SemaDecl.cpp revision b7accd0f5690bdeb4bfa23380f33b0c38bfb4e52
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/CommentDiagnostic.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/EvaluatedExprVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/Template.h"
44#include "llvm/ADT/SmallString.h"
45#include "llvm/ADT/Triple.h"
46#include <algorithm>
47#include <cstring>
48#include <functional>
49using namespace clang;
50using namespace sema;
51
52Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
53  if (OwnedType) {
54    Decl *Group[2] = { OwnedType, Ptr };
55    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
56  }
57
58  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
59}
60
61namespace {
62
63class TypeNameValidatorCCC : public CorrectionCandidateCallback {
64 public:
65  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
66      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
67    WantExpressionKeywords = false;
68    WantCXXNamedCasts = false;
69    WantRemainingKeywords = false;
70  }
71
72  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
73    if (NamedDecl *ND = candidate.getCorrectionDecl())
74      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
75          (AllowInvalidDecl || !ND->isInvalidDecl());
76    else
77      return !WantClassName && candidate.isKeyword();
78  }
79
80 private:
81  bool AllowInvalidDecl;
82  bool WantClassName;
83};
84
85}
86
87/// \brief Determine whether the token kind starts a simple-type-specifier.
88bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
89  switch (Kind) {
90  // FIXME: Take into account the current language when deciding whether a
91  // token kind is a valid type specifier
92  case tok::kw_short:
93  case tok::kw_long:
94  case tok::kw___int64:
95  case tok::kw___int128:
96  case tok::kw_signed:
97  case tok::kw_unsigned:
98  case tok::kw_void:
99  case tok::kw_char:
100  case tok::kw_int:
101  case tok::kw_half:
102  case tok::kw_float:
103  case tok::kw_double:
104  case tok::kw_wchar_t:
105  case tok::kw_bool:
106  case tok::kw___underlying_type:
107    return true;
108
109  case tok::annot_typename:
110  case tok::kw_char16_t:
111  case tok::kw_char32_t:
112  case tok::kw_typeof:
113  case tok::annot_decltype:
114  case tok::kw_decltype:
115    return getLangOpts().CPlusPlus;
116
117  default:
118    break;
119  }
120
121  return false;
122}
123
124/// \brief If the identifier refers to a type name within this scope,
125/// return the declaration of that type.
126///
127/// This routine performs ordinary name lookup of the identifier II
128/// within the given scope, with optional C++ scope specifier SS, to
129/// determine whether the name refers to a type. If so, returns an
130/// opaque pointer (actually a QualType) corresponding to that
131/// type. Otherwise, returns NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          diagnoseTypo(Correction,
241                       PDiag(diag::err_unknown_type_or_class_name_suggest)
242                         << Result.getLookupName() << isClassName);
243          if (SS && NNS)
244            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
245          *CorrectedII = NewII;
246          return Ty;
247        }
248      }
249    }
250    // If typo correction failed or was not performed, fall through
251  case LookupResult::FoundOverloaded:
252  case LookupResult::FoundUnresolvedValue:
253    Result.suppressDiagnostics();
254    return ParsedType();
255
256  case LookupResult::Ambiguous:
257    // Recover from type-hiding ambiguities by hiding the type.  We'll
258    // do the lookup again when looking for an object, and we can
259    // diagnose the error then.  If we don't do this, then the error
260    // about hiding the type will be immediately followed by an error
261    // that only makes sense if the identifier was treated like a type.
262    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
263      Result.suppressDiagnostics();
264      return ParsedType();
265    }
266
267    // Look to see if we have a type anywhere in the list of results.
268    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
269         Res != ResEnd; ++Res) {
270      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
271        if (!IIDecl ||
272            (*Res)->getLocation().getRawEncoding() <
273              IIDecl->getLocation().getRawEncoding())
274          IIDecl = *Res;
275      }
276    }
277
278    if (!IIDecl) {
279      // None of the entities we found is a type, so there is no way
280      // to even assume that the result is a type. In this case, don't
281      // complain about the ambiguity. The parser will either try to
282      // perform this lookup again (e.g., as an object name), which
283      // will produce the ambiguity, or will complain that it expected
284      // a type name.
285      Result.suppressDiagnostics();
286      return ParsedType();
287    }
288
289    // We found a type within the ambiguous lookup; diagnose the
290    // ambiguity and then return that type. This might be the right
291    // answer, or it might not be, but it suppresses any attempt to
292    // perform the name lookup again.
293    break;
294
295  case LookupResult::Found:
296    IIDecl = Result.getFoundDecl();
297    break;
298  }
299
300  assert(IIDecl && "Didn't find decl");
301
302  QualType T;
303  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
304    DiagnoseUseOfDecl(IIDecl, NameLoc);
305
306    if (T.isNull())
307      T = Context.getTypeDeclType(TD);
308
309    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
310    // constructor or destructor name (in such a case, the scope specifier
311    // will be attached to the enclosing Expr or Decl node).
312    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
313      if (WantNontrivialTypeSourceInfo) {
314        // Construct a type with type-source information.
315        TypeLocBuilder Builder;
316        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
317
318        T = getElaboratedType(ETK_None, *SS, T);
319        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
320        ElabTL.setElaboratedKeywordLoc(SourceLocation());
321        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
322        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
323      } else {
324        T = getElaboratedType(ETK_None, *SS, T);
325      }
326    }
327  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
328    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
329    if (!HasTrailingDot)
330      T = Context.getObjCInterfaceType(IDecl);
331  }
332
333  if (T.isNull()) {
334    // If it's not plausibly a type, suppress diagnostics.
335    Result.suppressDiagnostics();
336    return ParsedType();
337  }
338  return ParsedType::make(T);
339}
340
341/// isTagName() - This method is called *for error recovery purposes only*
342/// to determine if the specified name is a valid tag name ("struct foo").  If
343/// so, this returns the TST for the tag corresponding to it (TST_enum,
344/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
345/// cases in C where the user forgot to specify the tag.
346DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
347  // Do a tag name lookup in this scope.
348  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
349  LookupName(R, S, false);
350  R.suppressDiagnostics();
351  if (R.getResultKind() == LookupResult::Found)
352    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
353      switch (TD->getTagKind()) {
354      case TTK_Struct: return DeclSpec::TST_struct;
355      case TTK_Interface: return DeclSpec::TST_interface;
356      case TTK_Union:  return DeclSpec::TST_union;
357      case TTK_Class:  return DeclSpec::TST_class;
358      case TTK_Enum:   return DeclSpec::TST_enum;
359      }
360    }
361
362  return DeclSpec::TST_unspecified;
363}
364
365/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
366/// if a CXXScopeSpec's type is equal to the type of one of the base classes
367/// then downgrade the missing typename error to a warning.
368/// This is needed for MSVC compatibility; Example:
369/// @code
370/// template<class T> class A {
371/// public:
372///   typedef int TYPE;
373/// };
374/// template<class T> class B : public A<T> {
375/// public:
376///   A<T>::TYPE a; // no typename required because A<T> is a base class.
377/// };
378/// @endcode
379bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
380  if (CurContext->isRecord()) {
381    const Type *Ty = SS->getScopeRep()->getAsType();
382
383    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
384    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
385          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
386      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
387        return true;
388    return S->isFunctionPrototypeScope();
389  }
390  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
391}
392
393bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
394                                   SourceLocation IILoc,
395                                   Scope *S,
396                                   CXXScopeSpec *SS,
397                                   ParsedType &SuggestedType) {
398  // We don't have anything to suggest (yet).
399  SuggestedType = ParsedType();
400
401  // There may have been a typo in the name of the type. Look up typo
402  // results, in case we have something that we can suggest.
403  TypeNameValidatorCCC Validator(false);
404  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
405                                             LookupOrdinaryName, S, SS,
406                                             Validator)) {
407    if (Corrected.isKeyword()) {
408      // We corrected to a keyword.
409      diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
410      II = Corrected.getCorrectionAsIdentifierInfo();
411    } else {
412      // We found a similarly-named type or interface; suggest that.
413      if (!SS || !SS->isSet()) {
414        diagnoseTypo(Corrected,
415                     PDiag(diag::err_unknown_typename_suggest) << II);
416      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
417        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
418        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
419                                II->getName().equals(CorrectedStr);
420        diagnoseTypo(Corrected,
421                     PDiag(diag::err_unknown_nested_typename_suggest)
422                       << II << DC << DroppedSpecifier << SS->getRange());
423      } else {
424        llvm_unreachable("could not have corrected a typo here");
425      }
426
427      CXXScopeSpec tmpSS;
428      if (Corrected.getCorrectionSpecifier())
429        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
430                          SourceRange(IILoc));
431      SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
432                                  IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
433                                  false, ParsedType(),
434                                  /*IsCtorOrDtorName=*/false,
435                                  /*NonTrivialTypeSourceInfo=*/true);
436    }
437    return true;
438  }
439
440  if (getLangOpts().CPlusPlus) {
441    // See if II is a class template that the user forgot to pass arguments to.
442    UnqualifiedId Name;
443    Name.setIdentifier(II, IILoc);
444    CXXScopeSpec EmptySS;
445    TemplateTy TemplateResult;
446    bool MemberOfUnknownSpecialization;
447    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
448                       Name, ParsedType(), true, TemplateResult,
449                       MemberOfUnknownSpecialization) == TNK_Type_template) {
450      TemplateName TplName = TemplateResult.get();
451      Diag(IILoc, diag::err_template_missing_args) << TplName;
452      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
453        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
454          << TplDecl->getTemplateParameters()->getSourceRange();
455      }
456      return true;
457    }
458  }
459
460  // FIXME: Should we move the logic that tries to recover from a missing tag
461  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
462
463  if (!SS || (!SS->isSet() && !SS->isInvalid()))
464    Diag(IILoc, diag::err_unknown_typename) << II;
465  else if (DeclContext *DC = computeDeclContext(*SS, false))
466    Diag(IILoc, diag::err_typename_nested_not_found)
467      << II << DC << SS->getRange();
468  else if (isDependentScopeSpecifier(*SS)) {
469    unsigned DiagID = diag::err_typename_missing;
470    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
471      DiagID = diag::warn_typename_missing;
472
473    Diag(SS->getRange().getBegin(), DiagID)
474      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
475      << SourceRange(SS->getRange().getBegin(), IILoc)
476      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
477    SuggestedType = ActOnTypenameType(S, SourceLocation(),
478                                      *SS, *II, IILoc).get();
479  } else {
480    assert(SS && SS->isInvalid() &&
481           "Invalid scope specifier has already been diagnosed");
482  }
483
484  return true;
485}
486
487/// \brief Determine whether the given result set contains either a type name
488/// or
489static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
490  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
491                       NextToken.is(tok::less);
492
493  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
494    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
495      return true;
496
497    if (CheckTemplate && isa<TemplateDecl>(*I))
498      return true;
499  }
500
501  return false;
502}
503
504static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
505                                    Scope *S, CXXScopeSpec &SS,
506                                    IdentifierInfo *&Name,
507                                    SourceLocation NameLoc) {
508  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
509  SemaRef.LookupParsedName(R, S, &SS);
510  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
511    const char *TagName = 0;
512    const char *FixItTagName = 0;
513    switch (Tag->getTagKind()) {
514      case TTK_Class:
515        TagName = "class";
516        FixItTagName = "class ";
517        break;
518
519      case TTK_Enum:
520        TagName = "enum";
521        FixItTagName = "enum ";
522        break;
523
524      case TTK_Struct:
525        TagName = "struct";
526        FixItTagName = "struct ";
527        break;
528
529      case TTK_Interface:
530        TagName = "__interface";
531        FixItTagName = "__interface ";
532        break;
533
534      case TTK_Union:
535        TagName = "union";
536        FixItTagName = "union ";
537        break;
538    }
539
540    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
541      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
542      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
543
544    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
545         I != IEnd; ++I)
546      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
547        << Name << TagName;
548
549    // Replace lookup results with just the tag decl.
550    Result.clear(Sema::LookupTagName);
551    SemaRef.LookupParsedName(Result, S, &SS);
552    return true;
553  }
554
555  return false;
556}
557
558/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
559static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
560                                  QualType T, SourceLocation NameLoc) {
561  ASTContext &Context = S.Context;
562
563  TypeLocBuilder Builder;
564  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
565
566  T = S.getElaboratedType(ETK_None, SS, T);
567  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
568  ElabTL.setElaboratedKeywordLoc(SourceLocation());
569  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
570  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
571}
572
573Sema::NameClassification Sema::ClassifyName(Scope *S,
574                                            CXXScopeSpec &SS,
575                                            IdentifierInfo *&Name,
576                                            SourceLocation NameLoc,
577                                            const Token &NextToken,
578                                            bool IsAddressOfOperand,
579                                            CorrectionCandidateCallback *CCC) {
580  DeclarationNameInfo NameInfo(Name, NameLoc);
581  ObjCMethodDecl *CurMethod = getCurMethodDecl();
582
583  if (NextToken.is(tok::coloncolon)) {
584    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
585                                QualType(), false, SS, 0, false);
586
587  }
588
589  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
590  LookupParsedName(Result, S, &SS, !CurMethod);
591
592  // Perform lookup for Objective-C instance variables (including automatically
593  // synthesized instance variables), if we're in an Objective-C method.
594  // FIXME: This lookup really, really needs to be folded in to the normal
595  // unqualified lookup mechanism.
596  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
597    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
598    if (E.get() || E.isInvalid())
599      return E;
600  }
601
602  bool SecondTry = false;
603  bool IsFilteredTemplateName = false;
604
605Corrected:
606  switch (Result.getResultKind()) {
607  case LookupResult::NotFound:
608    // If an unqualified-id is followed by a '(', then we have a function
609    // call.
610    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
611      // In C++, this is an ADL-only call.
612      // FIXME: Reference?
613      if (getLangOpts().CPlusPlus)
614        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
615
616      // C90 6.3.2.2:
617      //   If the expression that precedes the parenthesized argument list in a
618      //   function call consists solely of an identifier, and if no
619      //   declaration is visible for this identifier, the identifier is
620      //   implicitly declared exactly as if, in the innermost block containing
621      //   the function call, the declaration
622      //
623      //     extern int identifier ();
624      //
625      //   appeared.
626      //
627      // We also allow this in C99 as an extension.
628      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
629        Result.addDecl(D);
630        Result.resolveKind();
631        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
632      }
633    }
634
635    // In C, we first see whether there is a tag type by the same name, in
636    // which case it's likely that the user just forget to write "enum",
637    // "struct", or "union".
638    if (!getLangOpts().CPlusPlus && !SecondTry &&
639        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
640      break;
641    }
642
643    // Perform typo correction to determine if there is another name that is
644    // close to this name.
645    if (!SecondTry && CCC) {
646      SecondTry = true;
647      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
648                                                 Result.getLookupKind(), S,
649                                                 &SS, *CCC)) {
650        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
651        unsigned QualifiedDiag = diag::err_no_member_suggest;
652
653        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
654        NamedDecl *UnderlyingFirstDecl
655          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
656        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
657            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
658          UnqualifiedDiag = diag::err_no_template_suggest;
659          QualifiedDiag = diag::err_no_member_template_suggest;
660        } else if (UnderlyingFirstDecl &&
661                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
662                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
663                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
664          UnqualifiedDiag = diag::err_unknown_typename_suggest;
665          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
666        }
667
668        if (SS.isEmpty()) {
669          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
670        } else {// FIXME: is this even reachable? Test it.
671          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
672          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
673                                  Name->getName().equals(CorrectedStr);
674          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
675                                    << Name << computeDeclContext(SS, false)
676                                    << DroppedSpecifier << SS.getRange());
677        }
678
679        // Update the name, so that the caller has the new name.
680        Name = Corrected.getCorrectionAsIdentifierInfo();
681
682        // Typo correction corrected to a keyword.
683        if (Corrected.isKeyword())
684          return Name;
685
686        // Also update the LookupResult...
687        // FIXME: This should probably go away at some point
688        Result.clear();
689        Result.setLookupName(Corrected.getCorrection());
690        if (FirstDecl)
691          Result.addDecl(FirstDecl);
692
693        // If we found an Objective-C instance variable, let
694        // LookupInObjCMethod build the appropriate expression to
695        // reference the ivar.
696        // FIXME: This is a gross hack.
697        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
698          Result.clear();
699          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
700          return E;
701        }
702
703        goto Corrected;
704      }
705    }
706
707    // We failed to correct; just fall through and let the parser deal with it.
708    Result.suppressDiagnostics();
709    return NameClassification::Unknown();
710
711  case LookupResult::NotFoundInCurrentInstantiation: {
712    // We performed name lookup into the current instantiation, and there were
713    // dependent bases, so we treat this result the same way as any other
714    // dependent nested-name-specifier.
715
716    // C++ [temp.res]p2:
717    //   A name used in a template declaration or definition and that is
718    //   dependent on a template-parameter is assumed not to name a type
719    //   unless the applicable name lookup finds a type name or the name is
720    //   qualified by the keyword typename.
721    //
722    // FIXME: If the next token is '<', we might want to ask the parser to
723    // perform some heroics to see if we actually have a
724    // template-argument-list, which would indicate a missing 'template'
725    // keyword here.
726    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
727                                      NameInfo, IsAddressOfOperand,
728                                      /*TemplateArgs=*/0);
729  }
730
731  case LookupResult::Found:
732  case LookupResult::FoundOverloaded:
733  case LookupResult::FoundUnresolvedValue:
734    break;
735
736  case LookupResult::Ambiguous:
737    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
738        hasAnyAcceptableTemplateNames(Result)) {
739      // C++ [temp.local]p3:
740      //   A lookup that finds an injected-class-name (10.2) can result in an
741      //   ambiguity in certain cases (for example, if it is found in more than
742      //   one base class). If all of the injected-class-names that are found
743      //   refer to specializations of the same class template, and if the name
744      //   is followed by a template-argument-list, the reference refers to the
745      //   class template itself and not a specialization thereof, and is not
746      //   ambiguous.
747      //
748      // This filtering can make an ambiguous result into an unambiguous one,
749      // so try again after filtering out template names.
750      FilterAcceptableTemplateNames(Result);
751      if (!Result.isAmbiguous()) {
752        IsFilteredTemplateName = true;
753        break;
754      }
755    }
756
757    // Diagnose the ambiguity and return an error.
758    return NameClassification::Error();
759  }
760
761  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
762      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
763    // C++ [temp.names]p3:
764    //   After name lookup (3.4) finds that a name is a template-name or that
765    //   an operator-function-id or a literal- operator-id refers to a set of
766    //   overloaded functions any member of which is a function template if
767    //   this is followed by a <, the < is always taken as the delimiter of a
768    //   template-argument-list and never as the less-than operator.
769    if (!IsFilteredTemplateName)
770      FilterAcceptableTemplateNames(Result);
771
772    if (!Result.empty()) {
773      bool IsFunctionTemplate;
774      bool IsVarTemplate;
775      TemplateName Template;
776      if (Result.end() - Result.begin() > 1) {
777        IsFunctionTemplate = true;
778        Template = Context.getOverloadedTemplateName(Result.begin(),
779                                                     Result.end());
780      } else {
781        TemplateDecl *TD
782          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
783        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
784        IsVarTemplate = isa<VarTemplateDecl>(TD);
785
786        if (SS.isSet() && !SS.isInvalid())
787          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
788                                                    /*TemplateKeyword=*/false,
789                                                      TD);
790        else
791          Template = TemplateName(TD);
792      }
793
794      if (IsFunctionTemplate) {
795        // Function templates always go through overload resolution, at which
796        // point we'll perform the various checks (e.g., accessibility) we need
797        // to based on which function we selected.
798        Result.suppressDiagnostics();
799
800        return NameClassification::FunctionTemplate(Template);
801      }
802
803      return IsVarTemplate ? NameClassification::VarTemplate(Template)
804                           : NameClassification::TypeTemplate(Template);
805    }
806  }
807
808  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
809  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
810    DiagnoseUseOfDecl(Type, NameLoc);
811    QualType T = Context.getTypeDeclType(Type);
812    if (SS.isNotEmpty())
813      return buildNestedType(*this, SS, T, NameLoc);
814    return ParsedType::make(T);
815  }
816
817  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
818  if (!Class) {
819    // FIXME: It's unfortunate that we don't have a Type node for handling this.
820    if (ObjCCompatibleAliasDecl *Alias
821                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
822      Class = Alias->getClassInterface();
823  }
824
825  if (Class) {
826    DiagnoseUseOfDecl(Class, NameLoc);
827
828    if (NextToken.is(tok::period)) {
829      // Interface. <something> is parsed as a property reference expression.
830      // Just return "unknown" as a fall-through for now.
831      Result.suppressDiagnostics();
832      return NameClassification::Unknown();
833    }
834
835    QualType T = Context.getObjCInterfaceType(Class);
836    return ParsedType::make(T);
837  }
838
839  // We can have a type template here if we're classifying a template argument.
840  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
841    return NameClassification::TypeTemplate(
842        TemplateName(cast<TemplateDecl>(FirstDecl)));
843
844  // Check for a tag type hidden by a non-type decl in a few cases where it
845  // seems likely a type is wanted instead of the non-type that was found.
846  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
847  if ((NextToken.is(tok::identifier) ||
848       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
849      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
850    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
851    DiagnoseUseOfDecl(Type, NameLoc);
852    QualType T = Context.getTypeDeclType(Type);
853    if (SS.isNotEmpty())
854      return buildNestedType(*this, SS, T, NameLoc);
855    return ParsedType::make(T);
856  }
857
858  if (FirstDecl->isCXXClassMember())
859    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
860
861  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
862  return BuildDeclarationNameExpr(SS, Result, ADL);
863}
864
865// Determines the context to return to after temporarily entering a
866// context.  This depends in an unnecessarily complicated way on the
867// exact ordering of callbacks from the parser.
868DeclContext *Sema::getContainingDC(DeclContext *DC) {
869
870  // Functions defined inline within classes aren't parsed until we've
871  // finished parsing the top-level class, so the top-level class is
872  // the context we'll need to return to.
873  // A Lambda call operator whose parent is a class must not be treated
874  // as an inline member function.  A Lambda can be used legally
875  // either as an in-class member initializer or a default argument.  These
876  // are parsed once the class has been marked complete and so the containing
877  // context would be the nested class (when the lambda is defined in one);
878  // If the class is not complete, then the lambda is being used in an
879  // ill-formed fashion (such as to specify the width of a bit-field, or
880  // in an array-bound) - in which case we still want to return the
881  // lexically containing DC (which could be a nested class).
882  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
883    DC = DC->getLexicalParent();
884
885    // A function not defined within a class will always return to its
886    // lexical context.
887    if (!isa<CXXRecordDecl>(DC))
888      return DC;
889
890    // A C++ inline method/friend is parsed *after* the topmost class
891    // it was declared in is fully parsed ("complete");  the topmost
892    // class is the context we need to return to.
893    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
894      DC = RD;
895
896    // Return the declaration context of the topmost class the inline method is
897    // declared in.
898    return DC;
899  }
900
901  return DC->getLexicalParent();
902}
903
904void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
905  assert(getContainingDC(DC) == CurContext &&
906      "The next DeclContext should be lexically contained in the current one.");
907  CurContext = DC;
908  S->setEntity(DC);
909}
910
911void Sema::PopDeclContext() {
912  assert(CurContext && "DeclContext imbalance!");
913
914  CurContext = getContainingDC(CurContext);
915  assert(CurContext && "Popped translation unit!");
916}
917
918/// EnterDeclaratorContext - Used when we must lookup names in the context
919/// of a declarator's nested name specifier.
920///
921void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
922  // C++0x [basic.lookup.unqual]p13:
923  //   A name used in the definition of a static data member of class
924  //   X (after the qualified-id of the static member) is looked up as
925  //   if the name was used in a member function of X.
926  // C++0x [basic.lookup.unqual]p14:
927  //   If a variable member of a namespace is defined outside of the
928  //   scope of its namespace then any name used in the definition of
929  //   the variable member (after the declarator-id) is looked up as
930  //   if the definition of the variable member occurred in its
931  //   namespace.
932  // Both of these imply that we should push a scope whose context
933  // is the semantic context of the declaration.  We can't use
934  // PushDeclContext here because that context is not necessarily
935  // lexically contained in the current context.  Fortunately,
936  // the containing scope should have the appropriate information.
937
938  assert(!S->getEntity() && "scope already has entity");
939
940#ifndef NDEBUG
941  Scope *Ancestor = S->getParent();
942  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
943  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
944#endif
945
946  CurContext = DC;
947  S->setEntity(DC);
948}
949
950void Sema::ExitDeclaratorContext(Scope *S) {
951  assert(S->getEntity() == CurContext && "Context imbalance!");
952
953  // Switch back to the lexical context.  The safety of this is
954  // enforced by an assert in EnterDeclaratorContext.
955  Scope *Ancestor = S->getParent();
956  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
957  CurContext = Ancestor->getEntity();
958
959  // We don't need to do anything with the scope, which is going to
960  // disappear.
961}
962
963
964void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
965  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
966  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
967    // We assume that the caller has already called
968    // ActOnReenterTemplateScope
969    FD = TFD->getTemplatedDecl();
970  }
971  if (!FD)
972    return;
973
974  // Same implementation as PushDeclContext, but enters the context
975  // from the lexical parent, rather than the top-level class.
976  assert(CurContext == FD->getLexicalParent() &&
977    "The next DeclContext should be lexically contained in the current one.");
978  CurContext = FD;
979  S->setEntity(CurContext);
980
981  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
982    ParmVarDecl *Param = FD->getParamDecl(P);
983    // If the parameter has an identifier, then add it to the scope
984    if (Param->getIdentifier()) {
985      S->AddDecl(Param);
986      IdResolver.AddDecl(Param);
987    }
988  }
989}
990
991
992void Sema::ActOnExitFunctionContext() {
993  // Same implementation as PopDeclContext, but returns to the lexical parent,
994  // rather than the top-level class.
995  assert(CurContext && "DeclContext imbalance!");
996  CurContext = CurContext->getLexicalParent();
997  assert(CurContext && "Popped translation unit!");
998}
999
1000
1001/// \brief Determine whether we allow overloading of the function
1002/// PrevDecl with another declaration.
1003///
1004/// This routine determines whether overloading is possible, not
1005/// whether some new function is actually an overload. It will return
1006/// true in C++ (where we can always provide overloads) or, as an
1007/// extension, in C when the previous function is already an
1008/// overloaded function declaration or has the "overloadable"
1009/// attribute.
1010static bool AllowOverloadingOfFunction(LookupResult &Previous,
1011                                       ASTContext &Context) {
1012  if (Context.getLangOpts().CPlusPlus)
1013    return true;
1014
1015  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1016    return true;
1017
1018  return (Previous.getResultKind() == LookupResult::Found
1019          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1020}
1021
1022/// Add this decl to the scope shadowed decl chains.
1023void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1024  // Move up the scope chain until we find the nearest enclosing
1025  // non-transparent context. The declaration will be introduced into this
1026  // scope.
1027  while (S->getEntity() && S->getEntity()->isTransparentContext())
1028    S = S->getParent();
1029
1030  // Add scoped declarations into their context, so that they can be
1031  // found later. Declarations without a context won't be inserted
1032  // into any context.
1033  if (AddToContext)
1034    CurContext->addDecl(D);
1035
1036  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1037  // are function-local declarations.
1038  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1039      !D->getDeclContext()->getRedeclContext()->Equals(
1040        D->getLexicalDeclContext()->getRedeclContext()) &&
1041      !D->getLexicalDeclContext()->isFunctionOrMethod())
1042    return;
1043
1044  // Template instantiations should also not be pushed into scope.
1045  if (isa<FunctionDecl>(D) &&
1046      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1047    return;
1048
1049  // If this replaces anything in the current scope,
1050  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1051                               IEnd = IdResolver.end();
1052  for (; I != IEnd; ++I) {
1053    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1054      S->RemoveDecl(*I);
1055      IdResolver.RemoveDecl(*I);
1056
1057      // Should only need to replace one decl.
1058      break;
1059    }
1060  }
1061
1062  S->AddDecl(D);
1063
1064  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1065    // Implicitly-generated labels may end up getting generated in an order that
1066    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1067    // the label at the appropriate place in the identifier chain.
1068    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1069      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1070      if (IDC == CurContext) {
1071        if (!S->isDeclScope(*I))
1072          continue;
1073      } else if (IDC->Encloses(CurContext))
1074        break;
1075    }
1076
1077    IdResolver.InsertDeclAfter(I, D);
1078  } else {
1079    IdResolver.AddDecl(D);
1080  }
1081}
1082
1083void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1084  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1085    TUScope->AddDecl(D);
1086}
1087
1088bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1089                         bool ExplicitInstantiationOrSpecialization) {
1090  return IdResolver.isDeclInScope(D, Ctx, S,
1091                                  ExplicitInstantiationOrSpecialization);
1092}
1093
1094Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1095  DeclContext *TargetDC = DC->getPrimaryContext();
1096  do {
1097    if (DeclContext *ScopeDC = S->getEntity())
1098      if (ScopeDC->getPrimaryContext() == TargetDC)
1099        return S;
1100  } while ((S = S->getParent()));
1101
1102  return 0;
1103}
1104
1105static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1106                                            DeclContext*,
1107                                            ASTContext&);
1108
1109/// Filters out lookup results that don't fall within the given scope
1110/// as determined by isDeclInScope.
1111void Sema::FilterLookupForScope(LookupResult &R,
1112                                DeclContext *Ctx, Scope *S,
1113                                bool ConsiderLinkage,
1114                                bool ExplicitInstantiationOrSpecialization) {
1115  LookupResult::Filter F = R.makeFilter();
1116  while (F.hasNext()) {
1117    NamedDecl *D = F.next();
1118
1119    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1120      continue;
1121
1122    if (ConsiderLinkage &&
1123        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1124      continue;
1125
1126    F.erase();
1127  }
1128
1129  F.done();
1130}
1131
1132static bool isUsingDecl(NamedDecl *D) {
1133  return isa<UsingShadowDecl>(D) ||
1134         isa<UnresolvedUsingTypenameDecl>(D) ||
1135         isa<UnresolvedUsingValueDecl>(D);
1136}
1137
1138/// Removes using shadow declarations from the lookup results.
1139static void RemoveUsingDecls(LookupResult &R) {
1140  LookupResult::Filter F = R.makeFilter();
1141  while (F.hasNext())
1142    if (isUsingDecl(F.next()))
1143      F.erase();
1144
1145  F.done();
1146}
1147
1148/// \brief Check for this common pattern:
1149/// @code
1150/// class S {
1151///   S(const S&); // DO NOT IMPLEMENT
1152///   void operator=(const S&); // DO NOT IMPLEMENT
1153/// };
1154/// @endcode
1155static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1156  // FIXME: Should check for private access too but access is set after we get
1157  // the decl here.
1158  if (D->doesThisDeclarationHaveABody())
1159    return false;
1160
1161  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1162    return CD->isCopyConstructor();
1163  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1164    return Method->isCopyAssignmentOperator();
1165  return false;
1166}
1167
1168// We need this to handle
1169//
1170// typedef struct {
1171//   void *foo() { return 0; }
1172// } A;
1173//
1174// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1175// for example. If 'A', foo will have external linkage. If we have '*A',
1176// foo will have no linkage. Since we can't know untill we get to the end
1177// of the typedef, this function finds out if D might have non external linkage.
1178// Callers should verify at the end of the TU if it D has external linkage or
1179// not.
1180bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1181  const DeclContext *DC = D->getDeclContext();
1182  while (!DC->isTranslationUnit()) {
1183    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1184      if (!RD->hasNameForLinkage())
1185        return true;
1186    }
1187    DC = DC->getParent();
1188  }
1189
1190  return !D->isExternallyVisible();
1191}
1192
1193// FIXME: This needs to be refactored; some other isInMainFile users want
1194// these semantics.
1195static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1196  if (S.TUKind != TU_Complete)
1197    return false;
1198  return S.SourceMgr.isInMainFile(Loc);
1199}
1200
1201bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1202  assert(D);
1203
1204  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1205    return false;
1206
1207  // Ignore class templates.
1208  if (D->getDeclContext()->isDependentContext() ||
1209      D->getLexicalDeclContext()->isDependentContext())
1210    return false;
1211
1212  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1213    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1214      return false;
1215
1216    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1217      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1218        return false;
1219    } else {
1220      // 'static inline' functions are defined in headers; don't warn.
1221      if (FD->isInlineSpecified() &&
1222          !isMainFileLoc(*this, FD->getLocation()))
1223        return false;
1224    }
1225
1226    if (FD->doesThisDeclarationHaveABody() &&
1227        Context.DeclMustBeEmitted(FD))
1228      return false;
1229  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1230    // Constants and utility variables are defined in headers with internal
1231    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1232    // like "inline".)
1233    if (!isMainFileLoc(*this, VD->getLocation()))
1234      return false;
1235
1236    if (Context.DeclMustBeEmitted(VD))
1237      return false;
1238
1239    if (VD->isStaticDataMember() &&
1240        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1241      return false;
1242  } else {
1243    return false;
1244  }
1245
1246  // Only warn for unused decls internal to the translation unit.
1247  return mightHaveNonExternalLinkage(D);
1248}
1249
1250void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1251  if (!D)
1252    return;
1253
1254  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1255    const FunctionDecl *First = FD->getFirstDecl();
1256    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1257      return; // First should already be in the vector.
1258  }
1259
1260  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1261    const VarDecl *First = VD->getFirstDecl();
1262    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1263      return; // First should already be in the vector.
1264  }
1265
1266  if (ShouldWarnIfUnusedFileScopedDecl(D))
1267    UnusedFileScopedDecls.push_back(D);
1268}
1269
1270static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1271  if (D->isInvalidDecl())
1272    return false;
1273
1274  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1275    return false;
1276
1277  if (isa<LabelDecl>(D))
1278    return true;
1279
1280  // White-list anything that isn't a local variable.
1281  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1282      !D->getDeclContext()->isFunctionOrMethod())
1283    return false;
1284
1285  // Types of valid local variables should be complete, so this should succeed.
1286  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1287
1288    // White-list anything with an __attribute__((unused)) type.
1289    QualType Ty = VD->getType();
1290
1291    // Only look at the outermost level of typedef.
1292    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1293      if (TT->getDecl()->hasAttr<UnusedAttr>())
1294        return false;
1295    }
1296
1297    // If we failed to complete the type for some reason, or if the type is
1298    // dependent, don't diagnose the variable.
1299    if (Ty->isIncompleteType() || Ty->isDependentType())
1300      return false;
1301
1302    if (const TagType *TT = Ty->getAs<TagType>()) {
1303      const TagDecl *Tag = TT->getDecl();
1304      if (Tag->hasAttr<UnusedAttr>())
1305        return false;
1306
1307      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1308        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1309          return false;
1310
1311        if (const Expr *Init = VD->getInit()) {
1312          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1313            Init = Cleanups->getSubExpr();
1314          const CXXConstructExpr *Construct =
1315            dyn_cast<CXXConstructExpr>(Init);
1316          if (Construct && !Construct->isElidable()) {
1317            CXXConstructorDecl *CD = Construct->getConstructor();
1318            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1319              return false;
1320          }
1321        }
1322      }
1323    }
1324
1325    // TODO: __attribute__((unused)) templates?
1326  }
1327
1328  return true;
1329}
1330
1331static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1332                                     FixItHint &Hint) {
1333  if (isa<LabelDecl>(D)) {
1334    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1335                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1336    if (AfterColon.isInvalid())
1337      return;
1338    Hint = FixItHint::CreateRemoval(CharSourceRange::
1339                                    getCharRange(D->getLocStart(), AfterColon));
1340  }
1341  return;
1342}
1343
1344/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1345/// unless they are marked attr(unused).
1346void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1347  FixItHint Hint;
1348  if (!ShouldDiagnoseUnusedDecl(D))
1349    return;
1350
1351  GenerateFixForUnusedDecl(D, Context, Hint);
1352
1353  unsigned DiagID;
1354  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1355    DiagID = diag::warn_unused_exception_param;
1356  else if (isa<LabelDecl>(D))
1357    DiagID = diag::warn_unused_label;
1358  else
1359    DiagID = diag::warn_unused_variable;
1360
1361  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1362}
1363
1364static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1365  // Verify that we have no forward references left.  If so, there was a goto
1366  // or address of a label taken, but no definition of it.  Label fwd
1367  // definitions are indicated with a null substmt.
1368  if (L->getStmt() == 0)
1369    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1370}
1371
1372void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1373  if (S->decl_empty()) return;
1374  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1375         "Scope shouldn't contain decls!");
1376
1377  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1378       I != E; ++I) {
1379    Decl *TmpD = (*I);
1380    assert(TmpD && "This decl didn't get pushed??");
1381
1382    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1383    NamedDecl *D = cast<NamedDecl>(TmpD);
1384
1385    if (!D->getDeclName()) continue;
1386
1387    // Diagnose unused variables in this scope.
1388    if (!S->hasUnrecoverableErrorOccurred())
1389      DiagnoseUnusedDecl(D);
1390
1391    // If this was a forward reference to a label, verify it was defined.
1392    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1393      CheckPoppedLabel(LD, *this);
1394
1395    // Remove this name from our lexical scope.
1396    IdResolver.RemoveDecl(D);
1397  }
1398  DiagnoseUnusedBackingIvarInAccessor(S);
1399}
1400
1401void Sema::ActOnStartFunctionDeclarator() {
1402  ++InFunctionDeclarator;
1403}
1404
1405void Sema::ActOnEndFunctionDeclarator() {
1406  assert(InFunctionDeclarator);
1407  --InFunctionDeclarator;
1408}
1409
1410/// \brief Look for an Objective-C class in the translation unit.
1411///
1412/// \param Id The name of the Objective-C class we're looking for. If
1413/// typo-correction fixes this name, the Id will be updated
1414/// to the fixed name.
1415///
1416/// \param IdLoc The location of the name in the translation unit.
1417///
1418/// \param DoTypoCorrection If true, this routine will attempt typo correction
1419/// if there is no class with the given name.
1420///
1421/// \returns The declaration of the named Objective-C class, or NULL if the
1422/// class could not be found.
1423ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1424                                              SourceLocation IdLoc,
1425                                              bool DoTypoCorrection) {
1426  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1427  // creation from this context.
1428  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1429
1430  if (!IDecl && DoTypoCorrection) {
1431    // Perform typo correction at the given location, but only if we
1432    // find an Objective-C class name.
1433    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1434    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1435                                       LookupOrdinaryName, TUScope, NULL,
1436                                       Validator)) {
1437      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1438      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1439      Id = IDecl->getIdentifier();
1440    }
1441  }
1442  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1443  // This routine must always return a class definition, if any.
1444  if (Def && Def->getDefinition())
1445      Def = Def->getDefinition();
1446  return Def;
1447}
1448
1449/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1450/// from S, where a non-field would be declared. This routine copes
1451/// with the difference between C and C++ scoping rules in structs and
1452/// unions. For example, the following code is well-formed in C but
1453/// ill-formed in C++:
1454/// @code
1455/// struct S6 {
1456///   enum { BAR } e;
1457/// };
1458///
1459/// void test_S6() {
1460///   struct S6 a;
1461///   a.e = BAR;
1462/// }
1463/// @endcode
1464/// For the declaration of BAR, this routine will return a different
1465/// scope. The scope S will be the scope of the unnamed enumeration
1466/// within S6. In C++, this routine will return the scope associated
1467/// with S6, because the enumeration's scope is a transparent
1468/// context but structures can contain non-field names. In C, this
1469/// routine will return the translation unit scope, since the
1470/// enumeration's scope is a transparent context and structures cannot
1471/// contain non-field names.
1472Scope *Sema::getNonFieldDeclScope(Scope *S) {
1473  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1474         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1475         (S->isClassScope() && !getLangOpts().CPlusPlus))
1476    S = S->getParent();
1477  return S;
1478}
1479
1480/// \brief Looks up the declaration of "struct objc_super" and
1481/// saves it for later use in building builtin declaration of
1482/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1483/// pre-existing declaration exists no action takes place.
1484static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1485                                        IdentifierInfo *II) {
1486  if (!II->isStr("objc_msgSendSuper"))
1487    return;
1488  ASTContext &Context = ThisSema.Context;
1489
1490  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1491                      SourceLocation(), Sema::LookupTagName);
1492  ThisSema.LookupName(Result, S);
1493  if (Result.getResultKind() == LookupResult::Found)
1494    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1495      Context.setObjCSuperType(Context.getTagDeclType(TD));
1496}
1497
1498/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1499/// file scope.  lazily create a decl for it. ForRedeclaration is true
1500/// if we're creating this built-in in anticipation of redeclaring the
1501/// built-in.
1502NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1503                                     Scope *S, bool ForRedeclaration,
1504                                     SourceLocation Loc) {
1505  LookupPredefedObjCSuperType(*this, S, II);
1506
1507  Builtin::ID BID = (Builtin::ID)bid;
1508
1509  ASTContext::GetBuiltinTypeError Error;
1510  QualType R = Context.GetBuiltinType(BID, Error);
1511  switch (Error) {
1512  case ASTContext::GE_None:
1513    // Okay
1514    break;
1515
1516  case ASTContext::GE_Missing_stdio:
1517    if (ForRedeclaration)
1518      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1519        << Context.BuiltinInfo.GetName(BID);
1520    return 0;
1521
1522  case ASTContext::GE_Missing_setjmp:
1523    if (ForRedeclaration)
1524      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1525        << Context.BuiltinInfo.GetName(BID);
1526    return 0;
1527
1528  case ASTContext::GE_Missing_ucontext:
1529    if (ForRedeclaration)
1530      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1531        << Context.BuiltinInfo.GetName(BID);
1532    return 0;
1533  }
1534
1535  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1536    Diag(Loc, diag::ext_implicit_lib_function_decl)
1537      << Context.BuiltinInfo.GetName(BID)
1538      << R;
1539    if (Context.BuiltinInfo.getHeaderName(BID) &&
1540        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1541          != DiagnosticsEngine::Ignored)
1542      Diag(Loc, diag::note_please_include_header)
1543        << Context.BuiltinInfo.getHeaderName(BID)
1544        << Context.BuiltinInfo.GetName(BID);
1545  }
1546
1547  DeclContext *Parent = Context.getTranslationUnitDecl();
1548  if (getLangOpts().CPlusPlus) {
1549    LinkageSpecDecl *CLinkageDecl =
1550        LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1551                                LinkageSpecDecl::lang_c, false);
1552    Parent->addDecl(CLinkageDecl);
1553    Parent = CLinkageDecl;
1554  }
1555
1556  FunctionDecl *New = FunctionDecl::Create(Context,
1557                                           Parent,
1558                                           Loc, Loc, II, R, /*TInfo=*/0,
1559                                           SC_Extern,
1560                                           false,
1561                                           /*hasPrototype=*/true);
1562  New->setImplicit();
1563
1564  // Create Decl objects for each parameter, adding them to the
1565  // FunctionDecl.
1566  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1567    SmallVector<ParmVarDecl*, 16> Params;
1568    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1569      ParmVarDecl *parm =
1570        ParmVarDecl::Create(Context, New, SourceLocation(),
1571                            SourceLocation(), 0,
1572                            FT->getArgType(i), /*TInfo=*/0,
1573                            SC_None, 0);
1574      parm->setScopeInfo(0, i);
1575      Params.push_back(parm);
1576    }
1577    New->setParams(Params);
1578  }
1579
1580  AddKnownFunctionAttributes(New);
1581  RegisterLocallyScopedExternCDecl(New, S);
1582
1583  // TUScope is the translation-unit scope to insert this function into.
1584  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1585  // relate Scopes to DeclContexts, and probably eliminate CurContext
1586  // entirely, but we're not there yet.
1587  DeclContext *SavedContext = CurContext;
1588  CurContext = Parent;
1589  PushOnScopeChains(New, TUScope);
1590  CurContext = SavedContext;
1591  return New;
1592}
1593
1594/// \brief Filter out any previous declarations that the given declaration
1595/// should not consider because they are not permitted to conflict, e.g.,
1596/// because they come from hidden sub-modules and do not refer to the same
1597/// entity.
1598static void filterNonConflictingPreviousDecls(ASTContext &context,
1599                                              NamedDecl *decl,
1600                                              LookupResult &previous){
1601  // This is only interesting when modules are enabled.
1602  if (!context.getLangOpts().Modules)
1603    return;
1604
1605  // Empty sets are uninteresting.
1606  if (previous.empty())
1607    return;
1608
1609  LookupResult::Filter filter = previous.makeFilter();
1610  while (filter.hasNext()) {
1611    NamedDecl *old = filter.next();
1612
1613    // Non-hidden declarations are never ignored.
1614    if (!old->isHidden())
1615      continue;
1616
1617    if (!old->isExternallyVisible())
1618      filter.erase();
1619  }
1620
1621  filter.done();
1622}
1623
1624bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1625  QualType OldType;
1626  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1627    OldType = OldTypedef->getUnderlyingType();
1628  else
1629    OldType = Context.getTypeDeclType(Old);
1630  QualType NewType = New->getUnderlyingType();
1631
1632  if (NewType->isVariablyModifiedType()) {
1633    // Must not redefine a typedef with a variably-modified type.
1634    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1635    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1636      << Kind << NewType;
1637    if (Old->getLocation().isValid())
1638      Diag(Old->getLocation(), diag::note_previous_definition);
1639    New->setInvalidDecl();
1640    return true;
1641  }
1642
1643  if (OldType != NewType &&
1644      !OldType->isDependentType() &&
1645      !NewType->isDependentType() &&
1646      !Context.hasSameType(OldType, NewType)) {
1647    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1649      << Kind << NewType << OldType;
1650    if (Old->getLocation().isValid())
1651      Diag(Old->getLocation(), diag::note_previous_definition);
1652    New->setInvalidDecl();
1653    return true;
1654  }
1655  return false;
1656}
1657
1658/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1659/// same name and scope as a previous declaration 'Old'.  Figure out
1660/// how to resolve this situation, merging decls or emitting
1661/// diagnostics as appropriate. If there was an error, set New to be invalid.
1662///
1663void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1664  // If the new decl is known invalid already, don't bother doing any
1665  // merging checks.
1666  if (New->isInvalidDecl()) return;
1667
1668  // Allow multiple definitions for ObjC built-in typedefs.
1669  // FIXME: Verify the underlying types are equivalent!
1670  if (getLangOpts().ObjC1) {
1671    const IdentifierInfo *TypeID = New->getIdentifier();
1672    switch (TypeID->getLength()) {
1673    default: break;
1674    case 2:
1675      {
1676        if (!TypeID->isStr("id"))
1677          break;
1678        QualType T = New->getUnderlyingType();
1679        if (!T->isPointerType())
1680          break;
1681        if (!T->isVoidPointerType()) {
1682          QualType PT = T->getAs<PointerType>()->getPointeeType();
1683          if (!PT->isStructureType())
1684            break;
1685        }
1686        Context.setObjCIdRedefinitionType(T);
1687        // Install the built-in type for 'id', ignoring the current definition.
1688        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1689        return;
1690      }
1691    case 5:
1692      if (!TypeID->isStr("Class"))
1693        break;
1694      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1695      // Install the built-in type for 'Class', ignoring the current definition.
1696      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1697      return;
1698    case 3:
1699      if (!TypeID->isStr("SEL"))
1700        break;
1701      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1702      // Install the built-in type for 'SEL', ignoring the current definition.
1703      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1704      return;
1705    }
1706    // Fall through - the typedef name was not a builtin type.
1707  }
1708
1709  // Verify the old decl was also a type.
1710  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1711  if (!Old) {
1712    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1713      << New->getDeclName();
1714
1715    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1716    if (OldD->getLocation().isValid())
1717      Diag(OldD->getLocation(), diag::note_previous_definition);
1718
1719    return New->setInvalidDecl();
1720  }
1721
1722  // If the old declaration is invalid, just give up here.
1723  if (Old->isInvalidDecl())
1724    return New->setInvalidDecl();
1725
1726  // If the typedef types are not identical, reject them in all languages and
1727  // with any extensions enabled.
1728  if (isIncompatibleTypedef(Old, New))
1729    return;
1730
1731  // The types match.  Link up the redeclaration chain and merge attributes if
1732  // the old declaration was a typedef.
1733  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1734    New->setPreviousDecl(Typedef);
1735    mergeDeclAttributes(New, Old);
1736  }
1737
1738  if (getLangOpts().MicrosoftExt)
1739    return;
1740
1741  if (getLangOpts().CPlusPlus) {
1742    // C++ [dcl.typedef]p2:
1743    //   In a given non-class scope, a typedef specifier can be used to
1744    //   redefine the name of any type declared in that scope to refer
1745    //   to the type to which it already refers.
1746    if (!isa<CXXRecordDecl>(CurContext))
1747      return;
1748
1749    // C++0x [dcl.typedef]p4:
1750    //   In a given class scope, a typedef specifier can be used to redefine
1751    //   any class-name declared in that scope that is not also a typedef-name
1752    //   to refer to the type to which it already refers.
1753    //
1754    // This wording came in via DR424, which was a correction to the
1755    // wording in DR56, which accidentally banned code like:
1756    //
1757    //   struct S {
1758    //     typedef struct A { } A;
1759    //   };
1760    //
1761    // in the C++03 standard. We implement the C++0x semantics, which
1762    // allow the above but disallow
1763    //
1764    //   struct S {
1765    //     typedef int I;
1766    //     typedef int I;
1767    //   };
1768    //
1769    // since that was the intent of DR56.
1770    if (!isa<TypedefNameDecl>(Old))
1771      return;
1772
1773    Diag(New->getLocation(), diag::err_redefinition)
1774      << New->getDeclName();
1775    Diag(Old->getLocation(), diag::note_previous_definition);
1776    return New->setInvalidDecl();
1777  }
1778
1779  // Modules always permit redefinition of typedefs, as does C11.
1780  if (getLangOpts().Modules || getLangOpts().C11)
1781    return;
1782
1783  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1784  // is normally mapped to an error, but can be controlled with
1785  // -Wtypedef-redefinition.  If either the original or the redefinition is
1786  // in a system header, don't emit this for compatibility with GCC.
1787  if (getDiagnostics().getSuppressSystemWarnings() &&
1788      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1789       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1790    return;
1791
1792  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1793    << New->getDeclName();
1794  Diag(Old->getLocation(), diag::note_previous_definition);
1795  return;
1796}
1797
1798/// DeclhasAttr - returns true if decl Declaration already has the target
1799/// attribute.
1800static bool
1801DeclHasAttr(const Decl *D, const Attr *A) {
1802  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1803  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1804  // responsible for making sure they are consistent.
1805  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1806  if (AA)
1807    return false;
1808
1809  // The following thread safety attributes can also be duplicated.
1810  switch (A->getKind()) {
1811    case attr::ExclusiveLocksRequired:
1812    case attr::SharedLocksRequired:
1813    case attr::LocksExcluded:
1814    case attr::ExclusiveLockFunction:
1815    case attr::SharedLockFunction:
1816    case attr::UnlockFunction:
1817    case attr::ExclusiveTrylockFunction:
1818    case attr::SharedTrylockFunction:
1819    case attr::GuardedBy:
1820    case attr::PtGuardedBy:
1821    case attr::AcquiredBefore:
1822    case attr::AcquiredAfter:
1823      return false;
1824    default:
1825      ;
1826  }
1827
1828  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1829  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1830  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1831    if ((*i)->getKind() == A->getKind()) {
1832      if (Ann) {
1833        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1834          return true;
1835        continue;
1836      }
1837      // FIXME: Don't hardcode this check
1838      if (OA && isa<OwnershipAttr>(*i))
1839        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1840      return true;
1841    }
1842
1843  return false;
1844}
1845
1846static bool isAttributeTargetADefinition(Decl *D) {
1847  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1848    return VD->isThisDeclarationADefinition();
1849  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1850    return TD->isCompleteDefinition() || TD->isBeingDefined();
1851  return true;
1852}
1853
1854/// Merge alignment attributes from \p Old to \p New, taking into account the
1855/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1856///
1857/// \return \c true if any attributes were added to \p New.
1858static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1859  // Look for alignas attributes on Old, and pick out whichever attribute
1860  // specifies the strictest alignment requirement.
1861  AlignedAttr *OldAlignasAttr = 0;
1862  AlignedAttr *OldStrictestAlignAttr = 0;
1863  unsigned OldAlign = 0;
1864  for (specific_attr_iterator<AlignedAttr>
1865         I = Old->specific_attr_begin<AlignedAttr>(),
1866         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1867    // FIXME: We have no way of representing inherited dependent alignments
1868    // in a case like:
1869    //   template<int A, int B> struct alignas(A) X;
1870    //   template<int A, int B> struct alignas(B) X {};
1871    // For now, we just ignore any alignas attributes which are not on the
1872    // definition in such a case.
1873    if (I->isAlignmentDependent())
1874      return false;
1875
1876    if (I->isAlignas())
1877      OldAlignasAttr = *I;
1878
1879    unsigned Align = I->getAlignment(S.Context);
1880    if (Align > OldAlign) {
1881      OldAlign = Align;
1882      OldStrictestAlignAttr = *I;
1883    }
1884  }
1885
1886  // Look for alignas attributes on New.
1887  AlignedAttr *NewAlignasAttr = 0;
1888  unsigned NewAlign = 0;
1889  for (specific_attr_iterator<AlignedAttr>
1890         I = New->specific_attr_begin<AlignedAttr>(),
1891         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1892    if (I->isAlignmentDependent())
1893      return false;
1894
1895    if (I->isAlignas())
1896      NewAlignasAttr = *I;
1897
1898    unsigned Align = I->getAlignment(S.Context);
1899    if (Align > NewAlign)
1900      NewAlign = Align;
1901  }
1902
1903  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1904    // Both declarations have 'alignas' attributes. We require them to match.
1905    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1906    // fall short. (If two declarations both have alignas, they must both match
1907    // every definition, and so must match each other if there is a definition.)
1908
1909    // If either declaration only contains 'alignas(0)' specifiers, then it
1910    // specifies the natural alignment for the type.
1911    if (OldAlign == 0 || NewAlign == 0) {
1912      QualType Ty;
1913      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1914        Ty = VD->getType();
1915      else
1916        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1917
1918      if (OldAlign == 0)
1919        OldAlign = S.Context.getTypeAlign(Ty);
1920      if (NewAlign == 0)
1921        NewAlign = S.Context.getTypeAlign(Ty);
1922    }
1923
1924    if (OldAlign != NewAlign) {
1925      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1926        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1927        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1928      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1929    }
1930  }
1931
1932  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1933    // C++11 [dcl.align]p6:
1934    //   if any declaration of an entity has an alignment-specifier,
1935    //   every defining declaration of that entity shall specify an
1936    //   equivalent alignment.
1937    // C11 6.7.5/7:
1938    //   If the definition of an object does not have an alignment
1939    //   specifier, any other declaration of that object shall also
1940    //   have no alignment specifier.
1941    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1942      << OldAlignasAttr->isC11();
1943    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1944      << OldAlignasAttr->isC11();
1945  }
1946
1947  bool AnyAdded = false;
1948
1949  // Ensure we have an attribute representing the strictest alignment.
1950  if (OldAlign > NewAlign) {
1951    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1952    Clone->setInherited(true);
1953    New->addAttr(Clone);
1954    AnyAdded = true;
1955  }
1956
1957  // Ensure we have an alignas attribute if the old declaration had one.
1958  if (OldAlignasAttr && !NewAlignasAttr &&
1959      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1960    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1961    Clone->setInherited(true);
1962    New->addAttr(Clone);
1963    AnyAdded = true;
1964  }
1965
1966  return AnyAdded;
1967}
1968
1969static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1970                               bool Override) {
1971  InheritableAttr *NewAttr = NULL;
1972  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1973  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1974    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1975                                      AA->getIntroduced(), AA->getDeprecated(),
1976                                      AA->getObsoleted(), AA->getUnavailable(),
1977                                      AA->getMessage(), Override,
1978                                      AttrSpellingListIndex);
1979  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1980    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1981                                    AttrSpellingListIndex);
1982  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1983    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1984                                        AttrSpellingListIndex);
1985  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1986    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1987                                   AttrSpellingListIndex);
1988  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1989    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1990                                   AttrSpellingListIndex);
1991  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1992    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1993                                FA->getFormatIdx(), FA->getFirstArg(),
1994                                AttrSpellingListIndex);
1995  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1996    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1997                                 AttrSpellingListIndex);
1998  else if (isa<AlignedAttr>(Attr))
1999    // AlignedAttrs are handled separately, because we need to handle all
2000    // such attributes on a declaration at the same time.
2001    NewAttr = 0;
2002  else if (!DeclHasAttr(D, Attr))
2003    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2004
2005  if (NewAttr) {
2006    NewAttr->setInherited(true);
2007    D->addAttr(NewAttr);
2008    return true;
2009  }
2010
2011  return false;
2012}
2013
2014static const Decl *getDefinition(const Decl *D) {
2015  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2016    return TD->getDefinition();
2017  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2018    const VarDecl *Def = VD->getDefinition();
2019    if (Def)
2020      return Def;
2021    return VD->getActingDefinition();
2022  }
2023  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2024    const FunctionDecl* Def;
2025    if (FD->isDefined(Def))
2026      return Def;
2027  }
2028  return NULL;
2029}
2030
2031static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2032  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2033       I != E; ++I) {
2034    Attr *Attribute = *I;
2035    if (Attribute->getKind() == Kind)
2036      return true;
2037  }
2038  return false;
2039}
2040
2041/// checkNewAttributesAfterDef - If we already have a definition, check that
2042/// there are no new attributes in this declaration.
2043static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2044  if (!New->hasAttrs())
2045    return;
2046
2047  const Decl *Def = getDefinition(Old);
2048  if (!Def || Def == New)
2049    return;
2050
2051  AttrVec &NewAttributes = New->getAttrs();
2052  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2053    const Attr *NewAttribute = NewAttributes[I];
2054
2055    if (isa<AliasAttr>(NewAttribute)) {
2056      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2057        S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2058      else {
2059        VarDecl *VD = cast<VarDecl>(New);
2060        unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2061                                VarDecl::TentativeDefinition
2062                            ? diag::err_alias_after_tentative
2063                            : diag::err_redefinition;
2064        S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2065        S.Diag(Def->getLocation(), diag::note_previous_definition);
2066        VD->setInvalidDecl();
2067      }
2068      ++I;
2069      continue;
2070    }
2071
2072    if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2073      // Tentative definitions are only interesting for the alias check above.
2074      if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2075        ++I;
2076        continue;
2077      }
2078    }
2079
2080    if (hasAttribute(Def, NewAttribute->getKind())) {
2081      ++I;
2082      continue; // regular attr merging will take care of validating this.
2083    }
2084
2085    if (isa<C11NoReturnAttr>(NewAttribute)) {
2086      // C's _Noreturn is allowed to be added to a function after it is defined.
2087      ++I;
2088      continue;
2089    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2090      if (AA->isAlignas()) {
2091        // C++11 [dcl.align]p6:
2092        //   if any declaration of an entity has an alignment-specifier,
2093        //   every defining declaration of that entity shall specify an
2094        //   equivalent alignment.
2095        // C11 6.7.5/7:
2096        //   If the definition of an object does not have an alignment
2097        //   specifier, any other declaration of that object shall also
2098        //   have no alignment specifier.
2099        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2100          << AA->isC11();
2101        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2102          << AA->isC11();
2103        NewAttributes.erase(NewAttributes.begin() + I);
2104        --E;
2105        continue;
2106      }
2107    }
2108
2109    S.Diag(NewAttribute->getLocation(),
2110           diag::warn_attribute_precede_definition);
2111    S.Diag(Def->getLocation(), diag::note_previous_definition);
2112    NewAttributes.erase(NewAttributes.begin() + I);
2113    --E;
2114  }
2115}
2116
2117/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2118void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2119                               AvailabilityMergeKind AMK) {
2120  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2121    UsedAttr *NewAttr = OldAttr->clone(Context);
2122    NewAttr->setInherited(true);
2123    New->addAttr(NewAttr);
2124  }
2125
2126  if (!Old->hasAttrs() && !New->hasAttrs())
2127    return;
2128
2129  // attributes declared post-definition are currently ignored
2130  checkNewAttributesAfterDef(*this, New, Old);
2131
2132  if (!Old->hasAttrs())
2133    return;
2134
2135  bool foundAny = New->hasAttrs();
2136
2137  // Ensure that any moving of objects within the allocated map is done before
2138  // we process them.
2139  if (!foundAny) New->setAttrs(AttrVec());
2140
2141  for (specific_attr_iterator<InheritableAttr>
2142         i = Old->specific_attr_begin<InheritableAttr>(),
2143         e = Old->specific_attr_end<InheritableAttr>();
2144       i != e; ++i) {
2145    bool Override = false;
2146    // Ignore deprecated/unavailable/availability attributes if requested.
2147    if (isa<DeprecatedAttr>(*i) ||
2148        isa<UnavailableAttr>(*i) ||
2149        isa<AvailabilityAttr>(*i)) {
2150      switch (AMK) {
2151      case AMK_None:
2152        continue;
2153
2154      case AMK_Redeclaration:
2155        break;
2156
2157      case AMK_Override:
2158        Override = true;
2159        break;
2160      }
2161    }
2162
2163    // Already handled.
2164    if (isa<UsedAttr>(*i))
2165      continue;
2166
2167    if (mergeDeclAttribute(*this, New, *i, Override))
2168      foundAny = true;
2169  }
2170
2171  if (mergeAlignedAttrs(*this, New, Old))
2172    foundAny = true;
2173
2174  if (!foundAny) New->dropAttrs();
2175}
2176
2177/// mergeParamDeclAttributes - Copy attributes from the old parameter
2178/// to the new one.
2179static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2180                                     const ParmVarDecl *oldDecl,
2181                                     Sema &S) {
2182  // C++11 [dcl.attr.depend]p2:
2183  //   The first declaration of a function shall specify the
2184  //   carries_dependency attribute for its declarator-id if any declaration
2185  //   of the function specifies the carries_dependency attribute.
2186  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2187      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2188    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2189           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2190    // Find the first declaration of the parameter.
2191    // FIXME: Should we build redeclaration chains for function parameters?
2192    const FunctionDecl *FirstFD =
2193      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2194    const ParmVarDecl *FirstVD =
2195      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2196    S.Diag(FirstVD->getLocation(),
2197           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2198  }
2199
2200  if (!oldDecl->hasAttrs())
2201    return;
2202
2203  bool foundAny = newDecl->hasAttrs();
2204
2205  // Ensure that any moving of objects within the allocated map is
2206  // done before we process them.
2207  if (!foundAny) newDecl->setAttrs(AttrVec());
2208
2209  for (specific_attr_iterator<InheritableParamAttr>
2210       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2211       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2212    if (!DeclHasAttr(newDecl, *i)) {
2213      InheritableAttr *newAttr =
2214        cast<InheritableParamAttr>((*i)->clone(S.Context));
2215      newAttr->setInherited(true);
2216      newDecl->addAttr(newAttr);
2217      foundAny = true;
2218    }
2219  }
2220
2221  if (!foundAny) newDecl->dropAttrs();
2222}
2223
2224namespace {
2225
2226/// Used in MergeFunctionDecl to keep track of function parameters in
2227/// C.
2228struct GNUCompatibleParamWarning {
2229  ParmVarDecl *OldParm;
2230  ParmVarDecl *NewParm;
2231  QualType PromotedType;
2232};
2233
2234}
2235
2236/// getSpecialMember - get the special member enum for a method.
2237Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2238  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2239    if (Ctor->isDefaultConstructor())
2240      return Sema::CXXDefaultConstructor;
2241
2242    if (Ctor->isCopyConstructor())
2243      return Sema::CXXCopyConstructor;
2244
2245    if (Ctor->isMoveConstructor())
2246      return Sema::CXXMoveConstructor;
2247  } else if (isa<CXXDestructorDecl>(MD)) {
2248    return Sema::CXXDestructor;
2249  } else if (MD->isCopyAssignmentOperator()) {
2250    return Sema::CXXCopyAssignment;
2251  } else if (MD->isMoveAssignmentOperator()) {
2252    return Sema::CXXMoveAssignment;
2253  }
2254
2255  return Sema::CXXInvalid;
2256}
2257
2258/// canRedefineFunction - checks if a function can be redefined. Currently,
2259/// only extern inline functions can be redefined, and even then only in
2260/// GNU89 mode.
2261static bool canRedefineFunction(const FunctionDecl *FD,
2262                                const LangOptions& LangOpts) {
2263  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2264          !LangOpts.CPlusPlus &&
2265          FD->isInlineSpecified() &&
2266          FD->getStorageClass() == SC_Extern);
2267}
2268
2269const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2270  const AttributedType *AT = T->getAs<AttributedType>();
2271  while (AT && !AT->isCallingConv())
2272    AT = AT->getModifiedType()->getAs<AttributedType>();
2273  return AT;
2274}
2275
2276template <typename T>
2277static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2278  const DeclContext *DC = Old->getDeclContext();
2279  if (DC->isRecord())
2280    return false;
2281
2282  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2283  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2284    return true;
2285  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2286    return true;
2287  return false;
2288}
2289
2290/// MergeFunctionDecl - We just parsed a function 'New' from
2291/// declarator D which has the same name and scope as a previous
2292/// declaration 'Old'.  Figure out how to resolve this situation,
2293/// merging decls or emitting diagnostics as appropriate.
2294///
2295/// In C++, New and Old must be declarations that are not
2296/// overloaded. Use IsOverload to determine whether New and Old are
2297/// overloaded, and to select the Old declaration that New should be
2298/// merged with.
2299///
2300/// Returns true if there was an error, false otherwise.
2301bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S,
2302                             bool MergeTypeWithOld) {
2303  // Verify the old decl was also a function.
2304  FunctionDecl *Old = 0;
2305  if (FunctionTemplateDecl *OldFunctionTemplate
2306        = dyn_cast<FunctionTemplateDecl>(OldD))
2307    Old = OldFunctionTemplate->getTemplatedDecl();
2308  else
2309    Old = dyn_cast<FunctionDecl>(OldD);
2310  if (!Old) {
2311    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2312      if (New->getFriendObjectKind()) {
2313        Diag(New->getLocation(), diag::err_using_decl_friend);
2314        Diag(Shadow->getTargetDecl()->getLocation(),
2315             diag::note_using_decl_target);
2316        Diag(Shadow->getUsingDecl()->getLocation(),
2317             diag::note_using_decl) << 0;
2318        return true;
2319      }
2320
2321      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2322      Diag(Shadow->getTargetDecl()->getLocation(),
2323           diag::note_using_decl_target);
2324      Diag(Shadow->getUsingDecl()->getLocation(),
2325           diag::note_using_decl) << 0;
2326      return true;
2327    }
2328
2329    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2330      << New->getDeclName();
2331    Diag(OldD->getLocation(), diag::note_previous_definition);
2332    return true;
2333  }
2334
2335  // If the old declaration is invalid, just give up here.
2336  if (Old->isInvalidDecl())
2337    return true;
2338
2339  // Determine whether the previous declaration was a definition,
2340  // implicit declaration, or a declaration.
2341  diag::kind PrevDiag;
2342  if (Old->isThisDeclarationADefinition())
2343    PrevDiag = diag::note_previous_definition;
2344  else if (Old->isImplicit())
2345    PrevDiag = diag::note_previous_implicit_declaration;
2346  else
2347    PrevDiag = diag::note_previous_declaration;
2348
2349  // Don't complain about this if we're in GNU89 mode and the old function
2350  // is an extern inline function.
2351  // Don't complain about specializations. They are not supposed to have
2352  // storage classes.
2353  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2354      New->getStorageClass() == SC_Static &&
2355      Old->hasExternalFormalLinkage() &&
2356      !New->getTemplateSpecializationInfo() &&
2357      !canRedefineFunction(Old, getLangOpts())) {
2358    if (getLangOpts().MicrosoftExt) {
2359      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2360      Diag(Old->getLocation(), PrevDiag);
2361    } else {
2362      Diag(New->getLocation(), diag::err_static_non_static) << New;
2363      Diag(Old->getLocation(), PrevDiag);
2364      return true;
2365    }
2366  }
2367
2368
2369  // If a function is first declared with a calling convention, but is later
2370  // declared or defined without one, all following decls assume the calling
2371  // convention of the first.
2372  //
2373  // It's OK if a function is first declared without a calling convention,
2374  // but is later declared or defined with the default calling convention.
2375  //
2376  // To test if either decl has an explicit calling convention, we look for
2377  // AttributedType sugar nodes on the type as written.  If they are missing or
2378  // were canonicalized away, we assume the calling convention was implicit.
2379  //
2380  // Note also that we DO NOT return at this point, because we still have
2381  // other tests to run.
2382  QualType OldQType = Context.getCanonicalType(Old->getType());
2383  QualType NewQType = Context.getCanonicalType(New->getType());
2384  const FunctionType *OldType = cast<FunctionType>(OldQType);
2385  const FunctionType *NewType = cast<FunctionType>(NewQType);
2386  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2387  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2388  bool RequiresAdjustment = false;
2389
2390  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2391    FunctionDecl *First = Old->getFirstDecl();
2392    const FunctionType *FT =
2393        First->getType().getCanonicalType()->castAs<FunctionType>();
2394    FunctionType::ExtInfo FI = FT->getExtInfo();
2395    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2396    if (!NewCCExplicit) {
2397      // Inherit the CC from the previous declaration if it was specified
2398      // there but not here.
2399      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2400      RequiresAdjustment = true;
2401    } else {
2402      // Calling conventions aren't compatible, so complain.
2403      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2404      Diag(New->getLocation(), diag::err_cconv_change)
2405        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2406        << !FirstCCExplicit
2407        << (!FirstCCExplicit ? "" :
2408            FunctionType::getNameForCallConv(FI.getCC()));
2409
2410      // Put the note on the first decl, since it is the one that matters.
2411      Diag(First->getLocation(), diag::note_previous_declaration);
2412      return true;
2413    }
2414  }
2415
2416  // FIXME: diagnose the other way around?
2417  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2418    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2419    RequiresAdjustment = true;
2420  }
2421
2422  // Merge regparm attribute.
2423  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2424      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2425    if (NewTypeInfo.getHasRegParm()) {
2426      Diag(New->getLocation(), diag::err_regparm_mismatch)
2427        << NewType->getRegParmType()
2428        << OldType->getRegParmType();
2429      Diag(Old->getLocation(), diag::note_previous_declaration);
2430      return true;
2431    }
2432
2433    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2434    RequiresAdjustment = true;
2435  }
2436
2437  // Merge ns_returns_retained attribute.
2438  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2439    if (NewTypeInfo.getProducesResult()) {
2440      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2441      Diag(Old->getLocation(), diag::note_previous_declaration);
2442      return true;
2443    }
2444
2445    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2446    RequiresAdjustment = true;
2447  }
2448
2449  if (RequiresAdjustment) {
2450    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2451    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2452    New->setType(QualType(AdjustedType, 0));
2453    NewQType = Context.getCanonicalType(New->getType());
2454    NewType = cast<FunctionType>(NewQType);
2455  }
2456
2457  // If this redeclaration makes the function inline, we may need to add it to
2458  // UndefinedButUsed.
2459  if (!Old->isInlined() && New->isInlined() &&
2460      !New->hasAttr<GNUInlineAttr>() &&
2461      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2462      Old->isUsed(false) &&
2463      !Old->isDefined() && !New->isThisDeclarationADefinition())
2464    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2465                                           SourceLocation()));
2466
2467  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2468  // about it.
2469  if (New->hasAttr<GNUInlineAttr>() &&
2470      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2471    UndefinedButUsed.erase(Old->getCanonicalDecl());
2472  }
2473
2474  if (getLangOpts().CPlusPlus) {
2475    // (C++98 13.1p2):
2476    //   Certain function declarations cannot be overloaded:
2477    //     -- Function declarations that differ only in the return type
2478    //        cannot be overloaded.
2479
2480    // Go back to the type source info to compare the declared return types,
2481    // per C++1y [dcl.type.auto]p13:
2482    //   Redeclarations or specializations of a function or function template
2483    //   with a declared return type that uses a placeholder type shall also
2484    //   use that placeholder, not a deduced type.
2485    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2486      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2487      : OldType)->getResultType();
2488    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2489      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2490      : NewType)->getResultType();
2491    QualType ResQT;
2492    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2493        !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2494          New->isLocalExternDecl())) {
2495      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2496          OldDeclaredReturnType->isObjCObjectPointerType())
2497        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2498      if (ResQT.isNull()) {
2499        if (New->isCXXClassMember() && New->isOutOfLine())
2500          Diag(New->getLocation(),
2501               diag::err_member_def_does_not_match_ret_type) << New;
2502        else
2503          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2504        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2505        return true;
2506      }
2507      else
2508        NewQType = ResQT;
2509    }
2510
2511    QualType OldReturnType = OldType->getResultType();
2512    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2513    if (OldReturnType != NewReturnType) {
2514      // If this function has a deduced return type and has already been
2515      // defined, copy the deduced value from the old declaration.
2516      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2517      if (OldAT && OldAT->isDeduced()) {
2518        New->setType(
2519            SubstAutoType(New->getType(),
2520                          OldAT->isDependentType() ? Context.DependentTy
2521                                                   : OldAT->getDeducedType()));
2522        NewQType = Context.getCanonicalType(
2523            SubstAutoType(NewQType,
2524                          OldAT->isDependentType() ? Context.DependentTy
2525                                                   : OldAT->getDeducedType()));
2526      }
2527    }
2528
2529    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2530    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2531    if (OldMethod && NewMethod) {
2532      // Preserve triviality.
2533      NewMethod->setTrivial(OldMethod->isTrivial());
2534
2535      // MSVC allows explicit template specialization at class scope:
2536      // 2 CXMethodDecls referring to the same function will be injected.
2537      // We don't want a redeclartion error.
2538      bool IsClassScopeExplicitSpecialization =
2539                              OldMethod->isFunctionTemplateSpecialization() &&
2540                              NewMethod->isFunctionTemplateSpecialization();
2541      bool isFriend = NewMethod->getFriendObjectKind();
2542
2543      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2544          !IsClassScopeExplicitSpecialization) {
2545        //    -- Member function declarations with the same name and the
2546        //       same parameter types cannot be overloaded if any of them
2547        //       is a static member function declaration.
2548        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2549          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2550          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2551          return true;
2552        }
2553
2554        // C++ [class.mem]p1:
2555        //   [...] A member shall not be declared twice in the
2556        //   member-specification, except that a nested class or member
2557        //   class template can be declared and then later defined.
2558        if (ActiveTemplateInstantiations.empty()) {
2559          unsigned NewDiag;
2560          if (isa<CXXConstructorDecl>(OldMethod))
2561            NewDiag = diag::err_constructor_redeclared;
2562          else if (isa<CXXDestructorDecl>(NewMethod))
2563            NewDiag = diag::err_destructor_redeclared;
2564          else if (isa<CXXConversionDecl>(NewMethod))
2565            NewDiag = diag::err_conv_function_redeclared;
2566          else
2567            NewDiag = diag::err_member_redeclared;
2568
2569          Diag(New->getLocation(), NewDiag);
2570        } else {
2571          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2572            << New << New->getType();
2573        }
2574        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2575
2576      // Complain if this is an explicit declaration of a special
2577      // member that was initially declared implicitly.
2578      //
2579      // As an exception, it's okay to befriend such methods in order
2580      // to permit the implicit constructor/destructor/operator calls.
2581      } else if (OldMethod->isImplicit()) {
2582        if (isFriend) {
2583          NewMethod->setImplicit();
2584        } else {
2585          Diag(NewMethod->getLocation(),
2586               diag::err_definition_of_implicitly_declared_member)
2587            << New << getSpecialMember(OldMethod);
2588          return true;
2589        }
2590      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2591        Diag(NewMethod->getLocation(),
2592             diag::err_definition_of_explicitly_defaulted_member)
2593          << getSpecialMember(OldMethod);
2594        return true;
2595      }
2596    }
2597
2598    // C++11 [dcl.attr.noreturn]p1:
2599    //   The first declaration of a function shall specify the noreturn
2600    //   attribute if any declaration of that function specifies the noreturn
2601    //   attribute.
2602    if (New->hasAttr<CXX11NoReturnAttr>() &&
2603        !Old->hasAttr<CXX11NoReturnAttr>()) {
2604      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2605           diag::err_noreturn_missing_on_first_decl);
2606      Diag(Old->getFirstDecl()->getLocation(),
2607           diag::note_noreturn_missing_first_decl);
2608    }
2609
2610    // C++11 [dcl.attr.depend]p2:
2611    //   The first declaration of a function shall specify the
2612    //   carries_dependency attribute for its declarator-id if any declaration
2613    //   of the function specifies the carries_dependency attribute.
2614    if (New->hasAttr<CarriesDependencyAttr>() &&
2615        !Old->hasAttr<CarriesDependencyAttr>()) {
2616      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2617           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2618      Diag(Old->getFirstDecl()->getLocation(),
2619           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2620    }
2621
2622    // (C++98 8.3.5p3):
2623    //   All declarations for a function shall agree exactly in both the
2624    //   return type and the parameter-type-list.
2625    // We also want to respect all the extended bits except noreturn.
2626
2627    // noreturn should now match unless the old type info didn't have it.
2628    QualType OldQTypeForComparison = OldQType;
2629    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2630      assert(OldQType == QualType(OldType, 0));
2631      const FunctionType *OldTypeForComparison
2632        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2633      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2634      assert(OldQTypeForComparison.isCanonical());
2635    }
2636
2637    if (haveIncompatibleLanguageLinkages(Old, New)) {
2638      // As a special case, retain the language linkage from previous
2639      // declarations of a friend function as an extension.
2640      //
2641      // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2642      // and is useful because there's otherwise no way to specify language
2643      // linkage within class scope.
2644      //
2645      // Check cautiously as the friend object kind isn't yet complete.
2646      if (New->getFriendObjectKind() != Decl::FOK_None) {
2647        Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2648        Diag(Old->getLocation(), PrevDiag);
2649      } else {
2650        Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2651        Diag(Old->getLocation(), PrevDiag);
2652        return true;
2653      }
2654    }
2655
2656    if (OldQTypeForComparison == NewQType)
2657      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2658
2659    if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2660        New->isLocalExternDecl()) {
2661      // It's OK if we couldn't merge types for a local function declaraton
2662      // if either the old or new type is dependent. We'll merge the types
2663      // when we instantiate the function.
2664      return false;
2665    }
2666
2667    // Fall through for conflicting redeclarations and redefinitions.
2668  }
2669
2670  // C: Function types need to be compatible, not identical. This handles
2671  // duplicate function decls like "void f(int); void f(enum X);" properly.
2672  if (!getLangOpts().CPlusPlus &&
2673      Context.typesAreCompatible(OldQType, NewQType)) {
2674    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2675    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2676    const FunctionProtoType *OldProto = 0;
2677    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2678        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2679      // The old declaration provided a function prototype, but the
2680      // new declaration does not. Merge in the prototype.
2681      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2682      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2683                                                 OldProto->arg_type_end());
2684      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2685                                         ParamTypes,
2686                                         OldProto->getExtProtoInfo());
2687      New->setType(NewQType);
2688      New->setHasInheritedPrototype();
2689
2690      // Synthesize a parameter for each argument type.
2691      SmallVector<ParmVarDecl*, 16> Params;
2692      for (FunctionProtoType::arg_type_iterator
2693             ParamType = OldProto->arg_type_begin(),
2694             ParamEnd = OldProto->arg_type_end();
2695           ParamType != ParamEnd; ++ParamType) {
2696        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2697                                                 SourceLocation(),
2698                                                 SourceLocation(), 0,
2699                                                 *ParamType, /*TInfo=*/0,
2700                                                 SC_None,
2701                                                 0);
2702        Param->setScopeInfo(0, Params.size());
2703        Param->setImplicit();
2704        Params.push_back(Param);
2705      }
2706
2707      New->setParams(Params);
2708    }
2709
2710    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2711  }
2712
2713  // GNU C permits a K&R definition to follow a prototype declaration
2714  // if the declared types of the parameters in the K&R definition
2715  // match the types in the prototype declaration, even when the
2716  // promoted types of the parameters from the K&R definition differ
2717  // from the types in the prototype. GCC then keeps the types from
2718  // the prototype.
2719  //
2720  // If a variadic prototype is followed by a non-variadic K&R definition,
2721  // the K&R definition becomes variadic.  This is sort of an edge case, but
2722  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2723  // C99 6.9.1p8.
2724  if (!getLangOpts().CPlusPlus &&
2725      Old->hasPrototype() && !New->hasPrototype() &&
2726      New->getType()->getAs<FunctionProtoType>() &&
2727      Old->getNumParams() == New->getNumParams()) {
2728    SmallVector<QualType, 16> ArgTypes;
2729    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2730    const FunctionProtoType *OldProto
2731      = Old->getType()->getAs<FunctionProtoType>();
2732    const FunctionProtoType *NewProto
2733      = New->getType()->getAs<FunctionProtoType>();
2734
2735    // Determine whether this is the GNU C extension.
2736    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2737                                               NewProto->getResultType());
2738    bool LooseCompatible = !MergedReturn.isNull();
2739    for (unsigned Idx = 0, End = Old->getNumParams();
2740         LooseCompatible && Idx != End; ++Idx) {
2741      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2742      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2743      if (Context.typesAreCompatible(OldParm->getType(),
2744                                     NewProto->getArgType(Idx))) {
2745        ArgTypes.push_back(NewParm->getType());
2746      } else if (Context.typesAreCompatible(OldParm->getType(),
2747                                            NewParm->getType(),
2748                                            /*CompareUnqualified=*/true)) {
2749        GNUCompatibleParamWarning Warn
2750          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2751        Warnings.push_back(Warn);
2752        ArgTypes.push_back(NewParm->getType());
2753      } else
2754        LooseCompatible = false;
2755    }
2756
2757    if (LooseCompatible) {
2758      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2759        Diag(Warnings[Warn].NewParm->getLocation(),
2760             diag::ext_param_promoted_not_compatible_with_prototype)
2761          << Warnings[Warn].PromotedType
2762          << Warnings[Warn].OldParm->getType();
2763        if (Warnings[Warn].OldParm->getLocation().isValid())
2764          Diag(Warnings[Warn].OldParm->getLocation(),
2765               diag::note_previous_declaration);
2766      }
2767
2768      if (MergeTypeWithOld)
2769        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2770                                             OldProto->getExtProtoInfo()));
2771      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2772    }
2773
2774    // Fall through to diagnose conflicting types.
2775  }
2776
2777  // A function that has already been declared has been redeclared or
2778  // defined with a different type; show an appropriate diagnostic.
2779
2780  // If the previous declaration was an implicitly-generated builtin
2781  // declaration, then at the very least we should use a specialized note.
2782  unsigned BuiltinID;
2783  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2784    // If it's actually a library-defined builtin function like 'malloc'
2785    // or 'printf', just warn about the incompatible redeclaration.
2786    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2787      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2788      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2789        << Old << Old->getType();
2790
2791      // If this is a global redeclaration, just forget hereafter
2792      // about the "builtin-ness" of the function.
2793      //
2794      // Doing this for local extern declarations is problematic.  If
2795      // the builtin declaration remains visible, a second invalid
2796      // local declaration will produce a hard error; if it doesn't
2797      // remain visible, a single bogus local redeclaration (which is
2798      // actually only a warning) could break all the downstream code.
2799      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2800        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2801
2802      return false;
2803    }
2804
2805    PrevDiag = diag::note_previous_builtin_declaration;
2806  }
2807
2808  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2809  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2810  return true;
2811}
2812
2813/// \brief Completes the merge of two function declarations that are
2814/// known to be compatible.
2815///
2816/// This routine handles the merging of attributes and other
2817/// properties of function declarations from the old declaration to
2818/// the new declaration, once we know that New is in fact a
2819/// redeclaration of Old.
2820///
2821/// \returns false
2822bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2823                                        Scope *S, bool MergeTypeWithOld) {
2824  // Merge the attributes
2825  mergeDeclAttributes(New, Old);
2826
2827  // Merge "pure" flag.
2828  if (Old->isPure())
2829    New->setPure();
2830
2831  // Merge "used" flag.
2832  if (Old->getMostRecentDecl()->isUsed(false))
2833    New->setIsUsed();
2834
2835  // Merge attributes from the parameters.  These can mismatch with K&R
2836  // declarations.
2837  if (New->getNumParams() == Old->getNumParams())
2838    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2839      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2840                               *this);
2841
2842  if (getLangOpts().CPlusPlus)
2843    return MergeCXXFunctionDecl(New, Old, S);
2844
2845  // Merge the function types so the we get the composite types for the return
2846  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2847  // was visible.
2848  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2849  if (!Merged.isNull() && MergeTypeWithOld)
2850    New->setType(Merged);
2851
2852  return false;
2853}
2854
2855
2856void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2857                                ObjCMethodDecl *oldMethod) {
2858
2859  // Merge the attributes, including deprecated/unavailable
2860  AvailabilityMergeKind MergeKind =
2861    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2862                                                   : AMK_Override;
2863  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2864
2865  // Merge attributes from the parameters.
2866  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2867                                       oe = oldMethod->param_end();
2868  for (ObjCMethodDecl::param_iterator
2869         ni = newMethod->param_begin(), ne = newMethod->param_end();
2870       ni != ne && oi != oe; ++ni, ++oi)
2871    mergeParamDeclAttributes(*ni, *oi, *this);
2872
2873  CheckObjCMethodOverride(newMethod, oldMethod);
2874}
2875
2876/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2877/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2878/// emitting diagnostics as appropriate.
2879///
2880/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2881/// to here in AddInitializerToDecl. We can't check them before the initializer
2882/// is attached.
2883void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2884                             bool MergeTypeWithOld) {
2885  if (New->isInvalidDecl() || Old->isInvalidDecl())
2886    return;
2887
2888  QualType MergedT;
2889  if (getLangOpts().CPlusPlus) {
2890    if (New->getType()->isUndeducedType()) {
2891      // We don't know what the new type is until the initializer is attached.
2892      return;
2893    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2894      // These could still be something that needs exception specs checked.
2895      return MergeVarDeclExceptionSpecs(New, Old);
2896    }
2897    // C++ [basic.link]p10:
2898    //   [...] the types specified by all declarations referring to a given
2899    //   object or function shall be identical, except that declarations for an
2900    //   array object can specify array types that differ by the presence or
2901    //   absence of a major array bound (8.3.4).
2902    else if (Old->getType()->isIncompleteArrayType() &&
2903             New->getType()->isArrayType()) {
2904      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2905      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2906      if (Context.hasSameType(OldArray->getElementType(),
2907                              NewArray->getElementType()))
2908        MergedT = New->getType();
2909    } else if (Old->getType()->isArrayType() &&
2910               New->getType()->isIncompleteArrayType()) {
2911      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2912      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2913      if (Context.hasSameType(OldArray->getElementType(),
2914                              NewArray->getElementType()))
2915        MergedT = Old->getType();
2916    } else if (New->getType()->isObjCObjectPointerType() &&
2917               Old->getType()->isObjCObjectPointerType()) {
2918      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2919                                              Old->getType());
2920    }
2921  } else {
2922    // C 6.2.7p2:
2923    //   All declarations that refer to the same object or function shall have
2924    //   compatible type.
2925    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2926  }
2927  if (MergedT.isNull()) {
2928    // It's OK if we couldn't merge types if either type is dependent, for a
2929    // block-scope variable. In other cases (static data members of class
2930    // templates, variable templates, ...), we require the types to be
2931    // equivalent.
2932    // FIXME: The C++ standard doesn't say anything about this.
2933    if ((New->getType()->isDependentType() ||
2934         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
2935      // If the old type was dependent, we can't merge with it, so the new type
2936      // becomes dependent for now. We'll reproduce the original type when we
2937      // instantiate the TypeSourceInfo for the variable.
2938      if (!New->getType()->isDependentType() && MergeTypeWithOld)
2939        New->setType(Context.DependentTy);
2940      return;
2941    }
2942
2943    // FIXME: Even if this merging succeeds, some other non-visible declaration
2944    // of this variable might have an incompatible type. For instance:
2945    //
2946    //   extern int arr[];
2947    //   void f() { extern int arr[2]; }
2948    //   void g() { extern int arr[3]; }
2949    //
2950    // Neither C nor C++ requires a diagnostic for this, but we should still try
2951    // to diagnose it.
2952    Diag(New->getLocation(), diag::err_redefinition_different_type)
2953      << New->getDeclName() << New->getType() << Old->getType();
2954    Diag(Old->getLocation(), diag::note_previous_definition);
2955    return New->setInvalidDecl();
2956  }
2957
2958  // Don't actually update the type on the new declaration if the old
2959  // declaration was an extern declaration in a different scope.
2960  if (MergeTypeWithOld)
2961    New->setType(MergedT);
2962}
2963
2964static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
2965                                  LookupResult &Previous) {
2966  // C11 6.2.7p4:
2967  //   For an identifier with internal or external linkage declared
2968  //   in a scope in which a prior declaration of that identifier is
2969  //   visible, if the prior declaration specifies internal or
2970  //   external linkage, the type of the identifier at the later
2971  //   declaration becomes the composite type.
2972  //
2973  // If the variable isn't visible, we do not merge with its type.
2974  if (Previous.isShadowed())
2975    return false;
2976
2977  if (S.getLangOpts().CPlusPlus) {
2978    // C++11 [dcl.array]p3:
2979    //   If there is a preceding declaration of the entity in the same
2980    //   scope in which the bound was specified, an omitted array bound
2981    //   is taken to be the same as in that earlier declaration.
2982    return NewVD->isPreviousDeclInSameBlockScope() ||
2983           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
2984            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
2985  } else {
2986    // If the old declaration was function-local, don't merge with its
2987    // type unless we're in the same function.
2988    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
2989           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
2990  }
2991}
2992
2993/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2994/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2995/// situation, merging decls or emitting diagnostics as appropriate.
2996///
2997/// Tentative definition rules (C99 6.9.2p2) are checked by
2998/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2999/// definitions here, since the initializer hasn't been attached.
3000///
3001void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3002  // If the new decl is already invalid, don't do any other checking.
3003  if (New->isInvalidDecl())
3004    return;
3005
3006  // Verify the old decl was also a variable or variable template.
3007  VarDecl *Old = 0;
3008  if (Previous.isSingleResult() &&
3009      (Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
3010    if (New->getDescribedVarTemplate())
3011      Old = Old->getDescribedVarTemplate() ? Old : 0;
3012    else
3013      Old = Old->getDescribedVarTemplate() ? 0 : Old;
3014  }
3015  if (!Old) {
3016    Diag(New->getLocation(), diag::err_redefinition_different_kind)
3017      << New->getDeclName();
3018    Diag(Previous.getRepresentativeDecl()->getLocation(),
3019         diag::note_previous_definition);
3020    return New->setInvalidDecl();
3021  }
3022
3023  if (!shouldLinkPossiblyHiddenDecl(Old, New))
3024    return;
3025
3026  // C++ [class.mem]p1:
3027  //   A member shall not be declared twice in the member-specification [...]
3028  //
3029  // Here, we need only consider static data members.
3030  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3031    Diag(New->getLocation(), diag::err_duplicate_member)
3032      << New->getIdentifier();
3033    Diag(Old->getLocation(), diag::note_previous_declaration);
3034    New->setInvalidDecl();
3035  }
3036
3037  mergeDeclAttributes(New, Old);
3038  // Warn if an already-declared variable is made a weak_import in a subsequent
3039  // declaration
3040  if (New->getAttr<WeakImportAttr>() &&
3041      Old->getStorageClass() == SC_None &&
3042      !Old->getAttr<WeakImportAttr>()) {
3043    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3044    Diag(Old->getLocation(), diag::note_previous_definition);
3045    // Remove weak_import attribute on new declaration.
3046    New->dropAttr<WeakImportAttr>();
3047  }
3048
3049  // Merge the types.
3050  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3051
3052  if (New->isInvalidDecl())
3053    return;
3054
3055  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3056  if (New->getStorageClass() == SC_Static &&
3057      !New->isStaticDataMember() &&
3058      Old->hasExternalFormalLinkage()) {
3059    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
3060    Diag(Old->getLocation(), diag::note_previous_definition);
3061    return New->setInvalidDecl();
3062  }
3063  // C99 6.2.2p4:
3064  //   For an identifier declared with the storage-class specifier
3065  //   extern in a scope in which a prior declaration of that
3066  //   identifier is visible,23) if the prior declaration specifies
3067  //   internal or external linkage, the linkage of the identifier at
3068  //   the later declaration is the same as the linkage specified at
3069  //   the prior declaration. If no prior declaration is visible, or
3070  //   if the prior declaration specifies no linkage, then the
3071  //   identifier has external linkage.
3072  if (New->hasExternalStorage() && Old->hasLinkage())
3073    /* Okay */;
3074  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3075           !New->isStaticDataMember() &&
3076           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3077    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3078    Diag(Old->getLocation(), diag::note_previous_definition);
3079    return New->setInvalidDecl();
3080  }
3081
3082  // Check if extern is followed by non-extern and vice-versa.
3083  if (New->hasExternalStorage() &&
3084      !Old->hasLinkage() && Old->isLocalVarDecl()) {
3085    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3086    Diag(Old->getLocation(), diag::note_previous_definition);
3087    return New->setInvalidDecl();
3088  }
3089  if (Old->hasLinkage() && New->isLocalVarDecl() &&
3090      !New->hasExternalStorage()) {
3091    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3092    Diag(Old->getLocation(), diag::note_previous_definition);
3093    return New->setInvalidDecl();
3094  }
3095
3096  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3097
3098  // FIXME: The test for external storage here seems wrong? We still
3099  // need to check for mismatches.
3100  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3101      // Don't complain about out-of-line definitions of static members.
3102      !(Old->getLexicalDeclContext()->isRecord() &&
3103        !New->getLexicalDeclContext()->isRecord())) {
3104    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3105    Diag(Old->getLocation(), diag::note_previous_definition);
3106    return New->setInvalidDecl();
3107  }
3108
3109  if (New->getTLSKind() != Old->getTLSKind()) {
3110    if (!Old->getTLSKind()) {
3111      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3112      Diag(Old->getLocation(), diag::note_previous_declaration);
3113    } else if (!New->getTLSKind()) {
3114      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3115      Diag(Old->getLocation(), diag::note_previous_declaration);
3116    } else {
3117      // Do not allow redeclaration to change the variable between requiring
3118      // static and dynamic initialization.
3119      // FIXME: GCC allows this, but uses the TLS keyword on the first
3120      // declaration to determine the kind. Do we need to be compatible here?
3121      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3122        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3123      Diag(Old->getLocation(), diag::note_previous_declaration);
3124    }
3125  }
3126
3127  // C++ doesn't have tentative definitions, so go right ahead and check here.
3128  const VarDecl *Def;
3129  if (getLangOpts().CPlusPlus &&
3130      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3131      (Def = Old->getDefinition())) {
3132    Diag(New->getLocation(), diag::err_redefinition) << New;
3133    Diag(Def->getLocation(), diag::note_previous_definition);
3134    New->setInvalidDecl();
3135    return;
3136  }
3137
3138  if (haveIncompatibleLanguageLinkages(Old, New)) {
3139    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3140    Diag(Old->getLocation(), diag::note_previous_definition);
3141    New->setInvalidDecl();
3142    return;
3143  }
3144
3145  // Merge "used" flag.
3146  if (Old->getMostRecentDecl()->isUsed(false))
3147    New->setIsUsed();
3148
3149  // Keep a chain of previous declarations.
3150  New->setPreviousDecl(Old);
3151
3152  // Inherit access appropriately.
3153  New->setAccess(Old->getAccess());
3154
3155  if (VarTemplateDecl *VTD = New->getDescribedVarTemplate()) {
3156    if (New->isStaticDataMember() && New->isOutOfLine())
3157      VTD->setAccess(New->getAccess());
3158  }
3159}
3160
3161/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3162/// no declarator (e.g. "struct foo;") is parsed.
3163Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3164                                       DeclSpec &DS) {
3165  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3166}
3167
3168static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3169  if (!S.Context.getLangOpts().CPlusPlus)
3170    return;
3171
3172  if (isa<CXXRecordDecl>(Tag->getParent())) {
3173    // If this tag is the direct child of a class, number it if
3174    // it is anonymous.
3175    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3176      return;
3177    MangleNumberingContext &MCtx =
3178        S.Context.getManglingNumberContext(Tag->getParent());
3179    S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3180    return;
3181  }
3182
3183  // If this tag isn't a direct child of a class, number it if it is local.
3184  Decl *ManglingContextDecl;
3185  if (MangleNumberingContext *MCtx =
3186          S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3187                                          ManglingContextDecl)) {
3188    S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3189  }
3190}
3191
3192/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3193/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3194/// parameters to cope with template friend declarations.
3195Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3196                                       DeclSpec &DS,
3197                                       MultiTemplateParamsArg TemplateParams,
3198                                       bool IsExplicitInstantiation) {
3199  Decl *TagD = 0;
3200  TagDecl *Tag = 0;
3201  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3202      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3203      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3204      DS.getTypeSpecType() == DeclSpec::TST_union ||
3205      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3206    TagD = DS.getRepAsDecl();
3207
3208    if (!TagD) // We probably had an error
3209      return 0;
3210
3211    // Note that the above type specs guarantee that the
3212    // type rep is a Decl, whereas in many of the others
3213    // it's a Type.
3214    if (isa<TagDecl>(TagD))
3215      Tag = cast<TagDecl>(TagD);
3216    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3217      Tag = CTD->getTemplatedDecl();
3218  }
3219
3220  if (Tag) {
3221    HandleTagNumbering(*this, Tag);
3222    Tag->setFreeStanding();
3223    if (Tag->isInvalidDecl())
3224      return Tag;
3225  }
3226
3227  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3228    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3229    // or incomplete types shall not be restrict-qualified."
3230    if (TypeQuals & DeclSpec::TQ_restrict)
3231      Diag(DS.getRestrictSpecLoc(),
3232           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3233           << DS.getSourceRange();
3234  }
3235
3236  if (DS.isConstexprSpecified()) {
3237    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3238    // and definitions of functions and variables.
3239    if (Tag)
3240      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3241        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3242            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3243            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3244            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3245    else
3246      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3247    // Don't emit warnings after this error.
3248    return TagD;
3249  }
3250
3251  DiagnoseFunctionSpecifiers(DS);
3252
3253  if (DS.isFriendSpecified()) {
3254    // If we're dealing with a decl but not a TagDecl, assume that
3255    // whatever routines created it handled the friendship aspect.
3256    if (TagD && !Tag)
3257      return 0;
3258    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3259  }
3260
3261  CXXScopeSpec &SS = DS.getTypeSpecScope();
3262  bool IsExplicitSpecialization =
3263    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3264  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3265      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3266    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3267    // nested-name-specifier unless it is an explicit instantiation
3268    // or an explicit specialization.
3269    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3270    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3271      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3272          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3273          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3274          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3275      << SS.getRange();
3276    return 0;
3277  }
3278
3279  // Track whether this decl-specifier declares anything.
3280  bool DeclaresAnything = true;
3281
3282  // Handle anonymous struct definitions.
3283  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3284    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3285        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3286      if (getLangOpts().CPlusPlus ||
3287          Record->getDeclContext()->isRecord())
3288        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3289
3290      DeclaresAnything = false;
3291    }
3292  }
3293
3294  // Check for Microsoft C extension: anonymous struct member.
3295  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3296      CurContext->isRecord() &&
3297      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3298    // Handle 2 kinds of anonymous struct:
3299    //   struct STRUCT;
3300    // and
3301    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3302    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3303    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3304        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3305         DS.getRepAsType().get()->isStructureType())) {
3306      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3307        << DS.getSourceRange();
3308      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3309    }
3310  }
3311
3312  // Skip all the checks below if we have a type error.
3313  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3314      (TagD && TagD->isInvalidDecl()))
3315    return TagD;
3316
3317  if (getLangOpts().CPlusPlus &&
3318      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3319    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3320      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3321          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3322        DeclaresAnything = false;
3323
3324  if (!DS.isMissingDeclaratorOk()) {
3325    // Customize diagnostic for a typedef missing a name.
3326    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3327      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3328        << DS.getSourceRange();
3329    else
3330      DeclaresAnything = false;
3331  }
3332
3333  if (DS.isModulePrivateSpecified() &&
3334      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3335    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3336      << Tag->getTagKind()
3337      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3338
3339  ActOnDocumentableDecl(TagD);
3340
3341  // C 6.7/2:
3342  //   A declaration [...] shall declare at least a declarator [...], a tag,
3343  //   or the members of an enumeration.
3344  // C++ [dcl.dcl]p3:
3345  //   [If there are no declarators], and except for the declaration of an
3346  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3347  //   names into the program, or shall redeclare a name introduced by a
3348  //   previous declaration.
3349  if (!DeclaresAnything) {
3350    // In C, we allow this as a (popular) extension / bug. Don't bother
3351    // producing further diagnostics for redundant qualifiers after this.
3352    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3353    return TagD;
3354  }
3355
3356  // C++ [dcl.stc]p1:
3357  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3358  //   init-declarator-list of the declaration shall not be empty.
3359  // C++ [dcl.fct.spec]p1:
3360  //   If a cv-qualifier appears in a decl-specifier-seq, the
3361  //   init-declarator-list of the declaration shall not be empty.
3362  //
3363  // Spurious qualifiers here appear to be valid in C.
3364  unsigned DiagID = diag::warn_standalone_specifier;
3365  if (getLangOpts().CPlusPlus)
3366    DiagID = diag::ext_standalone_specifier;
3367
3368  // Note that a linkage-specification sets a storage class, but
3369  // 'extern "C" struct foo;' is actually valid and not theoretically
3370  // useless.
3371  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3372    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3373      Diag(DS.getStorageClassSpecLoc(), DiagID)
3374        << DeclSpec::getSpecifierName(SCS);
3375
3376  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3377    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3378      << DeclSpec::getSpecifierName(TSCS);
3379  if (DS.getTypeQualifiers()) {
3380    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3381      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3382    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3383      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3384    // Restrict is covered above.
3385    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3386      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3387  }
3388
3389  // Warn about ignored type attributes, for example:
3390  // __attribute__((aligned)) struct A;
3391  // Attributes should be placed after tag to apply to type declaration.
3392  if (!DS.getAttributes().empty()) {
3393    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3394    if (TypeSpecType == DeclSpec::TST_class ||
3395        TypeSpecType == DeclSpec::TST_struct ||
3396        TypeSpecType == DeclSpec::TST_interface ||
3397        TypeSpecType == DeclSpec::TST_union ||
3398        TypeSpecType == DeclSpec::TST_enum) {
3399      AttributeList* attrs = DS.getAttributes().getList();
3400      while (attrs) {
3401        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3402        << attrs->getName()
3403        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3404            TypeSpecType == DeclSpec::TST_struct ? 1 :
3405            TypeSpecType == DeclSpec::TST_union ? 2 :
3406            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3407        attrs = attrs->getNext();
3408      }
3409    }
3410  }
3411
3412  return TagD;
3413}
3414
3415/// We are trying to inject an anonymous member into the given scope;
3416/// check if there's an existing declaration that can't be overloaded.
3417///
3418/// \return true if this is a forbidden redeclaration
3419static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3420                                         Scope *S,
3421                                         DeclContext *Owner,
3422                                         DeclarationName Name,
3423                                         SourceLocation NameLoc,
3424                                         unsigned diagnostic) {
3425  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3426                 Sema::ForRedeclaration);
3427  if (!SemaRef.LookupName(R, S)) return false;
3428
3429  if (R.getAsSingle<TagDecl>())
3430    return false;
3431
3432  // Pick a representative declaration.
3433  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3434  assert(PrevDecl && "Expected a non-null Decl");
3435
3436  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3437    return false;
3438
3439  SemaRef.Diag(NameLoc, diagnostic) << Name;
3440  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3441
3442  return true;
3443}
3444
3445/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3446/// anonymous struct or union AnonRecord into the owning context Owner
3447/// and scope S. This routine will be invoked just after we realize
3448/// that an unnamed union or struct is actually an anonymous union or
3449/// struct, e.g.,
3450///
3451/// @code
3452/// union {
3453///   int i;
3454///   float f;
3455/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3456///    // f into the surrounding scope.x
3457/// @endcode
3458///
3459/// This routine is recursive, injecting the names of nested anonymous
3460/// structs/unions into the owning context and scope as well.
3461static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3462                                         DeclContext *Owner,
3463                                         RecordDecl *AnonRecord,
3464                                         AccessSpecifier AS,
3465                                         SmallVectorImpl<NamedDecl *> &Chaining,
3466                                         bool MSAnonStruct) {
3467  unsigned diagKind
3468    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3469                            : diag::err_anonymous_struct_member_redecl;
3470
3471  bool Invalid = false;
3472
3473  // Look every FieldDecl and IndirectFieldDecl with a name.
3474  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3475                               DEnd = AnonRecord->decls_end();
3476       D != DEnd; ++D) {
3477    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3478        cast<NamedDecl>(*D)->getDeclName()) {
3479      ValueDecl *VD = cast<ValueDecl>(*D);
3480      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3481                                       VD->getLocation(), diagKind)) {
3482        // C++ [class.union]p2:
3483        //   The names of the members of an anonymous union shall be
3484        //   distinct from the names of any other entity in the
3485        //   scope in which the anonymous union is declared.
3486        Invalid = true;
3487      } else {
3488        // C++ [class.union]p2:
3489        //   For the purpose of name lookup, after the anonymous union
3490        //   definition, the members of the anonymous union are
3491        //   considered to have been defined in the scope in which the
3492        //   anonymous union is declared.
3493        unsigned OldChainingSize = Chaining.size();
3494        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3495          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3496               PE = IF->chain_end(); PI != PE; ++PI)
3497            Chaining.push_back(*PI);
3498        else
3499          Chaining.push_back(VD);
3500
3501        assert(Chaining.size() >= 2);
3502        NamedDecl **NamedChain =
3503          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3504        for (unsigned i = 0; i < Chaining.size(); i++)
3505          NamedChain[i] = Chaining[i];
3506
3507        IndirectFieldDecl* IndirectField =
3508          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3509                                    VD->getIdentifier(), VD->getType(),
3510                                    NamedChain, Chaining.size());
3511
3512        IndirectField->setAccess(AS);
3513        IndirectField->setImplicit();
3514        SemaRef.PushOnScopeChains(IndirectField, S);
3515
3516        // That includes picking up the appropriate access specifier.
3517        if (AS != AS_none) IndirectField->setAccess(AS);
3518
3519        Chaining.resize(OldChainingSize);
3520      }
3521    }
3522  }
3523
3524  return Invalid;
3525}
3526
3527/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3528/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3529/// illegal input values are mapped to SC_None.
3530static StorageClass
3531StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3532  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3533  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3534         "Parser allowed 'typedef' as storage class VarDecl.");
3535  switch (StorageClassSpec) {
3536  case DeclSpec::SCS_unspecified:    return SC_None;
3537  case DeclSpec::SCS_extern:
3538    if (DS.isExternInLinkageSpec())
3539      return SC_None;
3540    return SC_Extern;
3541  case DeclSpec::SCS_static:         return SC_Static;
3542  case DeclSpec::SCS_auto:           return SC_Auto;
3543  case DeclSpec::SCS_register:       return SC_Register;
3544  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3545    // Illegal SCSs map to None: error reporting is up to the caller.
3546  case DeclSpec::SCS_mutable:        // Fall through.
3547  case DeclSpec::SCS_typedef:        return SC_None;
3548  }
3549  llvm_unreachable("unknown storage class specifier");
3550}
3551
3552/// BuildAnonymousStructOrUnion - Handle the declaration of an
3553/// anonymous structure or union. Anonymous unions are a C++ feature
3554/// (C++ [class.union]) and a C11 feature; anonymous structures
3555/// are a C11 feature and GNU C++ extension.
3556Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3557                                             AccessSpecifier AS,
3558                                             RecordDecl *Record) {
3559  DeclContext *Owner = Record->getDeclContext();
3560
3561  // Diagnose whether this anonymous struct/union is an extension.
3562  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3563    Diag(Record->getLocation(), diag::ext_anonymous_union);
3564  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3565    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3566  else if (!Record->isUnion() && !getLangOpts().C11)
3567    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3568
3569  // C and C++ require different kinds of checks for anonymous
3570  // structs/unions.
3571  bool Invalid = false;
3572  if (getLangOpts().CPlusPlus) {
3573    const char* PrevSpec = 0;
3574    unsigned DiagID;
3575    if (Record->isUnion()) {
3576      // C++ [class.union]p6:
3577      //   Anonymous unions declared in a named namespace or in the
3578      //   global namespace shall be declared static.
3579      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3580          (isa<TranslationUnitDecl>(Owner) ||
3581           (isa<NamespaceDecl>(Owner) &&
3582            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3583        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3584          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3585
3586        // Recover by adding 'static'.
3587        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3588                               PrevSpec, DiagID);
3589      }
3590      // C++ [class.union]p6:
3591      //   A storage class is not allowed in a declaration of an
3592      //   anonymous union in a class scope.
3593      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3594               isa<RecordDecl>(Owner)) {
3595        Diag(DS.getStorageClassSpecLoc(),
3596             diag::err_anonymous_union_with_storage_spec)
3597          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3598
3599        // Recover by removing the storage specifier.
3600        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3601                               SourceLocation(),
3602                               PrevSpec, DiagID);
3603      }
3604    }
3605
3606    // Ignore const/volatile/restrict qualifiers.
3607    if (DS.getTypeQualifiers()) {
3608      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3609        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3610          << Record->isUnion() << "const"
3611          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3612      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3613        Diag(DS.getVolatileSpecLoc(),
3614             diag::ext_anonymous_struct_union_qualified)
3615          << Record->isUnion() << "volatile"
3616          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3617      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3618        Diag(DS.getRestrictSpecLoc(),
3619             diag::ext_anonymous_struct_union_qualified)
3620          << Record->isUnion() << "restrict"
3621          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3622      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3623        Diag(DS.getAtomicSpecLoc(),
3624             diag::ext_anonymous_struct_union_qualified)
3625          << Record->isUnion() << "_Atomic"
3626          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3627
3628      DS.ClearTypeQualifiers();
3629    }
3630
3631    // C++ [class.union]p2:
3632    //   The member-specification of an anonymous union shall only
3633    //   define non-static data members. [Note: nested types and
3634    //   functions cannot be declared within an anonymous union. ]
3635    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3636                                 MemEnd = Record->decls_end();
3637         Mem != MemEnd; ++Mem) {
3638      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3639        // C++ [class.union]p3:
3640        //   An anonymous union shall not have private or protected
3641        //   members (clause 11).
3642        assert(FD->getAccess() != AS_none);
3643        if (FD->getAccess() != AS_public) {
3644          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3645            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3646          Invalid = true;
3647        }
3648
3649        // C++ [class.union]p1
3650        //   An object of a class with a non-trivial constructor, a non-trivial
3651        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3652        //   assignment operator cannot be a member of a union, nor can an
3653        //   array of such objects.
3654        if (CheckNontrivialField(FD))
3655          Invalid = true;
3656      } else if ((*Mem)->isImplicit()) {
3657        // Any implicit members are fine.
3658      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3659        // This is a type that showed up in an
3660        // elaborated-type-specifier inside the anonymous struct or
3661        // union, but which actually declares a type outside of the
3662        // anonymous struct or union. It's okay.
3663      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3664        if (!MemRecord->isAnonymousStructOrUnion() &&
3665            MemRecord->getDeclName()) {
3666          // Visual C++ allows type definition in anonymous struct or union.
3667          if (getLangOpts().MicrosoftExt)
3668            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3669              << (int)Record->isUnion();
3670          else {
3671            // This is a nested type declaration.
3672            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3673              << (int)Record->isUnion();
3674            Invalid = true;
3675          }
3676        } else {
3677          // This is an anonymous type definition within another anonymous type.
3678          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3679          // not part of standard C++.
3680          Diag(MemRecord->getLocation(),
3681               diag::ext_anonymous_record_with_anonymous_type)
3682            << (int)Record->isUnion();
3683        }
3684      } else if (isa<AccessSpecDecl>(*Mem)) {
3685        // Any access specifier is fine.
3686      } else {
3687        // We have something that isn't a non-static data
3688        // member. Complain about it.
3689        unsigned DK = diag::err_anonymous_record_bad_member;
3690        if (isa<TypeDecl>(*Mem))
3691          DK = diag::err_anonymous_record_with_type;
3692        else if (isa<FunctionDecl>(*Mem))
3693          DK = diag::err_anonymous_record_with_function;
3694        else if (isa<VarDecl>(*Mem))
3695          DK = diag::err_anonymous_record_with_static;
3696
3697        // Visual C++ allows type definition in anonymous struct or union.
3698        if (getLangOpts().MicrosoftExt &&
3699            DK == diag::err_anonymous_record_with_type)
3700          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3701            << (int)Record->isUnion();
3702        else {
3703          Diag((*Mem)->getLocation(), DK)
3704              << (int)Record->isUnion();
3705          Invalid = true;
3706        }
3707      }
3708    }
3709  }
3710
3711  if (!Record->isUnion() && !Owner->isRecord()) {
3712    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3713      << (int)getLangOpts().CPlusPlus;
3714    Invalid = true;
3715  }
3716
3717  // Mock up a declarator.
3718  Declarator Dc(DS, Declarator::MemberContext);
3719  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3720  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3721
3722  // Create a declaration for this anonymous struct/union.
3723  NamedDecl *Anon = 0;
3724  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3725    Anon = FieldDecl::Create(Context, OwningClass,
3726                             DS.getLocStart(),
3727                             Record->getLocation(),
3728                             /*IdentifierInfo=*/0,
3729                             Context.getTypeDeclType(Record),
3730                             TInfo,
3731                             /*BitWidth=*/0, /*Mutable=*/false,
3732                             /*InitStyle=*/ICIS_NoInit);
3733    Anon->setAccess(AS);
3734    if (getLangOpts().CPlusPlus)
3735      FieldCollector->Add(cast<FieldDecl>(Anon));
3736  } else {
3737    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3738    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3739    if (SCSpec == DeclSpec::SCS_mutable) {
3740      // mutable can only appear on non-static class members, so it's always
3741      // an error here
3742      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3743      Invalid = true;
3744      SC = SC_None;
3745    }
3746
3747    Anon = VarDecl::Create(Context, Owner,
3748                           DS.getLocStart(),
3749                           Record->getLocation(), /*IdentifierInfo=*/0,
3750                           Context.getTypeDeclType(Record),
3751                           TInfo, SC);
3752
3753    // Default-initialize the implicit variable. This initialization will be
3754    // trivial in almost all cases, except if a union member has an in-class
3755    // initializer:
3756    //   union { int n = 0; };
3757    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3758  }
3759  Anon->setImplicit();
3760
3761  // Add the anonymous struct/union object to the current
3762  // context. We'll be referencing this object when we refer to one of
3763  // its members.
3764  Owner->addDecl(Anon);
3765
3766  // Inject the members of the anonymous struct/union into the owning
3767  // context and into the identifier resolver chain for name lookup
3768  // purposes.
3769  SmallVector<NamedDecl*, 2> Chain;
3770  Chain.push_back(Anon);
3771
3772  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3773                                          Chain, false))
3774    Invalid = true;
3775
3776  // Mark this as an anonymous struct/union type. Note that we do not
3777  // do this until after we have already checked and injected the
3778  // members of this anonymous struct/union type, because otherwise
3779  // the members could be injected twice: once by DeclContext when it
3780  // builds its lookup table, and once by
3781  // InjectAnonymousStructOrUnionMembers.
3782  Record->setAnonymousStructOrUnion(true);
3783
3784  if (Invalid)
3785    Anon->setInvalidDecl();
3786
3787  return Anon;
3788}
3789
3790/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3791/// Microsoft C anonymous structure.
3792/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3793/// Example:
3794///
3795/// struct A { int a; };
3796/// struct B { struct A; int b; };
3797///
3798/// void foo() {
3799///   B var;
3800///   var.a = 3;
3801/// }
3802///
3803Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3804                                           RecordDecl *Record) {
3805
3806  // If there is no Record, get the record via the typedef.
3807  if (!Record)
3808    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3809
3810  // Mock up a declarator.
3811  Declarator Dc(DS, Declarator::TypeNameContext);
3812  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3813  assert(TInfo && "couldn't build declarator info for anonymous struct");
3814
3815  // Create a declaration for this anonymous struct.
3816  NamedDecl* Anon = FieldDecl::Create(Context,
3817                             cast<RecordDecl>(CurContext),
3818                             DS.getLocStart(),
3819                             DS.getLocStart(),
3820                             /*IdentifierInfo=*/0,
3821                             Context.getTypeDeclType(Record),
3822                             TInfo,
3823                             /*BitWidth=*/0, /*Mutable=*/false,
3824                             /*InitStyle=*/ICIS_NoInit);
3825  Anon->setImplicit();
3826
3827  // Add the anonymous struct object to the current context.
3828  CurContext->addDecl(Anon);
3829
3830  // Inject the members of the anonymous struct into the current
3831  // context and into the identifier resolver chain for name lookup
3832  // purposes.
3833  SmallVector<NamedDecl*, 2> Chain;
3834  Chain.push_back(Anon);
3835
3836  RecordDecl *RecordDef = Record->getDefinition();
3837  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3838                                                        RecordDef, AS_none,
3839                                                        Chain, true))
3840    Anon->setInvalidDecl();
3841
3842  return Anon;
3843}
3844
3845/// GetNameForDeclarator - Determine the full declaration name for the
3846/// given Declarator.
3847DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3848  return GetNameFromUnqualifiedId(D.getName());
3849}
3850
3851/// \brief Retrieves the declaration name from a parsed unqualified-id.
3852DeclarationNameInfo
3853Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3854  DeclarationNameInfo NameInfo;
3855  NameInfo.setLoc(Name.StartLocation);
3856
3857  switch (Name.getKind()) {
3858
3859  case UnqualifiedId::IK_ImplicitSelfParam:
3860  case UnqualifiedId::IK_Identifier:
3861    NameInfo.setName(Name.Identifier);
3862    NameInfo.setLoc(Name.StartLocation);
3863    return NameInfo;
3864
3865  case UnqualifiedId::IK_OperatorFunctionId:
3866    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3867                                           Name.OperatorFunctionId.Operator));
3868    NameInfo.setLoc(Name.StartLocation);
3869    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3870      = Name.OperatorFunctionId.SymbolLocations[0];
3871    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3872      = Name.EndLocation.getRawEncoding();
3873    return NameInfo;
3874
3875  case UnqualifiedId::IK_LiteralOperatorId:
3876    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3877                                                           Name.Identifier));
3878    NameInfo.setLoc(Name.StartLocation);
3879    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3880    return NameInfo;
3881
3882  case UnqualifiedId::IK_ConversionFunctionId: {
3883    TypeSourceInfo *TInfo;
3884    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3885    if (Ty.isNull())
3886      return DeclarationNameInfo();
3887    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3888                                               Context.getCanonicalType(Ty)));
3889    NameInfo.setLoc(Name.StartLocation);
3890    NameInfo.setNamedTypeInfo(TInfo);
3891    return NameInfo;
3892  }
3893
3894  case UnqualifiedId::IK_ConstructorName: {
3895    TypeSourceInfo *TInfo;
3896    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3897    if (Ty.isNull())
3898      return DeclarationNameInfo();
3899    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3900                                              Context.getCanonicalType(Ty)));
3901    NameInfo.setLoc(Name.StartLocation);
3902    NameInfo.setNamedTypeInfo(TInfo);
3903    return NameInfo;
3904  }
3905
3906  case UnqualifiedId::IK_ConstructorTemplateId: {
3907    // In well-formed code, we can only have a constructor
3908    // template-id that refers to the current context, so go there
3909    // to find the actual type being constructed.
3910    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3911    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3912      return DeclarationNameInfo();
3913
3914    // Determine the type of the class being constructed.
3915    QualType CurClassType = Context.getTypeDeclType(CurClass);
3916
3917    // FIXME: Check two things: that the template-id names the same type as
3918    // CurClassType, and that the template-id does not occur when the name
3919    // was qualified.
3920
3921    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3922                                    Context.getCanonicalType(CurClassType)));
3923    NameInfo.setLoc(Name.StartLocation);
3924    // FIXME: should we retrieve TypeSourceInfo?
3925    NameInfo.setNamedTypeInfo(0);
3926    return NameInfo;
3927  }
3928
3929  case UnqualifiedId::IK_DestructorName: {
3930    TypeSourceInfo *TInfo;
3931    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3932    if (Ty.isNull())
3933      return DeclarationNameInfo();
3934    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3935                                              Context.getCanonicalType(Ty)));
3936    NameInfo.setLoc(Name.StartLocation);
3937    NameInfo.setNamedTypeInfo(TInfo);
3938    return NameInfo;
3939  }
3940
3941  case UnqualifiedId::IK_TemplateId: {
3942    TemplateName TName = Name.TemplateId->Template.get();
3943    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3944    return Context.getNameForTemplate(TName, TNameLoc);
3945  }
3946
3947  } // switch (Name.getKind())
3948
3949  llvm_unreachable("Unknown name kind");
3950}
3951
3952static QualType getCoreType(QualType Ty) {
3953  do {
3954    if (Ty->isPointerType() || Ty->isReferenceType())
3955      Ty = Ty->getPointeeType();
3956    else if (Ty->isArrayType())
3957      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3958    else
3959      return Ty.withoutLocalFastQualifiers();
3960  } while (true);
3961}
3962
3963/// hasSimilarParameters - Determine whether the C++ functions Declaration
3964/// and Definition have "nearly" matching parameters. This heuristic is
3965/// used to improve diagnostics in the case where an out-of-line function
3966/// definition doesn't match any declaration within the class or namespace.
3967/// Also sets Params to the list of indices to the parameters that differ
3968/// between the declaration and the definition. If hasSimilarParameters
3969/// returns true and Params is empty, then all of the parameters match.
3970static bool hasSimilarParameters(ASTContext &Context,
3971                                     FunctionDecl *Declaration,
3972                                     FunctionDecl *Definition,
3973                                     SmallVectorImpl<unsigned> &Params) {
3974  Params.clear();
3975  if (Declaration->param_size() != Definition->param_size())
3976    return false;
3977  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3978    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3979    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3980
3981    // The parameter types are identical
3982    if (Context.hasSameType(DefParamTy, DeclParamTy))
3983      continue;
3984
3985    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3986    QualType DefParamBaseTy = getCoreType(DefParamTy);
3987    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3988    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3989
3990    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3991        (DeclTyName && DeclTyName == DefTyName))
3992      Params.push_back(Idx);
3993    else  // The two parameters aren't even close
3994      return false;
3995  }
3996
3997  return true;
3998}
3999
4000/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4001/// declarator needs to be rebuilt in the current instantiation.
4002/// Any bits of declarator which appear before the name are valid for
4003/// consideration here.  That's specifically the type in the decl spec
4004/// and the base type in any member-pointer chunks.
4005static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4006                                                    DeclarationName Name) {
4007  // The types we specifically need to rebuild are:
4008  //   - typenames, typeofs, and decltypes
4009  //   - types which will become injected class names
4010  // Of course, we also need to rebuild any type referencing such a
4011  // type.  It's safest to just say "dependent", but we call out a
4012  // few cases here.
4013
4014  DeclSpec &DS = D.getMutableDeclSpec();
4015  switch (DS.getTypeSpecType()) {
4016  case DeclSpec::TST_typename:
4017  case DeclSpec::TST_typeofType:
4018  case DeclSpec::TST_underlyingType:
4019  case DeclSpec::TST_atomic: {
4020    // Grab the type from the parser.
4021    TypeSourceInfo *TSI = 0;
4022    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4023    if (T.isNull() || !T->isDependentType()) break;
4024
4025    // Make sure there's a type source info.  This isn't really much
4026    // of a waste; most dependent types should have type source info
4027    // attached already.
4028    if (!TSI)
4029      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4030
4031    // Rebuild the type in the current instantiation.
4032    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4033    if (!TSI) return true;
4034
4035    // Store the new type back in the decl spec.
4036    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4037    DS.UpdateTypeRep(LocType);
4038    break;
4039  }
4040
4041  case DeclSpec::TST_decltype:
4042  case DeclSpec::TST_typeofExpr: {
4043    Expr *E = DS.getRepAsExpr();
4044    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4045    if (Result.isInvalid()) return true;
4046    DS.UpdateExprRep(Result.get());
4047    break;
4048  }
4049
4050  default:
4051    // Nothing to do for these decl specs.
4052    break;
4053  }
4054
4055  // It doesn't matter what order we do this in.
4056  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4057    DeclaratorChunk &Chunk = D.getTypeObject(I);
4058
4059    // The only type information in the declarator which can come
4060    // before the declaration name is the base type of a member
4061    // pointer.
4062    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4063      continue;
4064
4065    // Rebuild the scope specifier in-place.
4066    CXXScopeSpec &SS = Chunk.Mem.Scope();
4067    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4068      return true;
4069  }
4070
4071  return false;
4072}
4073
4074Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4075  D.setFunctionDefinitionKind(FDK_Declaration);
4076  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4077
4078  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4079      Dcl && Dcl->getDeclContext()->isFileContext())
4080    Dcl->setTopLevelDeclInObjCContainer();
4081
4082  return Dcl;
4083}
4084
4085/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4086///   If T is the name of a class, then each of the following shall have a
4087///   name different from T:
4088///     - every static data member of class T;
4089///     - every member function of class T
4090///     - every member of class T that is itself a type;
4091/// \returns true if the declaration name violates these rules.
4092bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4093                                   DeclarationNameInfo NameInfo) {
4094  DeclarationName Name = NameInfo.getName();
4095
4096  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4097    if (Record->getIdentifier() && Record->getDeclName() == Name) {
4098      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4099      return true;
4100    }
4101
4102  return false;
4103}
4104
4105/// \brief Diagnose a declaration whose declarator-id has the given
4106/// nested-name-specifier.
4107///
4108/// \param SS The nested-name-specifier of the declarator-id.
4109///
4110/// \param DC The declaration context to which the nested-name-specifier
4111/// resolves.
4112///
4113/// \param Name The name of the entity being declared.
4114///
4115/// \param Loc The location of the name of the entity being declared.
4116///
4117/// \returns true if we cannot safely recover from this error, false otherwise.
4118bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4119                                        DeclarationName Name,
4120                                      SourceLocation Loc) {
4121  DeclContext *Cur = CurContext;
4122  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4123    Cur = Cur->getParent();
4124
4125  // C++ [dcl.meaning]p1:
4126  //   A declarator-id shall not be qualified except for the definition
4127  //   of a member function (9.3) or static data member (9.4) outside of
4128  //   its class, the definition or explicit instantiation of a function
4129  //   or variable member of a namespace outside of its namespace, or the
4130  //   definition of an explicit specialization outside of its namespace,
4131  //   or the declaration of a friend function that is a member of
4132  //   another class or namespace (11.3). [...]
4133
4134  // The user provided a superfluous scope specifier that refers back to the
4135  // class or namespaces in which the entity is already declared.
4136  //
4137  // class X {
4138  //   void X::f();
4139  // };
4140  if (Cur->Equals(DC)) {
4141    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4142                                   : diag::err_member_extra_qualification)
4143      << Name << FixItHint::CreateRemoval(SS.getRange());
4144    SS.clear();
4145    return false;
4146  }
4147
4148  // Check whether the qualifying scope encloses the scope of the original
4149  // declaration.
4150  if (!Cur->Encloses(DC)) {
4151    if (Cur->isRecord())
4152      Diag(Loc, diag::err_member_qualification)
4153        << Name << SS.getRange();
4154    else if (isa<TranslationUnitDecl>(DC))
4155      Diag(Loc, diag::err_invalid_declarator_global_scope)
4156        << Name << SS.getRange();
4157    else if (isa<FunctionDecl>(Cur))
4158      Diag(Loc, diag::err_invalid_declarator_in_function)
4159        << Name << SS.getRange();
4160    else if (isa<BlockDecl>(Cur))
4161      Diag(Loc, diag::err_invalid_declarator_in_block)
4162        << Name << SS.getRange();
4163    else
4164      Diag(Loc, diag::err_invalid_declarator_scope)
4165      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4166
4167    return true;
4168  }
4169
4170  if (Cur->isRecord()) {
4171    // Cannot qualify members within a class.
4172    Diag(Loc, diag::err_member_qualification)
4173      << Name << SS.getRange();
4174    SS.clear();
4175
4176    // C++ constructors and destructors with incorrect scopes can break
4177    // our AST invariants by having the wrong underlying types. If
4178    // that's the case, then drop this declaration entirely.
4179    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4180         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4181        !Context.hasSameType(Name.getCXXNameType(),
4182                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4183      return true;
4184
4185    return false;
4186  }
4187
4188  // C++11 [dcl.meaning]p1:
4189  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4190  //   not begin with a decltype-specifer"
4191  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4192  while (SpecLoc.getPrefix())
4193    SpecLoc = SpecLoc.getPrefix();
4194  if (dyn_cast_or_null<DecltypeType>(
4195        SpecLoc.getNestedNameSpecifier()->getAsType()))
4196    Diag(Loc, diag::err_decltype_in_declarator)
4197      << SpecLoc.getTypeLoc().getSourceRange();
4198
4199  return false;
4200}
4201
4202NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4203                                  MultiTemplateParamsArg TemplateParamLists) {
4204  // TODO: consider using NameInfo for diagnostic.
4205  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4206  DeclarationName Name = NameInfo.getName();
4207
4208  // All of these full declarators require an identifier.  If it doesn't have
4209  // one, the ParsedFreeStandingDeclSpec action should be used.
4210  if (!Name) {
4211    if (!D.isInvalidType())  // Reject this if we think it is valid.
4212      Diag(D.getDeclSpec().getLocStart(),
4213           diag::err_declarator_need_ident)
4214        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4215    return 0;
4216  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4217    return 0;
4218
4219  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4220  // we find one that is.
4221  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4222         (S->getFlags() & Scope::TemplateParamScope) != 0)
4223    S = S->getParent();
4224
4225  DeclContext *DC = CurContext;
4226  if (D.getCXXScopeSpec().isInvalid())
4227    D.setInvalidType();
4228  else if (D.getCXXScopeSpec().isSet()) {
4229    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4230                                        UPPC_DeclarationQualifier))
4231      return 0;
4232
4233    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4234    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4235    if (!DC || isa<EnumDecl>(DC)) {
4236      // If we could not compute the declaration context, it's because the
4237      // declaration context is dependent but does not refer to a class,
4238      // class template, or class template partial specialization. Complain
4239      // and return early, to avoid the coming semantic disaster.
4240      Diag(D.getIdentifierLoc(),
4241           diag::err_template_qualified_declarator_no_match)
4242        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4243        << D.getCXXScopeSpec().getRange();
4244      return 0;
4245    }
4246    bool IsDependentContext = DC->isDependentContext();
4247
4248    if (!IsDependentContext &&
4249        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4250      return 0;
4251
4252    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4253      Diag(D.getIdentifierLoc(),
4254           diag::err_member_def_undefined_record)
4255        << Name << DC << D.getCXXScopeSpec().getRange();
4256      D.setInvalidType();
4257    } else if (!D.getDeclSpec().isFriendSpecified()) {
4258      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4259                                      Name, D.getIdentifierLoc())) {
4260        if (DC->isRecord())
4261          return 0;
4262
4263        D.setInvalidType();
4264      }
4265    }
4266
4267    // Check whether we need to rebuild the type of the given
4268    // declaration in the current instantiation.
4269    if (EnteringContext && IsDependentContext &&
4270        TemplateParamLists.size() != 0) {
4271      ContextRAII SavedContext(*this, DC);
4272      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4273        D.setInvalidType();
4274    }
4275  }
4276
4277  if (DiagnoseClassNameShadow(DC, NameInfo))
4278    // If this is a typedef, we'll end up spewing multiple diagnostics.
4279    // Just return early; it's safer.
4280    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4281      return 0;
4282
4283  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4284  QualType R = TInfo->getType();
4285
4286  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4287                                      UPPC_DeclarationType))
4288    D.setInvalidType();
4289
4290  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4291                        ForRedeclaration);
4292
4293  // See if this is a redefinition of a variable in the same scope.
4294  if (!D.getCXXScopeSpec().isSet()) {
4295    bool IsLinkageLookup = false;
4296    bool CreateBuiltins = false;
4297
4298    // If the declaration we're planning to build will be a function
4299    // or object with linkage, then look for another declaration with
4300    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4301    //
4302    // If the declaration we're planning to build will be declared with
4303    // external linkage in the translation unit, create any builtin with
4304    // the same name.
4305    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4306      /* Do nothing*/;
4307    else if (CurContext->isFunctionOrMethod() &&
4308             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4309              R->isFunctionType())) {
4310      IsLinkageLookup = true;
4311      CreateBuiltins =
4312          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4313    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4314               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4315      CreateBuiltins = true;
4316
4317    if (IsLinkageLookup)
4318      Previous.clear(LookupRedeclarationWithLinkage);
4319
4320    LookupName(Previous, S, CreateBuiltins);
4321  } else { // Something like "int foo::x;"
4322    LookupQualifiedName(Previous, DC);
4323
4324    // C++ [dcl.meaning]p1:
4325    //   When the declarator-id is qualified, the declaration shall refer to a
4326    //  previously declared member of the class or namespace to which the
4327    //  qualifier refers (or, in the case of a namespace, of an element of the
4328    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4329    //  thereof; [...]
4330    //
4331    // Note that we already checked the context above, and that we do not have
4332    // enough information to make sure that Previous contains the declaration
4333    // we want to match. For example, given:
4334    //
4335    //   class X {
4336    //     void f();
4337    //     void f(float);
4338    //   };
4339    //
4340    //   void X::f(int) { } // ill-formed
4341    //
4342    // In this case, Previous will point to the overload set
4343    // containing the two f's declared in X, but neither of them
4344    // matches.
4345
4346    // C++ [dcl.meaning]p1:
4347    //   [...] the member shall not merely have been introduced by a
4348    //   using-declaration in the scope of the class or namespace nominated by
4349    //   the nested-name-specifier of the declarator-id.
4350    RemoveUsingDecls(Previous);
4351  }
4352
4353  if (Previous.isSingleResult() &&
4354      Previous.getFoundDecl()->isTemplateParameter()) {
4355    // Maybe we will complain about the shadowed template parameter.
4356    if (!D.isInvalidType())
4357      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4358                                      Previous.getFoundDecl());
4359
4360    // Just pretend that we didn't see the previous declaration.
4361    Previous.clear();
4362  }
4363
4364  // In C++, the previous declaration we find might be a tag type
4365  // (class or enum). In this case, the new declaration will hide the
4366  // tag type. Note that this does does not apply if we're declaring a
4367  // typedef (C++ [dcl.typedef]p4).
4368  if (Previous.isSingleTagDecl() &&
4369      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4370    Previous.clear();
4371
4372  // Check that there are no default arguments other than in the parameters
4373  // of a function declaration (C++ only).
4374  if (getLangOpts().CPlusPlus)
4375    CheckExtraCXXDefaultArguments(D);
4376
4377  NamedDecl *New;
4378
4379  bool AddToScope = true;
4380  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4381    if (TemplateParamLists.size()) {
4382      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4383      return 0;
4384    }
4385
4386    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4387  } else if (R->isFunctionType()) {
4388    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4389                                  TemplateParamLists,
4390                                  AddToScope);
4391  } else {
4392    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4393                                  AddToScope);
4394  }
4395
4396  if (New == 0)
4397    return 0;
4398
4399  // If this has an identifier and is not an invalid redeclaration or
4400  // function template specialization, add it to the scope stack.
4401  if (New->getDeclName() && AddToScope &&
4402       !(D.isRedeclaration() && New->isInvalidDecl())) {
4403    // Only make a locally-scoped extern declaration visible if it is the first
4404    // declaration of this entity. Qualified lookup for such an entity should
4405    // only find this declaration if there is no visible declaration of it.
4406    bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4407    PushOnScopeChains(New, S, AddToContext);
4408    if (!AddToContext)
4409      CurContext->addHiddenDecl(New);
4410  }
4411
4412  return New;
4413}
4414
4415/// Helper method to turn variable array types into constant array
4416/// types in certain situations which would otherwise be errors (for
4417/// GCC compatibility).
4418static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4419                                                    ASTContext &Context,
4420                                                    bool &SizeIsNegative,
4421                                                    llvm::APSInt &Oversized) {
4422  // This method tries to turn a variable array into a constant
4423  // array even when the size isn't an ICE.  This is necessary
4424  // for compatibility with code that depends on gcc's buggy
4425  // constant expression folding, like struct {char x[(int)(char*)2];}
4426  SizeIsNegative = false;
4427  Oversized = 0;
4428
4429  if (T->isDependentType())
4430    return QualType();
4431
4432  QualifierCollector Qs;
4433  const Type *Ty = Qs.strip(T);
4434
4435  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4436    QualType Pointee = PTy->getPointeeType();
4437    QualType FixedType =
4438        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4439                                            Oversized);
4440    if (FixedType.isNull()) return FixedType;
4441    FixedType = Context.getPointerType(FixedType);
4442    return Qs.apply(Context, FixedType);
4443  }
4444  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4445    QualType Inner = PTy->getInnerType();
4446    QualType FixedType =
4447        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4448                                            Oversized);
4449    if (FixedType.isNull()) return FixedType;
4450    FixedType = Context.getParenType(FixedType);
4451    return Qs.apply(Context, FixedType);
4452  }
4453
4454  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4455  if (!VLATy)
4456    return QualType();
4457  // FIXME: We should probably handle this case
4458  if (VLATy->getElementType()->isVariablyModifiedType())
4459    return QualType();
4460
4461  llvm::APSInt Res;
4462  if (!VLATy->getSizeExpr() ||
4463      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4464    return QualType();
4465
4466  // Check whether the array size is negative.
4467  if (Res.isSigned() && Res.isNegative()) {
4468    SizeIsNegative = true;
4469    return QualType();
4470  }
4471
4472  // Check whether the array is too large to be addressed.
4473  unsigned ActiveSizeBits
4474    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4475                                              Res);
4476  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4477    Oversized = Res;
4478    return QualType();
4479  }
4480
4481  return Context.getConstantArrayType(VLATy->getElementType(),
4482                                      Res, ArrayType::Normal, 0);
4483}
4484
4485static void
4486FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4487  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4488    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4489    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4490                                      DstPTL.getPointeeLoc());
4491    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4492    return;
4493  }
4494  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4495    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4496    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4497                                      DstPTL.getInnerLoc());
4498    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4499    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4500    return;
4501  }
4502  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4503  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4504  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4505  TypeLoc DstElemTL = DstATL.getElementLoc();
4506  DstElemTL.initializeFullCopy(SrcElemTL);
4507  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4508  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4509  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4510}
4511
4512/// Helper method to turn variable array types into constant array
4513/// types in certain situations which would otherwise be errors (for
4514/// GCC compatibility).
4515static TypeSourceInfo*
4516TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4517                                              ASTContext &Context,
4518                                              bool &SizeIsNegative,
4519                                              llvm::APSInt &Oversized) {
4520  QualType FixedTy
4521    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4522                                          SizeIsNegative, Oversized);
4523  if (FixedTy.isNull())
4524    return 0;
4525  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4526  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4527                                    FixedTInfo->getTypeLoc());
4528  return FixedTInfo;
4529}
4530
4531/// \brief Register the given locally-scoped extern "C" declaration so
4532/// that it can be found later for redeclarations. We include any extern "C"
4533/// declaration that is not visible in the translation unit here, not just
4534/// function-scope declarations.
4535void
4536Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4537  if (!getLangOpts().CPlusPlus &&
4538      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4539    // Don't need to track declarations in the TU in C.
4540    return;
4541
4542  // Note that we have a locally-scoped external with this name.
4543  // FIXME: There can be multiple such declarations if they are functions marked
4544  // __attribute__((overloadable)) declared in function scope in C.
4545  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4546}
4547
4548NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4549  if (ExternalSource) {
4550    // Load locally-scoped external decls from the external source.
4551    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4552    SmallVector<NamedDecl *, 4> Decls;
4553    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4554    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4555      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4556        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4557      if (Pos == LocallyScopedExternCDecls.end())
4558        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4559    }
4560  }
4561
4562  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4563  return D ? D->getMostRecentDecl() : 0;
4564}
4565
4566/// \brief Diagnose function specifiers on a declaration of an identifier that
4567/// does not identify a function.
4568void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4569  // FIXME: We should probably indicate the identifier in question to avoid
4570  // confusion for constructs like "inline int a(), b;"
4571  if (DS.isInlineSpecified())
4572    Diag(DS.getInlineSpecLoc(),
4573         diag::err_inline_non_function);
4574
4575  if (DS.isVirtualSpecified())
4576    Diag(DS.getVirtualSpecLoc(),
4577         diag::err_virtual_non_function);
4578
4579  if (DS.isExplicitSpecified())
4580    Diag(DS.getExplicitSpecLoc(),
4581         diag::err_explicit_non_function);
4582
4583  if (DS.isNoreturnSpecified())
4584    Diag(DS.getNoreturnSpecLoc(),
4585         diag::err_noreturn_non_function);
4586}
4587
4588NamedDecl*
4589Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4590                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4591  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4592  if (D.getCXXScopeSpec().isSet()) {
4593    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4594      << D.getCXXScopeSpec().getRange();
4595    D.setInvalidType();
4596    // Pretend we didn't see the scope specifier.
4597    DC = CurContext;
4598    Previous.clear();
4599  }
4600
4601  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4602
4603  if (D.getDeclSpec().isConstexprSpecified())
4604    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4605      << 1;
4606
4607  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4608    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4609      << D.getName().getSourceRange();
4610    return 0;
4611  }
4612
4613  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4614  if (!NewTD) return 0;
4615
4616  // Handle attributes prior to checking for duplicates in MergeVarDecl
4617  ProcessDeclAttributes(S, NewTD, D);
4618
4619  CheckTypedefForVariablyModifiedType(S, NewTD);
4620
4621  bool Redeclaration = D.isRedeclaration();
4622  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4623  D.setRedeclaration(Redeclaration);
4624  return ND;
4625}
4626
4627void
4628Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4629  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4630  // then it shall have block scope.
4631  // Note that variably modified types must be fixed before merging the decl so
4632  // that redeclarations will match.
4633  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4634  QualType T = TInfo->getType();
4635  if (T->isVariablyModifiedType()) {
4636    getCurFunction()->setHasBranchProtectedScope();
4637
4638    if (S->getFnParent() == 0) {
4639      bool SizeIsNegative;
4640      llvm::APSInt Oversized;
4641      TypeSourceInfo *FixedTInfo =
4642        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4643                                                      SizeIsNegative,
4644                                                      Oversized);
4645      if (FixedTInfo) {
4646        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4647        NewTD->setTypeSourceInfo(FixedTInfo);
4648      } else {
4649        if (SizeIsNegative)
4650          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4651        else if (T->isVariableArrayType())
4652          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4653        else if (Oversized.getBoolValue())
4654          Diag(NewTD->getLocation(), diag::err_array_too_large)
4655            << Oversized.toString(10);
4656        else
4657          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4658        NewTD->setInvalidDecl();
4659      }
4660    }
4661  }
4662}
4663
4664
4665/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4666/// declares a typedef-name, either using the 'typedef' type specifier or via
4667/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4668NamedDecl*
4669Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4670                           LookupResult &Previous, bool &Redeclaration) {
4671  // Merge the decl with the existing one if appropriate. If the decl is
4672  // in an outer scope, it isn't the same thing.
4673  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4674                       /*ExplicitInstantiationOrSpecialization=*/false);
4675  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4676  if (!Previous.empty()) {
4677    Redeclaration = true;
4678    MergeTypedefNameDecl(NewTD, Previous);
4679  }
4680
4681  // If this is the C FILE type, notify the AST context.
4682  if (IdentifierInfo *II = NewTD->getIdentifier())
4683    if (!NewTD->isInvalidDecl() &&
4684        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4685      if (II->isStr("FILE"))
4686        Context.setFILEDecl(NewTD);
4687      else if (II->isStr("jmp_buf"))
4688        Context.setjmp_bufDecl(NewTD);
4689      else if (II->isStr("sigjmp_buf"))
4690        Context.setsigjmp_bufDecl(NewTD);
4691      else if (II->isStr("ucontext_t"))
4692        Context.setucontext_tDecl(NewTD);
4693    }
4694
4695  return NewTD;
4696}
4697
4698/// \brief Determines whether the given declaration is an out-of-scope
4699/// previous declaration.
4700///
4701/// This routine should be invoked when name lookup has found a
4702/// previous declaration (PrevDecl) that is not in the scope where a
4703/// new declaration by the same name is being introduced. If the new
4704/// declaration occurs in a local scope, previous declarations with
4705/// linkage may still be considered previous declarations (C99
4706/// 6.2.2p4-5, C++ [basic.link]p6).
4707///
4708/// \param PrevDecl the previous declaration found by name
4709/// lookup
4710///
4711/// \param DC the context in which the new declaration is being
4712/// declared.
4713///
4714/// \returns true if PrevDecl is an out-of-scope previous declaration
4715/// for a new delcaration with the same name.
4716static bool
4717isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4718                                ASTContext &Context) {
4719  if (!PrevDecl)
4720    return false;
4721
4722  if (!PrevDecl->hasLinkage())
4723    return false;
4724
4725  if (Context.getLangOpts().CPlusPlus) {
4726    // C++ [basic.link]p6:
4727    //   If there is a visible declaration of an entity with linkage
4728    //   having the same name and type, ignoring entities declared
4729    //   outside the innermost enclosing namespace scope, the block
4730    //   scope declaration declares that same entity and receives the
4731    //   linkage of the previous declaration.
4732    DeclContext *OuterContext = DC->getRedeclContext();
4733    if (!OuterContext->isFunctionOrMethod())
4734      // This rule only applies to block-scope declarations.
4735      return false;
4736
4737    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4738    if (PrevOuterContext->isRecord())
4739      // We found a member function: ignore it.
4740      return false;
4741
4742    // Find the innermost enclosing namespace for the new and
4743    // previous declarations.
4744    OuterContext = OuterContext->getEnclosingNamespaceContext();
4745    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4746
4747    // The previous declaration is in a different namespace, so it
4748    // isn't the same function.
4749    if (!OuterContext->Equals(PrevOuterContext))
4750      return false;
4751  }
4752
4753  return true;
4754}
4755
4756static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4757  CXXScopeSpec &SS = D.getCXXScopeSpec();
4758  if (!SS.isSet()) return;
4759  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4760}
4761
4762bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4763  QualType type = decl->getType();
4764  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4765  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4766    // Various kinds of declaration aren't allowed to be __autoreleasing.
4767    unsigned kind = -1U;
4768    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4769      if (var->hasAttr<BlocksAttr>())
4770        kind = 0; // __block
4771      else if (!var->hasLocalStorage())
4772        kind = 1; // global
4773    } else if (isa<ObjCIvarDecl>(decl)) {
4774      kind = 3; // ivar
4775    } else if (isa<FieldDecl>(decl)) {
4776      kind = 2; // field
4777    }
4778
4779    if (kind != -1U) {
4780      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4781        << kind;
4782    }
4783  } else if (lifetime == Qualifiers::OCL_None) {
4784    // Try to infer lifetime.
4785    if (!type->isObjCLifetimeType())
4786      return false;
4787
4788    lifetime = type->getObjCARCImplicitLifetime();
4789    type = Context.getLifetimeQualifiedType(type, lifetime);
4790    decl->setType(type);
4791  }
4792
4793  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4794    // Thread-local variables cannot have lifetime.
4795    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4796        var->getTLSKind()) {
4797      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4798        << var->getType();
4799      return true;
4800    }
4801  }
4802
4803  return false;
4804}
4805
4806static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4807  // 'weak' only applies to declarations with external linkage.
4808  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4809    if (!ND.isExternallyVisible()) {
4810      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4811      ND.dropAttr<WeakAttr>();
4812    }
4813  }
4814  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4815    if (ND.isExternallyVisible()) {
4816      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4817      ND.dropAttr<WeakRefAttr>();
4818    }
4819  }
4820
4821  // 'selectany' only applies to externally visible varable declarations.
4822  // It does not apply to functions.
4823  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4824    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4825      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4826      ND.dropAttr<SelectAnyAttr>();
4827    }
4828  }
4829}
4830
4831/// Given that we are within the definition of the given function,
4832/// will that definition behave like C99's 'inline', where the
4833/// definition is discarded except for optimization purposes?
4834static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4835  // Try to avoid calling GetGVALinkageForFunction.
4836
4837  // All cases of this require the 'inline' keyword.
4838  if (!FD->isInlined()) return false;
4839
4840  // This is only possible in C++ with the gnu_inline attribute.
4841  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4842    return false;
4843
4844  // Okay, go ahead and call the relatively-more-expensive function.
4845
4846#ifndef NDEBUG
4847  // AST quite reasonably asserts that it's working on a function
4848  // definition.  We don't really have a way to tell it that we're
4849  // currently defining the function, so just lie to it in +Asserts
4850  // builds.  This is an awful hack.
4851  FD->setLazyBody(1);
4852#endif
4853
4854  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4855
4856#ifndef NDEBUG
4857  FD->setLazyBody(0);
4858#endif
4859
4860  return isC99Inline;
4861}
4862
4863/// Determine whether a variable is extern "C" prior to attaching
4864/// an initializer. We can't just call isExternC() here, because that
4865/// will also compute and cache whether the declaration is externally
4866/// visible, which might change when we attach the initializer.
4867///
4868/// This can only be used if the declaration is known to not be a
4869/// redeclaration of an internal linkage declaration.
4870///
4871/// For instance:
4872///
4873///   auto x = []{};
4874///
4875/// Attaching the initializer here makes this declaration not externally
4876/// visible, because its type has internal linkage.
4877///
4878/// FIXME: This is a hack.
4879template<typename T>
4880static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4881  if (S.getLangOpts().CPlusPlus) {
4882    // In C++, the overloadable attribute negates the effects of extern "C".
4883    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4884      return false;
4885  }
4886  return D->isExternC();
4887}
4888
4889static bool shouldConsiderLinkage(const VarDecl *VD) {
4890  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4891  if (DC->isFunctionOrMethod())
4892    return VD->hasExternalStorage();
4893  if (DC->isFileContext())
4894    return true;
4895  if (DC->isRecord())
4896    return false;
4897  llvm_unreachable("Unexpected context");
4898}
4899
4900static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4901  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4902  if (DC->isFileContext() || DC->isFunctionOrMethod())
4903    return true;
4904  if (DC->isRecord())
4905    return false;
4906  llvm_unreachable("Unexpected context");
4907}
4908
4909/// Adjust the \c DeclContext for a function or variable that might be a
4910/// function-local external declaration.
4911bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
4912  if (!DC->isFunctionOrMethod())
4913    return false;
4914
4915  // If this is a local extern function or variable declared within a function
4916  // template, don't add it into the enclosing namespace scope until it is
4917  // instantiated; it might have a dependent type right now.
4918  if (DC->isDependentContext())
4919    return true;
4920
4921  // C++11 [basic.link]p7:
4922  //   When a block scope declaration of an entity with linkage is not found to
4923  //   refer to some other declaration, then that entity is a member of the
4924  //   innermost enclosing namespace.
4925  //
4926  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
4927  // semantically-enclosing namespace, not a lexically-enclosing one.
4928  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
4929    DC = DC->getParent();
4930  return true;
4931}
4932
4933NamedDecl *
4934Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4935                              TypeSourceInfo *TInfo, LookupResult &Previous,
4936                              MultiTemplateParamsArg TemplateParamLists,
4937                              bool &AddToScope) {
4938  QualType R = TInfo->getType();
4939  DeclarationName Name = GetNameForDeclarator(D).getName();
4940
4941  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4942  VarDecl::StorageClass SC =
4943    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4944
4945  DeclContext *OriginalDC = DC;
4946  bool IsLocalExternDecl = SC == SC_Extern &&
4947                           adjustContextForLocalExternDecl(DC);
4948
4949  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4950    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4951    // half array type (unless the cl_khr_fp16 extension is enabled).
4952    if (Context.getBaseElementType(R)->isHalfType()) {
4953      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4954      D.setInvalidType();
4955    }
4956  }
4957
4958  if (SCSpec == DeclSpec::SCS_mutable) {
4959    // mutable can only appear on non-static class members, so it's always
4960    // an error here
4961    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4962    D.setInvalidType();
4963    SC = SC_None;
4964  }
4965
4966  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4967      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4968                              D.getDeclSpec().getStorageClassSpecLoc())) {
4969    // In C++11, the 'register' storage class specifier is deprecated.
4970    // Suppress the warning in system macros, it's used in macros in some
4971    // popular C system headers, such as in glibc's htonl() macro.
4972    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4973         diag::warn_deprecated_register)
4974      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4975  }
4976
4977  IdentifierInfo *II = Name.getAsIdentifierInfo();
4978  if (!II) {
4979    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4980      << Name;
4981    return 0;
4982  }
4983
4984  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4985
4986  if (!DC->isRecord() && S->getFnParent() == 0) {
4987    // C99 6.9p2: The storage-class specifiers auto and register shall not
4988    // appear in the declaration specifiers in an external declaration.
4989    if (SC == SC_Auto || SC == SC_Register) {
4990      // If this is a register variable with an asm label specified, then this
4991      // is a GNU extension.
4992      if (SC == SC_Register && D.getAsmLabel())
4993        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4994      else
4995        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4996      D.setInvalidType();
4997    }
4998  }
4999
5000  if (getLangOpts().OpenCL) {
5001    // Set up the special work-group-local storage class for variables in the
5002    // OpenCL __local address space.
5003    if (R.getAddressSpace() == LangAS::opencl_local) {
5004      SC = SC_OpenCLWorkGroupLocal;
5005    }
5006
5007    // OpenCL v1.2 s6.9.b p4:
5008    // The sampler type cannot be used with the __local and __global address
5009    // space qualifiers.
5010    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5011      R.getAddressSpace() == LangAS::opencl_global)) {
5012      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5013    }
5014
5015    // OpenCL 1.2 spec, p6.9 r:
5016    // The event type cannot be used to declare a program scope variable.
5017    // The event type cannot be used with the __local, __constant and __global
5018    // address space qualifiers.
5019    if (R->isEventT()) {
5020      if (S->getParent() == 0) {
5021        Diag(D.getLocStart(), diag::err_event_t_global_var);
5022        D.setInvalidType();
5023      }
5024
5025      if (R.getAddressSpace()) {
5026        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5027        D.setInvalidType();
5028      }
5029    }
5030  }
5031
5032  bool IsExplicitSpecialization = false;
5033  bool IsVariableTemplateSpecialization = false;
5034  bool IsPartialSpecialization = false;
5035  bool IsVariableTemplate = false;
5036  VarTemplateDecl *PrevVarTemplate = 0;
5037  VarDecl *NewVD = 0;
5038  VarTemplateDecl *NewTemplate = 0;
5039  if (!getLangOpts().CPlusPlus) {
5040    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5041                            D.getIdentifierLoc(), II,
5042                            R, TInfo, SC);
5043
5044    if (D.isInvalidType())
5045      NewVD->setInvalidDecl();
5046  } else {
5047    bool Invalid = false;
5048
5049    if (DC->isRecord() && !CurContext->isRecord()) {
5050      // This is an out-of-line definition of a static data member.
5051      switch (SC) {
5052      case SC_None:
5053        break;
5054      case SC_Static:
5055        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5056             diag::err_static_out_of_line)
5057          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5058        break;
5059      case SC_Auto:
5060      case SC_Register:
5061      case SC_Extern:
5062        // [dcl.stc] p2: The auto or register specifiers shall be applied only
5063        // to names of variables declared in a block or to function parameters.
5064        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5065        // of class members
5066
5067        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5068             diag::err_storage_class_for_static_member)
5069          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5070        break;
5071      case SC_PrivateExtern:
5072        llvm_unreachable("C storage class in c++!");
5073      case SC_OpenCLWorkGroupLocal:
5074        llvm_unreachable("OpenCL storage class in c++!");
5075      }
5076    }
5077
5078    if (SC == SC_Static && CurContext->isRecord()) {
5079      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5080        if (RD->isLocalClass())
5081          Diag(D.getIdentifierLoc(),
5082               diag::err_static_data_member_not_allowed_in_local_class)
5083            << Name << RD->getDeclName();
5084
5085        // C++98 [class.union]p1: If a union contains a static data member,
5086        // the program is ill-formed. C++11 drops this restriction.
5087        if (RD->isUnion())
5088          Diag(D.getIdentifierLoc(),
5089               getLangOpts().CPlusPlus11
5090                 ? diag::warn_cxx98_compat_static_data_member_in_union
5091                 : diag::ext_static_data_member_in_union) << Name;
5092        // We conservatively disallow static data members in anonymous structs.
5093        else if (!RD->getDeclName())
5094          Diag(D.getIdentifierLoc(),
5095               diag::err_static_data_member_not_allowed_in_anon_struct)
5096            << Name << RD->isUnion();
5097      }
5098    }
5099
5100    NamedDecl *PrevDecl = 0;
5101    if (Previous.begin() != Previous.end())
5102      PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5103    PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
5104
5105    // Match up the template parameter lists with the scope specifier, then
5106    // determine whether we have a template or a template specialization.
5107    TemplateParameterList *TemplateParams =
5108        MatchTemplateParametersToScopeSpecifier(
5109            D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5110            D.getCXXScopeSpec(), TemplateParamLists,
5111            /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5112    if (TemplateParams) {
5113      if (!TemplateParams->size() &&
5114          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5115        // There is an extraneous 'template<>' for this variable. Complain
5116        // about it, but allow the declaration of the variable.
5117        Diag(TemplateParams->getTemplateLoc(),
5118             diag::err_template_variable_noparams)
5119          << II
5120          << SourceRange(TemplateParams->getTemplateLoc(),
5121                         TemplateParams->getRAngleLoc());
5122      } else {
5123        // Only C++1y supports variable templates (N3651).
5124        Diag(D.getIdentifierLoc(),
5125             getLangOpts().CPlusPlus1y
5126                 ? diag::warn_cxx11_compat_variable_template
5127                 : diag::ext_variable_template);
5128
5129        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5130          // This is an explicit specialization or a partial specialization.
5131          // Check that we can declare a specialization here
5132
5133          IsVariableTemplateSpecialization = true;
5134          IsPartialSpecialization = TemplateParams->size() > 0;
5135
5136        } else { // if (TemplateParams->size() > 0)
5137          // This is a template declaration.
5138          IsVariableTemplate = true;
5139
5140          // Check that we can declare a template here.
5141          if (CheckTemplateDeclScope(S, TemplateParams))
5142            return 0;
5143
5144          // If there is a previous declaration with the same name, check
5145          // whether this is a valid redeclaration.
5146          if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
5147            PrevDecl = PrevVarTemplate = 0;
5148
5149          if (PrevVarTemplate) {
5150            // Ensure that the template parameter lists are compatible.
5151            if (!TemplateParameterListsAreEqual(
5152                    TemplateParams, PrevVarTemplate->getTemplateParameters(),
5153                    /*Complain=*/true, TPL_TemplateMatch))
5154              return 0;
5155          } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5156            // Maybe we will complain about the shadowed template parameter.
5157            DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5158
5159            // Just pretend that we didn't see the previous declaration.
5160            PrevDecl = 0;
5161          } else if (PrevDecl) {
5162            // C++ [temp]p5:
5163            // ... a template name declared in namespace scope or in class
5164            // scope shall be unique in that scope.
5165            Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5166                << Name;
5167            Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5168            return 0;
5169          }
5170
5171          // Check the template parameter list of this declaration, possibly
5172          // merging in the template parameter list from the previous variable
5173          // template declaration.
5174          if (CheckTemplateParameterList(
5175                  TemplateParams,
5176                  PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5177                                  : 0,
5178                  (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5179                   DC->isDependentContext())
5180                      ? TPC_ClassTemplateMember
5181                      : TPC_VarTemplate))
5182            Invalid = true;
5183
5184          if (D.getCXXScopeSpec().isSet()) {
5185            // If the name of the template was qualified, we must be defining
5186            // the template out-of-line.
5187            if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5188                !PrevVarTemplate) {
5189              Diag(D.getIdentifierLoc(), diag::err_member_decl_does_not_match)
5190                  << Name << DC << /*IsDefinition*/true
5191                  << D.getCXXScopeSpec().getRange();
5192              Invalid = true;
5193            }
5194          }
5195        }
5196      }
5197    } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5198      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5199
5200      // We have encountered something that the user meant to be a
5201      // specialization (because it has explicitly-specified template
5202      // arguments) but that was not introduced with a "template<>" (or had
5203      // too few of them).
5204      // FIXME: Differentiate between attempts for explicit instantiations
5205      // (starting with "template") and the rest.
5206      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5207          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5208          << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5209                                        "template<> ");
5210      IsVariableTemplateSpecialization = true;
5211    }
5212
5213    if (IsVariableTemplateSpecialization) {
5214      if (!PrevVarTemplate) {
5215        Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5216            << IsPartialSpecialization;
5217        return 0;
5218      }
5219
5220      SourceLocation TemplateKWLoc =
5221          TemplateParamLists.size() > 0
5222              ? TemplateParamLists[0]->getTemplateLoc()
5223              : SourceLocation();
5224      DeclResult Res = ActOnVarTemplateSpecialization(
5225          S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5226          IsPartialSpecialization);
5227      if (Res.isInvalid())
5228        return 0;
5229      NewVD = cast<VarDecl>(Res.get());
5230      AddToScope = false;
5231    } else
5232      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5233                              D.getIdentifierLoc(), II, R, TInfo, SC);
5234
5235    // If this is supposed to be a variable template, create it as such.
5236    if (IsVariableTemplate) {
5237      NewTemplate =
5238          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5239                                  TemplateParams, NewVD, PrevVarTemplate);
5240      NewVD->setDescribedVarTemplate(NewTemplate);
5241    }
5242
5243    // If this decl has an auto type in need of deduction, make a note of the
5244    // Decl so we can diagnose uses of it in its own initializer.
5245    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5246      ParsingInitForAutoVars.insert(NewVD);
5247
5248    if (D.isInvalidType() || Invalid) {
5249      NewVD->setInvalidDecl();
5250      if (NewTemplate)
5251        NewTemplate->setInvalidDecl();
5252    }
5253
5254    SetNestedNameSpecifier(NewVD, D);
5255
5256    // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5257    if (TemplateParams && TemplateParamLists.size() > 1 &&
5258        (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5259      NewVD->setTemplateParameterListsInfo(
5260          Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5261    } else if (IsVariableTemplateSpecialization ||
5262               (!TemplateParams && TemplateParamLists.size() > 0 &&
5263                (D.getCXXScopeSpec().isSet()))) {
5264      NewVD->setTemplateParameterListsInfo(Context,
5265                                           TemplateParamLists.size(),
5266                                           TemplateParamLists.data());
5267    }
5268
5269    if (D.getDeclSpec().isConstexprSpecified())
5270      NewVD->setConstexpr(true);
5271  }
5272
5273  // Set the lexical context. If the declarator has a C++ scope specifier, the
5274  // lexical context will be different from the semantic context.
5275  NewVD->setLexicalDeclContext(CurContext);
5276  if (NewTemplate)
5277    NewTemplate->setLexicalDeclContext(CurContext);
5278
5279  if (IsLocalExternDecl)
5280    NewVD->setLocalExternDecl();
5281
5282  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5283    if (NewVD->hasLocalStorage()) {
5284      // C++11 [dcl.stc]p4:
5285      //   When thread_local is applied to a variable of block scope the
5286      //   storage-class-specifier static is implied if it does not appear
5287      //   explicitly.
5288      // Core issue: 'static' is not implied if the variable is declared
5289      //   'extern'.
5290      if (SCSpec == DeclSpec::SCS_unspecified &&
5291          TSCS == DeclSpec::TSCS_thread_local &&
5292          DC->isFunctionOrMethod())
5293        NewVD->setTSCSpec(TSCS);
5294      else
5295        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5296             diag::err_thread_non_global)
5297          << DeclSpec::getSpecifierName(TSCS);
5298    } else if (!Context.getTargetInfo().isTLSSupported())
5299      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5300           diag::err_thread_unsupported);
5301    else
5302      NewVD->setTSCSpec(TSCS);
5303  }
5304
5305  // C99 6.7.4p3
5306  //   An inline definition of a function with external linkage shall
5307  //   not contain a definition of a modifiable object with static or
5308  //   thread storage duration...
5309  // We only apply this when the function is required to be defined
5310  // elsewhere, i.e. when the function is not 'extern inline'.  Note
5311  // that a local variable with thread storage duration still has to
5312  // be marked 'static'.  Also note that it's possible to get these
5313  // semantics in C++ using __attribute__((gnu_inline)).
5314  if (SC == SC_Static && S->getFnParent() != 0 &&
5315      !NewVD->getType().isConstQualified()) {
5316    FunctionDecl *CurFD = getCurFunctionDecl();
5317    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5318      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5319           diag::warn_static_local_in_extern_inline);
5320      MaybeSuggestAddingStaticToDecl(CurFD);
5321    }
5322  }
5323
5324  if (D.getDeclSpec().isModulePrivateSpecified()) {
5325    if (IsVariableTemplateSpecialization)
5326      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5327          << (IsPartialSpecialization ? 1 : 0)
5328          << FixItHint::CreateRemoval(
5329                 D.getDeclSpec().getModulePrivateSpecLoc());
5330    else if (IsExplicitSpecialization)
5331      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5332        << 2
5333        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5334    else if (NewVD->hasLocalStorage())
5335      Diag(NewVD->getLocation(), diag::err_module_private_local)
5336        << 0 << NewVD->getDeclName()
5337        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5338        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5339    else {
5340      NewVD->setModulePrivate();
5341      if (NewTemplate)
5342        NewTemplate->setModulePrivate();
5343    }
5344  }
5345
5346  // Handle attributes prior to checking for duplicates in MergeVarDecl
5347  ProcessDeclAttributes(S, NewVD, D);
5348
5349  if (NewVD->hasAttrs())
5350    CheckAlignasUnderalignment(NewVD);
5351
5352  if (getLangOpts().CUDA) {
5353    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5354    // storage [duration]."
5355    if (SC == SC_None && S->getFnParent() != 0 &&
5356        (NewVD->hasAttr<CUDASharedAttr>() ||
5357         NewVD->hasAttr<CUDAConstantAttr>())) {
5358      NewVD->setStorageClass(SC_Static);
5359    }
5360  }
5361
5362  // In auto-retain/release, infer strong retension for variables of
5363  // retainable type.
5364  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5365    NewVD->setInvalidDecl();
5366
5367  // Handle GNU asm-label extension (encoded as an attribute).
5368  if (Expr *E = (Expr*)D.getAsmLabel()) {
5369    // The parser guarantees this is a string.
5370    StringLiteral *SE = cast<StringLiteral>(E);
5371    StringRef Label = SE->getString();
5372    if (S->getFnParent() != 0) {
5373      switch (SC) {
5374      case SC_None:
5375      case SC_Auto:
5376        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5377        break;
5378      case SC_Register:
5379        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5380          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5381        break;
5382      case SC_Static:
5383      case SC_Extern:
5384      case SC_PrivateExtern:
5385      case SC_OpenCLWorkGroupLocal:
5386        break;
5387      }
5388    }
5389
5390    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5391                                                Context, Label));
5392  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5393    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5394      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5395    if (I != ExtnameUndeclaredIdentifiers.end()) {
5396      NewVD->addAttr(I->second);
5397      ExtnameUndeclaredIdentifiers.erase(I);
5398    }
5399  }
5400
5401  // Diagnose shadowed variables before filtering for scope.
5402  if (!D.getCXXScopeSpec().isSet())
5403    CheckShadow(S, NewVD, Previous);
5404
5405  // Don't consider existing declarations that are in a different
5406  // scope and are out-of-semantic-context declarations (if the new
5407  // declaration has linkage).
5408  FilterLookupForScope(
5409      Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5410      IsExplicitSpecialization || IsVariableTemplateSpecialization);
5411
5412  // Check whether the previous declaration is in the same block scope. This
5413  // affects whether we merge types with it, per C++11 [dcl.array]p3.
5414  if (getLangOpts().CPlusPlus &&
5415      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5416    NewVD->setPreviousDeclInSameBlockScope(
5417        Previous.isSingleResult() && !Previous.isShadowed() &&
5418        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5419
5420  if (!getLangOpts().CPlusPlus) {
5421    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5422  } else {
5423    // Merge the decl with the existing one if appropriate.
5424    if (!Previous.empty()) {
5425      if (Previous.isSingleResult() &&
5426          isa<FieldDecl>(Previous.getFoundDecl()) &&
5427          D.getCXXScopeSpec().isSet()) {
5428        // The user tried to define a non-static data member
5429        // out-of-line (C++ [dcl.meaning]p1).
5430        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5431          << D.getCXXScopeSpec().getRange();
5432        Previous.clear();
5433        NewVD->setInvalidDecl();
5434      }
5435    } else if (D.getCXXScopeSpec().isSet()) {
5436      // No previous declaration in the qualifying scope.
5437      Diag(D.getIdentifierLoc(), diag::err_no_member)
5438        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5439        << D.getCXXScopeSpec().getRange();
5440      NewVD->setInvalidDecl();
5441    }
5442
5443    if (!IsVariableTemplateSpecialization) {
5444      if (PrevVarTemplate) {
5445        LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5446                              LookupOrdinaryName, ForRedeclaration);
5447        PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5448        D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5449      } else
5450        D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5451    }
5452
5453    // This is an explicit specialization of a static data member. Check it.
5454    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5455        CheckMemberSpecialization(NewVD, Previous))
5456      NewVD->setInvalidDecl();
5457  }
5458
5459  ProcessPragmaWeak(S, NewVD);
5460  checkAttributesAfterMerging(*this, *NewVD);
5461
5462  // If this is the first declaration of an extern C variable, update
5463  // the map of such variables.
5464  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5465      isIncompleteDeclExternC(*this, NewVD))
5466    RegisterLocallyScopedExternCDecl(NewVD, S);
5467
5468  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5469    Decl *ManglingContextDecl;
5470    if (MangleNumberingContext *MCtx =
5471            getCurrentMangleNumberContext(NewVD->getDeclContext(),
5472                                          ManglingContextDecl)) {
5473      Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5474    }
5475  }
5476
5477  // If we are providing an explicit specialization of a static variable
5478  // template, make a note of that.
5479  if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5480    PrevVarTemplate->setMemberSpecialization();
5481
5482  if (NewTemplate) {
5483    ActOnDocumentableDecl(NewTemplate);
5484    return NewTemplate;
5485  }
5486
5487  return NewVD;
5488}
5489
5490/// \brief Diagnose variable or built-in function shadowing.  Implements
5491/// -Wshadow.
5492///
5493/// This method is called whenever a VarDecl is added to a "useful"
5494/// scope.
5495///
5496/// \param S the scope in which the shadowing name is being declared
5497/// \param R the lookup of the name
5498///
5499void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5500  // Return if warning is ignored.
5501  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5502        DiagnosticsEngine::Ignored)
5503    return;
5504
5505  // Don't diagnose declarations at file scope.
5506  if (D->hasGlobalStorage())
5507    return;
5508
5509  DeclContext *NewDC = D->getDeclContext();
5510
5511  // Only diagnose if we're shadowing an unambiguous field or variable.
5512  if (R.getResultKind() != LookupResult::Found)
5513    return;
5514
5515  NamedDecl* ShadowedDecl = R.getFoundDecl();
5516  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5517    return;
5518
5519  // Fields are not shadowed by variables in C++ static methods.
5520  if (isa<FieldDecl>(ShadowedDecl))
5521    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5522      if (MD->isStatic())
5523        return;
5524
5525  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5526    if (shadowedVar->isExternC()) {
5527      // For shadowing external vars, make sure that we point to the global
5528      // declaration, not a locally scoped extern declaration.
5529      for (VarDecl::redecl_iterator
5530             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5531           I != E; ++I)
5532        if (I->isFileVarDecl()) {
5533          ShadowedDecl = *I;
5534          break;
5535        }
5536    }
5537
5538  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5539
5540  // Only warn about certain kinds of shadowing for class members.
5541  if (NewDC && NewDC->isRecord()) {
5542    // In particular, don't warn about shadowing non-class members.
5543    if (!OldDC->isRecord())
5544      return;
5545
5546    // TODO: should we warn about static data members shadowing
5547    // static data members from base classes?
5548
5549    // TODO: don't diagnose for inaccessible shadowed members.
5550    // This is hard to do perfectly because we might friend the
5551    // shadowing context, but that's just a false negative.
5552  }
5553
5554  // Determine what kind of declaration we're shadowing.
5555  unsigned Kind;
5556  if (isa<RecordDecl>(OldDC)) {
5557    if (isa<FieldDecl>(ShadowedDecl))
5558      Kind = 3; // field
5559    else
5560      Kind = 2; // static data member
5561  } else if (OldDC->isFileContext())
5562    Kind = 1; // global
5563  else
5564    Kind = 0; // local
5565
5566  DeclarationName Name = R.getLookupName();
5567
5568  // Emit warning and note.
5569  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5570  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5571}
5572
5573/// \brief Check -Wshadow without the advantage of a previous lookup.
5574void Sema::CheckShadow(Scope *S, VarDecl *D) {
5575  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5576        DiagnosticsEngine::Ignored)
5577    return;
5578
5579  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5580                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5581  LookupName(R, S);
5582  CheckShadow(S, D, R);
5583}
5584
5585/// Check for conflict between this global or extern "C" declaration and
5586/// previous global or extern "C" declarations. This is only used in C++.
5587template<typename T>
5588static bool checkGlobalOrExternCConflict(
5589    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5590  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5591  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5592
5593  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5594    // The common case: this global doesn't conflict with any extern "C"
5595    // declaration.
5596    return false;
5597  }
5598
5599  if (Prev) {
5600    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5601      // Both the old and new declarations have C language linkage. This is a
5602      // redeclaration.
5603      Previous.clear();
5604      Previous.addDecl(Prev);
5605      return true;
5606    }
5607
5608    // This is a global, non-extern "C" declaration, and there is a previous
5609    // non-global extern "C" declaration. Diagnose if this is a variable
5610    // declaration.
5611    if (!isa<VarDecl>(ND))
5612      return false;
5613  } else {
5614    // The declaration is extern "C". Check for any declaration in the
5615    // translation unit which might conflict.
5616    if (IsGlobal) {
5617      // We have already performed the lookup into the translation unit.
5618      IsGlobal = false;
5619      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5620           I != E; ++I) {
5621        if (isa<VarDecl>(*I)) {
5622          Prev = *I;
5623          break;
5624        }
5625      }
5626    } else {
5627      DeclContext::lookup_result R =
5628          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5629      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5630           I != E; ++I) {
5631        if (isa<VarDecl>(*I)) {
5632          Prev = *I;
5633          break;
5634        }
5635        // FIXME: If we have any other entity with this name in global scope,
5636        // the declaration is ill-formed, but that is a defect: it breaks the
5637        // 'stat' hack, for instance. Only variables can have mangled name
5638        // clashes with extern "C" declarations, so only they deserve a
5639        // diagnostic.
5640      }
5641    }
5642
5643    if (!Prev)
5644      return false;
5645  }
5646
5647  // Use the first declaration's location to ensure we point at something which
5648  // is lexically inside an extern "C" linkage-spec.
5649  assert(Prev && "should have found a previous declaration to diagnose");
5650  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5651    Prev = FD->getFirstDecl();
5652  else
5653    Prev = cast<VarDecl>(Prev)->getFirstDecl();
5654
5655  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5656    << IsGlobal << ND;
5657  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5658    << IsGlobal;
5659  return false;
5660}
5661
5662/// Apply special rules for handling extern "C" declarations. Returns \c true
5663/// if we have found that this is a redeclaration of some prior entity.
5664///
5665/// Per C++ [dcl.link]p6:
5666///   Two declarations [for a function or variable] with C language linkage
5667///   with the same name that appear in different scopes refer to the same
5668///   [entity]. An entity with C language linkage shall not be declared with
5669///   the same name as an entity in global scope.
5670template<typename T>
5671static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5672                                                  LookupResult &Previous) {
5673  if (!S.getLangOpts().CPlusPlus) {
5674    // In C, when declaring a global variable, look for a corresponding 'extern'
5675    // variable declared in function scope. We don't need this in C++, because
5676    // we find local extern decls in the surrounding file-scope DeclContext.
5677    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5678      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5679        Previous.clear();
5680        Previous.addDecl(Prev);
5681        return true;
5682      }
5683    }
5684    return false;
5685  }
5686
5687  // A declaration in the translation unit can conflict with an extern "C"
5688  // declaration.
5689  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5690    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5691
5692  // An extern "C" declaration can conflict with a declaration in the
5693  // translation unit or can be a redeclaration of an extern "C" declaration
5694  // in another scope.
5695  if (isIncompleteDeclExternC(S,ND))
5696    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5697
5698  // Neither global nor extern "C": nothing to do.
5699  return false;
5700}
5701
5702void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5703  // If the decl is already known invalid, don't check it.
5704  if (NewVD->isInvalidDecl())
5705    return;
5706
5707  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5708  QualType T = TInfo->getType();
5709
5710  // Defer checking an 'auto' type until its initializer is attached.
5711  if (T->isUndeducedType())
5712    return;
5713
5714  if (T->isObjCObjectType()) {
5715    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5716      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5717    T = Context.getObjCObjectPointerType(T);
5718    NewVD->setType(T);
5719  }
5720
5721  // Emit an error if an address space was applied to decl with local storage.
5722  // This includes arrays of objects with address space qualifiers, but not
5723  // automatic variables that point to other address spaces.
5724  // ISO/IEC TR 18037 S5.1.2
5725  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5726    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5727    NewVD->setInvalidDecl();
5728    return;
5729  }
5730
5731  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5732  // __constant address space.
5733  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5734      && T.getAddressSpace() != LangAS::opencl_constant
5735      && !T->isSamplerT()){
5736    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5737    NewVD->setInvalidDecl();
5738    return;
5739  }
5740
5741  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5742  // scope.
5743  if ((getLangOpts().OpenCLVersion >= 120)
5744      && NewVD->isStaticLocal()) {
5745    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5746    NewVD->setInvalidDecl();
5747    return;
5748  }
5749
5750  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5751      && !NewVD->hasAttr<BlocksAttr>()) {
5752    if (getLangOpts().getGC() != LangOptions::NonGC)
5753      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5754    else {
5755      assert(!getLangOpts().ObjCAutoRefCount);
5756      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5757    }
5758  }
5759
5760  bool isVM = T->isVariablyModifiedType();
5761  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5762      NewVD->hasAttr<BlocksAttr>())
5763    getCurFunction()->setHasBranchProtectedScope();
5764
5765  if ((isVM && NewVD->hasLinkage()) ||
5766      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5767    bool SizeIsNegative;
5768    llvm::APSInt Oversized;
5769    TypeSourceInfo *FixedTInfo =
5770      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5771                                                    SizeIsNegative, Oversized);
5772    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5773      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5774      // FIXME: This won't give the correct result for
5775      // int a[10][n];
5776      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5777
5778      if (NewVD->isFileVarDecl())
5779        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5780        << SizeRange;
5781      else if (NewVD->isStaticLocal())
5782        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5783        << SizeRange;
5784      else
5785        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5786        << SizeRange;
5787      NewVD->setInvalidDecl();
5788      return;
5789    }
5790
5791    if (FixedTInfo == 0) {
5792      if (NewVD->isFileVarDecl())
5793        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5794      else
5795        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5796      NewVD->setInvalidDecl();
5797      return;
5798    }
5799
5800    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5801    NewVD->setType(FixedTInfo->getType());
5802    NewVD->setTypeSourceInfo(FixedTInfo);
5803  }
5804
5805  if (T->isVoidType()) {
5806    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5807    //                    of objects and functions.
5808    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5809      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5810        << T;
5811      NewVD->setInvalidDecl();
5812      return;
5813    }
5814  }
5815
5816  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5817    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5818    NewVD->setInvalidDecl();
5819    return;
5820  }
5821
5822  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5823    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5824    NewVD->setInvalidDecl();
5825    return;
5826  }
5827
5828  if (NewVD->isConstexpr() && !T->isDependentType() &&
5829      RequireLiteralType(NewVD->getLocation(), T,
5830                         diag::err_constexpr_var_non_literal)) {
5831    // Can't perform this check until the type is deduced.
5832    NewVD->setInvalidDecl();
5833    return;
5834  }
5835}
5836
5837/// \brief Perform semantic checking on a newly-created variable
5838/// declaration.
5839///
5840/// This routine performs all of the type-checking required for a
5841/// variable declaration once it has been built. It is used both to
5842/// check variables after they have been parsed and their declarators
5843/// have been translated into a declaration, and to check variables
5844/// that have been instantiated from a template.
5845///
5846/// Sets NewVD->isInvalidDecl() if an error was encountered.
5847///
5848/// Returns true if the variable declaration is a redeclaration.
5849bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
5850  CheckVariableDeclarationType(NewVD);
5851
5852  // If the decl is already known invalid, don't check it.
5853  if (NewVD->isInvalidDecl())
5854    return false;
5855
5856  // If we did not find anything by this name, look for a non-visible
5857  // extern "C" declaration with the same name.
5858  if (Previous.empty() &&
5859      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
5860    Previous.setShadowed();
5861
5862  // Filter out any non-conflicting previous declarations.
5863  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5864
5865  if (!Previous.empty()) {
5866    MergeVarDecl(NewVD, Previous);
5867    return true;
5868  }
5869  return false;
5870}
5871
5872/// \brief Data used with FindOverriddenMethod
5873struct FindOverriddenMethodData {
5874  Sema *S;
5875  CXXMethodDecl *Method;
5876};
5877
5878/// \brief Member lookup function that determines whether a given C++
5879/// method overrides a method in a base class, to be used with
5880/// CXXRecordDecl::lookupInBases().
5881static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5882                                 CXXBasePath &Path,
5883                                 void *UserData) {
5884  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5885
5886  FindOverriddenMethodData *Data
5887    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5888
5889  DeclarationName Name = Data->Method->getDeclName();
5890
5891  // FIXME: Do we care about other names here too?
5892  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5893    // We really want to find the base class destructor here.
5894    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5895    CanQualType CT = Data->S->Context.getCanonicalType(T);
5896
5897    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5898  }
5899
5900  for (Path.Decls = BaseRecord->lookup(Name);
5901       !Path.Decls.empty();
5902       Path.Decls = Path.Decls.slice(1)) {
5903    NamedDecl *D = Path.Decls.front();
5904    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5905      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5906        return true;
5907    }
5908  }
5909
5910  return false;
5911}
5912
5913namespace {
5914  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5915}
5916/// \brief Report an error regarding overriding, along with any relevant
5917/// overriden methods.
5918///
5919/// \param DiagID the primary error to report.
5920/// \param MD the overriding method.
5921/// \param OEK which overrides to include as notes.
5922static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5923                            OverrideErrorKind OEK = OEK_All) {
5924  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5925  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5926                                      E = MD->end_overridden_methods();
5927       I != E; ++I) {
5928    // This check (& the OEK parameter) could be replaced by a predicate, but
5929    // without lambdas that would be overkill. This is still nicer than writing
5930    // out the diag loop 3 times.
5931    if ((OEK == OEK_All) ||
5932        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5933        (OEK == OEK_Deleted && (*I)->isDeleted()))
5934      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5935  }
5936}
5937
5938/// AddOverriddenMethods - See if a method overrides any in the base classes,
5939/// and if so, check that it's a valid override and remember it.
5940bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5941  // Look for virtual methods in base classes that this method might override.
5942  CXXBasePaths Paths;
5943  FindOverriddenMethodData Data;
5944  Data.Method = MD;
5945  Data.S = this;
5946  bool hasDeletedOverridenMethods = false;
5947  bool hasNonDeletedOverridenMethods = false;
5948  bool AddedAny = false;
5949  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5950    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5951         E = Paths.found_decls_end(); I != E; ++I) {
5952      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5953        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5954        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5955            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5956            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5957            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5958          hasDeletedOverridenMethods |= OldMD->isDeleted();
5959          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5960          AddedAny = true;
5961        }
5962      }
5963    }
5964  }
5965
5966  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5967    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5968  }
5969  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5970    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5971  }
5972
5973  return AddedAny;
5974}
5975
5976namespace {
5977  // Struct for holding all of the extra arguments needed by
5978  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5979  struct ActOnFDArgs {
5980    Scope *S;
5981    Declarator &D;
5982    MultiTemplateParamsArg TemplateParamLists;
5983    bool AddToScope;
5984  };
5985}
5986
5987namespace {
5988
5989// Callback to only accept typo corrections that have a non-zero edit distance.
5990// Also only accept corrections that have the same parent decl.
5991class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5992 public:
5993  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5994                            CXXRecordDecl *Parent)
5995      : Context(Context), OriginalFD(TypoFD),
5996        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5997
5998  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5999    if (candidate.getEditDistance() == 0)
6000      return false;
6001
6002    SmallVector<unsigned, 1> MismatchedParams;
6003    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6004                                          CDeclEnd = candidate.end();
6005         CDecl != CDeclEnd; ++CDecl) {
6006      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6007
6008      if (FD && !FD->hasBody() &&
6009          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6010        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6011          CXXRecordDecl *Parent = MD->getParent();
6012          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6013            return true;
6014        } else if (!ExpectedParent) {
6015          return true;
6016        }
6017      }
6018    }
6019
6020    return false;
6021  }
6022
6023 private:
6024  ASTContext &Context;
6025  FunctionDecl *OriginalFD;
6026  CXXRecordDecl *ExpectedParent;
6027};
6028
6029}
6030
6031/// \brief Generate diagnostics for an invalid function redeclaration.
6032///
6033/// This routine handles generating the diagnostic messages for an invalid
6034/// function redeclaration, including finding possible similar declarations
6035/// or performing typo correction if there are no previous declarations with
6036/// the same name.
6037///
6038/// Returns a NamedDecl iff typo correction was performed and substituting in
6039/// the new declaration name does not cause new errors.
6040static NamedDecl *DiagnoseInvalidRedeclaration(
6041    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6042    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6043  DeclarationName Name = NewFD->getDeclName();
6044  DeclContext *NewDC = NewFD->getDeclContext();
6045  SmallVector<unsigned, 1> MismatchedParams;
6046  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6047  TypoCorrection Correction;
6048  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6049  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6050                                   : diag::err_member_decl_does_not_match;
6051  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6052                    IsLocalFriend ? Sema::LookupLocalFriendName
6053                                  : Sema::LookupOrdinaryName,
6054                    Sema::ForRedeclaration);
6055
6056  NewFD->setInvalidDecl();
6057  if (IsLocalFriend)
6058    SemaRef.LookupName(Prev, S);
6059  else
6060    SemaRef.LookupQualifiedName(Prev, NewDC);
6061  assert(!Prev.isAmbiguous() &&
6062         "Cannot have an ambiguity in previous-declaration lookup");
6063  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6064  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
6065                                      MD ? MD->getParent() : 0);
6066  if (!Prev.empty()) {
6067    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6068         Func != FuncEnd; ++Func) {
6069      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6070      if (FD &&
6071          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6072        // Add 1 to the index so that 0 can mean the mismatch didn't
6073        // involve a parameter
6074        unsigned ParamNum =
6075            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6076        NearMatches.push_back(std::make_pair(FD, ParamNum));
6077      }
6078    }
6079  // If the qualified name lookup yielded nothing, try typo correction
6080  } else if ((Correction = SemaRef.CorrectTypo(
6081                 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6082                 &ExtraArgs.D.getCXXScopeSpec(), Validator,
6083                 IsLocalFriend ? 0 : NewDC))) {
6084    // Set up everything for the call to ActOnFunctionDeclarator
6085    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6086                              ExtraArgs.D.getIdentifierLoc());
6087    Previous.clear();
6088    Previous.setLookupName(Correction.getCorrection());
6089    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6090                                    CDeclEnd = Correction.end();
6091         CDecl != CDeclEnd; ++CDecl) {
6092      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6093      if (FD && !FD->hasBody() &&
6094          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6095        Previous.addDecl(FD);
6096      }
6097    }
6098    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6099
6100    NamedDecl *Result;
6101    // Retry building the function declaration with the new previous
6102    // declarations, and with errors suppressed.
6103    {
6104      // Trap errors.
6105      Sema::SFINAETrap Trap(SemaRef);
6106
6107      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6108      // pieces need to verify the typo-corrected C++ declaration and hopefully
6109      // eliminate the need for the parameter pack ExtraArgs.
6110      Result = SemaRef.ActOnFunctionDeclarator(
6111          ExtraArgs.S, ExtraArgs.D,
6112          Correction.getCorrectionDecl()->getDeclContext(),
6113          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6114          ExtraArgs.AddToScope);
6115
6116      if (Trap.hasErrorOccurred())
6117        Result = 0;
6118    }
6119
6120    if (Result) {
6121      // Determine which correction we picked.
6122      Decl *Canonical = Result->getCanonicalDecl();
6123      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6124           I != E; ++I)
6125        if ((*I)->getCanonicalDecl() == Canonical)
6126          Correction.setCorrectionDecl(*I);
6127
6128      SemaRef.diagnoseTypo(
6129          Correction,
6130          SemaRef.PDiag(IsLocalFriend
6131                          ? diag::err_no_matching_local_friend_suggest
6132                          : diag::err_member_decl_does_not_match_suggest)
6133            << Name << NewDC << IsDefinition);
6134      return Result;
6135    }
6136
6137    // Pretend the typo correction never occurred
6138    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6139                              ExtraArgs.D.getIdentifierLoc());
6140    ExtraArgs.D.setRedeclaration(wasRedeclaration);
6141    Previous.clear();
6142    Previous.setLookupName(Name);
6143  }
6144
6145  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6146      << Name << NewDC << IsDefinition << NewFD->getLocation();
6147
6148  bool NewFDisConst = false;
6149  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6150    NewFDisConst = NewMD->isConst();
6151
6152  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6153       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6154       NearMatch != NearMatchEnd; ++NearMatch) {
6155    FunctionDecl *FD = NearMatch->first;
6156    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6157    bool FDisConst = MD && MD->isConst();
6158    bool IsMember = MD || !IsLocalFriend;
6159
6160    // FIXME: These notes are poorly worded for the local friend case.
6161    if (unsigned Idx = NearMatch->second) {
6162      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6163      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6164      if (Loc.isInvalid()) Loc = FD->getLocation();
6165      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6166                                 : diag::note_local_decl_close_param_match)
6167        << Idx << FDParam->getType()
6168        << NewFD->getParamDecl(Idx - 1)->getType();
6169    } else if (FDisConst != NewFDisConst) {
6170      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6171          << NewFDisConst << FD->getSourceRange().getEnd();
6172    } else
6173      SemaRef.Diag(FD->getLocation(),
6174                   IsMember ? diag::note_member_def_close_match
6175                            : diag::note_local_decl_close_match);
6176  }
6177  return 0;
6178}
6179
6180static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6181                                                          Declarator &D) {
6182  switch (D.getDeclSpec().getStorageClassSpec()) {
6183  default: llvm_unreachable("Unknown storage class!");
6184  case DeclSpec::SCS_auto:
6185  case DeclSpec::SCS_register:
6186  case DeclSpec::SCS_mutable:
6187    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6188                 diag::err_typecheck_sclass_func);
6189    D.setInvalidType();
6190    break;
6191  case DeclSpec::SCS_unspecified: break;
6192  case DeclSpec::SCS_extern:
6193    if (D.getDeclSpec().isExternInLinkageSpec())
6194      return SC_None;
6195    return SC_Extern;
6196  case DeclSpec::SCS_static: {
6197    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6198      // C99 6.7.1p5:
6199      //   The declaration of an identifier for a function that has
6200      //   block scope shall have no explicit storage-class specifier
6201      //   other than extern
6202      // See also (C++ [dcl.stc]p4).
6203      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6204                   diag::err_static_block_func);
6205      break;
6206    } else
6207      return SC_Static;
6208  }
6209  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6210  }
6211
6212  // No explicit storage class has already been returned
6213  return SC_None;
6214}
6215
6216static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6217                                           DeclContext *DC, QualType &R,
6218                                           TypeSourceInfo *TInfo,
6219                                           FunctionDecl::StorageClass SC,
6220                                           bool &IsVirtualOkay) {
6221  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6222  DeclarationName Name = NameInfo.getName();
6223
6224  FunctionDecl *NewFD = 0;
6225  bool isInline = D.getDeclSpec().isInlineSpecified();
6226
6227  if (!SemaRef.getLangOpts().CPlusPlus) {
6228    // Determine whether the function was written with a
6229    // prototype. This true when:
6230    //   - there is a prototype in the declarator, or
6231    //   - the type R of the function is some kind of typedef or other reference
6232    //     to a type name (which eventually refers to a function type).
6233    bool HasPrototype =
6234      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6235      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6236
6237    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6238                                 D.getLocStart(), NameInfo, R,
6239                                 TInfo, SC, isInline,
6240                                 HasPrototype, false);
6241    if (D.isInvalidType())
6242      NewFD->setInvalidDecl();
6243
6244    // Set the lexical context.
6245    NewFD->setLexicalDeclContext(SemaRef.CurContext);
6246
6247    return NewFD;
6248  }
6249
6250  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6251  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6252
6253  // Check that the return type is not an abstract class type.
6254  // For record types, this is done by the AbstractClassUsageDiagnoser once
6255  // the class has been completely parsed.
6256  if (!DC->isRecord() &&
6257      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6258                                     R->getAs<FunctionType>()->getResultType(),
6259                                     diag::err_abstract_type_in_decl,
6260                                     SemaRef.AbstractReturnType))
6261    D.setInvalidType();
6262
6263  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6264    // This is a C++ constructor declaration.
6265    assert(DC->isRecord() &&
6266           "Constructors can only be declared in a member context");
6267
6268    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6269    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6270                                      D.getLocStart(), NameInfo,
6271                                      R, TInfo, isExplicit, isInline,
6272                                      /*isImplicitlyDeclared=*/false,
6273                                      isConstexpr);
6274
6275  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6276    // This is a C++ destructor declaration.
6277    if (DC->isRecord()) {
6278      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6279      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6280      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6281                                        SemaRef.Context, Record,
6282                                        D.getLocStart(),
6283                                        NameInfo, R, TInfo, isInline,
6284                                        /*isImplicitlyDeclared=*/false);
6285
6286      // If the class is complete, then we now create the implicit exception
6287      // specification. If the class is incomplete or dependent, we can't do
6288      // it yet.
6289      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6290          Record->getDefinition() && !Record->isBeingDefined() &&
6291          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6292        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6293      }
6294
6295      // The Microsoft ABI requires that we perform the destructor body
6296      // checks (i.e. operator delete() lookup) at every declaration, as
6297      // any translation unit may need to emit a deleting destructor.
6298      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6299          !Record->isDependentType() && Record->getDefinition() &&
6300          !Record->isBeingDefined()) {
6301        SemaRef.CheckDestructor(NewDD);
6302      }
6303
6304      IsVirtualOkay = true;
6305      return NewDD;
6306
6307    } else {
6308      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6309      D.setInvalidType();
6310
6311      // Create a FunctionDecl to satisfy the function definition parsing
6312      // code path.
6313      return FunctionDecl::Create(SemaRef.Context, DC,
6314                                  D.getLocStart(),
6315                                  D.getIdentifierLoc(), Name, R, TInfo,
6316                                  SC, isInline,
6317                                  /*hasPrototype=*/true, isConstexpr);
6318    }
6319
6320  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6321    if (!DC->isRecord()) {
6322      SemaRef.Diag(D.getIdentifierLoc(),
6323           diag::err_conv_function_not_member);
6324      return 0;
6325    }
6326
6327    SemaRef.CheckConversionDeclarator(D, R, SC);
6328    IsVirtualOkay = true;
6329    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6330                                     D.getLocStart(), NameInfo,
6331                                     R, TInfo, isInline, isExplicit,
6332                                     isConstexpr, SourceLocation());
6333
6334  } else if (DC->isRecord()) {
6335    // If the name of the function is the same as the name of the record,
6336    // then this must be an invalid constructor that has a return type.
6337    // (The parser checks for a return type and makes the declarator a
6338    // constructor if it has no return type).
6339    if (Name.getAsIdentifierInfo() &&
6340        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6341      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6342        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6343        << SourceRange(D.getIdentifierLoc());
6344      return 0;
6345    }
6346
6347    // This is a C++ method declaration.
6348    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6349                                               cast<CXXRecordDecl>(DC),
6350                                               D.getLocStart(), NameInfo, R,
6351                                               TInfo, SC, isInline,
6352                                               isConstexpr, SourceLocation());
6353    IsVirtualOkay = !Ret->isStatic();
6354    return Ret;
6355  } else {
6356    // Determine whether the function was written with a
6357    // prototype. This true when:
6358    //   - we're in C++ (where every function has a prototype),
6359    return FunctionDecl::Create(SemaRef.Context, DC,
6360                                D.getLocStart(),
6361                                NameInfo, R, TInfo, SC, isInline,
6362                                true/*HasPrototype*/, isConstexpr);
6363  }
6364}
6365
6366void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6367  // In C++, the empty parameter-type-list must be spelled "void"; a
6368  // typedef of void is not permitted.
6369  if (getLangOpts().CPlusPlus &&
6370      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6371    bool IsTypeAlias = false;
6372    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6373      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6374    else if (const TemplateSpecializationType *TST =
6375               Param->getType()->getAs<TemplateSpecializationType>())
6376      IsTypeAlias = TST->isTypeAlias();
6377    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6378      << IsTypeAlias;
6379  }
6380}
6381
6382enum OpenCLParamType {
6383  ValidKernelParam,
6384  PtrPtrKernelParam,
6385  PtrKernelParam,
6386  InvalidKernelParam,
6387  RecordKernelParam
6388};
6389
6390static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6391  if (PT->isPointerType()) {
6392    QualType PointeeType = PT->getPointeeType();
6393    return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6394  }
6395
6396  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6397  // be used as builtin types.
6398
6399  if (PT->isImageType())
6400    return PtrKernelParam;
6401
6402  if (PT->isBooleanType())
6403    return InvalidKernelParam;
6404
6405  if (PT->isEventT())
6406    return InvalidKernelParam;
6407
6408  if (PT->isHalfType())
6409    return InvalidKernelParam;
6410
6411  if (PT->isRecordType())
6412    return RecordKernelParam;
6413
6414  return ValidKernelParam;
6415}
6416
6417static void checkIsValidOpenCLKernelParameter(
6418  Sema &S,
6419  Declarator &D,
6420  ParmVarDecl *Param,
6421  llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6422  QualType PT = Param->getType();
6423
6424  // Cache the valid types we encounter to avoid rechecking structs that are
6425  // used again
6426  if (ValidTypes.count(PT.getTypePtr()))
6427    return;
6428
6429  switch (getOpenCLKernelParameterType(PT)) {
6430  case PtrPtrKernelParam:
6431    // OpenCL v1.2 s6.9.a:
6432    // A kernel function argument cannot be declared as a
6433    // pointer to a pointer type.
6434    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6435    D.setInvalidType();
6436    return;
6437
6438    // OpenCL v1.2 s6.9.k:
6439    // Arguments to kernel functions in a program cannot be declared with the
6440    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6441    // uintptr_t or a struct and/or union that contain fields declared to be
6442    // one of these built-in scalar types.
6443
6444  case InvalidKernelParam:
6445    // OpenCL v1.2 s6.8 n:
6446    // A kernel function argument cannot be declared
6447    // of event_t type.
6448    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6449    D.setInvalidType();
6450    return;
6451
6452  case PtrKernelParam:
6453  case ValidKernelParam:
6454    ValidTypes.insert(PT.getTypePtr());
6455    return;
6456
6457  case RecordKernelParam:
6458    break;
6459  }
6460
6461  // Track nested structs we will inspect
6462  SmallVector<const Decl *, 4> VisitStack;
6463
6464  // Track where we are in the nested structs. Items will migrate from
6465  // VisitStack to HistoryStack as we do the DFS for bad field.
6466  SmallVector<const FieldDecl *, 4> HistoryStack;
6467  HistoryStack.push_back((const FieldDecl *) 0);
6468
6469  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6470  VisitStack.push_back(PD);
6471
6472  assert(VisitStack.back() && "First decl null?");
6473
6474  do {
6475    const Decl *Next = VisitStack.pop_back_val();
6476    if (!Next) {
6477      assert(!HistoryStack.empty());
6478      // Found a marker, we have gone up a level
6479      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6480        ValidTypes.insert(Hist->getType().getTypePtr());
6481
6482      continue;
6483    }
6484
6485    // Adds everything except the original parameter declaration (which is not a
6486    // field itself) to the history stack.
6487    const RecordDecl *RD;
6488    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6489      HistoryStack.push_back(Field);
6490      RD = Field->getType()->castAs<RecordType>()->getDecl();
6491    } else {
6492      RD = cast<RecordDecl>(Next);
6493    }
6494
6495    // Add a null marker so we know when we've gone back up a level
6496    VisitStack.push_back((const Decl *) 0);
6497
6498    for (RecordDecl::field_iterator I = RD->field_begin(),
6499           E = RD->field_end(); I != E; ++I) {
6500      const FieldDecl *FD = *I;
6501      QualType QT = FD->getType();
6502
6503      if (ValidTypes.count(QT.getTypePtr()))
6504        continue;
6505
6506      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6507      if (ParamType == ValidKernelParam)
6508        continue;
6509
6510      if (ParamType == RecordKernelParam) {
6511        VisitStack.push_back(FD);
6512        continue;
6513      }
6514
6515      // OpenCL v1.2 s6.9.p:
6516      // Arguments to kernel functions that are declared to be a struct or union
6517      // do not allow OpenCL objects to be passed as elements of the struct or
6518      // union.
6519      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6520        S.Diag(Param->getLocation(),
6521               diag::err_record_with_pointers_kernel_param)
6522          << PT->isUnionType()
6523          << PT;
6524      } else {
6525        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6526      }
6527
6528      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6529        << PD->getDeclName();
6530
6531      // We have an error, now let's go back up through history and show where
6532      // the offending field came from
6533      for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6534             E = HistoryStack.end(); I != E; ++I) {
6535        const FieldDecl *OuterField = *I;
6536        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6537          << OuterField->getType();
6538      }
6539
6540      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6541        << QT->isPointerType()
6542        << QT;
6543      D.setInvalidType();
6544      return;
6545    }
6546  } while (!VisitStack.empty());
6547}
6548
6549NamedDecl*
6550Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6551                              TypeSourceInfo *TInfo, LookupResult &Previous,
6552                              MultiTemplateParamsArg TemplateParamLists,
6553                              bool &AddToScope) {
6554  QualType R = TInfo->getType();
6555
6556  assert(R.getTypePtr()->isFunctionType());
6557
6558  // TODO: consider using NameInfo for diagnostic.
6559  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6560  DeclarationName Name = NameInfo.getName();
6561  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6562
6563  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6564    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6565         diag::err_invalid_thread)
6566      << DeclSpec::getSpecifierName(TSCS);
6567
6568  if (D.isFirstDeclarationOfMember())
6569    adjustMemberFunctionCC(R, D.isStaticMember());
6570
6571  bool isFriend = false;
6572  FunctionTemplateDecl *FunctionTemplate = 0;
6573  bool isExplicitSpecialization = false;
6574  bool isFunctionTemplateSpecialization = false;
6575
6576  bool isDependentClassScopeExplicitSpecialization = false;
6577  bool HasExplicitTemplateArgs = false;
6578  TemplateArgumentListInfo TemplateArgs;
6579
6580  bool isVirtualOkay = false;
6581
6582  DeclContext *OriginalDC = DC;
6583  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6584
6585  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6586                                              isVirtualOkay);
6587  if (!NewFD) return 0;
6588
6589  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6590    NewFD->setTopLevelDeclInObjCContainer();
6591
6592  // Set the lexical context. If this is a function-scope declaration, or has a
6593  // C++ scope specifier, or is the object of a friend declaration, the lexical
6594  // context will be different from the semantic context.
6595  NewFD->setLexicalDeclContext(CurContext);
6596
6597  if (IsLocalExternDecl)
6598    NewFD->setLocalExternDecl();
6599
6600  if (getLangOpts().CPlusPlus) {
6601    bool isInline = D.getDeclSpec().isInlineSpecified();
6602    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6603    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6604    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6605    isFriend = D.getDeclSpec().isFriendSpecified();
6606    if (isFriend && !isInline && D.isFunctionDefinition()) {
6607      // C++ [class.friend]p5
6608      //   A function can be defined in a friend declaration of a
6609      //   class . . . . Such a function is implicitly inline.
6610      NewFD->setImplicitlyInline();
6611    }
6612
6613    // If this is a method defined in an __interface, and is not a constructor
6614    // or an overloaded operator, then set the pure flag (isVirtual will already
6615    // return true).
6616    if (const CXXRecordDecl *Parent =
6617          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6618      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6619        NewFD->setPure(true);
6620    }
6621
6622    SetNestedNameSpecifier(NewFD, D);
6623    isExplicitSpecialization = false;
6624    isFunctionTemplateSpecialization = false;
6625    if (D.isInvalidType())
6626      NewFD->setInvalidDecl();
6627
6628    // Match up the template parameter lists with the scope specifier, then
6629    // determine whether we have a template or a template specialization.
6630    bool Invalid = false;
6631    if (TemplateParameterList *TemplateParams =
6632            MatchTemplateParametersToScopeSpecifier(
6633                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6634                D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6635                isExplicitSpecialization, Invalid)) {
6636      if (TemplateParams->size() > 0) {
6637        // This is a function template
6638
6639        // Check that we can declare a template here.
6640        if (CheckTemplateDeclScope(S, TemplateParams))
6641          return 0;
6642
6643        // A destructor cannot be a template.
6644        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6645          Diag(NewFD->getLocation(), diag::err_destructor_template);
6646          return 0;
6647        }
6648
6649        // If we're adding a template to a dependent context, we may need to
6650        // rebuilding some of the types used within the template parameter list,
6651        // now that we know what the current instantiation is.
6652        if (DC->isDependentContext()) {
6653          ContextRAII SavedContext(*this, DC);
6654          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6655            Invalid = true;
6656        }
6657
6658
6659        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6660                                                        NewFD->getLocation(),
6661                                                        Name, TemplateParams,
6662                                                        NewFD);
6663        FunctionTemplate->setLexicalDeclContext(CurContext);
6664        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6665
6666        // For source fidelity, store the other template param lists.
6667        if (TemplateParamLists.size() > 1) {
6668          NewFD->setTemplateParameterListsInfo(Context,
6669                                               TemplateParamLists.size() - 1,
6670                                               TemplateParamLists.data());
6671        }
6672      } else {
6673        // This is a function template specialization.
6674        isFunctionTemplateSpecialization = true;
6675        // For source fidelity, store all the template param lists.
6676        NewFD->setTemplateParameterListsInfo(Context,
6677                                             TemplateParamLists.size(),
6678                                             TemplateParamLists.data());
6679
6680        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6681        if (isFriend) {
6682          // We want to remove the "template<>", found here.
6683          SourceRange RemoveRange = TemplateParams->getSourceRange();
6684
6685          // If we remove the template<> and the name is not a
6686          // template-id, we're actually silently creating a problem:
6687          // the friend declaration will refer to an untemplated decl,
6688          // and clearly the user wants a template specialization.  So
6689          // we need to insert '<>' after the name.
6690          SourceLocation InsertLoc;
6691          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6692            InsertLoc = D.getName().getSourceRange().getEnd();
6693            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6694          }
6695
6696          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6697            << Name << RemoveRange
6698            << FixItHint::CreateRemoval(RemoveRange)
6699            << FixItHint::CreateInsertion(InsertLoc, "<>");
6700        }
6701      }
6702    }
6703    else {
6704      // All template param lists were matched against the scope specifier:
6705      // this is NOT (an explicit specialization of) a template.
6706      if (TemplateParamLists.size() > 0)
6707        // For source fidelity, store all the template param lists.
6708        NewFD->setTemplateParameterListsInfo(Context,
6709                                             TemplateParamLists.size(),
6710                                             TemplateParamLists.data());
6711    }
6712
6713    if (Invalid) {
6714      NewFD->setInvalidDecl();
6715      if (FunctionTemplate)
6716        FunctionTemplate->setInvalidDecl();
6717    }
6718
6719    // C++ [dcl.fct.spec]p5:
6720    //   The virtual specifier shall only be used in declarations of
6721    //   nonstatic class member functions that appear within a
6722    //   member-specification of a class declaration; see 10.3.
6723    //
6724    if (isVirtual && !NewFD->isInvalidDecl()) {
6725      if (!isVirtualOkay) {
6726        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6727             diag::err_virtual_non_function);
6728      } else if (!CurContext->isRecord()) {
6729        // 'virtual' was specified outside of the class.
6730        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6731             diag::err_virtual_out_of_class)
6732          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6733      } else if (NewFD->getDescribedFunctionTemplate()) {
6734        // C++ [temp.mem]p3:
6735        //  A member function template shall not be virtual.
6736        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6737             diag::err_virtual_member_function_template)
6738          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6739      } else {
6740        // Okay: Add virtual to the method.
6741        NewFD->setVirtualAsWritten(true);
6742      }
6743
6744      if (getLangOpts().CPlusPlus1y &&
6745          NewFD->getResultType()->isUndeducedType())
6746        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6747    }
6748
6749    if (getLangOpts().CPlusPlus1y &&
6750        (NewFD->isDependentContext() ||
6751         (isFriend && CurContext->isDependentContext())) &&
6752        NewFD->getResultType()->isUndeducedType()) {
6753      // If the function template is referenced directly (for instance, as a
6754      // member of the current instantiation), pretend it has a dependent type.
6755      // This is not really justified by the standard, but is the only sane
6756      // thing to do.
6757      // FIXME: For a friend function, we have not marked the function as being
6758      // a friend yet, so 'isDependentContext' on the FD doesn't work.
6759      const FunctionProtoType *FPT =
6760          NewFD->getType()->castAs<FunctionProtoType>();
6761      QualType Result = SubstAutoType(FPT->getResultType(),
6762                                       Context.DependentTy);
6763      NewFD->setType(Context.getFunctionType(Result, FPT->getArgTypes(),
6764                                             FPT->getExtProtoInfo()));
6765    }
6766
6767    // C++ [dcl.fct.spec]p3:
6768    //  The inline specifier shall not appear on a block scope function
6769    //  declaration.
6770    if (isInline && !NewFD->isInvalidDecl()) {
6771      if (CurContext->isFunctionOrMethod()) {
6772        // 'inline' is not allowed on block scope function declaration.
6773        Diag(D.getDeclSpec().getInlineSpecLoc(),
6774             diag::err_inline_declaration_block_scope) << Name
6775          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6776      }
6777    }
6778
6779    // C++ [dcl.fct.spec]p6:
6780    //  The explicit specifier shall be used only in the declaration of a
6781    //  constructor or conversion function within its class definition;
6782    //  see 12.3.1 and 12.3.2.
6783    if (isExplicit && !NewFD->isInvalidDecl()) {
6784      if (!CurContext->isRecord()) {
6785        // 'explicit' was specified outside of the class.
6786        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6787             diag::err_explicit_out_of_class)
6788          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6789      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6790                 !isa<CXXConversionDecl>(NewFD)) {
6791        // 'explicit' was specified on a function that wasn't a constructor
6792        // or conversion function.
6793        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6794             diag::err_explicit_non_ctor_or_conv_function)
6795          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6796      }
6797    }
6798
6799    if (isConstexpr) {
6800      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6801      // are implicitly inline.
6802      NewFD->setImplicitlyInline();
6803
6804      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6805      // be either constructors or to return a literal type. Therefore,
6806      // destructors cannot be declared constexpr.
6807      if (isa<CXXDestructorDecl>(NewFD))
6808        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6809    }
6810
6811    // If __module_private__ was specified, mark the function accordingly.
6812    if (D.getDeclSpec().isModulePrivateSpecified()) {
6813      if (isFunctionTemplateSpecialization) {
6814        SourceLocation ModulePrivateLoc
6815          = D.getDeclSpec().getModulePrivateSpecLoc();
6816        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6817          << 0
6818          << FixItHint::CreateRemoval(ModulePrivateLoc);
6819      } else {
6820        NewFD->setModulePrivate();
6821        if (FunctionTemplate)
6822          FunctionTemplate->setModulePrivate();
6823      }
6824    }
6825
6826    if (isFriend) {
6827      if (FunctionTemplate) {
6828        FunctionTemplate->setObjectOfFriendDecl();
6829        FunctionTemplate->setAccess(AS_public);
6830      }
6831      NewFD->setObjectOfFriendDecl();
6832      NewFD->setAccess(AS_public);
6833    }
6834
6835    // If a function is defined as defaulted or deleted, mark it as such now.
6836    switch (D.getFunctionDefinitionKind()) {
6837      case FDK_Declaration:
6838      case FDK_Definition:
6839        break;
6840
6841      case FDK_Defaulted:
6842        NewFD->setDefaulted();
6843        break;
6844
6845      case FDK_Deleted:
6846        NewFD->setDeletedAsWritten();
6847        break;
6848    }
6849
6850    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6851        D.isFunctionDefinition()) {
6852      // C++ [class.mfct]p2:
6853      //   A member function may be defined (8.4) in its class definition, in
6854      //   which case it is an inline member function (7.1.2)
6855      NewFD->setImplicitlyInline();
6856    }
6857
6858    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6859        !CurContext->isRecord()) {
6860      // C++ [class.static]p1:
6861      //   A data or function member of a class may be declared static
6862      //   in a class definition, in which case it is a static member of
6863      //   the class.
6864
6865      // Complain about the 'static' specifier if it's on an out-of-line
6866      // member function definition.
6867      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6868           diag::err_static_out_of_line)
6869        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6870    }
6871
6872    // C++11 [except.spec]p15:
6873    //   A deallocation function with no exception-specification is treated
6874    //   as if it were specified with noexcept(true).
6875    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6876    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6877         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6878        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6879      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6880      EPI.ExceptionSpecType = EST_BasicNoexcept;
6881      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6882                                             FPT->getArgTypes(), EPI));
6883    }
6884  }
6885
6886  // Filter out previous declarations that don't match the scope.
6887  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
6888                       isExplicitSpecialization ||
6889                       isFunctionTemplateSpecialization);
6890
6891  // Handle GNU asm-label extension (encoded as an attribute).
6892  if (Expr *E = (Expr*) D.getAsmLabel()) {
6893    // The parser guarantees this is a string.
6894    StringLiteral *SE = cast<StringLiteral>(E);
6895    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6896                                                SE->getString()));
6897  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6898    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6899      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6900    if (I != ExtnameUndeclaredIdentifiers.end()) {
6901      NewFD->addAttr(I->second);
6902      ExtnameUndeclaredIdentifiers.erase(I);
6903    }
6904  }
6905
6906  // Copy the parameter declarations from the declarator D to the function
6907  // declaration NewFD, if they are available.  First scavenge them into Params.
6908  SmallVector<ParmVarDecl*, 16> Params;
6909  if (D.isFunctionDeclarator()) {
6910    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6911
6912    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6913    // function that takes no arguments, not a function that takes a
6914    // single void argument.
6915    // We let through "const void" here because Sema::GetTypeForDeclarator
6916    // already checks for that case.
6917    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6918        FTI.ArgInfo[0].Param &&
6919        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6920      // Empty arg list, don't push any params.
6921      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6922    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6923      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6924        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6925        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6926        Param->setDeclContext(NewFD);
6927        Params.push_back(Param);
6928
6929        if (Param->isInvalidDecl())
6930          NewFD->setInvalidDecl();
6931      }
6932    }
6933
6934  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6935    // When we're declaring a function with a typedef, typeof, etc as in the
6936    // following example, we'll need to synthesize (unnamed)
6937    // parameters for use in the declaration.
6938    //
6939    // @code
6940    // typedef void fn(int);
6941    // fn f;
6942    // @endcode
6943
6944    // Synthesize a parameter for each argument type.
6945    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6946         AE = FT->arg_type_end(); AI != AE; ++AI) {
6947      ParmVarDecl *Param =
6948        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6949      Param->setScopeInfo(0, Params.size());
6950      Params.push_back(Param);
6951    }
6952  } else {
6953    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6954           "Should not need args for typedef of non-prototype fn");
6955  }
6956
6957  // Finally, we know we have the right number of parameters, install them.
6958  NewFD->setParams(Params);
6959
6960  // Find all anonymous symbols defined during the declaration of this function
6961  // and add to NewFD. This lets us track decls such 'enum Y' in:
6962  //
6963  //   void f(enum Y {AA} x) {}
6964  //
6965  // which would otherwise incorrectly end up in the translation unit scope.
6966  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6967  DeclsInPrototypeScope.clear();
6968
6969  if (D.getDeclSpec().isNoreturnSpecified())
6970    NewFD->addAttr(
6971        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6972                                       Context));
6973
6974  // Functions returning a variably modified type violate C99 6.7.5.2p2
6975  // because all functions have linkage.
6976  if (!NewFD->isInvalidDecl() &&
6977      NewFD->getResultType()->isVariablyModifiedType()) {
6978    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6979    NewFD->setInvalidDecl();
6980  }
6981
6982  // Handle attributes.
6983  ProcessDeclAttributes(S, NewFD, D);
6984
6985  QualType RetType = NewFD->getResultType();
6986  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6987      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6988  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6989      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6990    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6991    // Attach the attribute to the new decl. Don't apply the attribute if it
6992    // returns an instance of the class (e.g. assignment operators).
6993    if (!MD || MD->getParent() != Ret) {
6994      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6995                                                        Context));
6996    }
6997  }
6998
6999  if (!getLangOpts().CPlusPlus) {
7000    // Perform semantic checking on the function declaration.
7001    bool isExplicitSpecialization=false;
7002    if (!NewFD->isInvalidDecl() && NewFD->isMain())
7003      CheckMain(NewFD, D.getDeclSpec());
7004
7005    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7006      CheckMSVCRTEntryPoint(NewFD);
7007
7008    if (!NewFD->isInvalidDecl())
7009      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7010                                                  isExplicitSpecialization));
7011    else if (!Previous.empty())
7012      // Make graceful recovery from an invalid redeclaration.
7013      D.setRedeclaration(true);
7014    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7015            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7016           "previous declaration set still overloaded");
7017  } else {
7018    // C++11 [replacement.functions]p3:
7019    //  The program's definitions shall not be specified as inline.
7020    //
7021    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7022    //
7023    // Suppress the diagnostic if the function is __attribute__((used)), since
7024    // that forces an external definition to be emitted.
7025    if (D.getDeclSpec().isInlineSpecified() &&
7026        NewFD->isReplaceableGlobalAllocationFunction() &&
7027        !NewFD->hasAttr<UsedAttr>())
7028      Diag(D.getDeclSpec().getInlineSpecLoc(),
7029           diag::ext_operator_new_delete_declared_inline)
7030        << NewFD->getDeclName();
7031
7032    // If the declarator is a template-id, translate the parser's template
7033    // argument list into our AST format.
7034    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7035      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7036      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7037      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7038      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7039                                         TemplateId->NumArgs);
7040      translateTemplateArguments(TemplateArgsPtr,
7041                                 TemplateArgs);
7042
7043      HasExplicitTemplateArgs = true;
7044
7045      if (NewFD->isInvalidDecl()) {
7046        HasExplicitTemplateArgs = false;
7047      } else if (FunctionTemplate) {
7048        // Function template with explicit template arguments.
7049        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7050          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7051
7052        HasExplicitTemplateArgs = false;
7053      } else if (!isFunctionTemplateSpecialization &&
7054                 !D.getDeclSpec().isFriendSpecified()) {
7055        // We have encountered something that the user meant to be a
7056        // specialization (because it has explicitly-specified template
7057        // arguments) but that was not introduced with a "template<>" (or had
7058        // too few of them).
7059        // FIXME: Differentiate between attempts for explicit instantiations
7060        // (starting with "template") and the rest.
7061        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
7062          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
7063          << FixItHint::CreateInsertion(
7064                                    D.getDeclSpec().getLocStart(),
7065                                        "template<> ");
7066        isFunctionTemplateSpecialization = true;
7067      } else {
7068        // "friend void foo<>(int);" is an implicit specialization decl.
7069        isFunctionTemplateSpecialization = true;
7070      }
7071    } else if (isFriend && isFunctionTemplateSpecialization) {
7072      // This combination is only possible in a recovery case;  the user
7073      // wrote something like:
7074      //   template <> friend void foo(int);
7075      // which we're recovering from as if the user had written:
7076      //   friend void foo<>(int);
7077      // Go ahead and fake up a template id.
7078      HasExplicitTemplateArgs = true;
7079        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7080      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7081    }
7082
7083    // If it's a friend (and only if it's a friend), it's possible
7084    // that either the specialized function type or the specialized
7085    // template is dependent, and therefore matching will fail.  In
7086    // this case, don't check the specialization yet.
7087    bool InstantiationDependent = false;
7088    if (isFunctionTemplateSpecialization && isFriend &&
7089        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7090         TemplateSpecializationType::anyDependentTemplateArguments(
7091            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7092            InstantiationDependent))) {
7093      assert(HasExplicitTemplateArgs &&
7094             "friend function specialization without template args");
7095      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7096                                                       Previous))
7097        NewFD->setInvalidDecl();
7098    } else if (isFunctionTemplateSpecialization) {
7099      if (CurContext->isDependentContext() && CurContext->isRecord()
7100          && !isFriend) {
7101        isDependentClassScopeExplicitSpecialization = true;
7102        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7103          diag::ext_function_specialization_in_class :
7104          diag::err_function_specialization_in_class)
7105          << NewFD->getDeclName();
7106      } else if (CheckFunctionTemplateSpecialization(NewFD,
7107                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7108                                                     Previous))
7109        NewFD->setInvalidDecl();
7110
7111      // C++ [dcl.stc]p1:
7112      //   A storage-class-specifier shall not be specified in an explicit
7113      //   specialization (14.7.3)
7114      FunctionTemplateSpecializationInfo *Info =
7115          NewFD->getTemplateSpecializationInfo();
7116      if (Info && SC != SC_None) {
7117        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7118          Diag(NewFD->getLocation(),
7119               diag::err_explicit_specialization_inconsistent_storage_class)
7120            << SC
7121            << FixItHint::CreateRemoval(
7122                                      D.getDeclSpec().getStorageClassSpecLoc());
7123
7124        else
7125          Diag(NewFD->getLocation(),
7126               diag::ext_explicit_specialization_storage_class)
7127            << FixItHint::CreateRemoval(
7128                                      D.getDeclSpec().getStorageClassSpecLoc());
7129      }
7130
7131    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7132      if (CheckMemberSpecialization(NewFD, Previous))
7133          NewFD->setInvalidDecl();
7134    }
7135
7136    // Perform semantic checking on the function declaration.
7137    if (!isDependentClassScopeExplicitSpecialization) {
7138      if (!NewFD->isInvalidDecl() && NewFD->isMain())
7139        CheckMain(NewFD, D.getDeclSpec());
7140
7141      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7142        CheckMSVCRTEntryPoint(NewFD);
7143
7144      if (NewFD->isInvalidDecl()) {
7145        // If this is a class member, mark the class invalid immediately.
7146        // This avoids some consistency errors later.
7147        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
7148          methodDecl->getParent()->setInvalidDecl();
7149      } else
7150        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7151                                                    isExplicitSpecialization));
7152    }
7153
7154    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7155            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7156           "previous declaration set still overloaded");
7157
7158    NamedDecl *PrincipalDecl = (FunctionTemplate
7159                                ? cast<NamedDecl>(FunctionTemplate)
7160                                : NewFD);
7161
7162    if (isFriend && D.isRedeclaration()) {
7163      AccessSpecifier Access = AS_public;
7164      if (!NewFD->isInvalidDecl())
7165        Access = NewFD->getPreviousDecl()->getAccess();
7166
7167      NewFD->setAccess(Access);
7168      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7169    }
7170
7171    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7172        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7173      PrincipalDecl->setNonMemberOperator();
7174
7175    // If we have a function template, check the template parameter
7176    // list. This will check and merge default template arguments.
7177    if (FunctionTemplate) {
7178      FunctionTemplateDecl *PrevTemplate =
7179                                     FunctionTemplate->getPreviousDecl();
7180      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7181                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7182                            D.getDeclSpec().isFriendSpecified()
7183                              ? (D.isFunctionDefinition()
7184                                   ? TPC_FriendFunctionTemplateDefinition
7185                                   : TPC_FriendFunctionTemplate)
7186                              : (D.getCXXScopeSpec().isSet() &&
7187                                 DC && DC->isRecord() &&
7188                                 DC->isDependentContext())
7189                                  ? TPC_ClassTemplateMember
7190                                  : TPC_FunctionTemplate);
7191    }
7192
7193    if (NewFD->isInvalidDecl()) {
7194      // Ignore all the rest of this.
7195    } else if (!D.isRedeclaration()) {
7196      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7197                                       AddToScope };
7198      // Fake up an access specifier if it's supposed to be a class member.
7199      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7200        NewFD->setAccess(AS_public);
7201
7202      // Qualified decls generally require a previous declaration.
7203      if (D.getCXXScopeSpec().isSet()) {
7204        // ...with the major exception of templated-scope or
7205        // dependent-scope friend declarations.
7206
7207        // TODO: we currently also suppress this check in dependent
7208        // contexts because (1) the parameter depth will be off when
7209        // matching friend templates and (2) we might actually be
7210        // selecting a friend based on a dependent factor.  But there
7211        // are situations where these conditions don't apply and we
7212        // can actually do this check immediately.
7213        if (isFriend &&
7214            (TemplateParamLists.size() ||
7215             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7216             CurContext->isDependentContext())) {
7217          // ignore these
7218        } else {
7219          // The user tried to provide an out-of-line definition for a
7220          // function that is a member of a class or namespace, but there
7221          // was no such member function declared (C++ [class.mfct]p2,
7222          // C++ [namespace.memdef]p2). For example:
7223          //
7224          // class X {
7225          //   void f() const;
7226          // };
7227          //
7228          // void X::f() { } // ill-formed
7229          //
7230          // Complain about this problem, and attempt to suggest close
7231          // matches (e.g., those that differ only in cv-qualifiers and
7232          // whether the parameter types are references).
7233
7234          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7235                  *this, Previous, NewFD, ExtraArgs, false, 0)) {
7236            AddToScope = ExtraArgs.AddToScope;
7237            return Result;
7238          }
7239        }
7240
7241        // Unqualified local friend declarations are required to resolve
7242        // to something.
7243      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7244        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7245                *this, Previous, NewFD, ExtraArgs, true, S)) {
7246          AddToScope = ExtraArgs.AddToScope;
7247          return Result;
7248        }
7249      }
7250
7251    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7252               !isFriend && !isFunctionTemplateSpecialization &&
7253               !isExplicitSpecialization) {
7254      // An out-of-line member function declaration must also be a
7255      // definition (C++ [dcl.meaning]p1).
7256      // Note that this is not the case for explicit specializations of
7257      // function templates or member functions of class templates, per
7258      // C++ [temp.expl.spec]p2. We also allow these declarations as an
7259      // extension for compatibility with old SWIG code which likes to
7260      // generate them.
7261      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7262        << D.getCXXScopeSpec().getRange();
7263    }
7264  }
7265
7266  ProcessPragmaWeak(S, NewFD);
7267  checkAttributesAfterMerging(*this, *NewFD);
7268
7269  AddKnownFunctionAttributes(NewFD);
7270
7271  if (NewFD->hasAttr<OverloadableAttr>() &&
7272      !NewFD->getType()->getAs<FunctionProtoType>()) {
7273    Diag(NewFD->getLocation(),
7274         diag::err_attribute_overloadable_no_prototype)
7275      << NewFD;
7276
7277    // Turn this into a variadic function with no parameters.
7278    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7279    FunctionProtoType::ExtProtoInfo EPI(
7280        Context.getDefaultCallingConvention(true, false));
7281    EPI.Variadic = true;
7282    EPI.ExtInfo = FT->getExtInfo();
7283
7284    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7285    NewFD->setType(R);
7286  }
7287
7288  // If there's a #pragma GCC visibility in scope, and this isn't a class
7289  // member, set the visibility of this function.
7290  if (!DC->isRecord() && NewFD->isExternallyVisible())
7291    AddPushedVisibilityAttribute(NewFD);
7292
7293  // If there's a #pragma clang arc_cf_code_audited in scope, consider
7294  // marking the function.
7295  AddCFAuditedAttribute(NewFD);
7296
7297  // If this is the first declaration of an extern C variable, update
7298  // the map of such variables.
7299  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7300      isIncompleteDeclExternC(*this, NewFD))
7301    RegisterLocallyScopedExternCDecl(NewFD, S);
7302
7303  // Set this FunctionDecl's range up to the right paren.
7304  NewFD->setRangeEnd(D.getSourceRange().getEnd());
7305
7306  if (getLangOpts().CPlusPlus) {
7307    if (FunctionTemplate) {
7308      if (NewFD->isInvalidDecl())
7309        FunctionTemplate->setInvalidDecl();
7310      return FunctionTemplate;
7311    }
7312  }
7313
7314  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7315    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7316    if ((getLangOpts().OpenCLVersion >= 120)
7317        && (SC == SC_Static)) {
7318      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7319      D.setInvalidType();
7320    }
7321
7322    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7323    if (!NewFD->getResultType()->isVoidType()) {
7324      Diag(D.getIdentifierLoc(),
7325           diag::err_expected_kernel_void_return_type);
7326      D.setInvalidType();
7327    }
7328
7329    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7330    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7331         PE = NewFD->param_end(); PI != PE; ++PI) {
7332      ParmVarDecl *Param = *PI;
7333      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7334    }
7335  }
7336
7337  MarkUnusedFileScopedDecl(NewFD);
7338
7339  if (getLangOpts().CUDA)
7340    if (IdentifierInfo *II = NewFD->getIdentifier())
7341      if (!NewFD->isInvalidDecl() &&
7342          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7343        if (II->isStr("cudaConfigureCall")) {
7344          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7345            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7346
7347          Context.setcudaConfigureCallDecl(NewFD);
7348        }
7349      }
7350
7351  // Here we have an function template explicit specialization at class scope.
7352  // The actually specialization will be postponed to template instatiation
7353  // time via the ClassScopeFunctionSpecializationDecl node.
7354  if (isDependentClassScopeExplicitSpecialization) {
7355    ClassScopeFunctionSpecializationDecl *NewSpec =
7356                         ClassScopeFunctionSpecializationDecl::Create(
7357                                Context, CurContext, SourceLocation(),
7358                                cast<CXXMethodDecl>(NewFD),
7359                                HasExplicitTemplateArgs, TemplateArgs);
7360    CurContext->addDecl(NewSpec);
7361    AddToScope = false;
7362  }
7363
7364  return NewFD;
7365}
7366
7367/// \brief Perform semantic checking of a new function declaration.
7368///
7369/// Performs semantic analysis of the new function declaration
7370/// NewFD. This routine performs all semantic checking that does not
7371/// require the actual declarator involved in the declaration, and is
7372/// used both for the declaration of functions as they are parsed
7373/// (called via ActOnDeclarator) and for the declaration of functions
7374/// that have been instantiated via C++ template instantiation (called
7375/// via InstantiateDecl).
7376///
7377/// \param IsExplicitSpecialization whether this new function declaration is
7378/// an explicit specialization of the previous declaration.
7379///
7380/// This sets NewFD->isInvalidDecl() to true if there was an error.
7381///
7382/// \returns true if the function declaration is a redeclaration.
7383bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7384                                    LookupResult &Previous,
7385                                    bool IsExplicitSpecialization) {
7386  assert(!NewFD->getResultType()->isVariablyModifiedType()
7387         && "Variably modified return types are not handled here");
7388
7389  // Determine whether the type of this function should be merged with
7390  // a previous visible declaration. This never happens for functions in C++,
7391  // and always happens in C if the previous declaration was visible.
7392  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7393                               !Previous.isShadowed();
7394
7395  // Filter out any non-conflicting previous declarations.
7396  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7397
7398  bool Redeclaration = false;
7399  NamedDecl *OldDecl = 0;
7400
7401  // Merge or overload the declaration with an existing declaration of
7402  // the same name, if appropriate.
7403  if (!Previous.empty()) {
7404    // Determine whether NewFD is an overload of PrevDecl or
7405    // a declaration that requires merging. If it's an overload,
7406    // there's no more work to do here; we'll just add the new
7407    // function to the scope.
7408    if (!AllowOverloadingOfFunction(Previous, Context)) {
7409      NamedDecl *Candidate = Previous.getFoundDecl();
7410      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7411        Redeclaration = true;
7412        OldDecl = Candidate;
7413      }
7414    } else {
7415      switch (CheckOverload(S, NewFD, Previous, OldDecl,
7416                            /*NewIsUsingDecl*/ false)) {
7417      case Ovl_Match:
7418        Redeclaration = true;
7419        break;
7420
7421      case Ovl_NonFunction:
7422        Redeclaration = true;
7423        break;
7424
7425      case Ovl_Overload:
7426        Redeclaration = false;
7427        break;
7428      }
7429
7430      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7431        // If a function name is overloadable in C, then every function
7432        // with that name must be marked "overloadable".
7433        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7434          << Redeclaration << NewFD;
7435        NamedDecl *OverloadedDecl = 0;
7436        if (Redeclaration)
7437          OverloadedDecl = OldDecl;
7438        else if (!Previous.empty())
7439          OverloadedDecl = Previous.getRepresentativeDecl();
7440        if (OverloadedDecl)
7441          Diag(OverloadedDecl->getLocation(),
7442               diag::note_attribute_overloadable_prev_overload);
7443        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7444                                                        Context));
7445      }
7446    }
7447  }
7448
7449  // Check for a previous extern "C" declaration with this name.
7450  if (!Redeclaration &&
7451      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7452    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7453    if (!Previous.empty()) {
7454      // This is an extern "C" declaration with the same name as a previous
7455      // declaration, and thus redeclares that entity...
7456      Redeclaration = true;
7457      OldDecl = Previous.getFoundDecl();
7458      MergeTypeWithPrevious = false;
7459
7460      // ... except in the presence of __attribute__((overloadable)).
7461      if (OldDecl->hasAttr<OverloadableAttr>()) {
7462        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7463          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7464            << Redeclaration << NewFD;
7465          Diag(Previous.getFoundDecl()->getLocation(),
7466               diag::note_attribute_overloadable_prev_overload);
7467          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7468                                                          Context));
7469        }
7470        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7471          Redeclaration = false;
7472          OldDecl = 0;
7473        }
7474      }
7475    }
7476  }
7477
7478  // C++11 [dcl.constexpr]p8:
7479  //   A constexpr specifier for a non-static member function that is not
7480  //   a constructor declares that member function to be const.
7481  //
7482  // This needs to be delayed until we know whether this is an out-of-line
7483  // definition of a static member function.
7484  //
7485  // This rule is not present in C++1y, so we produce a backwards
7486  // compatibility warning whenever it happens in C++11.
7487  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7488  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7489      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7490      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7491    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7492    if (FunctionTemplateDecl *OldTD =
7493          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7494      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7495    if (!OldMD || !OldMD->isStatic()) {
7496      const FunctionProtoType *FPT =
7497        MD->getType()->castAs<FunctionProtoType>();
7498      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7499      EPI.TypeQuals |= Qualifiers::Const;
7500      MD->setType(Context.getFunctionType(FPT->getResultType(),
7501                                          FPT->getArgTypes(), EPI));
7502
7503      // Warn that we did this, if we're not performing template instantiation.
7504      // In that case, we'll have warned already when the template was defined.
7505      if (ActiveTemplateInstantiations.empty()) {
7506        SourceLocation AddConstLoc;
7507        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7508                .IgnoreParens().getAs<FunctionTypeLoc>())
7509          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7510
7511        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7512          << FixItHint::CreateInsertion(AddConstLoc, " const");
7513      }
7514    }
7515  }
7516
7517  if (Redeclaration) {
7518    // NewFD and OldDecl represent declarations that need to be
7519    // merged.
7520    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7521      NewFD->setInvalidDecl();
7522      return Redeclaration;
7523    }
7524
7525    Previous.clear();
7526    Previous.addDecl(OldDecl);
7527
7528    if (FunctionTemplateDecl *OldTemplateDecl
7529                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7530      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7531      FunctionTemplateDecl *NewTemplateDecl
7532        = NewFD->getDescribedFunctionTemplate();
7533      assert(NewTemplateDecl && "Template/non-template mismatch");
7534      if (CXXMethodDecl *Method
7535            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7536        Method->setAccess(OldTemplateDecl->getAccess());
7537        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7538      }
7539
7540      // If this is an explicit specialization of a member that is a function
7541      // template, mark it as a member specialization.
7542      if (IsExplicitSpecialization &&
7543          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7544        NewTemplateDecl->setMemberSpecialization();
7545        assert(OldTemplateDecl->isMemberSpecialization());
7546      }
7547
7548    } else {
7549      // This needs to happen first so that 'inline' propagates.
7550      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7551
7552      if (isa<CXXMethodDecl>(NewFD)) {
7553        // A valid redeclaration of a C++ method must be out-of-line,
7554        // but (unfortunately) it's not necessarily a definition
7555        // because of templates, which means that the previous
7556        // declaration is not necessarily from the class definition.
7557
7558        // For just setting the access, that doesn't matter.
7559        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7560        NewFD->setAccess(oldMethod->getAccess());
7561
7562        // Update the key-function state if necessary for this ABI.
7563        if (NewFD->isInlined() &&
7564            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7565          // setNonKeyFunction needs to work with the original
7566          // declaration from the class definition, and isVirtual() is
7567          // just faster in that case, so map back to that now.
7568          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7569          if (oldMethod->isVirtual()) {
7570            Context.setNonKeyFunction(oldMethod);
7571          }
7572        }
7573      }
7574    }
7575  }
7576
7577  // Semantic checking for this function declaration (in isolation).
7578  if (getLangOpts().CPlusPlus) {
7579    // C++-specific checks.
7580    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7581      CheckConstructor(Constructor);
7582    } else if (CXXDestructorDecl *Destructor =
7583                dyn_cast<CXXDestructorDecl>(NewFD)) {
7584      CXXRecordDecl *Record = Destructor->getParent();
7585      QualType ClassType = Context.getTypeDeclType(Record);
7586
7587      // FIXME: Shouldn't we be able to perform this check even when the class
7588      // type is dependent? Both gcc and edg can handle that.
7589      if (!ClassType->isDependentType()) {
7590        DeclarationName Name
7591          = Context.DeclarationNames.getCXXDestructorName(
7592                                        Context.getCanonicalType(ClassType));
7593        if (NewFD->getDeclName() != Name) {
7594          Diag(NewFD->getLocation(), diag::err_destructor_name);
7595          NewFD->setInvalidDecl();
7596          return Redeclaration;
7597        }
7598      }
7599    } else if (CXXConversionDecl *Conversion
7600               = dyn_cast<CXXConversionDecl>(NewFD)) {
7601      ActOnConversionDeclarator(Conversion);
7602    }
7603
7604    // Find any virtual functions that this function overrides.
7605    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7606      if (!Method->isFunctionTemplateSpecialization() &&
7607          !Method->getDescribedFunctionTemplate() &&
7608          Method->isCanonicalDecl()) {
7609        if (AddOverriddenMethods(Method->getParent(), Method)) {
7610          // If the function was marked as "static", we have a problem.
7611          if (NewFD->getStorageClass() == SC_Static) {
7612            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7613          }
7614        }
7615      }
7616
7617      if (Method->isStatic())
7618        checkThisInStaticMemberFunctionType(Method);
7619    }
7620
7621    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7622    if (NewFD->isOverloadedOperator() &&
7623        CheckOverloadedOperatorDeclaration(NewFD)) {
7624      NewFD->setInvalidDecl();
7625      return Redeclaration;
7626    }
7627
7628    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7629    if (NewFD->getLiteralIdentifier() &&
7630        CheckLiteralOperatorDeclaration(NewFD)) {
7631      NewFD->setInvalidDecl();
7632      return Redeclaration;
7633    }
7634
7635    // In C++, check default arguments now that we have merged decls. Unless
7636    // the lexical context is the class, because in this case this is done
7637    // during delayed parsing anyway.
7638    if (!CurContext->isRecord())
7639      CheckCXXDefaultArguments(NewFD);
7640
7641    // If this function declares a builtin function, check the type of this
7642    // declaration against the expected type for the builtin.
7643    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7644      ASTContext::GetBuiltinTypeError Error;
7645      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7646      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7647      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7648        // The type of this function differs from the type of the builtin,
7649        // so forget about the builtin entirely.
7650        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7651      }
7652    }
7653
7654    // If this function is declared as being extern "C", then check to see if
7655    // the function returns a UDT (class, struct, or union type) that is not C
7656    // compatible, and if it does, warn the user.
7657    // But, issue any diagnostic on the first declaration only.
7658    if (NewFD->isExternC() && Previous.empty()) {
7659      QualType R = NewFD->getResultType();
7660      if (R->isIncompleteType() && !R->isVoidType())
7661        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7662            << NewFD << R;
7663      else if (!R.isPODType(Context) && !R->isVoidType() &&
7664               !R->isObjCObjectPointerType())
7665        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7666    }
7667  }
7668  return Redeclaration;
7669}
7670
7671static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7672  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7673  if (!TSI)
7674    return SourceRange();
7675
7676  TypeLoc TL = TSI->getTypeLoc();
7677  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7678  if (!FunctionTL)
7679    return SourceRange();
7680
7681  TypeLoc ResultTL = FunctionTL.getResultLoc();
7682  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7683    return ResultTL.getSourceRange();
7684
7685  return SourceRange();
7686}
7687
7688void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7689  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7690  //   static or constexpr is ill-formed.
7691  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7692  //   appear in a declaration of main.
7693  // static main is not an error under C99, but we should warn about it.
7694  // We accept _Noreturn main as an extension.
7695  if (FD->getStorageClass() == SC_Static)
7696    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7697         ? diag::err_static_main : diag::warn_static_main)
7698      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7699  if (FD->isInlineSpecified())
7700    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7701      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7702  if (DS.isNoreturnSpecified()) {
7703    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7704    SourceRange NoreturnRange(NoreturnLoc,
7705                              PP.getLocForEndOfToken(NoreturnLoc));
7706    Diag(NoreturnLoc, diag::ext_noreturn_main);
7707    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7708      << FixItHint::CreateRemoval(NoreturnRange);
7709  }
7710  if (FD->isConstexpr()) {
7711    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7712      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7713    FD->setConstexpr(false);
7714  }
7715
7716  if (getLangOpts().OpenCL) {
7717    Diag(FD->getLocation(), diag::err_opencl_no_main)
7718        << FD->hasAttr<OpenCLKernelAttr>();
7719    FD->setInvalidDecl();
7720    return;
7721  }
7722
7723  QualType T = FD->getType();
7724  assert(T->isFunctionType() && "function decl is not of function type");
7725  const FunctionType* FT = T->castAs<FunctionType>();
7726
7727  // All the standards say that main() should should return 'int'.
7728  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7729    // In C and C++, main magically returns 0 if you fall off the end;
7730    // set the flag which tells us that.
7731    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7732    FD->setHasImplicitReturnZero(true);
7733
7734  // In C with GNU extensions we allow main() to have non-integer return
7735  // type, but we should warn about the extension, and we disable the
7736  // implicit-return-zero rule.
7737  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7738    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7739
7740    SourceRange ResultRange = getResultSourceRange(FD);
7741    if (ResultRange.isValid())
7742      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7743          << FixItHint::CreateReplacement(ResultRange, "int");
7744
7745  // Otherwise, this is just a flat-out error.
7746  } else {
7747    SourceRange ResultRange = getResultSourceRange(FD);
7748    if (ResultRange.isValid())
7749      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7750          << FixItHint::CreateReplacement(ResultRange, "int");
7751    else
7752      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7753
7754    FD->setInvalidDecl(true);
7755  }
7756
7757  // Treat protoless main() as nullary.
7758  if (isa<FunctionNoProtoType>(FT)) return;
7759
7760  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7761  unsigned nparams = FTP->getNumArgs();
7762  assert(FD->getNumParams() == nparams);
7763
7764  bool HasExtraParameters = (nparams > 3);
7765
7766  // Darwin passes an undocumented fourth argument of type char**.  If
7767  // other platforms start sprouting these, the logic below will start
7768  // getting shifty.
7769  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7770    HasExtraParameters = false;
7771
7772  if (HasExtraParameters) {
7773    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7774    FD->setInvalidDecl(true);
7775    nparams = 3;
7776  }
7777
7778  // FIXME: a lot of the following diagnostics would be improved
7779  // if we had some location information about types.
7780
7781  QualType CharPP =
7782    Context.getPointerType(Context.getPointerType(Context.CharTy));
7783  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7784
7785  for (unsigned i = 0; i < nparams; ++i) {
7786    QualType AT = FTP->getArgType(i);
7787
7788    bool mismatch = true;
7789
7790    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7791      mismatch = false;
7792    else if (Expected[i] == CharPP) {
7793      // As an extension, the following forms are okay:
7794      //   char const **
7795      //   char const * const *
7796      //   char * const *
7797
7798      QualifierCollector qs;
7799      const PointerType* PT;
7800      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7801          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7802          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7803                              Context.CharTy)) {
7804        qs.removeConst();
7805        mismatch = !qs.empty();
7806      }
7807    }
7808
7809    if (mismatch) {
7810      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7811      // TODO: suggest replacing given type with expected type
7812      FD->setInvalidDecl(true);
7813    }
7814  }
7815
7816  if (nparams == 1 && !FD->isInvalidDecl()) {
7817    Diag(FD->getLocation(), diag::warn_main_one_arg);
7818  }
7819
7820  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7821    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7822    FD->setInvalidDecl();
7823  }
7824}
7825
7826void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
7827  QualType T = FD->getType();
7828  assert(T->isFunctionType() && "function decl is not of function type");
7829  const FunctionType *FT = T->castAs<FunctionType>();
7830
7831  // Set an implicit return of 'zero' if the function can return some integral,
7832  // enumeration, pointer or nullptr type.
7833  if (FT->getResultType()->isIntegralOrEnumerationType() ||
7834      FT->getResultType()->isAnyPointerType() ||
7835      FT->getResultType()->isNullPtrType())
7836    // DllMain is exempt because a return value of zero means it failed.
7837    if (FD->getName() != "DllMain")
7838      FD->setHasImplicitReturnZero(true);
7839
7840  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7841    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7842    FD->setInvalidDecl();
7843  }
7844}
7845
7846bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7847  // FIXME: Need strict checking.  In C89, we need to check for
7848  // any assignment, increment, decrement, function-calls, or
7849  // commas outside of a sizeof.  In C99, it's the same list,
7850  // except that the aforementioned are allowed in unevaluated
7851  // expressions.  Everything else falls under the
7852  // "may accept other forms of constant expressions" exception.
7853  // (We never end up here for C++, so the constant expression
7854  // rules there don't matter.)
7855  if (Init->isConstantInitializer(Context, false))
7856    return false;
7857  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7858    << Init->getSourceRange();
7859  return true;
7860}
7861
7862namespace {
7863  // Visits an initialization expression to see if OrigDecl is evaluated in
7864  // its own initialization and throws a warning if it does.
7865  class SelfReferenceChecker
7866      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7867    Sema &S;
7868    Decl *OrigDecl;
7869    bool isRecordType;
7870    bool isPODType;
7871    bool isReferenceType;
7872
7873  public:
7874    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7875
7876    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7877                                                    S(S), OrigDecl(OrigDecl) {
7878      isPODType = false;
7879      isRecordType = false;
7880      isReferenceType = false;
7881      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7882        isPODType = VD->getType().isPODType(S.Context);
7883        isRecordType = VD->getType()->isRecordType();
7884        isReferenceType = VD->getType()->isReferenceType();
7885      }
7886    }
7887
7888    // For most expressions, the cast is directly above the DeclRefExpr.
7889    // For conditional operators, the cast can be outside the conditional
7890    // operator if both expressions are DeclRefExpr's.
7891    void HandleValue(Expr *E) {
7892      if (isReferenceType)
7893        return;
7894      E = E->IgnoreParenImpCasts();
7895      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7896        HandleDeclRefExpr(DRE);
7897        return;
7898      }
7899
7900      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7901        HandleValue(CO->getTrueExpr());
7902        HandleValue(CO->getFalseExpr());
7903        return;
7904      }
7905
7906      if (isa<MemberExpr>(E)) {
7907        Expr *Base = E->IgnoreParenImpCasts();
7908        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7909          // Check for static member variables and don't warn on them.
7910          if (!isa<FieldDecl>(ME->getMemberDecl()))
7911            return;
7912          Base = ME->getBase()->IgnoreParenImpCasts();
7913        }
7914        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7915          HandleDeclRefExpr(DRE);
7916        return;
7917      }
7918    }
7919
7920    // Reference types are handled here since all uses of references are
7921    // bad, not just r-value uses.
7922    void VisitDeclRefExpr(DeclRefExpr *E) {
7923      if (isReferenceType)
7924        HandleDeclRefExpr(E);
7925    }
7926
7927    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7928      if (E->getCastKind() == CK_LValueToRValue ||
7929          (isRecordType && E->getCastKind() == CK_NoOp))
7930        HandleValue(E->getSubExpr());
7931
7932      Inherited::VisitImplicitCastExpr(E);
7933    }
7934
7935    void VisitMemberExpr(MemberExpr *E) {
7936      // Don't warn on arrays since they can be treated as pointers.
7937      if (E->getType()->canDecayToPointerType()) return;
7938
7939      // Warn when a non-static method call is followed by non-static member
7940      // field accesses, which is followed by a DeclRefExpr.
7941      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7942      bool Warn = (MD && !MD->isStatic());
7943      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7944      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7945        if (!isa<FieldDecl>(ME->getMemberDecl()))
7946          Warn = false;
7947        Base = ME->getBase()->IgnoreParenImpCasts();
7948      }
7949
7950      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7951        if (Warn)
7952          HandleDeclRefExpr(DRE);
7953        return;
7954      }
7955
7956      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7957      // Visit that expression.
7958      Visit(Base);
7959    }
7960
7961    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7962      if (E->getNumArgs() > 0)
7963        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7964          HandleDeclRefExpr(DRE);
7965
7966      Inherited::VisitCXXOperatorCallExpr(E);
7967    }
7968
7969    void VisitUnaryOperator(UnaryOperator *E) {
7970      // For POD record types, addresses of its own members are well-defined.
7971      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7972          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7973        if (!isPODType)
7974          HandleValue(E->getSubExpr());
7975        return;
7976      }
7977      Inherited::VisitUnaryOperator(E);
7978    }
7979
7980    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7981
7982    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7983      Decl* ReferenceDecl = DRE->getDecl();
7984      if (OrigDecl != ReferenceDecl) return;
7985      unsigned diag;
7986      if (isReferenceType) {
7987        diag = diag::warn_uninit_self_reference_in_reference_init;
7988      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7989        diag = diag::warn_static_self_reference_in_init;
7990      } else {
7991        diag = diag::warn_uninit_self_reference_in_init;
7992      }
7993
7994      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7995                            S.PDiag(diag)
7996                              << DRE->getNameInfo().getName()
7997                              << OrigDecl->getLocation()
7998                              << DRE->getSourceRange());
7999    }
8000  };
8001
8002  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
8003  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8004                                 bool DirectInit) {
8005    // Parameters arguments are occassionially constructed with itself,
8006    // for instance, in recursive functions.  Skip them.
8007    if (isa<ParmVarDecl>(OrigDecl))
8008      return;
8009
8010    E = E->IgnoreParens();
8011
8012    // Skip checking T a = a where T is not a record or reference type.
8013    // Doing so is a way to silence uninitialized warnings.
8014    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8015      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8016        if (ICE->getCastKind() == CK_LValueToRValue)
8017          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8018            if (DRE->getDecl() == OrigDecl)
8019              return;
8020
8021    SelfReferenceChecker(S, OrigDecl).Visit(E);
8022  }
8023}
8024
8025/// AddInitializerToDecl - Adds the initializer Init to the
8026/// declaration dcl. If DirectInit is true, this is C++ direct
8027/// initialization rather than copy initialization.
8028void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8029                                bool DirectInit, bool TypeMayContainAuto) {
8030  // If there is no declaration, there was an error parsing it.  Just ignore
8031  // the initializer.
8032  if (RealDecl == 0 || RealDecl->isInvalidDecl())
8033    return;
8034
8035  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8036    // With declarators parsed the way they are, the parser cannot
8037    // distinguish between a normal initializer and a pure-specifier.
8038    // Thus this grotesque test.
8039    IntegerLiteral *IL;
8040    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8041        Context.getCanonicalType(IL->getType()) == Context.IntTy)
8042      CheckPureMethod(Method, Init->getSourceRange());
8043    else {
8044      Diag(Method->getLocation(), diag::err_member_function_initialization)
8045        << Method->getDeclName() << Init->getSourceRange();
8046      Method->setInvalidDecl();
8047    }
8048    return;
8049  }
8050
8051  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8052  if (!VDecl) {
8053    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8054    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8055    RealDecl->setInvalidDecl();
8056    return;
8057  }
8058  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8059
8060  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8061  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8062    Expr *DeduceInit = Init;
8063    // Initializer could be a C++ direct-initializer. Deduction only works if it
8064    // contains exactly one expression.
8065    if (CXXDirectInit) {
8066      if (CXXDirectInit->getNumExprs() == 0) {
8067        // It isn't possible to write this directly, but it is possible to
8068        // end up in this situation with "auto x(some_pack...);"
8069        Diag(CXXDirectInit->getLocStart(),
8070             VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8071                                    : diag::err_auto_var_init_no_expression)
8072          << VDecl->getDeclName() << VDecl->getType()
8073          << VDecl->getSourceRange();
8074        RealDecl->setInvalidDecl();
8075        return;
8076      } else if (CXXDirectInit->getNumExprs() > 1) {
8077        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8078             VDecl->isInitCapture()
8079                 ? diag::err_init_capture_multiple_expressions
8080                 : diag::err_auto_var_init_multiple_expressions)
8081          << VDecl->getDeclName() << VDecl->getType()
8082          << VDecl->getSourceRange();
8083        RealDecl->setInvalidDecl();
8084        return;
8085      } else {
8086        DeduceInit = CXXDirectInit->getExpr(0);
8087      }
8088    }
8089
8090    // Expressions default to 'id' when we're in a debugger.
8091    bool DefaultedToAuto = false;
8092    if (getLangOpts().DebuggerCastResultToId &&
8093        Init->getType() == Context.UnknownAnyTy) {
8094      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8095      if (Result.isInvalid()) {
8096        VDecl->setInvalidDecl();
8097        return;
8098      }
8099      Init = Result.take();
8100      DefaultedToAuto = true;
8101    }
8102
8103    QualType DeducedType;
8104    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8105            DAR_Failed)
8106      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8107    if (DeducedType.isNull()) {
8108      RealDecl->setInvalidDecl();
8109      return;
8110    }
8111    VDecl->setType(DeducedType);
8112    assert(VDecl->isLinkageValid());
8113
8114    // In ARC, infer lifetime.
8115    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8116      VDecl->setInvalidDecl();
8117
8118    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8119    // 'id' instead of a specific object type prevents most of our usual checks.
8120    // We only want to warn outside of template instantiations, though:
8121    // inside a template, the 'id' could have come from a parameter.
8122    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8123        DeducedType->isObjCIdType()) {
8124      SourceLocation Loc =
8125          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8126      Diag(Loc, diag::warn_auto_var_is_id)
8127        << VDecl->getDeclName() << DeduceInit->getSourceRange();
8128    }
8129
8130    // If this is a redeclaration, check that the type we just deduced matches
8131    // the previously declared type.
8132    if (VarDecl *Old = VDecl->getPreviousDecl()) {
8133      // We never need to merge the type, because we cannot form an incomplete
8134      // array of auto, nor deduce such a type.
8135      MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8136    }
8137
8138    // Check the deduced type is valid for a variable declaration.
8139    CheckVariableDeclarationType(VDecl);
8140    if (VDecl->isInvalidDecl())
8141      return;
8142  }
8143
8144  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8145    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8146    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8147    VDecl->setInvalidDecl();
8148    return;
8149  }
8150
8151  if (!VDecl->getType()->isDependentType()) {
8152    // A definition must end up with a complete type, which means it must be
8153    // complete with the restriction that an array type might be completed by
8154    // the initializer; note that later code assumes this restriction.
8155    QualType BaseDeclType = VDecl->getType();
8156    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8157      BaseDeclType = Array->getElementType();
8158    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8159                            diag::err_typecheck_decl_incomplete_type)) {
8160      RealDecl->setInvalidDecl();
8161      return;
8162    }
8163
8164    // The variable can not have an abstract class type.
8165    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8166                               diag::err_abstract_type_in_decl,
8167                               AbstractVariableType))
8168      VDecl->setInvalidDecl();
8169  }
8170
8171  const VarDecl *Def;
8172  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8173    Diag(VDecl->getLocation(), diag::err_redefinition)
8174      << VDecl->getDeclName();
8175    Diag(Def->getLocation(), diag::note_previous_definition);
8176    VDecl->setInvalidDecl();
8177    return;
8178  }
8179
8180  const VarDecl* PrevInit = 0;
8181  if (getLangOpts().CPlusPlus) {
8182    // C++ [class.static.data]p4
8183    //   If a static data member is of const integral or const
8184    //   enumeration type, its declaration in the class definition can
8185    //   specify a constant-initializer which shall be an integral
8186    //   constant expression (5.19). In that case, the member can appear
8187    //   in integral constant expressions. The member shall still be
8188    //   defined in a namespace scope if it is used in the program and the
8189    //   namespace scope definition shall not contain an initializer.
8190    //
8191    // We already performed a redefinition check above, but for static
8192    // data members we also need to check whether there was an in-class
8193    // declaration with an initializer.
8194    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8195      Diag(VDecl->getLocation(), diag::err_redefinition)
8196        << VDecl->getDeclName();
8197      Diag(PrevInit->getLocation(), diag::note_previous_definition);
8198      return;
8199    }
8200
8201    if (VDecl->hasLocalStorage())
8202      getCurFunction()->setHasBranchProtectedScope();
8203
8204    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8205      VDecl->setInvalidDecl();
8206      return;
8207    }
8208  }
8209
8210  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8211  // a kernel function cannot be initialized."
8212  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8213    Diag(VDecl->getLocation(), diag::err_local_cant_init);
8214    VDecl->setInvalidDecl();
8215    return;
8216  }
8217
8218  // Get the decls type and save a reference for later, since
8219  // CheckInitializerTypes may change it.
8220  QualType DclT = VDecl->getType(), SavT = DclT;
8221
8222  // Expressions default to 'id' when we're in a debugger
8223  // and we are assigning it to a variable of Objective-C pointer type.
8224  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8225      Init->getType() == Context.UnknownAnyTy) {
8226    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8227    if (Result.isInvalid()) {
8228      VDecl->setInvalidDecl();
8229      return;
8230    }
8231    Init = Result.take();
8232  }
8233
8234  // Perform the initialization.
8235  if (!VDecl->isInvalidDecl()) {
8236    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8237    InitializationKind Kind
8238      = DirectInit ?
8239          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8240                                                           Init->getLocStart(),
8241                                                           Init->getLocEnd())
8242                        : InitializationKind::CreateDirectList(
8243                                                          VDecl->getLocation())
8244                   : InitializationKind::CreateCopy(VDecl->getLocation(),
8245                                                    Init->getLocStart());
8246
8247    MultiExprArg Args = Init;
8248    if (CXXDirectInit)
8249      Args = MultiExprArg(CXXDirectInit->getExprs(),
8250                          CXXDirectInit->getNumExprs());
8251
8252    InitializationSequence InitSeq(*this, Entity, Kind, Args);
8253    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8254    if (Result.isInvalid()) {
8255      VDecl->setInvalidDecl();
8256      return;
8257    }
8258
8259    Init = Result.takeAs<Expr>();
8260  }
8261
8262  // Check for self-references within variable initializers.
8263  // Variables declared within a function/method body (except for references)
8264  // are handled by a dataflow analysis.
8265  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8266      VDecl->getType()->isReferenceType()) {
8267    CheckSelfReference(*this, RealDecl, Init, DirectInit);
8268  }
8269
8270  // If the type changed, it means we had an incomplete type that was
8271  // completed by the initializer. For example:
8272  //   int ary[] = { 1, 3, 5 };
8273  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8274  if (!VDecl->isInvalidDecl() && (DclT != SavT))
8275    VDecl->setType(DclT);
8276
8277  if (!VDecl->isInvalidDecl()) {
8278    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8279
8280    if (VDecl->hasAttr<BlocksAttr>())
8281      checkRetainCycles(VDecl, Init);
8282
8283    // It is safe to assign a weak reference into a strong variable.
8284    // Although this code can still have problems:
8285    //   id x = self.weakProp;
8286    //   id y = self.weakProp;
8287    // we do not warn to warn spuriously when 'x' and 'y' are on separate
8288    // paths through the function. This should be revisited if
8289    // -Wrepeated-use-of-weak is made flow-sensitive.
8290    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8291      DiagnosticsEngine::Level Level =
8292        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8293                                 Init->getLocStart());
8294      if (Level != DiagnosticsEngine::Ignored)
8295        getCurFunction()->markSafeWeakUse(Init);
8296    }
8297  }
8298
8299  // The initialization is usually a full-expression.
8300  //
8301  // FIXME: If this is a braced initialization of an aggregate, it is not
8302  // an expression, and each individual field initializer is a separate
8303  // full-expression. For instance, in:
8304  //
8305  //   struct Temp { ~Temp(); };
8306  //   struct S { S(Temp); };
8307  //   struct T { S a, b; } t = { Temp(), Temp() }
8308  //
8309  // we should destroy the first Temp before constructing the second.
8310  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8311                                          false,
8312                                          VDecl->isConstexpr());
8313  if (Result.isInvalid()) {
8314    VDecl->setInvalidDecl();
8315    return;
8316  }
8317  Init = Result.take();
8318
8319  // Attach the initializer to the decl.
8320  VDecl->setInit(Init);
8321
8322  if (VDecl->isLocalVarDecl()) {
8323    // C99 6.7.8p4: All the expressions in an initializer for an object that has
8324    // static storage duration shall be constant expressions or string literals.
8325    // C++ does not have this restriction.
8326    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8327      if (VDecl->getStorageClass() == SC_Static)
8328        CheckForConstantInitializer(Init, DclT);
8329      // C89 is stricter than C99 for non-static aggregate types.
8330      // C89 6.5.7p3: All the expressions [...] in an initializer list
8331      // for an object that has aggregate or union type shall be
8332      // constant expressions.
8333      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8334               isa<InitListExpr>(Init) &&
8335               !Init->isConstantInitializer(Context, false))
8336        Diag(Init->getExprLoc(),
8337             diag::ext_aggregate_init_not_constant)
8338          << Init->getSourceRange();
8339    }
8340  } else if (VDecl->isStaticDataMember() &&
8341             VDecl->getLexicalDeclContext()->isRecord()) {
8342    // This is an in-class initialization for a static data member, e.g.,
8343    //
8344    // struct S {
8345    //   static const int value = 17;
8346    // };
8347
8348    // C++ [class.mem]p4:
8349    //   A member-declarator can contain a constant-initializer only
8350    //   if it declares a static member (9.4) of const integral or
8351    //   const enumeration type, see 9.4.2.
8352    //
8353    // C++11 [class.static.data]p3:
8354    //   If a non-volatile const static data member is of integral or
8355    //   enumeration type, its declaration in the class definition can
8356    //   specify a brace-or-equal-initializer in which every initalizer-clause
8357    //   that is an assignment-expression is a constant expression. A static
8358    //   data member of literal type can be declared in the class definition
8359    //   with the constexpr specifier; if so, its declaration shall specify a
8360    //   brace-or-equal-initializer in which every initializer-clause that is
8361    //   an assignment-expression is a constant expression.
8362
8363    // Do nothing on dependent types.
8364    if (DclT->isDependentType()) {
8365
8366    // Allow any 'static constexpr' members, whether or not they are of literal
8367    // type. We separately check that every constexpr variable is of literal
8368    // type.
8369    } else if (VDecl->isConstexpr()) {
8370
8371    // Require constness.
8372    } else if (!DclT.isConstQualified()) {
8373      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8374        << Init->getSourceRange();
8375      VDecl->setInvalidDecl();
8376
8377    // We allow integer constant expressions in all cases.
8378    } else if (DclT->isIntegralOrEnumerationType()) {
8379      // Check whether the expression is a constant expression.
8380      SourceLocation Loc;
8381      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8382        // In C++11, a non-constexpr const static data member with an
8383        // in-class initializer cannot be volatile.
8384        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8385      else if (Init->isValueDependent())
8386        ; // Nothing to check.
8387      else if (Init->isIntegerConstantExpr(Context, &Loc))
8388        ; // Ok, it's an ICE!
8389      else if (Init->isEvaluatable(Context)) {
8390        // If we can constant fold the initializer through heroics, accept it,
8391        // but report this as a use of an extension for -pedantic.
8392        Diag(Loc, diag::ext_in_class_initializer_non_constant)
8393          << Init->getSourceRange();
8394      } else {
8395        // Otherwise, this is some crazy unknown case.  Report the issue at the
8396        // location provided by the isIntegerConstantExpr failed check.
8397        Diag(Loc, diag::err_in_class_initializer_non_constant)
8398          << Init->getSourceRange();
8399        VDecl->setInvalidDecl();
8400      }
8401
8402    // We allow foldable floating-point constants as an extension.
8403    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8404      // In C++98, this is a GNU extension. In C++11, it is not, but we support
8405      // it anyway and provide a fixit to add the 'constexpr'.
8406      if (getLangOpts().CPlusPlus11) {
8407        Diag(VDecl->getLocation(),
8408             diag::ext_in_class_initializer_float_type_cxx11)
8409            << DclT << Init->getSourceRange();
8410        Diag(VDecl->getLocStart(),
8411             diag::note_in_class_initializer_float_type_cxx11)
8412            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8413      } else {
8414        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8415          << DclT << Init->getSourceRange();
8416
8417        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8418          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8419            << Init->getSourceRange();
8420          VDecl->setInvalidDecl();
8421        }
8422      }
8423
8424    // Suggest adding 'constexpr' in C++11 for literal types.
8425    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8426      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8427        << DclT << Init->getSourceRange()
8428        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8429      VDecl->setConstexpr(true);
8430
8431    } else {
8432      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8433        << DclT << Init->getSourceRange();
8434      VDecl->setInvalidDecl();
8435    }
8436  } else if (VDecl->isFileVarDecl()) {
8437    if (VDecl->getStorageClass() == SC_Extern &&
8438        (!getLangOpts().CPlusPlus ||
8439         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8440           VDecl->isExternC())) &&
8441        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8442      Diag(VDecl->getLocation(), diag::warn_extern_init);
8443
8444    // C99 6.7.8p4. All file scoped initializers need to be constant.
8445    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8446      CheckForConstantInitializer(Init, DclT);
8447    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8448             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8449             !Init->isValueDependent() && !VDecl->isConstexpr() &&
8450             !Init->isConstantInitializer(
8451                 Context, VDecl->getType()->isReferenceType())) {
8452      // GNU C++98 edits for __thread, [basic.start.init]p4:
8453      //   An object of thread storage duration shall not require dynamic
8454      //   initialization.
8455      // FIXME: Need strict checking here.
8456      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8457      if (getLangOpts().CPlusPlus11)
8458        Diag(VDecl->getLocation(), diag::note_use_thread_local);
8459    }
8460  }
8461
8462  // We will represent direct-initialization similarly to copy-initialization:
8463  //    int x(1);  -as-> int x = 1;
8464  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8465  //
8466  // Clients that want to distinguish between the two forms, can check for
8467  // direct initializer using VarDecl::getInitStyle().
8468  // A major benefit is that clients that don't particularly care about which
8469  // exactly form was it (like the CodeGen) can handle both cases without
8470  // special case code.
8471
8472  // C++ 8.5p11:
8473  // The form of initialization (using parentheses or '=') is generally
8474  // insignificant, but does matter when the entity being initialized has a
8475  // class type.
8476  if (CXXDirectInit) {
8477    assert(DirectInit && "Call-style initializer must be direct init.");
8478    VDecl->setInitStyle(VarDecl::CallInit);
8479  } else if (DirectInit) {
8480    // This must be list-initialization. No other way is direct-initialization.
8481    VDecl->setInitStyle(VarDecl::ListInit);
8482  }
8483
8484  CheckCompleteVariableDeclaration(VDecl);
8485}
8486
8487/// ActOnInitializerError - Given that there was an error parsing an
8488/// initializer for the given declaration, try to return to some form
8489/// of sanity.
8490void Sema::ActOnInitializerError(Decl *D) {
8491  // Our main concern here is re-establishing invariants like "a
8492  // variable's type is either dependent or complete".
8493  if (!D || D->isInvalidDecl()) return;
8494
8495  VarDecl *VD = dyn_cast<VarDecl>(D);
8496  if (!VD) return;
8497
8498  // Auto types are meaningless if we can't make sense of the initializer.
8499  if (ParsingInitForAutoVars.count(D)) {
8500    D->setInvalidDecl();
8501    return;
8502  }
8503
8504  QualType Ty = VD->getType();
8505  if (Ty->isDependentType()) return;
8506
8507  // Require a complete type.
8508  if (RequireCompleteType(VD->getLocation(),
8509                          Context.getBaseElementType(Ty),
8510                          diag::err_typecheck_decl_incomplete_type)) {
8511    VD->setInvalidDecl();
8512    return;
8513  }
8514
8515  // Require an abstract type.
8516  if (RequireNonAbstractType(VD->getLocation(), Ty,
8517                             diag::err_abstract_type_in_decl,
8518                             AbstractVariableType)) {
8519    VD->setInvalidDecl();
8520    return;
8521  }
8522
8523  // Don't bother complaining about constructors or destructors,
8524  // though.
8525}
8526
8527void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8528                                  bool TypeMayContainAuto) {
8529  // If there is no declaration, there was an error parsing it. Just ignore it.
8530  if (RealDecl == 0)
8531    return;
8532
8533  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8534    QualType Type = Var->getType();
8535
8536    // C++11 [dcl.spec.auto]p3
8537    if (TypeMayContainAuto && Type->getContainedAutoType()) {
8538      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8539        << Var->getDeclName() << Type;
8540      Var->setInvalidDecl();
8541      return;
8542    }
8543
8544    // C++11 [class.static.data]p3: A static data member can be declared with
8545    // the constexpr specifier; if so, its declaration shall specify
8546    // a brace-or-equal-initializer.
8547    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8548    // the definition of a variable [...] or the declaration of a static data
8549    // member.
8550    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8551      if (Var->isStaticDataMember())
8552        Diag(Var->getLocation(),
8553             diag::err_constexpr_static_mem_var_requires_init)
8554          << Var->getDeclName();
8555      else
8556        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8557      Var->setInvalidDecl();
8558      return;
8559    }
8560
8561    switch (Var->isThisDeclarationADefinition()) {
8562    case VarDecl::Definition:
8563      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8564        break;
8565
8566      // We have an out-of-line definition of a static data member
8567      // that has an in-class initializer, so we type-check this like
8568      // a declaration.
8569      //
8570      // Fall through
8571
8572    case VarDecl::DeclarationOnly:
8573      // It's only a declaration.
8574
8575      // Block scope. C99 6.7p7: If an identifier for an object is
8576      // declared with no linkage (C99 6.2.2p6), the type for the
8577      // object shall be complete.
8578      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8579          !Var->hasLinkage() && !Var->isInvalidDecl() &&
8580          RequireCompleteType(Var->getLocation(), Type,
8581                              diag::err_typecheck_decl_incomplete_type))
8582        Var->setInvalidDecl();
8583
8584      // Make sure that the type is not abstract.
8585      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8586          RequireNonAbstractType(Var->getLocation(), Type,
8587                                 diag::err_abstract_type_in_decl,
8588                                 AbstractVariableType))
8589        Var->setInvalidDecl();
8590      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8591          Var->getStorageClass() == SC_PrivateExtern) {
8592        Diag(Var->getLocation(), diag::warn_private_extern);
8593        Diag(Var->getLocation(), diag::note_private_extern);
8594      }
8595
8596      return;
8597
8598    case VarDecl::TentativeDefinition:
8599      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8600      // object that has file scope without an initializer, and without a
8601      // storage-class specifier or with the storage-class specifier "static",
8602      // constitutes a tentative definition. Note: A tentative definition with
8603      // external linkage is valid (C99 6.2.2p5).
8604      if (!Var->isInvalidDecl()) {
8605        if (const IncompleteArrayType *ArrayT
8606                                    = Context.getAsIncompleteArrayType(Type)) {
8607          if (RequireCompleteType(Var->getLocation(),
8608                                  ArrayT->getElementType(),
8609                                  diag::err_illegal_decl_array_incomplete_type))
8610            Var->setInvalidDecl();
8611        } else if (Var->getStorageClass() == SC_Static) {
8612          // C99 6.9.2p3: If the declaration of an identifier for an object is
8613          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8614          // declared type shall not be an incomplete type.
8615          // NOTE: code such as the following
8616          //     static struct s;
8617          //     struct s { int a; };
8618          // is accepted by gcc. Hence here we issue a warning instead of
8619          // an error and we do not invalidate the static declaration.
8620          // NOTE: to avoid multiple warnings, only check the first declaration.
8621          if (Var->isFirstDecl())
8622            RequireCompleteType(Var->getLocation(), Type,
8623                                diag::ext_typecheck_decl_incomplete_type);
8624        }
8625      }
8626
8627      // Record the tentative definition; we're done.
8628      if (!Var->isInvalidDecl())
8629        TentativeDefinitions.push_back(Var);
8630      return;
8631    }
8632
8633    // Provide a specific diagnostic for uninitialized variable
8634    // definitions with incomplete array type.
8635    if (Type->isIncompleteArrayType()) {
8636      Diag(Var->getLocation(),
8637           diag::err_typecheck_incomplete_array_needs_initializer);
8638      Var->setInvalidDecl();
8639      return;
8640    }
8641
8642    // Provide a specific diagnostic for uninitialized variable
8643    // definitions with reference type.
8644    if (Type->isReferenceType()) {
8645      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8646        << Var->getDeclName()
8647        << SourceRange(Var->getLocation(), Var->getLocation());
8648      Var->setInvalidDecl();
8649      return;
8650    }
8651
8652    // Do not attempt to type-check the default initializer for a
8653    // variable with dependent type.
8654    if (Type->isDependentType())
8655      return;
8656
8657    if (Var->isInvalidDecl())
8658      return;
8659
8660    if (RequireCompleteType(Var->getLocation(),
8661                            Context.getBaseElementType(Type),
8662                            diag::err_typecheck_decl_incomplete_type)) {
8663      Var->setInvalidDecl();
8664      return;
8665    }
8666
8667    // The variable can not have an abstract class type.
8668    if (RequireNonAbstractType(Var->getLocation(), Type,
8669                               diag::err_abstract_type_in_decl,
8670                               AbstractVariableType)) {
8671      Var->setInvalidDecl();
8672      return;
8673    }
8674
8675    // Check for jumps past the implicit initializer.  C++0x
8676    // clarifies that this applies to a "variable with automatic
8677    // storage duration", not a "local variable".
8678    // C++11 [stmt.dcl]p3
8679    //   A program that jumps from a point where a variable with automatic
8680    //   storage duration is not in scope to a point where it is in scope is
8681    //   ill-formed unless the variable has scalar type, class type with a
8682    //   trivial default constructor and a trivial destructor, a cv-qualified
8683    //   version of one of these types, or an array of one of the preceding
8684    //   types and is declared without an initializer.
8685    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8686      if (const RecordType *Record
8687            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8688        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8689        // Mark the function for further checking even if the looser rules of
8690        // C++11 do not require such checks, so that we can diagnose
8691        // incompatibilities with C++98.
8692        if (!CXXRecord->isPOD())
8693          getCurFunction()->setHasBranchProtectedScope();
8694      }
8695    }
8696
8697    // C++03 [dcl.init]p9:
8698    //   If no initializer is specified for an object, and the
8699    //   object is of (possibly cv-qualified) non-POD class type (or
8700    //   array thereof), the object shall be default-initialized; if
8701    //   the object is of const-qualified type, the underlying class
8702    //   type shall have a user-declared default
8703    //   constructor. Otherwise, if no initializer is specified for
8704    //   a non- static object, the object and its subobjects, if
8705    //   any, have an indeterminate initial value); if the object
8706    //   or any of its subobjects are of const-qualified type, the
8707    //   program is ill-formed.
8708    // C++0x [dcl.init]p11:
8709    //   If no initializer is specified for an object, the object is
8710    //   default-initialized; [...].
8711    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8712    InitializationKind Kind
8713      = InitializationKind::CreateDefault(Var->getLocation());
8714
8715    InitializationSequence InitSeq(*this, Entity, Kind, None);
8716    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8717    if (Init.isInvalid())
8718      Var->setInvalidDecl();
8719    else if (Init.get()) {
8720      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8721      // This is important for template substitution.
8722      Var->setInitStyle(VarDecl::CallInit);
8723    }
8724
8725    CheckCompleteVariableDeclaration(Var);
8726  }
8727}
8728
8729void Sema::ActOnCXXForRangeDecl(Decl *D) {
8730  VarDecl *VD = dyn_cast<VarDecl>(D);
8731  if (!VD) {
8732    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8733    D->setInvalidDecl();
8734    return;
8735  }
8736
8737  VD->setCXXForRangeDecl(true);
8738
8739  // for-range-declaration cannot be given a storage class specifier.
8740  int Error = -1;
8741  switch (VD->getStorageClass()) {
8742  case SC_None:
8743    break;
8744  case SC_Extern:
8745    Error = 0;
8746    break;
8747  case SC_Static:
8748    Error = 1;
8749    break;
8750  case SC_PrivateExtern:
8751    Error = 2;
8752    break;
8753  case SC_Auto:
8754    Error = 3;
8755    break;
8756  case SC_Register:
8757    Error = 4;
8758    break;
8759  case SC_OpenCLWorkGroupLocal:
8760    llvm_unreachable("Unexpected storage class");
8761  }
8762  if (VD->isConstexpr())
8763    Error = 5;
8764  if (Error != -1) {
8765    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8766      << VD->getDeclName() << Error;
8767    D->setInvalidDecl();
8768  }
8769}
8770
8771void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8772  if (var->isInvalidDecl()) return;
8773
8774  // In ARC, don't allow jumps past the implicit initialization of a
8775  // local retaining variable.
8776  if (getLangOpts().ObjCAutoRefCount &&
8777      var->hasLocalStorage()) {
8778    switch (var->getType().getObjCLifetime()) {
8779    case Qualifiers::OCL_None:
8780    case Qualifiers::OCL_ExplicitNone:
8781    case Qualifiers::OCL_Autoreleasing:
8782      break;
8783
8784    case Qualifiers::OCL_Weak:
8785    case Qualifiers::OCL_Strong:
8786      getCurFunction()->setHasBranchProtectedScope();
8787      break;
8788    }
8789  }
8790
8791  if (var->isThisDeclarationADefinition() &&
8792      var->isExternallyVisible() && var->hasLinkage() &&
8793      getDiagnostics().getDiagnosticLevel(
8794                       diag::warn_missing_variable_declarations,
8795                       var->getLocation())) {
8796    // Find a previous declaration that's not a definition.
8797    VarDecl *prev = var->getPreviousDecl();
8798    while (prev && prev->isThisDeclarationADefinition())
8799      prev = prev->getPreviousDecl();
8800
8801    if (!prev)
8802      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8803  }
8804
8805  if (var->getTLSKind() == VarDecl::TLS_Static &&
8806      var->getType().isDestructedType()) {
8807    // GNU C++98 edits for __thread, [basic.start.term]p3:
8808    //   The type of an object with thread storage duration shall not
8809    //   have a non-trivial destructor.
8810    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8811    if (getLangOpts().CPlusPlus11)
8812      Diag(var->getLocation(), diag::note_use_thread_local);
8813  }
8814
8815  // All the following checks are C++ only.
8816  if (!getLangOpts().CPlusPlus) return;
8817
8818  QualType type = var->getType();
8819  if (type->isDependentType()) return;
8820
8821  // __block variables might require us to capture a copy-initializer.
8822  if (var->hasAttr<BlocksAttr>()) {
8823    // It's currently invalid to ever have a __block variable with an
8824    // array type; should we diagnose that here?
8825
8826    // Regardless, we don't want to ignore array nesting when
8827    // constructing this copy.
8828    if (type->isStructureOrClassType()) {
8829      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8830      SourceLocation poi = var->getLocation();
8831      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8832      ExprResult result
8833        = PerformMoveOrCopyInitialization(
8834            InitializedEntity::InitializeBlock(poi, type, false),
8835            var, var->getType(), varRef, /*AllowNRVO=*/true);
8836      if (!result.isInvalid()) {
8837        result = MaybeCreateExprWithCleanups(result);
8838        Expr *init = result.takeAs<Expr>();
8839        Context.setBlockVarCopyInits(var, init);
8840      }
8841    }
8842  }
8843
8844  Expr *Init = var->getInit();
8845  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8846  QualType baseType = Context.getBaseElementType(type);
8847
8848  if (!var->getDeclContext()->isDependentContext() &&
8849      Init && !Init->isValueDependent()) {
8850    if (IsGlobal && !var->isConstexpr() &&
8851        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8852                                            var->getLocation())
8853          != DiagnosticsEngine::Ignored) {
8854      // Warn about globals which don't have a constant initializer.  Don't
8855      // warn about globals with a non-trivial destructor because we already
8856      // warned about them.
8857      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8858      if (!(RD && !RD->hasTrivialDestructor()) &&
8859          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8860        Diag(var->getLocation(), diag::warn_global_constructor)
8861          << Init->getSourceRange();
8862    }
8863
8864    if (var->isConstexpr()) {
8865      SmallVector<PartialDiagnosticAt, 8> Notes;
8866      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8867        SourceLocation DiagLoc = var->getLocation();
8868        // If the note doesn't add any useful information other than a source
8869        // location, fold it into the primary diagnostic.
8870        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8871              diag::note_invalid_subexpr_in_const_expr) {
8872          DiagLoc = Notes[0].first;
8873          Notes.clear();
8874        }
8875        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8876          << var << Init->getSourceRange();
8877        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8878          Diag(Notes[I].first, Notes[I].second);
8879      }
8880    } else if (var->isUsableInConstantExpressions(Context)) {
8881      // Check whether the initializer of a const variable of integral or
8882      // enumeration type is an ICE now, since we can't tell whether it was
8883      // initialized by a constant expression if we check later.
8884      var->checkInitIsICE();
8885    }
8886  }
8887
8888  // Require the destructor.
8889  if (const RecordType *recordType = baseType->getAs<RecordType>())
8890    FinalizeVarWithDestructor(var, recordType);
8891}
8892
8893/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8894/// any semantic actions necessary after any initializer has been attached.
8895void
8896Sema::FinalizeDeclaration(Decl *ThisDecl) {
8897  // Note that we are no longer parsing the initializer for this declaration.
8898  ParsingInitForAutoVars.erase(ThisDecl);
8899
8900  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8901  if (!VD)
8902    return;
8903
8904  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
8905    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
8906      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << "used";
8907      VD->dropAttr<UsedAttr>();
8908    }
8909  }
8910
8911  if (!VD->isInvalidDecl() &&
8912      VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
8913    if (const VarDecl *Def = VD->getDefinition()) {
8914      if (Def->hasAttr<AliasAttr>()) {
8915        Diag(VD->getLocation(), diag::err_tentative_after_alias)
8916            << VD->getDeclName();
8917        Diag(Def->getLocation(), diag::note_previous_definition);
8918        VD->setInvalidDecl();
8919      }
8920    }
8921  }
8922
8923  const DeclContext *DC = VD->getDeclContext();
8924  // If there's a #pragma GCC visibility in scope, and this isn't a class
8925  // member, set the visibility of this variable.
8926  if (!DC->isRecord() && VD->isExternallyVisible())
8927    AddPushedVisibilityAttribute(VD);
8928
8929  if (VD->isFileVarDecl())
8930    MarkUnusedFileScopedDecl(VD);
8931
8932  // Now we have parsed the initializer and can update the table of magic
8933  // tag values.
8934  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8935      !VD->getType()->isIntegralOrEnumerationType())
8936    return;
8937
8938  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8939         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8940         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8941       I != E; ++I) {
8942    const Expr *MagicValueExpr = VD->getInit();
8943    if (!MagicValueExpr) {
8944      continue;
8945    }
8946    llvm::APSInt MagicValueInt;
8947    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8948      Diag(I->getRange().getBegin(),
8949           diag::err_type_tag_for_datatype_not_ice)
8950        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8951      continue;
8952    }
8953    if (MagicValueInt.getActiveBits() > 64) {
8954      Diag(I->getRange().getBegin(),
8955           diag::err_type_tag_for_datatype_too_large)
8956        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8957      continue;
8958    }
8959    uint64_t MagicValue = MagicValueInt.getZExtValue();
8960    RegisterTypeTagForDatatype(I->getArgumentKind(),
8961                               MagicValue,
8962                               I->getMatchingCType(),
8963                               I->getLayoutCompatible(),
8964                               I->getMustBeNull());
8965  }
8966}
8967
8968Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8969                                                   ArrayRef<Decl *> Group) {
8970  SmallVector<Decl*, 8> Decls;
8971
8972  if (DS.isTypeSpecOwned())
8973    Decls.push_back(DS.getRepAsDecl());
8974
8975  DeclaratorDecl *FirstDeclaratorInGroup = 0;
8976  for (unsigned i = 0, e = Group.size(); i != e; ++i)
8977    if (Decl *D = Group[i]) {
8978      if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
8979        if (!FirstDeclaratorInGroup)
8980          FirstDeclaratorInGroup = DD;
8981      Decls.push_back(D);
8982    }
8983
8984  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8985    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
8986      HandleTagNumbering(*this, Tag);
8987      if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
8988        Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
8989    }
8990  }
8991
8992  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8993}
8994
8995/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8996/// group, performing any necessary semantic checking.
8997Sema::DeclGroupPtrTy
8998Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8999                           bool TypeMayContainAuto) {
9000  // C++0x [dcl.spec.auto]p7:
9001  //   If the type deduced for the template parameter U is not the same in each
9002  //   deduction, the program is ill-formed.
9003  // FIXME: When initializer-list support is added, a distinction is needed
9004  // between the deduced type U and the deduced type which 'auto' stands for.
9005  //   auto a = 0, b = { 1, 2, 3 };
9006  // is legal because the deduced type U is 'int' in both cases.
9007  if (TypeMayContainAuto && Group.size() > 1) {
9008    QualType Deduced;
9009    CanQualType DeducedCanon;
9010    VarDecl *DeducedDecl = 0;
9011    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9012      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9013        AutoType *AT = D->getType()->getContainedAutoType();
9014        // Don't reissue diagnostics when instantiating a template.
9015        if (AT && D->isInvalidDecl())
9016          break;
9017        QualType U = AT ? AT->getDeducedType() : QualType();
9018        if (!U.isNull()) {
9019          CanQualType UCanon = Context.getCanonicalType(U);
9020          if (Deduced.isNull()) {
9021            Deduced = U;
9022            DeducedCanon = UCanon;
9023            DeducedDecl = D;
9024          } else if (DeducedCanon != UCanon) {
9025            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9026                 diag::err_auto_different_deductions)
9027              << (AT->isDecltypeAuto() ? 1 : 0)
9028              << Deduced << DeducedDecl->getDeclName()
9029              << U << D->getDeclName()
9030              << DeducedDecl->getInit()->getSourceRange()
9031              << D->getInit()->getSourceRange();
9032            D->setInvalidDecl();
9033            break;
9034          }
9035        }
9036      }
9037    }
9038  }
9039
9040  ActOnDocumentableDecls(Group);
9041
9042  return DeclGroupPtrTy::make(
9043      DeclGroupRef::Create(Context, Group.data(), Group.size()));
9044}
9045
9046void Sema::ActOnDocumentableDecl(Decl *D) {
9047  ActOnDocumentableDecls(D);
9048}
9049
9050void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9051  // Don't parse the comment if Doxygen diagnostics are ignored.
9052  if (Group.empty() || !Group[0])
9053   return;
9054
9055  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
9056                               Group[0]->getLocation())
9057        == DiagnosticsEngine::Ignored)
9058    return;
9059
9060  if (Group.size() >= 2) {
9061    // This is a decl group.  Normally it will contain only declarations
9062    // produced from declarator list.  But in case we have any definitions or
9063    // additional declaration references:
9064    //   'typedef struct S {} S;'
9065    //   'typedef struct S *S;'
9066    //   'struct S *pS;'
9067    // FinalizeDeclaratorGroup adds these as separate declarations.
9068    Decl *MaybeTagDecl = Group[0];
9069    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9070      Group = Group.slice(1);
9071    }
9072  }
9073
9074  // See if there are any new comments that are not attached to a decl.
9075  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9076  if (!Comments.empty() &&
9077      !Comments.back()->isAttached()) {
9078    // There is at least one comment that not attached to a decl.
9079    // Maybe it should be attached to one of these decls?
9080    //
9081    // Note that this way we pick up not only comments that precede the
9082    // declaration, but also comments that *follow* the declaration -- thanks to
9083    // the lookahead in the lexer: we've consumed the semicolon and looked
9084    // ahead through comments.
9085    for (unsigned i = 0, e = Group.size(); i != e; ++i)
9086      Context.getCommentForDecl(Group[i], &PP);
9087  }
9088}
9089
9090/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9091/// to introduce parameters into function prototype scope.
9092Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9093  const DeclSpec &DS = D.getDeclSpec();
9094
9095  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9096
9097  // C++03 [dcl.stc]p2 also permits 'auto'.
9098  VarDecl::StorageClass StorageClass = SC_None;
9099  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9100    StorageClass = SC_Register;
9101  } else if (getLangOpts().CPlusPlus &&
9102             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9103    StorageClass = SC_Auto;
9104  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9105    Diag(DS.getStorageClassSpecLoc(),
9106         diag::err_invalid_storage_class_in_func_decl);
9107    D.getMutableDeclSpec().ClearStorageClassSpecs();
9108  }
9109
9110  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9111    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9112      << DeclSpec::getSpecifierName(TSCS);
9113  if (DS.isConstexprSpecified())
9114    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9115      << 0;
9116
9117  DiagnoseFunctionSpecifiers(DS);
9118
9119  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9120  QualType parmDeclType = TInfo->getType();
9121
9122  if (getLangOpts().CPlusPlus) {
9123    // Check that there are no default arguments inside the type of this
9124    // parameter.
9125    CheckExtraCXXDefaultArguments(D);
9126
9127    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9128    if (D.getCXXScopeSpec().isSet()) {
9129      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9130        << D.getCXXScopeSpec().getRange();
9131      D.getCXXScopeSpec().clear();
9132    }
9133  }
9134
9135  // Ensure we have a valid name
9136  IdentifierInfo *II = 0;
9137  if (D.hasName()) {
9138    II = D.getIdentifier();
9139    if (!II) {
9140      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9141        << GetNameForDeclarator(D).getName().getAsString();
9142      D.setInvalidType(true);
9143    }
9144  }
9145
9146  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9147  if (II) {
9148    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9149                   ForRedeclaration);
9150    LookupName(R, S);
9151    if (R.isSingleResult()) {
9152      NamedDecl *PrevDecl = R.getFoundDecl();
9153      if (PrevDecl->isTemplateParameter()) {
9154        // Maybe we will complain about the shadowed template parameter.
9155        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9156        // Just pretend that we didn't see the previous declaration.
9157        PrevDecl = 0;
9158      } else if (S->isDeclScope(PrevDecl)) {
9159        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9160        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9161
9162        // Recover by removing the name
9163        II = 0;
9164        D.SetIdentifier(0, D.getIdentifierLoc());
9165        D.setInvalidType(true);
9166      }
9167    }
9168  }
9169
9170  // Temporarily put parameter variables in the translation unit, not
9171  // the enclosing context.  This prevents them from accidentally
9172  // looking like class members in C++.
9173  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9174                                    D.getLocStart(),
9175                                    D.getIdentifierLoc(), II,
9176                                    parmDeclType, TInfo,
9177                                    StorageClass);
9178
9179  if (D.isInvalidType())
9180    New->setInvalidDecl();
9181
9182  assert(S->isFunctionPrototypeScope());
9183  assert(S->getFunctionPrototypeDepth() >= 1);
9184  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9185                    S->getNextFunctionPrototypeIndex());
9186
9187  // Add the parameter declaration into this scope.
9188  S->AddDecl(New);
9189  if (II)
9190    IdResolver.AddDecl(New);
9191
9192  ProcessDeclAttributes(S, New, D);
9193
9194  if (D.getDeclSpec().isModulePrivateSpecified())
9195    Diag(New->getLocation(), diag::err_module_private_local)
9196      << 1 << New->getDeclName()
9197      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9198      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9199
9200  if (New->hasAttr<BlocksAttr>()) {
9201    Diag(New->getLocation(), diag::err_block_on_nonlocal);
9202  }
9203  return New;
9204}
9205
9206/// \brief Synthesizes a variable for a parameter arising from a
9207/// typedef.
9208ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9209                                              SourceLocation Loc,
9210                                              QualType T) {
9211  /* FIXME: setting StartLoc == Loc.
9212     Would it be worth to modify callers so as to provide proper source
9213     location for the unnamed parameters, embedding the parameter's type? */
9214  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
9215                                T, Context.getTrivialTypeSourceInfo(T, Loc),
9216                                           SC_None, 0);
9217  Param->setImplicit();
9218  return Param;
9219}
9220
9221void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9222                                    ParmVarDecl * const *ParamEnd) {
9223  // Don't diagnose unused-parameter errors in template instantiations; we
9224  // will already have done so in the template itself.
9225  if (!ActiveTemplateInstantiations.empty())
9226    return;
9227
9228  for (; Param != ParamEnd; ++Param) {
9229    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9230        !(*Param)->hasAttr<UnusedAttr>()) {
9231      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9232        << (*Param)->getDeclName();
9233    }
9234  }
9235}
9236
9237void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9238                                                  ParmVarDecl * const *ParamEnd,
9239                                                  QualType ReturnTy,
9240                                                  NamedDecl *D) {
9241  if (LangOpts.NumLargeByValueCopy == 0) // No check.
9242    return;
9243
9244  // Warn if the return value is pass-by-value and larger than the specified
9245  // threshold.
9246  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9247    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9248    if (Size > LangOpts.NumLargeByValueCopy)
9249      Diag(D->getLocation(), diag::warn_return_value_size)
9250          << D->getDeclName() << Size;
9251  }
9252
9253  // Warn if any parameter is pass-by-value and larger than the specified
9254  // threshold.
9255  for (; Param != ParamEnd; ++Param) {
9256    QualType T = (*Param)->getType();
9257    if (T->isDependentType() || !T.isPODType(Context))
9258      continue;
9259    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9260    if (Size > LangOpts.NumLargeByValueCopy)
9261      Diag((*Param)->getLocation(), diag::warn_parameter_size)
9262          << (*Param)->getDeclName() << Size;
9263  }
9264}
9265
9266ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9267                                  SourceLocation NameLoc, IdentifierInfo *Name,
9268                                  QualType T, TypeSourceInfo *TSInfo,
9269                                  VarDecl::StorageClass StorageClass) {
9270  // In ARC, infer a lifetime qualifier for appropriate parameter types.
9271  if (getLangOpts().ObjCAutoRefCount &&
9272      T.getObjCLifetime() == Qualifiers::OCL_None &&
9273      T->isObjCLifetimeType()) {
9274
9275    Qualifiers::ObjCLifetime lifetime;
9276
9277    // Special cases for arrays:
9278    //   - if it's const, use __unsafe_unretained
9279    //   - otherwise, it's an error
9280    if (T->isArrayType()) {
9281      if (!T.isConstQualified()) {
9282        DelayedDiagnostics.add(
9283            sema::DelayedDiagnostic::makeForbiddenType(
9284            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9285      }
9286      lifetime = Qualifiers::OCL_ExplicitNone;
9287    } else {
9288      lifetime = T->getObjCARCImplicitLifetime();
9289    }
9290    T = Context.getLifetimeQualifiedType(T, lifetime);
9291  }
9292
9293  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9294                                         Context.getAdjustedParameterType(T),
9295                                         TSInfo,
9296                                         StorageClass, 0);
9297
9298  // Parameters can not be abstract class types.
9299  // For record types, this is done by the AbstractClassUsageDiagnoser once
9300  // the class has been completely parsed.
9301  if (!CurContext->isRecord() &&
9302      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9303                             AbstractParamType))
9304    New->setInvalidDecl();
9305
9306  // Parameter declarators cannot be interface types. All ObjC objects are
9307  // passed by reference.
9308  if (T->isObjCObjectType()) {
9309    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9310    Diag(NameLoc,
9311         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9312      << FixItHint::CreateInsertion(TypeEndLoc, "*");
9313    T = Context.getObjCObjectPointerType(T);
9314    New->setType(T);
9315  }
9316
9317  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9318  // duration shall not be qualified by an address-space qualifier."
9319  // Since all parameters have automatic store duration, they can not have
9320  // an address space.
9321  if (T.getAddressSpace() != 0) {
9322    Diag(NameLoc, diag::err_arg_with_address_space);
9323    New->setInvalidDecl();
9324  }
9325
9326  return New;
9327}
9328
9329void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9330                                           SourceLocation LocAfterDecls) {
9331  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9332
9333  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9334  // for a K&R function.
9335  if (!FTI.hasPrototype) {
9336    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9337      --i;
9338      if (FTI.ArgInfo[i].Param == 0) {
9339        SmallString<256> Code;
9340        llvm::raw_svector_ostream(Code) << "  int "
9341                                        << FTI.ArgInfo[i].Ident->getName()
9342                                        << ";\n";
9343        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9344          << FTI.ArgInfo[i].Ident
9345          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9346
9347        // Implicitly declare the argument as type 'int' for lack of a better
9348        // type.
9349        AttributeFactory attrs;
9350        DeclSpec DS(attrs);
9351        const char* PrevSpec; // unused
9352        unsigned DiagID; // unused
9353        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9354                           PrevSpec, DiagID);
9355        // Use the identifier location for the type source range.
9356        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9357        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9358        Declarator ParamD(DS, Declarator::KNRTypeListContext);
9359        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9360        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9361      }
9362    }
9363  }
9364}
9365
9366Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9367  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9368  assert(D.isFunctionDeclarator() && "Not a function declarator!");
9369  Scope *ParentScope = FnBodyScope->getParent();
9370
9371  D.setFunctionDefinitionKind(FDK_Definition);
9372  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9373  return ActOnStartOfFunctionDef(FnBodyScope, DP);
9374}
9375
9376static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9377                             const FunctionDecl*& PossibleZeroParamPrototype) {
9378  // Don't warn about invalid declarations.
9379  if (FD->isInvalidDecl())
9380    return false;
9381
9382  // Or declarations that aren't global.
9383  if (!FD->isGlobal())
9384    return false;
9385
9386  // Don't warn about C++ member functions.
9387  if (isa<CXXMethodDecl>(FD))
9388    return false;
9389
9390  // Don't warn about 'main'.
9391  if (FD->isMain())
9392    return false;
9393
9394  // Don't warn about inline functions.
9395  if (FD->isInlined())
9396    return false;
9397
9398  // Don't warn about function templates.
9399  if (FD->getDescribedFunctionTemplate())
9400    return false;
9401
9402  // Don't warn about function template specializations.
9403  if (FD->isFunctionTemplateSpecialization())
9404    return false;
9405
9406  // Don't warn for OpenCL kernels.
9407  if (FD->hasAttr<OpenCLKernelAttr>())
9408    return false;
9409
9410  bool MissingPrototype = true;
9411  for (const FunctionDecl *Prev = FD->getPreviousDecl();
9412       Prev; Prev = Prev->getPreviousDecl()) {
9413    // Ignore any declarations that occur in function or method
9414    // scope, because they aren't visible from the header.
9415    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9416      continue;
9417
9418    MissingPrototype = !Prev->getType()->isFunctionProtoType();
9419    if (FD->getNumParams() == 0)
9420      PossibleZeroParamPrototype = Prev;
9421    break;
9422  }
9423
9424  return MissingPrototype;
9425}
9426
9427void
9428Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
9429                                   const FunctionDecl *EffectiveDefinition) {
9430  // Don't complain if we're in GNU89 mode and the previous definition
9431  // was an extern inline function.
9432  const FunctionDecl *Definition = EffectiveDefinition;
9433  if (!Definition)
9434    if (!FD->isDefined(Definition))
9435      return;
9436
9437  if (canRedefineFunction(Definition, getLangOpts()))
9438    return;
9439
9440  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9441      Definition->getStorageClass() == SC_Extern)
9442    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9443        << FD->getDeclName() << getLangOpts().CPlusPlus;
9444  else
9445    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9446
9447  Diag(Definition->getLocation(), diag::note_previous_definition);
9448  FD->setInvalidDecl();
9449}
9450
9451
9452static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
9453                                   Sema &S) {
9454  CXXRecordDecl *const LambdaClass = CallOperator->getParent();
9455
9456  LambdaScopeInfo *LSI = S.PushLambdaScope();
9457  LSI->CallOperator = CallOperator;
9458  LSI->Lambda = LambdaClass;
9459  LSI->ReturnType = CallOperator->getResultType();
9460  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
9461
9462  if (LCD == LCD_None)
9463    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9464  else if (LCD == LCD_ByCopy)
9465    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9466  else if (LCD == LCD_ByRef)
9467    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9468  DeclarationNameInfo DNI = CallOperator->getNameInfo();
9469
9470  LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
9471  LSI->Mutable = !CallOperator->isConst();
9472
9473  // Add the captures to the LSI so they can be noted as already
9474  // captured within tryCaptureVar.
9475  for (LambdaExpr::capture_iterator C = LambdaClass->captures_begin(),
9476      CEnd = LambdaClass->captures_end(); C != CEnd; ++C) {
9477    if (C->capturesVariable()) {
9478      VarDecl *VD = C->getCapturedVar();
9479      if (VD->isInitCapture())
9480        S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
9481      QualType CaptureType = VD->getType();
9482      const bool ByRef = C->getCaptureKind() == LCK_ByRef;
9483      LSI->addCapture(VD, /*IsBlock*/false, ByRef,
9484          /*RefersToEnclosingLocal*/true, C->getLocation(),
9485          /*EllipsisLoc*/C->isPackExpansion()
9486                         ? C->getEllipsisLoc() : SourceLocation(),
9487          CaptureType, /*Expr*/ 0);
9488
9489    } else if (C->capturesThis()) {
9490      LSI->addThisCapture(/*Nested*/ false, C->getLocation(),
9491                              S.getCurrentThisType(), /*Expr*/ 0);
9492    }
9493  }
9494}
9495
9496Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9497  // Clear the last template instantiation error context.
9498  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9499
9500  if (!D)
9501    return D;
9502  FunctionDecl *FD = 0;
9503
9504  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9505    FD = FunTmpl->getTemplatedDecl();
9506  else
9507    FD = cast<FunctionDecl>(D);
9508  // If we are instantiating a generic lambda call operator, push
9509  // a LambdaScopeInfo onto the function stack.  But use the information
9510  // that's already been calculated (ActOnLambdaExpr) to prime the current
9511  // LambdaScopeInfo.
9512  // When the template operator is being specialized, the LambdaScopeInfo,
9513  // has to be properly restored so that tryCaptureVariable doesn't try
9514  // and capture any new variables. In addition when calculating potential
9515  // captures during transformation of nested lambdas, it is necessary to
9516  // have the LSI properly restored.
9517  if (isGenericLambdaCallOperatorSpecialization(FD)) {
9518    assert(ActiveTemplateInstantiations.size() &&
9519      "There should be an active template instantiation on the stack "
9520      "when instantiating a generic lambda!");
9521    RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
9522  }
9523  else
9524    // Enter a new function scope
9525    PushFunctionScope();
9526
9527  // See if this is a redefinition.
9528  if (!FD->isLateTemplateParsed())
9529    CheckForFunctionRedefinition(FD);
9530
9531  // Builtin functions cannot be defined.
9532  if (unsigned BuiltinID = FD->getBuiltinID()) {
9533    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9534        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9535      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9536      FD->setInvalidDecl();
9537    }
9538  }
9539
9540  // The return type of a function definition must be complete
9541  // (C99 6.9.1p3, C++ [dcl.fct]p6).
9542  QualType ResultType = FD->getResultType();
9543  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9544      !FD->isInvalidDecl() &&
9545      RequireCompleteType(FD->getLocation(), ResultType,
9546                          diag::err_func_def_incomplete_result))
9547    FD->setInvalidDecl();
9548
9549  // GNU warning -Wmissing-prototypes:
9550  //   Warn if a global function is defined without a previous
9551  //   prototype declaration. This warning is issued even if the
9552  //   definition itself provides a prototype. The aim is to detect
9553  //   global functions that fail to be declared in header files.
9554  const FunctionDecl *PossibleZeroParamPrototype = 0;
9555  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9556    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9557
9558    if (PossibleZeroParamPrototype) {
9559      // We found a declaration that is not a prototype,
9560      // but that could be a zero-parameter prototype
9561      if (TypeSourceInfo *TI =
9562              PossibleZeroParamPrototype->getTypeSourceInfo()) {
9563        TypeLoc TL = TI->getTypeLoc();
9564        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9565          Diag(PossibleZeroParamPrototype->getLocation(),
9566               diag::note_declaration_not_a_prototype)
9567            << PossibleZeroParamPrototype
9568            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9569      }
9570    }
9571  }
9572
9573  if (FnBodyScope)
9574    PushDeclContext(FnBodyScope, FD);
9575
9576  // Check the validity of our function parameters
9577  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9578                           /*CheckParameterNames=*/true);
9579
9580  // Introduce our parameters into the function scope
9581  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9582    ParmVarDecl *Param = FD->getParamDecl(p);
9583    Param->setOwningFunction(FD);
9584
9585    // If this has an identifier, add it to the scope stack.
9586    if (Param->getIdentifier() && FnBodyScope) {
9587      CheckShadow(FnBodyScope, Param);
9588
9589      PushOnScopeChains(Param, FnBodyScope);
9590    }
9591  }
9592
9593  // If we had any tags defined in the function prototype,
9594  // introduce them into the function scope.
9595  if (FnBodyScope) {
9596    for (ArrayRef<NamedDecl *>::iterator
9597             I = FD->getDeclsInPrototypeScope().begin(),
9598             E = FD->getDeclsInPrototypeScope().end();
9599         I != E; ++I) {
9600      NamedDecl *D = *I;
9601
9602      // Some of these decls (like enums) may have been pinned to the translation unit
9603      // for lack of a real context earlier. If so, remove from the translation unit
9604      // and reattach to the current context.
9605      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9606        // Is the decl actually in the context?
9607        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9608               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9609          if (*DI == D) {
9610            Context.getTranslationUnitDecl()->removeDecl(D);
9611            break;
9612          }
9613        }
9614        // Either way, reassign the lexical decl context to our FunctionDecl.
9615        D->setLexicalDeclContext(CurContext);
9616      }
9617
9618      // If the decl has a non-null name, make accessible in the current scope.
9619      if (!D->getName().empty())
9620        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9621
9622      // Similarly, dive into enums and fish their constants out, making them
9623      // accessible in this scope.
9624      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9625        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9626               EE = ED->enumerator_end(); EI != EE; ++EI)
9627          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9628      }
9629    }
9630  }
9631
9632  // Ensure that the function's exception specification is instantiated.
9633  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9634    ResolveExceptionSpec(D->getLocation(), FPT);
9635
9636  // Checking attributes of current function definition
9637  // dllimport attribute.
9638  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9639  if (DA && (!FD->getAttr<DLLExportAttr>())) {
9640    // dllimport attribute cannot be directly applied to definition.
9641    // Microsoft accepts dllimport for functions defined within class scope.
9642    if (!DA->isInherited() &&
9643        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9644      Diag(FD->getLocation(),
9645           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9646        << "dllimport";
9647      FD->setInvalidDecl();
9648      return D;
9649    }
9650
9651    // Visual C++ appears to not think this is an issue, so only issue
9652    // a warning when Microsoft extensions are disabled.
9653    if (!LangOpts.MicrosoftExt) {
9654      // If a symbol previously declared dllimport is later defined, the
9655      // attribute is ignored in subsequent references, and a warning is
9656      // emitted.
9657      Diag(FD->getLocation(),
9658           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9659        << FD->getName() << "dllimport";
9660    }
9661  }
9662  // We want to attach documentation to original Decl (which might be
9663  // a function template).
9664  ActOnDocumentableDecl(D);
9665  return D;
9666}
9667
9668/// \brief Given the set of return statements within a function body,
9669/// compute the variables that are subject to the named return value
9670/// optimization.
9671///
9672/// Each of the variables that is subject to the named return value
9673/// optimization will be marked as NRVO variables in the AST, and any
9674/// return statement that has a marked NRVO variable as its NRVO candidate can
9675/// use the named return value optimization.
9676///
9677/// This function applies a very simplistic algorithm for NRVO: if every return
9678/// statement in the function has the same NRVO candidate, that candidate is
9679/// the NRVO variable.
9680///
9681/// FIXME: Employ a smarter algorithm that accounts for multiple return
9682/// statements and the lifetimes of the NRVO candidates. We should be able to
9683/// find a maximal set of NRVO variables.
9684void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9685  ReturnStmt **Returns = Scope->Returns.data();
9686
9687  const VarDecl *NRVOCandidate = 0;
9688  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9689    if (!Returns[I]->getNRVOCandidate())
9690      return;
9691
9692    if (!NRVOCandidate)
9693      NRVOCandidate = Returns[I]->getNRVOCandidate();
9694    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9695      return;
9696  }
9697
9698  if (NRVOCandidate)
9699    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9700}
9701
9702bool Sema::canSkipFunctionBody(Decl *D) {
9703  if (!Consumer.shouldSkipFunctionBody(D))
9704    return false;
9705
9706  if (isa<ObjCMethodDecl>(D))
9707    return true;
9708
9709  FunctionDecl *FD = 0;
9710  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9711    FD = FTD->getTemplatedDecl();
9712  else
9713    FD = cast<FunctionDecl>(D);
9714
9715  // We cannot skip the body of a function (or function template) which is
9716  // constexpr, since we may need to evaluate its body in order to parse the
9717  // rest of the file.
9718  // We cannot skip the body of a function with an undeduced return type,
9719  // because any callers of that function need to know the type.
9720  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9721}
9722
9723Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9724  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9725    FD->setHasSkippedBody();
9726  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9727    MD->setHasSkippedBody();
9728  return ActOnFinishFunctionBody(Decl, 0);
9729}
9730
9731Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9732  return ActOnFinishFunctionBody(D, BodyArg, false);
9733}
9734
9735Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9736                                    bool IsInstantiation) {
9737  FunctionDecl *FD = 0;
9738  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9739  if (FunTmpl)
9740    FD = FunTmpl->getTemplatedDecl();
9741  else
9742    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9743
9744  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9745  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9746
9747  if (FD) {
9748    FD->setBody(Body);
9749
9750    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9751        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9752      // If the function has a deduced result type but contains no 'return'
9753      // statements, the result type as written must be exactly 'auto', and
9754      // the deduced result type is 'void'.
9755      if (!FD->getResultType()->getAs<AutoType>()) {
9756        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9757          << FD->getResultType();
9758        FD->setInvalidDecl();
9759      } else {
9760        // Substitute 'void' for the 'auto' in the type.
9761        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9762            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9763        Context.adjustDeducedFunctionResultType(
9764            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9765      }
9766    }
9767
9768    // The only way to be included in UndefinedButUsed is if there is an
9769    // ODR use before the definition. Avoid the expensive map lookup if this
9770    // is the first declaration.
9771    if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
9772      if (!FD->isExternallyVisible())
9773        UndefinedButUsed.erase(FD);
9774      else if (FD->isInlined() &&
9775               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9776               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9777        UndefinedButUsed.erase(FD);
9778    }
9779
9780    // If the function implicitly returns zero (like 'main') or is naked,
9781    // don't complain about missing return statements.
9782    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9783      WP.disableCheckFallThrough();
9784
9785    // MSVC permits the use of pure specifier (=0) on function definition,
9786    // defined at class scope, warn about this non standard construct.
9787    if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
9788      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9789
9790    if (!FD->isInvalidDecl()) {
9791      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9792      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9793                                             FD->getResultType(), FD);
9794
9795      // If this is a constructor, we need a vtable.
9796      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9797        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9798
9799      // Try to apply the named return value optimization. We have to check
9800      // if we can do this here because lambdas keep return statements around
9801      // to deduce an implicit return type.
9802      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9803          !FD->isDependentContext())
9804        computeNRVO(Body, getCurFunction());
9805    }
9806
9807    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9808           "Function parsing confused");
9809  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9810    assert(MD == getCurMethodDecl() && "Method parsing confused");
9811    MD->setBody(Body);
9812    if (!MD->isInvalidDecl()) {
9813      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9814      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9815                                             MD->getResultType(), MD);
9816
9817      if (Body)
9818        computeNRVO(Body, getCurFunction());
9819    }
9820    if (getCurFunction()->ObjCShouldCallSuper) {
9821      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9822        << MD->getSelector().getAsString();
9823      getCurFunction()->ObjCShouldCallSuper = false;
9824    }
9825  } else {
9826    return 0;
9827  }
9828
9829  assert(!getCurFunction()->ObjCShouldCallSuper &&
9830         "This should only be set for ObjC methods, which should have been "
9831         "handled in the block above.");
9832
9833  // Verify and clean out per-function state.
9834  if (Body) {
9835    // C++ constructors that have function-try-blocks can't have return
9836    // statements in the handlers of that block. (C++ [except.handle]p14)
9837    // Verify this.
9838    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9839      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9840
9841    // Verify that gotos and switch cases don't jump into scopes illegally.
9842    if (getCurFunction()->NeedsScopeChecking() &&
9843        !dcl->isInvalidDecl() &&
9844        !hasAnyUnrecoverableErrorsInThisFunction() &&
9845        !PP.isCodeCompletionEnabled())
9846      DiagnoseInvalidJumps(Body);
9847
9848    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9849      if (!Destructor->getParent()->isDependentType())
9850        CheckDestructor(Destructor);
9851
9852      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9853                                             Destructor->getParent());
9854    }
9855
9856    // If any errors have occurred, clear out any temporaries that may have
9857    // been leftover. This ensures that these temporaries won't be picked up for
9858    // deletion in some later function.
9859    if (PP.getDiagnostics().hasErrorOccurred() ||
9860        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9861      DiscardCleanupsInEvaluationContext();
9862    }
9863    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9864        !isa<FunctionTemplateDecl>(dcl)) {
9865      // Since the body is valid, issue any analysis-based warnings that are
9866      // enabled.
9867      ActivePolicy = &WP;
9868    }
9869
9870    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9871        (!CheckConstexprFunctionDecl(FD) ||
9872         !CheckConstexprFunctionBody(FD, Body)))
9873      FD->setInvalidDecl();
9874
9875    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9876    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9877    assert(MaybeODRUseExprs.empty() &&
9878           "Leftover expressions for odr-use checking");
9879  }
9880
9881  if (!IsInstantiation)
9882    PopDeclContext();
9883
9884  PopFunctionScopeInfo(ActivePolicy, dcl);
9885  // If any errors have occurred, clear out any temporaries that may have
9886  // been leftover. This ensures that these temporaries won't be picked up for
9887  // deletion in some later function.
9888  if (getDiagnostics().hasErrorOccurred()) {
9889    DiscardCleanupsInEvaluationContext();
9890  }
9891
9892  return dcl;
9893}
9894
9895
9896/// When we finish delayed parsing of an attribute, we must attach it to the
9897/// relevant Decl.
9898void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9899                                       ParsedAttributes &Attrs) {
9900  // Always attach attributes to the underlying decl.
9901  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9902    D = TD->getTemplatedDecl();
9903  ProcessDeclAttributeList(S, D, Attrs.getList());
9904
9905  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9906    if (Method->isStatic())
9907      checkThisInStaticMemberFunctionAttributes(Method);
9908}
9909
9910
9911/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9912/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9913NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9914                                          IdentifierInfo &II, Scope *S) {
9915  // Before we produce a declaration for an implicitly defined
9916  // function, see whether there was a locally-scoped declaration of
9917  // this name as a function or variable. If so, use that
9918  // (non-visible) declaration, and complain about it.
9919  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9920    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9921    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9922    return ExternCPrev;
9923  }
9924
9925  // Extension in C99.  Legal in C90, but warn about it.
9926  unsigned diag_id;
9927  if (II.getName().startswith("__builtin_"))
9928    diag_id = diag::warn_builtin_unknown;
9929  else if (getLangOpts().C99)
9930    diag_id = diag::ext_implicit_function_decl;
9931  else
9932    diag_id = diag::warn_implicit_function_decl;
9933  Diag(Loc, diag_id) << &II;
9934
9935  // Because typo correction is expensive, only do it if the implicit
9936  // function declaration is going to be treated as an error.
9937  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9938    TypoCorrection Corrected;
9939    DeclFilterCCC<FunctionDecl> Validator;
9940    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9941                                      LookupOrdinaryName, S, 0, Validator)))
9942      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
9943                   /*ErrorRecovery*/false);
9944  }
9945
9946  // Set a Declarator for the implicit definition: int foo();
9947  const char *Dummy;
9948  AttributeFactory attrFactory;
9949  DeclSpec DS(attrFactory);
9950  unsigned DiagID;
9951  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9952  (void)Error; // Silence warning.
9953  assert(!Error && "Error setting up implicit decl!");
9954  SourceLocation NoLoc;
9955  Declarator D(DS, Declarator::BlockContext);
9956  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9957                                             /*IsAmbiguous=*/false,
9958                                             /*RParenLoc=*/NoLoc,
9959                                             /*ArgInfo=*/0,
9960                                             /*NumArgs=*/0,
9961                                             /*EllipsisLoc=*/NoLoc,
9962                                             /*RParenLoc=*/NoLoc,
9963                                             /*TypeQuals=*/0,
9964                                             /*RefQualifierIsLvalueRef=*/true,
9965                                             /*RefQualifierLoc=*/NoLoc,
9966                                             /*ConstQualifierLoc=*/NoLoc,
9967                                             /*VolatileQualifierLoc=*/NoLoc,
9968                                             /*MutableLoc=*/NoLoc,
9969                                             EST_None,
9970                                             /*ESpecLoc=*/NoLoc,
9971                                             /*Exceptions=*/0,
9972                                             /*ExceptionRanges=*/0,
9973                                             /*NumExceptions=*/0,
9974                                             /*NoexceptExpr=*/0,
9975                                             Loc, Loc, D),
9976                DS.getAttributes(),
9977                SourceLocation());
9978  D.SetIdentifier(&II, Loc);
9979
9980  // Insert this function into translation-unit scope.
9981
9982  DeclContext *PrevDC = CurContext;
9983  CurContext = Context.getTranslationUnitDecl();
9984
9985  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9986  FD->setImplicit();
9987
9988  CurContext = PrevDC;
9989
9990  AddKnownFunctionAttributes(FD);
9991
9992  return FD;
9993}
9994
9995/// \brief Adds any function attributes that we know a priori based on
9996/// the declaration of this function.
9997///
9998/// These attributes can apply both to implicitly-declared builtins
9999/// (like __builtin___printf_chk) or to library-declared functions
10000/// like NSLog or printf.
10001///
10002/// We need to check for duplicate attributes both here and where user-written
10003/// attributes are applied to declarations.
10004void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10005  if (FD->isInvalidDecl())
10006    return;
10007
10008  // If this is a built-in function, map its builtin attributes to
10009  // actual attributes.
10010  if (unsigned BuiltinID = FD->getBuiltinID()) {
10011    // Handle printf-formatting attributes.
10012    unsigned FormatIdx;
10013    bool HasVAListArg;
10014    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10015      if (!FD->getAttr<FormatAttr>()) {
10016        const char *fmt = "printf";
10017        unsigned int NumParams = FD->getNumParams();
10018        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10019            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10020          fmt = "NSString";
10021        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
10022                                               &Context.Idents.get(fmt),
10023                                               FormatIdx+1,
10024                                               HasVAListArg ? 0 : FormatIdx+2));
10025      }
10026    }
10027    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10028                                             HasVAListArg)) {
10029     if (!FD->getAttr<FormatAttr>())
10030       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
10031                                              &Context.Idents.get("scanf"),
10032                                              FormatIdx+1,
10033                                              HasVAListArg ? 0 : FormatIdx+2));
10034    }
10035
10036    // Mark const if we don't care about errno and that is the only
10037    // thing preventing the function from being const. This allows
10038    // IRgen to use LLVM intrinsics for such functions.
10039    if (!getLangOpts().MathErrno &&
10040        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10041      if (!FD->getAttr<ConstAttr>())
10042        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
10043    }
10044
10045    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10046        !FD->getAttr<ReturnsTwiceAttr>())
10047      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
10048    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
10049      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
10050    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
10051      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
10052  }
10053
10054  IdentifierInfo *Name = FD->getIdentifier();
10055  if (!Name)
10056    return;
10057  if ((!getLangOpts().CPlusPlus &&
10058       FD->getDeclContext()->isTranslationUnit()) ||
10059      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10060       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10061       LinkageSpecDecl::lang_c)) {
10062    // Okay: this could be a libc/libm/Objective-C function we know
10063    // about.
10064  } else
10065    return;
10066
10067  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10068    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10069    // target-specific builtins, perhaps?
10070    if (!FD->getAttr<FormatAttr>())
10071      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
10072                                             &Context.Idents.get("printf"), 2,
10073                                             Name->isStr("vasprintf") ? 0 : 3));
10074  }
10075
10076  if (Name->isStr("__CFStringMakeConstantString")) {
10077    // We already have a __builtin___CFStringMakeConstantString,
10078    // but builds that use -fno-constant-cfstrings don't go through that.
10079    if (!FD->getAttr<FormatArgAttr>())
10080      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
10081  }
10082}
10083
10084TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10085                                    TypeSourceInfo *TInfo) {
10086  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10087  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10088
10089  if (!TInfo) {
10090    assert(D.isInvalidType() && "no declarator info for valid type");
10091    TInfo = Context.getTrivialTypeSourceInfo(T);
10092  }
10093
10094  // Scope manipulation handled by caller.
10095  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
10096                                           D.getLocStart(),
10097                                           D.getIdentifierLoc(),
10098                                           D.getIdentifier(),
10099                                           TInfo);
10100
10101  // Bail out immediately if we have an invalid declaration.
10102  if (D.isInvalidType()) {
10103    NewTD->setInvalidDecl();
10104    return NewTD;
10105  }
10106
10107  if (D.getDeclSpec().isModulePrivateSpecified()) {
10108    if (CurContext->isFunctionOrMethod())
10109      Diag(NewTD->getLocation(), diag::err_module_private_local)
10110        << 2 << NewTD->getDeclName()
10111        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10112        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10113    else
10114      NewTD->setModulePrivate();
10115  }
10116
10117  // C++ [dcl.typedef]p8:
10118  //   If the typedef declaration defines an unnamed class (or
10119  //   enum), the first typedef-name declared by the declaration
10120  //   to be that class type (or enum type) is used to denote the
10121  //   class type (or enum type) for linkage purposes only.
10122  // We need to check whether the type was declared in the declaration.
10123  switch (D.getDeclSpec().getTypeSpecType()) {
10124  case TST_enum:
10125  case TST_struct:
10126  case TST_interface:
10127  case TST_union:
10128  case TST_class: {
10129    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
10130
10131    // Do nothing if the tag is not anonymous or already has an
10132    // associated typedef (from an earlier typedef in this decl group).
10133    if (tagFromDeclSpec->getIdentifier()) break;
10134    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
10135
10136    // A well-formed anonymous tag must always be a TUK_Definition.
10137    assert(tagFromDeclSpec->isThisDeclarationADefinition());
10138
10139    // The type must match the tag exactly;  no qualifiers allowed.
10140    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10141      break;
10142
10143    // Otherwise, set this is the anon-decl typedef for the tag.
10144    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10145    break;
10146  }
10147
10148  default:
10149    break;
10150  }
10151
10152  return NewTD;
10153}
10154
10155
10156/// \brief Check that this is a valid underlying type for an enum declaration.
10157bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10158  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10159  QualType T = TI->getType();
10160
10161  if (T->isDependentType())
10162    return false;
10163
10164  if (const BuiltinType *BT = T->getAs<BuiltinType>())
10165    if (BT->isInteger())
10166      return false;
10167
10168  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10169  return true;
10170}
10171
10172/// Check whether this is a valid redeclaration of a previous enumeration.
10173/// \return true if the redeclaration was invalid.
10174bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10175                                  QualType EnumUnderlyingTy,
10176                                  const EnumDecl *Prev) {
10177  bool IsFixed = !EnumUnderlyingTy.isNull();
10178
10179  if (IsScoped != Prev->isScoped()) {
10180    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10181      << Prev->isScoped();
10182    Diag(Prev->getLocation(), diag::note_previous_use);
10183    return true;
10184  }
10185
10186  if (IsFixed && Prev->isFixed()) {
10187    if (!EnumUnderlyingTy->isDependentType() &&
10188        !Prev->getIntegerType()->isDependentType() &&
10189        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10190                                        Prev->getIntegerType())) {
10191      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10192        << EnumUnderlyingTy << Prev->getIntegerType();
10193      Diag(Prev->getLocation(), diag::note_previous_use);
10194      return true;
10195    }
10196  } else if (IsFixed != Prev->isFixed()) {
10197    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10198      << Prev->isFixed();
10199    Diag(Prev->getLocation(), diag::note_previous_use);
10200    return true;
10201  }
10202
10203  return false;
10204}
10205
10206/// \brief Get diagnostic %select index for tag kind for
10207/// redeclaration diagnostic message.
10208/// WARNING: Indexes apply to particular diagnostics only!
10209///
10210/// \returns diagnostic %select index.
10211static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10212  switch (Tag) {
10213  case TTK_Struct: return 0;
10214  case TTK_Interface: return 1;
10215  case TTK_Class:  return 2;
10216  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10217  }
10218}
10219
10220/// \brief Determine if tag kind is a class-key compatible with
10221/// class for redeclaration (class, struct, or __interface).
10222///
10223/// \returns true iff the tag kind is compatible.
10224static bool isClassCompatTagKind(TagTypeKind Tag)
10225{
10226  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10227}
10228
10229/// \brief Determine whether a tag with a given kind is acceptable
10230/// as a redeclaration of the given tag declaration.
10231///
10232/// \returns true if the new tag kind is acceptable, false otherwise.
10233bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10234                                        TagTypeKind NewTag, bool isDefinition,
10235                                        SourceLocation NewTagLoc,
10236                                        const IdentifierInfo &Name) {
10237  // C++ [dcl.type.elab]p3:
10238  //   The class-key or enum keyword present in the
10239  //   elaborated-type-specifier shall agree in kind with the
10240  //   declaration to which the name in the elaborated-type-specifier
10241  //   refers. This rule also applies to the form of
10242  //   elaborated-type-specifier that declares a class-name or
10243  //   friend class since it can be construed as referring to the
10244  //   definition of the class. Thus, in any
10245  //   elaborated-type-specifier, the enum keyword shall be used to
10246  //   refer to an enumeration (7.2), the union class-key shall be
10247  //   used to refer to a union (clause 9), and either the class or
10248  //   struct class-key shall be used to refer to a class (clause 9)
10249  //   declared using the class or struct class-key.
10250  TagTypeKind OldTag = Previous->getTagKind();
10251  if (!isDefinition || !isClassCompatTagKind(NewTag))
10252    if (OldTag == NewTag)
10253      return true;
10254
10255  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10256    // Warn about the struct/class tag mismatch.
10257    bool isTemplate = false;
10258    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10259      isTemplate = Record->getDescribedClassTemplate();
10260
10261    if (!ActiveTemplateInstantiations.empty()) {
10262      // In a template instantiation, do not offer fix-its for tag mismatches
10263      // since they usually mess up the template instead of fixing the problem.
10264      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10265        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10266        << getRedeclDiagFromTagKind(OldTag);
10267      return true;
10268    }
10269
10270    if (isDefinition) {
10271      // On definitions, check previous tags and issue a fix-it for each
10272      // one that doesn't match the current tag.
10273      if (Previous->getDefinition()) {
10274        // Don't suggest fix-its for redefinitions.
10275        return true;
10276      }
10277
10278      bool previousMismatch = false;
10279      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
10280           E(Previous->redecls_end()); I != E; ++I) {
10281        if (I->getTagKind() != NewTag) {
10282          if (!previousMismatch) {
10283            previousMismatch = true;
10284            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10285              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10286              << getRedeclDiagFromTagKind(I->getTagKind());
10287          }
10288          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10289            << getRedeclDiagFromTagKind(NewTag)
10290            << FixItHint::CreateReplacement(I->getInnerLocStart(),
10291                 TypeWithKeyword::getTagTypeKindName(NewTag));
10292        }
10293      }
10294      return true;
10295    }
10296
10297    // Check for a previous definition.  If current tag and definition
10298    // are same type, do nothing.  If no definition, but disagree with
10299    // with previous tag type, give a warning, but no fix-it.
10300    const TagDecl *Redecl = Previous->getDefinition() ?
10301                            Previous->getDefinition() : Previous;
10302    if (Redecl->getTagKind() == NewTag) {
10303      return true;
10304    }
10305
10306    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10307      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10308      << getRedeclDiagFromTagKind(OldTag);
10309    Diag(Redecl->getLocation(), diag::note_previous_use);
10310
10311    // If there is a previous defintion, suggest a fix-it.
10312    if (Previous->getDefinition()) {
10313        Diag(NewTagLoc, diag::note_struct_class_suggestion)
10314          << getRedeclDiagFromTagKind(Redecl->getTagKind())
10315          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10316               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10317    }
10318
10319    return true;
10320  }
10321  return false;
10322}
10323
10324/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10325/// former case, Name will be non-null.  In the later case, Name will be null.
10326/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10327/// reference/declaration/definition of a tag.
10328Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10329                     SourceLocation KWLoc, CXXScopeSpec &SS,
10330                     IdentifierInfo *Name, SourceLocation NameLoc,
10331                     AttributeList *Attr, AccessSpecifier AS,
10332                     SourceLocation ModulePrivateLoc,
10333                     MultiTemplateParamsArg TemplateParameterLists,
10334                     bool &OwnedDecl, bool &IsDependent,
10335                     SourceLocation ScopedEnumKWLoc,
10336                     bool ScopedEnumUsesClassTag,
10337                     TypeResult UnderlyingType) {
10338  // If this is not a definition, it must have a name.
10339  IdentifierInfo *OrigName = Name;
10340  assert((Name != 0 || TUK == TUK_Definition) &&
10341         "Nameless record must be a definition!");
10342  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10343
10344  OwnedDecl = false;
10345  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10346  bool ScopedEnum = ScopedEnumKWLoc.isValid();
10347
10348  // FIXME: Check explicit specializations more carefully.
10349  bool isExplicitSpecialization = false;
10350  bool Invalid = false;
10351
10352  // We only need to do this matching if we have template parameters
10353  // or a scope specifier, which also conveniently avoids this work
10354  // for non-C++ cases.
10355  if (TemplateParameterLists.size() > 0 ||
10356      (SS.isNotEmpty() && TUK != TUK_Reference)) {
10357    if (TemplateParameterList *TemplateParams =
10358            MatchTemplateParametersToScopeSpecifier(
10359                KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10360                isExplicitSpecialization, Invalid)) {
10361      if (Kind == TTK_Enum) {
10362        Diag(KWLoc, diag::err_enum_template);
10363        return 0;
10364      }
10365
10366      if (TemplateParams->size() > 0) {
10367        // This is a declaration or definition of a class template (which may
10368        // be a member of another template).
10369
10370        if (Invalid)
10371          return 0;
10372
10373        OwnedDecl = false;
10374        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10375                                               SS, Name, NameLoc, Attr,
10376                                               TemplateParams, AS,
10377                                               ModulePrivateLoc,
10378                                               TemplateParameterLists.size()-1,
10379                                               TemplateParameterLists.data());
10380        return Result.get();
10381      } else {
10382        // The "template<>" header is extraneous.
10383        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10384          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10385        isExplicitSpecialization = true;
10386      }
10387    }
10388  }
10389
10390  // Figure out the underlying type if this a enum declaration. We need to do
10391  // this early, because it's needed to detect if this is an incompatible
10392  // redeclaration.
10393  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10394
10395  if (Kind == TTK_Enum) {
10396    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10397      // No underlying type explicitly specified, or we failed to parse the
10398      // type, default to int.
10399      EnumUnderlying = Context.IntTy.getTypePtr();
10400    else if (UnderlyingType.get()) {
10401      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10402      // integral type; any cv-qualification is ignored.
10403      TypeSourceInfo *TI = 0;
10404      GetTypeFromParser(UnderlyingType.get(), &TI);
10405      EnumUnderlying = TI;
10406
10407      if (CheckEnumUnderlyingType(TI))
10408        // Recover by falling back to int.
10409        EnumUnderlying = Context.IntTy.getTypePtr();
10410
10411      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10412                                          UPPC_FixedUnderlyingType))
10413        EnumUnderlying = Context.IntTy.getTypePtr();
10414
10415    } else if (getLangOpts().MicrosoftMode)
10416      // Microsoft enums are always of int type.
10417      EnumUnderlying = Context.IntTy.getTypePtr();
10418  }
10419
10420  DeclContext *SearchDC = CurContext;
10421  DeclContext *DC = CurContext;
10422  bool isStdBadAlloc = false;
10423
10424  RedeclarationKind Redecl = ForRedeclaration;
10425  if (TUK == TUK_Friend || TUK == TUK_Reference)
10426    Redecl = NotForRedeclaration;
10427
10428  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10429  bool FriendSawTagOutsideEnclosingNamespace = false;
10430  if (Name && SS.isNotEmpty()) {
10431    // We have a nested-name tag ('struct foo::bar').
10432
10433    // Check for invalid 'foo::'.
10434    if (SS.isInvalid()) {
10435      Name = 0;
10436      goto CreateNewDecl;
10437    }
10438
10439    // If this is a friend or a reference to a class in a dependent
10440    // context, don't try to make a decl for it.
10441    if (TUK == TUK_Friend || TUK == TUK_Reference) {
10442      DC = computeDeclContext(SS, false);
10443      if (!DC) {
10444        IsDependent = true;
10445        return 0;
10446      }
10447    } else {
10448      DC = computeDeclContext(SS, true);
10449      if (!DC) {
10450        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10451          << SS.getRange();
10452        return 0;
10453      }
10454    }
10455
10456    if (RequireCompleteDeclContext(SS, DC))
10457      return 0;
10458
10459    SearchDC = DC;
10460    // Look-up name inside 'foo::'.
10461    LookupQualifiedName(Previous, DC);
10462
10463    if (Previous.isAmbiguous())
10464      return 0;
10465
10466    if (Previous.empty()) {
10467      // Name lookup did not find anything. However, if the
10468      // nested-name-specifier refers to the current instantiation,
10469      // and that current instantiation has any dependent base
10470      // classes, we might find something at instantiation time: treat
10471      // this as a dependent elaborated-type-specifier.
10472      // But this only makes any sense for reference-like lookups.
10473      if (Previous.wasNotFoundInCurrentInstantiation() &&
10474          (TUK == TUK_Reference || TUK == TUK_Friend)) {
10475        IsDependent = true;
10476        return 0;
10477      }
10478
10479      // A tag 'foo::bar' must already exist.
10480      Diag(NameLoc, diag::err_not_tag_in_scope)
10481        << Kind << Name << DC << SS.getRange();
10482      Name = 0;
10483      Invalid = true;
10484      goto CreateNewDecl;
10485    }
10486  } else if (Name) {
10487    // If this is a named struct, check to see if there was a previous forward
10488    // declaration or definition.
10489    // FIXME: We're looking into outer scopes here, even when we
10490    // shouldn't be. Doing so can result in ambiguities that we
10491    // shouldn't be diagnosing.
10492    LookupName(Previous, S);
10493
10494    // When declaring or defining a tag, ignore ambiguities introduced
10495    // by types using'ed into this scope.
10496    if (Previous.isAmbiguous() &&
10497        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10498      LookupResult::Filter F = Previous.makeFilter();
10499      while (F.hasNext()) {
10500        NamedDecl *ND = F.next();
10501        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10502          F.erase();
10503      }
10504      F.done();
10505    }
10506
10507    // C++11 [namespace.memdef]p3:
10508    //   If the name in a friend declaration is neither qualified nor
10509    //   a template-id and the declaration is a function or an
10510    //   elaborated-type-specifier, the lookup to determine whether
10511    //   the entity has been previously declared shall not consider
10512    //   any scopes outside the innermost enclosing namespace.
10513    //
10514    // Does it matter that this should be by scope instead of by
10515    // semantic context?
10516    if (!Previous.empty() && TUK == TUK_Friend) {
10517      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10518      LookupResult::Filter F = Previous.makeFilter();
10519      while (F.hasNext()) {
10520        NamedDecl *ND = F.next();
10521        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10522        if (DC->isFileContext() &&
10523            !EnclosingNS->Encloses(ND->getDeclContext())) {
10524          F.erase();
10525          FriendSawTagOutsideEnclosingNamespace = true;
10526        }
10527      }
10528      F.done();
10529    }
10530
10531    // Note:  there used to be some attempt at recovery here.
10532    if (Previous.isAmbiguous())
10533      return 0;
10534
10535    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10536      // FIXME: This makes sure that we ignore the contexts associated
10537      // with C structs, unions, and enums when looking for a matching
10538      // tag declaration or definition. See the similar lookup tweak
10539      // in Sema::LookupName; is there a better way to deal with this?
10540      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10541        SearchDC = SearchDC->getParent();
10542    }
10543  } else if (S->isFunctionPrototypeScope()) {
10544    // If this is an enum declaration in function prototype scope, set its
10545    // initial context to the translation unit.
10546    // FIXME: [citation needed]
10547    SearchDC = Context.getTranslationUnitDecl();
10548  }
10549
10550  if (Previous.isSingleResult() &&
10551      Previous.getFoundDecl()->isTemplateParameter()) {
10552    // Maybe we will complain about the shadowed template parameter.
10553    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10554    // Just pretend that we didn't see the previous declaration.
10555    Previous.clear();
10556  }
10557
10558  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10559      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10560    // This is a declaration of or a reference to "std::bad_alloc".
10561    isStdBadAlloc = true;
10562
10563    if (Previous.empty() && StdBadAlloc) {
10564      // std::bad_alloc has been implicitly declared (but made invisible to
10565      // name lookup). Fill in this implicit declaration as the previous
10566      // declaration, so that the declarations get chained appropriately.
10567      Previous.addDecl(getStdBadAlloc());
10568    }
10569  }
10570
10571  // If we didn't find a previous declaration, and this is a reference
10572  // (or friend reference), move to the correct scope.  In C++, we
10573  // also need to do a redeclaration lookup there, just in case
10574  // there's a shadow friend decl.
10575  if (Name && Previous.empty() &&
10576      (TUK == TUK_Reference || TUK == TUK_Friend)) {
10577    if (Invalid) goto CreateNewDecl;
10578    assert(SS.isEmpty());
10579
10580    if (TUK == TUK_Reference) {
10581      // C++ [basic.scope.pdecl]p5:
10582      //   -- for an elaborated-type-specifier of the form
10583      //
10584      //          class-key identifier
10585      //
10586      //      if the elaborated-type-specifier is used in the
10587      //      decl-specifier-seq or parameter-declaration-clause of a
10588      //      function defined in namespace scope, the identifier is
10589      //      declared as a class-name in the namespace that contains
10590      //      the declaration; otherwise, except as a friend
10591      //      declaration, the identifier is declared in the smallest
10592      //      non-class, non-function-prototype scope that contains the
10593      //      declaration.
10594      //
10595      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10596      // C structs and unions.
10597      //
10598      // It is an error in C++ to declare (rather than define) an enum
10599      // type, including via an elaborated type specifier.  We'll
10600      // diagnose that later; for now, declare the enum in the same
10601      // scope as we would have picked for any other tag type.
10602      //
10603      // GNU C also supports this behavior as part of its incomplete
10604      // enum types extension, while GNU C++ does not.
10605      //
10606      // Find the context where we'll be declaring the tag.
10607      // FIXME: We would like to maintain the current DeclContext as the
10608      // lexical context,
10609      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10610        SearchDC = SearchDC->getParent();
10611
10612      // Find the scope where we'll be declaring the tag.
10613      while (S->isClassScope() ||
10614             (getLangOpts().CPlusPlus &&
10615              S->isFunctionPrototypeScope()) ||
10616             ((S->getFlags() & Scope::DeclScope) == 0) ||
10617             (S->getEntity() && S->getEntity()->isTransparentContext()))
10618        S = S->getParent();
10619    } else {
10620      assert(TUK == TUK_Friend);
10621      // C++ [namespace.memdef]p3:
10622      //   If a friend declaration in a non-local class first declares a
10623      //   class or function, the friend class or function is a member of
10624      //   the innermost enclosing namespace.
10625      SearchDC = SearchDC->getEnclosingNamespaceContext();
10626    }
10627
10628    // In C++, we need to do a redeclaration lookup to properly
10629    // diagnose some problems.
10630    if (getLangOpts().CPlusPlus) {
10631      Previous.setRedeclarationKind(ForRedeclaration);
10632      LookupQualifiedName(Previous, SearchDC);
10633    }
10634  }
10635
10636  if (!Previous.empty()) {
10637    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10638
10639    // It's okay to have a tag decl in the same scope as a typedef
10640    // which hides a tag decl in the same scope.  Finding this
10641    // insanity with a redeclaration lookup can only actually happen
10642    // in C++.
10643    //
10644    // This is also okay for elaborated-type-specifiers, which is
10645    // technically forbidden by the current standard but which is
10646    // okay according to the likely resolution of an open issue;
10647    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10648    if (getLangOpts().CPlusPlus) {
10649      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10650        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10651          TagDecl *Tag = TT->getDecl();
10652          if (Tag->getDeclName() == Name &&
10653              Tag->getDeclContext()->getRedeclContext()
10654                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
10655            PrevDecl = Tag;
10656            Previous.clear();
10657            Previous.addDecl(Tag);
10658            Previous.resolveKind();
10659          }
10660        }
10661      }
10662    }
10663
10664    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10665      // If this is a use of a previous tag, or if the tag is already declared
10666      // in the same scope (so that the definition/declaration completes or
10667      // rementions the tag), reuse the decl.
10668      if (TUK == TUK_Reference || TUK == TUK_Friend ||
10669          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10670        // Make sure that this wasn't declared as an enum and now used as a
10671        // struct or something similar.
10672        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10673                                          TUK == TUK_Definition, KWLoc,
10674                                          *Name)) {
10675          bool SafeToContinue
10676            = (PrevTagDecl->getTagKind() != TTK_Enum &&
10677               Kind != TTK_Enum);
10678          if (SafeToContinue)
10679            Diag(KWLoc, diag::err_use_with_wrong_tag)
10680              << Name
10681              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10682                                              PrevTagDecl->getKindName());
10683          else
10684            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10685          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10686
10687          if (SafeToContinue)
10688            Kind = PrevTagDecl->getTagKind();
10689          else {
10690            // Recover by making this an anonymous redefinition.
10691            Name = 0;
10692            Previous.clear();
10693            Invalid = true;
10694          }
10695        }
10696
10697        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10698          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10699
10700          // If this is an elaborated-type-specifier for a scoped enumeration,
10701          // the 'class' keyword is not necessary and not permitted.
10702          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10703            if (ScopedEnum)
10704              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10705                << PrevEnum->isScoped()
10706                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10707            return PrevTagDecl;
10708          }
10709
10710          QualType EnumUnderlyingTy;
10711          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10712            EnumUnderlyingTy = TI->getType();
10713          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10714            EnumUnderlyingTy = QualType(T, 0);
10715
10716          // All conflicts with previous declarations are recovered by
10717          // returning the previous declaration, unless this is a definition,
10718          // in which case we want the caller to bail out.
10719          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10720                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10721            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10722        }
10723
10724        // C++11 [class.mem]p1:
10725        //   A member shall not be declared twice in the member-specification,
10726        //   except that a nested class or member class template can be declared
10727        //   and then later defined.
10728        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10729            S->isDeclScope(PrevDecl)) {
10730          Diag(NameLoc, diag::ext_member_redeclared);
10731          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10732        }
10733
10734        if (!Invalid) {
10735          // If this is a use, just return the declaration we found.
10736
10737          // FIXME: In the future, return a variant or some other clue
10738          // for the consumer of this Decl to know it doesn't own it.
10739          // For our current ASTs this shouldn't be a problem, but will
10740          // need to be changed with DeclGroups.
10741          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10742               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10743            return PrevTagDecl;
10744
10745          // Diagnose attempts to redefine a tag.
10746          if (TUK == TUK_Definition) {
10747            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10748              // If we're defining a specialization and the previous definition
10749              // is from an implicit instantiation, don't emit an error
10750              // here; we'll catch this in the general case below.
10751              bool IsExplicitSpecializationAfterInstantiation = false;
10752              if (isExplicitSpecialization) {
10753                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10754                  IsExplicitSpecializationAfterInstantiation =
10755                    RD->getTemplateSpecializationKind() !=
10756                    TSK_ExplicitSpecialization;
10757                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10758                  IsExplicitSpecializationAfterInstantiation =
10759                    ED->getTemplateSpecializationKind() !=
10760                    TSK_ExplicitSpecialization;
10761              }
10762
10763              if (!IsExplicitSpecializationAfterInstantiation) {
10764                // A redeclaration in function prototype scope in C isn't
10765                // visible elsewhere, so merely issue a warning.
10766                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10767                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10768                else
10769                  Diag(NameLoc, diag::err_redefinition) << Name;
10770                Diag(Def->getLocation(), diag::note_previous_definition);
10771                // If this is a redefinition, recover by making this
10772                // struct be anonymous, which will make any later
10773                // references get the previous definition.
10774                Name = 0;
10775                Previous.clear();
10776                Invalid = true;
10777              }
10778            } else {
10779              // If the type is currently being defined, complain
10780              // about a nested redefinition.
10781              const TagType *Tag
10782                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10783              if (Tag->isBeingDefined()) {
10784                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10785                Diag(PrevTagDecl->getLocation(),
10786                     diag::note_previous_definition);
10787                Name = 0;
10788                Previous.clear();
10789                Invalid = true;
10790              }
10791            }
10792
10793            // Okay, this is definition of a previously declared or referenced
10794            // tag PrevDecl. We're going to create a new Decl for it.
10795          }
10796        }
10797        // If we get here we have (another) forward declaration or we
10798        // have a definition.  Just create a new decl.
10799
10800      } else {
10801        // If we get here, this is a definition of a new tag type in a nested
10802        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10803        // new decl/type.  We set PrevDecl to NULL so that the entities
10804        // have distinct types.
10805        Previous.clear();
10806      }
10807      // If we get here, we're going to create a new Decl. If PrevDecl
10808      // is non-NULL, it's a definition of the tag declared by
10809      // PrevDecl. If it's NULL, we have a new definition.
10810
10811
10812    // Otherwise, PrevDecl is not a tag, but was found with tag
10813    // lookup.  This is only actually possible in C++, where a few
10814    // things like templates still live in the tag namespace.
10815    } else {
10816      // Use a better diagnostic if an elaborated-type-specifier
10817      // found the wrong kind of type on the first
10818      // (non-redeclaration) lookup.
10819      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10820          !Previous.isForRedeclaration()) {
10821        unsigned Kind = 0;
10822        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10823        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10824        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10825        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10826        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10827        Invalid = true;
10828
10829      // Otherwise, only diagnose if the declaration is in scope.
10830      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10831                                isExplicitSpecialization)) {
10832        // do nothing
10833
10834      // Diagnose implicit declarations introduced by elaborated types.
10835      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10836        unsigned Kind = 0;
10837        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10838        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10839        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10840        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10841        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10842        Invalid = true;
10843
10844      // Otherwise it's a declaration.  Call out a particularly common
10845      // case here.
10846      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10847        unsigned Kind = 0;
10848        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10849        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10850          << Name << Kind << TND->getUnderlyingType();
10851        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10852        Invalid = true;
10853
10854      // Otherwise, diagnose.
10855      } else {
10856        // The tag name clashes with something else in the target scope,
10857        // issue an error and recover by making this tag be anonymous.
10858        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10859        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10860        Name = 0;
10861        Invalid = true;
10862      }
10863
10864      // The existing declaration isn't relevant to us; we're in a
10865      // new scope, so clear out the previous declaration.
10866      Previous.clear();
10867    }
10868  }
10869
10870CreateNewDecl:
10871
10872  TagDecl *PrevDecl = 0;
10873  if (Previous.isSingleResult())
10874    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10875
10876  // If there is an identifier, use the location of the identifier as the
10877  // location of the decl, otherwise use the location of the struct/union
10878  // keyword.
10879  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10880
10881  // Otherwise, create a new declaration. If there is a previous
10882  // declaration of the same entity, the two will be linked via
10883  // PrevDecl.
10884  TagDecl *New;
10885
10886  bool IsForwardReference = false;
10887  if (Kind == TTK_Enum) {
10888    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10889    // enum X { A, B, C } D;    D should chain to X.
10890    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10891                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10892                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10893    // If this is an undefined enum, warn.
10894    if (TUK != TUK_Definition && !Invalid) {
10895      TagDecl *Def;
10896      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10897          cast<EnumDecl>(New)->isFixed()) {
10898        // C++0x: 7.2p2: opaque-enum-declaration.
10899        // Conflicts are diagnosed above. Do nothing.
10900      }
10901      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10902        Diag(Loc, diag::ext_forward_ref_enum_def)
10903          << New;
10904        Diag(Def->getLocation(), diag::note_previous_definition);
10905      } else {
10906        unsigned DiagID = diag::ext_forward_ref_enum;
10907        if (getLangOpts().MicrosoftMode)
10908          DiagID = diag::ext_ms_forward_ref_enum;
10909        else if (getLangOpts().CPlusPlus)
10910          DiagID = diag::err_forward_ref_enum;
10911        Diag(Loc, DiagID);
10912
10913        // If this is a forward-declared reference to an enumeration, make a
10914        // note of it; we won't actually be introducing the declaration into
10915        // the declaration context.
10916        if (TUK == TUK_Reference)
10917          IsForwardReference = true;
10918      }
10919    }
10920
10921    if (EnumUnderlying) {
10922      EnumDecl *ED = cast<EnumDecl>(New);
10923      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10924        ED->setIntegerTypeSourceInfo(TI);
10925      else
10926        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10927      ED->setPromotionType(ED->getIntegerType());
10928    }
10929
10930  } else {
10931    // struct/union/class
10932
10933    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10934    // struct X { int A; } D;    D should chain to X.
10935    if (getLangOpts().CPlusPlus) {
10936      // FIXME: Look for a way to use RecordDecl for simple structs.
10937      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10938                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10939
10940      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10941        StdBadAlloc = cast<CXXRecordDecl>(New);
10942    } else
10943      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10944                               cast_or_null<RecordDecl>(PrevDecl));
10945  }
10946
10947  // Maybe add qualifier info.
10948  if (SS.isNotEmpty()) {
10949    if (SS.isSet()) {
10950      // If this is either a declaration or a definition, check the
10951      // nested-name-specifier against the current context. We don't do this
10952      // for explicit specializations, because they have similar checking
10953      // (with more specific diagnostics) in the call to
10954      // CheckMemberSpecialization, below.
10955      if (!isExplicitSpecialization &&
10956          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10957          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10958        Invalid = true;
10959
10960      New->setQualifierInfo(SS.getWithLocInContext(Context));
10961      if (TemplateParameterLists.size() > 0) {
10962        New->setTemplateParameterListsInfo(Context,
10963                                           TemplateParameterLists.size(),
10964                                           TemplateParameterLists.data());
10965      }
10966    }
10967    else
10968      Invalid = true;
10969  }
10970
10971  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10972    // Add alignment attributes if necessary; these attributes are checked when
10973    // the ASTContext lays out the structure.
10974    //
10975    // It is important for implementing the correct semantics that this
10976    // happen here (in act on tag decl). The #pragma pack stack is
10977    // maintained as a result of parser callbacks which can occur at
10978    // many points during the parsing of a struct declaration (because
10979    // the #pragma tokens are effectively skipped over during the
10980    // parsing of the struct).
10981    if (TUK == TUK_Definition) {
10982      AddAlignmentAttributesForRecord(RD);
10983      AddMsStructLayoutForRecord(RD);
10984    }
10985  }
10986
10987  if (ModulePrivateLoc.isValid()) {
10988    if (isExplicitSpecialization)
10989      Diag(New->getLocation(), diag::err_module_private_specialization)
10990        << 2
10991        << FixItHint::CreateRemoval(ModulePrivateLoc);
10992    // __module_private__ does not apply to local classes. However, we only
10993    // diagnose this as an error when the declaration specifiers are
10994    // freestanding. Here, we just ignore the __module_private__.
10995    else if (!SearchDC->isFunctionOrMethod())
10996      New->setModulePrivate();
10997  }
10998
10999  // If this is a specialization of a member class (of a class template),
11000  // check the specialization.
11001  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11002    Invalid = true;
11003
11004  if (Invalid)
11005    New->setInvalidDecl();
11006
11007  if (Attr)
11008    ProcessDeclAttributeList(S, New, Attr);
11009
11010  // If we're declaring or defining a tag in function prototype scope
11011  // in C, note that this type can only be used within the function.
11012  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
11013    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
11014
11015  // Set the lexical context. If the tag has a C++ scope specifier, the
11016  // lexical context will be different from the semantic context.
11017  New->setLexicalDeclContext(CurContext);
11018
11019  // Mark this as a friend decl if applicable.
11020  // In Microsoft mode, a friend declaration also acts as a forward
11021  // declaration so we always pass true to setObjectOfFriendDecl to make
11022  // the tag name visible.
11023  if (TUK == TUK_Friend)
11024    New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
11025                               getLangOpts().MicrosoftExt);
11026
11027  // Set the access specifier.
11028  if (!Invalid && SearchDC->isRecord())
11029    SetMemberAccessSpecifier(New, PrevDecl, AS);
11030
11031  if (TUK == TUK_Definition)
11032    New->startDefinition();
11033
11034  // If this has an identifier, add it to the scope stack.
11035  if (TUK == TUK_Friend) {
11036    // We might be replacing an existing declaration in the lookup tables;
11037    // if so, borrow its access specifier.
11038    if (PrevDecl)
11039      New->setAccess(PrevDecl->getAccess());
11040
11041    DeclContext *DC = New->getDeclContext()->getRedeclContext();
11042    DC->makeDeclVisibleInContext(New);
11043    if (Name) // can be null along some error paths
11044      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11045        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
11046  } else if (Name) {
11047    S = getNonFieldDeclScope(S);
11048    PushOnScopeChains(New, S, !IsForwardReference);
11049    if (IsForwardReference)
11050      SearchDC->makeDeclVisibleInContext(New);
11051
11052  } else {
11053    CurContext->addDecl(New);
11054  }
11055
11056  // If this is the C FILE type, notify the AST context.
11057  if (IdentifierInfo *II = New->getIdentifier())
11058    if (!New->isInvalidDecl() &&
11059        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
11060        II->isStr("FILE"))
11061      Context.setFILEDecl(New);
11062
11063  // If we were in function prototype scope (and not in C++ mode), add this
11064  // tag to the list of decls to inject into the function definition scope.
11065  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
11066      InFunctionDeclarator && Name)
11067    DeclsInPrototypeScope.push_back(New);
11068
11069  if (PrevDecl)
11070    mergeDeclAttributes(New, PrevDecl);
11071
11072  // If there's a #pragma GCC visibility in scope, set the visibility of this
11073  // record.
11074  AddPushedVisibilityAttribute(New);
11075
11076  OwnedDecl = true;
11077  // In C++, don't return an invalid declaration. We can't recover well from
11078  // the cases where we make the type anonymous.
11079  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
11080}
11081
11082void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
11083  AdjustDeclIfTemplate(TagD);
11084  TagDecl *Tag = cast<TagDecl>(TagD);
11085
11086  // Enter the tag context.
11087  PushDeclContext(S, Tag);
11088
11089  ActOnDocumentableDecl(TagD);
11090
11091  // If there's a #pragma GCC visibility in scope, set the visibility of this
11092  // record.
11093  AddPushedVisibilityAttribute(Tag);
11094}
11095
11096Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
11097  assert(isa<ObjCContainerDecl>(IDecl) &&
11098         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
11099  DeclContext *OCD = cast<DeclContext>(IDecl);
11100  assert(getContainingDC(OCD) == CurContext &&
11101      "The next DeclContext should be lexically contained in the current one.");
11102  CurContext = OCD;
11103  return IDecl;
11104}
11105
11106void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
11107                                           SourceLocation FinalLoc,
11108                                           bool IsFinalSpelledSealed,
11109                                           SourceLocation LBraceLoc) {
11110  AdjustDeclIfTemplate(TagD);
11111  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
11112
11113  FieldCollector->StartClass();
11114
11115  if (!Record->getIdentifier())
11116    return;
11117
11118  if (FinalLoc.isValid())
11119    Record->addAttr(new (Context)
11120                    FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
11121
11122  // C++ [class]p2:
11123  //   [...] The class-name is also inserted into the scope of the
11124  //   class itself; this is known as the injected-class-name. For
11125  //   purposes of access checking, the injected-class-name is treated
11126  //   as if it were a public member name.
11127  CXXRecordDecl *InjectedClassName
11128    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
11129                            Record->getLocStart(), Record->getLocation(),
11130                            Record->getIdentifier(),
11131                            /*PrevDecl=*/0,
11132                            /*DelayTypeCreation=*/true);
11133  Context.getTypeDeclType(InjectedClassName, Record);
11134  InjectedClassName->setImplicit();
11135  InjectedClassName->setAccess(AS_public);
11136  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
11137      InjectedClassName->setDescribedClassTemplate(Template);
11138  PushOnScopeChains(InjectedClassName, S);
11139  assert(InjectedClassName->isInjectedClassName() &&
11140         "Broken injected-class-name");
11141}
11142
11143void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
11144                                    SourceLocation RBraceLoc) {
11145  AdjustDeclIfTemplate(TagD);
11146  TagDecl *Tag = cast<TagDecl>(TagD);
11147  Tag->setRBraceLoc(RBraceLoc);
11148
11149  // Make sure we "complete" the definition even it is invalid.
11150  if (Tag->isBeingDefined()) {
11151    assert(Tag->isInvalidDecl() && "We should already have completed it");
11152    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11153      RD->completeDefinition();
11154  }
11155
11156  if (isa<CXXRecordDecl>(Tag))
11157    FieldCollector->FinishClass();
11158
11159  // Exit this scope of this tag's definition.
11160  PopDeclContext();
11161
11162  if (getCurLexicalContext()->isObjCContainer() &&
11163      Tag->getDeclContext()->isFileContext())
11164    Tag->setTopLevelDeclInObjCContainer();
11165
11166  // Notify the consumer that we've defined a tag.
11167  if (!Tag->isInvalidDecl())
11168    Consumer.HandleTagDeclDefinition(Tag);
11169}
11170
11171void Sema::ActOnObjCContainerFinishDefinition() {
11172  // Exit this scope of this interface definition.
11173  PopDeclContext();
11174}
11175
11176void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11177  assert(DC == CurContext && "Mismatch of container contexts");
11178  OriginalLexicalContext = DC;
11179  ActOnObjCContainerFinishDefinition();
11180}
11181
11182void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11183  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11184  OriginalLexicalContext = 0;
11185}
11186
11187void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11188  AdjustDeclIfTemplate(TagD);
11189  TagDecl *Tag = cast<TagDecl>(TagD);
11190  Tag->setInvalidDecl();
11191
11192  // Make sure we "complete" the definition even it is invalid.
11193  if (Tag->isBeingDefined()) {
11194    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11195      RD->completeDefinition();
11196  }
11197
11198  // We're undoing ActOnTagStartDefinition here, not
11199  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11200  // the FieldCollector.
11201
11202  PopDeclContext();
11203}
11204
11205// Note that FieldName may be null for anonymous bitfields.
11206ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11207                                IdentifierInfo *FieldName,
11208                                QualType FieldTy, bool IsMsStruct,
11209                                Expr *BitWidth, bool *ZeroWidth) {
11210  // Default to true; that shouldn't confuse checks for emptiness
11211  if (ZeroWidth)
11212    *ZeroWidth = true;
11213
11214  // C99 6.7.2.1p4 - verify the field type.
11215  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11216  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11217    // Handle incomplete types with specific error.
11218    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11219      return ExprError();
11220    if (FieldName)
11221      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11222        << FieldName << FieldTy << BitWidth->getSourceRange();
11223    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11224      << FieldTy << BitWidth->getSourceRange();
11225  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11226                                             UPPC_BitFieldWidth))
11227    return ExprError();
11228
11229  // If the bit-width is type- or value-dependent, don't try to check
11230  // it now.
11231  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11232    return Owned(BitWidth);
11233
11234  llvm::APSInt Value;
11235  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11236  if (ICE.isInvalid())
11237    return ICE;
11238  BitWidth = ICE.take();
11239
11240  if (Value != 0 && ZeroWidth)
11241    *ZeroWidth = false;
11242
11243  // Zero-width bitfield is ok for anonymous field.
11244  if (Value == 0 && FieldName)
11245    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11246
11247  if (Value.isSigned() && Value.isNegative()) {
11248    if (FieldName)
11249      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11250               << FieldName << Value.toString(10);
11251    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11252      << Value.toString(10);
11253  }
11254
11255  if (!FieldTy->isDependentType()) {
11256    uint64_t TypeSize = Context.getTypeSize(FieldTy);
11257    if (Value.getZExtValue() > TypeSize) {
11258      if (!getLangOpts().CPlusPlus || IsMsStruct) {
11259        if (FieldName)
11260          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11261            << FieldName << (unsigned)Value.getZExtValue()
11262            << (unsigned)TypeSize;
11263
11264        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11265          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11266      }
11267
11268      if (FieldName)
11269        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11270          << FieldName << (unsigned)Value.getZExtValue()
11271          << (unsigned)TypeSize;
11272      else
11273        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11274          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11275    }
11276  }
11277
11278  return Owned(BitWidth);
11279}
11280
11281/// ActOnField - Each field of a C struct/union is passed into this in order
11282/// to create a FieldDecl object for it.
11283Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11284                       Declarator &D, Expr *BitfieldWidth) {
11285  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11286                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11287                               /*InitStyle=*/ICIS_NoInit, AS_public);
11288  return Res;
11289}
11290
11291/// HandleField - Analyze a field of a C struct or a C++ data member.
11292///
11293FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11294                             SourceLocation DeclStart,
11295                             Declarator &D, Expr *BitWidth,
11296                             InClassInitStyle InitStyle,
11297                             AccessSpecifier AS) {
11298  IdentifierInfo *II = D.getIdentifier();
11299  SourceLocation Loc = DeclStart;
11300  if (II) Loc = D.getIdentifierLoc();
11301
11302  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11303  QualType T = TInfo->getType();
11304  if (getLangOpts().CPlusPlus) {
11305    CheckExtraCXXDefaultArguments(D);
11306
11307    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11308                                        UPPC_DataMemberType)) {
11309      D.setInvalidType();
11310      T = Context.IntTy;
11311      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11312    }
11313  }
11314
11315  // TR 18037 does not allow fields to be declared with address spaces.
11316  if (T.getQualifiers().hasAddressSpace()) {
11317    Diag(Loc, diag::err_field_with_address_space);
11318    D.setInvalidType();
11319  }
11320
11321  // OpenCL 1.2 spec, s6.9 r:
11322  // The event type cannot be used to declare a structure or union field.
11323  if (LangOpts.OpenCL && T->isEventT()) {
11324    Diag(Loc, diag::err_event_t_struct_field);
11325    D.setInvalidType();
11326  }
11327
11328  DiagnoseFunctionSpecifiers(D.getDeclSpec());
11329
11330  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11331    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11332         diag::err_invalid_thread)
11333      << DeclSpec::getSpecifierName(TSCS);
11334
11335  // Check to see if this name was declared as a member previously
11336  NamedDecl *PrevDecl = 0;
11337  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11338  LookupName(Previous, S);
11339  switch (Previous.getResultKind()) {
11340    case LookupResult::Found:
11341    case LookupResult::FoundUnresolvedValue:
11342      PrevDecl = Previous.getAsSingle<NamedDecl>();
11343      break;
11344
11345    case LookupResult::FoundOverloaded:
11346      PrevDecl = Previous.getRepresentativeDecl();
11347      break;
11348
11349    case LookupResult::NotFound:
11350    case LookupResult::NotFoundInCurrentInstantiation:
11351    case LookupResult::Ambiguous:
11352      break;
11353  }
11354  Previous.suppressDiagnostics();
11355
11356  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11357    // Maybe we will complain about the shadowed template parameter.
11358    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11359    // Just pretend that we didn't see the previous declaration.
11360    PrevDecl = 0;
11361  }
11362
11363  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11364    PrevDecl = 0;
11365
11366  bool Mutable
11367    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11368  SourceLocation TSSL = D.getLocStart();
11369  FieldDecl *NewFD
11370    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11371                     TSSL, AS, PrevDecl, &D);
11372
11373  if (NewFD->isInvalidDecl())
11374    Record->setInvalidDecl();
11375
11376  if (D.getDeclSpec().isModulePrivateSpecified())
11377    NewFD->setModulePrivate();
11378
11379  if (NewFD->isInvalidDecl() && PrevDecl) {
11380    // Don't introduce NewFD into scope; there's already something
11381    // with the same name in the same scope.
11382  } else if (II) {
11383    PushOnScopeChains(NewFD, S);
11384  } else
11385    Record->addDecl(NewFD);
11386
11387  return NewFD;
11388}
11389
11390/// \brief Build a new FieldDecl and check its well-formedness.
11391///
11392/// This routine builds a new FieldDecl given the fields name, type,
11393/// record, etc. \p PrevDecl should refer to any previous declaration
11394/// with the same name and in the same scope as the field to be
11395/// created.
11396///
11397/// \returns a new FieldDecl.
11398///
11399/// \todo The Declarator argument is a hack. It will be removed once
11400FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11401                                TypeSourceInfo *TInfo,
11402                                RecordDecl *Record, SourceLocation Loc,
11403                                bool Mutable, Expr *BitWidth,
11404                                InClassInitStyle InitStyle,
11405                                SourceLocation TSSL,
11406                                AccessSpecifier AS, NamedDecl *PrevDecl,
11407                                Declarator *D) {
11408  IdentifierInfo *II = Name.getAsIdentifierInfo();
11409  bool InvalidDecl = false;
11410  if (D) InvalidDecl = D->isInvalidType();
11411
11412  // If we receive a broken type, recover by assuming 'int' and
11413  // marking this declaration as invalid.
11414  if (T.isNull()) {
11415    InvalidDecl = true;
11416    T = Context.IntTy;
11417  }
11418
11419  QualType EltTy = Context.getBaseElementType(T);
11420  if (!EltTy->isDependentType()) {
11421    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11422      // Fields of incomplete type force their record to be invalid.
11423      Record->setInvalidDecl();
11424      InvalidDecl = true;
11425    } else {
11426      NamedDecl *Def;
11427      EltTy->isIncompleteType(&Def);
11428      if (Def && Def->isInvalidDecl()) {
11429        Record->setInvalidDecl();
11430        InvalidDecl = true;
11431      }
11432    }
11433  }
11434
11435  // OpenCL v1.2 s6.9.c: bitfields are not supported.
11436  if (BitWidth && getLangOpts().OpenCL) {
11437    Diag(Loc, diag::err_opencl_bitfields);
11438    InvalidDecl = true;
11439  }
11440
11441  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11442  // than a variably modified type.
11443  if (!InvalidDecl && T->isVariablyModifiedType()) {
11444    bool SizeIsNegative;
11445    llvm::APSInt Oversized;
11446
11447    TypeSourceInfo *FixedTInfo =
11448      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11449                                                    SizeIsNegative,
11450                                                    Oversized);
11451    if (FixedTInfo) {
11452      Diag(Loc, diag::warn_illegal_constant_array_size);
11453      TInfo = FixedTInfo;
11454      T = FixedTInfo->getType();
11455    } else {
11456      if (SizeIsNegative)
11457        Diag(Loc, diag::err_typecheck_negative_array_size);
11458      else if (Oversized.getBoolValue())
11459        Diag(Loc, diag::err_array_too_large)
11460          << Oversized.toString(10);
11461      else
11462        Diag(Loc, diag::err_typecheck_field_variable_size);
11463      InvalidDecl = true;
11464    }
11465  }
11466
11467  // Fields can not have abstract class types
11468  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11469                                             diag::err_abstract_type_in_decl,
11470                                             AbstractFieldType))
11471    InvalidDecl = true;
11472
11473  bool ZeroWidth = false;
11474  // If this is declared as a bit-field, check the bit-field.
11475  if (!InvalidDecl && BitWidth) {
11476    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11477                              &ZeroWidth).take();
11478    if (!BitWidth) {
11479      InvalidDecl = true;
11480      BitWidth = 0;
11481      ZeroWidth = false;
11482    }
11483  }
11484
11485  // Check that 'mutable' is consistent with the type of the declaration.
11486  if (!InvalidDecl && Mutable) {
11487    unsigned DiagID = 0;
11488    if (T->isReferenceType())
11489      DiagID = diag::err_mutable_reference;
11490    else if (T.isConstQualified())
11491      DiagID = diag::err_mutable_const;
11492
11493    if (DiagID) {
11494      SourceLocation ErrLoc = Loc;
11495      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11496        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11497      Diag(ErrLoc, DiagID);
11498      Mutable = false;
11499      InvalidDecl = true;
11500    }
11501  }
11502
11503  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11504                                       BitWidth, Mutable, InitStyle);
11505  if (InvalidDecl)
11506    NewFD->setInvalidDecl();
11507
11508  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11509    Diag(Loc, diag::err_duplicate_member) << II;
11510    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11511    NewFD->setInvalidDecl();
11512  }
11513
11514  if (!InvalidDecl && getLangOpts().CPlusPlus) {
11515    if (Record->isUnion()) {
11516      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11517        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11518        if (RDecl->getDefinition()) {
11519          // C++ [class.union]p1: An object of a class with a non-trivial
11520          // constructor, a non-trivial copy constructor, a non-trivial
11521          // destructor, or a non-trivial copy assignment operator
11522          // cannot be a member of a union, nor can an array of such
11523          // objects.
11524          if (CheckNontrivialField(NewFD))
11525            NewFD->setInvalidDecl();
11526        }
11527      }
11528
11529      // C++ [class.union]p1: If a union contains a member of reference type,
11530      // the program is ill-formed, except when compiling with MSVC extensions
11531      // enabled.
11532      if (EltTy->isReferenceType()) {
11533        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11534                                    diag::ext_union_member_of_reference_type :
11535                                    diag::err_union_member_of_reference_type)
11536          << NewFD->getDeclName() << EltTy;
11537        if (!getLangOpts().MicrosoftExt)
11538          NewFD->setInvalidDecl();
11539      }
11540    }
11541  }
11542
11543  // FIXME: We need to pass in the attributes given an AST
11544  // representation, not a parser representation.
11545  if (D) {
11546    // FIXME: The current scope is almost... but not entirely... correct here.
11547    ProcessDeclAttributes(getCurScope(), NewFD, *D);
11548
11549    if (NewFD->hasAttrs())
11550      CheckAlignasUnderalignment(NewFD);
11551  }
11552
11553  // In auto-retain/release, infer strong retension for fields of
11554  // retainable type.
11555  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11556    NewFD->setInvalidDecl();
11557
11558  if (T.isObjCGCWeak())
11559    Diag(Loc, diag::warn_attribute_weak_on_field);
11560
11561  NewFD->setAccess(AS);
11562  return NewFD;
11563}
11564
11565bool Sema::CheckNontrivialField(FieldDecl *FD) {
11566  assert(FD);
11567  assert(getLangOpts().CPlusPlus && "valid check only for C++");
11568
11569  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11570    return false;
11571
11572  QualType EltTy = Context.getBaseElementType(FD->getType());
11573  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11574    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11575    if (RDecl->getDefinition()) {
11576      // We check for copy constructors before constructors
11577      // because otherwise we'll never get complaints about
11578      // copy constructors.
11579
11580      CXXSpecialMember member = CXXInvalid;
11581      // We're required to check for any non-trivial constructors. Since the
11582      // implicit default constructor is suppressed if there are any
11583      // user-declared constructors, we just need to check that there is a
11584      // trivial default constructor and a trivial copy constructor. (We don't
11585      // worry about move constructors here, since this is a C++98 check.)
11586      if (RDecl->hasNonTrivialCopyConstructor())
11587        member = CXXCopyConstructor;
11588      else if (!RDecl->hasTrivialDefaultConstructor())
11589        member = CXXDefaultConstructor;
11590      else if (RDecl->hasNonTrivialCopyAssignment())
11591        member = CXXCopyAssignment;
11592      else if (RDecl->hasNonTrivialDestructor())
11593        member = CXXDestructor;
11594
11595      if (member != CXXInvalid) {
11596        if (!getLangOpts().CPlusPlus11 &&
11597            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11598          // Objective-C++ ARC: it is an error to have a non-trivial field of
11599          // a union. However, system headers in Objective-C programs
11600          // occasionally have Objective-C lifetime objects within unions,
11601          // and rather than cause the program to fail, we make those
11602          // members unavailable.
11603          SourceLocation Loc = FD->getLocation();
11604          if (getSourceManager().isInSystemHeader(Loc)) {
11605            if (!FD->hasAttr<UnavailableAttr>())
11606              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11607                                  "this system field has retaining ownership"));
11608            return false;
11609          }
11610        }
11611
11612        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11613               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11614               diag::err_illegal_union_or_anon_struct_member)
11615          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11616        DiagnoseNontrivial(RDecl, member);
11617        return !getLangOpts().CPlusPlus11;
11618      }
11619    }
11620  }
11621
11622  return false;
11623}
11624
11625/// TranslateIvarVisibility - Translate visibility from a token ID to an
11626///  AST enum value.
11627static ObjCIvarDecl::AccessControl
11628TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11629  switch (ivarVisibility) {
11630  default: llvm_unreachable("Unknown visitibility kind");
11631  case tok::objc_private: return ObjCIvarDecl::Private;
11632  case tok::objc_public: return ObjCIvarDecl::Public;
11633  case tok::objc_protected: return ObjCIvarDecl::Protected;
11634  case tok::objc_package: return ObjCIvarDecl::Package;
11635  }
11636}
11637
11638/// ActOnIvar - Each ivar field of an objective-c class is passed into this
11639/// in order to create an IvarDecl object for it.
11640Decl *Sema::ActOnIvar(Scope *S,
11641                                SourceLocation DeclStart,
11642                                Declarator &D, Expr *BitfieldWidth,
11643                                tok::ObjCKeywordKind Visibility) {
11644
11645  IdentifierInfo *II = D.getIdentifier();
11646  Expr *BitWidth = (Expr*)BitfieldWidth;
11647  SourceLocation Loc = DeclStart;
11648  if (II) Loc = D.getIdentifierLoc();
11649
11650  // FIXME: Unnamed fields can be handled in various different ways, for
11651  // example, unnamed unions inject all members into the struct namespace!
11652
11653  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11654  QualType T = TInfo->getType();
11655
11656  if (BitWidth) {
11657    // 6.7.2.1p3, 6.7.2.1p4
11658    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).take();
11659    if (!BitWidth)
11660      D.setInvalidType();
11661  } else {
11662    // Not a bitfield.
11663
11664    // validate II.
11665
11666  }
11667  if (T->isReferenceType()) {
11668    Diag(Loc, diag::err_ivar_reference_type);
11669    D.setInvalidType();
11670  }
11671  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11672  // than a variably modified type.
11673  else if (T->isVariablyModifiedType()) {
11674    Diag(Loc, diag::err_typecheck_ivar_variable_size);
11675    D.setInvalidType();
11676  }
11677
11678  // Get the visibility (access control) for this ivar.
11679  ObjCIvarDecl::AccessControl ac =
11680    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11681                                        : ObjCIvarDecl::None;
11682  // Must set ivar's DeclContext to its enclosing interface.
11683  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11684  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11685    return 0;
11686  ObjCContainerDecl *EnclosingContext;
11687  if (ObjCImplementationDecl *IMPDecl =
11688      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11689    if (LangOpts.ObjCRuntime.isFragile()) {
11690    // Case of ivar declared in an implementation. Context is that of its class.
11691      EnclosingContext = IMPDecl->getClassInterface();
11692      assert(EnclosingContext && "Implementation has no class interface!");
11693    }
11694    else
11695      EnclosingContext = EnclosingDecl;
11696  } else {
11697    if (ObjCCategoryDecl *CDecl =
11698        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11699      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11700        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11701        return 0;
11702      }
11703    }
11704    EnclosingContext = EnclosingDecl;
11705  }
11706
11707  // Construct the decl.
11708  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11709                                             DeclStart, Loc, II, T,
11710                                             TInfo, ac, (Expr *)BitfieldWidth);
11711
11712  if (II) {
11713    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11714                                           ForRedeclaration);
11715    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11716        && !isa<TagDecl>(PrevDecl)) {
11717      Diag(Loc, diag::err_duplicate_member) << II;
11718      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11719      NewID->setInvalidDecl();
11720    }
11721  }
11722
11723  // Process attributes attached to the ivar.
11724  ProcessDeclAttributes(S, NewID, D);
11725
11726  if (D.isInvalidType())
11727    NewID->setInvalidDecl();
11728
11729  // In ARC, infer 'retaining' for ivars of retainable type.
11730  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11731    NewID->setInvalidDecl();
11732
11733  if (D.getDeclSpec().isModulePrivateSpecified())
11734    NewID->setModulePrivate();
11735
11736  if (II) {
11737    // FIXME: When interfaces are DeclContexts, we'll need to add
11738    // these to the interface.
11739    S->AddDecl(NewID);
11740    IdResolver.AddDecl(NewID);
11741  }
11742
11743  if (LangOpts.ObjCRuntime.isNonFragile() &&
11744      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11745    Diag(Loc, diag::warn_ivars_in_interface);
11746
11747  return NewID;
11748}
11749
11750/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11751/// class and class extensions. For every class \@interface and class
11752/// extension \@interface, if the last ivar is a bitfield of any type,
11753/// then add an implicit `char :0` ivar to the end of that interface.
11754void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11755                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11756  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11757    return;
11758
11759  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11760  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11761
11762  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11763    return;
11764  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11765  if (!ID) {
11766    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11767      if (!CD->IsClassExtension())
11768        return;
11769    }
11770    // No need to add this to end of @implementation.
11771    else
11772      return;
11773  }
11774  // All conditions are met. Add a new bitfield to the tail end of ivars.
11775  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11776  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11777
11778  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11779                              DeclLoc, DeclLoc, 0,
11780                              Context.CharTy,
11781                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11782                                                               DeclLoc),
11783                              ObjCIvarDecl::Private, BW,
11784                              true);
11785  AllIvarDecls.push_back(Ivar);
11786}
11787
11788void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
11789                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
11790                       SourceLocation RBrac, AttributeList *Attr) {
11791  assert(EnclosingDecl && "missing record or interface decl");
11792
11793  // If this is an Objective-C @implementation or category and we have
11794  // new fields here we should reset the layout of the interface since
11795  // it will now change.
11796  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11797    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11798    switch (DC->getKind()) {
11799    default: break;
11800    case Decl::ObjCCategory:
11801      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11802      break;
11803    case Decl::ObjCImplementation:
11804      Context.
11805        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11806      break;
11807    }
11808  }
11809
11810  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11811
11812  // Start counting up the number of named members; make sure to include
11813  // members of anonymous structs and unions in the total.
11814  unsigned NumNamedMembers = 0;
11815  if (Record) {
11816    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11817                                   e = Record->decls_end(); i != e; i++) {
11818      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11819        if (IFD->getDeclName())
11820          ++NumNamedMembers;
11821    }
11822  }
11823
11824  // Verify that all the fields are okay.
11825  SmallVector<FieldDecl*, 32> RecFields;
11826
11827  bool ARCErrReported = false;
11828  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11829       i != end; ++i) {
11830    FieldDecl *FD = cast<FieldDecl>(*i);
11831
11832    // Get the type for the field.
11833    const Type *FDTy = FD->getType().getTypePtr();
11834
11835    if (!FD->isAnonymousStructOrUnion()) {
11836      // Remember all fields written by the user.
11837      RecFields.push_back(FD);
11838    }
11839
11840    // If the field is already invalid for some reason, don't emit more
11841    // diagnostics about it.
11842    if (FD->isInvalidDecl()) {
11843      EnclosingDecl->setInvalidDecl();
11844      continue;
11845    }
11846
11847    // C99 6.7.2.1p2:
11848    //   A structure or union shall not contain a member with
11849    //   incomplete or function type (hence, a structure shall not
11850    //   contain an instance of itself, but may contain a pointer to
11851    //   an instance of itself), except that the last member of a
11852    //   structure with more than one named member may have incomplete
11853    //   array type; such a structure (and any union containing,
11854    //   possibly recursively, a member that is such a structure)
11855    //   shall not be a member of a structure or an element of an
11856    //   array.
11857    if (FDTy->isFunctionType()) {
11858      // Field declared as a function.
11859      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11860        << FD->getDeclName();
11861      FD->setInvalidDecl();
11862      EnclosingDecl->setInvalidDecl();
11863      continue;
11864    } else if (FDTy->isIncompleteArrayType() && Record &&
11865               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11866                ((getLangOpts().MicrosoftExt ||
11867                  getLangOpts().CPlusPlus) &&
11868                 (i + 1 == Fields.end() || Record->isUnion())))) {
11869      // Flexible array member.
11870      // Microsoft and g++ is more permissive regarding flexible array.
11871      // It will accept flexible array in union and also
11872      // as the sole element of a struct/class.
11873      unsigned DiagID = 0;
11874      if (Record->isUnion())
11875        DiagID = getLangOpts().MicrosoftExt
11876                     ? diag::ext_flexible_array_union_ms
11877                     : getLangOpts().CPlusPlus
11878                           ? diag::ext_flexible_array_union_gnu
11879                           : diag::err_flexible_array_union;
11880      else if (Fields.size() == 1)
11881        DiagID = getLangOpts().MicrosoftExt
11882                     ? diag::ext_flexible_array_empty_aggregate_ms
11883                     : getLangOpts().CPlusPlus
11884                           ? diag::ext_flexible_array_empty_aggregate_gnu
11885                           : NumNamedMembers < 1
11886                                 ? diag::err_flexible_array_empty_aggregate
11887                                 : 0;
11888
11889      if (DiagID)
11890        Diag(FD->getLocation(), DiagID) << FD->getDeclName()
11891                                        << Record->getTagKind();
11892      // While the layout of types that contain virtual bases is not specified
11893      // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
11894      // virtual bases after the derived members.  This would make a flexible
11895      // array member declared at the end of an object not adjacent to the end
11896      // of the type.
11897      if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
11898        if (RD->getNumVBases() != 0)
11899          Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
11900            << FD->getDeclName() << Record->getTagKind();
11901      if (!getLangOpts().C99)
11902        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11903          << FD->getDeclName() << Record->getTagKind();
11904
11905      if (!FD->getType()->isDependentType() &&
11906          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11907        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11908          << FD->getDeclName() << FD->getType();
11909        FD->setInvalidDecl();
11910        EnclosingDecl->setInvalidDecl();
11911        continue;
11912      }
11913      // Okay, we have a legal flexible array member at the end of the struct.
11914      if (Record)
11915        Record->setHasFlexibleArrayMember(true);
11916    } else if (!FDTy->isDependentType() &&
11917               RequireCompleteType(FD->getLocation(), FD->getType(),
11918                                   diag::err_field_incomplete)) {
11919      // Incomplete type
11920      FD->setInvalidDecl();
11921      EnclosingDecl->setInvalidDecl();
11922      continue;
11923    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11924      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11925        // If this is a member of a union, then entire union becomes "flexible".
11926        if (Record && Record->isUnion()) {
11927          Record->setHasFlexibleArrayMember(true);
11928        } else {
11929          // If this is a struct/class and this is not the last element, reject
11930          // it.  Note that GCC supports variable sized arrays in the middle of
11931          // structures.
11932          if (i + 1 != Fields.end())
11933            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11934              << FD->getDeclName() << FD->getType();
11935          else {
11936            // We support flexible arrays at the end of structs in
11937            // other structs as an extension.
11938            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11939              << FD->getDeclName();
11940            if (Record)
11941              Record->setHasFlexibleArrayMember(true);
11942          }
11943        }
11944      }
11945      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11946          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11947                                 diag::err_abstract_type_in_decl,
11948                                 AbstractIvarType)) {
11949        // Ivars can not have abstract class types
11950        FD->setInvalidDecl();
11951      }
11952      if (Record && FDTTy->getDecl()->hasObjectMember())
11953        Record->setHasObjectMember(true);
11954      if (Record && FDTTy->getDecl()->hasVolatileMember())
11955        Record->setHasVolatileMember(true);
11956    } else if (FDTy->isObjCObjectType()) {
11957      /// A field cannot be an Objective-c object
11958      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11959        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11960      QualType T = Context.getObjCObjectPointerType(FD->getType());
11961      FD->setType(T);
11962    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11963               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11964      // It's an error in ARC if a field has lifetime.
11965      // We don't want to report this in a system header, though,
11966      // so we just make the field unavailable.
11967      // FIXME: that's really not sufficient; we need to make the type
11968      // itself invalid to, say, initialize or copy.
11969      QualType T = FD->getType();
11970      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11971      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11972        SourceLocation loc = FD->getLocation();
11973        if (getSourceManager().isInSystemHeader(loc)) {
11974          if (!FD->hasAttr<UnavailableAttr>()) {
11975            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11976                              "this system field has retaining ownership"));
11977          }
11978        } else {
11979          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11980            << T->isBlockPointerType() << Record->getTagKind();
11981        }
11982        ARCErrReported = true;
11983      }
11984    } else if (getLangOpts().ObjC1 &&
11985               getLangOpts().getGC() != LangOptions::NonGC &&
11986               Record && !Record->hasObjectMember()) {
11987      if (FD->getType()->isObjCObjectPointerType() ||
11988          FD->getType().isObjCGCStrong())
11989        Record->setHasObjectMember(true);
11990      else if (Context.getAsArrayType(FD->getType())) {
11991        QualType BaseType = Context.getBaseElementType(FD->getType());
11992        if (BaseType->isRecordType() &&
11993            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11994          Record->setHasObjectMember(true);
11995        else if (BaseType->isObjCObjectPointerType() ||
11996                 BaseType.isObjCGCStrong())
11997               Record->setHasObjectMember(true);
11998      }
11999    }
12000    if (Record && FD->getType().isVolatileQualified())
12001      Record->setHasVolatileMember(true);
12002    // Keep track of the number of named members.
12003    if (FD->getIdentifier())
12004      ++NumNamedMembers;
12005  }
12006
12007  // Okay, we successfully defined 'Record'.
12008  if (Record) {
12009    bool Completed = false;
12010    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
12011      if (!CXXRecord->isInvalidDecl()) {
12012        // Set access bits correctly on the directly-declared conversions.
12013        for (CXXRecordDecl::conversion_iterator
12014               I = CXXRecord->conversion_begin(),
12015               E = CXXRecord->conversion_end(); I != E; ++I)
12016          I.setAccess((*I)->getAccess());
12017
12018        if (!CXXRecord->isDependentType()) {
12019          if (CXXRecord->hasUserDeclaredDestructor()) {
12020            // Adjust user-defined destructor exception spec.
12021            if (getLangOpts().CPlusPlus11)
12022              AdjustDestructorExceptionSpec(CXXRecord,
12023                                            CXXRecord->getDestructor());
12024
12025            // The Microsoft ABI requires that we perform the destructor body
12026            // checks (i.e. operator delete() lookup) at every declaration, as
12027            // any translation unit may need to emit a deleting destructor.
12028            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12029              CheckDestructor(CXXRecord->getDestructor());
12030          }
12031
12032          // Add any implicitly-declared members to this class.
12033          AddImplicitlyDeclaredMembersToClass(CXXRecord);
12034
12035          // If we have virtual base classes, we may end up finding multiple
12036          // final overriders for a given virtual function. Check for this
12037          // problem now.
12038          if (CXXRecord->getNumVBases()) {
12039            CXXFinalOverriderMap FinalOverriders;
12040            CXXRecord->getFinalOverriders(FinalOverriders);
12041
12042            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
12043                                             MEnd = FinalOverriders.end();
12044                 M != MEnd; ++M) {
12045              for (OverridingMethods::iterator SO = M->second.begin(),
12046                                            SOEnd = M->second.end();
12047                   SO != SOEnd; ++SO) {
12048                assert(SO->second.size() > 0 &&
12049                       "Virtual function without overridding functions?");
12050                if (SO->second.size() == 1)
12051                  continue;
12052
12053                // C++ [class.virtual]p2:
12054                //   In a derived class, if a virtual member function of a base
12055                //   class subobject has more than one final overrider the
12056                //   program is ill-formed.
12057                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
12058                  << (const NamedDecl *)M->first << Record;
12059                Diag(M->first->getLocation(),
12060                     diag::note_overridden_virtual_function);
12061                for (OverridingMethods::overriding_iterator
12062                          OM = SO->second.begin(),
12063                       OMEnd = SO->second.end();
12064                     OM != OMEnd; ++OM)
12065                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
12066                    << (const NamedDecl *)M->first << OM->Method->getParent();
12067
12068                Record->setInvalidDecl();
12069              }
12070            }
12071            CXXRecord->completeDefinition(&FinalOverriders);
12072            Completed = true;
12073          }
12074        }
12075      }
12076    }
12077
12078    if (!Completed)
12079      Record->completeDefinition();
12080
12081    if (Record->hasAttrs())
12082      CheckAlignasUnderalignment(Record);
12083
12084    // Check if the structure/union declaration is a type that can have zero
12085    // size in C. For C this is a language extension, for C++ it may cause
12086    // compatibility problems.
12087    bool CheckForZeroSize;
12088    if (!getLangOpts().CPlusPlus) {
12089      CheckForZeroSize = true;
12090    } else {
12091      // For C++ filter out types that cannot be referenced in C code.
12092      CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
12093      CheckForZeroSize =
12094          CXXRecord->getLexicalDeclContext()->isExternCContext() &&
12095          !CXXRecord->isDependentType() &&
12096          CXXRecord->isCLike();
12097    }
12098    if (CheckForZeroSize) {
12099      bool ZeroSize = true;
12100      bool IsEmpty = true;
12101      unsigned NonBitFields = 0;
12102      for (RecordDecl::field_iterator I = Record->field_begin(),
12103                                      E = Record->field_end();
12104           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
12105        IsEmpty = false;
12106        if (I->isUnnamedBitfield()) {
12107          if (I->getBitWidthValue(Context) > 0)
12108            ZeroSize = false;
12109        } else {
12110          ++NonBitFields;
12111          QualType FieldType = I->getType();
12112          if (FieldType->isIncompleteType() ||
12113              !Context.getTypeSizeInChars(FieldType).isZero())
12114            ZeroSize = false;
12115        }
12116      }
12117
12118      // Empty structs are an extension in C (C99 6.7.2.1p7). They are
12119      // allowed in C++, but warn if its declaration is inside
12120      // extern "C" block.
12121      if (ZeroSize) {
12122        Diag(RecLoc, getLangOpts().CPlusPlus ?
12123                         diag::warn_zero_size_struct_union_in_extern_c :
12124                         diag::warn_zero_size_struct_union_compat)
12125          << IsEmpty << Record->isUnion() << (NonBitFields > 1);
12126      }
12127
12128      // Structs without named members are extension in C (C99 6.7.2.1p7),
12129      // but are accepted by GCC.
12130      if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
12131        Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
12132                               diag::ext_no_named_members_in_struct_union)
12133          << Record->isUnion();
12134      }
12135    }
12136  } else {
12137    ObjCIvarDecl **ClsFields =
12138      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
12139    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
12140      ID->setEndOfDefinitionLoc(RBrac);
12141      // Add ivar's to class's DeclContext.
12142      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12143        ClsFields[i]->setLexicalDeclContext(ID);
12144        ID->addDecl(ClsFields[i]);
12145      }
12146      // Must enforce the rule that ivars in the base classes may not be
12147      // duplicates.
12148      if (ID->getSuperClass())
12149        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
12150    } else if (ObjCImplementationDecl *IMPDecl =
12151                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12152      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
12153      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
12154        // Ivar declared in @implementation never belongs to the implementation.
12155        // Only it is in implementation's lexical context.
12156        ClsFields[I]->setLexicalDeclContext(IMPDecl);
12157      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
12158      IMPDecl->setIvarLBraceLoc(LBrac);
12159      IMPDecl->setIvarRBraceLoc(RBrac);
12160    } else if (ObjCCategoryDecl *CDecl =
12161                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12162      // case of ivars in class extension; all other cases have been
12163      // reported as errors elsewhere.
12164      // FIXME. Class extension does not have a LocEnd field.
12165      // CDecl->setLocEnd(RBrac);
12166      // Add ivar's to class extension's DeclContext.
12167      // Diagnose redeclaration of private ivars.
12168      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12169      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12170        if (IDecl) {
12171          if (const ObjCIvarDecl *ClsIvar =
12172              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12173            Diag(ClsFields[i]->getLocation(),
12174                 diag::err_duplicate_ivar_declaration);
12175            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12176            continue;
12177          }
12178          for (ObjCInterfaceDecl::known_extensions_iterator
12179                 Ext = IDecl->known_extensions_begin(),
12180                 ExtEnd = IDecl->known_extensions_end();
12181               Ext != ExtEnd; ++Ext) {
12182            if (const ObjCIvarDecl *ClsExtIvar
12183                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12184              Diag(ClsFields[i]->getLocation(),
12185                   diag::err_duplicate_ivar_declaration);
12186              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12187              continue;
12188            }
12189          }
12190        }
12191        ClsFields[i]->setLexicalDeclContext(CDecl);
12192        CDecl->addDecl(ClsFields[i]);
12193      }
12194      CDecl->setIvarLBraceLoc(LBrac);
12195      CDecl->setIvarRBraceLoc(RBrac);
12196    }
12197  }
12198
12199  if (Attr)
12200    ProcessDeclAttributeList(S, Record, Attr);
12201}
12202
12203/// \brief Determine whether the given integral value is representable within
12204/// the given type T.
12205static bool isRepresentableIntegerValue(ASTContext &Context,
12206                                        llvm::APSInt &Value,
12207                                        QualType T) {
12208  assert(T->isIntegralType(Context) && "Integral type required!");
12209  unsigned BitWidth = Context.getIntWidth(T);
12210
12211  if (Value.isUnsigned() || Value.isNonNegative()) {
12212    if (T->isSignedIntegerOrEnumerationType())
12213      --BitWidth;
12214    return Value.getActiveBits() <= BitWidth;
12215  }
12216  return Value.getMinSignedBits() <= BitWidth;
12217}
12218
12219// \brief Given an integral type, return the next larger integral type
12220// (or a NULL type of no such type exists).
12221static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12222  // FIXME: Int128/UInt128 support, which also needs to be introduced into
12223  // enum checking below.
12224  assert(T->isIntegralType(Context) && "Integral type required!");
12225  const unsigned NumTypes = 4;
12226  QualType SignedIntegralTypes[NumTypes] = {
12227    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12228  };
12229  QualType UnsignedIntegralTypes[NumTypes] = {
12230    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12231    Context.UnsignedLongLongTy
12232  };
12233
12234  unsigned BitWidth = Context.getTypeSize(T);
12235  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12236                                                        : UnsignedIntegralTypes;
12237  for (unsigned I = 0; I != NumTypes; ++I)
12238    if (Context.getTypeSize(Types[I]) > BitWidth)
12239      return Types[I];
12240
12241  return QualType();
12242}
12243
12244EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12245                                          EnumConstantDecl *LastEnumConst,
12246                                          SourceLocation IdLoc,
12247                                          IdentifierInfo *Id,
12248                                          Expr *Val) {
12249  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12250  llvm::APSInt EnumVal(IntWidth);
12251  QualType EltTy;
12252
12253  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12254    Val = 0;
12255
12256  if (Val)
12257    Val = DefaultLvalueConversion(Val).take();
12258
12259  if (Val) {
12260    if (Enum->isDependentType() || Val->isTypeDependent())
12261      EltTy = Context.DependentTy;
12262    else {
12263      SourceLocation ExpLoc;
12264      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12265          !getLangOpts().MicrosoftMode) {
12266        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12267        // constant-expression in the enumerator-definition shall be a converted
12268        // constant expression of the underlying type.
12269        EltTy = Enum->getIntegerType();
12270        ExprResult Converted =
12271          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12272                                           CCEK_Enumerator);
12273        if (Converted.isInvalid())
12274          Val = 0;
12275        else
12276          Val = Converted.take();
12277      } else if (!Val->isValueDependent() &&
12278                 !(Val = VerifyIntegerConstantExpression(Val,
12279                                                         &EnumVal).take())) {
12280        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12281      } else {
12282        if (Enum->isFixed()) {
12283          EltTy = Enum->getIntegerType();
12284
12285          // In Obj-C and Microsoft mode, require the enumeration value to be
12286          // representable in the underlying type of the enumeration. In C++11,
12287          // we perform a non-narrowing conversion as part of converted constant
12288          // expression checking.
12289          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12290            if (getLangOpts().MicrosoftMode) {
12291              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12292              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12293            } else
12294              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12295          } else
12296            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12297        } else if (getLangOpts().CPlusPlus) {
12298          // C++11 [dcl.enum]p5:
12299          //   If the underlying type is not fixed, the type of each enumerator
12300          //   is the type of its initializing value:
12301          //     - If an initializer is specified for an enumerator, the
12302          //       initializing value has the same type as the expression.
12303          EltTy = Val->getType();
12304        } else {
12305          // C99 6.7.2.2p2:
12306          //   The expression that defines the value of an enumeration constant
12307          //   shall be an integer constant expression that has a value
12308          //   representable as an int.
12309
12310          // Complain if the value is not representable in an int.
12311          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12312            Diag(IdLoc, diag::ext_enum_value_not_int)
12313              << EnumVal.toString(10) << Val->getSourceRange()
12314              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12315          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12316            // Force the type of the expression to 'int'.
12317            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12318          }
12319          EltTy = Val->getType();
12320        }
12321      }
12322    }
12323  }
12324
12325  if (!Val) {
12326    if (Enum->isDependentType())
12327      EltTy = Context.DependentTy;
12328    else if (!LastEnumConst) {
12329      // C++0x [dcl.enum]p5:
12330      //   If the underlying type is not fixed, the type of each enumerator
12331      //   is the type of its initializing value:
12332      //     - If no initializer is specified for the first enumerator, the
12333      //       initializing value has an unspecified integral type.
12334      //
12335      // GCC uses 'int' for its unspecified integral type, as does
12336      // C99 6.7.2.2p3.
12337      if (Enum->isFixed()) {
12338        EltTy = Enum->getIntegerType();
12339      }
12340      else {
12341        EltTy = Context.IntTy;
12342      }
12343    } else {
12344      // Assign the last value + 1.
12345      EnumVal = LastEnumConst->getInitVal();
12346      ++EnumVal;
12347      EltTy = LastEnumConst->getType();
12348
12349      // Check for overflow on increment.
12350      if (EnumVal < LastEnumConst->getInitVal()) {
12351        // C++0x [dcl.enum]p5:
12352        //   If the underlying type is not fixed, the type of each enumerator
12353        //   is the type of its initializing value:
12354        //
12355        //     - Otherwise the type of the initializing value is the same as
12356        //       the type of the initializing value of the preceding enumerator
12357        //       unless the incremented value is not representable in that type,
12358        //       in which case the type is an unspecified integral type
12359        //       sufficient to contain the incremented value. If no such type
12360        //       exists, the program is ill-formed.
12361        QualType T = getNextLargerIntegralType(Context, EltTy);
12362        if (T.isNull() || Enum->isFixed()) {
12363          // There is no integral type larger enough to represent this
12364          // value. Complain, then allow the value to wrap around.
12365          EnumVal = LastEnumConst->getInitVal();
12366          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12367          ++EnumVal;
12368          if (Enum->isFixed())
12369            // When the underlying type is fixed, this is ill-formed.
12370            Diag(IdLoc, diag::err_enumerator_wrapped)
12371              << EnumVal.toString(10)
12372              << EltTy;
12373          else
12374            Diag(IdLoc, diag::warn_enumerator_too_large)
12375              << EnumVal.toString(10);
12376        } else {
12377          EltTy = T;
12378        }
12379
12380        // Retrieve the last enumerator's value, extent that type to the
12381        // type that is supposed to be large enough to represent the incremented
12382        // value, then increment.
12383        EnumVal = LastEnumConst->getInitVal();
12384        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12385        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12386        ++EnumVal;
12387
12388        // If we're not in C++, diagnose the overflow of enumerator values,
12389        // which in C99 means that the enumerator value is not representable in
12390        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12391        // permits enumerator values that are representable in some larger
12392        // integral type.
12393        if (!getLangOpts().CPlusPlus && !T.isNull())
12394          Diag(IdLoc, diag::warn_enum_value_overflow);
12395      } else if (!getLangOpts().CPlusPlus &&
12396                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12397        // Enforce C99 6.7.2.2p2 even when we compute the next value.
12398        Diag(IdLoc, diag::ext_enum_value_not_int)
12399          << EnumVal.toString(10) << 1;
12400      }
12401    }
12402  }
12403
12404  if (!EltTy->isDependentType()) {
12405    // Make the enumerator value match the signedness and size of the
12406    // enumerator's type.
12407    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12408    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12409  }
12410
12411  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12412                                  Val, EnumVal);
12413}
12414
12415
12416Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12417                              SourceLocation IdLoc, IdentifierInfo *Id,
12418                              AttributeList *Attr,
12419                              SourceLocation EqualLoc, Expr *Val) {
12420  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12421  EnumConstantDecl *LastEnumConst =
12422    cast_or_null<EnumConstantDecl>(lastEnumConst);
12423
12424  // The scope passed in may not be a decl scope.  Zip up the scope tree until
12425  // we find one that is.
12426  S = getNonFieldDeclScope(S);
12427
12428  // Verify that there isn't already something declared with this name in this
12429  // scope.
12430  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12431                                         ForRedeclaration);
12432  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12433    // Maybe we will complain about the shadowed template parameter.
12434    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12435    // Just pretend that we didn't see the previous declaration.
12436    PrevDecl = 0;
12437  }
12438
12439  if (PrevDecl) {
12440    // When in C++, we may get a TagDecl with the same name; in this case the
12441    // enum constant will 'hide' the tag.
12442    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12443           "Received TagDecl when not in C++!");
12444    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12445      if (isa<EnumConstantDecl>(PrevDecl))
12446        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12447      else
12448        Diag(IdLoc, diag::err_redefinition) << Id;
12449      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12450      return 0;
12451    }
12452  }
12453
12454  // C++ [class.mem]p15:
12455  // If T is the name of a class, then each of the following shall have a name
12456  // different from T:
12457  // - every enumerator of every member of class T that is an unscoped
12458  // enumerated type
12459  if (CXXRecordDecl *Record
12460                      = dyn_cast<CXXRecordDecl>(
12461                             TheEnumDecl->getDeclContext()->getRedeclContext()))
12462    if (!TheEnumDecl->isScoped() &&
12463        Record->getIdentifier() && Record->getIdentifier() == Id)
12464      Diag(IdLoc, diag::err_member_name_of_class) << Id;
12465
12466  EnumConstantDecl *New =
12467    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12468
12469  if (New) {
12470    // Process attributes.
12471    if (Attr) ProcessDeclAttributeList(S, New, Attr);
12472
12473    // Register this decl in the current scope stack.
12474    New->setAccess(TheEnumDecl->getAccess());
12475    PushOnScopeChains(New, S);
12476  }
12477
12478  ActOnDocumentableDecl(New);
12479
12480  return New;
12481}
12482
12483// Returns true when the enum initial expression does not trigger the
12484// duplicate enum warning.  A few common cases are exempted as follows:
12485// Element2 = Element1
12486// Element2 = Element1 + 1
12487// Element2 = Element1 - 1
12488// Where Element2 and Element1 are from the same enum.
12489static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12490  Expr *InitExpr = ECD->getInitExpr();
12491  if (!InitExpr)
12492    return true;
12493  InitExpr = InitExpr->IgnoreImpCasts();
12494
12495  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12496    if (!BO->isAdditiveOp())
12497      return true;
12498    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12499    if (!IL)
12500      return true;
12501    if (IL->getValue() != 1)
12502      return true;
12503
12504    InitExpr = BO->getLHS();
12505  }
12506
12507  // This checks if the elements are from the same enum.
12508  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12509  if (!DRE)
12510    return true;
12511
12512  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12513  if (!EnumConstant)
12514    return true;
12515
12516  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12517      Enum)
12518    return true;
12519
12520  return false;
12521}
12522
12523struct DupKey {
12524  int64_t val;
12525  bool isTombstoneOrEmptyKey;
12526  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12527    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12528};
12529
12530static DupKey GetDupKey(const llvm::APSInt& Val) {
12531  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12532                false);
12533}
12534
12535struct DenseMapInfoDupKey {
12536  static DupKey getEmptyKey() { return DupKey(0, true); }
12537  static DupKey getTombstoneKey() { return DupKey(1, true); }
12538  static unsigned getHashValue(const DupKey Key) {
12539    return (unsigned)(Key.val * 37);
12540  }
12541  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12542    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12543           LHS.val == RHS.val;
12544  }
12545};
12546
12547// Emits a warning when an element is implicitly set a value that
12548// a previous element has already been set to.
12549static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12550                                        EnumDecl *Enum,
12551                                        QualType EnumType) {
12552  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12553                                 Enum->getLocation()) ==
12554      DiagnosticsEngine::Ignored)
12555    return;
12556  // Avoid anonymous enums
12557  if (!Enum->getIdentifier())
12558    return;
12559
12560  // Only check for small enums.
12561  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12562    return;
12563
12564  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12565  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12566
12567  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12568  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12569          ValueToVectorMap;
12570
12571  DuplicatesVector DupVector;
12572  ValueToVectorMap EnumMap;
12573
12574  // Populate the EnumMap with all values represented by enum constants without
12575  // an initialier.
12576  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12577    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12578
12579    // Null EnumConstantDecl means a previous diagnostic has been emitted for
12580    // this constant.  Skip this enum since it may be ill-formed.
12581    if (!ECD) {
12582      return;
12583    }
12584
12585    if (ECD->getInitExpr())
12586      continue;
12587
12588    DupKey Key = GetDupKey(ECD->getInitVal());
12589    DeclOrVector &Entry = EnumMap[Key];
12590
12591    // First time encountering this value.
12592    if (Entry.isNull())
12593      Entry = ECD;
12594  }
12595
12596  // Create vectors for any values that has duplicates.
12597  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12598    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12599    if (!ValidDuplicateEnum(ECD, Enum))
12600      continue;
12601
12602    DupKey Key = GetDupKey(ECD->getInitVal());
12603
12604    DeclOrVector& Entry = EnumMap[Key];
12605    if (Entry.isNull())
12606      continue;
12607
12608    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12609      // Ensure constants are different.
12610      if (D == ECD)
12611        continue;
12612
12613      // Create new vector and push values onto it.
12614      ECDVector *Vec = new ECDVector();
12615      Vec->push_back(D);
12616      Vec->push_back(ECD);
12617
12618      // Update entry to point to the duplicates vector.
12619      Entry = Vec;
12620
12621      // Store the vector somewhere we can consult later for quick emission of
12622      // diagnostics.
12623      DupVector.push_back(Vec);
12624      continue;
12625    }
12626
12627    ECDVector *Vec = Entry.get<ECDVector*>();
12628    // Make sure constants are not added more than once.
12629    if (*Vec->begin() == ECD)
12630      continue;
12631
12632    Vec->push_back(ECD);
12633  }
12634
12635  // Emit diagnostics.
12636  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12637                                  DupVectorEnd = DupVector.end();
12638       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12639    ECDVector *Vec = *DupVectorIter;
12640    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12641
12642    // Emit warning for one enum constant.
12643    ECDVector::iterator I = Vec->begin();
12644    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12645      << (*I)->getName() << (*I)->getInitVal().toString(10)
12646      << (*I)->getSourceRange();
12647    ++I;
12648
12649    // Emit one note for each of the remaining enum constants with
12650    // the same value.
12651    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12652      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12653        << (*I)->getName() << (*I)->getInitVal().toString(10)
12654        << (*I)->getSourceRange();
12655    delete Vec;
12656  }
12657}
12658
12659void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12660                         SourceLocation RBraceLoc, Decl *EnumDeclX,
12661                         ArrayRef<Decl *> Elements,
12662                         Scope *S, AttributeList *Attr) {
12663  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12664  QualType EnumType = Context.getTypeDeclType(Enum);
12665
12666  if (Attr)
12667    ProcessDeclAttributeList(S, Enum, Attr);
12668
12669  if (Enum->isDependentType()) {
12670    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12671      EnumConstantDecl *ECD =
12672        cast_or_null<EnumConstantDecl>(Elements[i]);
12673      if (!ECD) continue;
12674
12675      ECD->setType(EnumType);
12676    }
12677
12678    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12679    return;
12680  }
12681
12682  // TODO: If the result value doesn't fit in an int, it must be a long or long
12683  // long value.  ISO C does not support this, but GCC does as an extension,
12684  // emit a warning.
12685  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12686  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12687  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12688
12689  // Verify that all the values are okay, compute the size of the values, and
12690  // reverse the list.
12691  unsigned NumNegativeBits = 0;
12692  unsigned NumPositiveBits = 0;
12693
12694  // Keep track of whether all elements have type int.
12695  bool AllElementsInt = true;
12696
12697  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12698    EnumConstantDecl *ECD =
12699      cast_or_null<EnumConstantDecl>(Elements[i]);
12700    if (!ECD) continue;  // Already issued a diagnostic.
12701
12702    const llvm::APSInt &InitVal = ECD->getInitVal();
12703
12704    // Keep track of the size of positive and negative values.
12705    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12706      NumPositiveBits = std::max(NumPositiveBits,
12707                                 (unsigned)InitVal.getActiveBits());
12708    else
12709      NumNegativeBits = std::max(NumNegativeBits,
12710                                 (unsigned)InitVal.getMinSignedBits());
12711
12712    // Keep track of whether every enum element has type int (very commmon).
12713    if (AllElementsInt)
12714      AllElementsInt = ECD->getType() == Context.IntTy;
12715  }
12716
12717  // Figure out the type that should be used for this enum.
12718  QualType BestType;
12719  unsigned BestWidth;
12720
12721  // C++0x N3000 [conv.prom]p3:
12722  //   An rvalue of an unscoped enumeration type whose underlying
12723  //   type is not fixed can be converted to an rvalue of the first
12724  //   of the following types that can represent all the values of
12725  //   the enumeration: int, unsigned int, long int, unsigned long
12726  //   int, long long int, or unsigned long long int.
12727  // C99 6.4.4.3p2:
12728  //   An identifier declared as an enumeration constant has type int.
12729  // The C99 rule is modified by a gcc extension
12730  QualType BestPromotionType;
12731
12732  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12733  // -fshort-enums is the equivalent to specifying the packed attribute on all
12734  // enum definitions.
12735  if (LangOpts.ShortEnums)
12736    Packed = true;
12737
12738  if (Enum->isFixed()) {
12739    BestType = Enum->getIntegerType();
12740    if (BestType->isPromotableIntegerType())
12741      BestPromotionType = Context.getPromotedIntegerType(BestType);
12742    else
12743      BestPromotionType = BestType;
12744    // We don't need to set BestWidth, because BestType is going to be the type
12745    // of the enumerators, but we do anyway because otherwise some compilers
12746    // warn that it might be used uninitialized.
12747    BestWidth = CharWidth;
12748  }
12749  else if (NumNegativeBits) {
12750    // If there is a negative value, figure out the smallest integer type (of
12751    // int/long/longlong) that fits.
12752    // If it's packed, check also if it fits a char or a short.
12753    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12754      BestType = Context.SignedCharTy;
12755      BestWidth = CharWidth;
12756    } else if (Packed && NumNegativeBits <= ShortWidth &&
12757               NumPositiveBits < ShortWidth) {
12758      BestType = Context.ShortTy;
12759      BestWidth = ShortWidth;
12760    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12761      BestType = Context.IntTy;
12762      BestWidth = IntWidth;
12763    } else {
12764      BestWidth = Context.getTargetInfo().getLongWidth();
12765
12766      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12767        BestType = Context.LongTy;
12768      } else {
12769        BestWidth = Context.getTargetInfo().getLongLongWidth();
12770
12771        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12772          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12773        BestType = Context.LongLongTy;
12774      }
12775    }
12776    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12777  } else {
12778    // If there is no negative value, figure out the smallest type that fits
12779    // all of the enumerator values.
12780    // If it's packed, check also if it fits a char or a short.
12781    if (Packed && NumPositiveBits <= CharWidth) {
12782      BestType = Context.UnsignedCharTy;
12783      BestPromotionType = Context.IntTy;
12784      BestWidth = CharWidth;
12785    } else if (Packed && NumPositiveBits <= ShortWidth) {
12786      BestType = Context.UnsignedShortTy;
12787      BestPromotionType = Context.IntTy;
12788      BestWidth = ShortWidth;
12789    } else if (NumPositiveBits <= IntWidth) {
12790      BestType = Context.UnsignedIntTy;
12791      BestWidth = IntWidth;
12792      BestPromotionType
12793        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12794                           ? Context.UnsignedIntTy : Context.IntTy;
12795    } else if (NumPositiveBits <=
12796               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12797      BestType = Context.UnsignedLongTy;
12798      BestPromotionType
12799        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12800                           ? Context.UnsignedLongTy : Context.LongTy;
12801    } else {
12802      BestWidth = Context.getTargetInfo().getLongLongWidth();
12803      assert(NumPositiveBits <= BestWidth &&
12804             "How could an initializer get larger than ULL?");
12805      BestType = Context.UnsignedLongLongTy;
12806      BestPromotionType
12807        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12808                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12809    }
12810  }
12811
12812  // Loop over all of the enumerator constants, changing their types to match
12813  // the type of the enum if needed.
12814  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12815    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12816    if (!ECD) continue;  // Already issued a diagnostic.
12817
12818    // Standard C says the enumerators have int type, but we allow, as an
12819    // extension, the enumerators to be larger than int size.  If each
12820    // enumerator value fits in an int, type it as an int, otherwise type it the
12821    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12822    // that X has type 'int', not 'unsigned'.
12823
12824    // Determine whether the value fits into an int.
12825    llvm::APSInt InitVal = ECD->getInitVal();
12826
12827    // If it fits into an integer type, force it.  Otherwise force it to match
12828    // the enum decl type.
12829    QualType NewTy;
12830    unsigned NewWidth;
12831    bool NewSign;
12832    if (!getLangOpts().CPlusPlus &&
12833        !Enum->isFixed() &&
12834        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12835      NewTy = Context.IntTy;
12836      NewWidth = IntWidth;
12837      NewSign = true;
12838    } else if (ECD->getType() == BestType) {
12839      // Already the right type!
12840      if (getLangOpts().CPlusPlus)
12841        // C++ [dcl.enum]p4: Following the closing brace of an
12842        // enum-specifier, each enumerator has the type of its
12843        // enumeration.
12844        ECD->setType(EnumType);
12845      continue;
12846    } else {
12847      NewTy = BestType;
12848      NewWidth = BestWidth;
12849      NewSign = BestType->isSignedIntegerOrEnumerationType();
12850    }
12851
12852    // Adjust the APSInt value.
12853    InitVal = InitVal.extOrTrunc(NewWidth);
12854    InitVal.setIsSigned(NewSign);
12855    ECD->setInitVal(InitVal);
12856
12857    // Adjust the Expr initializer and type.
12858    if (ECD->getInitExpr() &&
12859        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12860      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12861                                                CK_IntegralCast,
12862                                                ECD->getInitExpr(),
12863                                                /*base paths*/ 0,
12864                                                VK_RValue));
12865    if (getLangOpts().CPlusPlus)
12866      // C++ [dcl.enum]p4: Following the closing brace of an
12867      // enum-specifier, each enumerator has the type of its
12868      // enumeration.
12869      ECD->setType(EnumType);
12870    else
12871      ECD->setType(NewTy);
12872  }
12873
12874  Enum->completeDefinition(BestType, BestPromotionType,
12875                           NumPositiveBits, NumNegativeBits);
12876
12877  // If we're declaring a function, ensure this decl isn't forgotten about -
12878  // it needs to go into the function scope.
12879  if (InFunctionDeclarator)
12880    DeclsInPrototypeScope.push_back(Enum);
12881
12882  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12883
12884  // Now that the enum type is defined, ensure it's not been underaligned.
12885  if (Enum->hasAttrs())
12886    CheckAlignasUnderalignment(Enum);
12887}
12888
12889Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12890                                  SourceLocation StartLoc,
12891                                  SourceLocation EndLoc) {
12892  StringLiteral *AsmString = cast<StringLiteral>(expr);
12893
12894  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12895                                                   AsmString, StartLoc,
12896                                                   EndLoc);
12897  CurContext->addDecl(New);
12898  return New;
12899}
12900
12901DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12902                                   SourceLocation ImportLoc,
12903                                   ModuleIdPath Path) {
12904  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12905                                                Module::AllVisible,
12906                                                /*IsIncludeDirective=*/false);
12907  if (!Mod)
12908    return true;
12909
12910  SmallVector<SourceLocation, 2> IdentifierLocs;
12911  Module *ModCheck = Mod;
12912  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12913    // If we've run out of module parents, just drop the remaining identifiers.
12914    // We need the length to be consistent.
12915    if (!ModCheck)
12916      break;
12917    ModCheck = ModCheck->Parent;
12918
12919    IdentifierLocs.push_back(Path[I].second);
12920  }
12921
12922  ImportDecl *Import = ImportDecl::Create(Context,
12923                                          Context.getTranslationUnitDecl(),
12924                                          AtLoc.isValid()? AtLoc : ImportLoc,
12925                                          Mod, IdentifierLocs);
12926  Context.getTranslationUnitDecl()->addDecl(Import);
12927  return Import;
12928}
12929
12930void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
12931  // FIXME: Should we synthesize an ImportDecl here?
12932  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
12933                                         /*Complain=*/true);
12934}
12935
12936void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12937  // Create the implicit import declaration.
12938  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12939  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12940                                                   Loc, Mod, Loc);
12941  TU->addDecl(ImportD);
12942  Consumer.HandleImplicitImportDecl(ImportD);
12943
12944  // Make the module visible.
12945  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12946                                         /*Complain=*/false);
12947}
12948
12949void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12950                                      IdentifierInfo* AliasName,
12951                                      SourceLocation PragmaLoc,
12952                                      SourceLocation NameLoc,
12953                                      SourceLocation AliasNameLoc) {
12954  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12955                                    LookupOrdinaryName);
12956  AsmLabelAttr *Attr =
12957     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12958
12959  if (PrevDecl)
12960    PrevDecl->addAttr(Attr);
12961  else
12962    (void)ExtnameUndeclaredIdentifiers.insert(
12963      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12964}
12965
12966void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12967                             SourceLocation PragmaLoc,
12968                             SourceLocation NameLoc) {
12969  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12970
12971  if (PrevDecl) {
12972    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12973  } else {
12974    (void)WeakUndeclaredIdentifiers.insert(
12975      std::pair<IdentifierInfo*,WeakInfo>
12976        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12977  }
12978}
12979
12980void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12981                                IdentifierInfo* AliasName,
12982                                SourceLocation PragmaLoc,
12983                                SourceLocation NameLoc,
12984                                SourceLocation AliasNameLoc) {
12985  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12986                                    LookupOrdinaryName);
12987  WeakInfo W = WeakInfo(Name, NameLoc);
12988
12989  if (PrevDecl) {
12990    if (!PrevDecl->hasAttr<AliasAttr>())
12991      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12992        DeclApplyPragmaWeak(TUScope, ND, W);
12993  } else {
12994    (void)WeakUndeclaredIdentifiers.insert(
12995      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12996  }
12997}
12998
12999Decl *Sema::getObjCDeclContext() const {
13000  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
13001}
13002
13003AvailabilityResult Sema::getCurContextAvailability() const {
13004  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
13005  return D->getAvailability();
13006}
13007