SemaDecl.cpp revision b0cb022daec8671406ab25f4b5d5a6d48d823bc4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isSet()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type, so build a
91        // TypenameType node to describe the type.
92        // FIXME: Record somewhere that this TypenameType node has no "typename"
93        // keyword associated with it.
94        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
95                                 II, SS->getRange()).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
102      return 0;
103  }
104
105  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
106  // lookup for class-names.
107  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
108                                      LookupOrdinaryName;
109  LookupResult Result(*this, &II, NameLoc, Kind);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::NotFoundInCurrentInstantiation:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    Result.suppressDiagnostics();
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    if (T.isNull())
191      T = Context.getTypeDeclType(TD);
192
193    if (SS)
194      T = getQualifiedNameType(*SS, T);
195
196  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
197    T = Context.getObjCInterfaceType(IDecl);
198  } else if (UnresolvedUsingTypenameDecl *UUDecl =
199               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
200    // FIXME: preserve source structure information.
201    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
202  } else {
203    // If it's not plausibly a type, suppress diagnostics.
204    Result.suppressDiagnostics();
205    return 0;
206  }
207
208  return T.getAsOpaquePtr();
209}
210
211/// isTagName() - This method is called *for error recovery purposes only*
212/// to determine if the specified name is a valid tag name ("struct foo").  If
213/// so, this returns the TST for the tag corresponding to it (TST_enum,
214/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
215/// where the user forgot to specify the tag.
216DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
217  // Do a tag name lookup in this scope.
218  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
219  LookupName(R, S, false);
220  R.suppressDiagnostics();
221  if (R.getResultKind() == LookupResult::Found)
222    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
223      switch (TD->getTagKind()) {
224      case TagDecl::TK_struct: return DeclSpec::TST_struct;
225      case TagDecl::TK_union:  return DeclSpec::TST_union;
226      case TagDecl::TK_class:  return DeclSpec::TST_class;
227      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
228      }
229    }
230
231  return DeclSpec::TST_unspecified;
232}
233
234bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
235                                   SourceLocation IILoc,
236                                   Scope *S,
237                                   const CXXScopeSpec *SS,
238                                   TypeTy *&SuggestedType) {
239  // We don't have anything to suggest (yet).
240  SuggestedType = 0;
241
242  // There may have been a typo in the name of the type. Look up typo
243  // results, in case we have something that we can suggest.
244  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
245                      NotForRedeclaration);
246
247  // FIXME: It would be nice if we could correct for typos in built-in
248  // names, such as "itn" for "int".
249
250  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
251    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
252    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
253        !Result->isInvalidDecl()) {
254      // We found a similarly-named type or interface; suggest that.
255      if (!SS || !SS->isSet())
256        Diag(IILoc, diag::err_unknown_typename_suggest)
257          << &II << Lookup.getLookupName()
258          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
259                                                     Result->getNameAsString());
260      else if (DeclContext *DC = computeDeclContext(*SS, false))
261        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
262          << &II << DC << Lookup.getLookupName() << SS->getRange()
263          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
264                                                     Result->getNameAsString());
265      else
266        llvm_unreachable("could not have corrected a typo here");
267
268      Diag(Result->getLocation(), diag::note_previous_decl)
269        << Result->getDeclName();
270
271      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
272      return true;
273    }
274  }
275
276  // FIXME: Should we move the logic that tries to recover from a missing tag
277  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
278
279  if (!SS || (!SS->isSet() && !SS->isInvalid()))
280    Diag(IILoc, diag::err_unknown_typename) << &II;
281  else if (DeclContext *DC = computeDeclContext(*SS, false))
282    Diag(IILoc, diag::err_typename_nested_not_found)
283      << &II << DC << SS->getRange();
284  else if (isDependentScopeSpecifier(*SS)) {
285    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
286      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
287      << SourceRange(SS->getRange().getBegin(), IILoc)
288      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
289                                               "typename ");
290    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
291  } else {
292    assert(SS && SS->isInvalid() &&
293           "Invalid scope specifier has already been diagnosed");
294  }
295
296  return true;
297}
298
299// Determines the context to return to after temporarily entering a
300// context.  This depends in an unnecessarily complicated way on the
301// exact ordering of callbacks from the parser.
302DeclContext *Sema::getContainingDC(DeclContext *DC) {
303
304  // Functions defined inline within classes aren't parsed until we've
305  // finished parsing the top-level class, so the top-level class is
306  // the context we'll need to return to.
307  if (isa<FunctionDecl>(DC)) {
308    DC = DC->getLexicalParent();
309
310    // A function not defined within a class will always return to its
311    // lexical context.
312    if (!isa<CXXRecordDecl>(DC))
313      return DC;
314
315    // A C++ inline method/friend is parsed *after* the topmost class
316    // it was declared in is fully parsed ("complete");  the topmost
317    // class is the context we need to return to.
318    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
319      DC = RD;
320
321    // Return the declaration context of the topmost class the inline method is
322    // declared in.
323    return DC;
324  }
325
326  if (isa<ObjCMethodDecl>(DC))
327    return Context.getTranslationUnitDecl();
328
329  return DC->getLexicalParent();
330}
331
332void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
333  assert(getContainingDC(DC) == CurContext &&
334      "The next DeclContext should be lexically contained in the current one.");
335  CurContext = DC;
336  S->setEntity(DC);
337}
338
339void Sema::PopDeclContext() {
340  assert(CurContext && "DeclContext imbalance!");
341
342  CurContext = getContainingDC(CurContext);
343}
344
345/// EnterDeclaratorContext - Used when we must lookup names in the context
346/// of a declarator's nested name specifier.
347///
348void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
349  // C++0x [basic.lookup.unqual]p13:
350  //   A name used in the definition of a static data member of class
351  //   X (after the qualified-id of the static member) is looked up as
352  //   if the name was used in a member function of X.
353  // C++0x [basic.lookup.unqual]p14:
354  //   If a variable member of a namespace is defined outside of the
355  //   scope of its namespace then any name used in the definition of
356  //   the variable member (after the declarator-id) is looked up as
357  //   if the definition of the variable member occurred in its
358  //   namespace.
359  // Both of these imply that we should push a scope whose context
360  // is the semantic context of the declaration.  We can't use
361  // PushDeclContext here because that context is not necessarily
362  // lexically contained in the current context.  Fortunately,
363  // the containing scope should have the appropriate information.
364
365  assert(!S->getEntity() && "scope already has entity");
366
367#ifndef NDEBUG
368  Scope *Ancestor = S->getParent();
369  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
370  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
371#endif
372
373  CurContext = DC;
374  S->setEntity(DC);
375}
376
377void Sema::ExitDeclaratorContext(Scope *S) {
378  assert(S->getEntity() == CurContext && "Context imbalance!");
379
380  // Switch back to the lexical context.  The safety of this is
381  // enforced by an assert in EnterDeclaratorContext.
382  Scope *Ancestor = S->getParent();
383  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
384  CurContext = (DeclContext*) Ancestor->getEntity();
385
386  // We don't need to do anything with the scope, which is going to
387  // disappear.
388}
389
390/// \brief Determine whether we allow overloading of the function
391/// PrevDecl with another declaration.
392///
393/// This routine determines whether overloading is possible, not
394/// whether some new function is actually an overload. It will return
395/// true in C++ (where we can always provide overloads) or, as an
396/// extension, in C when the previous function is already an
397/// overloaded function declaration or has the "overloadable"
398/// attribute.
399static bool AllowOverloadingOfFunction(LookupResult &Previous,
400                                       ASTContext &Context) {
401  if (Context.getLangOptions().CPlusPlus)
402    return true;
403
404  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
405    return true;
406
407  return (Previous.getResultKind() == LookupResult::Found
408          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
409}
410
411/// Add this decl to the scope shadowed decl chains.
412void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
413  // Move up the scope chain until we find the nearest enclosing
414  // non-transparent context. The declaration will be introduced into this
415  // scope.
416  while (S->getEntity() &&
417         ((DeclContext *)S->getEntity())->isTransparentContext())
418    S = S->getParent();
419
420  // Add scoped declarations into their context, so that they can be
421  // found later. Declarations without a context won't be inserted
422  // into any context.
423  if (AddToContext)
424    CurContext->addDecl(D);
425
426  // Out-of-line definitions shouldn't be pushed into scope in C++.
427  // Out-of-line variable and function definitions shouldn't even in C.
428  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
429      D->isOutOfLine())
430    return;
431
432  // Template instantiations should also not be pushed into scope.
433  if (isa<FunctionDecl>(D) &&
434      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
435    return;
436
437  // If this replaces anything in the current scope,
438  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
439                               IEnd = IdResolver.end();
440  for (; I != IEnd; ++I) {
441    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
442      S->RemoveDecl(DeclPtrTy::make(*I));
443      IdResolver.RemoveDecl(*I);
444
445      // Should only need to replace one decl.
446      break;
447    }
448  }
449
450  S->AddDecl(DeclPtrTy::make(D));
451  IdResolver.AddDecl(D);
452}
453
454bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
455  return IdResolver.isDeclInScope(D, Ctx, Context, S);
456}
457
458static bool isOutOfScopePreviousDeclaration(NamedDecl *,
459                                            DeclContext*,
460                                            ASTContext&);
461
462/// Filters out lookup results that don't fall within the given scope
463/// as determined by isDeclInScope.
464static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
465                                 DeclContext *Ctx, Scope *S,
466                                 bool ConsiderLinkage) {
467  LookupResult::Filter F = R.makeFilter();
468  while (F.hasNext()) {
469    NamedDecl *D = F.next();
470
471    if (SemaRef.isDeclInScope(D, Ctx, S))
472      continue;
473
474    if (ConsiderLinkage &&
475        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
476      continue;
477
478    F.erase();
479  }
480
481  F.done();
482}
483
484static bool isUsingDecl(NamedDecl *D) {
485  return isa<UsingShadowDecl>(D) ||
486         isa<UnresolvedUsingTypenameDecl>(D) ||
487         isa<UnresolvedUsingValueDecl>(D);
488}
489
490/// Removes using shadow declarations from the lookup results.
491static void RemoveUsingDecls(LookupResult &R) {
492  LookupResult::Filter F = R.makeFilter();
493  while (F.hasNext())
494    if (isUsingDecl(F.next()))
495      F.erase();
496
497  F.done();
498}
499
500static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
501  if (D->isInvalidDecl())
502    return false;
503
504  if (D->isUsed() || D->hasAttr<UnusedAttr>())
505    return false;
506
507  // White-list anything that isn't a local variable.
508  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
509      !D->getDeclContext()->isFunctionOrMethod())
510    return false;
511
512  // Types of valid local variables should be complete, so this should succeed.
513  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
514    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
515      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
516        if (!RD->hasTrivialConstructor())
517          return false;
518        if (!RD->hasTrivialDestructor())
519          return false;
520      }
521    }
522  }
523
524  return true;
525}
526
527void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
528  if (S->decl_empty()) return;
529  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
530         "Scope shouldn't contain decls!");
531
532  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
533       I != E; ++I) {
534    Decl *TmpD = (*I).getAs<Decl>();
535    assert(TmpD && "This decl didn't get pushed??");
536
537    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
538    NamedDecl *D = cast<NamedDecl>(TmpD);
539
540    if (!D->getDeclName()) continue;
541
542    // Diagnose unused variables in this scope.
543    if (ShouldDiagnoseUnusedDecl(D) &&
544        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
545      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
546
547    // Remove this name from our lexical scope.
548    IdResolver.RemoveDecl(D);
549  }
550}
551
552/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
553/// return 0 if one not found.
554///
555/// \param Id the name of the Objective-C class we're looking for. If
556/// typo-correction fixes this name, the Id will be updated
557/// to the fixed name.
558///
559/// \param RecoverLoc if provided, this routine will attempt to
560/// recover from a typo in the name of an existing Objective-C class
561/// and, if successful, will return the lookup that results from
562/// typo-correction.
563ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
564                                              SourceLocation RecoverLoc) {
565  // The third "scope" argument is 0 since we aren't enabling lazy built-in
566  // creation from this context.
567  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
568
569  if (!IDecl && !RecoverLoc.isInvalid()) {
570    // Perform typo correction at the given location, but only if we
571    // find an Objective-C class name.
572    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
573    if (CorrectTypo(R, TUScope, 0) &&
574        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
575      Diag(RecoverLoc, diag::err_undef_interface_suggest)
576        << Id << IDecl->getDeclName()
577        << CodeModificationHint::CreateReplacement(RecoverLoc,
578                                                   IDecl->getNameAsString());
579      Diag(IDecl->getLocation(), diag::note_previous_decl)
580        << IDecl->getDeclName();
581
582      Id = IDecl->getIdentifier();
583    }
584  }
585
586  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
587}
588
589/// getNonFieldDeclScope - Retrieves the innermost scope, starting
590/// from S, where a non-field would be declared. This routine copes
591/// with the difference between C and C++ scoping rules in structs and
592/// unions. For example, the following code is well-formed in C but
593/// ill-formed in C++:
594/// @code
595/// struct S6 {
596///   enum { BAR } e;
597/// };
598///
599/// void test_S6() {
600///   struct S6 a;
601///   a.e = BAR;
602/// }
603/// @endcode
604/// For the declaration of BAR, this routine will return a different
605/// scope. The scope S will be the scope of the unnamed enumeration
606/// within S6. In C++, this routine will return the scope associated
607/// with S6, because the enumeration's scope is a transparent
608/// context but structures can contain non-field names. In C, this
609/// routine will return the translation unit scope, since the
610/// enumeration's scope is a transparent context and structures cannot
611/// contain non-field names.
612Scope *Sema::getNonFieldDeclScope(Scope *S) {
613  while (((S->getFlags() & Scope::DeclScope) == 0) ||
614         (S->getEntity() &&
615          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
616         (S->isClassScope() && !getLangOptions().CPlusPlus))
617    S = S->getParent();
618  return S;
619}
620
621void Sema::InitBuiltinVaListType() {
622  if (!Context.getBuiltinVaListType().isNull())
623    return;
624
625  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
626  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
627  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
628  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
629}
630
631/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
632/// file scope.  lazily create a decl for it. ForRedeclaration is true
633/// if we're creating this built-in in anticipation of redeclaring the
634/// built-in.
635NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
636                                     Scope *S, bool ForRedeclaration,
637                                     SourceLocation Loc) {
638  Builtin::ID BID = (Builtin::ID)bid;
639
640  if (Context.BuiltinInfo.hasVAListUse(BID))
641    InitBuiltinVaListType();
642
643  ASTContext::GetBuiltinTypeError Error;
644  QualType R = Context.GetBuiltinType(BID, Error);
645  switch (Error) {
646  case ASTContext::GE_None:
647    // Okay
648    break;
649
650  case ASTContext::GE_Missing_stdio:
651    if (ForRedeclaration)
652      Diag(Loc, diag::err_implicit_decl_requires_stdio)
653        << Context.BuiltinInfo.GetName(BID);
654    return 0;
655
656  case ASTContext::GE_Missing_setjmp:
657    if (ForRedeclaration)
658      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
659        << Context.BuiltinInfo.GetName(BID);
660    return 0;
661  }
662
663  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
664    Diag(Loc, diag::ext_implicit_lib_function_decl)
665      << Context.BuiltinInfo.GetName(BID)
666      << R;
667    if (Context.BuiltinInfo.getHeaderName(BID) &&
668        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
669          != Diagnostic::Ignored)
670      Diag(Loc, diag::note_please_include_header)
671        << Context.BuiltinInfo.getHeaderName(BID)
672        << Context.BuiltinInfo.GetName(BID);
673  }
674
675  FunctionDecl *New = FunctionDecl::Create(Context,
676                                           Context.getTranslationUnitDecl(),
677                                           Loc, II, R, /*TInfo=*/0,
678                                           FunctionDecl::Extern, false,
679                                           /*hasPrototype=*/true);
680  New->setImplicit();
681
682  // Create Decl objects for each parameter, adding them to the
683  // FunctionDecl.
684  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
685    llvm::SmallVector<ParmVarDecl*, 16> Params;
686    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
687      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
688                                           FT->getArgType(i), /*TInfo=*/0,
689                                           VarDecl::None, 0));
690    New->setParams(Params.data(), Params.size());
691  }
692
693  AddKnownFunctionAttributes(New);
694
695  // TUScope is the translation-unit scope to insert this function into.
696  // FIXME: This is hideous. We need to teach PushOnScopeChains to
697  // relate Scopes to DeclContexts, and probably eliminate CurContext
698  // entirely, but we're not there yet.
699  DeclContext *SavedContext = CurContext;
700  CurContext = Context.getTranslationUnitDecl();
701  PushOnScopeChains(New, TUScope);
702  CurContext = SavedContext;
703  return New;
704}
705
706/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
707/// same name and scope as a previous declaration 'Old'.  Figure out
708/// how to resolve this situation, merging decls or emitting
709/// diagnostics as appropriate. If there was an error, set New to be invalid.
710///
711void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
712  // If the new decl is known invalid already, don't bother doing any
713  // merging checks.
714  if (New->isInvalidDecl()) return;
715
716  // Allow multiple definitions for ObjC built-in typedefs.
717  // FIXME: Verify the underlying types are equivalent!
718  if (getLangOptions().ObjC1) {
719    const IdentifierInfo *TypeID = New->getIdentifier();
720    switch (TypeID->getLength()) {
721    default: break;
722    case 2:
723      if (!TypeID->isStr("id"))
724        break;
725      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
726      // Install the built-in type for 'id', ignoring the current definition.
727      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
728      return;
729    case 5:
730      if (!TypeID->isStr("Class"))
731        break;
732      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
733      // Install the built-in type for 'Class', ignoring the current definition.
734      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
735      return;
736    case 3:
737      if (!TypeID->isStr("SEL"))
738        break;
739      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
740      // Install the built-in type for 'SEL', ignoring the current definition.
741      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
742      return;
743    case 8:
744      if (!TypeID->isStr("Protocol"))
745        break;
746      Context.setObjCProtoType(New->getUnderlyingType());
747      return;
748    }
749    // Fall through - the typedef name was not a builtin type.
750  }
751
752  // Verify the old decl was also a type.
753  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
754  if (!Old) {
755    Diag(New->getLocation(), diag::err_redefinition_different_kind)
756      << New->getDeclName();
757
758    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
759    if (OldD->getLocation().isValid())
760      Diag(OldD->getLocation(), diag::note_previous_definition);
761
762    return New->setInvalidDecl();
763  }
764
765  // If the old declaration is invalid, just give up here.
766  if (Old->isInvalidDecl())
767    return New->setInvalidDecl();
768
769  // Determine the "old" type we'll use for checking and diagnostics.
770  QualType OldType;
771  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
772    OldType = OldTypedef->getUnderlyingType();
773  else
774    OldType = Context.getTypeDeclType(Old);
775
776  // If the typedef types are not identical, reject them in all languages and
777  // with any extensions enabled.
778
779  if (OldType != New->getUnderlyingType() &&
780      Context.getCanonicalType(OldType) !=
781      Context.getCanonicalType(New->getUnderlyingType())) {
782    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
783      << New->getUnderlyingType() << OldType;
784    if (Old->getLocation().isValid())
785      Diag(Old->getLocation(), diag::note_previous_definition);
786    return New->setInvalidDecl();
787  }
788
789  // The types match.  Link up the redeclaration chain if the old
790  // declaration was a typedef.
791  // FIXME: this is a potential source of wierdness if the type
792  // spellings don't match exactly.
793  if (isa<TypedefDecl>(Old))
794    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
795
796  if (getLangOptions().Microsoft)
797    return;
798
799  if (getLangOptions().CPlusPlus) {
800    // C++ [dcl.typedef]p2:
801    //   In a given non-class scope, a typedef specifier can be used to
802    //   redefine the name of any type declared in that scope to refer
803    //   to the type to which it already refers.
804    if (!isa<CXXRecordDecl>(CurContext))
805      return;
806
807    // C++0x [dcl.typedef]p4:
808    //   In a given class scope, a typedef specifier can be used to redefine
809    //   any class-name declared in that scope that is not also a typedef-name
810    //   to refer to the type to which it already refers.
811    //
812    // This wording came in via DR424, which was a correction to the
813    // wording in DR56, which accidentally banned code like:
814    //
815    //   struct S {
816    //     typedef struct A { } A;
817    //   };
818    //
819    // in the C++03 standard. We implement the C++0x semantics, which
820    // allow the above but disallow
821    //
822    //   struct S {
823    //     typedef int I;
824    //     typedef int I;
825    //   };
826    //
827    // since that was the intent of DR56.
828    if (!isa<TypedefDecl >(Old))
829      return;
830
831    Diag(New->getLocation(), diag::err_redefinition)
832      << New->getDeclName();
833    Diag(Old->getLocation(), diag::note_previous_definition);
834    return New->setInvalidDecl();
835  }
836
837  // If we have a redefinition of a typedef in C, emit a warning.  This warning
838  // is normally mapped to an error, but can be controlled with
839  // -Wtypedef-redefinition.  If either the original or the redefinition is
840  // in a system header, don't emit this for compatibility with GCC.
841  if (getDiagnostics().getSuppressSystemWarnings() &&
842      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
843       Context.getSourceManager().isInSystemHeader(New->getLocation())))
844    return;
845
846  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
847    << New->getDeclName();
848  Diag(Old->getLocation(), diag::note_previous_definition);
849  return;
850}
851
852/// DeclhasAttr - returns true if decl Declaration already has the target
853/// attribute.
854static bool
855DeclHasAttr(const Decl *decl, const Attr *target) {
856  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
857    if (attr->getKind() == target->getKind())
858      return true;
859
860  return false;
861}
862
863/// MergeAttributes - append attributes from the Old decl to the New one.
864static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
865  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
866    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
867      Attr *NewAttr = attr->clone(C);
868      NewAttr->setInherited(true);
869      New->addAttr(NewAttr);
870    }
871  }
872}
873
874/// Used in MergeFunctionDecl to keep track of function parameters in
875/// C.
876struct GNUCompatibleParamWarning {
877  ParmVarDecl *OldParm;
878  ParmVarDecl *NewParm;
879  QualType PromotedType;
880};
881
882
883/// getSpecialMember - get the special member enum for a method.
884static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
885                                               const CXXMethodDecl *MD) {
886  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
887    if (Ctor->isDefaultConstructor())
888      return Sema::CXXDefaultConstructor;
889    if (Ctor->isCopyConstructor())
890      return Sema::CXXCopyConstructor;
891  }
892
893  if (isa<CXXDestructorDecl>(MD))
894    return Sema::CXXDestructor;
895
896  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
897  return Sema::CXXCopyAssignment;
898}
899
900/// canREdefineFunction - checks if a function can be redefined. Currently,
901/// only extern inline functions can be redefined, and even then only in
902/// GNU89 mode.
903static bool canRedefineFunction(const FunctionDecl *FD,
904                                const LangOptions& LangOpts) {
905  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
906          FD->isInlineSpecified() &&
907          FD->getStorageClass() == FunctionDecl::Extern);
908}
909
910/// MergeFunctionDecl - We just parsed a function 'New' from
911/// declarator D which has the same name and scope as a previous
912/// declaration 'Old'.  Figure out how to resolve this situation,
913/// merging decls or emitting diagnostics as appropriate.
914///
915/// In C++, New and Old must be declarations that are not
916/// overloaded. Use IsOverload to determine whether New and Old are
917/// overloaded, and to select the Old declaration that New should be
918/// merged with.
919///
920/// Returns true if there was an error, false otherwise.
921bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
922  // Verify the old decl was also a function.
923  FunctionDecl *Old = 0;
924  if (FunctionTemplateDecl *OldFunctionTemplate
925        = dyn_cast<FunctionTemplateDecl>(OldD))
926    Old = OldFunctionTemplate->getTemplatedDecl();
927  else
928    Old = dyn_cast<FunctionDecl>(OldD);
929  if (!Old) {
930    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
931      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
932      Diag(Shadow->getTargetDecl()->getLocation(),
933           diag::note_using_decl_target);
934      Diag(Shadow->getUsingDecl()->getLocation(),
935           diag::note_using_decl) << 0;
936      return true;
937    }
938
939    Diag(New->getLocation(), diag::err_redefinition_different_kind)
940      << New->getDeclName();
941    Diag(OldD->getLocation(), diag::note_previous_definition);
942    return true;
943  }
944
945  // Determine whether the previous declaration was a definition,
946  // implicit declaration, or a declaration.
947  diag::kind PrevDiag;
948  if (Old->isThisDeclarationADefinition())
949    PrevDiag = diag::note_previous_definition;
950  else if (Old->isImplicit())
951    PrevDiag = diag::note_previous_implicit_declaration;
952  else
953    PrevDiag = diag::note_previous_declaration;
954
955  QualType OldQType = Context.getCanonicalType(Old->getType());
956  QualType NewQType = Context.getCanonicalType(New->getType());
957
958  // Don't complain about this if we're in GNU89 mode and the old function
959  // is an extern inline function.
960  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
961      New->getStorageClass() == FunctionDecl::Static &&
962      Old->getStorageClass() != FunctionDecl::Static &&
963      !canRedefineFunction(Old, getLangOptions())) {
964    Diag(New->getLocation(), diag::err_static_non_static)
965      << New;
966    Diag(Old->getLocation(), PrevDiag);
967    return true;
968  }
969
970  // If a function is first declared with a calling convention, but is
971  // later declared or defined without one, the second decl assumes the
972  // calling convention of the first.
973  //
974  // For the new decl, we have to look at the NON-canonical type to tell the
975  // difference between a function that really doesn't have a calling
976  // convention and one that is declared cdecl. That's because in
977  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
978  // because it is the default calling convention.
979  //
980  // Note also that we DO NOT return at this point, because we still have
981  // other tests to run.
982  const FunctionType *OldType = OldQType->getAs<FunctionType>();
983  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
984  if (OldType->getCallConv() != CC_Default &&
985      NewType->getCallConv() == CC_Default) {
986    NewQType = Context.getCallConvType(NewQType, OldType->getCallConv());
987    New->setType(NewQType);
988    NewQType = Context.getCanonicalType(NewQType);
989  } else if (!Context.isSameCallConv(OldType->getCallConv(),
990                                     NewType->getCallConv())) {
991    // Calling conventions really aren't compatible, so complain.
992    Diag(New->getLocation(), diag::err_cconv_change)
993      << FunctionType::getNameForCallConv(NewType->getCallConv())
994      << (OldType->getCallConv() == CC_Default)
995      << (OldType->getCallConv() == CC_Default ? "" :
996          FunctionType::getNameForCallConv(OldType->getCallConv()));
997    Diag(Old->getLocation(), diag::note_previous_declaration);
998    return true;
999  }
1000
1001  // FIXME: diagnose the other way around?
1002  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1003    NewQType = Context.getNoReturnType(NewQType);
1004    New->setType(NewQType);
1005    assert(NewQType.isCanonical());
1006  }
1007
1008  if (getLangOptions().CPlusPlus) {
1009    // (C++98 13.1p2):
1010    //   Certain function declarations cannot be overloaded:
1011    //     -- Function declarations that differ only in the return type
1012    //        cannot be overloaded.
1013    QualType OldReturnType
1014      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1015    QualType NewReturnType
1016      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1017    if (OldReturnType != NewReturnType) {
1018      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1019      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1020      return true;
1021    }
1022
1023    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1024    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1025    if (OldMethod && NewMethod) {
1026      if (!NewMethod->getFriendObjectKind() &&
1027          NewMethod->getLexicalDeclContext()->isRecord()) {
1028        //    -- Member function declarations with the same name and the
1029        //       same parameter types cannot be overloaded if any of them
1030        //       is a static member function declaration.
1031        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1032          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1033          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1034          return true;
1035        }
1036
1037        // C++ [class.mem]p1:
1038        //   [...] A member shall not be declared twice in the
1039        //   member-specification, except that a nested class or member
1040        //   class template can be declared and then later defined.
1041        unsigned NewDiag;
1042        if (isa<CXXConstructorDecl>(OldMethod))
1043          NewDiag = diag::err_constructor_redeclared;
1044        else if (isa<CXXDestructorDecl>(NewMethod))
1045          NewDiag = diag::err_destructor_redeclared;
1046        else if (isa<CXXConversionDecl>(NewMethod))
1047          NewDiag = diag::err_conv_function_redeclared;
1048        else
1049          NewDiag = diag::err_member_redeclared;
1050
1051        Diag(New->getLocation(), NewDiag);
1052        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1053      } else {
1054        if (OldMethod->isImplicit()) {
1055          Diag(NewMethod->getLocation(),
1056               diag::err_definition_of_implicitly_declared_member)
1057          << New << getSpecialMember(Context, OldMethod);
1058
1059          Diag(OldMethod->getLocation(),
1060               diag::note_previous_implicit_declaration);
1061          return true;
1062        }
1063      }
1064    }
1065
1066    // (C++98 8.3.5p3):
1067    //   All declarations for a function shall agree exactly in both the
1068    //   return type and the parameter-type-list.
1069    // attributes should be ignored when comparing.
1070    if (Context.getNoReturnType(OldQType, false) ==
1071        Context.getNoReturnType(NewQType, false))
1072      return MergeCompatibleFunctionDecls(New, Old);
1073
1074    // Fall through for conflicting redeclarations and redefinitions.
1075  }
1076
1077  // C: Function types need to be compatible, not identical. This handles
1078  // duplicate function decls like "void f(int); void f(enum X);" properly.
1079  if (!getLangOptions().CPlusPlus &&
1080      Context.typesAreCompatible(OldQType, NewQType)) {
1081    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1082    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1083    const FunctionProtoType *OldProto = 0;
1084    if (isa<FunctionNoProtoType>(NewFuncType) &&
1085        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1086      // The old declaration provided a function prototype, but the
1087      // new declaration does not. Merge in the prototype.
1088      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1089      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1090                                                 OldProto->arg_type_end());
1091      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1092                                         ParamTypes.data(), ParamTypes.size(),
1093                                         OldProto->isVariadic(),
1094                                         OldProto->getTypeQuals(),
1095                                         false, false, 0, 0,
1096                                         OldProto->getNoReturnAttr(),
1097                                         OldProto->getCallConv());
1098      New->setType(NewQType);
1099      New->setHasInheritedPrototype();
1100
1101      // Synthesize a parameter for each argument type.
1102      llvm::SmallVector<ParmVarDecl*, 16> Params;
1103      for (FunctionProtoType::arg_type_iterator
1104             ParamType = OldProto->arg_type_begin(),
1105             ParamEnd = OldProto->arg_type_end();
1106           ParamType != ParamEnd; ++ParamType) {
1107        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1108                                                 SourceLocation(), 0,
1109                                                 *ParamType, /*TInfo=*/0,
1110                                                 VarDecl::None, 0);
1111        Param->setImplicit();
1112        Params.push_back(Param);
1113      }
1114
1115      New->setParams(Params.data(), Params.size());
1116    }
1117
1118    return MergeCompatibleFunctionDecls(New, Old);
1119  }
1120
1121  // GNU C permits a K&R definition to follow a prototype declaration
1122  // if the declared types of the parameters in the K&R definition
1123  // match the types in the prototype declaration, even when the
1124  // promoted types of the parameters from the K&R definition differ
1125  // from the types in the prototype. GCC then keeps the types from
1126  // the prototype.
1127  //
1128  // If a variadic prototype is followed by a non-variadic K&R definition,
1129  // the K&R definition becomes variadic.  This is sort of an edge case, but
1130  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1131  // C99 6.9.1p8.
1132  if (!getLangOptions().CPlusPlus &&
1133      Old->hasPrototype() && !New->hasPrototype() &&
1134      New->getType()->getAs<FunctionProtoType>() &&
1135      Old->getNumParams() == New->getNumParams()) {
1136    llvm::SmallVector<QualType, 16> ArgTypes;
1137    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1138    const FunctionProtoType *OldProto
1139      = Old->getType()->getAs<FunctionProtoType>();
1140    const FunctionProtoType *NewProto
1141      = New->getType()->getAs<FunctionProtoType>();
1142
1143    // Determine whether this is the GNU C extension.
1144    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1145                                               NewProto->getResultType());
1146    bool LooseCompatible = !MergedReturn.isNull();
1147    for (unsigned Idx = 0, End = Old->getNumParams();
1148         LooseCompatible && Idx != End; ++Idx) {
1149      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1150      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1151      if (Context.typesAreCompatible(OldParm->getType(),
1152                                     NewProto->getArgType(Idx))) {
1153        ArgTypes.push_back(NewParm->getType());
1154      } else if (Context.typesAreCompatible(OldParm->getType(),
1155                                            NewParm->getType())) {
1156        GNUCompatibleParamWarning Warn
1157          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1158        Warnings.push_back(Warn);
1159        ArgTypes.push_back(NewParm->getType());
1160      } else
1161        LooseCompatible = false;
1162    }
1163
1164    if (LooseCompatible) {
1165      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1166        Diag(Warnings[Warn].NewParm->getLocation(),
1167             diag::ext_param_promoted_not_compatible_with_prototype)
1168          << Warnings[Warn].PromotedType
1169          << Warnings[Warn].OldParm->getType();
1170        Diag(Warnings[Warn].OldParm->getLocation(),
1171             diag::note_previous_declaration);
1172      }
1173
1174      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1175                                           ArgTypes.size(),
1176                                           OldProto->isVariadic(), 0,
1177                                           false, false, 0, 0,
1178                                           OldProto->getNoReturnAttr(),
1179                                           OldProto->getCallConv()));
1180      return MergeCompatibleFunctionDecls(New, Old);
1181    }
1182
1183    // Fall through to diagnose conflicting types.
1184  }
1185
1186  // A function that has already been declared has been redeclared or defined
1187  // with a different type- show appropriate diagnostic
1188  if (unsigned BuiltinID = Old->getBuiltinID()) {
1189    // The user has declared a builtin function with an incompatible
1190    // signature.
1191    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1192      // The function the user is redeclaring is a library-defined
1193      // function like 'malloc' or 'printf'. Warn about the
1194      // redeclaration, then pretend that we don't know about this
1195      // library built-in.
1196      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1197      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1198        << Old << Old->getType();
1199      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1200      Old->setInvalidDecl();
1201      return false;
1202    }
1203
1204    PrevDiag = diag::note_previous_builtin_declaration;
1205  }
1206
1207  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1208  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1209  return true;
1210}
1211
1212/// \brief Completes the merge of two function declarations that are
1213/// known to be compatible.
1214///
1215/// This routine handles the merging of attributes and other
1216/// properties of function declarations form the old declaration to
1217/// the new declaration, once we know that New is in fact a
1218/// redeclaration of Old.
1219///
1220/// \returns false
1221bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1222  // Merge the attributes
1223  MergeAttributes(New, Old, Context);
1224
1225  // Merge the storage class.
1226  if (Old->getStorageClass() != FunctionDecl::Extern &&
1227      Old->getStorageClass() != FunctionDecl::None)
1228    New->setStorageClass(Old->getStorageClass());
1229
1230  // Merge "pure" flag.
1231  if (Old->isPure())
1232    New->setPure();
1233
1234  // Merge the "deleted" flag.
1235  if (Old->isDeleted())
1236    New->setDeleted();
1237
1238  if (getLangOptions().CPlusPlus)
1239    return MergeCXXFunctionDecl(New, Old);
1240
1241  return false;
1242}
1243
1244/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1245/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1246/// situation, merging decls or emitting diagnostics as appropriate.
1247///
1248/// Tentative definition rules (C99 6.9.2p2) are checked by
1249/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1250/// definitions here, since the initializer hasn't been attached.
1251///
1252void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1253  // If the new decl is already invalid, don't do any other checking.
1254  if (New->isInvalidDecl())
1255    return;
1256
1257  // Verify the old decl was also a variable.
1258  VarDecl *Old = 0;
1259  if (!Previous.isSingleResult() ||
1260      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1261    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1262      << New->getDeclName();
1263    Diag(Previous.getRepresentativeDecl()->getLocation(),
1264         diag::note_previous_definition);
1265    return New->setInvalidDecl();
1266  }
1267
1268  MergeAttributes(New, Old, Context);
1269
1270  // Merge the types
1271  QualType MergedT;
1272  if (getLangOptions().CPlusPlus) {
1273    if (Context.hasSameType(New->getType(), Old->getType()))
1274      MergedT = New->getType();
1275    // C++ [basic.link]p10:
1276    //   [...] the types specified by all declarations referring to a given
1277    //   object or function shall be identical, except that declarations for an
1278    //   array object can specify array types that differ by the presence or
1279    //   absence of a major array bound (8.3.4).
1280    else if (Old->getType()->isIncompleteArrayType() &&
1281             New->getType()->isArrayType()) {
1282      CanQual<ArrayType> OldArray
1283        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1284      CanQual<ArrayType> NewArray
1285        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1286      if (OldArray->getElementType() == NewArray->getElementType())
1287        MergedT = New->getType();
1288    } else if (Old->getType()->isArrayType() &&
1289             New->getType()->isIncompleteArrayType()) {
1290      CanQual<ArrayType> OldArray
1291        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1292      CanQual<ArrayType> NewArray
1293        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1294      if (OldArray->getElementType() == NewArray->getElementType())
1295        MergedT = Old->getType();
1296    }
1297  } else {
1298    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1299  }
1300  if (MergedT.isNull()) {
1301    Diag(New->getLocation(), diag::err_redefinition_different_type)
1302      << New->getDeclName();
1303    Diag(Old->getLocation(), diag::note_previous_definition);
1304    return New->setInvalidDecl();
1305  }
1306  New->setType(MergedT);
1307
1308  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1309  if (New->getStorageClass() == VarDecl::Static &&
1310      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1311    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1312    Diag(Old->getLocation(), diag::note_previous_definition);
1313    return New->setInvalidDecl();
1314  }
1315  // C99 6.2.2p4:
1316  //   For an identifier declared with the storage-class specifier
1317  //   extern in a scope in which a prior declaration of that
1318  //   identifier is visible,23) if the prior declaration specifies
1319  //   internal or external linkage, the linkage of the identifier at
1320  //   the later declaration is the same as the linkage specified at
1321  //   the prior declaration. If no prior declaration is visible, or
1322  //   if the prior declaration specifies no linkage, then the
1323  //   identifier has external linkage.
1324  if (New->hasExternalStorage() && Old->hasLinkage())
1325    /* Okay */;
1326  else if (New->getStorageClass() != VarDecl::Static &&
1327           Old->getStorageClass() == VarDecl::Static) {
1328    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1329    Diag(Old->getLocation(), diag::note_previous_definition);
1330    return New->setInvalidDecl();
1331  }
1332
1333  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1334
1335  // FIXME: The test for external storage here seems wrong? We still
1336  // need to check for mismatches.
1337  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1338      // Don't complain about out-of-line definitions of static members.
1339      !(Old->getLexicalDeclContext()->isRecord() &&
1340        !New->getLexicalDeclContext()->isRecord())) {
1341    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1342    Diag(Old->getLocation(), diag::note_previous_definition);
1343    return New->setInvalidDecl();
1344  }
1345
1346  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1347    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1348    Diag(Old->getLocation(), diag::note_previous_definition);
1349  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1350    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1351    Diag(Old->getLocation(), diag::note_previous_definition);
1352  }
1353
1354  // C++ doesn't have tentative definitions, so go right ahead and check here.
1355  const VarDecl *Def;
1356  if (getLangOptions().CPlusPlus &&
1357      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1358      (Def = Old->getDefinition())) {
1359    Diag(New->getLocation(), diag::err_redefinition)
1360      << New->getDeclName();
1361    Diag(Def->getLocation(), diag::note_previous_definition);
1362    New->setInvalidDecl();
1363    return;
1364  }
1365
1366  // Keep a chain of previous declarations.
1367  New->setPreviousDeclaration(Old);
1368
1369  // Inherit access appropriately.
1370  New->setAccess(Old->getAccess());
1371}
1372
1373/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1374/// no declarator (e.g. "struct foo;") is parsed.
1375Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1376  // FIXME: Error on auto/register at file scope
1377  // FIXME: Error on inline/virtual/explicit
1378  // FIXME: Warn on useless __thread
1379  // FIXME: Warn on useless const/volatile
1380  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1381  // FIXME: Warn on useless attributes
1382  Decl *TagD = 0;
1383  TagDecl *Tag = 0;
1384  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1385      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1386      DS.getTypeSpecType() == DeclSpec::TST_union ||
1387      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1388    TagD = static_cast<Decl *>(DS.getTypeRep());
1389
1390    if (!TagD) // We probably had an error
1391      return DeclPtrTy();
1392
1393    // Note that the above type specs guarantee that the
1394    // type rep is a Decl, whereas in many of the others
1395    // it's a Type.
1396    Tag = dyn_cast<TagDecl>(TagD);
1397  }
1398
1399  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1400    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1401    // or incomplete types shall not be restrict-qualified."
1402    if (TypeQuals & DeclSpec::TQ_restrict)
1403      Diag(DS.getRestrictSpecLoc(),
1404           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1405           << DS.getSourceRange();
1406  }
1407
1408  if (DS.isFriendSpecified()) {
1409    // If we're dealing with a class template decl, assume that the
1410    // template routines are handling it.
1411    if (TagD && isa<ClassTemplateDecl>(TagD))
1412      return DeclPtrTy();
1413    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1414  }
1415
1416  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1417    // If there are attributes in the DeclSpec, apply them to the record.
1418    if (const AttributeList *AL = DS.getAttributes())
1419      ProcessDeclAttributeList(S, Record, AL);
1420
1421    if (!Record->getDeclName() && Record->isDefinition() &&
1422        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1423      if (getLangOptions().CPlusPlus ||
1424          Record->getDeclContext()->isRecord())
1425        return BuildAnonymousStructOrUnion(S, DS, Record);
1426
1427      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1428        << DS.getSourceRange();
1429    }
1430
1431    // Microsoft allows unnamed struct/union fields. Don't complain
1432    // about them.
1433    // FIXME: Should we support Microsoft's extensions in this area?
1434    if (Record->getDeclName() && getLangOptions().Microsoft)
1435      return DeclPtrTy::make(Tag);
1436  }
1437
1438  if (!DS.isMissingDeclaratorOk() &&
1439      DS.getTypeSpecType() != DeclSpec::TST_error) {
1440    // Warn about typedefs of enums without names, since this is an
1441    // extension in both Microsoft an GNU.
1442    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1443        Tag && isa<EnumDecl>(Tag)) {
1444      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1445        << DS.getSourceRange();
1446      return DeclPtrTy::make(Tag);
1447    }
1448
1449    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1450      << DS.getSourceRange();
1451    return DeclPtrTy();
1452  }
1453
1454  return DeclPtrTy::make(Tag);
1455}
1456
1457/// We are trying to inject an anonymous member into the given scope;
1458/// check if there's an existing declaration that can't be overloaded.
1459///
1460/// \return true if this is a forbidden redeclaration
1461static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1462                                         Scope *S,
1463                                         DeclContext *Owner,
1464                                         DeclarationName Name,
1465                                         SourceLocation NameLoc,
1466                                         unsigned diagnostic) {
1467  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1468                 Sema::ForRedeclaration);
1469  if (!SemaRef.LookupName(R, S)) return false;
1470
1471  if (R.getAsSingle<TagDecl>())
1472    return false;
1473
1474  // Pick a representative declaration.
1475  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1476  if (PrevDecl && Owner->isRecord()) {
1477    RecordDecl *Record = cast<RecordDecl>(Owner);
1478    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1479      return false;
1480  }
1481
1482  SemaRef.Diag(NameLoc, diagnostic) << Name;
1483  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1484
1485  return true;
1486}
1487
1488/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1489/// anonymous struct or union AnonRecord into the owning context Owner
1490/// and scope S. This routine will be invoked just after we realize
1491/// that an unnamed union or struct is actually an anonymous union or
1492/// struct, e.g.,
1493///
1494/// @code
1495/// union {
1496///   int i;
1497///   float f;
1498/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1499///    // f into the surrounding scope.x
1500/// @endcode
1501///
1502/// This routine is recursive, injecting the names of nested anonymous
1503/// structs/unions into the owning context and scope as well.
1504bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1505                                               RecordDecl *AnonRecord) {
1506  unsigned diagKind
1507    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1508                            : diag::err_anonymous_struct_member_redecl;
1509
1510  bool Invalid = false;
1511  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1512                               FEnd = AnonRecord->field_end();
1513       F != FEnd; ++F) {
1514    if ((*F)->getDeclName()) {
1515      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1516                                       (*F)->getLocation(), diagKind)) {
1517        // C++ [class.union]p2:
1518        //   The names of the members of an anonymous union shall be
1519        //   distinct from the names of any other entity in the
1520        //   scope in which the anonymous union is declared.
1521        Invalid = true;
1522      } else {
1523        // C++ [class.union]p2:
1524        //   For the purpose of name lookup, after the anonymous union
1525        //   definition, the members of the anonymous union are
1526        //   considered to have been defined in the scope in which the
1527        //   anonymous union is declared.
1528        Owner->makeDeclVisibleInContext(*F);
1529        S->AddDecl(DeclPtrTy::make(*F));
1530        IdResolver.AddDecl(*F);
1531      }
1532    } else if (const RecordType *InnerRecordType
1533                 = (*F)->getType()->getAs<RecordType>()) {
1534      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1535      if (InnerRecord->isAnonymousStructOrUnion())
1536        Invalid = Invalid ||
1537          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1538    }
1539  }
1540
1541  return Invalid;
1542}
1543
1544/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1545/// anonymous structure or union. Anonymous unions are a C++ feature
1546/// (C++ [class.union]) and a GNU C extension; anonymous structures
1547/// are a GNU C and GNU C++ extension.
1548Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1549                                                  RecordDecl *Record) {
1550  DeclContext *Owner = Record->getDeclContext();
1551
1552  // Diagnose whether this anonymous struct/union is an extension.
1553  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1554    Diag(Record->getLocation(), diag::ext_anonymous_union);
1555  else if (!Record->isUnion())
1556    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1557
1558  // C and C++ require different kinds of checks for anonymous
1559  // structs/unions.
1560  bool Invalid = false;
1561  if (getLangOptions().CPlusPlus) {
1562    const char* PrevSpec = 0;
1563    unsigned DiagID;
1564    // C++ [class.union]p3:
1565    //   Anonymous unions declared in a named namespace or in the
1566    //   global namespace shall be declared static.
1567    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1568        (isa<TranslationUnitDecl>(Owner) ||
1569         (isa<NamespaceDecl>(Owner) &&
1570          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1571      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1572      Invalid = true;
1573
1574      // Recover by adding 'static'.
1575      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1576                             PrevSpec, DiagID);
1577    }
1578    // C++ [class.union]p3:
1579    //   A storage class is not allowed in a declaration of an
1580    //   anonymous union in a class scope.
1581    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1582             isa<RecordDecl>(Owner)) {
1583      Diag(DS.getStorageClassSpecLoc(),
1584           diag::err_anonymous_union_with_storage_spec);
1585      Invalid = true;
1586
1587      // Recover by removing the storage specifier.
1588      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1589                             PrevSpec, DiagID);
1590    }
1591
1592    // C++ [class.union]p2:
1593    //   The member-specification of an anonymous union shall only
1594    //   define non-static data members. [Note: nested types and
1595    //   functions cannot be declared within an anonymous union. ]
1596    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1597                                 MemEnd = Record->decls_end();
1598         Mem != MemEnd; ++Mem) {
1599      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1600        // C++ [class.union]p3:
1601        //   An anonymous union shall not have private or protected
1602        //   members (clause 11).
1603        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1604          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1605            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1606          Invalid = true;
1607        }
1608      } else if ((*Mem)->isImplicit()) {
1609        // Any implicit members are fine.
1610      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1611        // This is a type that showed up in an
1612        // elaborated-type-specifier inside the anonymous struct or
1613        // union, but which actually declares a type outside of the
1614        // anonymous struct or union. It's okay.
1615      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1616        if (!MemRecord->isAnonymousStructOrUnion() &&
1617            MemRecord->getDeclName()) {
1618          // This is a nested type declaration.
1619          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1620            << (int)Record->isUnion();
1621          Invalid = true;
1622        }
1623      } else {
1624        // We have something that isn't a non-static data
1625        // member. Complain about it.
1626        unsigned DK = diag::err_anonymous_record_bad_member;
1627        if (isa<TypeDecl>(*Mem))
1628          DK = diag::err_anonymous_record_with_type;
1629        else if (isa<FunctionDecl>(*Mem))
1630          DK = diag::err_anonymous_record_with_function;
1631        else if (isa<VarDecl>(*Mem))
1632          DK = diag::err_anonymous_record_with_static;
1633        Diag((*Mem)->getLocation(), DK)
1634            << (int)Record->isUnion();
1635          Invalid = true;
1636      }
1637    }
1638  }
1639
1640  if (!Record->isUnion() && !Owner->isRecord()) {
1641    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1642      << (int)getLangOptions().CPlusPlus;
1643    Invalid = true;
1644  }
1645
1646  // Mock up a declarator.
1647  Declarator Dc(DS, Declarator::TypeNameContext);
1648  TypeSourceInfo *TInfo = 0;
1649  GetTypeForDeclarator(Dc, S, &TInfo);
1650  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1651
1652  // Create a declaration for this anonymous struct/union.
1653  NamedDecl *Anon = 0;
1654  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1655    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1656                             /*IdentifierInfo=*/0,
1657                             Context.getTypeDeclType(Record),
1658                             TInfo,
1659                             /*BitWidth=*/0, /*Mutable=*/false);
1660    Anon->setAccess(AS_public);
1661    if (getLangOptions().CPlusPlus)
1662      FieldCollector->Add(cast<FieldDecl>(Anon));
1663  } else {
1664    VarDecl::StorageClass SC;
1665    switch (DS.getStorageClassSpec()) {
1666    default: assert(0 && "Unknown storage class!");
1667    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1668    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1669    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1670    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1671    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1672    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1673    case DeclSpec::SCS_mutable:
1674      // mutable can only appear on non-static class members, so it's always
1675      // an error here
1676      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1677      Invalid = true;
1678      SC = VarDecl::None;
1679      break;
1680    }
1681
1682    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1683                           /*IdentifierInfo=*/0,
1684                           Context.getTypeDeclType(Record),
1685                           TInfo,
1686                           SC);
1687  }
1688  Anon->setImplicit();
1689
1690  // Add the anonymous struct/union object to the current
1691  // context. We'll be referencing this object when we refer to one of
1692  // its members.
1693  Owner->addDecl(Anon);
1694
1695  // Inject the members of the anonymous struct/union into the owning
1696  // context and into the identifier resolver chain for name lookup
1697  // purposes.
1698  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1699    Invalid = true;
1700
1701  // Mark this as an anonymous struct/union type. Note that we do not
1702  // do this until after we have already checked and injected the
1703  // members of this anonymous struct/union type, because otherwise
1704  // the members could be injected twice: once by DeclContext when it
1705  // builds its lookup table, and once by
1706  // InjectAnonymousStructOrUnionMembers.
1707  Record->setAnonymousStructOrUnion(true);
1708
1709  if (Invalid)
1710    Anon->setInvalidDecl();
1711
1712  return DeclPtrTy::make(Anon);
1713}
1714
1715
1716/// GetNameForDeclarator - Determine the full declaration name for the
1717/// given Declarator.
1718DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1719  return GetNameFromUnqualifiedId(D.getName());
1720}
1721
1722/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1723DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1724  switch (Name.getKind()) {
1725    case UnqualifiedId::IK_Identifier:
1726      return DeclarationName(Name.Identifier);
1727
1728    case UnqualifiedId::IK_OperatorFunctionId:
1729      return Context.DeclarationNames.getCXXOperatorName(
1730                                              Name.OperatorFunctionId.Operator);
1731
1732    case UnqualifiedId::IK_LiteralOperatorId:
1733      return Context.DeclarationNames.getCXXLiteralOperatorName(
1734                                                               Name.Identifier);
1735
1736    case UnqualifiedId::IK_ConversionFunctionId: {
1737      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1738      if (Ty.isNull())
1739        return DeclarationName();
1740
1741      return Context.DeclarationNames.getCXXConversionFunctionName(
1742                                                  Context.getCanonicalType(Ty));
1743    }
1744
1745    case UnqualifiedId::IK_ConstructorName: {
1746      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1747      if (Ty.isNull())
1748        return DeclarationName();
1749
1750      return Context.DeclarationNames.getCXXConstructorName(
1751                                                  Context.getCanonicalType(Ty));
1752    }
1753
1754    case UnqualifiedId::IK_ConstructorTemplateId: {
1755      // In well-formed code, we can only have a constructor
1756      // template-id that refers to the current context, so go there
1757      // to find the actual type being constructed.
1758      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1759      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1760        return DeclarationName();
1761
1762      // Determine the type of the class being constructed.
1763      QualType CurClassType = Context.getTypeDeclType(CurClass);
1764
1765      // FIXME: Check two things: that the template-id names the same type as
1766      // CurClassType, and that the template-id does not occur when the name
1767      // was qualified.
1768
1769      return Context.DeclarationNames.getCXXConstructorName(
1770                                       Context.getCanonicalType(CurClassType));
1771    }
1772
1773    case UnqualifiedId::IK_DestructorName: {
1774      QualType Ty = GetTypeFromParser(Name.DestructorName);
1775      if (Ty.isNull())
1776        return DeclarationName();
1777
1778      return Context.DeclarationNames.getCXXDestructorName(
1779                                                           Context.getCanonicalType(Ty));
1780    }
1781
1782    case UnqualifiedId::IK_TemplateId: {
1783      TemplateName TName
1784        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1785      return Context.getNameForTemplate(TName);
1786    }
1787  }
1788
1789  assert(false && "Unknown name kind");
1790  return DeclarationName();
1791}
1792
1793/// isNearlyMatchingFunction - Determine whether the C++ functions
1794/// Declaration and Definition are "nearly" matching. This heuristic
1795/// is used to improve diagnostics in the case where an out-of-line
1796/// function definition doesn't match any declaration within
1797/// the class or namespace.
1798static bool isNearlyMatchingFunction(ASTContext &Context,
1799                                     FunctionDecl *Declaration,
1800                                     FunctionDecl *Definition) {
1801  if (Declaration->param_size() != Definition->param_size())
1802    return false;
1803  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1804    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1805    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1806
1807    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1808                                        DefParamTy.getNonReferenceType()))
1809      return false;
1810  }
1811
1812  return true;
1813}
1814
1815Sema::DeclPtrTy
1816Sema::HandleDeclarator(Scope *S, Declarator &D,
1817                       MultiTemplateParamsArg TemplateParamLists,
1818                       bool IsFunctionDefinition) {
1819  DeclarationName Name = GetNameForDeclarator(D);
1820
1821  // All of these full declarators require an identifier.  If it doesn't have
1822  // one, the ParsedFreeStandingDeclSpec action should be used.
1823  if (!Name) {
1824    if (!D.isInvalidType())  // Reject this if we think it is valid.
1825      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1826           diag::err_declarator_need_ident)
1827        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1828    return DeclPtrTy();
1829  }
1830
1831  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1832  // we find one that is.
1833  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1834         (S->getFlags() & Scope::TemplateParamScope) != 0)
1835    S = S->getParent();
1836
1837  // If this is an out-of-line definition of a member of a class template
1838  // or class template partial specialization, we may need to rebuild the
1839  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1840  // for more information.
1841  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1842  // handle expressions properly.
1843  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1844  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1845      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1846      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1847       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1848       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1849       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1850    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1851      // FIXME: Preserve type source info.
1852      QualType T = GetTypeFromParser(DS.getTypeRep());
1853
1854      DeclContext *SavedContext = CurContext;
1855      CurContext = DC;
1856      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1857      CurContext = SavedContext;
1858
1859      if (T.isNull())
1860        return DeclPtrTy();
1861      DS.UpdateTypeRep(T.getAsOpaquePtr());
1862    }
1863  }
1864
1865  DeclContext *DC;
1866  NamedDecl *New;
1867
1868  TypeSourceInfo *TInfo = 0;
1869  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1870
1871  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1872                        ForRedeclaration);
1873
1874  // See if this is a redefinition of a variable in the same scope.
1875  if (D.getCXXScopeSpec().isInvalid()) {
1876    DC = CurContext;
1877    D.setInvalidType();
1878  } else if (!D.getCXXScopeSpec().isSet()) {
1879    bool IsLinkageLookup = false;
1880
1881    // If the declaration we're planning to build will be a function
1882    // or object with linkage, then look for another declaration with
1883    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1884    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1885      /* Do nothing*/;
1886    else if (R->isFunctionType()) {
1887      if (CurContext->isFunctionOrMethod() ||
1888          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1889        IsLinkageLookup = true;
1890    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1891      IsLinkageLookup = true;
1892    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1893             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1894      IsLinkageLookup = true;
1895
1896    if (IsLinkageLookup)
1897      Previous.clear(LookupRedeclarationWithLinkage);
1898
1899    DC = CurContext;
1900    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1901  } else { // Something like "int foo::x;"
1902    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1903
1904    if (!DC) {
1905      // If we could not compute the declaration context, it's because the
1906      // declaration context is dependent but does not refer to a class,
1907      // class template, or class template partial specialization. Complain
1908      // and return early, to avoid the coming semantic disaster.
1909      Diag(D.getIdentifierLoc(),
1910           diag::err_template_qualified_declarator_no_match)
1911        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1912        << D.getCXXScopeSpec().getRange();
1913      return DeclPtrTy();
1914    }
1915
1916    if (!DC->isDependentContext() &&
1917        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1918      return DeclPtrTy();
1919
1920    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1921      Diag(D.getIdentifierLoc(),
1922           diag::err_member_def_undefined_record)
1923        << Name << DC << D.getCXXScopeSpec().getRange();
1924      D.setInvalidType();
1925    }
1926
1927    LookupQualifiedName(Previous, DC);
1928
1929    // Don't consider using declarations as previous declarations for
1930    // out-of-line members.
1931    RemoveUsingDecls(Previous);
1932
1933    // C++ 7.3.1.2p2:
1934    // Members (including explicit specializations of templates) of a named
1935    // namespace can also be defined outside that namespace by explicit
1936    // qualification of the name being defined, provided that the entity being
1937    // defined was already declared in the namespace and the definition appears
1938    // after the point of declaration in a namespace that encloses the
1939    // declarations namespace.
1940    //
1941    // Note that we only check the context at this point. We don't yet
1942    // have enough information to make sure that PrevDecl is actually
1943    // the declaration we want to match. For example, given:
1944    //
1945    //   class X {
1946    //     void f();
1947    //     void f(float);
1948    //   };
1949    //
1950    //   void X::f(int) { } // ill-formed
1951    //
1952    // In this case, PrevDecl will point to the overload set
1953    // containing the two f's declared in X, but neither of them
1954    // matches.
1955
1956    // First check whether we named the global scope.
1957    if (isa<TranslationUnitDecl>(DC)) {
1958      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1959        << Name << D.getCXXScopeSpec().getRange();
1960    } else {
1961      DeclContext *Cur = CurContext;
1962      while (isa<LinkageSpecDecl>(Cur))
1963        Cur = Cur->getParent();
1964      if (!Cur->Encloses(DC)) {
1965        // The qualifying scope doesn't enclose the original declaration.
1966        // Emit diagnostic based on current scope.
1967        SourceLocation L = D.getIdentifierLoc();
1968        SourceRange R = D.getCXXScopeSpec().getRange();
1969        if (isa<FunctionDecl>(Cur))
1970          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1971        else
1972          Diag(L, diag::err_invalid_declarator_scope)
1973            << Name << cast<NamedDecl>(DC) << R;
1974        D.setInvalidType();
1975      }
1976    }
1977  }
1978
1979  if (Previous.isSingleResult() &&
1980      Previous.getFoundDecl()->isTemplateParameter()) {
1981    // Maybe we will complain about the shadowed template parameter.
1982    if (!D.isInvalidType())
1983      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1984                                          Previous.getFoundDecl()))
1985        D.setInvalidType();
1986
1987    // Just pretend that we didn't see the previous declaration.
1988    Previous.clear();
1989  }
1990
1991  // In C++, the previous declaration we find might be a tag type
1992  // (class or enum). In this case, the new declaration will hide the
1993  // tag type. Note that this does does not apply if we're declaring a
1994  // typedef (C++ [dcl.typedef]p4).
1995  if (Previous.isSingleTagDecl() &&
1996      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1997    Previous.clear();
1998
1999  bool Redeclaration = false;
2000  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2001    if (TemplateParamLists.size()) {
2002      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2003      return DeclPtrTy();
2004    }
2005
2006    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2007  } else if (R->isFunctionType()) {
2008    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2009                                  move(TemplateParamLists),
2010                                  IsFunctionDefinition, Redeclaration);
2011  } else {
2012    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2013                                  move(TemplateParamLists),
2014                                  Redeclaration);
2015  }
2016
2017  if (New == 0)
2018    return DeclPtrTy();
2019
2020  // If this has an identifier and is not an invalid redeclaration or
2021  // function template specialization, add it to the scope stack.
2022  if (Name && !(Redeclaration && New->isInvalidDecl()))
2023    PushOnScopeChains(New, S);
2024
2025  return DeclPtrTy::make(New);
2026}
2027
2028/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2029/// types into constant array types in certain situations which would otherwise
2030/// be errors (for GCC compatibility).
2031static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2032                                                    ASTContext &Context,
2033                                                    bool &SizeIsNegative) {
2034  // This method tries to turn a variable array into a constant
2035  // array even when the size isn't an ICE.  This is necessary
2036  // for compatibility with code that depends on gcc's buggy
2037  // constant expression folding, like struct {char x[(int)(char*)2];}
2038  SizeIsNegative = false;
2039
2040  QualifierCollector Qs;
2041  const Type *Ty = Qs.strip(T);
2042
2043  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2044    QualType Pointee = PTy->getPointeeType();
2045    QualType FixedType =
2046        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2047    if (FixedType.isNull()) return FixedType;
2048    FixedType = Context.getPointerType(FixedType);
2049    return Qs.apply(FixedType);
2050  }
2051
2052  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2053  if (!VLATy)
2054    return QualType();
2055  // FIXME: We should probably handle this case
2056  if (VLATy->getElementType()->isVariablyModifiedType())
2057    return QualType();
2058
2059  Expr::EvalResult EvalResult;
2060  if (!VLATy->getSizeExpr() ||
2061      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2062      !EvalResult.Val.isInt())
2063    return QualType();
2064
2065  llvm::APSInt &Res = EvalResult.Val.getInt();
2066  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2067    // TODO: preserve the size expression in declarator info
2068    return Context.getConstantArrayType(VLATy->getElementType(),
2069                                        Res, ArrayType::Normal, 0);
2070  }
2071
2072  SizeIsNegative = true;
2073  return QualType();
2074}
2075
2076/// \brief Register the given locally-scoped external C declaration so
2077/// that it can be found later for redeclarations
2078void
2079Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2080                                       const LookupResult &Previous,
2081                                       Scope *S) {
2082  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2083         "Decl is not a locally-scoped decl!");
2084  // Note that we have a locally-scoped external with this name.
2085  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2086
2087  if (!Previous.isSingleResult())
2088    return;
2089
2090  NamedDecl *PrevDecl = Previous.getFoundDecl();
2091
2092  // If there was a previous declaration of this variable, it may be
2093  // in our identifier chain. Update the identifier chain with the new
2094  // declaration.
2095  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2096    // The previous declaration was found on the identifer resolver
2097    // chain, so remove it from its scope.
2098    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2099      S = S->getParent();
2100
2101    if (S)
2102      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2103  }
2104}
2105
2106/// \brief Diagnose function specifiers on a declaration of an identifier that
2107/// does not identify a function.
2108void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2109  // FIXME: We should probably indicate the identifier in question to avoid
2110  // confusion for constructs like "inline int a(), b;"
2111  if (D.getDeclSpec().isInlineSpecified())
2112    Diag(D.getDeclSpec().getInlineSpecLoc(),
2113         diag::err_inline_non_function);
2114
2115  if (D.getDeclSpec().isVirtualSpecified())
2116    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2117         diag::err_virtual_non_function);
2118
2119  if (D.getDeclSpec().isExplicitSpecified())
2120    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2121         diag::err_explicit_non_function);
2122}
2123
2124NamedDecl*
2125Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2126                             QualType R,  TypeSourceInfo *TInfo,
2127                             LookupResult &Previous, bool &Redeclaration) {
2128  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2129  if (D.getCXXScopeSpec().isSet()) {
2130    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2131      << D.getCXXScopeSpec().getRange();
2132    D.setInvalidType();
2133    // Pretend we didn't see the scope specifier.
2134    DC = CurContext;
2135    Previous.clear();
2136  }
2137
2138  if (getLangOptions().CPlusPlus) {
2139    // Check that there are no default arguments (C++ only).
2140    CheckExtraCXXDefaultArguments(D);
2141  }
2142
2143  DiagnoseFunctionSpecifiers(D);
2144
2145  if (D.getDeclSpec().isThreadSpecified())
2146    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2147
2148  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2149  if (!NewTD) return 0;
2150
2151  // Handle attributes prior to checking for duplicates in MergeVarDecl
2152  ProcessDeclAttributes(S, NewTD, D);
2153
2154  // Merge the decl with the existing one if appropriate. If the decl is
2155  // in an outer scope, it isn't the same thing.
2156  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2157  if (!Previous.empty()) {
2158    Redeclaration = true;
2159    MergeTypeDefDecl(NewTD, Previous);
2160  }
2161
2162  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2163  // then it shall have block scope.
2164  QualType T = NewTD->getUnderlyingType();
2165  if (T->isVariablyModifiedType()) {
2166    FunctionNeedsScopeChecking() = true;
2167
2168    if (S->getFnParent() == 0) {
2169      bool SizeIsNegative;
2170      QualType FixedTy =
2171          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2172      if (!FixedTy.isNull()) {
2173        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2174        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2175      } else {
2176        if (SizeIsNegative)
2177          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2178        else if (T->isVariableArrayType())
2179          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2180        else
2181          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2182        NewTD->setInvalidDecl();
2183      }
2184    }
2185  }
2186
2187  // If this is the C FILE type, notify the AST context.
2188  if (IdentifierInfo *II = NewTD->getIdentifier())
2189    if (!NewTD->isInvalidDecl() &&
2190        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2191      if (II->isStr("FILE"))
2192        Context.setFILEDecl(NewTD);
2193      else if (II->isStr("jmp_buf"))
2194        Context.setjmp_bufDecl(NewTD);
2195      else if (II->isStr("sigjmp_buf"))
2196        Context.setsigjmp_bufDecl(NewTD);
2197    }
2198
2199  return NewTD;
2200}
2201
2202/// \brief Determines whether the given declaration is an out-of-scope
2203/// previous declaration.
2204///
2205/// This routine should be invoked when name lookup has found a
2206/// previous declaration (PrevDecl) that is not in the scope where a
2207/// new declaration by the same name is being introduced. If the new
2208/// declaration occurs in a local scope, previous declarations with
2209/// linkage may still be considered previous declarations (C99
2210/// 6.2.2p4-5, C++ [basic.link]p6).
2211///
2212/// \param PrevDecl the previous declaration found by name
2213/// lookup
2214///
2215/// \param DC the context in which the new declaration is being
2216/// declared.
2217///
2218/// \returns true if PrevDecl is an out-of-scope previous declaration
2219/// for a new delcaration with the same name.
2220static bool
2221isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2222                                ASTContext &Context) {
2223  if (!PrevDecl)
2224    return 0;
2225
2226  if (!PrevDecl->hasLinkage())
2227    return false;
2228
2229  if (Context.getLangOptions().CPlusPlus) {
2230    // C++ [basic.link]p6:
2231    //   If there is a visible declaration of an entity with linkage
2232    //   having the same name and type, ignoring entities declared
2233    //   outside the innermost enclosing namespace scope, the block
2234    //   scope declaration declares that same entity and receives the
2235    //   linkage of the previous declaration.
2236    DeclContext *OuterContext = DC->getLookupContext();
2237    if (!OuterContext->isFunctionOrMethod())
2238      // This rule only applies to block-scope declarations.
2239      return false;
2240    else {
2241      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2242      if (PrevOuterContext->isRecord())
2243        // We found a member function: ignore it.
2244        return false;
2245      else {
2246        // Find the innermost enclosing namespace for the new and
2247        // previous declarations.
2248        while (!OuterContext->isFileContext())
2249          OuterContext = OuterContext->getParent();
2250        while (!PrevOuterContext->isFileContext())
2251          PrevOuterContext = PrevOuterContext->getParent();
2252
2253        // The previous declaration is in a different namespace, so it
2254        // isn't the same function.
2255        if (OuterContext->getPrimaryContext() !=
2256            PrevOuterContext->getPrimaryContext())
2257          return false;
2258      }
2259    }
2260  }
2261
2262  return true;
2263}
2264
2265static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2266  CXXScopeSpec &SS = D.getCXXScopeSpec();
2267  if (!SS.isSet()) return;
2268  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2269                       SS.getRange());
2270}
2271
2272NamedDecl*
2273Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2274                              QualType R, TypeSourceInfo *TInfo,
2275                              LookupResult &Previous,
2276                              MultiTemplateParamsArg TemplateParamLists,
2277                              bool &Redeclaration) {
2278  DeclarationName Name = GetNameForDeclarator(D);
2279
2280  // Check that there are no default arguments (C++ only).
2281  if (getLangOptions().CPlusPlus)
2282    CheckExtraCXXDefaultArguments(D);
2283
2284  VarDecl *NewVD;
2285  VarDecl::StorageClass SC;
2286  switch (D.getDeclSpec().getStorageClassSpec()) {
2287  default: assert(0 && "Unknown storage class!");
2288  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2289  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2290  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2291  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2292  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2293  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2294  case DeclSpec::SCS_mutable:
2295    // mutable can only appear on non-static class members, so it's always
2296    // an error here
2297    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2298    D.setInvalidType();
2299    SC = VarDecl::None;
2300    break;
2301  }
2302
2303  IdentifierInfo *II = Name.getAsIdentifierInfo();
2304  if (!II) {
2305    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2306      << Name.getAsString();
2307    return 0;
2308  }
2309
2310  DiagnoseFunctionSpecifiers(D);
2311
2312  if (!DC->isRecord() && S->getFnParent() == 0) {
2313    // C99 6.9p2: The storage-class specifiers auto and register shall not
2314    // appear in the declaration specifiers in an external declaration.
2315    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2316
2317      // If this is a register variable with an asm label specified, then this
2318      // is a GNU extension.
2319      if (SC == VarDecl::Register && D.getAsmLabel())
2320        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2321      else
2322        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2323      D.setInvalidType();
2324    }
2325  }
2326  if (DC->isRecord() && !CurContext->isRecord()) {
2327    // This is an out-of-line definition of a static data member.
2328    if (SC == VarDecl::Static) {
2329      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2330           diag::err_static_out_of_line)
2331        << CodeModificationHint::CreateRemoval(
2332                                      D.getDeclSpec().getStorageClassSpecLoc());
2333    } else if (SC == VarDecl::None)
2334      SC = VarDecl::Static;
2335  }
2336  if (SC == VarDecl::Static) {
2337    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2338      if (RD->isLocalClass())
2339        Diag(D.getIdentifierLoc(),
2340             diag::err_static_data_member_not_allowed_in_local_class)
2341          << Name << RD->getDeclName();
2342    }
2343  }
2344
2345  // Match up the template parameter lists with the scope specifier, then
2346  // determine whether we have a template or a template specialization.
2347  bool isExplicitSpecialization = false;
2348  if (TemplateParameterList *TemplateParams
2349        = MatchTemplateParametersToScopeSpecifier(
2350                                  D.getDeclSpec().getSourceRange().getBegin(),
2351                                                  D.getCXXScopeSpec(),
2352                        (TemplateParameterList**)TemplateParamLists.get(),
2353                                                   TemplateParamLists.size(),
2354                                                  isExplicitSpecialization)) {
2355    if (TemplateParams->size() > 0) {
2356      // There is no such thing as a variable template.
2357      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2358        << II
2359        << SourceRange(TemplateParams->getTemplateLoc(),
2360                       TemplateParams->getRAngleLoc());
2361      return 0;
2362    } else {
2363      // There is an extraneous 'template<>' for this variable. Complain
2364      // about it, but allow the declaration of the variable.
2365      Diag(TemplateParams->getTemplateLoc(),
2366           diag::err_template_variable_noparams)
2367        << II
2368        << SourceRange(TemplateParams->getTemplateLoc(),
2369                       TemplateParams->getRAngleLoc());
2370
2371      isExplicitSpecialization = true;
2372    }
2373  }
2374
2375  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2376                          II, R, TInfo, SC);
2377
2378  if (D.isInvalidType())
2379    NewVD->setInvalidDecl();
2380
2381  SetNestedNameSpecifier(NewVD, D);
2382
2383  if (D.getDeclSpec().isThreadSpecified()) {
2384    if (NewVD->hasLocalStorage())
2385      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2386    else if (!Context.Target.isTLSSupported())
2387      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2388    else
2389      NewVD->setThreadSpecified(true);
2390  }
2391
2392  // Set the lexical context. If the declarator has a C++ scope specifier, the
2393  // lexical context will be different from the semantic context.
2394  NewVD->setLexicalDeclContext(CurContext);
2395
2396  // Handle attributes prior to checking for duplicates in MergeVarDecl
2397  ProcessDeclAttributes(S, NewVD, D);
2398
2399  // Handle GNU asm-label extension (encoded as an attribute).
2400  if (Expr *E = (Expr*) D.getAsmLabel()) {
2401    // The parser guarantees this is a string.
2402    StringLiteral *SE = cast<StringLiteral>(E);
2403    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2404  }
2405
2406  // Diagnose shadowed variables before filtering for scope.
2407  if (!D.getCXXScopeSpec().isSet())
2408    CheckShadow(S, NewVD, Previous);
2409
2410  // Don't consider existing declarations that are in a different
2411  // scope and are out-of-semantic-context declarations (if the new
2412  // declaration has linkage).
2413  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2414
2415  // Merge the decl with the existing one if appropriate.
2416  if (!Previous.empty()) {
2417    if (Previous.isSingleResult() &&
2418        isa<FieldDecl>(Previous.getFoundDecl()) &&
2419        D.getCXXScopeSpec().isSet()) {
2420      // The user tried to define a non-static data member
2421      // out-of-line (C++ [dcl.meaning]p1).
2422      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2423        << D.getCXXScopeSpec().getRange();
2424      Previous.clear();
2425      NewVD->setInvalidDecl();
2426    }
2427  } else if (D.getCXXScopeSpec().isSet()) {
2428    // No previous declaration in the qualifying scope.
2429    Diag(D.getIdentifierLoc(), diag::err_no_member)
2430      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2431      << D.getCXXScopeSpec().getRange();
2432    NewVD->setInvalidDecl();
2433  }
2434
2435  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2436
2437  // This is an explicit specialization of a static data member. Check it.
2438  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2439      CheckMemberSpecialization(NewVD, Previous))
2440    NewVD->setInvalidDecl();
2441
2442  // attributes declared post-definition are currently ignored
2443  if (Previous.isSingleResult()) {
2444    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2445    if (Def && (Def = Def->getDefinition()) &&
2446        Def != NewVD && D.hasAttributes()) {
2447      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2448      Diag(Def->getLocation(), diag::note_previous_definition);
2449    }
2450  }
2451
2452  // If this is a locally-scoped extern C variable, update the map of
2453  // such variables.
2454  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2455      !NewVD->isInvalidDecl())
2456    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2457
2458  return NewVD;
2459}
2460
2461/// \brief Diagnose variable or built-in function shadowing.  Implements
2462/// -Wshadow.
2463///
2464/// This method is called whenever a VarDecl is added to a "useful"
2465/// scope.
2466///
2467/// \param S the scope in which the shadowing name is being declared
2468/// \param R the lookup of the name
2469///
2470void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2471  // Return if warning is ignored.
2472  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2473    return;
2474
2475  // Don't diagnose declarations at file scope.  The scope might not
2476  // have a DeclContext if (e.g.) we're parsing a function prototype.
2477  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2478  if (NewDC && NewDC->isFileContext())
2479    return;
2480
2481  // Only diagnose if we're shadowing an unambiguous field or variable.
2482  if (R.getResultKind() != LookupResult::Found)
2483    return;
2484
2485  NamedDecl* ShadowedDecl = R.getFoundDecl();
2486  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2487    return;
2488
2489  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2490
2491  // Only warn about certain kinds of shadowing for class members.
2492  if (NewDC && NewDC->isRecord()) {
2493    // In particular, don't warn about shadowing non-class members.
2494    if (!OldDC->isRecord())
2495      return;
2496
2497    // TODO: should we warn about static data members shadowing
2498    // static data members from base classes?
2499
2500    // TODO: don't diagnose for inaccessible shadowed members.
2501    // This is hard to do perfectly because we might friend the
2502    // shadowing context, but that's just a false negative.
2503  }
2504
2505  // Determine what kind of declaration we're shadowing.
2506  unsigned Kind;
2507  if (isa<RecordDecl>(OldDC)) {
2508    if (isa<FieldDecl>(ShadowedDecl))
2509      Kind = 3; // field
2510    else
2511      Kind = 2; // static data member
2512  } else if (OldDC->isFileContext())
2513    Kind = 1; // global
2514  else
2515    Kind = 0; // local
2516
2517  DeclarationName Name = R.getLookupName();
2518
2519  // Emit warning and note.
2520  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2521  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2522}
2523
2524/// \brief Check -Wshadow without the advantage of a previous lookup.
2525void Sema::CheckShadow(Scope *S, VarDecl *D) {
2526  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2527                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2528  LookupName(R, S);
2529  CheckShadow(S, D, R);
2530}
2531
2532/// \brief Perform semantic checking on a newly-created variable
2533/// declaration.
2534///
2535/// This routine performs all of the type-checking required for a
2536/// variable declaration once it has been built. It is used both to
2537/// check variables after they have been parsed and their declarators
2538/// have been translated into a declaration, and to check variables
2539/// that have been instantiated from a template.
2540///
2541/// Sets NewVD->isInvalidDecl() if an error was encountered.
2542void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2543                                    LookupResult &Previous,
2544                                    bool &Redeclaration) {
2545  // If the decl is already known invalid, don't check it.
2546  if (NewVD->isInvalidDecl())
2547    return;
2548
2549  QualType T = NewVD->getType();
2550
2551  if (T->isObjCInterfaceType()) {
2552    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2553    return NewVD->setInvalidDecl();
2554  }
2555
2556  // Emit an error if an address space was applied to decl with local storage.
2557  // This includes arrays of objects with address space qualifiers, but not
2558  // automatic variables that point to other address spaces.
2559  // ISO/IEC TR 18037 S5.1.2
2560  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2561    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2562    return NewVD->setInvalidDecl();
2563  }
2564
2565  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2566      && !NewVD->hasAttr<BlocksAttr>())
2567    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2568
2569  bool isVM = T->isVariablyModifiedType();
2570  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2571      NewVD->hasAttr<BlocksAttr>() ||
2572      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2573      // However, this turns on the scope checker for everything with a variable
2574      // which may impact compile time.  See if we can find a better solution
2575      // to this, perhaps only checking functions that contain gotos in C++?
2576      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2577    FunctionNeedsScopeChecking() = true;
2578
2579  if ((isVM && NewVD->hasLinkage()) ||
2580      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2581    bool SizeIsNegative;
2582    QualType FixedTy =
2583        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2584
2585    if (FixedTy.isNull() && T->isVariableArrayType()) {
2586      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2587      // FIXME: This won't give the correct result for
2588      // int a[10][n];
2589      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2590
2591      if (NewVD->isFileVarDecl())
2592        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2593        << SizeRange;
2594      else if (NewVD->getStorageClass() == VarDecl::Static)
2595        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2596        << SizeRange;
2597      else
2598        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2599        << SizeRange;
2600      return NewVD->setInvalidDecl();
2601    }
2602
2603    if (FixedTy.isNull()) {
2604      if (NewVD->isFileVarDecl())
2605        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2606      else
2607        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2608      return NewVD->setInvalidDecl();
2609    }
2610
2611    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2612    NewVD->setType(FixedTy);
2613  }
2614
2615  if (Previous.empty() && NewVD->isExternC()) {
2616    // Since we did not find anything by this name and we're declaring
2617    // an extern "C" variable, look for a non-visible extern "C"
2618    // declaration with the same name.
2619    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2620      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2621    if (Pos != LocallyScopedExternalDecls.end())
2622      Previous.addDecl(Pos->second);
2623  }
2624
2625  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2626    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2627      << T;
2628    return NewVD->setInvalidDecl();
2629  }
2630
2631  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2632    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2633    return NewVD->setInvalidDecl();
2634  }
2635
2636  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2637    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2638    return NewVD->setInvalidDecl();
2639  }
2640
2641  if (!Previous.empty()) {
2642    Redeclaration = true;
2643    MergeVarDecl(NewVD, Previous);
2644  }
2645}
2646
2647/// \brief Data used with FindOverriddenMethod
2648struct FindOverriddenMethodData {
2649  Sema *S;
2650  CXXMethodDecl *Method;
2651};
2652
2653/// \brief Member lookup function that determines whether a given C++
2654/// method overrides a method in a base class, to be used with
2655/// CXXRecordDecl::lookupInBases().
2656static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2657                                 CXXBasePath &Path,
2658                                 void *UserData) {
2659  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2660
2661  FindOverriddenMethodData *Data
2662    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2663
2664  DeclarationName Name = Data->Method->getDeclName();
2665
2666  // FIXME: Do we care about other names here too?
2667  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2668    // We really want to find the base class constructor here.
2669    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2670    CanQualType CT = Data->S->Context.getCanonicalType(T);
2671
2672    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2673  }
2674
2675  for (Path.Decls = BaseRecord->lookup(Name);
2676       Path.Decls.first != Path.Decls.second;
2677       ++Path.Decls.first) {
2678    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2679      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2680        return true;
2681    }
2682  }
2683
2684  return false;
2685}
2686
2687/// AddOverriddenMethods - See if a method overrides any in the base classes,
2688/// and if so, check that it's a valid override and remember it.
2689void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2690  // Look for virtual methods in base classes that this method might override.
2691  CXXBasePaths Paths;
2692  FindOverriddenMethodData Data;
2693  Data.Method = MD;
2694  Data.S = this;
2695  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2696    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2697         E = Paths.found_decls_end(); I != E; ++I) {
2698      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2699        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2700            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2701            !CheckOverridingFunctionAttributes(MD, OldMD))
2702          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2703      }
2704    }
2705  }
2706}
2707
2708NamedDecl*
2709Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2710                              QualType R, TypeSourceInfo *TInfo,
2711                              LookupResult &Previous,
2712                              MultiTemplateParamsArg TemplateParamLists,
2713                              bool IsFunctionDefinition, bool &Redeclaration) {
2714  assert(R.getTypePtr()->isFunctionType());
2715
2716  DeclarationName Name = GetNameForDeclarator(D);
2717  FunctionDecl::StorageClass SC = FunctionDecl::None;
2718  switch (D.getDeclSpec().getStorageClassSpec()) {
2719  default: assert(0 && "Unknown storage class!");
2720  case DeclSpec::SCS_auto:
2721  case DeclSpec::SCS_register:
2722  case DeclSpec::SCS_mutable:
2723    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2724         diag::err_typecheck_sclass_func);
2725    D.setInvalidType();
2726    break;
2727  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2728  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2729  case DeclSpec::SCS_static: {
2730    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2731      // C99 6.7.1p5:
2732      //   The declaration of an identifier for a function that has
2733      //   block scope shall have no explicit storage-class specifier
2734      //   other than extern
2735      // See also (C++ [dcl.stc]p4).
2736      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2737           diag::err_static_block_func);
2738      SC = FunctionDecl::None;
2739    } else
2740      SC = FunctionDecl::Static;
2741    break;
2742  }
2743  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2744  }
2745
2746  if (D.getDeclSpec().isThreadSpecified())
2747    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2748
2749  bool isFriend = D.getDeclSpec().isFriendSpecified();
2750  bool isInline = D.getDeclSpec().isInlineSpecified();
2751  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2752  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2753
2754  // Check that the return type is not an abstract class type.
2755  // For record types, this is done by the AbstractClassUsageDiagnoser once
2756  // the class has been completely parsed.
2757  if (!DC->isRecord() &&
2758      RequireNonAbstractType(D.getIdentifierLoc(),
2759                             R->getAs<FunctionType>()->getResultType(),
2760                             diag::err_abstract_type_in_decl,
2761                             AbstractReturnType))
2762    D.setInvalidType();
2763
2764  // Do not allow returning a objc interface by-value.
2765  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2766    Diag(D.getIdentifierLoc(),
2767         diag::err_object_cannot_be_passed_returned_by_value) << 0
2768      << R->getAs<FunctionType>()->getResultType();
2769    D.setInvalidType();
2770  }
2771
2772  bool isVirtualOkay = false;
2773  FunctionDecl *NewFD;
2774
2775  if (isFriend) {
2776    // C++ [class.friend]p5
2777    //   A function can be defined in a friend declaration of a
2778    //   class . . . . Such a function is implicitly inline.
2779    isInline |= IsFunctionDefinition;
2780  }
2781
2782  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2783    // This is a C++ constructor declaration.
2784    assert(DC->isRecord() &&
2785           "Constructors can only be declared in a member context");
2786
2787    R = CheckConstructorDeclarator(D, R, SC);
2788
2789    // Create the new declaration
2790    NewFD = CXXConstructorDecl::Create(Context,
2791                                       cast<CXXRecordDecl>(DC),
2792                                       D.getIdentifierLoc(), Name, R, TInfo,
2793                                       isExplicit, isInline,
2794                                       /*isImplicitlyDeclared=*/false);
2795  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2796    // This is a C++ destructor declaration.
2797    if (DC->isRecord()) {
2798      R = CheckDestructorDeclarator(D, SC);
2799
2800      NewFD = CXXDestructorDecl::Create(Context,
2801                                        cast<CXXRecordDecl>(DC),
2802                                        D.getIdentifierLoc(), Name, R,
2803                                        isInline,
2804                                        /*isImplicitlyDeclared=*/false);
2805      NewFD->setTypeSourceInfo(TInfo);
2806
2807      isVirtualOkay = true;
2808    } else {
2809      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2810
2811      // Create a FunctionDecl to satisfy the function definition parsing
2812      // code path.
2813      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2814                                   Name, R, TInfo, SC, isInline,
2815                                   /*hasPrototype=*/true);
2816      D.setInvalidType();
2817    }
2818  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2819    if (!DC->isRecord()) {
2820      Diag(D.getIdentifierLoc(),
2821           diag::err_conv_function_not_member);
2822      return 0;
2823    }
2824
2825    CheckConversionDeclarator(D, R, SC);
2826    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2827                                      D.getIdentifierLoc(), Name, R, TInfo,
2828                                      isInline, isExplicit);
2829
2830    isVirtualOkay = true;
2831  } else if (DC->isRecord()) {
2832    // If the of the function is the same as the name of the record, then this
2833    // must be an invalid constructor that has a return type.
2834    // (The parser checks for a return type and makes the declarator a
2835    // constructor if it has no return type).
2836    // must have an invalid constructor that has a return type
2837    if (Name.getAsIdentifierInfo() &&
2838        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2839      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2840        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2841        << SourceRange(D.getIdentifierLoc());
2842      return 0;
2843    }
2844
2845    bool isStatic = SC == FunctionDecl::Static;
2846
2847    // [class.free]p1:
2848    // Any allocation function for a class T is a static member
2849    // (even if not explicitly declared static).
2850    if (Name.getCXXOverloadedOperator() == OO_New ||
2851        Name.getCXXOverloadedOperator() == OO_Array_New)
2852      isStatic = true;
2853
2854    // [class.free]p6 Any deallocation function for a class X is a static member
2855    // (even if not explicitly declared static).
2856    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2857        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2858      isStatic = true;
2859
2860    // This is a C++ method declaration.
2861    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2862                                  D.getIdentifierLoc(), Name, R, TInfo,
2863                                  isStatic, isInline);
2864
2865    isVirtualOkay = !isStatic;
2866  } else {
2867    // Determine whether the function was written with a
2868    // prototype. This true when:
2869    //   - we're in C++ (where every function has a prototype),
2870    //   - there is a prototype in the declarator, or
2871    //   - the type R of the function is some kind of typedef or other reference
2872    //     to a type name (which eventually refers to a function type).
2873    bool HasPrototype =
2874       getLangOptions().CPlusPlus ||
2875       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2876       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2877
2878    NewFD = FunctionDecl::Create(Context, DC,
2879                                 D.getIdentifierLoc(),
2880                                 Name, R, TInfo, SC, isInline, HasPrototype);
2881  }
2882
2883  if (D.isInvalidType())
2884    NewFD->setInvalidDecl();
2885
2886  SetNestedNameSpecifier(NewFD, D);
2887
2888  // Set the lexical context. If the declarator has a C++
2889  // scope specifier, or is the object of a friend declaration, the
2890  // lexical context will be different from the semantic context.
2891  NewFD->setLexicalDeclContext(CurContext);
2892
2893  // Match up the template parameter lists with the scope specifier, then
2894  // determine whether we have a template or a template specialization.
2895  FunctionTemplateDecl *FunctionTemplate = 0;
2896  bool isExplicitSpecialization = false;
2897  bool isFunctionTemplateSpecialization = false;
2898  if (TemplateParameterList *TemplateParams
2899        = MatchTemplateParametersToScopeSpecifier(
2900                                  D.getDeclSpec().getSourceRange().getBegin(),
2901                                  D.getCXXScopeSpec(),
2902                           (TemplateParameterList**)TemplateParamLists.get(),
2903                                                  TemplateParamLists.size(),
2904                                                  isExplicitSpecialization)) {
2905    if (TemplateParams->size() > 0) {
2906      // This is a function template
2907
2908      // Check that we can declare a template here.
2909      if (CheckTemplateDeclScope(S, TemplateParams))
2910        return 0;
2911
2912      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2913                                                      NewFD->getLocation(),
2914                                                      Name, TemplateParams,
2915                                                      NewFD);
2916      FunctionTemplate->setLexicalDeclContext(CurContext);
2917      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2918    } else {
2919      // This is a function template specialization.
2920      isFunctionTemplateSpecialization = true;
2921
2922      // C++0x [temp.expl.spec]p20 forbids "template<> void foo(int);".
2923      if (isFriend && isFunctionTemplateSpecialization) {
2924        // We want to remove the "template<>", found here.
2925        SourceRange RemoveRange = TemplateParams->getSourceRange();
2926
2927        // If we remove the template<> and the name is not a
2928        // template-id, we're actually silently creating a problem:
2929        // the friend declaration will refer to an untemplated decl,
2930        // and clearly the user wants a template specialization.  So
2931        // we need to insert '<>' after the name.
2932        SourceLocation InsertLoc;
2933        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
2934          InsertLoc = D.getName().getSourceRange().getEnd();
2935          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
2936        }
2937
2938        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
2939          << Name << RemoveRange
2940          << CodeModificationHint::CreateRemoval(RemoveRange)
2941          << CodeModificationHint::CreateInsertion(InsertLoc, "<>");
2942      }
2943    }
2944
2945    // FIXME: Free this memory properly.
2946    TemplateParamLists.release();
2947  }
2948
2949  // C++ [dcl.fct.spec]p5:
2950  //   The virtual specifier shall only be used in declarations of
2951  //   nonstatic class member functions that appear within a
2952  //   member-specification of a class declaration; see 10.3.
2953  //
2954  if (isVirtual && !NewFD->isInvalidDecl()) {
2955    if (!isVirtualOkay) {
2956       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2957           diag::err_virtual_non_function);
2958    } else if (!CurContext->isRecord()) {
2959      // 'virtual' was specified outside of the class.
2960      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2961        << CodeModificationHint::CreateRemoval(
2962                                           D.getDeclSpec().getVirtualSpecLoc());
2963    } else {
2964      // Okay: Add virtual to the method.
2965      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2966      CurClass->setMethodAsVirtual(NewFD);
2967    }
2968  }
2969
2970  // C++ [dcl.fct.spec]p6:
2971  //  The explicit specifier shall be used only in the declaration of a
2972  //  constructor or conversion function within its class definition; see 12.3.1
2973  //  and 12.3.2.
2974  if (isExplicit && !NewFD->isInvalidDecl()) {
2975    if (!CurContext->isRecord()) {
2976      // 'explicit' was specified outside of the class.
2977      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2978           diag::err_explicit_out_of_class)
2979        << CodeModificationHint::CreateRemoval(
2980                                          D.getDeclSpec().getExplicitSpecLoc());
2981    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2982               !isa<CXXConversionDecl>(NewFD)) {
2983      // 'explicit' was specified on a function that wasn't a constructor
2984      // or conversion function.
2985      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2986           diag::err_explicit_non_ctor_or_conv_function)
2987        << CodeModificationHint::CreateRemoval(
2988                                          D.getDeclSpec().getExplicitSpecLoc());
2989    }
2990  }
2991
2992  // Filter out previous declarations that don't match the scope.
2993  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2994
2995  if (isFriend) {
2996    // DC is the namespace in which the function is being declared.
2997    assert((DC->isFileContext() || !Previous.empty()) &&
2998           "previously-undeclared friend function being created "
2999           "in a non-namespace context");
3000
3001    // For now, claim that the objects have no previous declaration.
3002    if (FunctionTemplate) {
3003      FunctionTemplate->setObjectOfFriendDecl(false);
3004      FunctionTemplate->setAccess(AS_public);
3005    } else {
3006      NewFD->setObjectOfFriendDecl(false);
3007    }
3008
3009    NewFD->setAccess(AS_public);
3010  }
3011
3012  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3013      !CurContext->isRecord()) {
3014    // C++ [class.static]p1:
3015    //   A data or function member of a class may be declared static
3016    //   in a class definition, in which case it is a static member of
3017    //   the class.
3018
3019    // Complain about the 'static' specifier if it's on an out-of-line
3020    // member function definition.
3021    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3022         diag::err_static_out_of_line)
3023      << CodeModificationHint::CreateRemoval(
3024                                      D.getDeclSpec().getStorageClassSpecLoc());
3025  }
3026
3027  // Handle GNU asm-label extension (encoded as an attribute).
3028  if (Expr *E = (Expr*) D.getAsmLabel()) {
3029    // The parser guarantees this is a string.
3030    StringLiteral *SE = cast<StringLiteral>(E);
3031    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3032  }
3033
3034  // Copy the parameter declarations from the declarator D to the function
3035  // declaration NewFD, if they are available.  First scavenge them into Params.
3036  llvm::SmallVector<ParmVarDecl*, 16> Params;
3037  if (D.getNumTypeObjects() > 0) {
3038    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3039
3040    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3041    // function that takes no arguments, not a function that takes a
3042    // single void argument.
3043    // We let through "const void" here because Sema::GetTypeForDeclarator
3044    // already checks for that case.
3045    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3046        FTI.ArgInfo[0].Param &&
3047        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3048      // Empty arg list, don't push any params.
3049      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3050
3051      // In C++, the empty parameter-type-list must be spelled "void"; a
3052      // typedef of void is not permitted.
3053      if (getLangOptions().CPlusPlus &&
3054          Param->getType().getUnqualifiedType() != Context.VoidTy)
3055        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3056      // FIXME: Leaks decl?
3057    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3058      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3059        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3060        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3061        Param->setDeclContext(NewFD);
3062        Params.push_back(Param);
3063      }
3064    }
3065
3066  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3067    // When we're declaring a function with a typedef, typeof, etc as in the
3068    // following example, we'll need to synthesize (unnamed)
3069    // parameters for use in the declaration.
3070    //
3071    // @code
3072    // typedef void fn(int);
3073    // fn f;
3074    // @endcode
3075
3076    // Synthesize a parameter for each argument type.
3077    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3078         AE = FT->arg_type_end(); AI != AE; ++AI) {
3079      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
3080                                               SourceLocation(), 0,
3081                                               *AI, /*TInfo=*/0,
3082                                               VarDecl::None, 0);
3083      Param->setImplicit();
3084      Params.push_back(Param);
3085    }
3086  } else {
3087    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3088           "Should not need args for typedef of non-prototype fn");
3089  }
3090  // Finally, we know we have the right number of parameters, install them.
3091  NewFD->setParams(Params.data(), Params.size());
3092
3093  // If the declarator is a template-id, translate the parser's template
3094  // argument list into our AST format.
3095  bool HasExplicitTemplateArgs = false;
3096  TemplateArgumentListInfo TemplateArgs;
3097  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3098    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3099    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3100    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3101    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3102                                       TemplateId->getTemplateArgs(),
3103                                       TemplateId->NumArgs);
3104    translateTemplateArguments(TemplateArgsPtr,
3105                               TemplateArgs);
3106    TemplateArgsPtr.release();
3107
3108    HasExplicitTemplateArgs = true;
3109
3110    if (FunctionTemplate) {
3111      // FIXME: Diagnose function template with explicit template
3112      // arguments.
3113      HasExplicitTemplateArgs = false;
3114    } else if (!isFunctionTemplateSpecialization &&
3115               !D.getDeclSpec().isFriendSpecified()) {
3116      // We have encountered something that the user meant to be a
3117      // specialization (because it has explicitly-specified template
3118      // arguments) but that was not introduced with a "template<>" (or had
3119      // too few of them).
3120      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3121        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3122        << CodeModificationHint::CreateInsertion(
3123                                   D.getDeclSpec().getSourceRange().getBegin(),
3124                                                 "template<> ");
3125      isFunctionTemplateSpecialization = true;
3126    } else {
3127      // "friend void foo<>(int);" is an implicit specialization decl.
3128      isFunctionTemplateSpecialization = true;
3129    }
3130  }
3131
3132  if (isFunctionTemplateSpecialization) {
3133    if (isFriend && NewFD->getType()->isDependentType()) {
3134      // FIXME: When we see a friend of a function template
3135      // specialization with a dependent type, we can't match it now;
3136      // for now, we just drop it, until we have a reasonable way to
3137      // represent the parsed-but-not-matched friend function template
3138      // specialization in the AST.
3139      return 0;
3140    } else if (CheckFunctionTemplateSpecialization(NewFD,
3141                                   (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3142                                                 Previous))
3143      NewFD->setInvalidDecl();
3144  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3145             CheckMemberSpecialization(NewFD, Previous))
3146    NewFD->setInvalidDecl();
3147
3148  // Perform semantic checking on the function declaration.
3149  bool OverloadableAttrRequired = false; // FIXME: HACK!
3150  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3151                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3152
3153  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3154          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3155         "previous declaration set still overloaded");
3156
3157  if (isFriend && Redeclaration) {
3158    AccessSpecifier Access = NewFD->getPreviousDeclaration()->getAccess();
3159    if (FunctionTemplate) {
3160      FunctionTemplate->setObjectOfFriendDecl(true);
3161      FunctionTemplate->setAccess(Access);
3162    } else {
3163      NewFD->setObjectOfFriendDecl(true);
3164    }
3165    NewFD->setAccess(Access);
3166  }
3167
3168  // If we have a function template, check the template parameter
3169  // list. This will check and merge default template arguments.
3170  if (FunctionTemplate) {
3171    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3172    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3173                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3174             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3175                                                : TPC_FunctionTemplate);
3176  }
3177
3178  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3179    // Fake up an access specifier if it's supposed to be a class member.
3180    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3181      NewFD->setAccess(AS_public);
3182
3183    // An out-of-line member function declaration must also be a
3184    // definition (C++ [dcl.meaning]p1).
3185    // Note that this is not the case for explicit specializations of
3186    // function templates or member functions of class templates, per
3187    // C++ [temp.expl.spec]p2.
3188    if (!IsFunctionDefinition && !isFriend &&
3189        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3190      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3191        << D.getCXXScopeSpec().getRange();
3192      NewFD->setInvalidDecl();
3193    } else if (!Redeclaration &&
3194               !(isFriend && CurContext->isDependentContext())) {
3195      // The user tried to provide an out-of-line definition for a
3196      // function that is a member of a class or namespace, but there
3197      // was no such member function declared (C++ [class.mfct]p2,
3198      // C++ [namespace.memdef]p2). For example:
3199      //
3200      // class X {
3201      //   void f() const;
3202      // };
3203      //
3204      // void X::f() { } // ill-formed
3205      //
3206      // Complain about this problem, and attempt to suggest close
3207      // matches (e.g., those that differ only in cv-qualifiers and
3208      // whether the parameter types are references).
3209      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3210        << Name << DC << D.getCXXScopeSpec().getRange();
3211      NewFD->setInvalidDecl();
3212
3213      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3214                        ForRedeclaration);
3215      LookupQualifiedName(Prev, DC);
3216      assert(!Prev.isAmbiguous() &&
3217             "Cannot have an ambiguity in previous-declaration lookup");
3218      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3219           Func != FuncEnd; ++Func) {
3220        if (isa<FunctionDecl>(*Func) &&
3221            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3222          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3223      }
3224    }
3225  }
3226
3227  // Handle attributes. We need to have merged decls when handling attributes
3228  // (for example to check for conflicts, etc).
3229  // FIXME: This needs to happen before we merge declarations. Then,
3230  // let attribute merging cope with attribute conflicts.
3231  ProcessDeclAttributes(S, NewFD, D);
3232
3233  // attributes declared post-definition are currently ignored
3234  if (Redeclaration && Previous.isSingleResult()) {
3235    const FunctionDecl *Def;
3236    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3237    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3238      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3239      Diag(Def->getLocation(), diag::note_previous_definition);
3240    }
3241  }
3242
3243  AddKnownFunctionAttributes(NewFD);
3244
3245  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3246    // If a function name is overloadable in C, then every function
3247    // with that name must be marked "overloadable".
3248    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3249      << Redeclaration << NewFD;
3250    if (!Previous.empty())
3251      Diag(Previous.getRepresentativeDecl()->getLocation(),
3252           diag::note_attribute_overloadable_prev_overload);
3253    NewFD->addAttr(::new (Context) OverloadableAttr());
3254  }
3255
3256  // If this is a locally-scoped extern C function, update the
3257  // map of such names.
3258  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3259      && !NewFD->isInvalidDecl())
3260    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3261
3262  // Set this FunctionDecl's range up to the right paren.
3263  NewFD->setLocEnd(D.getSourceRange().getEnd());
3264
3265  if (FunctionTemplate && NewFD->isInvalidDecl())
3266    FunctionTemplate->setInvalidDecl();
3267
3268  if (FunctionTemplate)
3269    return FunctionTemplate;
3270
3271
3272  // Keep track of static, non-inlined function definitions that
3273  // have not been used. We will warn later.
3274  // FIXME: Also include static functions declared but not defined.
3275  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3276      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3277      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3278    UnusedStaticFuncs.push_back(NewFD);
3279
3280  return NewFD;
3281}
3282
3283/// \brief Perform semantic checking of a new function declaration.
3284///
3285/// Performs semantic analysis of the new function declaration
3286/// NewFD. This routine performs all semantic checking that does not
3287/// require the actual declarator involved in the declaration, and is
3288/// used both for the declaration of functions as they are parsed
3289/// (called via ActOnDeclarator) and for the declaration of functions
3290/// that have been instantiated via C++ template instantiation (called
3291/// via InstantiateDecl).
3292///
3293/// \param IsExplicitSpecialiation whether this new function declaration is
3294/// an explicit specialization of the previous declaration.
3295///
3296/// This sets NewFD->isInvalidDecl() to true if there was an error.
3297void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3298                                    LookupResult &Previous,
3299                                    bool IsExplicitSpecialization,
3300                                    bool &Redeclaration,
3301                                    bool &OverloadableAttrRequired) {
3302  // If NewFD is already known erroneous, don't do any of this checking.
3303  if (NewFD->isInvalidDecl())
3304    return;
3305
3306  if (NewFD->getResultType()->isVariablyModifiedType()) {
3307    // Functions returning a variably modified type violate C99 6.7.5.2p2
3308    // because all functions have linkage.
3309    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3310    return NewFD->setInvalidDecl();
3311  }
3312
3313  if (NewFD->isMain())
3314    CheckMain(NewFD);
3315
3316  // Check for a previous declaration of this name.
3317  if (Previous.empty() && NewFD->isExternC()) {
3318    // Since we did not find anything by this name and we're declaring
3319    // an extern "C" function, look for a non-visible extern "C"
3320    // declaration with the same name.
3321    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3322      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3323    if (Pos != LocallyScopedExternalDecls.end())
3324      Previous.addDecl(Pos->second);
3325  }
3326
3327  // Merge or overload the declaration with an existing declaration of
3328  // the same name, if appropriate.
3329  if (!Previous.empty()) {
3330    // Determine whether NewFD is an overload of PrevDecl or
3331    // a declaration that requires merging. If it's an overload,
3332    // there's no more work to do here; we'll just add the new
3333    // function to the scope.
3334
3335    NamedDecl *OldDecl = 0;
3336    if (!AllowOverloadingOfFunction(Previous, Context)) {
3337      Redeclaration = true;
3338      OldDecl = Previous.getFoundDecl();
3339    } else {
3340      if (!getLangOptions().CPlusPlus) {
3341        OverloadableAttrRequired = true;
3342
3343        // Functions marked "overloadable" must have a prototype (that
3344        // we can't get through declaration merging).
3345        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3346          Diag(NewFD->getLocation(),
3347               diag::err_attribute_overloadable_no_prototype)
3348            << NewFD;
3349          Redeclaration = true;
3350
3351          // Turn this into a variadic function with no parameters.
3352          QualType R = Context.getFunctionType(
3353                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3354                     0, 0, true, 0, false, false, 0, 0, false, CC_Default);
3355          NewFD->setType(R);
3356          return NewFD->setInvalidDecl();
3357        }
3358      }
3359
3360      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3361      case Ovl_Match:
3362        Redeclaration = true;
3363        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3364          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3365          Redeclaration = false;
3366        }
3367        break;
3368
3369      case Ovl_NonFunction:
3370        Redeclaration = true;
3371        break;
3372
3373      case Ovl_Overload:
3374        Redeclaration = false;
3375        break;
3376      }
3377    }
3378
3379    if (Redeclaration) {
3380      // NewFD and OldDecl represent declarations that need to be
3381      // merged.
3382      if (MergeFunctionDecl(NewFD, OldDecl))
3383        return NewFD->setInvalidDecl();
3384
3385      Previous.clear();
3386      Previous.addDecl(OldDecl);
3387
3388      if (FunctionTemplateDecl *OldTemplateDecl
3389                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3390        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3391        FunctionTemplateDecl *NewTemplateDecl
3392          = NewFD->getDescribedFunctionTemplate();
3393        assert(NewTemplateDecl && "Template/non-template mismatch");
3394        if (CXXMethodDecl *Method
3395              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3396          Method->setAccess(OldTemplateDecl->getAccess());
3397          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3398        }
3399
3400        // If this is an explicit specialization of a member that is a function
3401        // template, mark it as a member specialization.
3402        if (IsExplicitSpecialization &&
3403            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3404          NewTemplateDecl->setMemberSpecialization();
3405          assert(OldTemplateDecl->isMemberSpecialization());
3406        }
3407      } else {
3408        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3409          NewFD->setAccess(OldDecl->getAccess());
3410        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3411      }
3412    }
3413  }
3414
3415  // Semantic checking for this function declaration (in isolation).
3416  if (getLangOptions().CPlusPlus) {
3417    // C++-specific checks.
3418    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3419      CheckConstructor(Constructor);
3420    } else if (CXXDestructorDecl *Destructor =
3421                dyn_cast<CXXDestructorDecl>(NewFD)) {
3422      CXXRecordDecl *Record = Destructor->getParent();
3423      QualType ClassType = Context.getTypeDeclType(Record);
3424
3425      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3426      // type is dependent? Both gcc and edg can handle that.
3427      if (!ClassType->isDependentType()) {
3428        DeclarationName Name
3429          = Context.DeclarationNames.getCXXDestructorName(
3430                                        Context.getCanonicalType(ClassType));
3431        if (NewFD->getDeclName() != Name) {
3432          Diag(NewFD->getLocation(), diag::err_destructor_name);
3433          return NewFD->setInvalidDecl();
3434        }
3435      }
3436
3437      Record->setUserDeclaredDestructor(true);
3438      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3439      // user-defined destructor.
3440      Record->setPOD(false);
3441
3442      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3443      // declared destructor.
3444      // FIXME: C++0x: don't do this for "= default" destructors
3445      Record->setHasTrivialDestructor(false);
3446    } else if (CXXConversionDecl *Conversion
3447               = dyn_cast<CXXConversionDecl>(NewFD)) {
3448      ActOnConversionDeclarator(Conversion);
3449    }
3450
3451    // Find any virtual functions that this function overrides.
3452    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3453      if (!Method->isFunctionTemplateSpecialization() &&
3454          !Method->getDescribedFunctionTemplate())
3455        AddOverriddenMethods(Method->getParent(), Method);
3456    }
3457
3458    // Additional checks for the destructor; make sure we do this after we
3459    // figure out whether the destructor is virtual.
3460    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3461      if (!Destructor->getParent()->isDependentType())
3462        CheckDestructor(Destructor);
3463
3464    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3465    if (NewFD->isOverloadedOperator() &&
3466        CheckOverloadedOperatorDeclaration(NewFD))
3467      return NewFD->setInvalidDecl();
3468
3469    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3470    if (NewFD->getLiteralIdentifier() &&
3471        CheckLiteralOperatorDeclaration(NewFD))
3472      return NewFD->setInvalidDecl();
3473
3474    // In C++, check default arguments now that we have merged decls. Unless
3475    // the lexical context is the class, because in this case this is done
3476    // during delayed parsing anyway.
3477    if (!CurContext->isRecord())
3478      CheckCXXDefaultArguments(NewFD);
3479  }
3480}
3481
3482void Sema::CheckMain(FunctionDecl* FD) {
3483  // C++ [basic.start.main]p3:  A program that declares main to be inline
3484  //   or static is ill-formed.
3485  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3486  //   shall not appear in a declaration of main.
3487  // static main is not an error under C99, but we should warn about it.
3488  bool isInline = FD->isInlineSpecified();
3489  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3490  if (isInline || isStatic) {
3491    unsigned diagID = diag::warn_unusual_main_decl;
3492    if (isInline || getLangOptions().CPlusPlus)
3493      diagID = diag::err_unusual_main_decl;
3494
3495    int which = isStatic + (isInline << 1) - 1;
3496    Diag(FD->getLocation(), diagID) << which;
3497  }
3498
3499  QualType T = FD->getType();
3500  assert(T->isFunctionType() && "function decl is not of function type");
3501  const FunctionType* FT = T->getAs<FunctionType>();
3502
3503  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3504    // TODO: add a replacement fixit to turn the return type into 'int'.
3505    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3506    FD->setInvalidDecl(true);
3507  }
3508
3509  // Treat protoless main() as nullary.
3510  if (isa<FunctionNoProtoType>(FT)) return;
3511
3512  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3513  unsigned nparams = FTP->getNumArgs();
3514  assert(FD->getNumParams() == nparams);
3515
3516  bool HasExtraParameters = (nparams > 3);
3517
3518  // Darwin passes an undocumented fourth argument of type char**.  If
3519  // other platforms start sprouting these, the logic below will start
3520  // getting shifty.
3521  if (nparams == 4 &&
3522      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3523    HasExtraParameters = false;
3524
3525  if (HasExtraParameters) {
3526    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3527    FD->setInvalidDecl(true);
3528    nparams = 3;
3529  }
3530
3531  // FIXME: a lot of the following diagnostics would be improved
3532  // if we had some location information about types.
3533
3534  QualType CharPP =
3535    Context.getPointerType(Context.getPointerType(Context.CharTy));
3536  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3537
3538  for (unsigned i = 0; i < nparams; ++i) {
3539    QualType AT = FTP->getArgType(i);
3540
3541    bool mismatch = true;
3542
3543    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3544      mismatch = false;
3545    else if (Expected[i] == CharPP) {
3546      // As an extension, the following forms are okay:
3547      //   char const **
3548      //   char const * const *
3549      //   char * const *
3550
3551      QualifierCollector qs;
3552      const PointerType* PT;
3553      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3554          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3555          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3556        qs.removeConst();
3557        mismatch = !qs.empty();
3558      }
3559    }
3560
3561    if (mismatch) {
3562      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3563      // TODO: suggest replacing given type with expected type
3564      FD->setInvalidDecl(true);
3565    }
3566  }
3567
3568  if (nparams == 1 && !FD->isInvalidDecl()) {
3569    Diag(FD->getLocation(), diag::warn_main_one_arg);
3570  }
3571}
3572
3573bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3574  // FIXME: Need strict checking.  In C89, we need to check for
3575  // any assignment, increment, decrement, function-calls, or
3576  // commas outside of a sizeof.  In C99, it's the same list,
3577  // except that the aforementioned are allowed in unevaluated
3578  // expressions.  Everything else falls under the
3579  // "may accept other forms of constant expressions" exception.
3580  // (We never end up here for C++, so the constant expression
3581  // rules there don't matter.)
3582  if (Init->isConstantInitializer(Context))
3583    return false;
3584  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3585    << Init->getSourceRange();
3586  return true;
3587}
3588
3589void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3590  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3591}
3592
3593/// AddInitializerToDecl - Adds the initializer Init to the
3594/// declaration dcl. If DirectInit is true, this is C++ direct
3595/// initialization rather than copy initialization.
3596void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3597  Decl *RealDecl = dcl.getAs<Decl>();
3598  // If there is no declaration, there was an error parsing it.  Just ignore
3599  // the initializer.
3600  if (RealDecl == 0)
3601    return;
3602
3603  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3604    // With declarators parsed the way they are, the parser cannot
3605    // distinguish between a normal initializer and a pure-specifier.
3606    // Thus this grotesque test.
3607    IntegerLiteral *IL;
3608    Expr *Init = static_cast<Expr *>(init.get());
3609    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3610        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3611      CheckPureMethod(Method, Init->getSourceRange());
3612    else {
3613      Diag(Method->getLocation(), diag::err_member_function_initialization)
3614        << Method->getDeclName() << Init->getSourceRange();
3615      Method->setInvalidDecl();
3616    }
3617    return;
3618  }
3619
3620  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3621  if (!VDecl) {
3622    if (getLangOptions().CPlusPlus &&
3623        RealDecl->getLexicalDeclContext()->isRecord() &&
3624        isa<NamedDecl>(RealDecl))
3625      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3626        << cast<NamedDecl>(RealDecl)->getDeclName();
3627    else
3628      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3629    RealDecl->setInvalidDecl();
3630    return;
3631  }
3632
3633  // A definition must end up with a complete type, which means it must be
3634  // complete with the restriction that an array type might be completed by the
3635  // initializer; note that later code assumes this restriction.
3636  QualType BaseDeclType = VDecl->getType();
3637  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3638    BaseDeclType = Array->getElementType();
3639  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3640                          diag::err_typecheck_decl_incomplete_type)) {
3641    RealDecl->setInvalidDecl();
3642    return;
3643  }
3644
3645  // The variable can not have an abstract class type.
3646  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3647                             diag::err_abstract_type_in_decl,
3648                             AbstractVariableType))
3649    VDecl->setInvalidDecl();
3650
3651  const VarDecl *Def;
3652  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3653    Diag(VDecl->getLocation(), diag::err_redefinition)
3654      << VDecl->getDeclName();
3655    Diag(Def->getLocation(), diag::note_previous_definition);
3656    VDecl->setInvalidDecl();
3657    return;
3658  }
3659
3660  // Take ownership of the expression, now that we're sure we have somewhere
3661  // to put it.
3662  Expr *Init = init.takeAs<Expr>();
3663  assert(Init && "missing initializer");
3664
3665  // Capture the variable that is being initialized and the style of
3666  // initialization.
3667  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3668
3669  // FIXME: Poor source location information.
3670  InitializationKind Kind
3671    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3672                                                   Init->getLocStart(),
3673                                                   Init->getLocEnd())
3674                : InitializationKind::CreateCopy(VDecl->getLocation(),
3675                                                 Init->getLocStart());
3676
3677  // Get the decls type and save a reference for later, since
3678  // CheckInitializerTypes may change it.
3679  QualType DclT = VDecl->getType(), SavT = DclT;
3680  if (VDecl->isBlockVarDecl()) {
3681    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3682      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3683      VDecl->setInvalidDecl();
3684    } else if (!VDecl->isInvalidDecl()) {
3685      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3686      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3687                                          MultiExprArg(*this, (void**)&Init, 1),
3688                                                &DclT);
3689      if (Result.isInvalid()) {
3690        VDecl->setInvalidDecl();
3691        return;
3692      }
3693
3694      Init = Result.takeAs<Expr>();
3695
3696      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3697      // Don't check invalid declarations to avoid emitting useless diagnostics.
3698      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3699        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3700          CheckForConstantInitializer(Init, DclT);
3701      }
3702    }
3703  } else if (VDecl->isStaticDataMember() &&
3704             VDecl->getLexicalDeclContext()->isRecord()) {
3705    // This is an in-class initialization for a static data member, e.g.,
3706    //
3707    // struct S {
3708    //   static const int value = 17;
3709    // };
3710
3711    // Attach the initializer
3712    VDecl->setInit(Init);
3713
3714    // C++ [class.mem]p4:
3715    //   A member-declarator can contain a constant-initializer only
3716    //   if it declares a static member (9.4) of const integral or
3717    //   const enumeration type, see 9.4.2.
3718    QualType T = VDecl->getType();
3719    if (!T->isDependentType() &&
3720        (!Context.getCanonicalType(T).isConstQualified() ||
3721         !T->isIntegralType())) {
3722      Diag(VDecl->getLocation(), diag::err_member_initialization)
3723        << VDecl->getDeclName() << Init->getSourceRange();
3724      VDecl->setInvalidDecl();
3725    } else {
3726      // C++ [class.static.data]p4:
3727      //   If a static data member is of const integral or const
3728      //   enumeration type, its declaration in the class definition
3729      //   can specify a constant-initializer which shall be an
3730      //   integral constant expression (5.19).
3731      if (!Init->isTypeDependent() &&
3732          !Init->getType()->isIntegralType()) {
3733        // We have a non-dependent, non-integral or enumeration type.
3734        Diag(Init->getSourceRange().getBegin(),
3735             diag::err_in_class_initializer_non_integral_type)
3736          << Init->getType() << Init->getSourceRange();
3737        VDecl->setInvalidDecl();
3738      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3739        // Check whether the expression is a constant expression.
3740        llvm::APSInt Value;
3741        SourceLocation Loc;
3742        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3743          Diag(Loc, diag::err_in_class_initializer_non_constant)
3744            << Init->getSourceRange();
3745          VDecl->setInvalidDecl();
3746        } else if (!VDecl->getType()->isDependentType())
3747          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3748      }
3749    }
3750  } else if (VDecl->isFileVarDecl()) {
3751    if (VDecl->getStorageClass() == VarDecl::Extern)
3752      Diag(VDecl->getLocation(), diag::warn_extern_init);
3753    if (!VDecl->isInvalidDecl()) {
3754      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3755      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3756                                          MultiExprArg(*this, (void**)&Init, 1),
3757                                                &DclT);
3758      if (Result.isInvalid()) {
3759        VDecl->setInvalidDecl();
3760        return;
3761      }
3762
3763      Init = Result.takeAs<Expr>();
3764    }
3765
3766    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3767    // Don't check invalid declarations to avoid emitting useless diagnostics.
3768    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3769      // C99 6.7.8p4. All file scoped initializers need to be constant.
3770      CheckForConstantInitializer(Init, DclT);
3771    }
3772  }
3773  // If the type changed, it means we had an incomplete type that was
3774  // completed by the initializer. For example:
3775  //   int ary[] = { 1, 3, 5 };
3776  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3777  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3778    VDecl->setType(DclT);
3779    Init->setType(DclT);
3780  }
3781
3782  Init = MaybeCreateCXXExprWithTemporaries(Init);
3783  // Attach the initializer to the decl.
3784  VDecl->setInit(Init);
3785
3786  if (getLangOptions().CPlusPlus) {
3787    // Make sure we mark the destructor as used if necessary.
3788    QualType InitType = VDecl->getType();
3789    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3790      InitType = Context.getBaseElementType(Array);
3791    if (const RecordType *Record = InitType->getAs<RecordType>())
3792      FinalizeVarWithDestructor(VDecl, Record);
3793  }
3794
3795  return;
3796}
3797
3798void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3799                                  bool TypeContainsUndeducedAuto) {
3800  Decl *RealDecl = dcl.getAs<Decl>();
3801
3802  // If there is no declaration, there was an error parsing it. Just ignore it.
3803  if (RealDecl == 0)
3804    return;
3805
3806  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3807    QualType Type = Var->getType();
3808
3809    // C++0x [dcl.spec.auto]p3
3810    if (TypeContainsUndeducedAuto) {
3811      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3812        << Var->getDeclName() << Type;
3813      Var->setInvalidDecl();
3814      return;
3815    }
3816
3817    switch (Var->isThisDeclarationADefinition()) {
3818    case VarDecl::Definition:
3819      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3820        break;
3821
3822      // We have an out-of-line definition of a static data member
3823      // that has an in-class initializer, so we type-check this like
3824      // a declaration.
3825      //
3826      // Fall through
3827
3828    case VarDecl::DeclarationOnly:
3829      // It's only a declaration.
3830
3831      // Block scope. C99 6.7p7: If an identifier for an object is
3832      // declared with no linkage (C99 6.2.2p6), the type for the
3833      // object shall be complete.
3834      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3835          !Var->getLinkage() && !Var->isInvalidDecl() &&
3836          RequireCompleteType(Var->getLocation(), Type,
3837                              diag::err_typecheck_decl_incomplete_type))
3838        Var->setInvalidDecl();
3839
3840      // Make sure that the type is not abstract.
3841      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3842          RequireNonAbstractType(Var->getLocation(), Type,
3843                                 diag::err_abstract_type_in_decl,
3844                                 AbstractVariableType))
3845        Var->setInvalidDecl();
3846      return;
3847
3848    case VarDecl::TentativeDefinition:
3849      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3850      // object that has file scope without an initializer, and without a
3851      // storage-class specifier or with the storage-class specifier "static",
3852      // constitutes a tentative definition. Note: A tentative definition with
3853      // external linkage is valid (C99 6.2.2p5).
3854      if (!Var->isInvalidDecl()) {
3855        if (const IncompleteArrayType *ArrayT
3856                                    = Context.getAsIncompleteArrayType(Type)) {
3857          if (RequireCompleteType(Var->getLocation(),
3858                                  ArrayT->getElementType(),
3859                                  diag::err_illegal_decl_array_incomplete_type))
3860            Var->setInvalidDecl();
3861        } else if (Var->getStorageClass() == VarDecl::Static) {
3862          // C99 6.9.2p3: If the declaration of an identifier for an object is
3863          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3864          // declared type shall not be an incomplete type.
3865          // NOTE: code such as the following
3866          //     static struct s;
3867          //     struct s { int a; };
3868          // is accepted by gcc. Hence here we issue a warning instead of
3869          // an error and we do not invalidate the static declaration.
3870          // NOTE: to avoid multiple warnings, only check the first declaration.
3871          if (Var->getPreviousDeclaration() == 0)
3872            RequireCompleteType(Var->getLocation(), Type,
3873                                diag::ext_typecheck_decl_incomplete_type);
3874        }
3875      }
3876
3877      // Record the tentative definition; we're done.
3878      if (!Var->isInvalidDecl())
3879        TentativeDefinitions.push_back(Var);
3880      return;
3881    }
3882
3883    // Provide a specific diagnostic for uninitialized variable
3884    // definitions with incomplete array type.
3885    if (Type->isIncompleteArrayType()) {
3886      Diag(Var->getLocation(),
3887           diag::err_typecheck_incomplete_array_needs_initializer);
3888      Var->setInvalidDecl();
3889      return;
3890    }
3891
3892   // Provide a specific diagnostic for uninitialized variable
3893   // definitions with reference type.
3894   if (Type->isReferenceType()) {
3895     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3896       << Var->getDeclName()
3897       << SourceRange(Var->getLocation(), Var->getLocation());
3898     Var->setInvalidDecl();
3899     return;
3900   }
3901
3902    // Do not attempt to type-check the default initializer for a
3903    // variable with dependent type.
3904    if (Type->isDependentType())
3905      return;
3906
3907    if (Var->isInvalidDecl())
3908      return;
3909
3910    if (RequireCompleteType(Var->getLocation(),
3911                            Context.getBaseElementType(Type),
3912                            diag::err_typecheck_decl_incomplete_type)) {
3913      Var->setInvalidDecl();
3914      return;
3915    }
3916
3917    // The variable can not have an abstract class type.
3918    if (RequireNonAbstractType(Var->getLocation(), Type,
3919                               diag::err_abstract_type_in_decl,
3920                               AbstractVariableType)) {
3921      Var->setInvalidDecl();
3922      return;
3923    }
3924
3925    const RecordType *Record
3926      = Context.getBaseElementType(Type)->getAs<RecordType>();
3927    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
3928        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
3929      // C++03 [dcl.init]p9:
3930      //   If no initializer is specified for an object, and the
3931      //   object is of (possibly cv-qualified) non-POD class type (or
3932      //   array thereof), the object shall be default-initialized; if
3933      //   the object is of const-qualified type, the underlying class
3934      //   type shall have a user-declared default
3935      //   constructor. Otherwise, if no initializer is specified for
3936      //   a non- static object, the object and its subobjects, if
3937      //   any, have an indeterminate initial value); if the object
3938      //   or any of its subobjects are of const-qualified type, the
3939      //   program is ill-formed.
3940      // FIXME: DPG thinks it is very fishy that C++0x disables this.
3941    } else {
3942      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
3943      InitializationKind Kind
3944        = InitializationKind::CreateDefault(Var->getLocation());
3945
3946      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3947      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3948                                              MultiExprArg(*this, 0, 0));
3949      if (Init.isInvalid())
3950        Var->setInvalidDecl();
3951      else if (Init.get())
3952        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3953    }
3954
3955    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
3956      FinalizeVarWithDestructor(Var, Record);
3957  }
3958}
3959
3960Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3961                                                   DeclPtrTy *Group,
3962                                                   unsigned NumDecls) {
3963  llvm::SmallVector<Decl*, 8> Decls;
3964
3965  if (DS.isTypeSpecOwned())
3966    Decls.push_back((Decl*)DS.getTypeRep());
3967
3968  for (unsigned i = 0; i != NumDecls; ++i)
3969    if (Decl *D = Group[i].getAs<Decl>())
3970      Decls.push_back(D);
3971
3972  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3973                                                   Decls.data(), Decls.size()));
3974}
3975
3976
3977/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3978/// to introduce parameters into function prototype scope.
3979Sema::DeclPtrTy
3980Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3981  const DeclSpec &DS = D.getDeclSpec();
3982
3983  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3984  VarDecl::StorageClass StorageClass = VarDecl::None;
3985  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3986    StorageClass = VarDecl::Register;
3987  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3988    Diag(DS.getStorageClassSpecLoc(),
3989         diag::err_invalid_storage_class_in_func_decl);
3990    D.getMutableDeclSpec().ClearStorageClassSpecs();
3991  }
3992
3993  if (D.getDeclSpec().isThreadSpecified())
3994    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3995
3996  DiagnoseFunctionSpecifiers(D);
3997
3998  // Check that there are no default arguments inside the type of this
3999  // parameter (C++ only).
4000  if (getLangOptions().CPlusPlus)
4001    CheckExtraCXXDefaultArguments(D);
4002
4003  TypeSourceInfo *TInfo = 0;
4004  TagDecl *OwnedDecl = 0;
4005  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4006
4007  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4008    // C++ [dcl.fct]p6:
4009    //   Types shall not be defined in return or parameter types.
4010    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4011      << Context.getTypeDeclType(OwnedDecl);
4012  }
4013
4014  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4015  IdentifierInfo *II = D.getIdentifier();
4016  if (II) {
4017    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4018                   ForRedeclaration);
4019    LookupName(R, S);
4020    if (R.isSingleResult()) {
4021      NamedDecl *PrevDecl = R.getFoundDecl();
4022      if (PrevDecl->isTemplateParameter()) {
4023        // Maybe we will complain about the shadowed template parameter.
4024        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4025        // Just pretend that we didn't see the previous declaration.
4026        PrevDecl = 0;
4027      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4028        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4029        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4030
4031        // Recover by removing the name
4032        II = 0;
4033        D.SetIdentifier(0, D.getIdentifierLoc());
4034        D.setInvalidType(true);
4035      }
4036    }
4037  }
4038
4039  // Parameters can not be abstract class types.
4040  // For record types, this is done by the AbstractClassUsageDiagnoser once
4041  // the class has been completely parsed.
4042  if (!CurContext->isRecord() &&
4043      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4044                             diag::err_abstract_type_in_decl,
4045                             AbstractParamType))
4046    D.setInvalidType(true);
4047
4048  QualType T = adjustParameterType(parmDeclType);
4049
4050  // Temporarily put parameter variables in the translation unit, not
4051  // the enclosing context.  This prevents them from accidentally
4052  // looking like class members in C++.
4053  DeclContext *DC = Context.getTranslationUnitDecl();
4054
4055  ParmVarDecl *New
4056    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
4057                          T, TInfo, StorageClass, 0);
4058
4059  if (D.isInvalidType())
4060    New->setInvalidDecl();
4061
4062  // Parameter declarators cannot be interface types. All ObjC objects are
4063  // passed by reference.
4064  if (T->isObjCInterfaceType()) {
4065    Diag(D.getIdentifierLoc(),
4066         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4067    New->setInvalidDecl();
4068  }
4069
4070  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4071  if (D.getCXXScopeSpec().isSet()) {
4072    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4073      << D.getCXXScopeSpec().getRange();
4074    New->setInvalidDecl();
4075  }
4076
4077  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4078  // duration shall not be qualified by an address-space qualifier."
4079  // Since all parameters have automatic store duration, they can not have
4080  // an address space.
4081  if (T.getAddressSpace() != 0) {
4082    Diag(D.getIdentifierLoc(),
4083         diag::err_arg_with_address_space);
4084    New->setInvalidDecl();
4085  }
4086
4087
4088  // Add the parameter declaration into this scope.
4089  S->AddDecl(DeclPtrTy::make(New));
4090  if (II)
4091    IdResolver.AddDecl(New);
4092
4093  ProcessDeclAttributes(S, New, D);
4094
4095  if (New->hasAttr<BlocksAttr>()) {
4096    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4097  }
4098  return DeclPtrTy::make(New);
4099}
4100
4101void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
4102  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
4103  Param->setDeclContext(CurContext);
4104}
4105
4106void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4107                                           SourceLocation LocAfterDecls) {
4108  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4109         "Not a function declarator!");
4110  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4111
4112  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4113  // for a K&R function.
4114  if (!FTI.hasPrototype) {
4115    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4116      --i;
4117      if (FTI.ArgInfo[i].Param == 0) {
4118        llvm::SmallString<256> Code;
4119        llvm::raw_svector_ostream(Code) << "  int "
4120                                        << FTI.ArgInfo[i].Ident->getName()
4121                                        << ";\n";
4122        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4123          << FTI.ArgInfo[i].Ident
4124          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4125
4126        // Implicitly declare the argument as type 'int' for lack of a better
4127        // type.
4128        DeclSpec DS;
4129        const char* PrevSpec; // unused
4130        unsigned DiagID; // unused
4131        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4132                           PrevSpec, DiagID);
4133        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4134        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4135        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4136      }
4137    }
4138  }
4139}
4140
4141Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4142                                              Declarator &D) {
4143  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4144  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4145         "Not a function declarator!");
4146  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4147
4148  if (FTI.hasPrototype) {
4149    // FIXME: Diagnose arguments without names in C.
4150  }
4151
4152  Scope *ParentScope = FnBodyScope->getParent();
4153
4154  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4155                                  MultiTemplateParamsArg(*this),
4156                                  /*IsFunctionDefinition=*/true);
4157  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4158}
4159
4160static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4161  // Don't warn about invalid declarations.
4162  if (FD->isInvalidDecl())
4163    return false;
4164
4165  // Or declarations that aren't global.
4166  if (!FD->isGlobal())
4167    return false;
4168
4169  // Don't warn about C++ member functions.
4170  if (isa<CXXMethodDecl>(FD))
4171    return false;
4172
4173  // Don't warn about 'main'.
4174  if (FD->isMain())
4175    return false;
4176
4177  // Don't warn about inline functions.
4178  if (FD->isInlineSpecified())
4179    return false;
4180
4181  // Don't warn about function templates.
4182  if (FD->getDescribedFunctionTemplate())
4183    return false;
4184
4185  // Don't warn about function template specializations.
4186  if (FD->isFunctionTemplateSpecialization())
4187    return false;
4188
4189  bool MissingPrototype = true;
4190  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4191       Prev; Prev = Prev->getPreviousDeclaration()) {
4192    // Ignore any declarations that occur in function or method
4193    // scope, because they aren't visible from the header.
4194    if (Prev->getDeclContext()->isFunctionOrMethod())
4195      continue;
4196
4197    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4198    break;
4199  }
4200
4201  return MissingPrototype;
4202}
4203
4204Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4205  // Clear the last template instantiation error context.
4206  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4207
4208  if (!D)
4209    return D;
4210  FunctionDecl *FD = 0;
4211
4212  if (FunctionTemplateDecl *FunTmpl
4213        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4214    FD = FunTmpl->getTemplatedDecl();
4215  else
4216    FD = cast<FunctionDecl>(D.getAs<Decl>());
4217
4218  // Enter a new function scope
4219  PushFunctionScope();
4220
4221  // See if this is a redefinition.
4222  // But don't complain if we're in GNU89 mode and the previous definition
4223  // was an extern inline function.
4224  const FunctionDecl *Definition;
4225  if (FD->getBody(Definition) &&
4226      !canRedefineFunction(Definition, getLangOptions())) {
4227    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4228    Diag(Definition->getLocation(), diag::note_previous_definition);
4229  }
4230
4231  // Builtin functions cannot be defined.
4232  if (unsigned BuiltinID = FD->getBuiltinID()) {
4233    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4234      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4235      FD->setInvalidDecl();
4236    }
4237  }
4238
4239  // The return type of a function definition must be complete
4240  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4241  QualType ResultType = FD->getResultType();
4242  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4243      !FD->isInvalidDecl() &&
4244      RequireCompleteType(FD->getLocation(), ResultType,
4245                          diag::err_func_def_incomplete_result))
4246    FD->setInvalidDecl();
4247
4248  // GNU warning -Wmissing-prototypes:
4249  //   Warn if a global function is defined without a previous
4250  //   prototype declaration. This warning is issued even if the
4251  //   definition itself provides a prototype. The aim is to detect
4252  //   global functions that fail to be declared in header files.
4253  if (ShouldWarnAboutMissingPrototype(FD))
4254    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4255
4256  if (FnBodyScope)
4257    PushDeclContext(FnBodyScope, FD);
4258
4259  // Check the validity of our function parameters
4260  CheckParmsForFunctionDef(FD);
4261
4262  bool ShouldCheckShadow =
4263    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4264
4265  // Introduce our parameters into the function scope
4266  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4267    ParmVarDecl *Param = FD->getParamDecl(p);
4268    Param->setOwningFunction(FD);
4269
4270    // If this has an identifier, add it to the scope stack.
4271    if (Param->getIdentifier() && FnBodyScope) {
4272      if (ShouldCheckShadow)
4273        CheckShadow(FnBodyScope, Param);
4274
4275      PushOnScopeChains(Param, FnBodyScope);
4276    }
4277  }
4278
4279  // Checking attributes of current function definition
4280  // dllimport attribute.
4281  if (FD->getAttr<DLLImportAttr>() &&
4282      (!FD->getAttr<DLLExportAttr>())) {
4283    // dllimport attribute cannot be applied to definition.
4284    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4285      Diag(FD->getLocation(),
4286           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4287        << "dllimport";
4288      FD->setInvalidDecl();
4289      return DeclPtrTy::make(FD);
4290    }
4291
4292    // Visual C++ appears to not think this is an issue, so only issue
4293    // a warning when Microsoft extensions are disabled.
4294    if (!LangOpts.Microsoft) {
4295      // If a symbol previously declared dllimport is later defined, the
4296      // attribute is ignored in subsequent references, and a warning is
4297      // emitted.
4298      Diag(FD->getLocation(),
4299           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4300        << FD->getNameAsCString() << "dllimport";
4301    }
4302  }
4303  return DeclPtrTy::make(FD);
4304}
4305
4306Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4307  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4308}
4309
4310Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4311                                              bool IsInstantiation) {
4312  Decl *dcl = D.getAs<Decl>();
4313  Stmt *Body = BodyArg.takeAs<Stmt>();
4314
4315  FunctionDecl *FD = 0;
4316  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4317  if (FunTmpl)
4318    FD = FunTmpl->getTemplatedDecl();
4319  else
4320    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4321
4322  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4323
4324  if (FD) {
4325    FD->setBody(Body);
4326    if (FD->isMain()) {
4327      // C and C++ allow for main to automagically return 0.
4328      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4329      FD->setHasImplicitReturnZero(true);
4330      WP.disableCheckFallThrough();
4331    }
4332
4333    if (!FD->isInvalidDecl())
4334      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4335
4336    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4337      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4338
4339    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4340  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4341    assert(MD == getCurMethodDecl() && "Method parsing confused");
4342    MD->setBody(Body);
4343    MD->setEndLoc(Body->getLocEnd());
4344    if (!MD->isInvalidDecl())
4345      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4346  } else {
4347    Body->Destroy(Context);
4348    return DeclPtrTy();
4349  }
4350
4351  // Verify and clean out per-function state.
4352
4353  // Check goto/label use.
4354  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4355       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4356    LabelStmt *L = I->second;
4357
4358    // Verify that we have no forward references left.  If so, there was a goto
4359    // or address of a label taken, but no definition of it.  Label fwd
4360    // definitions are indicated with a null substmt.
4361    if (L->getSubStmt() != 0)
4362      continue;
4363
4364    // Emit error.
4365    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4366
4367    // At this point, we have gotos that use the bogus label.  Stitch it into
4368    // the function body so that they aren't leaked and that the AST is well
4369    // formed.
4370    if (Body == 0) {
4371      // The whole function wasn't parsed correctly, just delete this.
4372      L->Destroy(Context);
4373      continue;
4374    }
4375
4376    // Otherwise, the body is valid: we want to stitch the label decl into the
4377    // function somewhere so that it is properly owned and so that the goto
4378    // has a valid target.  Do this by creating a new compound stmt with the
4379    // label in it.
4380
4381    // Give the label a sub-statement.
4382    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4383
4384    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4385                               cast<CXXTryStmt>(Body)->getTryBlock() :
4386                               cast<CompoundStmt>(Body);
4387    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4388                                          Compound->body_end());
4389    Elements.push_back(L);
4390    Compound->setStmts(Context, Elements.data(), Elements.size());
4391  }
4392
4393  if (Body) {
4394    // C++ constructors that have function-try-blocks can't have return
4395    // statements in the handlers of that block. (C++ [except.handle]p14)
4396    // Verify this.
4397    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4398      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4399
4400    // Verify that that gotos and switch cases don't jump into scopes illegally.
4401    // Verify that that gotos and switch cases don't jump into scopes illegally.
4402    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4403      DiagnoseInvalidJumps(Body);
4404
4405    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4406      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4407                                             Destructor->getParent());
4408
4409    // If any errors have occurred, clear out any temporaries that may have
4410    // been leftover. This ensures that these temporaries won't be picked up for
4411    // deletion in some later function.
4412    if (PP.getDiagnostics().hasErrorOccurred())
4413      ExprTemporaries.clear();
4414    else if (!isa<FunctionTemplateDecl>(dcl)) {
4415      // Since the body is valid, issue any analysis-based warnings that are
4416      // enabled.
4417      QualType ResultType;
4418      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4419        ResultType = FD->getResultType();
4420      }
4421      else {
4422        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4423        ResultType = MD->getResultType();
4424      }
4425      AnalysisWarnings.IssueWarnings(WP, dcl);
4426    }
4427
4428    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4429  }
4430
4431  if (!IsInstantiation)
4432    PopDeclContext();
4433
4434  PopFunctionOrBlockScope();
4435
4436  // If any errors have occurred, clear out any temporaries that may have
4437  // been leftover. This ensures that these temporaries won't be picked up for
4438  // deletion in some later function.
4439  if (getDiagnostics().hasErrorOccurred())
4440    ExprTemporaries.clear();
4441
4442  return D;
4443}
4444
4445/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4446/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4447NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4448                                          IdentifierInfo &II, Scope *S) {
4449  // Before we produce a declaration for an implicitly defined
4450  // function, see whether there was a locally-scoped declaration of
4451  // this name as a function or variable. If so, use that
4452  // (non-visible) declaration, and complain about it.
4453  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4454    = LocallyScopedExternalDecls.find(&II);
4455  if (Pos != LocallyScopedExternalDecls.end()) {
4456    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4457    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4458    return Pos->second;
4459  }
4460
4461  // Extension in C99.  Legal in C90, but warn about it.
4462  if (II.getName().startswith("__builtin_"))
4463    Diag(Loc, diag::warn_builtin_unknown) << &II;
4464  else if (getLangOptions().C99)
4465    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4466  else
4467    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4468
4469  // Set a Declarator for the implicit definition: int foo();
4470  const char *Dummy;
4471  DeclSpec DS;
4472  unsigned DiagID;
4473  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4474  Error = Error; // Silence warning.
4475  assert(!Error && "Error setting up implicit decl!");
4476  Declarator D(DS, Declarator::BlockContext);
4477  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4478                                             0, 0, false, SourceLocation(),
4479                                             false, 0,0,0, Loc, Loc, D),
4480                SourceLocation());
4481  D.SetIdentifier(&II, Loc);
4482
4483  // Insert this function into translation-unit scope.
4484
4485  DeclContext *PrevDC = CurContext;
4486  CurContext = Context.getTranslationUnitDecl();
4487
4488  FunctionDecl *FD =
4489 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4490  FD->setImplicit();
4491
4492  CurContext = PrevDC;
4493
4494  AddKnownFunctionAttributes(FD);
4495
4496  return FD;
4497}
4498
4499/// \brief Adds any function attributes that we know a priori based on
4500/// the declaration of this function.
4501///
4502/// These attributes can apply both to implicitly-declared builtins
4503/// (like __builtin___printf_chk) or to library-declared functions
4504/// like NSLog or printf.
4505void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4506  if (FD->isInvalidDecl())
4507    return;
4508
4509  // If this is a built-in function, map its builtin attributes to
4510  // actual attributes.
4511  if (unsigned BuiltinID = FD->getBuiltinID()) {
4512    // Handle printf-formatting attributes.
4513    unsigned FormatIdx;
4514    bool HasVAListArg;
4515    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4516      if (!FD->getAttr<FormatAttr>())
4517        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4518                                               HasVAListArg ? 0 : FormatIdx+2));
4519    }
4520
4521    // Mark const if we don't care about errno and that is the only
4522    // thing preventing the function from being const. This allows
4523    // IRgen to use LLVM intrinsics for such functions.
4524    if (!getLangOptions().MathErrno &&
4525        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4526      if (!FD->getAttr<ConstAttr>())
4527        FD->addAttr(::new (Context) ConstAttr());
4528    }
4529
4530    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4531      FD->setType(Context.getNoReturnType(FD->getType()));
4532    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4533      FD->addAttr(::new (Context) NoThrowAttr());
4534    if (Context.BuiltinInfo.isConst(BuiltinID))
4535      FD->addAttr(::new (Context) ConstAttr());
4536  }
4537
4538  IdentifierInfo *Name = FD->getIdentifier();
4539  if (!Name)
4540    return;
4541  if ((!getLangOptions().CPlusPlus &&
4542       FD->getDeclContext()->isTranslationUnit()) ||
4543      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4544       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4545       LinkageSpecDecl::lang_c)) {
4546    // Okay: this could be a libc/libm/Objective-C function we know
4547    // about.
4548  } else
4549    return;
4550
4551  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4552    // FIXME: NSLog and NSLogv should be target specific
4553    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4554      // FIXME: We known better than our headers.
4555      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4556    } else
4557      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4558                                             Name->isStr("NSLogv") ? 0 : 2));
4559  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4560    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4561    // target-specific builtins, perhaps?
4562    if (!FD->getAttr<FormatAttr>())
4563      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4564                                             Name->isStr("vasprintf") ? 0 : 3));
4565  }
4566}
4567
4568TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4569                                    TypeSourceInfo *TInfo) {
4570  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4571  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4572
4573  if (!TInfo) {
4574    assert(D.isInvalidType() && "no declarator info for valid type");
4575    TInfo = Context.getTrivialTypeSourceInfo(T);
4576  }
4577
4578  // Scope manipulation handled by caller.
4579  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4580                                           D.getIdentifierLoc(),
4581                                           D.getIdentifier(),
4582                                           TInfo);
4583
4584  if (const TagType *TT = T->getAs<TagType>()) {
4585    TagDecl *TD = TT->getDecl();
4586
4587    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4588    // keep track of the TypedefDecl.
4589    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4590      TD->setTypedefForAnonDecl(NewTD);
4591  }
4592
4593  if (D.isInvalidType())
4594    NewTD->setInvalidDecl();
4595  return NewTD;
4596}
4597
4598
4599/// \brief Determine whether a tag with a given kind is acceptable
4600/// as a redeclaration of the given tag declaration.
4601///
4602/// \returns true if the new tag kind is acceptable, false otherwise.
4603bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4604                                        TagDecl::TagKind NewTag,
4605                                        SourceLocation NewTagLoc,
4606                                        const IdentifierInfo &Name) {
4607  // C++ [dcl.type.elab]p3:
4608  //   The class-key or enum keyword present in the
4609  //   elaborated-type-specifier shall agree in kind with the
4610  //   declaration to which the name in theelaborated-type-specifier
4611  //   refers. This rule also applies to the form of
4612  //   elaborated-type-specifier that declares a class-name or
4613  //   friend class since it can be construed as referring to the
4614  //   definition of the class. Thus, in any
4615  //   elaborated-type-specifier, the enum keyword shall be used to
4616  //   refer to an enumeration (7.2), the union class-keyshall be
4617  //   used to refer to a union (clause 9), and either the class or
4618  //   struct class-key shall be used to refer to a class (clause 9)
4619  //   declared using the class or struct class-key.
4620  TagDecl::TagKind OldTag = Previous->getTagKind();
4621  if (OldTag == NewTag)
4622    return true;
4623
4624  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4625      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4626    // Warn about the struct/class tag mismatch.
4627    bool isTemplate = false;
4628    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4629      isTemplate = Record->getDescribedClassTemplate();
4630
4631    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4632      << (NewTag == TagDecl::TK_class)
4633      << isTemplate << &Name
4634      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4635                              OldTag == TagDecl::TK_class? "class" : "struct");
4636    Diag(Previous->getLocation(), diag::note_previous_use);
4637    return true;
4638  }
4639  return false;
4640}
4641
4642/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4643/// former case, Name will be non-null.  In the later case, Name will be null.
4644/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4645/// reference/declaration/definition of a tag.
4646Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4647                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4648                               IdentifierInfo *Name, SourceLocation NameLoc,
4649                               AttributeList *Attr, AccessSpecifier AS,
4650                               MultiTemplateParamsArg TemplateParameterLists,
4651                               bool &OwnedDecl, bool &IsDependent) {
4652  // If this is not a definition, it must have a name.
4653  assert((Name != 0 || TUK == TUK_Definition) &&
4654         "Nameless record must be a definition!");
4655
4656  OwnedDecl = false;
4657  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4658
4659  // FIXME: Check explicit specializations more carefully.
4660  bool isExplicitSpecialization = false;
4661  if (TUK != TUK_Reference) {
4662    if (TemplateParameterList *TemplateParams
4663          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4664                        (TemplateParameterList**)TemplateParameterLists.get(),
4665                                              TemplateParameterLists.size(),
4666                                                    isExplicitSpecialization)) {
4667      if (TemplateParams->size() > 0) {
4668        // This is a declaration or definition of a class template (which may
4669        // be a member of another template).
4670        OwnedDecl = false;
4671        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4672                                               SS, Name, NameLoc, Attr,
4673                                               TemplateParams,
4674                                               AS);
4675        TemplateParameterLists.release();
4676        return Result.get();
4677      } else {
4678        // The "template<>" header is extraneous.
4679        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4680          << ElaboratedType::getNameForTagKind(Kind) << Name;
4681        isExplicitSpecialization = true;
4682      }
4683    }
4684
4685    TemplateParameterLists.release();
4686  }
4687
4688  DeclContext *SearchDC = CurContext;
4689  DeclContext *DC = CurContext;
4690  bool isStdBadAlloc = false;
4691  bool Invalid = false;
4692
4693  RedeclarationKind Redecl = ForRedeclaration;
4694  if (TUK == TUK_Friend || TUK == TUK_Reference)
4695    Redecl = NotForRedeclaration;
4696
4697  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4698
4699  if (Name && SS.isNotEmpty()) {
4700    // We have a nested-name tag ('struct foo::bar').
4701
4702    // Check for invalid 'foo::'.
4703    if (SS.isInvalid()) {
4704      Name = 0;
4705      goto CreateNewDecl;
4706    }
4707
4708    // If this is a friend or a reference to a class in a dependent
4709    // context, don't try to make a decl for it.
4710    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4711      DC = computeDeclContext(SS, false);
4712      if (!DC) {
4713        IsDependent = true;
4714        return DeclPtrTy();
4715      }
4716    }
4717
4718    if (RequireCompleteDeclContext(SS))
4719      return DeclPtrTy::make((Decl *)0);
4720
4721    DC = computeDeclContext(SS, true);
4722    SearchDC = DC;
4723    // Look-up name inside 'foo::'.
4724    LookupQualifiedName(Previous, DC);
4725
4726    if (Previous.isAmbiguous())
4727      return DeclPtrTy();
4728
4729    if (Previous.empty()) {
4730      // Name lookup did not find anything. However, if the
4731      // nested-name-specifier refers to the current instantiation,
4732      // and that current instantiation has any dependent base
4733      // classes, we might find something at instantiation time: treat
4734      // this as a dependent elaborated-type-specifier.
4735      if (Previous.wasNotFoundInCurrentInstantiation()) {
4736        IsDependent = true;
4737        return DeclPtrTy();
4738      }
4739
4740      // A tag 'foo::bar' must already exist.
4741      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4742      Name = 0;
4743      Invalid = true;
4744      goto CreateNewDecl;
4745    }
4746  } else if (Name) {
4747    // If this is a named struct, check to see if there was a previous forward
4748    // declaration or definition.
4749    // FIXME: We're looking into outer scopes here, even when we
4750    // shouldn't be. Doing so can result in ambiguities that we
4751    // shouldn't be diagnosing.
4752    LookupName(Previous, S);
4753
4754    // Note:  there used to be some attempt at recovery here.
4755    if (Previous.isAmbiguous())
4756      return DeclPtrTy();
4757
4758    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4759      // FIXME: This makes sure that we ignore the contexts associated
4760      // with C structs, unions, and enums when looking for a matching
4761      // tag declaration or definition. See the similar lookup tweak
4762      // in Sema::LookupName; is there a better way to deal with this?
4763      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4764        SearchDC = SearchDC->getParent();
4765    }
4766  }
4767
4768  if (Previous.isSingleResult() &&
4769      Previous.getFoundDecl()->isTemplateParameter()) {
4770    // Maybe we will complain about the shadowed template parameter.
4771    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4772    // Just pretend that we didn't see the previous declaration.
4773    Previous.clear();
4774  }
4775
4776  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4777      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4778    // This is a declaration of or a reference to "std::bad_alloc".
4779    isStdBadAlloc = true;
4780
4781    if (Previous.empty() && StdBadAlloc) {
4782      // std::bad_alloc has been implicitly declared (but made invisible to
4783      // name lookup). Fill in this implicit declaration as the previous
4784      // declaration, so that the declarations get chained appropriately.
4785      Previous.addDecl(StdBadAlloc);
4786    }
4787  }
4788
4789  // If we didn't find a previous declaration, and this is a reference
4790  // (or friend reference), move to the correct scope.  In C++, we
4791  // also need to do a redeclaration lookup there, just in case
4792  // there's a shadow friend decl.
4793  if (Name && Previous.empty() &&
4794      (TUK == TUK_Reference || TUK == TUK_Friend)) {
4795    if (Invalid) goto CreateNewDecl;
4796    assert(SS.isEmpty());
4797
4798    if (TUK == TUK_Reference) {
4799      // C++ [basic.scope.pdecl]p5:
4800      //   -- for an elaborated-type-specifier of the form
4801      //
4802      //          class-key identifier
4803      //
4804      //      if the elaborated-type-specifier is used in the
4805      //      decl-specifier-seq or parameter-declaration-clause of a
4806      //      function defined in namespace scope, the identifier is
4807      //      declared as a class-name in the namespace that contains
4808      //      the declaration; otherwise, except as a friend
4809      //      declaration, the identifier is declared in the smallest
4810      //      non-class, non-function-prototype scope that contains the
4811      //      declaration.
4812      //
4813      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4814      // C structs and unions.
4815      //
4816      // It is an error in C++ to declare (rather than define) an enum
4817      // type, including via an elaborated type specifier.  We'll
4818      // diagnose that later; for now, declare the enum in the same
4819      // scope as we would have picked for any other tag type.
4820      //
4821      // GNU C also supports this behavior as part of its incomplete
4822      // enum types extension, while GNU C++ does not.
4823      //
4824      // Find the context where we'll be declaring the tag.
4825      // FIXME: We would like to maintain the current DeclContext as the
4826      // lexical context,
4827      while (SearchDC->isRecord())
4828        SearchDC = SearchDC->getParent();
4829
4830      // Find the scope where we'll be declaring the tag.
4831      while (S->isClassScope() ||
4832             (getLangOptions().CPlusPlus &&
4833              S->isFunctionPrototypeScope()) ||
4834             ((S->getFlags() & Scope::DeclScope) == 0) ||
4835             (S->getEntity() &&
4836              ((DeclContext *)S->getEntity())->isTransparentContext()))
4837        S = S->getParent();
4838    } else {
4839      assert(TUK == TUK_Friend);
4840      // C++ [namespace.memdef]p3:
4841      //   If a friend declaration in a non-local class first declares a
4842      //   class or function, the friend class or function is a member of
4843      //   the innermost enclosing namespace.
4844      SearchDC = SearchDC->getEnclosingNamespaceContext();
4845
4846      // Look up through our scopes until we find one with an entity which
4847      // matches our declaration context.
4848      while (S->getEntity() &&
4849             ((DeclContext *)S->getEntity())->getPrimaryContext() != SearchDC) {
4850        S = S->getParent();
4851        assert(S && "No enclosing scope matching the enclosing namespace.");
4852      }
4853    }
4854
4855    // In C++, look for a shadow friend decl.
4856    if (getLangOptions().CPlusPlus) {
4857      Previous.setRedeclarationKind(ForRedeclaration);
4858      LookupQualifiedName(Previous, SearchDC);
4859    }
4860  }
4861
4862  if (!Previous.empty()) {
4863    assert(Previous.isSingleResult());
4864    NamedDecl *PrevDecl = Previous.getFoundDecl();
4865    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4866      // If this is a use of a previous tag, or if the tag is already declared
4867      // in the same scope (so that the definition/declaration completes or
4868      // rementions the tag), reuse the decl.
4869      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4870          isDeclInScope(PrevDecl, SearchDC, S)) {
4871        // Make sure that this wasn't declared as an enum and now used as a
4872        // struct or something similar.
4873        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4874          bool SafeToContinue
4875            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4876               Kind != TagDecl::TK_enum);
4877          if (SafeToContinue)
4878            Diag(KWLoc, diag::err_use_with_wrong_tag)
4879              << Name
4880              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4881                                                  PrevTagDecl->getKindName());
4882          else
4883            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4884          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4885
4886          if (SafeToContinue)
4887            Kind = PrevTagDecl->getTagKind();
4888          else {
4889            // Recover by making this an anonymous redefinition.
4890            Name = 0;
4891            Previous.clear();
4892            Invalid = true;
4893          }
4894        }
4895
4896        if (!Invalid) {
4897          // If this is a use, just return the declaration we found.
4898
4899          // FIXME: In the future, return a variant or some other clue
4900          // for the consumer of this Decl to know it doesn't own it.
4901          // For our current ASTs this shouldn't be a problem, but will
4902          // need to be changed with DeclGroups.
4903          if (TUK == TUK_Reference || TUK == TUK_Friend)
4904            return DeclPtrTy::make(PrevTagDecl);
4905
4906          // Diagnose attempts to redefine a tag.
4907          if (TUK == TUK_Definition) {
4908            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4909              // If we're defining a specialization and the previous definition
4910              // is from an implicit instantiation, don't emit an error
4911              // here; we'll catch this in the general case below.
4912              if (!isExplicitSpecialization ||
4913                  !isa<CXXRecordDecl>(Def) ||
4914                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4915                                               == TSK_ExplicitSpecialization) {
4916                Diag(NameLoc, diag::err_redefinition) << Name;
4917                Diag(Def->getLocation(), diag::note_previous_definition);
4918                // If this is a redefinition, recover by making this
4919                // struct be anonymous, which will make any later
4920                // references get the previous definition.
4921                Name = 0;
4922                Previous.clear();
4923                Invalid = true;
4924              }
4925            } else {
4926              // If the type is currently being defined, complain
4927              // about a nested redefinition.
4928              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4929              if (Tag->isBeingDefined()) {
4930                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4931                Diag(PrevTagDecl->getLocation(),
4932                     diag::note_previous_definition);
4933                Name = 0;
4934                Previous.clear();
4935                Invalid = true;
4936              }
4937            }
4938
4939            // Okay, this is definition of a previously declared or referenced
4940            // tag PrevDecl. We're going to create a new Decl for it.
4941          }
4942        }
4943        // If we get here we have (another) forward declaration or we
4944        // have a definition.  Just create a new decl.
4945
4946      } else {
4947        // If we get here, this is a definition of a new tag type in a nested
4948        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4949        // new decl/type.  We set PrevDecl to NULL so that the entities
4950        // have distinct types.
4951        Previous.clear();
4952      }
4953      // If we get here, we're going to create a new Decl. If PrevDecl
4954      // is non-NULL, it's a definition of the tag declared by
4955      // PrevDecl. If it's NULL, we have a new definition.
4956    } else {
4957      // PrevDecl is a namespace, template, or anything else
4958      // that lives in the IDNS_Tag identifier namespace.
4959      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4960          isDeclInScope(PrevDecl, SearchDC, S)) {
4961        // The tag name clashes with a namespace name, issue an error and
4962        // recover by making this tag be anonymous.
4963        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4964        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4965        Name = 0;
4966        Previous.clear();
4967        Invalid = true;
4968      } else {
4969        // The existing declaration isn't relevant to us; we're in a
4970        // new scope, so clear out the previous declaration.
4971        Previous.clear();
4972      }
4973    }
4974  }
4975
4976CreateNewDecl:
4977
4978  TagDecl *PrevDecl = 0;
4979  if (Previous.isSingleResult())
4980    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4981
4982  // If there is an identifier, use the location of the identifier as the
4983  // location of the decl, otherwise use the location of the struct/union
4984  // keyword.
4985  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4986
4987  // Otherwise, create a new declaration. If there is a previous
4988  // declaration of the same entity, the two will be linked via
4989  // PrevDecl.
4990  TagDecl *New;
4991
4992  if (Kind == TagDecl::TK_enum) {
4993    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4994    // enum X { A, B, C } D;    D should chain to X.
4995    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4996                           cast_or_null<EnumDecl>(PrevDecl));
4997    // If this is an undefined enum, warn.
4998    if (TUK != TUK_Definition && !Invalid)  {
4999      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5000                                              : diag::ext_forward_ref_enum;
5001      Diag(Loc, DK);
5002    }
5003  } else {
5004    // struct/union/class
5005
5006    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5007    // struct X { int A; } D;    D should chain to X.
5008    if (getLangOptions().CPlusPlus) {
5009      // FIXME: Look for a way to use RecordDecl for simple structs.
5010      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5011                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5012
5013      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5014        StdBadAlloc = cast<CXXRecordDecl>(New);
5015    } else
5016      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5017                               cast_or_null<RecordDecl>(PrevDecl));
5018  }
5019
5020  // Maybe add qualifier info.
5021  if (SS.isNotEmpty()) {
5022    NestedNameSpecifier *NNS
5023      = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5024    New->setQualifierInfo(NNS, SS.getRange());
5025  }
5026
5027  if (Kind != TagDecl::TK_enum) {
5028    // Handle #pragma pack: if the #pragma pack stack has non-default
5029    // alignment, make up a packed attribute for this decl. These
5030    // attributes are checked when the ASTContext lays out the
5031    // structure.
5032    //
5033    // It is important for implementing the correct semantics that this
5034    // happen here (in act on tag decl). The #pragma pack stack is
5035    // maintained as a result of parser callbacks which can occur at
5036    // many points during the parsing of a struct declaration (because
5037    // the #pragma tokens are effectively skipped over during the
5038    // parsing of the struct).
5039    if (unsigned Alignment = getPragmaPackAlignment())
5040      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5041  }
5042
5043  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5044    // C++ [dcl.typedef]p3:
5045    //   [...] Similarly, in a given scope, a class or enumeration
5046    //   shall not be declared with the same name as a typedef-name
5047    //   that is declared in that scope and refers to a type other
5048    //   than the class or enumeration itself.
5049    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5050                        ForRedeclaration);
5051    LookupName(Lookup, S);
5052    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5053    NamedDecl *PrevTypedefNamed = PrevTypedef;
5054    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5055        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5056          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5057      Diag(Loc, diag::err_tag_definition_of_typedef)
5058        << Context.getTypeDeclType(New)
5059        << PrevTypedef->getUnderlyingType();
5060      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5061      Invalid = true;
5062    }
5063  }
5064
5065  // If this is a specialization of a member class (of a class template),
5066  // check the specialization.
5067  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5068    Invalid = true;
5069
5070  if (Invalid)
5071    New->setInvalidDecl();
5072
5073  if (Attr)
5074    ProcessDeclAttributeList(S, New, Attr);
5075
5076  // If we're declaring or defining a tag in function prototype scope
5077  // in C, note that this type can only be used within the function.
5078  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5079    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5080
5081  // Set the lexical context. If the tag has a C++ scope specifier, the
5082  // lexical context will be different from the semantic context.
5083  New->setLexicalDeclContext(CurContext);
5084
5085  // Mark this as a friend decl if applicable.
5086  if (TUK == TUK_Friend)
5087    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5088
5089  // Set the access specifier.
5090  if (!Invalid && SearchDC->isRecord())
5091    SetMemberAccessSpecifier(New, PrevDecl, AS);
5092
5093  if (TUK == TUK_Definition)
5094    New->startDefinition();
5095
5096  // If this has an identifier, add it to the scope stack.
5097  if (TUK == TUK_Friend) {
5098    // We might be replacing an existing declaration in the lookup tables;
5099    // if so, borrow its access specifier.
5100    if (PrevDecl)
5101      New->setAccess(PrevDecl->getAccess());
5102
5103    DeclContext *DC = New->getDeclContext()->getLookupContext();
5104    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5105    if (Name) // can be null along some error paths
5106      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5107        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5108  } else if (Name) {
5109    S = getNonFieldDeclScope(S);
5110    PushOnScopeChains(New, S);
5111  } else {
5112    CurContext->addDecl(New);
5113  }
5114
5115  // If this is the C FILE type, notify the AST context.
5116  if (IdentifierInfo *II = New->getIdentifier())
5117    if (!New->isInvalidDecl() &&
5118        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5119        II->isStr("FILE"))
5120      Context.setFILEDecl(New);
5121
5122  OwnedDecl = true;
5123  return DeclPtrTy::make(New);
5124}
5125
5126void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5127  AdjustDeclIfTemplate(TagD);
5128  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5129
5130  // Enter the tag context.
5131  PushDeclContext(S, Tag);
5132}
5133
5134void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5135                                           SourceLocation LBraceLoc) {
5136  AdjustDeclIfTemplate(TagD);
5137  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5138
5139  FieldCollector->StartClass();
5140
5141  if (!Record->getIdentifier())
5142    return;
5143
5144  // C++ [class]p2:
5145  //   [...] The class-name is also inserted into the scope of the
5146  //   class itself; this is known as the injected-class-name. For
5147  //   purposes of access checking, the injected-class-name is treated
5148  //   as if it were a public member name.
5149  CXXRecordDecl *InjectedClassName
5150    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5151                            CurContext, Record->getLocation(),
5152                            Record->getIdentifier(),
5153                            Record->getTagKeywordLoc(),
5154                            Record);
5155  InjectedClassName->setImplicit();
5156  InjectedClassName->setAccess(AS_public);
5157  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5158      InjectedClassName->setDescribedClassTemplate(Template);
5159  PushOnScopeChains(InjectedClassName, S);
5160  assert(InjectedClassName->isInjectedClassName() &&
5161         "Broken injected-class-name");
5162}
5163
5164// Traverses the class and any nested classes, making a note of any
5165// dynamic classes that have no key function so that we can mark all of
5166// their virtual member functions as "used" at the end of the translation
5167// unit. This ensures that all functions needed by the vtable will get
5168// instantiated/synthesized.
5169static void
5170RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5171                                      SourceLocation Loc) {
5172  // We don't look at dependent or undefined classes.
5173  if (Record->isDependentContext() || !Record->isDefinition())
5174    return;
5175
5176  if (Record->isDynamicClass()) {
5177    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5178
5179    if (!KeyFunction)
5180      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5181                                                                   Loc));
5182
5183    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5184        && Record->getLinkage() == ExternalLinkage)
5185      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5186  }
5187  for (DeclContext::decl_iterator D = Record->decls_begin(),
5188                               DEnd = Record->decls_end();
5189       D != DEnd; ++D) {
5190    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5191      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5192  }
5193}
5194
5195void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5196                                    SourceLocation RBraceLoc) {
5197  AdjustDeclIfTemplate(TagD);
5198  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5199  Tag->setRBraceLoc(RBraceLoc);
5200
5201  if (isa<CXXRecordDecl>(Tag))
5202    FieldCollector->FinishClass();
5203
5204  // Exit this scope of this tag's definition.
5205  PopDeclContext();
5206
5207  if (isa<CXXRecordDecl>(Tag) && !Tag->getLexicalDeclContext()->isRecord())
5208    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5209                                          RBraceLoc);
5210
5211  // Notify the consumer that we've defined a tag.
5212  Consumer.HandleTagDeclDefinition(Tag);
5213}
5214
5215void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5216  AdjustDeclIfTemplate(TagD);
5217  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5218  Tag->setInvalidDecl();
5219
5220  // We're undoing ActOnTagStartDefinition here, not
5221  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5222  // the FieldCollector.
5223
5224  PopDeclContext();
5225}
5226
5227// Note that FieldName may be null for anonymous bitfields.
5228bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5229                          QualType FieldTy, const Expr *BitWidth,
5230                          bool *ZeroWidth) {
5231  // Default to true; that shouldn't confuse checks for emptiness
5232  if (ZeroWidth)
5233    *ZeroWidth = true;
5234
5235  // C99 6.7.2.1p4 - verify the field type.
5236  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5237  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5238    // Handle incomplete types with specific error.
5239    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5240      return true;
5241    if (FieldName)
5242      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5243        << FieldName << FieldTy << BitWidth->getSourceRange();
5244    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5245      << FieldTy << BitWidth->getSourceRange();
5246  }
5247
5248  // If the bit-width is type- or value-dependent, don't try to check
5249  // it now.
5250  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5251    return false;
5252
5253  llvm::APSInt Value;
5254  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5255    return true;
5256
5257  if (Value != 0 && ZeroWidth)
5258    *ZeroWidth = false;
5259
5260  // Zero-width bitfield is ok for anonymous field.
5261  if (Value == 0 && FieldName)
5262    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5263
5264  if (Value.isSigned() && Value.isNegative()) {
5265    if (FieldName)
5266      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5267               << FieldName << Value.toString(10);
5268    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5269      << Value.toString(10);
5270  }
5271
5272  if (!FieldTy->isDependentType()) {
5273    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5274    if (Value.getZExtValue() > TypeSize) {
5275      if (FieldName)
5276        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5277          << FieldName << (unsigned)TypeSize;
5278      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5279        << (unsigned)TypeSize;
5280    }
5281  }
5282
5283  return false;
5284}
5285
5286/// ActOnField - Each field of a struct/union/class is passed into this in order
5287/// to create a FieldDecl object for it.
5288Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5289                                 SourceLocation DeclStart,
5290                                 Declarator &D, ExprTy *BitfieldWidth) {
5291  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5292                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5293                               AS_public);
5294  return DeclPtrTy::make(Res);
5295}
5296
5297/// HandleField - Analyze a field of a C struct or a C++ data member.
5298///
5299FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5300                             SourceLocation DeclStart,
5301                             Declarator &D, Expr *BitWidth,
5302                             AccessSpecifier AS) {
5303  IdentifierInfo *II = D.getIdentifier();
5304  SourceLocation Loc = DeclStart;
5305  if (II) Loc = D.getIdentifierLoc();
5306
5307  TypeSourceInfo *TInfo = 0;
5308  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5309  if (getLangOptions().CPlusPlus)
5310    CheckExtraCXXDefaultArguments(D);
5311
5312  DiagnoseFunctionSpecifiers(D);
5313
5314  if (D.getDeclSpec().isThreadSpecified())
5315    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5316
5317  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5318                                         ForRedeclaration);
5319
5320  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5321    // Maybe we will complain about the shadowed template parameter.
5322    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5323    // Just pretend that we didn't see the previous declaration.
5324    PrevDecl = 0;
5325  }
5326
5327  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5328    PrevDecl = 0;
5329
5330  bool Mutable
5331    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5332  SourceLocation TSSL = D.getSourceRange().getBegin();
5333  FieldDecl *NewFD
5334    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5335                     AS, PrevDecl, &D);
5336
5337  if (NewFD->isInvalidDecl())
5338    Record->setInvalidDecl();
5339
5340  if (NewFD->isInvalidDecl() && PrevDecl) {
5341    // Don't introduce NewFD into scope; there's already something
5342    // with the same name in the same scope.
5343  } else if (II) {
5344    PushOnScopeChains(NewFD, S);
5345  } else
5346    Record->addDecl(NewFD);
5347
5348  return NewFD;
5349}
5350
5351/// \brief Build a new FieldDecl and check its well-formedness.
5352///
5353/// This routine builds a new FieldDecl given the fields name, type,
5354/// record, etc. \p PrevDecl should refer to any previous declaration
5355/// with the same name and in the same scope as the field to be
5356/// created.
5357///
5358/// \returns a new FieldDecl.
5359///
5360/// \todo The Declarator argument is a hack. It will be removed once
5361FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5362                                TypeSourceInfo *TInfo,
5363                                RecordDecl *Record, SourceLocation Loc,
5364                                bool Mutable, Expr *BitWidth,
5365                                SourceLocation TSSL,
5366                                AccessSpecifier AS, NamedDecl *PrevDecl,
5367                                Declarator *D) {
5368  IdentifierInfo *II = Name.getAsIdentifierInfo();
5369  bool InvalidDecl = false;
5370  if (D) InvalidDecl = D->isInvalidType();
5371
5372  // If we receive a broken type, recover by assuming 'int' and
5373  // marking this declaration as invalid.
5374  if (T.isNull()) {
5375    InvalidDecl = true;
5376    T = Context.IntTy;
5377  }
5378
5379  QualType EltTy = Context.getBaseElementType(T);
5380  if (!EltTy->isDependentType() &&
5381      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5382    InvalidDecl = true;
5383
5384  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5385  // than a variably modified type.
5386  if (!InvalidDecl && T->isVariablyModifiedType()) {
5387    bool SizeIsNegative;
5388    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5389                                                           SizeIsNegative);
5390    if (!FixedTy.isNull()) {
5391      Diag(Loc, diag::warn_illegal_constant_array_size);
5392      T = FixedTy;
5393    } else {
5394      if (SizeIsNegative)
5395        Diag(Loc, diag::err_typecheck_negative_array_size);
5396      else
5397        Diag(Loc, diag::err_typecheck_field_variable_size);
5398      InvalidDecl = true;
5399    }
5400  }
5401
5402  // Fields can not have abstract class types
5403  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5404                                             diag::err_abstract_type_in_decl,
5405                                             AbstractFieldType))
5406    InvalidDecl = true;
5407
5408  bool ZeroWidth = false;
5409  // If this is declared as a bit-field, check the bit-field.
5410  if (!InvalidDecl && BitWidth &&
5411      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5412    InvalidDecl = true;
5413    DeleteExpr(BitWidth);
5414    BitWidth = 0;
5415    ZeroWidth = false;
5416  }
5417
5418  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5419                                       BitWidth, Mutable);
5420  if (InvalidDecl)
5421    NewFD->setInvalidDecl();
5422
5423  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5424    Diag(Loc, diag::err_duplicate_member) << II;
5425    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5426    NewFD->setInvalidDecl();
5427  }
5428
5429  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5430    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5431
5432    if (!T->isPODType())
5433      CXXRecord->setPOD(false);
5434    if (!ZeroWidth)
5435      CXXRecord->setEmpty(false);
5436
5437    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5438      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5439
5440      if (!RDecl->hasTrivialConstructor())
5441        CXXRecord->setHasTrivialConstructor(false);
5442      if (!RDecl->hasTrivialCopyConstructor())
5443        CXXRecord->setHasTrivialCopyConstructor(false);
5444      if (!RDecl->hasTrivialCopyAssignment())
5445        CXXRecord->setHasTrivialCopyAssignment(false);
5446      if (!RDecl->hasTrivialDestructor())
5447        CXXRecord->setHasTrivialDestructor(false);
5448
5449      // C++ 9.5p1: An object of a class with a non-trivial
5450      // constructor, a non-trivial copy constructor, a non-trivial
5451      // destructor, or a non-trivial copy assignment operator
5452      // cannot be a member of a union, nor can an array of such
5453      // objects.
5454      // TODO: C++0x alters this restriction significantly.
5455      if (Record->isUnion()) {
5456        // We check for copy constructors before constructors
5457        // because otherwise we'll never get complaints about
5458        // copy constructors.
5459
5460        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5461
5462        CXXSpecialMember member;
5463        if (!RDecl->hasTrivialCopyConstructor())
5464          member = CXXCopyConstructor;
5465        else if (!RDecl->hasTrivialConstructor())
5466          member = CXXDefaultConstructor;
5467        else if (!RDecl->hasTrivialCopyAssignment())
5468          member = CXXCopyAssignment;
5469        else if (!RDecl->hasTrivialDestructor())
5470          member = CXXDestructor;
5471        else
5472          member = invalid;
5473
5474        if (member != invalid) {
5475          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5476          DiagnoseNontrivial(RT, member);
5477          NewFD->setInvalidDecl();
5478        }
5479      }
5480    }
5481  }
5482
5483  // FIXME: We need to pass in the attributes given an AST
5484  // representation, not a parser representation.
5485  if (D)
5486    // FIXME: What to pass instead of TUScope?
5487    ProcessDeclAttributes(TUScope, NewFD, *D);
5488
5489  if (T.isObjCGCWeak())
5490    Diag(Loc, diag::warn_attribute_weak_on_field);
5491
5492  NewFD->setAccess(AS);
5493
5494  // C++ [dcl.init.aggr]p1:
5495  //   An aggregate is an array or a class (clause 9) with [...] no
5496  //   private or protected non-static data members (clause 11).
5497  // A POD must be an aggregate.
5498  if (getLangOptions().CPlusPlus &&
5499      (AS == AS_private || AS == AS_protected)) {
5500    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5501    CXXRecord->setAggregate(false);
5502    CXXRecord->setPOD(false);
5503  }
5504
5505  return NewFD;
5506}
5507
5508/// DiagnoseNontrivial - Given that a class has a non-trivial
5509/// special member, figure out why.
5510void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5511  QualType QT(T, 0U);
5512  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5513
5514  // Check whether the member was user-declared.
5515  switch (member) {
5516  case CXXDefaultConstructor:
5517    if (RD->hasUserDeclaredConstructor()) {
5518      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5519      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5520        const FunctionDecl *body = 0;
5521        ci->getBody(body);
5522        if (!body ||
5523            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5524          SourceLocation CtorLoc = ci->getLocation();
5525          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5526          return;
5527        }
5528      }
5529
5530      assert(0 && "found no user-declared constructors");
5531      return;
5532    }
5533    break;
5534
5535  case CXXCopyConstructor:
5536    if (RD->hasUserDeclaredCopyConstructor()) {
5537      SourceLocation CtorLoc =
5538        RD->getCopyConstructor(Context, 0)->getLocation();
5539      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5540      return;
5541    }
5542    break;
5543
5544  case CXXCopyAssignment:
5545    if (RD->hasUserDeclaredCopyAssignment()) {
5546      // FIXME: this should use the location of the copy
5547      // assignment, not the type.
5548      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5549      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5550      return;
5551    }
5552    break;
5553
5554  case CXXDestructor:
5555    if (RD->hasUserDeclaredDestructor()) {
5556      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5557      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5558      return;
5559    }
5560    break;
5561  }
5562
5563  typedef CXXRecordDecl::base_class_iterator base_iter;
5564
5565  // Virtual bases and members inhibit trivial copying/construction,
5566  // but not trivial destruction.
5567  if (member != CXXDestructor) {
5568    // Check for virtual bases.  vbases includes indirect virtual bases,
5569    // so we just iterate through the direct bases.
5570    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5571      if (bi->isVirtual()) {
5572        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5573        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5574        return;
5575      }
5576
5577    // Check for virtual methods.
5578    typedef CXXRecordDecl::method_iterator meth_iter;
5579    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5580         ++mi) {
5581      if (mi->isVirtual()) {
5582        SourceLocation MLoc = mi->getSourceRange().getBegin();
5583        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5584        return;
5585      }
5586    }
5587  }
5588
5589  bool (CXXRecordDecl::*hasTrivial)() const;
5590  switch (member) {
5591  case CXXDefaultConstructor:
5592    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5593  case CXXCopyConstructor:
5594    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5595  case CXXCopyAssignment:
5596    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5597  case CXXDestructor:
5598    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5599  default:
5600    assert(0 && "unexpected special member"); return;
5601  }
5602
5603  // Check for nontrivial bases (and recurse).
5604  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5605    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5606    assert(BaseRT && "Don't know how to handle dependent bases");
5607    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5608    if (!(BaseRecTy->*hasTrivial)()) {
5609      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5610      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5611      DiagnoseNontrivial(BaseRT, member);
5612      return;
5613    }
5614  }
5615
5616  // Check for nontrivial members (and recurse).
5617  typedef RecordDecl::field_iterator field_iter;
5618  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5619       ++fi) {
5620    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5621    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5622      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5623
5624      if (!(EltRD->*hasTrivial)()) {
5625        SourceLocation FLoc = (*fi)->getLocation();
5626        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5627        DiagnoseNontrivial(EltRT, member);
5628        return;
5629      }
5630    }
5631  }
5632
5633  assert(0 && "found no explanation for non-trivial member");
5634}
5635
5636/// TranslateIvarVisibility - Translate visibility from a token ID to an
5637///  AST enum value.
5638static ObjCIvarDecl::AccessControl
5639TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5640  switch (ivarVisibility) {
5641  default: assert(0 && "Unknown visitibility kind");
5642  case tok::objc_private: return ObjCIvarDecl::Private;
5643  case tok::objc_public: return ObjCIvarDecl::Public;
5644  case tok::objc_protected: return ObjCIvarDecl::Protected;
5645  case tok::objc_package: return ObjCIvarDecl::Package;
5646  }
5647}
5648
5649/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5650/// in order to create an IvarDecl object for it.
5651Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5652                                SourceLocation DeclStart,
5653                                DeclPtrTy IntfDecl,
5654                                Declarator &D, ExprTy *BitfieldWidth,
5655                                tok::ObjCKeywordKind Visibility) {
5656
5657  IdentifierInfo *II = D.getIdentifier();
5658  Expr *BitWidth = (Expr*)BitfieldWidth;
5659  SourceLocation Loc = DeclStart;
5660  if (II) Loc = D.getIdentifierLoc();
5661
5662  // FIXME: Unnamed fields can be handled in various different ways, for
5663  // example, unnamed unions inject all members into the struct namespace!
5664
5665  TypeSourceInfo *TInfo = 0;
5666  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5667
5668  if (BitWidth) {
5669    // 6.7.2.1p3, 6.7.2.1p4
5670    if (VerifyBitField(Loc, II, T, BitWidth)) {
5671      D.setInvalidType();
5672      DeleteExpr(BitWidth);
5673      BitWidth = 0;
5674    }
5675  } else {
5676    // Not a bitfield.
5677
5678    // validate II.
5679
5680  }
5681
5682  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5683  // than a variably modified type.
5684  if (T->isVariablyModifiedType()) {
5685    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5686    D.setInvalidType();
5687  }
5688
5689  // Get the visibility (access control) for this ivar.
5690  ObjCIvarDecl::AccessControl ac =
5691    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5692                                        : ObjCIvarDecl::None;
5693  // Must set ivar's DeclContext to its enclosing interface.
5694  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5695  DeclContext *EnclosingContext;
5696  if (ObjCImplementationDecl *IMPDecl =
5697      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5698    // Case of ivar declared in an implementation. Context is that of its class.
5699    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5700    assert(IDecl && "No class- ActOnIvar");
5701    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5702  } else
5703    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5704  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5705
5706  // Construct the decl.
5707  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5708                                             EnclosingContext, Loc, II, T,
5709                                             TInfo, ac, (Expr *)BitfieldWidth);
5710
5711  if (II) {
5712    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5713                                           ForRedeclaration);
5714    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5715        && !isa<TagDecl>(PrevDecl)) {
5716      Diag(Loc, diag::err_duplicate_member) << II;
5717      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5718      NewID->setInvalidDecl();
5719    }
5720  }
5721
5722  // Process attributes attached to the ivar.
5723  ProcessDeclAttributes(S, NewID, D);
5724
5725  if (D.isInvalidType())
5726    NewID->setInvalidDecl();
5727
5728  if (II) {
5729    // FIXME: When interfaces are DeclContexts, we'll need to add
5730    // these to the interface.
5731    S->AddDecl(DeclPtrTy::make(NewID));
5732    IdResolver.AddDecl(NewID);
5733  }
5734
5735  return DeclPtrTy::make(NewID);
5736}
5737
5738void Sema::ActOnFields(Scope* S,
5739                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5740                       DeclPtrTy *Fields, unsigned NumFields,
5741                       SourceLocation LBrac, SourceLocation RBrac,
5742                       AttributeList *Attr) {
5743  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5744  assert(EnclosingDecl && "missing record or interface decl");
5745
5746  // If the decl this is being inserted into is invalid, then it may be a
5747  // redeclaration or some other bogus case.  Don't try to add fields to it.
5748  if (EnclosingDecl->isInvalidDecl()) {
5749    // FIXME: Deallocate fields?
5750    return;
5751  }
5752
5753
5754  // Verify that all the fields are okay.
5755  unsigned NumNamedMembers = 0;
5756  llvm::SmallVector<FieldDecl*, 32> RecFields;
5757
5758  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5759  for (unsigned i = 0; i != NumFields; ++i) {
5760    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5761
5762    // Get the type for the field.
5763    Type *FDTy = FD->getType().getTypePtr();
5764
5765    if (!FD->isAnonymousStructOrUnion()) {
5766      // Remember all fields written by the user.
5767      RecFields.push_back(FD);
5768    }
5769
5770    // If the field is already invalid for some reason, don't emit more
5771    // diagnostics about it.
5772    if (FD->isInvalidDecl()) {
5773      EnclosingDecl->setInvalidDecl();
5774      continue;
5775    }
5776
5777    // C99 6.7.2.1p2:
5778    //   A structure or union shall not contain a member with
5779    //   incomplete or function type (hence, a structure shall not
5780    //   contain an instance of itself, but may contain a pointer to
5781    //   an instance of itself), except that the last member of a
5782    //   structure with more than one named member may have incomplete
5783    //   array type; such a structure (and any union containing,
5784    //   possibly recursively, a member that is such a structure)
5785    //   shall not be a member of a structure or an element of an
5786    //   array.
5787    if (FDTy->isFunctionType()) {
5788      // Field declared as a function.
5789      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5790        << FD->getDeclName();
5791      FD->setInvalidDecl();
5792      EnclosingDecl->setInvalidDecl();
5793      continue;
5794    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5795               Record && Record->isStruct()) {
5796      // Flexible array member.
5797      if (NumNamedMembers < 1) {
5798        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5799          << FD->getDeclName();
5800        FD->setInvalidDecl();
5801        EnclosingDecl->setInvalidDecl();
5802        continue;
5803      }
5804      // Okay, we have a legal flexible array member at the end of the struct.
5805      if (Record)
5806        Record->setHasFlexibleArrayMember(true);
5807    } else if (!FDTy->isDependentType() &&
5808               RequireCompleteType(FD->getLocation(), FD->getType(),
5809                                   diag::err_field_incomplete)) {
5810      // Incomplete type
5811      FD->setInvalidDecl();
5812      EnclosingDecl->setInvalidDecl();
5813      continue;
5814    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5815      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5816        // If this is a member of a union, then entire union becomes "flexible".
5817        if (Record && Record->isUnion()) {
5818          Record->setHasFlexibleArrayMember(true);
5819        } else {
5820          // If this is a struct/class and this is not the last element, reject
5821          // it.  Note that GCC supports variable sized arrays in the middle of
5822          // structures.
5823          if (i != NumFields-1)
5824            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5825              << FD->getDeclName() << FD->getType();
5826          else {
5827            // We support flexible arrays at the end of structs in
5828            // other structs as an extension.
5829            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5830              << FD->getDeclName();
5831            if (Record)
5832              Record->setHasFlexibleArrayMember(true);
5833          }
5834        }
5835      }
5836      if (Record && FDTTy->getDecl()->hasObjectMember())
5837        Record->setHasObjectMember(true);
5838    } else if (FDTy->isObjCInterfaceType()) {
5839      /// A field cannot be an Objective-c object
5840      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5841      FD->setInvalidDecl();
5842      EnclosingDecl->setInvalidDecl();
5843      continue;
5844    } else if (getLangOptions().ObjC1 &&
5845               getLangOptions().getGCMode() != LangOptions::NonGC &&
5846               Record &&
5847               (FD->getType()->isObjCObjectPointerType() ||
5848                FD->getType().isObjCGCStrong()))
5849      Record->setHasObjectMember(true);
5850    // Keep track of the number of named members.
5851    if (FD->getIdentifier())
5852      ++NumNamedMembers;
5853  }
5854
5855  // Okay, we successfully defined 'Record'.
5856  if (Record) {
5857    Record->completeDefinition();
5858  } else {
5859    ObjCIvarDecl **ClsFields =
5860      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5861    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5862      ID->setLocEnd(RBrac);
5863      // Add ivar's to class's DeclContext.
5864      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5865        ClsFields[i]->setLexicalDeclContext(ID);
5866        ID->addDecl(ClsFields[i]);
5867      }
5868      // Must enforce the rule that ivars in the base classes may not be
5869      // duplicates.
5870      if (ID->getSuperClass())
5871        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5872    } else if (ObjCImplementationDecl *IMPDecl =
5873                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5874      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5875      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5876        // Ivar declared in @implementation never belongs to the implementation.
5877        // Only it is in implementation's lexical context.
5878        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5879      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5880    } else if (ObjCCategoryDecl *CDecl =
5881                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5882      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension())
5883        Diag(LBrac, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
5884      else {
5885        // FIXME. Class extension does not have a LocEnd field.
5886        // CDecl->setLocEnd(RBrac);
5887        // Add ivar's to class extension's DeclContext.
5888        for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5889          ClsFields[i]->setLexicalDeclContext(CDecl);
5890          CDecl->addDecl(ClsFields[i]);
5891        }
5892      }
5893    }
5894  }
5895
5896  if (Attr)
5897    ProcessDeclAttributeList(S, Record, Attr);
5898}
5899
5900/// \brief Determine whether the given integral value is representable within
5901/// the given type T.
5902static bool isRepresentableIntegerValue(ASTContext &Context,
5903                                        llvm::APSInt &Value,
5904                                        QualType T) {
5905  assert(T->isIntegralType() && "Integral type required!");
5906  unsigned BitWidth = Context.getTypeSize(T);
5907
5908  if (Value.isUnsigned() || Value.isNonNegative())
5909    return Value.getActiveBits() < BitWidth;
5910
5911  return Value.getMinSignedBits() <= BitWidth;
5912}
5913
5914// \brief Given an integral type, return the next larger integral type
5915// (or a NULL type of no such type exists).
5916static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5917  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5918  // enum checking below.
5919  assert(T->isIntegralType() && "Integral type required!");
5920  const unsigned NumTypes = 4;
5921  QualType SignedIntegralTypes[NumTypes] = {
5922    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5923  };
5924  QualType UnsignedIntegralTypes[NumTypes] = {
5925    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5926    Context.UnsignedLongLongTy
5927  };
5928
5929  unsigned BitWidth = Context.getTypeSize(T);
5930  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5931                                            : UnsignedIntegralTypes;
5932  for (unsigned I = 0; I != NumTypes; ++I)
5933    if (Context.getTypeSize(Types[I]) > BitWidth)
5934      return Types[I];
5935
5936  return QualType();
5937}
5938
5939EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5940                                          EnumConstantDecl *LastEnumConst,
5941                                          SourceLocation IdLoc,
5942                                          IdentifierInfo *Id,
5943                                          ExprArg val) {
5944  Expr *Val = (Expr *)val.get();
5945
5946  unsigned IntWidth = Context.Target.getIntWidth();
5947  llvm::APSInt EnumVal(IntWidth);
5948  QualType EltTy;
5949  if (Val) {
5950    if (Enum->isDependentType() || Val->isTypeDependent())
5951      EltTy = Context.DependentTy;
5952    else {
5953      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5954      SourceLocation ExpLoc;
5955      if (!Val->isValueDependent() &&
5956          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5957        Val = 0;
5958      } else {
5959        if (!getLangOptions().CPlusPlus) {
5960          // C99 6.7.2.2p2:
5961          //   The expression that defines the value of an enumeration constant
5962          //   shall be an integer constant expression that has a value
5963          //   representable as an int.
5964
5965          // Complain if the value is not representable in an int.
5966          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
5967            Diag(IdLoc, diag::ext_enum_value_not_int)
5968              << EnumVal.toString(10) << Val->getSourceRange()
5969              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
5970          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
5971            // Force the type of the expression to 'int'.
5972            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
5973
5974            if (Val != val.get()) {
5975              val.release();
5976              val = Val;
5977            }
5978          }
5979        }
5980
5981        // C++0x [dcl.enum]p5:
5982        //   If the underlying type is not fixed, the type of each enumerator
5983        //   is the type of its initializing value:
5984        //     - If an initializer is specified for an enumerator, the
5985        //       initializing value has the same type as the expression.
5986        EltTy = Val->getType();
5987      }
5988    }
5989  }
5990
5991  if (!Val) {
5992    if (Enum->isDependentType())
5993      EltTy = Context.DependentTy;
5994    else if (!LastEnumConst) {
5995      // C++0x [dcl.enum]p5:
5996      //   If the underlying type is not fixed, the type of each enumerator
5997      //   is the type of its initializing value:
5998      //     - If no initializer is specified for the first enumerator, the
5999      //       initializing value has an unspecified integral type.
6000      //
6001      // GCC uses 'int' for its unspecified integral type, as does
6002      // C99 6.7.2.2p3.
6003      EltTy = Context.IntTy;
6004    } else {
6005      // Assign the last value + 1.
6006      EnumVal = LastEnumConst->getInitVal();
6007      ++EnumVal;
6008      EltTy = LastEnumConst->getType();
6009
6010      // Check for overflow on increment.
6011      if (EnumVal < LastEnumConst->getInitVal()) {
6012        // C++0x [dcl.enum]p5:
6013        //   If the underlying type is not fixed, the type of each enumerator
6014        //   is the type of its initializing value:
6015        //
6016        //     - Otherwise the type of the initializing value is the same as
6017        //       the type of the initializing value of the preceding enumerator
6018        //       unless the incremented value is not representable in that type,
6019        //       in which case the type is an unspecified integral type
6020        //       sufficient to contain the incremented value. If no such type
6021        //       exists, the program is ill-formed.
6022        QualType T = getNextLargerIntegralType(Context, EltTy);
6023        if (T.isNull()) {
6024          // There is no integral type larger enough to represent this
6025          // value. Complain, then allow the value to wrap around.
6026          EnumVal = LastEnumConst->getInitVal();
6027          EnumVal.zext(EnumVal.getBitWidth() * 2);
6028          Diag(IdLoc, diag::warn_enumerator_too_large)
6029            << EnumVal.toString(10);
6030        } else {
6031          EltTy = T;
6032        }
6033
6034        // Retrieve the last enumerator's value, extent that type to the
6035        // type that is supposed to be large enough to represent the incremented
6036        // value, then increment.
6037        EnumVal = LastEnumConst->getInitVal();
6038        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6039        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6040        ++EnumVal;
6041
6042        // If we're not in C++, diagnose the overflow of enumerator values,
6043        // which in C99 means that the enumerator value is not representable in
6044        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6045        // permits enumerator values that are representable in some larger
6046        // integral type.
6047        if (!getLangOptions().CPlusPlus && !T.isNull())
6048          Diag(IdLoc, diag::warn_enum_value_overflow);
6049      } else if (!getLangOptions().CPlusPlus &&
6050                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6051        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6052        Diag(IdLoc, diag::ext_enum_value_not_int)
6053          << EnumVal.toString(10) << 1;
6054      }
6055    }
6056  }
6057
6058  if (!EltTy->isDependentType()) {
6059    // Make the enumerator value match the signedness and size of the
6060    // enumerator's type.
6061    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
6062    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6063  }
6064
6065  val.release();
6066  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6067                                  Val, EnumVal);
6068}
6069
6070
6071Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6072                                        DeclPtrTy lastEnumConst,
6073                                        SourceLocation IdLoc,
6074                                        IdentifierInfo *Id,
6075                                        SourceLocation EqualLoc, ExprTy *val) {
6076  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6077  EnumConstantDecl *LastEnumConst =
6078    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6079  Expr *Val = static_cast<Expr*>(val);
6080
6081  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6082  // we find one that is.
6083  S = getNonFieldDeclScope(S);
6084
6085  // Verify that there isn't already something declared with this name in this
6086  // scope.
6087  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
6088                                         ForRedeclaration);
6089  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6090    // Maybe we will complain about the shadowed template parameter.
6091    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6092    // Just pretend that we didn't see the previous declaration.
6093    PrevDecl = 0;
6094  }
6095
6096  if (PrevDecl) {
6097    // When in C++, we may get a TagDecl with the same name; in this case the
6098    // enum constant will 'hide' the tag.
6099    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6100           "Received TagDecl when not in C++!");
6101    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6102      if (isa<EnumConstantDecl>(PrevDecl))
6103        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6104      else
6105        Diag(IdLoc, diag::err_redefinition) << Id;
6106      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6107      if (Val) Val->Destroy(Context);
6108      return DeclPtrTy();
6109    }
6110  }
6111
6112  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6113                                            IdLoc, Id, Owned(Val));
6114
6115  // Register this decl in the current scope stack.
6116  if (New) {
6117    New->setAccess(TheEnumDecl->getAccess());
6118    PushOnScopeChains(New, S);
6119  }
6120
6121  return DeclPtrTy::make(New);
6122}
6123
6124void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6125                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6126                         DeclPtrTy *Elements, unsigned NumElements,
6127                         Scope *S, AttributeList *Attr) {
6128  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6129  QualType EnumType = Context.getTypeDeclType(Enum);
6130
6131  if (Attr)
6132    ProcessDeclAttributeList(S, Enum, Attr);
6133
6134  if (Enum->isDependentType()) {
6135    for (unsigned i = 0; i != NumElements; ++i) {
6136      EnumConstantDecl *ECD =
6137        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6138      if (!ECD) continue;
6139
6140      ECD->setType(EnumType);
6141    }
6142
6143    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
6144    return;
6145  }
6146
6147  // TODO: If the result value doesn't fit in an int, it must be a long or long
6148  // long value.  ISO C does not support this, but GCC does as an extension,
6149  // emit a warning.
6150  unsigned IntWidth = Context.Target.getIntWidth();
6151  unsigned CharWidth = Context.Target.getCharWidth();
6152  unsigned ShortWidth = Context.Target.getShortWidth();
6153
6154  // Verify that all the values are okay, compute the size of the values, and
6155  // reverse the list.
6156  unsigned NumNegativeBits = 0;
6157  unsigned NumPositiveBits = 0;
6158
6159  // Keep track of whether all elements have type int.
6160  bool AllElementsInt = true;
6161
6162  for (unsigned i = 0; i != NumElements; ++i) {
6163    EnumConstantDecl *ECD =
6164      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6165    if (!ECD) continue;  // Already issued a diagnostic.
6166
6167    const llvm::APSInt &InitVal = ECD->getInitVal();
6168
6169    // Keep track of the size of positive and negative values.
6170    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6171      NumPositiveBits = std::max(NumPositiveBits,
6172                                 (unsigned)InitVal.getActiveBits());
6173    else
6174      NumNegativeBits = std::max(NumNegativeBits,
6175                                 (unsigned)InitVal.getMinSignedBits());
6176
6177    // Keep track of whether every enum element has type int (very commmon).
6178    if (AllElementsInt)
6179      AllElementsInt = ECD->getType() == Context.IntTy;
6180  }
6181
6182  // Figure out the type that should be used for this enum.
6183  // FIXME: Support -fshort-enums.
6184  QualType BestType;
6185  unsigned BestWidth;
6186
6187  // C++0x N3000 [conv.prom]p3:
6188  //   An rvalue of an unscoped enumeration type whose underlying
6189  //   type is not fixed can be converted to an rvalue of the first
6190  //   of the following types that can represent all the values of
6191  //   the enumeration: int, unsigned int, long int, unsigned long
6192  //   int, long long int, or unsigned long long int.
6193  // C99 6.4.4.3p2:
6194  //   An identifier declared as an enumeration constant has type int.
6195  // The C99 rule is modified by a gcc extension
6196  QualType BestPromotionType;
6197
6198  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6199
6200  if (NumNegativeBits) {
6201    // If there is a negative value, figure out the smallest integer type (of
6202    // int/long/longlong) that fits.
6203    // If it's packed, check also if it fits a char or a short.
6204    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6205      BestType = Context.SignedCharTy;
6206      BestWidth = CharWidth;
6207    } else if (Packed && NumNegativeBits <= ShortWidth &&
6208               NumPositiveBits < ShortWidth) {
6209      BestType = Context.ShortTy;
6210      BestWidth = ShortWidth;
6211    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6212      BestType = Context.IntTy;
6213      BestWidth = IntWidth;
6214    } else {
6215      BestWidth = Context.Target.getLongWidth();
6216
6217      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6218        BestType = Context.LongTy;
6219      } else {
6220        BestWidth = Context.Target.getLongLongWidth();
6221
6222        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6223          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6224        BestType = Context.LongLongTy;
6225      }
6226    }
6227    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6228  } else {
6229    // If there is no negative value, figure out the smallest type that fits
6230    // all of the enumerator values.
6231    // If it's packed, check also if it fits a char or a short.
6232    if (Packed && NumPositiveBits <= CharWidth) {
6233      BestType = Context.UnsignedCharTy;
6234      BestPromotionType = Context.IntTy;
6235      BestWidth = CharWidth;
6236    } else if (Packed && NumPositiveBits <= ShortWidth) {
6237      BestType = Context.UnsignedShortTy;
6238      BestPromotionType = Context.IntTy;
6239      BestWidth = ShortWidth;
6240    } else if (NumPositiveBits <= IntWidth) {
6241      BestType = Context.UnsignedIntTy;
6242      BestWidth = IntWidth;
6243      BestPromotionType
6244        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6245                           ? Context.UnsignedIntTy : Context.IntTy;
6246    } else if (NumPositiveBits <=
6247               (BestWidth = Context.Target.getLongWidth())) {
6248      BestType = Context.UnsignedLongTy;
6249      BestPromotionType
6250        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6251                           ? Context.UnsignedLongTy : Context.LongTy;
6252    } else {
6253      BestWidth = Context.Target.getLongLongWidth();
6254      assert(NumPositiveBits <= BestWidth &&
6255             "How could an initializer get larger than ULL?");
6256      BestType = Context.UnsignedLongLongTy;
6257      BestPromotionType
6258        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6259                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6260    }
6261  }
6262
6263  // Loop over all of the enumerator constants, changing their types to match
6264  // the type of the enum if needed.
6265  for (unsigned i = 0; i != NumElements; ++i) {
6266    EnumConstantDecl *ECD =
6267      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6268    if (!ECD) continue;  // Already issued a diagnostic.
6269
6270    // Standard C says the enumerators have int type, but we allow, as an
6271    // extension, the enumerators to be larger than int size.  If each
6272    // enumerator value fits in an int, type it as an int, otherwise type it the
6273    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6274    // that X has type 'int', not 'unsigned'.
6275
6276    // Determine whether the value fits into an int.
6277    llvm::APSInt InitVal = ECD->getInitVal();
6278
6279    // If it fits into an integer type, force it.  Otherwise force it to match
6280    // the enum decl type.
6281    QualType NewTy;
6282    unsigned NewWidth;
6283    bool NewSign;
6284    if (!getLangOptions().CPlusPlus &&
6285        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6286      NewTy = Context.IntTy;
6287      NewWidth = IntWidth;
6288      NewSign = true;
6289    } else if (ECD->getType() == BestType) {
6290      // Already the right type!
6291      if (getLangOptions().CPlusPlus)
6292        // C++ [dcl.enum]p4: Following the closing brace of an
6293        // enum-specifier, each enumerator has the type of its
6294        // enumeration.
6295        ECD->setType(EnumType);
6296      continue;
6297    } else {
6298      NewTy = BestType;
6299      NewWidth = BestWidth;
6300      NewSign = BestType->isSignedIntegerType();
6301    }
6302
6303    // Adjust the APSInt value.
6304    InitVal.extOrTrunc(NewWidth);
6305    InitVal.setIsSigned(NewSign);
6306    ECD->setInitVal(InitVal);
6307
6308    // Adjust the Expr initializer and type.
6309    if (ECD->getInitExpr())
6310      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6311                                                      CastExpr::CK_IntegralCast,
6312                                                      ECD->getInitExpr(),
6313                                                      /*isLvalue=*/false));
6314    if (getLangOptions().CPlusPlus)
6315      // C++ [dcl.enum]p4: Following the closing brace of an
6316      // enum-specifier, each enumerator has the type of its
6317      // enumeration.
6318      ECD->setType(EnumType);
6319    else
6320      ECD->setType(NewTy);
6321  }
6322
6323  Enum->completeDefinition(BestType, BestPromotionType);
6324}
6325
6326Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6327                                            ExprArg expr) {
6328  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6329
6330  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6331                                                   Loc, AsmString);
6332  CurContext->addDecl(New);
6333  return DeclPtrTy::make(New);
6334}
6335
6336void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6337                             SourceLocation PragmaLoc,
6338                             SourceLocation NameLoc) {
6339  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6340
6341  if (PrevDecl) {
6342    PrevDecl->addAttr(::new (Context) WeakAttr());
6343  } else {
6344    (void)WeakUndeclaredIdentifiers.insert(
6345      std::pair<IdentifierInfo*,WeakInfo>
6346        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6347  }
6348}
6349
6350void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6351                                IdentifierInfo* AliasName,
6352                                SourceLocation PragmaLoc,
6353                                SourceLocation NameLoc,
6354                                SourceLocation AliasNameLoc) {
6355  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6356  WeakInfo W = WeakInfo(Name, NameLoc);
6357
6358  if (PrevDecl) {
6359    if (!PrevDecl->hasAttr<AliasAttr>())
6360      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6361        DeclApplyPragmaWeak(TUScope, ND, W);
6362  } else {
6363    (void)WeakUndeclaredIdentifiers.insert(
6364      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6365  }
6366}
6367