECD->getType() == Context.IntTy;
1665
1666    ECD->setNextDeclarator(EltList);
1667    EltList = ECD;
1668  }
1669
1670  // Figure out the type that should be used for this enum.
1671  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1672  QualType BestType;
1673  unsigned BestWidth;
1674
1675  if (NumNegativeBits) {
1676    // If there is a negative value, figure out the smallest integer type (of
1677    // int/long/longlong) that fits.
1678    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1679      BestType = Context.IntTy;
1680      BestWidth = IntWidth;
1681    } else {
1682      BestWidth = Context.Target.getLongWidth();
1683
1684      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1685        BestType = Context.LongTy;
1686      else {
1687        BestWidth = Context.Target.getLongLongWidth();
1688
1689        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1690          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1691        BestType = Context.LongLongTy;
1692      }
1693    }
1694  } else {
1695    // If there is no negative value, figure out which of uint, ulong, ulonglong
1696    // fits.
1697    if (NumPositiveBits <= IntWidth) {
1698      BestType = Context.UnsignedIntTy;
1699      BestWidth = IntWidth;
1700    } else if (NumPositiveBits <=
1701               (BestWidth = Context.Target.getLongWidth())) {
1702      BestType = Context.UnsignedLongTy;
1703    } else {
1704      BestWidth = Context.Target.getLongLongWidth();
1705      assert(NumPositiveBits <= BestWidth &&
1706             "How could an initializer get larger than ULL?");
1707      BestType = Context.UnsignedLongLongTy;
1708    }
1709  }
1710
1711  // Loop over all of the enumerator constants, changing their types to match
1712  // the type of the enum if needed.
1713  for (unsigned i = 0; i != NumElements; ++i) {
1714    EnumConstantDecl *ECD =
1715      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1716    if (!ECD) continue;  // Already issued a diagnostic.
1717
1718    // Standard C says the enumerators have int type, but we allow, as an
1719    // extension, the enumerators to be larger than int size.  If each
1720    // enumerator value fits in an int, type it as an int, otherwise type it the
1721    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1722    // that X has type 'int', not 'unsigned'.
1723    if (ECD->getType() == Context.IntTy) {
1724      // Make sure the init value is signed.
1725      llvm::APSInt IV = ECD->getInitVal();
1726      IV.setIsSigned(true);
1727      ECD->setInitVal(IV);
1728      continue;  // Already int type.
1729    }
1730
1731    // Determine whether the value fits into an int.
1732    llvm::APSInt InitVal = ECD->getInitVal();
1733    bool FitsInInt;
1734    if (InitVal.isUnsigned() || !InitVal.isNegative())
1735      FitsInInt = InitVal.getActiveBits() < IntWidth;
1736    else
1737      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1738
1739    // If it fits into an integer type, force it.  Otherwise force it to match
1740    // the enum decl type.
1741    QualType NewTy;
1742    unsigned NewWidth;
1743    bool NewSign;
1744    if (FitsInInt) {
1745      NewTy = Context.IntTy;
1746      NewWidth = IntWidth;
1747      NewSign = true;
1748    } else if (ECD->getType() == BestType) {
1749      // Already the right type!
1750      continue;
1751    } else {
1752      NewTy = BestType;
1753      NewWidth = BestWidth;
1754      NewSign = BestType->isSignedIntegerType();
1755    }
1756
1757    // Adjust the APSInt value.
1758    InitVal.extOrTrunc(NewWidth);
1759    InitVal.setIsSigned(NewSign);
1760    ECD->setInitVal(InitVal);
1761
1762    // Adjust the Expr initializer and type.
1763    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1764    ECD->setType(NewTy);
1765  }
1766
1767  Enum->defineElements(EltList, BestType);
1768  Consumer.HandleTagDeclDefinition(Enum);
1769}
1770
1771Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1772                                          ExprTy *expr) {
1773  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1774
1775  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
1776}
1777
1778Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1779                                     SourceLocation LBrace,
1780                                     SourceLocation RBrace,
1781                                     const char *Lang,
1782                                     unsigned StrSize,
1783                                     DeclTy *D) {
1784  LinkageSpecDecl::LanguageIDs Language;
1785  Decl *dcl = static_cast<Decl *>(D);
1786  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1787    Language = LinkageSpecDecl::lang_c;
1788  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1789    Language = LinkageSpecDecl::lang_cxx;
1790  else {
1791    Diag(Loc, diag::err_bad_language);
1792    return 0;
1793  }
1794
1795  // FIXME: Add all the various semantics of linkage specifications
1796  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
1797}
1798
1799void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
1800
1801  switch (Attr->getKind()) {
1802  case AttributeList::AT_vector_size:
1803    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1804      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
1805      if (!newType.isNull()) // install the new vector type into the decl
1806        vDecl->setType(newType);
1807    }
1808    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1809      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
1810                                                   Attr);
1811      if (!newType.isNull()) // install the new vector type into the decl
1812        tDecl->setUnderlyingType(newType);
1813    }
1814    break;
1815  case AttributeList::AT_ocu_vector_type:
1816    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
1817      HandleOCUVectorTypeAttribute(tDecl, Attr);
1818    else
1819      Diag(Attr->getLoc(),
1820           diag::err_typecheck_ocu_vector_not_typedef);
1821    break;
1822  case AttributeList::AT_address_space:
1823    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1824      QualType newType = HandleAddressSpaceTypeAttribute(
1825                                                  tDecl->getUnderlyingType(),
1826                                                  Attr);
1827      tDecl->setUnderlyingType(newType);
1828    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1829      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
1830                                                         Attr);
1831      // install the new addr spaced type into the decl
1832      vDecl->setType(newType);
1833    }
1834    break;
1835  case AttributeList::AT_deprecated:
1836    HandleDeprecatedAttribute(New, Attr);
1837    break;
1838  case AttributeList::AT_visibility:
1839    HandleVisibilityAttribute(New, Attr);
1840    break;
1841  case AttributeList::AT_weak:
1842    HandleWeakAttribute(New, Attr);
1843    break;
1844  case AttributeList::AT_dllimport:
1845    HandleDLLImportAttribute(New, Attr);
1846    break;
1847  case AttributeList::AT_dllexport:
1848    HandleDLLExportAttribute(New, Attr);
1849    break;
1850  case AttributeList::AT_nothrow:
1851    HandleNothrowAttribute(New, Attr);
1852    break;
1853  case AttributeList::AT_stdcall:
1854    HandleStdCallAttribute(New, Attr);
1855    break;
1856  case AttributeList::AT_fastcall:
1857    HandleFastCallAttribute(New, Attr);
1858    break;
1859  case AttributeList::AT_aligned:
1860    HandleAlignedAttribute(New, Attr);
1861    break;
1862  case AttributeList::AT_packed:
1863    HandlePackedAttribute(New, Attr);
1864    break;
1865  case AttributeList::AT_annotate:
1866    HandleAnnotateAttribute(New, Attr);
1867    break;
1868  case AttributeList::AT_noreturn:
1869    HandleNoReturnAttribute(New, Attr);
1870    break;
1871  case AttributeList::AT_format:
1872    HandleFormatAttribute(New, Attr);
1873    break;
1874  default:
1875#if 0
1876    // TODO: when we have the full set of attributes, warn about unknown ones.
1877    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
1878         Attr->getName()->getName());
1879#endif
1880    break;
1881  }
1882}
1883
1884void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
1885                                AttributeList *declarator_postfix) {
1886  while (declspec_prefix) {
1887    HandleDeclAttribute(New, declspec_prefix);
1888    declspec_prefix = declspec_prefix->getNext();
1889  }
1890  while (declarator_postfix) {
1891    HandleDeclAttribute(New, declarator_postfix);
1892    declarator_postfix = declarator_postfix->getNext();
1893  }
1894}
1895
1896void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
1897                                        AttributeList *rawAttr) {
1898  QualType curType = tDecl->getUnderlyingType();
1899  // check the attribute arguments.
1900  if (rawAttr->getNumArgs() != 1) {
1901    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1902         std::string("1"));
1903    return;
1904  }
1905  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1906  llvm::APSInt vecSize(32);
1907  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1908    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1909         "ocu_vector_type", sizeExpr->getSourceRange());
1910    return;
1911  }
1912  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1913  // in conjunction with complex types (pointers, arrays, functions, etc.).
1914  Type *canonType = curType.getCanonicalType().getTypePtr();
1915  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1916    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1917         curType.getCanonicalType().getAsString());
1918    return;
1919  }
1920  // unlike gcc's vector_size attribute, the size is specified as the
1921  // number of elements, not the number of bytes.
1922  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1923
1924  if (vectorSize == 0) {
1925    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1926         sizeExpr->getSourceRange());
1927    return;
1928  }
1929  // Instantiate/Install the vector type, the number of elements is > 0.
1930  tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
1931  // Remember this typedef decl, we will need it later for diagnostics.
1932  OCUVectorDecls.push_back(tDecl);
1933}
1934
1935QualType Sema::HandleVectorTypeAttribute(QualType curType,
1936                                         AttributeList *rawAttr) {
1937  // check the attribute arugments.
1938  if (rawAttr->getNumArgs() != 1) {
1939    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1940         std::string("1"));
1941    return QualType();
1942  }
1943  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1944  llvm::APSInt vecSize(32);
1945  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1946    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1947         "vector_size", sizeExpr->getSourceRange());
1948    return QualType();
1949  }
1950  // navigate to the base type - we need to provide for vector pointers,
1951  // vector arrays, and functions returning vectors.
1952  Type *canonType = curType.getCanonicalType().getTypePtr();
1953
1954  if (canonType->isPointerType() || canonType->isArrayType() ||
1955      canonType->isFunctionType()) {
1956    assert(0 && "HandleVector(): Complex type construction unimplemented");
1957    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
1958        do {
1959          if (PointerType *PT = dyn_cast<PointerType>(canonType))
1960            canonType = PT->getPointeeType().getTypePtr();
1961          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
1962            canonType = AT->getElementType().getTypePtr();
1963          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
1964            canonType = FT->getResultType().getTypePtr();
1965        } while (canonType->isPointerType() || canonType->isArrayType() ||
1966                 canonType->isFunctionType());
1967    */
1968  }
1969  // the base type must be integer or float.
1970  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1971    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1972         curType.getCanonicalType().getAsString());
1973    return QualType();
1974  }
1975  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
1976  // vecSize is specified in bytes - convert to bits.
1977  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1978
1979  // the vector size needs to be an integral multiple of the type size.
1980  if (vectorSize % typeSize) {
1981    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
1982         sizeExpr->getSourceRange());
1983    return QualType();
1984  }
1985  if (vectorSize == 0) {
1986    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1987         sizeExpr->getSourceRange());
1988    return QualType();
1989  }
1990  // Instantiate the vector type, the number of elements is > 0, and not
1991  // required to be a power of 2, unlike GCC.
1992  return Context.getVectorType(curType, vectorSize/typeSize);
1993}
1994
1995void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
1996  // check the attribute arguments.
1997  if (rawAttr->getNumArgs() > 0) {
1998    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1999         std::string("0"));
2000    return;
2001  }
2002
2003  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2004    TD->addAttr(new PackedAttr);
2005  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2006    // If the alignment is less than or equal to 8 bits, the packed attribute
2007    // has no effect.
2008    if (Context.getTypeAlign(FD->getType()) <= 8)
2009      Diag(rawAttr->getLoc(),
2010           diag::warn_attribute_ignored_for_field_of_type,
2011           rawAttr->getName()->getName(), FD->getType().getAsString());
2012    else
2013      FD->addAttr(new PackedAttr);
2014  } else
2015    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2016         rawAttr->getName()->getName());
2017}
2018
2019void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2020  // check the attribute arguments.
2021  if (rawAttr->getNumArgs() != 0) {
2022    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2023         std::string("0"));
2024    return;
2025  }
2026
2027  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2028
2029  if (!Fn) {
2030    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2031         "noreturn", "function");
2032    return;
2033  }
2034
2035  d->addAttr(new NoReturnAttr());
2036}
2037
2038void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2039  // check the attribute arguments.
2040  if (rawAttr->getNumArgs() != 0) {
2041    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2042         std::string("0"));
2043    return;
2044  }
2045
2046  d->addAttr(new DeprecatedAttr());
2047}
2048
2049void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2050  // check the attribute arguments.
2051  if (rawAttr->getNumArgs() != 1) {
2052    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2053         std::string("1"));
2054    return;
2055  }
2056
2057  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2058  Arg = Arg->IgnoreParenCasts();
2059  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2060
2061  if (Str == 0 || Str->isWide()) {
2062    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2063         "visibility", std::string("1"));
2064    return;
2065  }
2066
2067  const char *TypeStr = Str->getStrData();
2068  unsigned TypeLen = Str->getByteLength();
2069  llvm::GlobalValue::VisibilityTypes type;
2070
2071  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2072    type = llvm::GlobalValue::DefaultVisibility;
2073  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2074    type = llvm::GlobalValue::HiddenVisibility;
2075  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2076    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2077  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2078    type = llvm::GlobalValue::ProtectedVisibility;
2079  else {
2080    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2081           "visibility", TypeStr);
2082    return;
2083  }
2084
2085  d->addAttr(new VisibilityAttr(type));
2086}
2087
2088void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2089  // check the attribute arguments.
2090  if (rawAttr->getNumArgs() != 0) {
2091    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2092         std::string("0"));
2093    return;
2094  }
2095
2096  d->addAttr(new WeakAttr());
2097}
2098
2099void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2100  // check the attribute arguments.
2101  if (rawAttr->getNumArgs() != 0) {
2102    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2103         std::string("0"));
2104    return;
2105  }
2106
2107  d->addAttr(new DLLImportAttr());
2108}
2109
2110void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2111  // check the attribute arguments.
2112  if (rawAttr->getNumArgs() != 0) {
2113    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2114         std::string("0"));
2115    return;
2116  }
2117
2118  d->addAttr(new DLLExportAttr());
2119}
2120
2121void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2122  // check the attribute arguments.
2123  if (rawAttr->getNumArgs() != 0) {
2124    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2125         std::string("0"));
2126    return;
2127  }
2128
2129  d->addAttr(new StdCallAttr());
2130}
2131
2132void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2133  // check the attribute arguments.
2134  if (rawAttr->getNumArgs() != 0) {
2135    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2136         std::string("0"));
2137    return;
2138  }
2139
2140  d->addAttr(new FastCallAttr());
2141}
2142
2143void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2144  // check the attribute arguments.
2145  if (rawAttr->getNumArgs() != 0) {
2146    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2147         std::string("0"));
2148    return;
2149  }
2150
2151  d->addAttr(new NoThrowAttr());
2152}
2153
2154static const FunctionTypeProto *getFunctionProto(Decl *d) {
2155  ValueDecl *decl = dyn_cast<ValueDecl>(d);
2156  if (!decl) return 0;
2157
2158  QualType Ty = decl->getType();
2159
2160  if (Ty->isFunctionPointerType()) {
2161    const PointerType *PtrTy = Ty->getAsPointerType();
2162    Ty = PtrTy->getPointeeType();
2163  }
2164
2165  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2166    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2167
2168  return 0;
2169}
2170
2171
2172/// Handle __attribute__((format(type,idx,firstarg))) attributes
2173/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2174void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2175
2176  if (!rawAttr->getParameterName()) {
2177    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2178           "format", std::string("1"));
2179    return;
2180  }
2181
2182  if (rawAttr->getNumArgs() != 2) {
2183    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2184         std::string("3"));
2185    return;
2186  }
2187
2188  // GCC ignores the format attribute on K&R style function
2189  // prototypes, so we ignore it as well
2190  const FunctionTypeProto *proto = getFunctionProto(d);
2191
2192  if (!proto) {
2193    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2194           "format", "function");
2195    return;
2196  }
2197
2198  // FIXME: in C++ the implicit 'this' function parameter also counts.
2199  // this is needed in order to be compatible with GCC
2200  // the index must start in 1 and the limit is numargs+1
2201  unsigned NumArgs  = proto->getNumArgs();
2202  unsigned FirstIdx = 1;
2203
2204  const char *Format = rawAttr->getParameterName()->getName();
2205  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2206
2207  // Normalize the argument, __foo__ becomes foo.
2208  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2209      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2210    Format += 2;
2211    FormatLen -= 4;
2212  }
2213
2214  if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
2215     || (FormatLen == 6 && !memcmp(Format, "printf", 6))
2216     || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
2217     || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
2218    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2219           "format", rawAttr->getParameterName()->getName());
2220    return;
2221  }
2222
2223  // checks for the 2nd argument
2224  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2225  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2226  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2227    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2228           "format", std::string("2"), IdxExpr->getSourceRange());
2229    return;
2230  }
2231
2232  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2233    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2234           "format", std::string("2"), IdxExpr->getSourceRange());
2235    return;
2236  }
2237
2238  // make sure the format string is really a string
2239  QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
2240  if (!Ty->isPointerType() ||
2241      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2242    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2243         IdxExpr->getSourceRange());
2244    return;
2245  }
2246
2247
2248  // check the 3rd argument
2249  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2250  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2251  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2252    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2253           "format", std::string("3"), FirstArgExpr->getSourceRange());
2254    return;
2255  }
2256
2257  // check if the function is variadic if the 3rd argument non-zero
2258  if (FirstArg != 0) {
2259    if (proto->isVariadic()) {
2260      ++NumArgs; // +1 for ...
2261    } else {
2262      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2263      return;
2264    }
2265  }
2266
2267  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2268  // the input is just the current time + the format string
2269  if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
2270    if (FirstArg != 0) {
2271      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2272             FirstArgExpr->getSourceRange());
2273      return;
2274    }
2275  // if 0 it disables parameter checking (to use with e.g. va_list)
2276  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2277    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2278           "format", std::string("3"), FirstArgExpr->getSourceRange());
2279    return;
2280  }
2281
2282  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2283                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2284}
2285
2286void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2287  // check the attribute arguments.
2288  if (rawAttr->getNumArgs() != 1) {
2289    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2290         std::string("1"));
2291    return;
2292  }
2293  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2294  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2295
2296  // Make sure that there is a string literal as the annotation's single
2297  // argument.
2298  if (!SE) {
2299    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2300    return;
2301  }
2302  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2303                                          SE->getByteLength())));
2304}
2305
2306void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2307{
2308  // check the attribute arguments.
2309  if (rawAttr->getNumArgs() > 1) {
2310    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2311         std::string("1"));
2312    return;
2313  }
2314
2315  unsigned Align = 0;
2316
2317  if (rawAttr->getNumArgs() == 0) {
2318    // FIXME: This should be the target specific maximum alignment.
2319    // (For now we just use 128 bits which is the maximum on X86.
2320    Align = 128;
2321    return;
2322  } else {
2323    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2324    llvm::APSInt alignment(32);
2325    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2326      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2327           "aligned", alignmentExpr->getSourceRange());
2328      return;
2329    }
2330
2331    Align = alignment.getZExtValue() * 8;
2332  }
2333
2334  d->addAttr(new AlignedAttr(Align));
2335}
2336