SemaDecl.cpp revision b27a8700761e1c1f955fc5cc3663289179c9e4d2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
45                 isa<ObjCInterfaceDecl>(IIDecl) ||
46                 isa<TagDecl>(IIDecl) ||
47		 isa<TemplateTypeParmDecl>(IIDecl)))
48    return IIDecl;
49  return 0;
50}
51
52DeclContext *Sema::getContainingDC(DeclContext *DC) {
53  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
54    // A C++ out-of-line method will return to the file declaration context.
55    if (MD->isOutOfLineDefinition())
56      return MD->getLexicalDeclContext();
57
58    // A C++ inline method is parsed *after* the topmost class it was declared in
59    // is fully parsed (it's "complete").
60    // The parsing of a C++ inline method happens at the declaration context of
61    // the topmost (non-nested) class it is lexically declared in.
62    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
63    DC = MD->getParent();
64    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
65      DC = RD;
66
67    // Return the declaration context of the topmost class the inline method is
68    // declared in.
69    return DC;
70  }
71
72  if (isa<ObjCMethodDecl>(DC))
73    return Context.getTranslationUnitDecl();
74
75  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
76    return SD->getLexicalDeclContext();
77
78  return DC->getLexicalParent();
79}
80
81void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
82  assert(getContainingDC(DC) == CurContext &&
83      "The next DeclContext should be lexically contained in the current one.");
84  CurContext = DC;
85  S->setEntity(DC);
86}
87
88void Sema::PopDeclContext() {
89  assert(CurContext && "DeclContext imbalance!");
90
91  CurContext = getContainingDC(CurContext);
92}
93
94/// Add this decl to the scope shadowed decl chains.
95void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
96  S->AddDecl(D);
97
98  // Add scoped declarations into their context, so that they can be
99  // found later. Declarations without a context won't be inserted
100  // into any context.
101  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
102    CurContext->addDecl(Context, SD);
103
104  // C++ [basic.scope]p4:
105  //   -- exactly one declaration shall declare a class name or
106  //   enumeration name that is not a typedef name and the other
107  //   declarations shall all refer to the same object or
108  //   enumerator, or all refer to functions and function templates;
109  //   in this case the class name or enumeration name is hidden.
110  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
111    // We are pushing the name of a tag (enum or class).
112    if (CurContext == TD->getDeclContext()) {
113      // We're pushing the tag into the current context, which might
114      // require some reshuffling in the identifier resolver.
115      IdentifierResolver::iterator
116        I = IdResolver.begin(TD->getDeclName(), CurContext,
117                             false/*LookInParentCtx*/),
118        IEnd = IdResolver.end();
119      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
120        NamedDecl *PrevDecl = *I;
121        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
122             PrevDecl = *I, ++I) {
123          if (TD->declarationReplaces(*I)) {
124            // This is a redeclaration. Remove it from the chain and
125            // break out, so that we'll add in the shadowed
126            // declaration.
127            S->RemoveDecl(*I);
128            if (PrevDecl == *I) {
129              IdResolver.RemoveDecl(*I);
130              IdResolver.AddDecl(TD);
131              return;
132            } else {
133              IdResolver.RemoveDecl(*I);
134              break;
135            }
136          }
137        }
138
139        // There is already a declaration with the same name in the same
140        // scope, which is not a tag declaration. It must be found
141        // before we find the new declaration, so insert the new
142        // declaration at the end of the chain.
143        IdResolver.AddShadowedDecl(TD, PrevDecl);
144
145        return;
146      }
147    }
148  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
149    // We are pushing the name of a function, which might be an
150    // overloaded name.
151    FunctionDecl *FD = cast<FunctionDecl>(D);
152    IdentifierResolver::iterator Redecl
153      = std::find_if(IdResolver.begin(FD->getDeclName(), CurContext,
154                                      false/*LookInParentCtx*/),
155                     IdResolver.end(),
156                     std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
157                                  FD));
158    if (Redecl != IdResolver.end()) {
159      // There is already a declaration of a function on our
160      // IdResolver chain. Replace it with this declaration.
161      S->RemoveDecl(*Redecl);
162      IdResolver.RemoveDecl(*Redecl);
163    }
164  }
165
166  IdResolver.AddDecl(D);
167}
168
169void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
170  if (S->decl_empty()) return;
171  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
172	 "Scope shouldn't contain decls!");
173
174  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
175       I != E; ++I) {
176    Decl *TmpD = static_cast<Decl*>(*I);
177    assert(TmpD && "This decl didn't get pushed??");
178
179    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
180    NamedDecl *D = cast<NamedDecl>(TmpD);
181
182    if (!D->getDeclName()) continue;
183
184    // Remove this name from our lexical scope.
185    IdResolver.RemoveDecl(D);
186  }
187}
188
189/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
190/// return 0 if one not found.
191ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
192  // The third "scope" argument is 0 since we aren't enabling lazy built-in
193  // creation from this context.
194  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
195
196  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
197}
198
199/// MaybeConstructOverloadSet - Name lookup has determined that the
200/// elements in [I, IEnd) have the name that we are looking for, and
201/// *I is a match for the namespace. This routine returns an
202/// appropriate Decl for name lookup, which may either be *I or an
203/// OverloadeFunctionDecl that represents the overloaded functions in
204/// [I, IEnd).
205///
206/// The existance of this routine is temporary; LookupDecl should
207/// probably be able to return multiple results, to deal with cases of
208/// ambiguity and overloaded functions without needing to create a
209/// Decl node.
210template<typename DeclIterator>
211static Decl *
212MaybeConstructOverloadSet(ASTContext &Context,
213                          DeclIterator I, DeclIterator IEnd) {
214  assert(I != IEnd && "Iterator range cannot be empty");
215  assert(!isa<OverloadedFunctionDecl>(*I) &&
216         "Cannot have an overloaded function");
217
218  if (isa<FunctionDecl>(*I)) {
219    // If we found a function, there might be more functions. If
220    // so, collect them into an overload set.
221    DeclIterator Last = I;
222    OverloadedFunctionDecl *Ovl = 0;
223    for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
224      if (!Ovl) {
225        // FIXME: We leak this overload set. Eventually, we want to
226        // stop building the declarations for these overload sets, so
227        // there will be nothing to leak.
228        Ovl = OverloadedFunctionDecl::Create(Context,
229                                         cast<ScopedDecl>(*I)->getDeclContext(),
230                                             (*I)->getDeclName());
231        Ovl->addOverload(cast<FunctionDecl>(*I));
232      }
233      Ovl->addOverload(cast<FunctionDecl>(*Last));
234    }
235
236    // If we had more than one function, we built an overload
237    // set. Return it.
238    if (Ovl)
239      return Ovl;
240  }
241
242  return *I;
243}
244
245/// LookupDecl - Look up the inner-most declaration in the specified
246/// namespace.
247Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
248                       const DeclContext *LookupCtx,
249                       bool enableLazyBuiltinCreation,
250                       bool LookInParent) {
251  if (!Name) return 0;
252  unsigned NS = NSI;
253  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
254    NS |= Decl::IDNS_Tag;
255
256  if (LookupCtx == 0 &&
257      (!getLangOptions().CPlusPlus || (NS == Decl::IDNS_Label))) {
258    // Unqualified name lookup in C/Objective-C and name lookup for
259    // labels in C++ is purely lexical, so search in the
260    // declarations attached to the name.
261    assert(!LookupCtx && "Can't perform qualified name lookup here");
262    IdentifierResolver::iterator I
263      = IdResolver.begin(Name, CurContext, LookInParent);
264
265    // Scan up the scope chain looking for a decl that matches this
266    // identifier that is in the appropriate namespace.  This search
267    // should not take long, as shadowing of names is uncommon, and
268    // deep shadowing is extremely uncommon.
269    for (; I != IdResolver.end(); ++I)
270      if ((*I)->getIdentifierNamespace() & NS)
271         return *I;
272  } else if (LookupCtx) {
273    // Perform qualified name lookup into the LookupCtx.
274    // FIXME: Will need to look into base classes and such.
275    DeclContext::lookup_const_iterator I, E;
276    for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
277      if ((*I)->getIdentifierNamespace() & NS)
278        return MaybeConstructOverloadSet(Context, I, E);
279  } else {
280    // Name lookup for ordinary names and tag names in C++ requires
281    // looking into scopes that aren't strictly lexical, and
282    // therefore we walk through the context as well as walking
283    // through the scopes.
284    IdentifierResolver::iterator
285      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
286      IEnd = IdResolver.end();
287    for (; S; S = S->getParent()) {
288      // Check whether the IdResolver has anything in this scope.
289      // FIXME: The isDeclScope check could be expensive. Can we do better?
290      for (; I != IEnd && S->isDeclScope(*I); ++I) {
291        if ((*I)->getIdentifierNamespace() & NS) {
292          // We found something. Look for anything else in our scope
293          // with this same name and in an acceptable identifier
294          // namespace, so that we can construct an overload set if we
295          // need to.
296          IdentifierResolver::iterator LastI = I;
297          for (++LastI; LastI != IEnd; ++LastI) {
298            if (((*LastI)->getIdentifierNamespace() & NS) == 0 ||
299                !S->isDeclScope(*LastI))
300              break;
301          }
302          return MaybeConstructOverloadSet(Context, I, LastI);
303        }
304      }
305
306      // If there is an entity associated with this scope, it's a
307      // DeclContext. We might need to perform qualified lookup into
308      // it.
309      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
310      while (Ctx && Ctx->isFunctionOrMethod())
311        Ctx = Ctx->getParent();
312      while (Ctx && (Ctx->isNamespace() || Ctx->isCXXRecord())) {
313        // Look for declarations of this name in this scope.
314        DeclContext::lookup_const_iterator I, E;
315        for (llvm::tie(I, E) = Ctx->lookup(Context, Name); I != E; ++I) {
316          // FIXME: Cache this result in the IdResolver
317          if ((*I)->getIdentifierNamespace() & NS)
318            return MaybeConstructOverloadSet(Context, I, E);
319        }
320
321        Ctx = Ctx->getParent();
322      }
323
324      if (!LookInParent)
325        return 0;
326    }
327  }
328
329  // If we didn't find a use of this identifier, and if the identifier
330  // corresponds to a compiler builtin, create the decl object for the builtin
331  // now, injecting it into translation unit scope, and return it.
332  if (NS & Decl::IDNS_Ordinary) {
333    IdentifierInfo *II = Name.getAsIdentifierInfo();
334    if (enableLazyBuiltinCreation && II &&
335        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
336      // If this is a builtin on this (or all) targets, create the decl.
337      if (unsigned BuiltinID = II->getBuiltinID())
338        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
339    }
340    if (getLangOptions().ObjC1 && II) {
341      // @interface and @compatibility_alias introduce typedef-like names.
342      // Unlike typedef's, they can only be introduced at file-scope (and are
343      // therefore not scoped decls). They can, however, be shadowed by
344      // other names in IDNS_Ordinary.
345      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
346      if (IDI != ObjCInterfaceDecls.end())
347        return IDI->second;
348      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
349      if (I != ObjCAliasDecls.end())
350        return I->second->getClassInterface();
351    }
352  }
353  return 0;
354}
355
356void Sema::InitBuiltinVaListType() {
357  if (!Context.getBuiltinVaListType().isNull())
358    return;
359
360  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
361  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
362  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
363  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
364}
365
366/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
367/// lazily create a decl for it.
368ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
369                                      Scope *S) {
370  Builtin::ID BID = (Builtin::ID)bid;
371
372  if (Context.BuiltinInfo.hasVAListUse(BID))
373    InitBuiltinVaListType();
374
375  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
376  FunctionDecl *New = FunctionDecl::Create(Context,
377                                           Context.getTranslationUnitDecl(),
378                                           SourceLocation(), II, R,
379                                           FunctionDecl::Extern, false, 0);
380
381  // Create Decl objects for each parameter, adding them to the
382  // FunctionDecl.
383  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
384    llvm::SmallVector<ParmVarDecl*, 16> Params;
385    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
386      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
387                                           FT->getArgType(i), VarDecl::None, 0,
388                                           0));
389    New->setParams(&Params[0], Params.size());
390  }
391
392
393
394  // TUScope is the translation-unit scope to insert this function into.
395  PushOnScopeChains(New, TUScope);
396  return New;
397}
398
399/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
400/// everything from the standard library is defined.
401NamespaceDecl *Sema::GetStdNamespace() {
402  if (!StdNamespace) {
403    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
404    DeclContext *Global = Context.getTranslationUnitDecl();
405    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
406                           0, Global, /*enableLazyBuiltinCreation=*/false);
407    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
408  }
409  return StdNamespace;
410}
411
412/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
413/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
414/// situation, merging decls or emitting diagnostics as appropriate.
415///
416TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
417  // Allow multiple definitions for ObjC built-in typedefs.
418  // FIXME: Verify the underlying types are equivalent!
419  if (getLangOptions().ObjC1) {
420    const IdentifierInfo *TypeID = New->getIdentifier();
421    switch (TypeID->getLength()) {
422    default: break;
423    case 2:
424      if (!TypeID->isStr("id"))
425        break;
426      Context.setObjCIdType(New);
427      return New;
428    case 5:
429      if (!TypeID->isStr("Class"))
430        break;
431      Context.setObjCClassType(New);
432      return New;
433    case 3:
434      if (!TypeID->isStr("SEL"))
435        break;
436      Context.setObjCSelType(New);
437      return New;
438    case 8:
439      if (!TypeID->isStr("Protocol"))
440        break;
441      Context.setObjCProtoType(New->getUnderlyingType());
442      return New;
443    }
444    // Fall through - the typedef name was not a builtin type.
445  }
446  // Verify the old decl was also a typedef.
447  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
448  if (!Old) {
449    Diag(New->getLocation(), diag::err_redefinition_different_kind)
450      << New->getDeclName();
451    Diag(OldD->getLocation(), diag::note_previous_definition);
452    return New;
453  }
454
455  // If the typedef types are not identical, reject them in all languages and
456  // with any extensions enabled.
457  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
458      Context.getCanonicalType(Old->getUnderlyingType()) !=
459      Context.getCanonicalType(New->getUnderlyingType())) {
460    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
461      << New->getUnderlyingType() << Old->getUnderlyingType();
462    Diag(Old->getLocation(), diag::note_previous_definition);
463    return Old;
464  }
465
466  if (getLangOptions().Microsoft) return New;
467
468  // C++ [dcl.typedef]p2:
469  //   In a given non-class scope, a typedef specifier can be used to
470  //   redefine the name of any type declared in that scope to refer
471  //   to the type to which it already refers.
472  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
473    return New;
474
475  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
476  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
477  // *either* declaration is in a system header. The code below implements
478  // this adhoc compatibility rule. FIXME: The following code will not
479  // work properly when compiling ".i" files (containing preprocessed output).
480  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
481    SourceManager &SrcMgr = Context.getSourceManager();
482    if (SrcMgr.isInSystemHeader(Old->getLocation()))
483      return New;
484    if (SrcMgr.isInSystemHeader(New->getLocation()))
485      return New;
486  }
487
488  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
489  Diag(Old->getLocation(), diag::note_previous_definition);
490  return New;
491}
492
493/// DeclhasAttr - returns true if decl Declaration already has the target
494/// attribute.
495static bool DeclHasAttr(const Decl *decl, const Attr *target) {
496  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
497    if (attr->getKind() == target->getKind())
498      return true;
499
500  return false;
501}
502
503/// MergeAttributes - append attributes from the Old decl to the New one.
504static void MergeAttributes(Decl *New, Decl *Old) {
505  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
506
507  while (attr) {
508     tmp = attr;
509     attr = attr->getNext();
510
511    if (!DeclHasAttr(New, tmp)) {
512       tmp->setInherited(true);
513       New->addAttr(tmp);
514    } else {
515       tmp->setNext(0);
516       delete(tmp);
517    }
518  }
519
520  Old->invalidateAttrs();
521}
522
523/// MergeFunctionDecl - We just parsed a function 'New' from
524/// declarator D which has the same name and scope as a previous
525/// declaration 'Old'.  Figure out how to resolve this situation,
526/// merging decls or emitting diagnostics as appropriate.
527/// Redeclaration will be set true if this New is a redeclaration OldD.
528///
529/// In C++, New and Old must be declarations that are not
530/// overloaded. Use IsOverload to determine whether New and Old are
531/// overloaded, and to select the Old declaration that New should be
532/// merged with.
533FunctionDecl *
534Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
535  assert(!isa<OverloadedFunctionDecl>(OldD) &&
536         "Cannot merge with an overloaded function declaration");
537
538  Redeclaration = false;
539  // Verify the old decl was also a function.
540  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
541  if (!Old) {
542    Diag(New->getLocation(), diag::err_redefinition_different_kind)
543      << New->getDeclName();
544    Diag(OldD->getLocation(), diag::note_previous_definition);
545    return New;
546  }
547
548  // Determine whether the previous declaration was a definition,
549  // implicit declaration, or a declaration.
550  diag::kind PrevDiag;
551  if (Old->isThisDeclarationADefinition())
552    PrevDiag = diag::note_previous_definition;
553  else if (Old->isImplicit())
554    PrevDiag = diag::note_previous_implicit_declaration;
555  else
556    PrevDiag = diag::note_previous_declaration;
557
558  QualType OldQType = Context.getCanonicalType(Old->getType());
559  QualType NewQType = Context.getCanonicalType(New->getType());
560
561  if (getLangOptions().CPlusPlus) {
562    // (C++98 13.1p2):
563    //   Certain function declarations cannot be overloaded:
564    //     -- Function declarations that differ only in the return type
565    //        cannot be overloaded.
566    QualType OldReturnType
567      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
568    QualType NewReturnType
569      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
570    if (OldReturnType != NewReturnType) {
571      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
572      Diag(Old->getLocation(), PrevDiag);
573      Redeclaration = true;
574      return New;
575    }
576
577    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
578    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
579    if (OldMethod && NewMethod) {
580      //    -- Member function declarations with the same name and the
581      //       same parameter types cannot be overloaded if any of them
582      //       is a static member function declaration.
583      if (OldMethod->isStatic() || NewMethod->isStatic()) {
584        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
585        Diag(Old->getLocation(), PrevDiag);
586        return New;
587      }
588
589      // C++ [class.mem]p1:
590      //   [...] A member shall not be declared twice in the
591      //   member-specification, except that a nested class or member
592      //   class template can be declared and then later defined.
593      if (OldMethod->getLexicalDeclContext() ==
594            NewMethod->getLexicalDeclContext()) {
595        unsigned NewDiag;
596        if (isa<CXXConstructorDecl>(OldMethod))
597          NewDiag = diag::err_constructor_redeclared;
598        else if (isa<CXXDestructorDecl>(NewMethod))
599          NewDiag = diag::err_destructor_redeclared;
600        else if (isa<CXXConversionDecl>(NewMethod))
601          NewDiag = diag::err_conv_function_redeclared;
602        else
603          NewDiag = diag::err_member_redeclared;
604
605        Diag(New->getLocation(), NewDiag);
606        Diag(Old->getLocation(), PrevDiag);
607      }
608    }
609
610    // (C++98 8.3.5p3):
611    //   All declarations for a function shall agree exactly in both the
612    //   return type and the parameter-type-list.
613    if (OldQType == NewQType) {
614      // We have a redeclaration.
615      MergeAttributes(New, Old);
616      Redeclaration = true;
617      return MergeCXXFunctionDecl(New, Old);
618    }
619
620    // Fall through for conflicting redeclarations and redefinitions.
621  }
622
623  // C: Function types need to be compatible, not identical. This handles
624  // duplicate function decls like "void f(int); void f(enum X);" properly.
625  if (!getLangOptions().CPlusPlus &&
626      Context.typesAreCompatible(OldQType, NewQType)) {
627    MergeAttributes(New, Old);
628    Redeclaration = true;
629    return New;
630  }
631
632  // A function that has already been declared has been redeclared or defined
633  // with a different type- show appropriate diagnostic
634
635  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
636  // TODO: This is totally simplistic.  It should handle merging functions
637  // together etc, merging extern int X; int X; ...
638  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
639  Diag(Old->getLocation(), PrevDiag);
640  return New;
641}
642
643/// Predicate for C "tentative" external object definitions (C99 6.9.2).
644static bool isTentativeDefinition(VarDecl *VD) {
645  if (VD->isFileVarDecl())
646    return (!VD->getInit() &&
647            (VD->getStorageClass() == VarDecl::None ||
648             VD->getStorageClass() == VarDecl::Static));
649  return false;
650}
651
652/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
653/// when dealing with C "tentative" external object definitions (C99 6.9.2).
654void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
655  bool VDIsTentative = isTentativeDefinition(VD);
656  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
657
658  // FIXME: I don't this will actually see all of the
659  // redefinitions. Can't we check this property on-the-fly?
660  for (IdentifierResolver::iterator
661       I = IdResolver.begin(VD->getIdentifier(),
662                            VD->getDeclContext(), false/*LookInParentCtx*/),
663       E = IdResolver.end(); I != E; ++I) {
664    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
665      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
666
667      // Handle the following case:
668      //   int a[10];
669      //   int a[];   - the code below makes sure we set the correct type.
670      //   int a[11]; - this is an error, size isn't 10.
671      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
672          OldDecl->getType()->isConstantArrayType())
673        VD->setType(OldDecl->getType());
674
675      // Check for "tentative" definitions. We can't accomplish this in
676      // MergeVarDecl since the initializer hasn't been attached.
677      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
678        continue;
679
680      // Handle __private_extern__ just like extern.
681      if (OldDecl->getStorageClass() != VarDecl::Extern &&
682          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
683          VD->getStorageClass() != VarDecl::Extern &&
684          VD->getStorageClass() != VarDecl::PrivateExtern) {
685        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
686        Diag(OldDecl->getLocation(), diag::note_previous_definition);
687      }
688    }
689  }
690}
691
692/// MergeVarDecl - We just parsed a variable 'New' which has the same name
693/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
694/// situation, merging decls or emitting diagnostics as appropriate.
695///
696/// Tentative definition rules (C99 6.9.2p2) are checked by
697/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
698/// definitions here, since the initializer hasn't been attached.
699///
700VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
701  // Verify the old decl was also a variable.
702  VarDecl *Old = dyn_cast<VarDecl>(OldD);
703  if (!Old) {
704    Diag(New->getLocation(), diag::err_redefinition_different_kind)
705      << New->getDeclName();
706    Diag(OldD->getLocation(), diag::note_previous_definition);
707    return New;
708  }
709
710  MergeAttributes(New, Old);
711
712  // Verify the types match.
713  QualType OldCType = Context.getCanonicalType(Old->getType());
714  QualType NewCType = Context.getCanonicalType(New->getType());
715  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
716    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
717    Diag(Old->getLocation(), diag::note_previous_definition);
718    return New;
719  }
720  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
721  if (New->getStorageClass() == VarDecl::Static &&
722      (Old->getStorageClass() == VarDecl::None ||
723       Old->getStorageClass() == VarDecl::Extern)) {
724    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
725    Diag(Old->getLocation(), diag::note_previous_definition);
726    return New;
727  }
728  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
729  if (New->getStorageClass() != VarDecl::Static &&
730      Old->getStorageClass() == VarDecl::Static) {
731    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
732    Diag(Old->getLocation(), diag::note_previous_definition);
733    return New;
734  }
735  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
736  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
737    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
738    Diag(Old->getLocation(), diag::note_previous_definition);
739  }
740  return New;
741}
742
743/// CheckParmsForFunctionDef - Check that the parameters of the given
744/// function are appropriate for the definition of a function. This
745/// takes care of any checks that cannot be performed on the
746/// declaration itself, e.g., that the types of each of the function
747/// parameters are complete.
748bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
749  bool HasInvalidParm = false;
750  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
751    ParmVarDecl *Param = FD->getParamDecl(p);
752
753    // C99 6.7.5.3p4: the parameters in a parameter type list in a
754    // function declarator that is part of a function definition of
755    // that function shall not have incomplete type.
756    if (Param->getType()->isIncompleteType() &&
757        !Param->isInvalidDecl()) {
758      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
759        << Param->getType();
760      Param->setInvalidDecl();
761      HasInvalidParm = true;
762    }
763
764    // C99 6.9.1p5: If the declarator includes a parameter type list, the
765    // declaration of each parameter shall include an identifier.
766    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
767      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
768  }
769
770  return HasInvalidParm;
771}
772
773/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
774/// no declarator (e.g. "struct foo;") is parsed.
775Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
776  // TODO: emit error on 'int;' or 'const enum foo;'.
777  // TODO: emit error on 'typedef int;'
778  // if (!DS.isMissingDeclaratorOk()) Diag(...);
779
780  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
781}
782
783bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
784  // Get the type before calling CheckSingleAssignmentConstraints(), since
785  // it can promote the expression.
786  QualType InitType = Init->getType();
787
788  if (getLangOptions().CPlusPlus)
789    return PerformCopyInitialization(Init, DeclType, "initializing");
790
791  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
792  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
793                                  InitType, Init, "initializing");
794}
795
796bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
797  const ArrayType *AT = Context.getAsArrayType(DeclT);
798
799  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
800    // C99 6.7.8p14. We have an array of character type with unknown size
801    // being initialized to a string literal.
802    llvm::APSInt ConstVal(32);
803    ConstVal = strLiteral->getByteLength() + 1;
804    // Return a new array type (C99 6.7.8p22).
805    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
806                                         ArrayType::Normal, 0);
807  } else {
808    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
809    // C99 6.7.8p14. We have an array of character type with known size.
810    // FIXME: Avoid truncation for 64-bit length strings.
811    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
812      Diag(strLiteral->getSourceRange().getBegin(),
813           diag::warn_initializer_string_for_char_array_too_long)
814        << strLiteral->getSourceRange();
815  }
816  // Set type from "char *" to "constant array of char".
817  strLiteral->setType(DeclT);
818  // For now, we always return false (meaning success).
819  return false;
820}
821
822StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
823  const ArrayType *AT = Context.getAsArrayType(DeclType);
824  if (AT && AT->getElementType()->isCharType()) {
825    return dyn_cast<StringLiteral>(Init);
826  }
827  return 0;
828}
829
830bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
831                                 SourceLocation InitLoc,
832                                 DeclarationName InitEntity) {
833  if (DeclType->isDependentType() || Init->isTypeDependent())
834    return false;
835
836  // C++ [dcl.init.ref]p1:
837  //   A variable declared to be a T&, that is "reference to type T"
838  //   (8.3.2), shall be initialized by an object, or function, of
839  //   type T or by an object that can be converted into a T.
840  if (DeclType->isReferenceType())
841    return CheckReferenceInit(Init, DeclType);
842
843  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
844  // of unknown size ("[]") or an object type that is not a variable array type.
845  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
846    return Diag(InitLoc,  diag::err_variable_object_no_init)
847      << VAT->getSizeExpr()->getSourceRange();
848
849  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
850  if (!InitList) {
851    // FIXME: Handle wide strings
852    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
853      return CheckStringLiteralInit(strLiteral, DeclType);
854
855    // C++ [dcl.init]p14:
856    //   -- If the destination type is a (possibly cv-qualified) class
857    //      type:
858    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
859      QualType DeclTypeC = Context.getCanonicalType(DeclType);
860      QualType InitTypeC = Context.getCanonicalType(Init->getType());
861
862      //   -- If the initialization is direct-initialization, or if it is
863      //      copy-initialization where the cv-unqualified version of the
864      //      source type is the same class as, or a derived class of, the
865      //      class of the destination, constructors are considered.
866      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
867          IsDerivedFrom(InitTypeC, DeclTypeC)) {
868        CXXConstructorDecl *Constructor
869          = PerformInitializationByConstructor(DeclType, &Init, 1,
870                                               InitLoc, Init->getSourceRange(),
871                                               InitEntity, IK_Copy);
872        return Constructor == 0;
873      }
874
875      //   -- Otherwise (i.e., for the remaining copy-initialization
876      //      cases), user-defined conversion sequences that can
877      //      convert from the source type to the destination type or
878      //      (when a conversion function is used) to a derived class
879      //      thereof are enumerated as described in 13.3.1.4, and the
880      //      best one is chosen through overload resolution
881      //      (13.3). If the conversion cannot be done or is
882      //      ambiguous, the initialization is ill-formed. The
883      //      function selected is called with the initializer
884      //      expression as its argument; if the function is a
885      //      constructor, the call initializes a temporary of the
886      //      destination type.
887      // FIXME: We're pretending to do copy elision here; return to
888      // this when we have ASTs for such things.
889      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
890        return false;
891
892      if (InitEntity)
893        return Diag(InitLoc, diag::err_cannot_initialize_decl)
894          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
895          << Init->getType() << Init->getSourceRange();
896      else
897        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
898          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
899          << Init->getType() << Init->getSourceRange();
900    }
901
902    // C99 6.7.8p16.
903    if (DeclType->isArrayType())
904      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
905        << Init->getSourceRange();
906
907    return CheckSingleInitializer(Init, DeclType);
908  } else if (getLangOptions().CPlusPlus) {
909    // C++ [dcl.init]p14:
910    //   [...] If the class is an aggregate (8.5.1), and the initializer
911    //   is a brace-enclosed list, see 8.5.1.
912    //
913    // Note: 8.5.1 is handled below; here, we diagnose the case where
914    // we have an initializer list and a destination type that is not
915    // an aggregate.
916    // FIXME: In C++0x, this is yet another form of initialization.
917    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
918      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
919      if (!ClassDecl->isAggregate())
920        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
921           << DeclType << Init->getSourceRange();
922    }
923  }
924
925  InitListChecker CheckInitList(this, InitList, DeclType);
926  return CheckInitList.HadError();
927}
928
929/// GetNameForDeclarator - Determine the full declaration name for the
930/// given Declarator.
931DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
932  switch (D.getKind()) {
933  case Declarator::DK_Abstract:
934    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
935    return DeclarationName();
936
937  case Declarator::DK_Normal:
938    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
939    return DeclarationName(D.getIdentifier());
940
941  case Declarator::DK_Constructor: {
942    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
943    Ty = Context.getCanonicalType(Ty);
944    return Context.DeclarationNames.getCXXConstructorName(Ty);
945  }
946
947  case Declarator::DK_Destructor: {
948    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
949    Ty = Context.getCanonicalType(Ty);
950    return Context.DeclarationNames.getCXXDestructorName(Ty);
951  }
952
953  case Declarator::DK_Conversion: {
954    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
955    Ty = Context.getCanonicalType(Ty);
956    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
957  }
958
959  case Declarator::DK_Operator:
960    assert(D.getIdentifier() == 0 && "operator names have no identifier");
961    return Context.DeclarationNames.getCXXOperatorName(
962                                                D.getOverloadedOperator());
963  }
964
965  assert(false && "Unknown name kind");
966  return DeclarationName();
967}
968
969/// isNearlyMatchingMemberFunction - Determine whether the C++ member
970/// functions Declaration and Definition are "nearly" matching. This
971/// heuristic is used to improve diagnostics in the case where an
972/// out-of-line member function definition doesn't match any
973/// declaration within the class.
974static bool isNearlyMatchingMemberFunction(ASTContext &Context,
975                                           FunctionDecl *Declaration,
976                                           FunctionDecl *Definition) {
977  if (Declaration->param_size() != Definition->param_size())
978    return false;
979  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
980    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
981    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
982
983    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
984    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
985    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
986      return false;
987  }
988
989  return true;
990}
991
992Sema::DeclTy *
993Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
994                      bool IsFunctionDefinition) {
995  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
996  DeclarationName Name = GetNameForDeclarator(D);
997
998  // All of these full declarators require an identifier.  If it doesn't have
999  // one, the ParsedFreeStandingDeclSpec action should be used.
1000  if (!Name) {
1001    if (!D.getInvalidType())  // Reject this if we think it is valid.
1002      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1003           diag::err_declarator_need_ident)
1004        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1005    return 0;
1006  }
1007
1008  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1009  // we find one that is.
1010  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1011        (S->getFlags() & Scope::TemplateParamScope) != 0)
1012    S = S->getParent();
1013
1014  DeclContext *DC;
1015  Decl *PrevDecl;
1016  ScopedDecl *New;
1017  bool InvalidDecl = false;
1018
1019  // See if this is a redefinition of a variable in the same scope.
1020  if (!D.getCXXScopeSpec().isSet()) {
1021    DC = CurContext;
1022    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1023  } else { // Something like "int foo::x;"
1024    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1025    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1026
1027    // C++ 7.3.1.2p2:
1028    // Members (including explicit specializations of templates) of a named
1029    // namespace can also be defined outside that namespace by explicit
1030    // qualification of the name being defined, provided that the entity being
1031    // defined was already declared in the namespace and the definition appears
1032    // after the point of declaration in a namespace that encloses the
1033    // declarations namespace.
1034    //
1035    // Note that we only check the context at this point. We don't yet
1036    // have enough information to make sure that PrevDecl is actually
1037    // the declaration we want to match. For example, given:
1038    //
1039    //   class X {
1040    //     void f();
1041    //     void f(float);
1042    //   };
1043    //
1044    //   void X::f(int) { } // ill-formed
1045    //
1046    // In this case, PrevDecl will point to the overload set
1047    // containing the two f's declared in X, but neither of them
1048    // matches.
1049    if (!CurContext->Encloses(DC)) {
1050      // The qualifying scope doesn't enclose the original declaration.
1051      // Emit diagnostic based on current scope.
1052      SourceLocation L = D.getIdentifierLoc();
1053      SourceRange R = D.getCXXScopeSpec().getRange();
1054      if (isa<FunctionDecl>(CurContext)) {
1055        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1056      } else {
1057        Diag(L, diag::err_invalid_declarator_scope)
1058          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1059      }
1060      InvalidDecl = true;
1061    }
1062  }
1063
1064  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1065    // Maybe we will complain about the shadowed template parameter.
1066    InvalidDecl = InvalidDecl
1067      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1068    // Just pretend that we didn't see the previous declaration.
1069    PrevDecl = 0;
1070  }
1071
1072  // In C++, the previous declaration we find might be a tag type
1073  // (class or enum). In this case, the new declaration will hide the
1074  // tag type.
1075  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1076    PrevDecl = 0;
1077
1078  QualType R = GetTypeForDeclarator(D, S);
1079  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1080
1081  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1082    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1083    if (D.getCXXScopeSpec().isSet()) {
1084      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1085        << D.getCXXScopeSpec().getRange();
1086      InvalidDecl = true;
1087      // Pretend we didn't see the scope specifier.
1088      DC = 0;
1089    }
1090
1091    // Check that there are no default arguments (C++ only).
1092    if (getLangOptions().CPlusPlus)
1093      CheckExtraCXXDefaultArguments(D);
1094
1095    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1096    if (!NewTD) return 0;
1097
1098    // Handle attributes prior to checking for duplicates in MergeVarDecl
1099    ProcessDeclAttributes(NewTD, D);
1100    // Merge the decl with the existing one if appropriate. If the decl is
1101    // in an outer scope, it isn't the same thing.
1102    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1103      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1104      if (NewTD == 0) return 0;
1105    }
1106    New = NewTD;
1107    if (S->getFnParent() == 0) {
1108      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1109      // then it shall have block scope.
1110      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1111        if (NewTD->getUnderlyingType()->isVariableArrayType())
1112          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1113        else
1114          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1115
1116        InvalidDecl = true;
1117      }
1118    }
1119  } else if (R.getTypePtr()->isFunctionType()) {
1120    FunctionDecl::StorageClass SC = FunctionDecl::None;
1121    switch (D.getDeclSpec().getStorageClassSpec()) {
1122      default: assert(0 && "Unknown storage class!");
1123      case DeclSpec::SCS_auto:
1124      case DeclSpec::SCS_register:
1125      case DeclSpec::SCS_mutable:
1126        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1127        InvalidDecl = true;
1128        break;
1129      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1130      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1131      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1132      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1133    }
1134
1135    bool isInline = D.getDeclSpec().isInlineSpecified();
1136    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1137    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1138
1139    FunctionDecl *NewFD;
1140    if (D.getKind() == Declarator::DK_Constructor) {
1141      // This is a C++ constructor declaration.
1142      assert(DC->isCXXRecord() &&
1143             "Constructors can only be declared in a member context");
1144
1145      InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1146
1147      // Create the new declaration
1148      NewFD = CXXConstructorDecl::Create(Context,
1149                                         cast<CXXRecordDecl>(DC),
1150                                         D.getIdentifierLoc(), Name, R,
1151                                         isExplicit, isInline,
1152                                         /*isImplicitlyDeclared=*/false);
1153
1154      if (InvalidDecl)
1155        NewFD->setInvalidDecl();
1156    } else if (D.getKind() == Declarator::DK_Destructor) {
1157      // This is a C++ destructor declaration.
1158      if (DC->isCXXRecord()) {
1159        InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1160
1161        NewFD = CXXDestructorDecl::Create(Context,
1162                                          cast<CXXRecordDecl>(DC),
1163                                          D.getIdentifierLoc(), Name, R,
1164                                          isInline,
1165                                          /*isImplicitlyDeclared=*/false);
1166
1167        if (InvalidDecl)
1168          NewFD->setInvalidDecl();
1169      } else {
1170        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1171
1172        // Create a FunctionDecl to satisfy the function definition parsing
1173        // code path.
1174        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1175                                     Name, R, SC, isInline, LastDeclarator,
1176                                     // FIXME: Move to DeclGroup...
1177                                   D.getDeclSpec().getSourceRange().getBegin());
1178        InvalidDecl = true;
1179        NewFD->setInvalidDecl();
1180      }
1181    } else if (D.getKind() == Declarator::DK_Conversion) {
1182      if (!DC->isCXXRecord()) {
1183        Diag(D.getIdentifierLoc(),
1184             diag::err_conv_function_not_member);
1185        return 0;
1186      } else {
1187        InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1188
1189        NewFD = CXXConversionDecl::Create(Context,
1190                                          cast<CXXRecordDecl>(DC),
1191                                          D.getIdentifierLoc(), Name, R,
1192                                          isInline, isExplicit);
1193
1194        if (InvalidDecl)
1195          NewFD->setInvalidDecl();
1196      }
1197    } else if (DC->isCXXRecord()) {
1198      // This is a C++ method declaration.
1199      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1200                                    D.getIdentifierLoc(), Name, R,
1201                                    (SC == FunctionDecl::Static), isInline,
1202                                    LastDeclarator);
1203    } else {
1204      NewFD = FunctionDecl::Create(Context, DC,
1205                                   D.getIdentifierLoc(),
1206                                   Name, R, SC, isInline, LastDeclarator,
1207                                   // FIXME: Move to DeclGroup...
1208                                   D.getDeclSpec().getSourceRange().getBegin());
1209    }
1210
1211    // Set the lexical context. If the declarator has a C++
1212    // scope specifier, the lexical context will be different
1213    // from the semantic context.
1214    NewFD->setLexicalDeclContext(CurContext);
1215
1216    // Handle GNU asm-label extension (encoded as an attribute).
1217    if (Expr *E = (Expr*) D.getAsmLabel()) {
1218      // The parser guarantees this is a string.
1219      StringLiteral *SE = cast<StringLiteral>(E);
1220      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1221                                                  SE->getByteLength())));
1222    }
1223
1224    // Copy the parameter declarations from the declarator D to
1225    // the function declaration NewFD, if they are available.
1226    if (D.getNumTypeObjects() > 0) {
1227      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1228
1229      // Create Decl objects for each parameter, adding them to the
1230      // FunctionDecl.
1231      llvm::SmallVector<ParmVarDecl*, 16> Params;
1232
1233      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1234      // function that takes no arguments, not a function that takes a
1235      // single void argument.
1236      // We let through "const void" here because Sema::GetTypeForDeclarator
1237      // already checks for that case.
1238      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1239          FTI.ArgInfo[0].Param &&
1240          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1241        // empty arg list, don't push any params.
1242        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1243
1244        // In C++, the empty parameter-type-list must be spelled "void"; a
1245        // typedef of void is not permitted.
1246        if (getLangOptions().CPlusPlus &&
1247            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1248          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1249        }
1250      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1251        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1252          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1253      }
1254
1255      NewFD->setParams(&Params[0], Params.size());
1256    } else if (R->getAsTypedefType()) {
1257      // When we're declaring a function with a typedef, as in the
1258      // following example, we'll need to synthesize (unnamed)
1259      // parameters for use in the declaration.
1260      //
1261      // @code
1262      // typedef void fn(int);
1263      // fn f;
1264      // @endcode
1265      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1266      if (!FT) {
1267        // This is a typedef of a function with no prototype, so we
1268        // don't need to do anything.
1269      } else if ((FT->getNumArgs() == 0) ||
1270          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1271           FT->getArgType(0)->isVoidType())) {
1272        // This is a zero-argument function. We don't need to do anything.
1273      } else {
1274        // Synthesize a parameter for each argument type.
1275        llvm::SmallVector<ParmVarDecl*, 16> Params;
1276        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1277             ArgType != FT->arg_type_end(); ++ArgType) {
1278          Params.push_back(ParmVarDecl::Create(Context, DC,
1279                                               SourceLocation(), 0,
1280                                               *ArgType, VarDecl::None,
1281                                               0, 0));
1282        }
1283
1284        NewFD->setParams(&Params[0], Params.size());
1285      }
1286    }
1287
1288    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1289      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1290    else if (isa<CXXDestructorDecl>(NewFD))
1291      cast<CXXRecordDecl>(NewFD->getParent())->setUserDeclaredDestructor(true);
1292    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1293      ActOnConversionDeclarator(Conversion);
1294
1295    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1296    if (NewFD->isOverloadedOperator() &&
1297        CheckOverloadedOperatorDeclaration(NewFD))
1298      NewFD->setInvalidDecl();
1299
1300    // Merge the decl with the existing one if appropriate. Since C functions
1301    // are in a flat namespace, make sure we consider decls in outer scopes.
1302    if (PrevDecl &&
1303        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1304      bool Redeclaration = false;
1305
1306      // If C++, determine whether NewFD is an overload of PrevDecl or
1307      // a declaration that requires merging. If it's an overload,
1308      // there's no more work to do here; we'll just add the new
1309      // function to the scope.
1310      OverloadedFunctionDecl::function_iterator MatchedDecl;
1311      if (!getLangOptions().CPlusPlus ||
1312          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1313        Decl *OldDecl = PrevDecl;
1314
1315        // If PrevDecl was an overloaded function, extract the
1316        // FunctionDecl that matched.
1317        if (isa<OverloadedFunctionDecl>(PrevDecl))
1318          OldDecl = *MatchedDecl;
1319
1320        // NewFD and PrevDecl represent declarations that need to be
1321        // merged.
1322        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1323
1324        if (NewFD == 0) return 0;
1325        if (Redeclaration) {
1326          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1327
1328          // An out-of-line member function declaration must also be a
1329          // definition (C++ [dcl.meaning]p1).
1330          if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1331              !InvalidDecl) {
1332            Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1333              << D.getCXXScopeSpec().getRange();
1334            NewFD->setInvalidDecl();
1335          }
1336        }
1337      }
1338
1339      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1340        // The user tried to provide an out-of-line definition for a
1341        // member function, but there was no such member function
1342        // declared (C++ [class.mfct]p2). For example:
1343        //
1344        // class X {
1345        //   void f() const;
1346        // };
1347        //
1348        // void X::f() { } // ill-formed
1349        //
1350        // Complain about this problem, and attempt to suggest close
1351        // matches (e.g., those that differ only in cv-qualifiers and
1352        // whether the parameter types are references).
1353        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1354          << cast<CXXRecordDecl>(DC)->getDeclName()
1355          << D.getCXXScopeSpec().getRange();
1356        InvalidDecl = true;
1357
1358        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1359        if (!PrevDecl) {
1360          // Nothing to suggest.
1361        } else if (OverloadedFunctionDecl *Ovl
1362                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1363          for (OverloadedFunctionDecl::function_iterator
1364                 Func = Ovl->function_begin(),
1365                 FuncEnd = Ovl->function_end();
1366               Func != FuncEnd; ++Func) {
1367            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1368              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1369
1370          }
1371        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1372          // Suggest this no matter how mismatched it is; it's the only
1373          // thing we have.
1374          unsigned diag;
1375          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1376            diag = diag::note_member_def_close_match;
1377          else if (Method->getBody())
1378            diag = diag::note_previous_definition;
1379          else
1380            diag = diag::note_previous_declaration;
1381          Diag(Method->getLocation(), diag);
1382        }
1383
1384        PrevDecl = 0;
1385      }
1386    }
1387    // Handle attributes. We need to have merged decls when handling attributes
1388    // (for example to check for conflicts, etc).
1389    ProcessDeclAttributes(NewFD, D);
1390    New = NewFD;
1391
1392    if (getLangOptions().CPlusPlus) {
1393      // In C++, check default arguments now that we have merged decls.
1394      CheckCXXDefaultArguments(NewFD);
1395
1396      // An out-of-line member function declaration must also be a
1397      // definition (C++ [dcl.meaning]p1).
1398      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1399        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1400          << D.getCXXScopeSpec().getRange();
1401        InvalidDecl = true;
1402      }
1403    }
1404  } else {
1405    // Check that there are no default arguments (C++ only).
1406    if (getLangOptions().CPlusPlus)
1407      CheckExtraCXXDefaultArguments(D);
1408
1409    if (R.getTypePtr()->isObjCInterfaceType()) {
1410      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1411        << D.getIdentifier();
1412      InvalidDecl = true;
1413    }
1414
1415    VarDecl *NewVD;
1416    VarDecl::StorageClass SC;
1417    switch (D.getDeclSpec().getStorageClassSpec()) {
1418    default: assert(0 && "Unknown storage class!");
1419    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1420    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1421    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1422    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1423    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1424    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1425    case DeclSpec::SCS_mutable:
1426      // mutable can only appear on non-static class members, so it's always
1427      // an error here
1428      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1429      InvalidDecl = true;
1430      SC = VarDecl::None;
1431      break;
1432    }
1433
1434    IdentifierInfo *II = Name.getAsIdentifierInfo();
1435    if (!II) {
1436      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1437       << Name.getAsString();
1438      return 0;
1439    }
1440
1441    if (DC->isCXXRecord()) {
1442      // This is a static data member for a C++ class.
1443      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1444                                      D.getIdentifierLoc(), II,
1445                                      R, LastDeclarator);
1446    } else {
1447      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1448      if (S->getFnParent() == 0) {
1449        // C99 6.9p2: The storage-class specifiers auto and register shall not
1450        // appear in the declaration specifiers in an external declaration.
1451        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1452          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1453          InvalidDecl = true;
1454        }
1455      }
1456      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1457                              II, R, SC, LastDeclarator,
1458                              // FIXME: Move to DeclGroup...
1459                              D.getDeclSpec().getSourceRange().getBegin());
1460      NewVD->setThreadSpecified(ThreadSpecified);
1461    }
1462    // Handle attributes prior to checking for duplicates in MergeVarDecl
1463    ProcessDeclAttributes(NewVD, D);
1464
1465    // Handle GNU asm-label extension (encoded as an attribute).
1466    if (Expr *E = (Expr*) D.getAsmLabel()) {
1467      // The parser guarantees this is a string.
1468      StringLiteral *SE = cast<StringLiteral>(E);
1469      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1470                                                  SE->getByteLength())));
1471    }
1472
1473    // Emit an error if an address space was applied to decl with local storage.
1474    // This includes arrays of objects with address space qualifiers, but not
1475    // automatic variables that point to other address spaces.
1476    // ISO/IEC TR 18037 S5.1.2
1477    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1478      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1479      InvalidDecl = true;
1480    }
1481    // Merge the decl with the existing one if appropriate. If the decl is
1482    // in an outer scope, it isn't the same thing.
1483    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1484      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1485        // The user tried to define a non-static data member
1486        // out-of-line (C++ [dcl.meaning]p1).
1487        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1488          << D.getCXXScopeSpec().getRange();
1489        NewVD->Destroy(Context);
1490        return 0;
1491      }
1492
1493      NewVD = MergeVarDecl(NewVD, PrevDecl);
1494      if (NewVD == 0) return 0;
1495
1496      if (D.getCXXScopeSpec().isSet()) {
1497        // No previous declaration in the qualifying scope.
1498        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1499          << Name << D.getCXXScopeSpec().getRange();
1500        InvalidDecl = true;
1501      }
1502    }
1503    New = NewVD;
1504  }
1505
1506  // Set the lexical context. If the declarator has a C++ scope specifier, the
1507  // lexical context will be different from the semantic context.
1508  New->setLexicalDeclContext(CurContext);
1509
1510  // If this has an identifier, add it to the scope stack.
1511  if (Name)
1512    PushOnScopeChains(New, S);
1513  // If any semantic error occurred, mark the decl as invalid.
1514  if (D.getInvalidType() || InvalidDecl)
1515    New->setInvalidDecl();
1516
1517  return New;
1518}
1519
1520void Sema::InitializerElementNotConstant(const Expr *Init) {
1521  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1522    << Init->getSourceRange();
1523}
1524
1525bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1526  switch (Init->getStmtClass()) {
1527  default:
1528    InitializerElementNotConstant(Init);
1529    return true;
1530  case Expr::ParenExprClass: {
1531    const ParenExpr* PE = cast<ParenExpr>(Init);
1532    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1533  }
1534  case Expr::CompoundLiteralExprClass:
1535    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1536  case Expr::DeclRefExprClass: {
1537    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1538    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1539      if (VD->hasGlobalStorage())
1540        return false;
1541      InitializerElementNotConstant(Init);
1542      return true;
1543    }
1544    if (isa<FunctionDecl>(D))
1545      return false;
1546    InitializerElementNotConstant(Init);
1547    return true;
1548  }
1549  case Expr::MemberExprClass: {
1550    const MemberExpr *M = cast<MemberExpr>(Init);
1551    if (M->isArrow())
1552      return CheckAddressConstantExpression(M->getBase());
1553    return CheckAddressConstantExpressionLValue(M->getBase());
1554  }
1555  case Expr::ArraySubscriptExprClass: {
1556    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1557    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1558    return CheckAddressConstantExpression(ASE->getBase()) ||
1559           CheckArithmeticConstantExpression(ASE->getIdx());
1560  }
1561  case Expr::StringLiteralClass:
1562  case Expr::PredefinedExprClass:
1563    return false;
1564  case Expr::UnaryOperatorClass: {
1565    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1566
1567    // C99 6.6p9
1568    if (Exp->getOpcode() == UnaryOperator::Deref)
1569      return CheckAddressConstantExpression(Exp->getSubExpr());
1570
1571    InitializerElementNotConstant(Init);
1572    return true;
1573  }
1574  }
1575}
1576
1577bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1578  switch (Init->getStmtClass()) {
1579  default:
1580    InitializerElementNotConstant(Init);
1581    return true;
1582  case Expr::ParenExprClass:
1583    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1584  case Expr::StringLiteralClass:
1585  case Expr::ObjCStringLiteralClass:
1586    return false;
1587  case Expr::CallExprClass:
1588  case Expr::CXXOperatorCallExprClass:
1589    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1590    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1591           Builtin::BI__builtin___CFStringMakeConstantString)
1592      return false;
1593
1594    InitializerElementNotConstant(Init);
1595    return true;
1596
1597  case Expr::UnaryOperatorClass: {
1598    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1599
1600    // C99 6.6p9
1601    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1602      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1603
1604    if (Exp->getOpcode() == UnaryOperator::Extension)
1605      return CheckAddressConstantExpression(Exp->getSubExpr());
1606
1607    InitializerElementNotConstant(Init);
1608    return true;
1609  }
1610  case Expr::BinaryOperatorClass: {
1611    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1612    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1613
1614    Expr *PExp = Exp->getLHS();
1615    Expr *IExp = Exp->getRHS();
1616    if (IExp->getType()->isPointerType())
1617      std::swap(PExp, IExp);
1618
1619    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1620    return CheckAddressConstantExpression(PExp) ||
1621           CheckArithmeticConstantExpression(IExp);
1622  }
1623  case Expr::ImplicitCastExprClass:
1624  case Expr::CStyleCastExprClass: {
1625    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1626    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1627      // Check for implicit promotion
1628      if (SubExpr->getType()->isFunctionType() ||
1629          SubExpr->getType()->isArrayType())
1630        return CheckAddressConstantExpressionLValue(SubExpr);
1631    }
1632
1633    // Check for pointer->pointer cast
1634    if (SubExpr->getType()->isPointerType())
1635      return CheckAddressConstantExpression(SubExpr);
1636
1637    if (SubExpr->getType()->isIntegralType()) {
1638      // Check for the special-case of a pointer->int->pointer cast;
1639      // this isn't standard, but some code requires it. See
1640      // PR2720 for an example.
1641      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1642        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1643          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1644          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1645          if (IntWidth >= PointerWidth) {
1646            return CheckAddressConstantExpression(SubCast->getSubExpr());
1647          }
1648        }
1649      }
1650    }
1651    if (SubExpr->getType()->isArithmeticType()) {
1652      return CheckArithmeticConstantExpression(SubExpr);
1653    }
1654
1655    InitializerElementNotConstant(Init);
1656    return true;
1657  }
1658  case Expr::ConditionalOperatorClass: {
1659    // FIXME: Should we pedwarn here?
1660    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1661    if (!Exp->getCond()->getType()->isArithmeticType()) {
1662      InitializerElementNotConstant(Init);
1663      return true;
1664    }
1665    if (CheckArithmeticConstantExpression(Exp->getCond()))
1666      return true;
1667    if (Exp->getLHS() &&
1668        CheckAddressConstantExpression(Exp->getLHS()))
1669      return true;
1670    return CheckAddressConstantExpression(Exp->getRHS());
1671  }
1672  case Expr::AddrLabelExprClass:
1673    return false;
1674  }
1675}
1676
1677static const Expr* FindExpressionBaseAddress(const Expr* E);
1678
1679static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1680  switch (E->getStmtClass()) {
1681  default:
1682    return E;
1683  case Expr::ParenExprClass: {
1684    const ParenExpr* PE = cast<ParenExpr>(E);
1685    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1686  }
1687  case Expr::MemberExprClass: {
1688    const MemberExpr *M = cast<MemberExpr>(E);
1689    if (M->isArrow())
1690      return FindExpressionBaseAddress(M->getBase());
1691    return FindExpressionBaseAddressLValue(M->getBase());
1692  }
1693  case Expr::ArraySubscriptExprClass: {
1694    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1695    return FindExpressionBaseAddress(ASE->getBase());
1696  }
1697  case Expr::UnaryOperatorClass: {
1698    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1699
1700    if (Exp->getOpcode() == UnaryOperator::Deref)
1701      return FindExpressionBaseAddress(Exp->getSubExpr());
1702
1703    return E;
1704  }
1705  }
1706}
1707
1708static const Expr* FindExpressionBaseAddress(const Expr* E) {
1709  switch (E->getStmtClass()) {
1710  default:
1711    return E;
1712  case Expr::ParenExprClass: {
1713    const ParenExpr* PE = cast<ParenExpr>(E);
1714    return FindExpressionBaseAddress(PE->getSubExpr());
1715  }
1716  case Expr::UnaryOperatorClass: {
1717    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1718
1719    // C99 6.6p9
1720    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1721      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1722
1723    if (Exp->getOpcode() == UnaryOperator::Extension)
1724      return FindExpressionBaseAddress(Exp->getSubExpr());
1725
1726    return E;
1727  }
1728  case Expr::BinaryOperatorClass: {
1729    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1730
1731    Expr *PExp = Exp->getLHS();
1732    Expr *IExp = Exp->getRHS();
1733    if (IExp->getType()->isPointerType())
1734      std::swap(PExp, IExp);
1735
1736    return FindExpressionBaseAddress(PExp);
1737  }
1738  case Expr::ImplicitCastExprClass: {
1739    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1740
1741    // Check for implicit promotion
1742    if (SubExpr->getType()->isFunctionType() ||
1743        SubExpr->getType()->isArrayType())
1744      return FindExpressionBaseAddressLValue(SubExpr);
1745
1746    // Check for pointer->pointer cast
1747    if (SubExpr->getType()->isPointerType())
1748      return FindExpressionBaseAddress(SubExpr);
1749
1750    // We assume that we have an arithmetic expression here;
1751    // if we don't, we'll figure it out later
1752    return 0;
1753  }
1754  case Expr::CStyleCastExprClass: {
1755    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1756
1757    // Check for pointer->pointer cast
1758    if (SubExpr->getType()->isPointerType())
1759      return FindExpressionBaseAddress(SubExpr);
1760
1761    // We assume that we have an arithmetic expression here;
1762    // if we don't, we'll figure it out later
1763    return 0;
1764  }
1765  }
1766}
1767
1768bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1769  switch (Init->getStmtClass()) {
1770  default:
1771    InitializerElementNotConstant(Init);
1772    return true;
1773  case Expr::ParenExprClass: {
1774    const ParenExpr* PE = cast<ParenExpr>(Init);
1775    return CheckArithmeticConstantExpression(PE->getSubExpr());
1776  }
1777  case Expr::FloatingLiteralClass:
1778  case Expr::IntegerLiteralClass:
1779  case Expr::CharacterLiteralClass:
1780  case Expr::ImaginaryLiteralClass:
1781  case Expr::TypesCompatibleExprClass:
1782  case Expr::CXXBoolLiteralExprClass:
1783    return false;
1784  case Expr::CallExprClass:
1785  case Expr::CXXOperatorCallExprClass: {
1786    const CallExpr *CE = cast<CallExpr>(Init);
1787
1788    // Allow any constant foldable calls to builtins.
1789    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1790      return false;
1791
1792    InitializerElementNotConstant(Init);
1793    return true;
1794  }
1795  case Expr::DeclRefExprClass: {
1796    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1797    if (isa<EnumConstantDecl>(D))
1798      return false;
1799    InitializerElementNotConstant(Init);
1800    return true;
1801  }
1802  case Expr::CompoundLiteralExprClass:
1803    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1804    // but vectors are allowed to be magic.
1805    if (Init->getType()->isVectorType())
1806      return false;
1807    InitializerElementNotConstant(Init);
1808    return true;
1809  case Expr::UnaryOperatorClass: {
1810    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1811
1812    switch (Exp->getOpcode()) {
1813    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1814    // See C99 6.6p3.
1815    default:
1816      InitializerElementNotConstant(Init);
1817      return true;
1818    case UnaryOperator::OffsetOf:
1819      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1820        return false;
1821      InitializerElementNotConstant(Init);
1822      return true;
1823    case UnaryOperator::Extension:
1824    case UnaryOperator::LNot:
1825    case UnaryOperator::Plus:
1826    case UnaryOperator::Minus:
1827    case UnaryOperator::Not:
1828      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1829    }
1830  }
1831  case Expr::SizeOfAlignOfExprClass: {
1832    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1833    // Special check for void types, which are allowed as an extension
1834    if (Exp->getTypeOfArgument()->isVoidType())
1835      return false;
1836    // alignof always evaluates to a constant.
1837    // FIXME: is sizeof(int[3.0]) a constant expression?
1838    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1839      InitializerElementNotConstant(Init);
1840      return true;
1841    }
1842    return false;
1843  }
1844  case Expr::BinaryOperatorClass: {
1845    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1846
1847    if (Exp->getLHS()->getType()->isArithmeticType() &&
1848        Exp->getRHS()->getType()->isArithmeticType()) {
1849      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1850             CheckArithmeticConstantExpression(Exp->getRHS());
1851    }
1852
1853    if (Exp->getLHS()->getType()->isPointerType() &&
1854        Exp->getRHS()->getType()->isPointerType()) {
1855      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1856      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1857
1858      // Only allow a null (constant integer) base; we could
1859      // allow some additional cases if necessary, but this
1860      // is sufficient to cover offsetof-like constructs.
1861      if (!LHSBase && !RHSBase) {
1862        return CheckAddressConstantExpression(Exp->getLHS()) ||
1863               CheckAddressConstantExpression(Exp->getRHS());
1864      }
1865    }
1866
1867    InitializerElementNotConstant(Init);
1868    return true;
1869  }
1870  case Expr::ImplicitCastExprClass:
1871  case Expr::CStyleCastExprClass: {
1872    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1873    if (SubExpr->getType()->isArithmeticType())
1874      return CheckArithmeticConstantExpression(SubExpr);
1875
1876    if (SubExpr->getType()->isPointerType()) {
1877      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1878      // If the pointer has a null base, this is an offsetof-like construct
1879      if (!Base)
1880        return CheckAddressConstantExpression(SubExpr);
1881    }
1882
1883    InitializerElementNotConstant(Init);
1884    return true;
1885  }
1886  case Expr::ConditionalOperatorClass: {
1887    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1888
1889    // If GNU extensions are disabled, we require all operands to be arithmetic
1890    // constant expressions.
1891    if (getLangOptions().NoExtensions) {
1892      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1893          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1894             CheckArithmeticConstantExpression(Exp->getRHS());
1895    }
1896
1897    // Otherwise, we have to emulate some of the behavior of fold here.
1898    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1899    // because it can constant fold things away.  To retain compatibility with
1900    // GCC code, we see if we can fold the condition to a constant (which we
1901    // should always be able to do in theory).  If so, we only require the
1902    // specified arm of the conditional to be a constant.  This is a horrible
1903    // hack, but is require by real world code that uses __builtin_constant_p.
1904    Expr::EvalResult EvalResult;
1905    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
1906        EvalResult.HasSideEffects) {
1907      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1908      // won't be able to either.  Use it to emit the diagnostic though.
1909      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1910      assert(Res && "Evaluate couldn't evaluate this constant?");
1911      return Res;
1912    }
1913
1914    // Verify that the side following the condition is also a constant.
1915    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1916    if (EvalResult.Val.getInt() == 0)
1917      std::swap(TrueSide, FalseSide);
1918
1919    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1920      return true;
1921
1922    // Okay, the evaluated side evaluates to a constant, so we accept this.
1923    // Check to see if the other side is obviously not a constant.  If so,
1924    // emit a warning that this is a GNU extension.
1925    if (FalseSide && !FalseSide->isEvaluatable(Context))
1926      Diag(Init->getExprLoc(),
1927           diag::ext_typecheck_expression_not_constant_but_accepted)
1928        << FalseSide->getSourceRange();
1929    return false;
1930  }
1931  }
1932}
1933
1934bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1935  Expr::EvalResult Result;
1936
1937  Init = Init->IgnoreParens();
1938
1939  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1940    return false;
1941
1942  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1943  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1944    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1945
1946  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1947    return CheckForConstantInitializer(e->getInitializer(), DclT);
1948
1949  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1950    unsigned numInits = Exp->getNumInits();
1951    for (unsigned i = 0; i < numInits; i++) {
1952      // FIXME: Need to get the type of the declaration for C++,
1953      // because it could be a reference?
1954      if (CheckForConstantInitializer(Exp->getInit(i),
1955                                      Exp->getInit(i)->getType()))
1956        return true;
1957    }
1958    return false;
1959  }
1960
1961  // FIXME: We can probably remove some of this code below, now that
1962  // Expr::Evaluate is doing the heavy lifting for scalars.
1963
1964  if (Init->isNullPointerConstant(Context))
1965    return false;
1966  if (Init->getType()->isArithmeticType()) {
1967    QualType InitTy = Context.getCanonicalType(Init->getType())
1968                             .getUnqualifiedType();
1969    if (InitTy == Context.BoolTy) {
1970      // Special handling for pointers implicitly cast to bool;
1971      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1972      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1973        Expr* SubE = ICE->getSubExpr();
1974        if (SubE->getType()->isPointerType() ||
1975            SubE->getType()->isArrayType() ||
1976            SubE->getType()->isFunctionType()) {
1977          return CheckAddressConstantExpression(Init);
1978        }
1979      }
1980    } else if (InitTy->isIntegralType()) {
1981      Expr* SubE = 0;
1982      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1983        SubE = CE->getSubExpr();
1984      // Special check for pointer cast to int; we allow as an extension
1985      // an address constant cast to an integer if the integer
1986      // is of an appropriate width (this sort of code is apparently used
1987      // in some places).
1988      // FIXME: Add pedwarn?
1989      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1990      if (SubE && (SubE->getType()->isPointerType() ||
1991                   SubE->getType()->isArrayType() ||
1992                   SubE->getType()->isFunctionType())) {
1993        unsigned IntWidth = Context.getTypeSize(Init->getType());
1994        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1995        if (IntWidth >= PointerWidth)
1996          return CheckAddressConstantExpression(Init);
1997      }
1998    }
1999
2000    return CheckArithmeticConstantExpression(Init);
2001  }
2002
2003  if (Init->getType()->isPointerType())
2004    return CheckAddressConstantExpression(Init);
2005
2006  // An array type at the top level that isn't an init-list must
2007  // be a string literal
2008  if (Init->getType()->isArrayType())
2009    return false;
2010
2011  if (Init->getType()->isFunctionType())
2012    return false;
2013
2014  // Allow block exprs at top level.
2015  if (Init->getType()->isBlockPointerType())
2016    return false;
2017
2018  InitializerElementNotConstant(Init);
2019  return true;
2020}
2021
2022void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2023  Decl *RealDecl = static_cast<Decl *>(dcl);
2024  Expr *Init = static_cast<Expr *>(init.release());
2025  assert(Init && "missing initializer");
2026
2027  // If there is no declaration, there was an error parsing it.  Just ignore
2028  // the initializer.
2029  if (RealDecl == 0) {
2030    delete Init;
2031    return;
2032  }
2033
2034  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2035  if (!VDecl) {
2036    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2037         diag::err_illegal_initializer);
2038    RealDecl->setInvalidDecl();
2039    return;
2040  }
2041  // Get the decls type and save a reference for later, since
2042  // CheckInitializerTypes may change it.
2043  QualType DclT = VDecl->getType(), SavT = DclT;
2044  if (VDecl->isBlockVarDecl()) {
2045    VarDecl::StorageClass SC = VDecl->getStorageClass();
2046    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2047      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2048      VDecl->setInvalidDecl();
2049    } else if (!VDecl->isInvalidDecl()) {
2050      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2051                                VDecl->getDeclName()))
2052        VDecl->setInvalidDecl();
2053
2054      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2055      if (!getLangOptions().CPlusPlus) {
2056        if (SC == VarDecl::Static) // C99 6.7.8p4.
2057          CheckForConstantInitializer(Init, DclT);
2058      }
2059    }
2060  } else if (VDecl->isFileVarDecl()) {
2061    if (VDecl->getStorageClass() == VarDecl::Extern)
2062      Diag(VDecl->getLocation(), diag::warn_extern_init);
2063    if (!VDecl->isInvalidDecl())
2064      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2065                                VDecl->getDeclName()))
2066        VDecl->setInvalidDecl();
2067
2068    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2069    if (!getLangOptions().CPlusPlus) {
2070      // C99 6.7.8p4. All file scoped initializers need to be constant.
2071      CheckForConstantInitializer(Init, DclT);
2072    }
2073  }
2074  // If the type changed, it means we had an incomplete type that was
2075  // completed by the initializer. For example:
2076  //   int ary[] = { 1, 3, 5 };
2077  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2078  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2079    VDecl->setType(DclT);
2080    Init->setType(DclT);
2081  }
2082
2083  // Attach the initializer to the decl.
2084  VDecl->setInit(Init);
2085  return;
2086}
2087
2088void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2089  Decl *RealDecl = static_cast<Decl *>(dcl);
2090
2091  // If there is no declaration, there was an error parsing it. Just ignore it.
2092  if (RealDecl == 0)
2093    return;
2094
2095  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2096    QualType Type = Var->getType();
2097    // C++ [dcl.init.ref]p3:
2098    //   The initializer can be omitted for a reference only in a
2099    //   parameter declaration (8.3.5), in the declaration of a
2100    //   function return type, in the declaration of a class member
2101    //   within its class declaration (9.2), and where the extern
2102    //   specifier is explicitly used.
2103    if (Type->isReferenceType() &&
2104        Var->getStorageClass() != VarDecl::Extern &&
2105        Var->getStorageClass() != VarDecl::PrivateExtern) {
2106      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2107        << Var->getDeclName()
2108        << SourceRange(Var->getLocation(), Var->getLocation());
2109      Var->setInvalidDecl();
2110      return;
2111    }
2112
2113    // C++ [dcl.init]p9:
2114    //
2115    //   If no initializer is specified for an object, and the object
2116    //   is of (possibly cv-qualified) non-POD class type (or array
2117    //   thereof), the object shall be default-initialized; if the
2118    //   object is of const-qualified type, the underlying class type
2119    //   shall have a user-declared default constructor.
2120    if (getLangOptions().CPlusPlus) {
2121      QualType InitType = Type;
2122      if (const ArrayType *Array = Context.getAsArrayType(Type))
2123        InitType = Array->getElementType();
2124      if (Var->getStorageClass() != VarDecl::Extern &&
2125          Var->getStorageClass() != VarDecl::PrivateExtern &&
2126          InitType->isRecordType()) {
2127        const CXXConstructorDecl *Constructor
2128          = PerformInitializationByConstructor(InitType, 0, 0,
2129                                               Var->getLocation(),
2130                                               SourceRange(Var->getLocation(),
2131                                                           Var->getLocation()),
2132                                               Var->getDeclName(),
2133                                               IK_Default);
2134        if (!Constructor)
2135          Var->setInvalidDecl();
2136      }
2137    }
2138
2139#if 0
2140    // FIXME: Temporarily disabled because we are not properly parsing
2141    // linkage specifications on declarations, e.g.,
2142    //
2143    //   extern "C" const CGPoint CGPointerZero;
2144    //
2145    // C++ [dcl.init]p9:
2146    //
2147    //     If no initializer is specified for an object, and the
2148    //     object is of (possibly cv-qualified) non-POD class type (or
2149    //     array thereof), the object shall be default-initialized; if
2150    //     the object is of const-qualified type, the underlying class
2151    //     type shall have a user-declared default
2152    //     constructor. Otherwise, if no initializer is specified for
2153    //     an object, the object and its subobjects, if any, have an
2154    //     indeterminate initial value; if the object or any of its
2155    //     subobjects are of const-qualified type, the program is
2156    //     ill-formed.
2157    //
2158    // This isn't technically an error in C, so we don't diagnose it.
2159    //
2160    // FIXME: Actually perform the POD/user-defined default
2161    // constructor check.
2162    if (getLangOptions().CPlusPlus &&
2163        Context.getCanonicalType(Type).isConstQualified() &&
2164        Var->getStorageClass() != VarDecl::Extern)
2165      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2166        << Var->getName()
2167        << SourceRange(Var->getLocation(), Var->getLocation());
2168#endif
2169  }
2170}
2171
2172/// The declarators are chained together backwards, reverse the list.
2173Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2174  // Often we have single declarators, handle them quickly.
2175  Decl *GroupDecl = static_cast<Decl*>(group);
2176  if (GroupDecl == 0)
2177    return 0;
2178
2179  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2180  ScopedDecl *NewGroup = 0;
2181  if (Group->getNextDeclarator() == 0)
2182    NewGroup = Group;
2183  else { // reverse the list.
2184    while (Group) {
2185      ScopedDecl *Next = Group->getNextDeclarator();
2186      Group->setNextDeclarator(NewGroup);
2187      NewGroup = Group;
2188      Group = Next;
2189    }
2190  }
2191  // Perform semantic analysis that depends on having fully processed both
2192  // the declarator and initializer.
2193  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2194    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2195    if (!IDecl)
2196      continue;
2197    QualType T = IDecl->getType();
2198
2199    if (T->isVariableArrayType()) {
2200      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2201
2202      // FIXME: This won't give the correct result for
2203      // int a[10][n];
2204      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2205      if (IDecl->isFileVarDecl()) {
2206        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2207          SizeRange;
2208
2209        IDecl->setInvalidDecl();
2210      } else {
2211        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2212        // static storage duration, it shall not have a variable length array.
2213        if (IDecl->getStorageClass() == VarDecl::Static) {
2214          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2215            << SizeRange;
2216          IDecl->setInvalidDecl();
2217        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2218          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2219            << SizeRange;
2220          IDecl->setInvalidDecl();
2221        }
2222      }
2223    } else if (T->isVariablyModifiedType()) {
2224      if (IDecl->isFileVarDecl()) {
2225        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2226        IDecl->setInvalidDecl();
2227      } else {
2228        if (IDecl->getStorageClass() == VarDecl::Extern) {
2229          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2230          IDecl->setInvalidDecl();
2231        }
2232      }
2233    }
2234
2235    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2236    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2237    if (IDecl->isBlockVarDecl() &&
2238        IDecl->getStorageClass() != VarDecl::Extern) {
2239      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2240        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2241        IDecl->setInvalidDecl();
2242      }
2243    }
2244    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2245    // object that has file scope without an initializer, and without a
2246    // storage-class specifier or with the storage-class specifier "static",
2247    // constitutes a tentative definition. Note: A tentative definition with
2248    // external linkage is valid (C99 6.2.2p5).
2249    if (isTentativeDefinition(IDecl)) {
2250      if (T->isIncompleteArrayType()) {
2251        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2252        // array to be completed. Don't issue a diagnostic.
2253      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2254        // C99 6.9.2p3: If the declaration of an identifier for an object is
2255        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2256        // declared type shall not be an incomplete type.
2257        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2258        IDecl->setInvalidDecl();
2259      }
2260    }
2261    if (IDecl->isFileVarDecl())
2262      CheckForFileScopedRedefinitions(S, IDecl);
2263  }
2264  return NewGroup;
2265}
2266
2267/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2268/// to introduce parameters into function prototype scope.
2269Sema::DeclTy *
2270Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2271  const DeclSpec &DS = D.getDeclSpec();
2272
2273  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2274  VarDecl::StorageClass StorageClass = VarDecl::None;
2275  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2276    StorageClass = VarDecl::Register;
2277  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2278    Diag(DS.getStorageClassSpecLoc(),
2279         diag::err_invalid_storage_class_in_func_decl);
2280    D.getMutableDeclSpec().ClearStorageClassSpecs();
2281  }
2282  if (DS.isThreadSpecified()) {
2283    Diag(DS.getThreadSpecLoc(),
2284         diag::err_invalid_storage_class_in_func_decl);
2285    D.getMutableDeclSpec().ClearStorageClassSpecs();
2286  }
2287
2288  // Check that there are no default arguments inside the type of this
2289  // parameter (C++ only).
2290  if (getLangOptions().CPlusPlus)
2291    CheckExtraCXXDefaultArguments(D);
2292
2293  // In this context, we *do not* check D.getInvalidType(). If the declarator
2294  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2295  // though it will not reflect the user specified type.
2296  QualType parmDeclType = GetTypeForDeclarator(D, S);
2297
2298  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2299
2300  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2301  // Can this happen for params?  We already checked that they don't conflict
2302  // among each other.  Here they can only shadow globals, which is ok.
2303  IdentifierInfo *II = D.getIdentifier();
2304  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2305    if (PrevDecl->isTemplateParameter()) {
2306      // Maybe we will complain about the shadowed template parameter.
2307      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2308      // Just pretend that we didn't see the previous declaration.
2309      PrevDecl = 0;
2310    } else if (S->isDeclScope(PrevDecl)) {
2311      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2312
2313      // Recover by removing the name
2314      II = 0;
2315      D.SetIdentifier(0, D.getIdentifierLoc());
2316    }
2317  }
2318
2319  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2320  // Doing the promotion here has a win and a loss. The win is the type for
2321  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2322  // code generator). The loss is the orginal type isn't preserved. For example:
2323  //
2324  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2325  //    int blockvardecl[5];
2326  //    sizeof(parmvardecl);  // size == 4
2327  //    sizeof(blockvardecl); // size == 20
2328  // }
2329  //
2330  // For expressions, all implicit conversions are captured using the
2331  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2332  //
2333  // FIXME: If a source translation tool needs to see the original type, then
2334  // we need to consider storing both types (in ParmVarDecl)...
2335  //
2336  if (parmDeclType->isArrayType()) {
2337    // int x[restrict 4] ->  int *restrict
2338    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2339  } else if (parmDeclType->isFunctionType())
2340    parmDeclType = Context.getPointerType(parmDeclType);
2341
2342  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2343                                         D.getIdentifierLoc(), II,
2344                                         parmDeclType, StorageClass,
2345                                         0, 0);
2346
2347  if (D.getInvalidType())
2348    New->setInvalidDecl();
2349
2350  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2351  if (D.getCXXScopeSpec().isSet()) {
2352    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2353      << D.getCXXScopeSpec().getRange();
2354    New->setInvalidDecl();
2355  }
2356
2357  // Add the parameter declaration into this scope.
2358  S->AddDecl(New);
2359  if (II)
2360    IdResolver.AddDecl(New);
2361
2362  ProcessDeclAttributes(New, D);
2363  return New;
2364
2365}
2366
2367Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2368  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2369  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2370         "Not a function declarator!");
2371  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2372
2373  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2374  // for a K&R function.
2375  if (!FTI.hasPrototype) {
2376    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2377      if (FTI.ArgInfo[i].Param == 0) {
2378        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2379          << FTI.ArgInfo[i].Ident;
2380        // Implicitly declare the argument as type 'int' for lack of a better
2381        // type.
2382        DeclSpec DS;
2383        const char* PrevSpec; // unused
2384        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2385                           PrevSpec);
2386        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2387        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2388        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2389      }
2390    }
2391  } else {
2392    // FIXME: Diagnose arguments without names in C.
2393  }
2394
2395  Scope *ParentScope = FnBodyScope->getParent();
2396
2397  return ActOnStartOfFunctionDef(FnBodyScope,
2398                                 ActOnDeclarator(ParentScope, D, 0,
2399                                                 /*IsFunctionDefinition=*/true));
2400}
2401
2402Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2403  Decl *decl = static_cast<Decl*>(D);
2404  FunctionDecl *FD = cast<FunctionDecl>(decl);
2405
2406  // See if this is a redefinition.
2407  const FunctionDecl *Definition;
2408  if (FD->getBody(Definition)) {
2409    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2410    Diag(Definition->getLocation(), diag::note_previous_definition);
2411  }
2412
2413  PushDeclContext(FnBodyScope, FD);
2414
2415  // Check the validity of our function parameters
2416  CheckParmsForFunctionDef(FD);
2417
2418  // Introduce our parameters into the function scope
2419  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2420    ParmVarDecl *Param = FD->getParamDecl(p);
2421    // If this has an identifier, add it to the scope stack.
2422    if (Param->getIdentifier())
2423      PushOnScopeChains(Param, FnBodyScope);
2424  }
2425
2426  // Checking attributes of current function definition
2427  // dllimport attribute.
2428  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2429    // dllimport attribute cannot be applied to definition.
2430    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2431      Diag(FD->getLocation(),
2432           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2433        << "dllimport";
2434      FD->setInvalidDecl();
2435      return FD;
2436    } else {
2437      // If a symbol previously declared dllimport is later defined, the
2438      // attribute is ignored in subsequent references, and a warning is
2439      // emitted.
2440      Diag(FD->getLocation(),
2441           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2442        << FD->getNameAsCString() << "dllimport";
2443    }
2444  }
2445  return FD;
2446}
2447
2448Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2449  Decl *dcl = static_cast<Decl *>(D);
2450  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2451  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2452    FD->setBody(Body);
2453    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2454  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2455    MD->setBody((Stmt*)Body);
2456  } else
2457    return 0;
2458  PopDeclContext();
2459  // Verify and clean out per-function state.
2460
2461  // Check goto/label use.
2462  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2463       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2464    // Verify that we have no forward references left.  If so, there was a goto
2465    // or address of a label taken, but no definition of it.  Label fwd
2466    // definitions are indicated with a null substmt.
2467    if (I->second->getSubStmt() == 0) {
2468      LabelStmt *L = I->second;
2469      // Emit error.
2470      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2471
2472      // At this point, we have gotos that use the bogus label.  Stitch it into
2473      // the function body so that they aren't leaked and that the AST is well
2474      // formed.
2475      if (Body) {
2476        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2477        cast<CompoundStmt>(Body)->push_back(L);
2478      } else {
2479        // The whole function wasn't parsed correctly, just delete this.
2480        delete L;
2481      }
2482    }
2483  }
2484  LabelMap.clear();
2485
2486  return D;
2487}
2488
2489/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2490/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2491ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2492                                           IdentifierInfo &II, Scope *S) {
2493  // Extension in C99.  Legal in C90, but warn about it.
2494  if (getLangOptions().C99)
2495    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2496  else
2497    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2498
2499  // FIXME: handle stuff like:
2500  // void foo() { extern float X(); }
2501  // void bar() { X(); }  <-- implicit decl for X in another scope.
2502
2503  // Set a Declarator for the implicit definition: int foo();
2504  const char *Dummy;
2505  DeclSpec DS;
2506  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2507  Error = Error; // Silence warning.
2508  assert(!Error && "Error setting up implicit decl!");
2509  Declarator D(DS, Declarator::BlockContext);
2510  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2511  D.SetIdentifier(&II, Loc);
2512
2513  // Insert this function into translation-unit scope.
2514
2515  DeclContext *PrevDC = CurContext;
2516  CurContext = Context.getTranslationUnitDecl();
2517
2518  FunctionDecl *FD =
2519    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2520  FD->setImplicit();
2521
2522  CurContext = PrevDC;
2523
2524  return FD;
2525}
2526
2527
2528TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2529                                    ScopedDecl *LastDeclarator) {
2530  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2531  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2532
2533  // Scope manipulation handled by caller.
2534  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2535                                           D.getIdentifierLoc(),
2536                                           D.getIdentifier(),
2537                                           T, LastDeclarator);
2538  if (D.getInvalidType())
2539    NewTD->setInvalidDecl();
2540  return NewTD;
2541}
2542
2543/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2544/// former case, Name will be non-null.  In the later case, Name will be null.
2545/// TagType indicates what kind of tag this is. TK indicates whether this is a
2546/// reference/declaration/definition of a tag.
2547Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2548                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2549                             IdentifierInfo *Name, SourceLocation NameLoc,
2550                             AttributeList *Attr,
2551                             MultiTemplateParamsArg TemplateParameterLists) {
2552  // If this is not a definition, it must have a name.
2553  assert((Name != 0 || TK == TK_Definition) &&
2554         "Nameless record must be a definition!");
2555
2556  TagDecl::TagKind Kind;
2557  switch (TagType) {
2558  default: assert(0 && "Unknown tag type!");
2559  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2560  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2561  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2562  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2563  }
2564
2565  DeclContext *DC = CurContext;
2566  ScopedDecl *PrevDecl = 0;
2567
2568  if (Name && SS.isNotEmpty()) {
2569    // We have a nested-name tag ('struct foo::bar').
2570
2571    // Check for invalid 'foo::'.
2572    if (SS.isInvalid()) {
2573      Name = 0;
2574      goto CreateNewDecl;
2575    }
2576
2577    DC = static_cast<DeclContext*>(SS.getScopeRep());
2578    // Look-up name inside 'foo::'.
2579    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2580
2581    // A tag 'foo::bar' must already exist.
2582    if (PrevDecl == 0) {
2583      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2584      Name = 0;
2585      goto CreateNewDecl;
2586    }
2587  } else {
2588    // If this is a named struct, check to see if there was a previous forward
2589    // declaration or definition.
2590    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2591    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2592  }
2593
2594  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2595    // Maybe we will complain about the shadowed template parameter.
2596    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2597    // Just pretend that we didn't see the previous declaration.
2598    PrevDecl = 0;
2599  }
2600
2601  if (PrevDecl) {
2602    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2603            "unexpected Decl type");
2604    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2605      // If this is a use of a previous tag, or if the tag is already declared
2606      // in the same scope (so that the definition/declaration completes or
2607      // rementions the tag), reuse the decl.
2608      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2609        // Make sure that this wasn't declared as an enum and now used as a
2610        // struct or something similar.
2611        if (PrevTagDecl->getTagKind() != Kind) {
2612          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2613          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2614          // Recover by making this an anonymous redefinition.
2615          Name = 0;
2616          PrevDecl = 0;
2617        } else {
2618          // If this is a use, just return the declaration we found.
2619
2620          // FIXME: In the future, return a variant or some other clue
2621          // for the consumer of this Decl to know it doesn't own it.
2622          // For our current ASTs this shouldn't be a problem, but will
2623          // need to be changed with DeclGroups.
2624          if (TK == TK_Reference)
2625            return PrevDecl;
2626
2627          // Diagnose attempts to redefine a tag.
2628          if (TK == TK_Definition) {
2629            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2630              Diag(NameLoc, diag::err_redefinition) << Name;
2631              Diag(Def->getLocation(), diag::note_previous_definition);
2632              // If this is a redefinition, recover by making this struct be
2633              // anonymous, which will make any later references get the previous
2634              // definition.
2635              Name = 0;
2636              PrevDecl = 0;
2637            }
2638            // Okay, this is definition of a previously declared or referenced
2639            // tag PrevDecl. We're going to create a new Decl for it.
2640          }
2641        }
2642        // If we get here we have (another) forward declaration or we
2643        // have a definition.  Just create a new decl.
2644      } else {
2645        // If we get here, this is a definition of a new tag type in a nested
2646        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2647        // new decl/type.  We set PrevDecl to NULL so that the entities
2648        // have distinct types.
2649        PrevDecl = 0;
2650      }
2651      // If we get here, we're going to create a new Decl. If PrevDecl
2652      // is non-NULL, it's a definition of the tag declared by
2653      // PrevDecl. If it's NULL, we have a new definition.
2654    } else {
2655      // PrevDecl is a namespace.
2656      if (isDeclInScope(PrevDecl, DC, S)) {
2657        // The tag name clashes with a namespace name, issue an error and
2658        // recover by making this tag be anonymous.
2659        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2660        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2661        Name = 0;
2662        PrevDecl = 0;
2663      } else {
2664        // The existing declaration isn't relevant to us; we're in a
2665        // new scope, so clear out the previous declaration.
2666        PrevDecl = 0;
2667      }
2668    }
2669  }
2670
2671CreateNewDecl:
2672
2673  // If there is an identifier, use the location of the identifier as the
2674  // location of the decl, otherwise use the location of the struct/union
2675  // keyword.
2676  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2677
2678  // Otherwise, create a new declaration. If there is a previous
2679  // declaration of the same entity, the two will be linked via
2680  // PrevDecl.
2681  TagDecl *New;
2682  if (Kind == TagDecl::TK_enum) {
2683    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2684    // enum X { A, B, C } D;    D should chain to X.
2685    New = EnumDecl::Create(Context, DC, Loc, Name,
2686                           cast_or_null<EnumDecl>(PrevDecl));
2687    // If this is an undefined enum, warn.
2688    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2689  } else {
2690    // struct/union/class
2691
2692    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2693    // struct X { int A; } D;    D should chain to X.
2694    if (getLangOptions().CPlusPlus)
2695      // FIXME: Look for a way to use RecordDecl for simple structs.
2696      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2697                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2698    else
2699      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2700                               cast_or_null<RecordDecl>(PrevDecl));
2701  }
2702
2703  if (Kind != TagDecl::TK_enum) {
2704    // Handle #pragma pack: if the #pragma pack stack has non-default
2705    // alignment, make up a packed attribute for this decl. These
2706    // attributes are checked when the ASTContext lays out the
2707    // structure.
2708    //
2709    // It is important for implementing the correct semantics that this
2710    // happen here (in act on tag decl). The #pragma pack stack is
2711    // maintained as a result of parser callbacks which can occur at
2712    // many points during the parsing of a struct declaration (because
2713    // the #pragma tokens are effectively skipped over during the
2714    // parsing of the struct).
2715    if (unsigned Alignment = PackContext.getAlignment())
2716      New->addAttr(new PackedAttr(Alignment * 8));
2717  }
2718
2719  if (Attr)
2720    ProcessDeclAttributeList(New, Attr);
2721
2722  // Set the lexical context. If the tag has a C++ scope specifier, the
2723  // lexical context will be different from the semantic context.
2724  New->setLexicalDeclContext(CurContext);
2725
2726  // If this has an identifier, add it to the scope stack.
2727  if (Name) {
2728    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2729    // we find one that is.
2730    while ((S->getFlags() & Scope::DeclScope) == 0)
2731      S = S->getParent();
2732
2733    // Add it to the decl chain.
2734    PushOnScopeChains(New, S);
2735  }
2736
2737  return New;
2738}
2739
2740
2741/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2742/// types into constant array types in certain situations which would otherwise
2743/// be errors (for GCC compatibility).
2744static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2745                                                    ASTContext &Context) {
2746  // This method tries to turn a variable array into a constant
2747  // array even when the size isn't an ICE.  This is necessary
2748  // for compatibility with code that depends on gcc's buggy
2749  // constant expression folding, like struct {char x[(int)(char*)2];}
2750  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2751  if (!VLATy) return QualType();
2752
2753  Expr::EvalResult EvalResult;
2754  if (!VLATy->getSizeExpr() ||
2755      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
2756    return QualType();
2757
2758  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
2759  llvm::APSInt &Res = EvalResult.Val.getInt();
2760  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2761    return Context.getConstantArrayType(VLATy->getElementType(),
2762                                        Res, ArrayType::Normal, 0);
2763  return QualType();
2764}
2765
2766bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2767                          QualType FieldTy, const Expr *BitWidth) {
2768  // FIXME: 6.7.2.1p4 - verify the field type.
2769
2770  llvm::APSInt Value;
2771  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2772    return true;
2773
2774  // Zero-width bitfield is ok for anonymous field.
2775  if (Value == 0 && FieldName)
2776    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
2777
2778  if (Value.isNegative())
2779    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2780
2781  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2782  // FIXME: We won't need the 0 size once we check that the field type is valid.
2783  if (TypeSize && Value.getZExtValue() > TypeSize)
2784    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
2785       << FieldName << (unsigned)TypeSize;
2786
2787  return false;
2788}
2789
2790/// ActOnField - Each field of a struct/union/class is passed into this in order
2791/// to create a FieldDecl object for it.
2792Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
2793                               SourceLocation DeclStart,
2794                               Declarator &D, ExprTy *BitfieldWidth) {
2795  IdentifierInfo *II = D.getIdentifier();
2796  Expr *BitWidth = (Expr*)BitfieldWidth;
2797  SourceLocation Loc = DeclStart;
2798  RecordDecl *Record = (RecordDecl *)TagD;
2799  if (II) Loc = D.getIdentifierLoc();
2800
2801  // FIXME: Unnamed fields can be handled in various different ways, for
2802  // example, unnamed unions inject all members into the struct namespace!
2803
2804  QualType T = GetTypeForDeclarator(D, S);
2805  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2806  bool InvalidDecl = false;
2807
2808  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2809  // than a variably modified type.
2810  if (T->isVariablyModifiedType()) {
2811    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2812    if (!FixedTy.isNull()) {
2813      Diag(Loc, diag::warn_illegal_constant_array_size);
2814      T = FixedTy;
2815    } else {
2816      Diag(Loc, diag::err_typecheck_field_variable_size);
2817      T = Context.IntTy;
2818      InvalidDecl = true;
2819    }
2820  }
2821
2822  if (BitWidth) {
2823    if (VerifyBitField(Loc, II, T, BitWidth))
2824      InvalidDecl = true;
2825  } else {
2826    // Not a bitfield.
2827
2828    // validate II.
2829
2830  }
2831
2832  // FIXME: Chain fielddecls together.
2833  FieldDecl *NewFD;
2834
2835  // FIXME: We don't want CurContext for C, do we? No, we'll need some
2836  // other way to determine the current RecordDecl.
2837  NewFD = FieldDecl::Create(Context, Record,
2838                            Loc, II, T, BitWidth,
2839                            D.getDeclSpec().getStorageClassSpec() ==
2840                              DeclSpec::SCS_mutable,
2841                            /*PrevDecl=*/0);
2842
2843  if (getLangOptions().CPlusPlus)
2844    CheckExtraCXXDefaultArguments(D);
2845
2846  ProcessDeclAttributes(NewFD, D);
2847
2848  if (D.getInvalidType() || InvalidDecl)
2849    NewFD->setInvalidDecl();
2850
2851  if (II && getLangOptions().CPlusPlus)
2852    PushOnScopeChains(NewFD, S);
2853  else
2854    Record->addDecl(Context, NewFD);
2855
2856  return NewFD;
2857}
2858
2859/// TranslateIvarVisibility - Translate visibility from a token ID to an
2860///  AST enum value.
2861static ObjCIvarDecl::AccessControl
2862TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2863  switch (ivarVisibility) {
2864  default: assert(0 && "Unknown visitibility kind");
2865  case tok::objc_private: return ObjCIvarDecl::Private;
2866  case tok::objc_public: return ObjCIvarDecl::Public;
2867  case tok::objc_protected: return ObjCIvarDecl::Protected;
2868  case tok::objc_package: return ObjCIvarDecl::Package;
2869  }
2870}
2871
2872/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2873/// in order to create an IvarDecl object for it.
2874Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2875                              SourceLocation DeclStart,
2876                              Declarator &D, ExprTy *BitfieldWidth,
2877                              tok::ObjCKeywordKind Visibility) {
2878  IdentifierInfo *II = D.getIdentifier();
2879  Expr *BitWidth = (Expr*)BitfieldWidth;
2880  SourceLocation Loc = DeclStart;
2881  if (II) Loc = D.getIdentifierLoc();
2882
2883  // FIXME: Unnamed fields can be handled in various different ways, for
2884  // example, unnamed unions inject all members into the struct namespace!
2885
2886  QualType T = GetTypeForDeclarator(D, S);
2887  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2888  bool InvalidDecl = false;
2889
2890  if (BitWidth) {
2891    // TODO: Validate.
2892    //printf("WARNING: BITFIELDS IGNORED!\n");
2893
2894    // 6.7.2.1p3
2895    // 6.7.2.1p4
2896
2897  } else {
2898    // Not a bitfield.
2899
2900    // validate II.
2901
2902  }
2903
2904  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2905  // than a variably modified type.
2906  if (T->isVariablyModifiedType()) {
2907    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2908    InvalidDecl = true;
2909  }
2910
2911  // Get the visibility (access control) for this ivar.
2912  ObjCIvarDecl::AccessControl ac =
2913    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2914                                        : ObjCIvarDecl::None;
2915
2916  // Construct the decl.
2917  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2918                                             (Expr *)BitfieldWidth);
2919
2920  // Process attributes attached to the ivar.
2921  ProcessDeclAttributes(NewID, D);
2922
2923  if (D.getInvalidType() || InvalidDecl)
2924    NewID->setInvalidDecl();
2925
2926  return NewID;
2927}
2928
2929void Sema::ActOnFields(Scope* S,
2930                       SourceLocation RecLoc, DeclTy *RecDecl,
2931                       DeclTy **Fields, unsigned NumFields,
2932                       SourceLocation LBrac, SourceLocation RBrac,
2933                       AttributeList *Attr) {
2934  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2935  assert(EnclosingDecl && "missing record or interface decl");
2936  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2937
2938  if (Record)
2939    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2940      // Diagnose code like:
2941      //     struct S { struct S {} X; };
2942      // We discover this when we complete the outer S.  Reject and ignore the
2943      // outer S.
2944      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2945        << DefRecord->getDeclName();
2946      Diag(RecLoc, diag::note_previous_definition);
2947      Record->setInvalidDecl();
2948      return;
2949    }
2950
2951  // Verify that all the fields are okay.
2952  unsigned NumNamedMembers = 0;
2953  llvm::SmallVector<FieldDecl*, 32> RecFields;
2954  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2955
2956  for (unsigned i = 0; i != NumFields; ++i) {
2957
2958    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2959    assert(FD && "missing field decl");
2960
2961    // Remember all fields.
2962    RecFields.push_back(FD);
2963
2964    // Get the type for the field.
2965    Type *FDTy = FD->getType().getTypePtr();
2966
2967    // C99 6.7.2.1p2 - A field may not be a function type.
2968    if (FDTy->isFunctionType()) {
2969      Diag(FD->getLocation(), diag::err_field_declared_as_function)
2970        << FD->getDeclName();
2971      FD->setInvalidDecl();
2972      EnclosingDecl->setInvalidDecl();
2973      continue;
2974    }
2975    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2976    if (FDTy->isIncompleteType()) {
2977      if (!Record) {  // Incomplete ivar type is always an error.
2978        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2979        FD->setInvalidDecl();
2980        EnclosingDecl->setInvalidDecl();
2981        continue;
2982      }
2983      if (i != NumFields-1 ||                   // ... that the last member ...
2984          !Record->isStruct() ||  // ... of a structure ...
2985          !FDTy->isArrayType()) {         //... may have incomplete array type.
2986        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2987        FD->setInvalidDecl();
2988        EnclosingDecl->setInvalidDecl();
2989        continue;
2990      }
2991      if (NumNamedMembers < 1) {  //... must have more than named member ...
2992        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
2993          << FD->getDeclName();
2994        FD->setInvalidDecl();
2995        EnclosingDecl->setInvalidDecl();
2996        continue;
2997      }
2998      // Okay, we have a legal flexible array member at the end of the struct.
2999      if (Record)
3000        Record->setHasFlexibleArrayMember(true);
3001    }
3002    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3003    /// field of another structure or the element of an array.
3004    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3005      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3006        // If this is a member of a union, then entire union becomes "flexible".
3007        if (Record && Record->isUnion()) {
3008          Record->setHasFlexibleArrayMember(true);
3009        } else {
3010          // If this is a struct/class and this is not the last element, reject
3011          // it.  Note that GCC supports variable sized arrays in the middle of
3012          // structures.
3013          if (i != NumFields-1) {
3014            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3015              << FD->getDeclName();
3016            FD->setInvalidDecl();
3017            EnclosingDecl->setInvalidDecl();
3018            continue;
3019          }
3020          // We support flexible arrays at the end of structs in other structs
3021          // as an extension.
3022          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3023            << FD->getDeclName();
3024          if (Record)
3025            Record->setHasFlexibleArrayMember(true);
3026        }
3027      }
3028    }
3029    /// A field cannot be an Objective-c object
3030    if (FDTy->isObjCInterfaceType()) {
3031      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3032        << FD->getDeclName();
3033      FD->setInvalidDecl();
3034      EnclosingDecl->setInvalidDecl();
3035      continue;
3036    }
3037    // Keep track of the number of named members.
3038    if (IdentifierInfo *II = FD->getIdentifier()) {
3039      // Detect duplicate member names.
3040      if (!FieldIDs.insert(II)) {
3041        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
3042        // Find the previous decl.
3043        SourceLocation PrevLoc;
3044        for (unsigned i = 0; ; ++i) {
3045          assert(i != RecFields.size() && "Didn't find previous def!");
3046          if (RecFields[i]->getIdentifier() == II) {
3047            PrevLoc = RecFields[i]->getLocation();
3048            break;
3049          }
3050        }
3051        Diag(PrevLoc, diag::note_previous_definition);
3052        FD->setInvalidDecl();
3053        EnclosingDecl->setInvalidDecl();
3054        continue;
3055      }
3056      ++NumNamedMembers;
3057    }
3058  }
3059
3060  // Okay, we successfully defined 'Record'.
3061  if (Record) {
3062    Record->completeDefinition(Context);
3063    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
3064    // Sema::ActOnFinishCXXClassDef.
3065    if (!isa<CXXRecordDecl>(Record))
3066      Consumer.HandleTagDeclDefinition(Record);
3067  } else {
3068    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3069    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3070      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3071      // Must enforce the rule that ivars in the base classes may not be
3072      // duplicates.
3073      if (ID->getSuperClass()) {
3074        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3075             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3076          ObjCIvarDecl* Ivar = (*IVI);
3077          IdentifierInfo *II = Ivar->getIdentifier();
3078          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3079          if (prevIvar) {
3080            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3081            Diag(prevIvar->getLocation(), diag::note_previous_definition);
3082          }
3083        }
3084      }
3085    }
3086    else if (ObjCImplementationDecl *IMPDecl =
3087               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3088      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3089      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3090      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3091    }
3092  }
3093
3094  if (Attr)
3095    ProcessDeclAttributeList(Record, Attr);
3096}
3097
3098Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3099                                      DeclTy *lastEnumConst,
3100                                      SourceLocation IdLoc, IdentifierInfo *Id,
3101                                      SourceLocation EqualLoc, ExprTy *val) {
3102  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3103  EnumConstantDecl *LastEnumConst =
3104    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3105  Expr *Val = static_cast<Expr*>(val);
3106
3107  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3108  // we find one that is.
3109  while ((S->getFlags() & Scope::DeclScope) == 0)
3110    S = S->getParent();
3111
3112  // Verify that there isn't already something declared with this name in this
3113  // scope.
3114  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3115  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3116    // Maybe we will complain about the shadowed template parameter.
3117    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3118    // Just pretend that we didn't see the previous declaration.
3119    PrevDecl = 0;
3120  }
3121
3122  if (PrevDecl) {
3123    // When in C++, we may get a TagDecl with the same name; in this case the
3124    // enum constant will 'hide' the tag.
3125    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3126           "Received TagDecl when not in C++!");
3127    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3128      if (isa<EnumConstantDecl>(PrevDecl))
3129        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3130      else
3131        Diag(IdLoc, diag::err_redefinition) << Id;
3132      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3133      delete Val;
3134      return 0;
3135    }
3136  }
3137
3138  llvm::APSInt EnumVal(32);
3139  QualType EltTy;
3140  if (Val) {
3141    // Make sure to promote the operand type to int.
3142    UsualUnaryConversions(Val);
3143
3144    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3145    SourceLocation ExpLoc;
3146    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3147      delete Val;
3148      Val = 0;  // Just forget about it.
3149    } else {
3150      EltTy = Val->getType();
3151    }
3152  }
3153
3154  if (!Val) {
3155    if (LastEnumConst) {
3156      // Assign the last value + 1.
3157      EnumVal = LastEnumConst->getInitVal();
3158      ++EnumVal;
3159
3160      // Check for overflow on increment.
3161      if (EnumVal < LastEnumConst->getInitVal())
3162        Diag(IdLoc, diag::warn_enum_value_overflow);
3163
3164      EltTy = LastEnumConst->getType();
3165    } else {
3166      // First value, set to zero.
3167      EltTy = Context.IntTy;
3168      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3169    }
3170  }
3171
3172  EnumConstantDecl *New =
3173    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3174                             Val, EnumVal,
3175                             LastEnumConst);
3176
3177  // Register this decl in the current scope stack.
3178  PushOnScopeChains(New, S);
3179
3180  // Add this enumerator into the enum itself.
3181  // FIXME: This means that the enumerator is stored in two
3182  // DeclContexts. This is not a long-term solution.
3183  New->setLexicalDeclContext(TheEnumDecl);
3184  TheEnumDecl->addDecl(Context, New, true);
3185  return New;
3186}
3187
3188// FIXME: For consistency with ActOnFields(), we should have the parser
3189// pass in the source location for the left/right braces.
3190void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3191                         DeclTy **Elements, unsigned NumElements) {
3192  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3193
3194  if (Enum) {
3195    if (EnumDecl *Def = cast_or_null<EnumDecl>(Enum->getDefinition(Context))) {
3196      // Diagnose code like:
3197      //   enum e0 {
3198      //     E0 = sizeof(enum e0 { E1 })
3199      //   };
3200      Diag(Def->getLocation(), diag::err_nested_redefinition)
3201        << Enum->getDeclName();
3202      Diag(Enum->getLocation(), diag::note_previous_definition);
3203      Enum->setInvalidDecl();
3204      return;
3205    }
3206  }
3207  // TODO: If the result value doesn't fit in an int, it must be a long or long
3208  // long value.  ISO C does not support this, but GCC does as an extension,
3209  // emit a warning.
3210  unsigned IntWidth = Context.Target.getIntWidth();
3211
3212  // Verify that all the values are okay, compute the size of the values, and
3213  // reverse the list.
3214  unsigned NumNegativeBits = 0;
3215  unsigned NumPositiveBits = 0;
3216
3217  // Keep track of whether all elements have type int.
3218  bool AllElementsInt = true;
3219
3220  QualType EnumType = Context.getTypeDeclType(Enum);
3221  EnumConstantDecl *EltList = 0;
3222  for (unsigned i = 0; i != NumElements; ++i) {
3223    EnumConstantDecl *ECD =
3224      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3225    if (!ECD) continue;  // Already issued a diagnostic.
3226
3227    // If the enum value doesn't fit in an int, emit an extension warning.
3228    const llvm::APSInt &InitVal = ECD->getInitVal();
3229    assert(InitVal.getBitWidth() >= IntWidth &&
3230           "Should have promoted value to int");
3231    if (InitVal.getBitWidth() > IntWidth) {
3232      llvm::APSInt V(InitVal);
3233      V.trunc(IntWidth);
3234      V.extend(InitVal.getBitWidth());
3235      if (V != InitVal)
3236        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3237          << InitVal.toString(10);
3238    }
3239
3240    // Keep track of the size of positive and negative values.
3241    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3242      NumPositiveBits = std::max(NumPositiveBits,
3243                                 (unsigned)InitVal.getActiveBits());
3244    else
3245      NumNegativeBits = std::max(NumNegativeBits,
3246                                 (unsigned)InitVal.getMinSignedBits());
3247
3248    // Keep track of whether every enum element has type int (very commmon).
3249    if (AllElementsInt)
3250      AllElementsInt = ECD->getType() == Context.IntTy;
3251
3252    ECD->setNextDeclarator(EltList);
3253    EltList = ECD;
3254  }
3255
3256  // Figure out the type that should be used for this enum.
3257  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3258  QualType BestType;
3259  unsigned BestWidth;
3260
3261  if (NumNegativeBits) {
3262    // If there is a negative value, figure out the smallest integer type (of
3263    // int/long/longlong) that fits.
3264    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3265      BestType = Context.IntTy;
3266      BestWidth = IntWidth;
3267    } else {
3268      BestWidth = Context.Target.getLongWidth();
3269
3270      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3271        BestType = Context.LongTy;
3272      else {
3273        BestWidth = Context.Target.getLongLongWidth();
3274
3275        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3276          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3277        BestType = Context.LongLongTy;
3278      }
3279    }
3280  } else {
3281    // If there is no negative value, figure out which of uint, ulong, ulonglong
3282    // fits.
3283    if (NumPositiveBits <= IntWidth) {
3284      BestType = Context.UnsignedIntTy;
3285      BestWidth = IntWidth;
3286    } else if (NumPositiveBits <=
3287               (BestWidth = Context.Target.getLongWidth())) {
3288      BestType = Context.UnsignedLongTy;
3289    } else {
3290      BestWidth = Context.Target.getLongLongWidth();
3291      assert(NumPositiveBits <= BestWidth &&
3292             "How could an initializer get larger than ULL?");
3293      BestType = Context.UnsignedLongLongTy;
3294    }
3295  }
3296
3297  // Loop over all of the enumerator constants, changing their types to match
3298  // the type of the enum if needed.
3299  for (unsigned i = 0; i != NumElements; ++i) {
3300    EnumConstantDecl *ECD =
3301      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3302    if (!ECD) continue;  // Already issued a diagnostic.
3303
3304    // Standard C says the enumerators have int type, but we allow, as an
3305    // extension, the enumerators to be larger than int size.  If each
3306    // enumerator value fits in an int, type it as an int, otherwise type it the
3307    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3308    // that X has type 'int', not 'unsigned'.
3309    if (ECD->getType() == Context.IntTy) {
3310      // Make sure the init value is signed.
3311      llvm::APSInt IV = ECD->getInitVal();
3312      IV.setIsSigned(true);
3313      ECD->setInitVal(IV);
3314
3315      if (getLangOptions().CPlusPlus)
3316        // C++ [dcl.enum]p4: Following the closing brace of an
3317        // enum-specifier, each enumerator has the type of its
3318        // enumeration.
3319        ECD->setType(EnumType);
3320      continue;  // Already int type.
3321    }
3322
3323    // Determine whether the value fits into an int.
3324    llvm::APSInt InitVal = ECD->getInitVal();
3325    bool FitsInInt;
3326    if (InitVal.isUnsigned() || !InitVal.isNegative())
3327      FitsInInt = InitVal.getActiveBits() < IntWidth;
3328    else
3329      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3330
3331    // If it fits into an integer type, force it.  Otherwise force it to match
3332    // the enum decl type.
3333    QualType NewTy;
3334    unsigned NewWidth;
3335    bool NewSign;
3336    if (FitsInInt) {
3337      NewTy = Context.IntTy;
3338      NewWidth = IntWidth;
3339      NewSign = true;
3340    } else if (ECD->getType() == BestType) {
3341      // Already the right type!
3342      if (getLangOptions().CPlusPlus)
3343        // C++ [dcl.enum]p4: Following the closing brace of an
3344        // enum-specifier, each enumerator has the type of its
3345        // enumeration.
3346        ECD->setType(EnumType);
3347      continue;
3348    } else {
3349      NewTy = BestType;
3350      NewWidth = BestWidth;
3351      NewSign = BestType->isSignedIntegerType();
3352    }
3353
3354    // Adjust the APSInt value.
3355    InitVal.extOrTrunc(NewWidth);
3356    InitVal.setIsSigned(NewSign);
3357    ECD->setInitVal(InitVal);
3358
3359    // Adjust the Expr initializer and type.
3360    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3361                                          /*isLvalue=*/false));
3362    if (getLangOptions().CPlusPlus)
3363      // C++ [dcl.enum]p4: Following the closing brace of an
3364      // enum-specifier, each enumerator has the type of its
3365      // enumeration.
3366      ECD->setType(EnumType);
3367    else
3368      ECD->setType(NewTy);
3369  }
3370
3371  Enum->completeDefinition(Context, BestType);
3372  Consumer.HandleTagDeclDefinition(Enum);
3373}
3374
3375Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3376                                          ExprArg expr) {
3377  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3378
3379  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3380}
3381
3382
3383void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3384                           ExprTy *alignment, SourceLocation PragmaLoc,
3385                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3386  Expr *Alignment = static_cast<Expr *>(alignment);
3387
3388  // If specified then alignment must be a "small" power of two.
3389  unsigned AlignmentVal = 0;
3390  if (Alignment) {
3391    llvm::APSInt Val;
3392    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3393        !Val.isPowerOf2() ||
3394        Val.getZExtValue() > 16) {
3395      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3396      delete Alignment;
3397      return; // Ignore
3398    }
3399
3400    AlignmentVal = (unsigned) Val.getZExtValue();
3401  }
3402
3403  switch (Kind) {
3404  case Action::PPK_Default: // pack([n])
3405    PackContext.setAlignment(AlignmentVal);
3406    break;
3407
3408  case Action::PPK_Show: // pack(show)
3409    // Show the current alignment, making sure to show the right value
3410    // for the default.
3411    AlignmentVal = PackContext.getAlignment();
3412    // FIXME: This should come from the target.
3413    if (AlignmentVal == 0)
3414      AlignmentVal = 8;
3415    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3416    break;
3417
3418  case Action::PPK_Push: // pack(push [, id] [, [n])
3419    PackContext.push(Name);
3420    // Set the new alignment if specified.
3421    if (Alignment)
3422      PackContext.setAlignment(AlignmentVal);
3423    break;
3424
3425  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3426    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3427    // "#pragma pack(pop, identifier, n) is undefined"
3428    if (Alignment && Name)
3429      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3430
3431    // Do the pop.
3432    if (!PackContext.pop(Name)) {
3433      // If a name was specified then failure indicates the name
3434      // wasn't found. Otherwise failure indicates the stack was
3435      // empty.
3436      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3437        << (Name ? "no record matching name" : "stack empty");
3438
3439      // FIXME: Warn about popping named records as MSVC does.
3440    } else {
3441      // Pop succeeded, set the new alignment if specified.
3442      if (Alignment)
3443        PackContext.setAlignment(AlignmentVal);
3444    }
3445    break;
3446
3447  default:
3448    assert(0 && "Invalid #pragma pack kind.");
3449  }
3450}
3451
3452bool PragmaPackStack::pop(IdentifierInfo *Name) {
3453  if (Stack.empty())
3454    return false;
3455
3456  // If name is empty just pop top.
3457  if (!Name) {
3458    Alignment = Stack.back().first;
3459    Stack.pop_back();
3460    return true;
3461  }
3462
3463  // Otherwise, find the named record.
3464  for (unsigned i = Stack.size(); i != 0; ) {
3465    --i;
3466    if (Stack[i].second == Name) {
3467      // Found it, pop up to and including this record.
3468      Alignment = Stack[i].first;
3469      Stack.erase(Stack.begin() + i, Stack.end());
3470      return true;
3471    }
3472  }
3473
3474  return false;
3475}
3476