SemaDecl.cpp revision b7c3fd7b493329550c29dec11d31aca4d537e23e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous: {
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134  }
135
136  case LookupResult::Found:
137    IIDecl = Result.getFoundDecl();
138    break;
139  }
140
141  if (IIDecl) {
142    QualType T;
143
144    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
145      // Check whether we can use this type.
146      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
147
148      if (getLangOptions().CPlusPlus) {
149        // C++ [temp.local]p2:
150        //   Within the scope of a class template specialization or
151        //   partial specialization, when the injected-class-name is
152        //   not followed by a <, it is equivalent to the
153        //   injected-class-name followed by the template-argument s
154        //   of the class template specialization or partial
155        //   specialization enclosed in <>.
156        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
157          if (RD->isInjectedClassName())
158            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
159              T = Template->getInjectedClassNameType(Context);
160      }
161
162      if (T.isNull())
163        T = Context.getTypeDeclType(TD);
164    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
165      // Check whether we can use this interface.
166      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
167
168      T = Context.getObjCInterfaceType(IDecl);
169    } else
170      return 0;
171
172    if (SS)
173      T = getQualifiedNameType(*SS, T);
174
175    return T.getAsOpaquePtr();
176  }
177
178  return 0;
179}
180
181/// isTagName() - This method is called *for error recovery purposes only*
182/// to determine if the specified name is a valid tag name ("struct foo").  If
183/// so, this returns the TST for the tag corresponding to it (TST_enum,
184/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
185/// where the user forgot to specify the tag.
186DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
187  // Do a tag name lookup in this scope.
188  LookupResult R;
189  LookupName(R, S, &II, LookupTagName, false, false);
190  if (R.getKind() == LookupResult::Found)
191    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
192      switch (TD->getTagKind()) {
193      case TagDecl::TK_struct: return DeclSpec::TST_struct;
194      case TagDecl::TK_union:  return DeclSpec::TST_union;
195      case TagDecl::TK_class:  return DeclSpec::TST_class;
196      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
197      }
198    }
199
200  return DeclSpec::TST_unspecified;
201}
202
203bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
204                                   SourceLocation IILoc,
205                                   Scope *S,
206                                   const CXXScopeSpec *SS,
207                                   TypeTy *&SuggestedType) {
208  // We don't have anything to suggest (yet).
209  SuggestedType = 0;
210
211  // FIXME: Should we move the logic that tries to recover from a missing tag
212  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
213
214  if (!SS)
215    Diag(IILoc, diag::err_unknown_typename) << &II;
216  else if (DeclContext *DC = computeDeclContext(*SS, false))
217    Diag(IILoc, diag::err_typename_nested_not_found)
218      << &II << DC << SS->getRange();
219  else if (isDependentScopeSpecifier(*SS)) {
220    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
221      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
222      << SourceRange(SS->getRange().getBegin(), IILoc)
223      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
224                                               "typename ");
225    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
226  } else {
227    assert(SS && SS->isInvalid() &&
228           "Invalid scope specifier has already been diagnosed");
229  }
230
231  return true;
232}
233
234// Determines the context to return to after temporarily entering a
235// context.  This depends in an unnecessarily complicated way on the
236// exact ordering of callbacks from the parser.
237DeclContext *Sema::getContainingDC(DeclContext *DC) {
238
239  // Functions defined inline within classes aren't parsed until we've
240  // finished parsing the top-level class, so the top-level class is
241  // the context we'll need to return to.
242  if (isa<FunctionDecl>(DC)) {
243    DC = DC->getLexicalParent();
244
245    // A function not defined within a class will always return to its
246    // lexical context.
247    if (!isa<CXXRecordDecl>(DC))
248      return DC;
249
250    // A C++ inline method/friend is parsed *after* the topmost class
251    // it was declared in is fully parsed ("complete");  the topmost
252    // class is the context we need to return to.
253    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
254      DC = RD;
255
256    // Return the declaration context of the topmost class the inline method is
257    // declared in.
258    return DC;
259  }
260
261  if (isa<ObjCMethodDecl>(DC))
262    return Context.getTranslationUnitDecl();
263
264  return DC->getLexicalParent();
265}
266
267void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
268  assert(getContainingDC(DC) == CurContext &&
269      "The next DeclContext should be lexically contained in the current one.");
270  CurContext = DC;
271  S->setEntity(DC);
272}
273
274void Sema::PopDeclContext() {
275  assert(CurContext && "DeclContext imbalance!");
276
277  CurContext = getContainingDC(CurContext);
278}
279
280/// EnterDeclaratorContext - Used when we must lookup names in the context
281/// of a declarator's nested name specifier.
282void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
283  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
284  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
285  CurContext = DC;
286  assert(CurContext && "No context?");
287  S->setEntity(CurContext);
288}
289
290void Sema::ExitDeclaratorContext(Scope *S) {
291  S->setEntity(PreDeclaratorDC);
292  PreDeclaratorDC = 0;
293
294  // Reset CurContext to the nearest enclosing context.
295  while (!S->getEntity() && S->getParent())
296    S = S->getParent();
297  CurContext = static_cast<DeclContext*>(S->getEntity());
298  assert(CurContext && "No context?");
299}
300
301/// \brief Determine whether we allow overloading of the function
302/// PrevDecl with another declaration.
303///
304/// This routine determines whether overloading is possible, not
305/// whether some new function is actually an overload. It will return
306/// true in C++ (where we can always provide overloads) or, as an
307/// extension, in C when the previous function is already an
308/// overloaded function declaration or has the "overloadable"
309/// attribute.
310static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
311  if (Context.getLangOptions().CPlusPlus)
312    return true;
313
314  if (isa<OverloadedFunctionDecl>(PrevDecl))
315    return true;
316
317  return PrevDecl->getAttr<OverloadableAttr>() != 0;
318}
319
320/// Add this decl to the scope shadowed decl chains.
321void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
322  // Move up the scope chain until we find the nearest enclosing
323  // non-transparent context. The declaration will be introduced into this
324  // scope.
325  while (S->getEntity() &&
326         ((DeclContext *)S->getEntity())->isTransparentContext())
327    S = S->getParent();
328
329  // Add scoped declarations into their context, so that they can be
330  // found later. Declarations without a context won't be inserted
331  // into any context.
332  if (AddToContext)
333    CurContext->addDecl(D);
334
335  // Out-of-line function and variable definitions should not be pushed into
336  // scope.
337  if ((isa<FunctionTemplateDecl>(D) &&
338       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
339      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
340      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
341    return;
342
343  // If this replaces anything in the current scope,
344  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
345                               IEnd = IdResolver.end();
346  for (; I != IEnd; ++I) {
347    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
348      S->RemoveDecl(DeclPtrTy::make(*I));
349      IdResolver.RemoveDecl(*I);
350
351      // Should only need to replace one decl.
352      break;
353    }
354  }
355
356  S->AddDecl(DeclPtrTy::make(D));
357  IdResolver.AddDecl(D);
358}
359
360bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
361  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
362    // Look inside the overload set to determine if any of the declarations
363    // are in scope. (Possibly) build a new overload set containing only
364    // those declarations that are in scope.
365    OverloadedFunctionDecl *NewOvl = 0;
366    bool FoundInScope = false;
367    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
368         FEnd = Ovl->function_end();
369         F != FEnd; ++F) {
370      NamedDecl *FD = F->get();
371      if (!isDeclInScope(FD, Ctx, S)) {
372        if (!NewOvl && F != Ovl->function_begin()) {
373          NewOvl = OverloadedFunctionDecl::Create(Context,
374                                                  F->get()->getDeclContext(),
375                                                  F->get()->getDeclName());
376          D = NewOvl;
377          for (OverloadedFunctionDecl::function_iterator
378               First = Ovl->function_begin();
379               First != F; ++First)
380            NewOvl->addOverload(*First);
381        }
382      } else {
383        FoundInScope = true;
384        if (NewOvl)
385          NewOvl->addOverload(*F);
386      }
387    }
388
389    return FoundInScope;
390  }
391
392  return IdResolver.isDeclInScope(D, Ctx, Context, S);
393}
394
395void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
396  if (S->decl_empty()) return;
397  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
398         "Scope shouldn't contain decls!");
399
400  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
401       I != E; ++I) {
402    Decl *TmpD = (*I).getAs<Decl>();
403    assert(TmpD && "This decl didn't get pushed??");
404
405    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
406    NamedDecl *D = cast<NamedDecl>(TmpD);
407
408    if (!D->getDeclName()) continue;
409
410    // Diagnose unused variables in this scope.
411    if (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
412        !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
413        D->getDeclContext()->isFunctionOrMethod())
414	    Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
415
416    // Remove this name from our lexical scope.
417    IdResolver.RemoveDecl(D);
418  }
419}
420
421/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
422/// return 0 if one not found.
423ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
424  // The third "scope" argument is 0 since we aren't enabling lazy built-in
425  // creation from this context.
426  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
427
428  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
429}
430
431/// getNonFieldDeclScope - Retrieves the innermost scope, starting
432/// from S, where a non-field would be declared. This routine copes
433/// with the difference between C and C++ scoping rules in structs and
434/// unions. For example, the following code is well-formed in C but
435/// ill-formed in C++:
436/// @code
437/// struct S6 {
438///   enum { BAR } e;
439/// };
440///
441/// void test_S6() {
442///   struct S6 a;
443///   a.e = BAR;
444/// }
445/// @endcode
446/// For the declaration of BAR, this routine will return a different
447/// scope. The scope S will be the scope of the unnamed enumeration
448/// within S6. In C++, this routine will return the scope associated
449/// with S6, because the enumeration's scope is a transparent
450/// context but structures can contain non-field names. In C, this
451/// routine will return the translation unit scope, since the
452/// enumeration's scope is a transparent context and structures cannot
453/// contain non-field names.
454Scope *Sema::getNonFieldDeclScope(Scope *S) {
455  while (((S->getFlags() & Scope::DeclScope) == 0) ||
456         (S->getEntity() &&
457          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
458         (S->isClassScope() && !getLangOptions().CPlusPlus))
459    S = S->getParent();
460  return S;
461}
462
463void Sema::InitBuiltinVaListType() {
464  if (!Context.getBuiltinVaListType().isNull())
465    return;
466
467  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
468  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
469  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
470  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
471}
472
473/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
474/// file scope.  lazily create a decl for it. ForRedeclaration is true
475/// if we're creating this built-in in anticipation of redeclaring the
476/// built-in.
477NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
478                                     Scope *S, bool ForRedeclaration,
479                                     SourceLocation Loc) {
480  Builtin::ID BID = (Builtin::ID)bid;
481
482  if (Context.BuiltinInfo.hasVAListUse(BID))
483    InitBuiltinVaListType();
484
485  ASTContext::GetBuiltinTypeError Error;
486  QualType R = Context.GetBuiltinType(BID, Error);
487  switch (Error) {
488  case ASTContext::GE_None:
489    // Okay
490    break;
491
492  case ASTContext::GE_Missing_stdio:
493    if (ForRedeclaration)
494      Diag(Loc, diag::err_implicit_decl_requires_stdio)
495        << Context.BuiltinInfo.GetName(BID);
496    return 0;
497
498  case ASTContext::GE_Missing_setjmp:
499    if (ForRedeclaration)
500      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
501        << Context.BuiltinInfo.GetName(BID);
502    return 0;
503  }
504
505  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
506    Diag(Loc, diag::ext_implicit_lib_function_decl)
507      << Context.BuiltinInfo.GetName(BID)
508      << R;
509    if (Context.BuiltinInfo.getHeaderName(BID) &&
510        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
511          != Diagnostic::Ignored)
512      Diag(Loc, diag::note_please_include_header)
513        << Context.BuiltinInfo.getHeaderName(BID)
514        << Context.BuiltinInfo.GetName(BID);
515  }
516
517  FunctionDecl *New = FunctionDecl::Create(Context,
518                                           Context.getTranslationUnitDecl(),
519                                           Loc, II, R, /*DInfo=*/0,
520                                           FunctionDecl::Extern, false,
521                                           /*hasPrototype=*/true);
522  New->setImplicit();
523
524  // Create Decl objects for each parameter, adding them to the
525  // FunctionDecl.
526  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
527    llvm::SmallVector<ParmVarDecl*, 16> Params;
528    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
529      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
530                                           FT->getArgType(i), /*DInfo=*/0,
531                                           VarDecl::None, 0));
532    New->setParams(Context, Params.data(), Params.size());
533  }
534
535  AddKnownFunctionAttributes(New);
536
537  // TUScope is the translation-unit scope to insert this function into.
538  // FIXME: This is hideous. We need to teach PushOnScopeChains to
539  // relate Scopes to DeclContexts, and probably eliminate CurContext
540  // entirely, but we're not there yet.
541  DeclContext *SavedContext = CurContext;
542  CurContext = Context.getTranslationUnitDecl();
543  PushOnScopeChains(New, TUScope);
544  CurContext = SavedContext;
545  return New;
546}
547
548/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
549/// same name and scope as a previous declaration 'Old'.  Figure out
550/// how to resolve this situation, merging decls or emitting
551/// diagnostics as appropriate. If there was an error, set New to be invalid.
552///
553void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
554  // If either decl is known invalid already, set the new one to be invalid and
555  // don't bother doing any merging checks.
556  if (New->isInvalidDecl() || OldD->isInvalidDecl())
557    return New->setInvalidDecl();
558
559  // Allow multiple definitions for ObjC built-in typedefs.
560  // FIXME: Verify the underlying types are equivalent!
561  if (getLangOptions().ObjC1) {
562    const IdentifierInfo *TypeID = New->getIdentifier();
563    switch (TypeID->getLength()) {
564    default: break;
565    case 2:
566      if (!TypeID->isStr("id"))
567        break;
568      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
569      // Install the built-in type for 'id', ignoring the current definition.
570      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
571      return;
572    case 5:
573      if (!TypeID->isStr("Class"))
574        break;
575      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
576      // Install the built-in type for 'Class', ignoring the current definition.
577      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
578      return;
579    case 3:
580      if (!TypeID->isStr("SEL"))
581        break;
582      Context.setObjCSelType(Context.getTypeDeclType(New));
583      return;
584    case 8:
585      if (!TypeID->isStr("Protocol"))
586        break;
587      Context.setObjCProtoType(New->getUnderlyingType());
588      return;
589    }
590    // Fall through - the typedef name was not a builtin type.
591  }
592  // Verify the old decl was also a type.
593  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
594  if (!Old) {
595    Diag(New->getLocation(), diag::err_redefinition_different_kind)
596      << New->getDeclName();
597    if (OldD->getLocation().isValid())
598      Diag(OldD->getLocation(), diag::note_previous_definition);
599    return New->setInvalidDecl();
600  }
601
602  // Determine the "old" type we'll use for checking and diagnostics.
603  QualType OldType;
604  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
605    OldType = OldTypedef->getUnderlyingType();
606  else
607    OldType = Context.getTypeDeclType(Old);
608
609  // If the typedef types are not identical, reject them in all languages and
610  // with any extensions enabled.
611
612  if (OldType != New->getUnderlyingType() &&
613      Context.getCanonicalType(OldType) !=
614      Context.getCanonicalType(New->getUnderlyingType())) {
615    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
616      << New->getUnderlyingType() << OldType;
617    if (Old->getLocation().isValid())
618      Diag(Old->getLocation(), diag::note_previous_definition);
619    return New->setInvalidDecl();
620  }
621
622  if (getLangOptions().Microsoft)
623    return;
624
625  // C++ [dcl.typedef]p2:
626  //   In a given non-class scope, a typedef specifier can be used to
627  //   redefine the name of any type declared in that scope to refer
628  //   to the type to which it already refers.
629  if (getLangOptions().CPlusPlus) {
630    if (!isa<CXXRecordDecl>(CurContext))
631      return;
632    Diag(New->getLocation(), diag::err_redefinition)
633      << New->getDeclName();
634    Diag(Old->getLocation(), diag::note_previous_definition);
635    return New->setInvalidDecl();
636  }
637
638  // If we have a redefinition of a typedef in C, emit a warning.  This warning
639  // is normally mapped to an error, but can be controlled with
640  // -Wtypedef-redefinition.  If either the original or the redefinition is
641  // in a system header, don't emit this for compatibility with GCC.
642  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
643      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
644       Context.getSourceManager().isInSystemHeader(New->getLocation())))
645    return;
646
647  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
648    << New->getDeclName();
649  Diag(Old->getLocation(), diag::note_previous_definition);
650  return;
651}
652
653/// DeclhasAttr - returns true if decl Declaration already has the target
654/// attribute.
655static bool
656DeclHasAttr(const Decl *decl, const Attr *target) {
657  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
658    if (attr->getKind() == target->getKind())
659      return true;
660
661  return false;
662}
663
664/// MergeAttributes - append attributes from the Old decl to the New one.
665static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
666  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
667    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
668      Attr *NewAttr = attr->clone(C);
669      NewAttr->setInherited(true);
670      New->addAttr(NewAttr);
671    }
672  }
673}
674
675/// Used in MergeFunctionDecl to keep track of function parameters in
676/// C.
677struct GNUCompatibleParamWarning {
678  ParmVarDecl *OldParm;
679  ParmVarDecl *NewParm;
680  QualType PromotedType;
681};
682
683/// MergeFunctionDecl - We just parsed a function 'New' from
684/// declarator D which has the same name and scope as a previous
685/// declaration 'Old'.  Figure out how to resolve this situation,
686/// merging decls or emitting diagnostics as appropriate.
687///
688/// In C++, New and Old must be declarations that are not
689/// overloaded. Use IsOverload to determine whether New and Old are
690/// overloaded, and to select the Old declaration that New should be
691/// merged with.
692///
693/// Returns true if there was an error, false otherwise.
694bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
695  assert(!isa<OverloadedFunctionDecl>(OldD) &&
696         "Cannot merge with an overloaded function declaration");
697
698  // Verify the old decl was also a function.
699  FunctionDecl *Old = 0;
700  if (FunctionTemplateDecl *OldFunctionTemplate
701        = dyn_cast<FunctionTemplateDecl>(OldD))
702    Old = OldFunctionTemplate->getTemplatedDecl();
703  else
704    Old = dyn_cast<FunctionDecl>(OldD);
705  if (!Old) {
706    Diag(New->getLocation(), diag::err_redefinition_different_kind)
707      << New->getDeclName();
708    Diag(OldD->getLocation(), diag::note_previous_definition);
709    return true;
710  }
711
712  // Determine whether the previous declaration was a definition,
713  // implicit declaration, or a declaration.
714  diag::kind PrevDiag;
715  if (Old->isThisDeclarationADefinition())
716    PrevDiag = diag::note_previous_definition;
717  else if (Old->isImplicit())
718    PrevDiag = diag::note_previous_implicit_declaration;
719  else
720    PrevDiag = diag::note_previous_declaration;
721
722  QualType OldQType = Context.getCanonicalType(Old->getType());
723  QualType NewQType = Context.getCanonicalType(New->getType());
724
725  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
726      New->getStorageClass() == FunctionDecl::Static &&
727      Old->getStorageClass() != FunctionDecl::Static) {
728    Diag(New->getLocation(), diag::err_static_non_static)
729      << New;
730    Diag(Old->getLocation(), PrevDiag);
731    return true;
732  }
733
734  if (getLangOptions().CPlusPlus) {
735    // (C++98 13.1p2):
736    //   Certain function declarations cannot be overloaded:
737    //     -- Function declarations that differ only in the return type
738    //        cannot be overloaded.
739    QualType OldReturnType
740      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
741    QualType NewReturnType
742      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
743    if (OldReturnType != NewReturnType) {
744      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
745      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
746      return true;
747    }
748
749    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
750    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
751    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
752        NewMethod->getLexicalDeclContext()->isRecord()) {
753      //    -- Member function declarations with the same name and the
754      //       same parameter types cannot be overloaded if any of them
755      //       is a static member function declaration.
756      if (OldMethod->isStatic() || NewMethod->isStatic()) {
757        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
758        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
759        return true;
760      }
761
762      // C++ [class.mem]p1:
763      //   [...] A member shall not be declared twice in the
764      //   member-specification, except that a nested class or member
765      //   class template can be declared and then later defined.
766      unsigned NewDiag;
767      if (isa<CXXConstructorDecl>(OldMethod))
768        NewDiag = diag::err_constructor_redeclared;
769      else if (isa<CXXDestructorDecl>(NewMethod))
770        NewDiag = diag::err_destructor_redeclared;
771      else if (isa<CXXConversionDecl>(NewMethod))
772        NewDiag = diag::err_conv_function_redeclared;
773      else
774        NewDiag = diag::err_member_redeclared;
775
776      Diag(New->getLocation(), NewDiag);
777      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
778    }
779
780    // (C++98 8.3.5p3):
781    //   All declarations for a function shall agree exactly in both the
782    //   return type and the parameter-type-list.
783    if (OldQType == NewQType)
784      return MergeCompatibleFunctionDecls(New, Old);
785
786    // Fall through for conflicting redeclarations and redefinitions.
787  }
788
789  // C: Function types need to be compatible, not identical. This handles
790  // duplicate function decls like "void f(int); void f(enum X);" properly.
791  if (!getLangOptions().CPlusPlus &&
792      Context.typesAreCompatible(OldQType, NewQType)) {
793    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
794    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
795    const FunctionProtoType *OldProto = 0;
796    if (isa<FunctionNoProtoType>(NewFuncType) &&
797        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
798      // The old declaration provided a function prototype, but the
799      // new declaration does not. Merge in the prototype.
800      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
801      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
802                                                 OldProto->arg_type_end());
803      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
804                                         ParamTypes.data(), ParamTypes.size(),
805                                         OldProto->isVariadic(),
806                                         OldProto->getTypeQuals());
807      New->setType(NewQType);
808      New->setHasInheritedPrototype();
809
810      // Synthesize a parameter for each argument type.
811      llvm::SmallVector<ParmVarDecl*, 16> Params;
812      for (FunctionProtoType::arg_type_iterator
813             ParamType = OldProto->arg_type_begin(),
814             ParamEnd = OldProto->arg_type_end();
815           ParamType != ParamEnd; ++ParamType) {
816        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
817                                                 SourceLocation(), 0,
818                                                 *ParamType, /*DInfo=*/0,
819                                                 VarDecl::None, 0);
820        Param->setImplicit();
821        Params.push_back(Param);
822      }
823
824      New->setParams(Context, Params.data(), Params.size());
825    }
826
827    return MergeCompatibleFunctionDecls(New, Old);
828  }
829
830  // GNU C permits a K&R definition to follow a prototype declaration
831  // if the declared types of the parameters in the K&R definition
832  // match the types in the prototype declaration, even when the
833  // promoted types of the parameters from the K&R definition differ
834  // from the types in the prototype. GCC then keeps the types from
835  // the prototype.
836  //
837  // If a variadic prototype is followed by a non-variadic K&R definition,
838  // the K&R definition becomes variadic.  This is sort of an edge case, but
839  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
840  // C99 6.9.1p8.
841  if (!getLangOptions().CPlusPlus &&
842      Old->hasPrototype() && !New->hasPrototype() &&
843      New->getType()->getAs<FunctionProtoType>() &&
844      Old->getNumParams() == New->getNumParams()) {
845    llvm::SmallVector<QualType, 16> ArgTypes;
846    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
847    const FunctionProtoType *OldProto
848      = Old->getType()->getAs<FunctionProtoType>();
849    const FunctionProtoType *NewProto
850      = New->getType()->getAs<FunctionProtoType>();
851
852    // Determine whether this is the GNU C extension.
853    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
854                                               NewProto->getResultType());
855    bool LooseCompatible = !MergedReturn.isNull();
856    for (unsigned Idx = 0, End = Old->getNumParams();
857         LooseCompatible && Idx != End; ++Idx) {
858      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
859      ParmVarDecl *NewParm = New->getParamDecl(Idx);
860      if (Context.typesAreCompatible(OldParm->getType(),
861                                     NewProto->getArgType(Idx))) {
862        ArgTypes.push_back(NewParm->getType());
863      } else if (Context.typesAreCompatible(OldParm->getType(),
864                                            NewParm->getType())) {
865        GNUCompatibleParamWarning Warn
866          = { OldParm, NewParm, NewProto->getArgType(Idx) };
867        Warnings.push_back(Warn);
868        ArgTypes.push_back(NewParm->getType());
869      } else
870        LooseCompatible = false;
871    }
872
873    if (LooseCompatible) {
874      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
875        Diag(Warnings[Warn].NewParm->getLocation(),
876             diag::ext_param_promoted_not_compatible_with_prototype)
877          << Warnings[Warn].PromotedType
878          << Warnings[Warn].OldParm->getType();
879        Diag(Warnings[Warn].OldParm->getLocation(),
880             diag::note_previous_declaration);
881      }
882
883      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
884                                           ArgTypes.size(),
885                                           OldProto->isVariadic(), 0));
886      return MergeCompatibleFunctionDecls(New, Old);
887    }
888
889    // Fall through to diagnose conflicting types.
890  }
891
892  // A function that has already been declared has been redeclared or defined
893  // with a different type- show appropriate diagnostic
894  if (unsigned BuiltinID = Old->getBuiltinID()) {
895    // The user has declared a builtin function with an incompatible
896    // signature.
897    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
898      // The function the user is redeclaring is a library-defined
899      // function like 'malloc' or 'printf'. Warn about the
900      // redeclaration, then pretend that we don't know about this
901      // library built-in.
902      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
903      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
904        << Old << Old->getType();
905      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
906      Old->setInvalidDecl();
907      return false;
908    }
909
910    PrevDiag = diag::note_previous_builtin_declaration;
911  }
912
913  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
914  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
915  return true;
916}
917
918/// \brief Completes the merge of two function declarations that are
919/// known to be compatible.
920///
921/// This routine handles the merging of attributes and other
922/// properties of function declarations form the old declaration to
923/// the new declaration, once we know that New is in fact a
924/// redeclaration of Old.
925///
926/// \returns false
927bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
928  // Merge the attributes
929  MergeAttributes(New, Old, Context);
930
931  // Merge the storage class.
932  if (Old->getStorageClass() != FunctionDecl::Extern &&
933      Old->getStorageClass() != FunctionDecl::None)
934    New->setStorageClass(Old->getStorageClass());
935
936  // Merge "pure" flag.
937  if (Old->isPure())
938    New->setPure();
939
940  // Merge the "deleted" flag.
941  if (Old->isDeleted())
942    New->setDeleted();
943
944  if (getLangOptions().CPlusPlus)
945    return MergeCXXFunctionDecl(New, Old);
946
947  return false;
948}
949
950/// MergeVarDecl - We just parsed a variable 'New' which has the same name
951/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
952/// situation, merging decls or emitting diagnostics as appropriate.
953///
954/// Tentative definition rules (C99 6.9.2p2) are checked by
955/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
956/// definitions here, since the initializer hasn't been attached.
957///
958void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
959  // If either decl is invalid, make sure the new one is marked invalid and
960  // don't do any other checking.
961  if (New->isInvalidDecl() || OldD->isInvalidDecl())
962    return New->setInvalidDecl();
963
964  // Verify the old decl was also a variable.
965  VarDecl *Old = dyn_cast<VarDecl>(OldD);
966  if (!Old) {
967    Diag(New->getLocation(), diag::err_redefinition_different_kind)
968      << New->getDeclName();
969    Diag(OldD->getLocation(), diag::note_previous_definition);
970    return New->setInvalidDecl();
971  }
972
973  MergeAttributes(New, Old, Context);
974
975  // Merge the types
976  QualType MergedT;
977  if (getLangOptions().CPlusPlus) {
978    if (Context.hasSameType(New->getType(), Old->getType()))
979      MergedT = New->getType();
980    // C++ [basic.types]p7:
981    //   [...] The declared type of an array object might be an array of
982    //   unknown size and therefore be incomplete at one point in a
983    //   translation unit and complete later on; [...]
984    else if (Old->getType()->isIncompleteArrayType() &&
985             New->getType()->isArrayType()) {
986      CanQual<ArrayType> OldArray
987        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
988      CanQual<ArrayType> NewArray
989        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
990      if (OldArray->getElementType() == NewArray->getElementType())
991        MergedT = New->getType();
992    }
993  } else {
994    MergedT = Context.mergeTypes(New->getType(), Old->getType());
995  }
996  if (MergedT.isNull()) {
997    Diag(New->getLocation(), diag::err_redefinition_different_type)
998      << New->getDeclName();
999    Diag(Old->getLocation(), diag::note_previous_definition);
1000    return New->setInvalidDecl();
1001  }
1002  New->setType(MergedT);
1003
1004  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1005  if (New->getStorageClass() == VarDecl::Static &&
1006      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1007    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009    return New->setInvalidDecl();
1010  }
1011  // C99 6.2.2p4:
1012  //   For an identifier declared with the storage-class specifier
1013  //   extern in a scope in which a prior declaration of that
1014  //   identifier is visible,23) if the prior declaration specifies
1015  //   internal or external linkage, the linkage of the identifier at
1016  //   the later declaration is the same as the linkage specified at
1017  //   the prior declaration. If no prior declaration is visible, or
1018  //   if the prior declaration specifies no linkage, then the
1019  //   identifier has external linkage.
1020  if (New->hasExternalStorage() && Old->hasLinkage())
1021    /* Okay */;
1022  else if (New->getStorageClass() != VarDecl::Static &&
1023           Old->getStorageClass() == VarDecl::Static) {
1024    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1025    Diag(Old->getLocation(), diag::note_previous_definition);
1026    return New->setInvalidDecl();
1027  }
1028
1029  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1030
1031  // FIXME: The test for external storage here seems wrong? We still
1032  // need to check for mismatches.
1033  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1034      // Don't complain about out-of-line definitions of static members.
1035      !(Old->getLexicalDeclContext()->isRecord() &&
1036        !New->getLexicalDeclContext()->isRecord())) {
1037    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1038    Diag(Old->getLocation(), diag::note_previous_definition);
1039    return New->setInvalidDecl();
1040  }
1041
1042  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1043    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1044    Diag(Old->getLocation(), diag::note_previous_definition);
1045  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1046    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1047    Diag(Old->getLocation(), diag::note_previous_definition);
1048  }
1049
1050  // Keep a chain of previous declarations.
1051  New->setPreviousDeclaration(Old);
1052}
1053
1054/// CheckFallThrough - Check that we don't fall off the end of a
1055/// Statement that should return a value.
1056///
1057/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1058/// MaybeFallThrough iff we might or might not fall off the end and
1059/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1060/// that functions not marked noreturn will return.
1061Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1062  // FIXME: Eventually share this CFG object when we have other warnings based
1063  // of the CFG.  This can be done using AnalysisContext.
1064  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1065
1066  // FIXME: They should never return 0, fix that, delete this code.
1067  if (cfg == 0)
1068    return NeverFallThrough;
1069  // The CFG leaves in dead things, and we don't want to dead code paths to
1070  // confuse us, so we mark all live things first.
1071  std::queue<CFGBlock*> workq;
1072  llvm::BitVector live(cfg->getNumBlockIDs());
1073  // Prep work queue
1074  workq.push(&cfg->getEntry());
1075  // Solve
1076  while (!workq.empty()) {
1077    CFGBlock *item = workq.front();
1078    workq.pop();
1079    live.set(item->getBlockID());
1080    for (CFGBlock::succ_iterator I=item->succ_begin(),
1081           E=item->succ_end();
1082         I != E;
1083         ++I) {
1084      if ((*I) && !live[(*I)->getBlockID()]) {
1085        live.set((*I)->getBlockID());
1086        workq.push(*I);
1087      }
1088    }
1089  }
1090
1091  // Now we know what is live, we check the live precessors of the exit block
1092  // and look for fall through paths, being careful to ignore normal returns,
1093  // and exceptional paths.
1094  bool HasLiveReturn = false;
1095  bool HasFakeEdge = false;
1096  bool HasPlainEdge = false;
1097  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1098         E = cfg->getExit().pred_end();
1099       I != E;
1100       ++I) {
1101    CFGBlock& B = **I;
1102    if (!live[B.getBlockID()])
1103      continue;
1104    if (B.size() == 0) {
1105      // A labeled empty statement, or the entry block...
1106      HasPlainEdge = true;
1107      continue;
1108    }
1109    Stmt *S = B[B.size()-1];
1110    if (isa<ReturnStmt>(S)) {
1111      HasLiveReturn = true;
1112      continue;
1113    }
1114    if (isa<ObjCAtThrowStmt>(S)) {
1115      HasFakeEdge = true;
1116      continue;
1117    }
1118    if (isa<CXXThrowExpr>(S)) {
1119      HasFakeEdge = true;
1120      continue;
1121    }
1122    bool NoReturnEdge = false;
1123    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1124      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1125      if (CEE->getType().getNoReturnAttr()) {
1126        NoReturnEdge = true;
1127        HasFakeEdge = true;
1128      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1129        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1130          if (FD->hasAttr<NoReturnAttr>()) {
1131            NoReturnEdge = true;
1132            HasFakeEdge = true;
1133          }
1134        }
1135      }
1136    }
1137    // FIXME: Add noreturn message sends.
1138    if (NoReturnEdge == false)
1139      HasPlainEdge = true;
1140  }
1141  if (!HasPlainEdge)
1142    return NeverFallThrough;
1143  if (HasFakeEdge || HasLiveReturn)
1144    return MaybeFallThrough;
1145  // This says AlwaysFallThrough for calls to functions that are not marked
1146  // noreturn, that don't return.  If people would like this warning to be more
1147  // accurate, such functions should be marked as noreturn.
1148  return AlwaysFallThrough;
1149}
1150
1151/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1152/// function that should return a value.  Check that we don't fall off the end
1153/// of a noreturn function.  We assume that functions and blocks not marked
1154/// noreturn will return.
1155void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1156  // FIXME: Would be nice if we had a better way to control cascading errors,
1157  // but for now, avoid them.  The problem is that when Parse sees:
1158  //   int foo() { return a; }
1159  // The return is eaten and the Sema code sees just:
1160  //   int foo() { }
1161  // which this code would then warn about.
1162  if (getDiagnostics().hasErrorOccurred())
1163    return;
1164  bool ReturnsVoid = false;
1165  bool HasNoReturn = false;
1166  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1167    // If the result type of the function is a dependent type, we don't know
1168    // whether it will be void or not, so don't
1169    if (FD->getResultType()->isDependentType())
1170      return;
1171    if (FD->getResultType()->isVoidType())
1172      ReturnsVoid = true;
1173    if (FD->hasAttr<NoReturnAttr>())
1174      HasNoReturn = true;
1175  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1176    if (MD->getResultType()->isVoidType())
1177      ReturnsVoid = true;
1178    if (MD->hasAttr<NoReturnAttr>())
1179      HasNoReturn = true;
1180  }
1181
1182  // Short circuit for compilation speed.
1183  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1184       == Diagnostic::Ignored || ReturnsVoid)
1185      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1186          == Diagnostic::Ignored || !HasNoReturn)
1187      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1188          == Diagnostic::Ignored || !ReturnsVoid))
1189    return;
1190  // FIXME: Function try block
1191  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1192    switch (CheckFallThrough(Body)) {
1193    case MaybeFallThrough:
1194      if (HasNoReturn)
1195        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1196      else if (!ReturnsVoid)
1197        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1198      break;
1199    case AlwaysFallThrough:
1200      if (HasNoReturn)
1201        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1202      else if (!ReturnsVoid)
1203        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1204      break;
1205    case NeverFallThrough:
1206      if (ReturnsVoid)
1207        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1208      break;
1209    }
1210  }
1211}
1212
1213/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1214/// that should return a value.  Check that we don't fall off the end of a
1215/// noreturn block.  We assume that functions and blocks not marked noreturn
1216/// will return.
1217void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1218  // FIXME: Would be nice if we had a better way to control cascading errors,
1219  // but for now, avoid them.  The problem is that when Parse sees:
1220  //   int foo() { return a; }
1221  // The return is eaten and the Sema code sees just:
1222  //   int foo() { }
1223  // which this code would then warn about.
1224  if (getDiagnostics().hasErrorOccurred())
1225    return;
1226  bool ReturnsVoid = false;
1227  bool HasNoReturn = false;
1228  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1229    if (FT->getResultType()->isVoidType())
1230      ReturnsVoid = true;
1231    if (FT->getNoReturnAttr())
1232      HasNoReturn = true;
1233  }
1234
1235  // Short circuit for compilation speed.
1236  if (ReturnsVoid
1237      && !HasNoReturn
1238      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1239          == Diagnostic::Ignored || !ReturnsVoid))
1240    return;
1241  // FIXME: Funtion try block
1242  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1243    switch (CheckFallThrough(Body)) {
1244    case MaybeFallThrough:
1245      if (HasNoReturn)
1246        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1247      else if (!ReturnsVoid)
1248        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1249      break;
1250    case AlwaysFallThrough:
1251      if (HasNoReturn)
1252        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1253      else if (!ReturnsVoid)
1254        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1255      break;
1256    case NeverFallThrough:
1257      if (ReturnsVoid)
1258        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1259      break;
1260    }
1261  }
1262}
1263
1264/// CheckParmsForFunctionDef - Check that the parameters of the given
1265/// function are appropriate for the definition of a function. This
1266/// takes care of any checks that cannot be performed on the
1267/// declaration itself, e.g., that the types of each of the function
1268/// parameters are complete.
1269bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1270  bool HasInvalidParm = false;
1271  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1272    ParmVarDecl *Param = FD->getParamDecl(p);
1273
1274    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1275    // function declarator that is part of a function definition of
1276    // that function shall not have incomplete type.
1277    //
1278    // This is also C++ [dcl.fct]p6.
1279    if (!Param->isInvalidDecl() &&
1280        RequireCompleteType(Param->getLocation(), Param->getType(),
1281                               diag::err_typecheck_decl_incomplete_type)) {
1282      Param->setInvalidDecl();
1283      HasInvalidParm = true;
1284    }
1285
1286    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1287    // declaration of each parameter shall include an identifier.
1288    if (Param->getIdentifier() == 0 &&
1289        !Param->isImplicit() &&
1290        !getLangOptions().CPlusPlus)
1291      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1292  }
1293
1294  return HasInvalidParm;
1295}
1296
1297/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1298/// no declarator (e.g. "struct foo;") is parsed.
1299Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1300  // FIXME: Error on auto/register at file scope
1301  // FIXME: Error on inline/virtual/explicit
1302  // FIXME: Error on invalid restrict
1303  // FIXME: Warn on useless __thread
1304  // FIXME: Warn on useless const/volatile
1305  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1306  // FIXME: Warn on useless attributes
1307  Decl *TagD = 0;
1308  TagDecl *Tag = 0;
1309  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1310      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1311      DS.getTypeSpecType() == DeclSpec::TST_union ||
1312      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1313    TagD = static_cast<Decl *>(DS.getTypeRep());
1314
1315    if (!TagD) // We probably had an error
1316      return DeclPtrTy();
1317
1318    // Note that the above type specs guarantee that the
1319    // type rep is a Decl, whereas in many of the others
1320    // it's a Type.
1321    Tag = dyn_cast<TagDecl>(TagD);
1322  }
1323
1324  if (DS.isFriendSpecified()) {
1325    // If we're dealing with a class template decl, assume that the
1326    // template routines are handling it.
1327    if (TagD && isa<ClassTemplateDecl>(TagD))
1328      return DeclPtrTy();
1329    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1330  }
1331
1332  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1333    if (!Record->getDeclName() && Record->isDefinition() &&
1334        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1335      if (getLangOptions().CPlusPlus ||
1336          Record->getDeclContext()->isRecord())
1337        return BuildAnonymousStructOrUnion(S, DS, Record);
1338
1339      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1340        << DS.getSourceRange();
1341    }
1342
1343    // Microsoft allows unnamed struct/union fields. Don't complain
1344    // about them.
1345    // FIXME: Should we support Microsoft's extensions in this area?
1346    if (Record->getDeclName() && getLangOptions().Microsoft)
1347      return DeclPtrTy::make(Tag);
1348  }
1349
1350  if (!DS.isMissingDeclaratorOk() &&
1351      DS.getTypeSpecType() != DeclSpec::TST_error) {
1352    // Warn about typedefs of enums without names, since this is an
1353    // extension in both Microsoft an GNU.
1354    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1355        Tag && isa<EnumDecl>(Tag)) {
1356      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1357        << DS.getSourceRange();
1358      return DeclPtrTy::make(Tag);
1359    }
1360
1361    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1362      << DS.getSourceRange();
1363    return DeclPtrTy();
1364  }
1365
1366  return DeclPtrTy::make(Tag);
1367}
1368
1369/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1370/// anonymous struct or union AnonRecord into the owning context Owner
1371/// and scope S. This routine will be invoked just after we realize
1372/// that an unnamed union or struct is actually an anonymous union or
1373/// struct, e.g.,
1374///
1375/// @code
1376/// union {
1377///   int i;
1378///   float f;
1379/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1380///    // f into the surrounding scope.x
1381/// @endcode
1382///
1383/// This routine is recursive, injecting the names of nested anonymous
1384/// structs/unions into the owning context and scope as well.
1385bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1386                                               RecordDecl *AnonRecord) {
1387  bool Invalid = false;
1388  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1389                               FEnd = AnonRecord->field_end();
1390       F != FEnd; ++F) {
1391    if ((*F)->getDeclName()) {
1392      LookupResult R;
1393      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1394                          LookupOrdinaryName, true);
1395      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1396      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1397        // C++ [class.union]p2:
1398        //   The names of the members of an anonymous union shall be
1399        //   distinct from the names of any other entity in the
1400        //   scope in which the anonymous union is declared.
1401        unsigned diagKind
1402          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1403                                 : diag::err_anonymous_struct_member_redecl;
1404        Diag((*F)->getLocation(), diagKind)
1405          << (*F)->getDeclName();
1406        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1407        Invalid = true;
1408      } else {
1409        // C++ [class.union]p2:
1410        //   For the purpose of name lookup, after the anonymous union
1411        //   definition, the members of the anonymous union are
1412        //   considered to have been defined in the scope in which the
1413        //   anonymous union is declared.
1414        Owner->makeDeclVisibleInContext(*F);
1415        S->AddDecl(DeclPtrTy::make(*F));
1416        IdResolver.AddDecl(*F);
1417      }
1418    } else if (const RecordType *InnerRecordType
1419                 = (*F)->getType()->getAs<RecordType>()) {
1420      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1421      if (InnerRecord->isAnonymousStructOrUnion())
1422        Invalid = Invalid ||
1423          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1424    }
1425  }
1426
1427  return Invalid;
1428}
1429
1430/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1431/// anonymous structure or union. Anonymous unions are a C++ feature
1432/// (C++ [class.union]) and a GNU C extension; anonymous structures
1433/// are a GNU C and GNU C++ extension.
1434Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1435                                                  RecordDecl *Record) {
1436  DeclContext *Owner = Record->getDeclContext();
1437
1438  // Diagnose whether this anonymous struct/union is an extension.
1439  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1440    Diag(Record->getLocation(), diag::ext_anonymous_union);
1441  else if (!Record->isUnion())
1442    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1443
1444  // C and C++ require different kinds of checks for anonymous
1445  // structs/unions.
1446  bool Invalid = false;
1447  if (getLangOptions().CPlusPlus) {
1448    const char* PrevSpec = 0;
1449    unsigned DiagID;
1450    // C++ [class.union]p3:
1451    //   Anonymous unions declared in a named namespace or in the
1452    //   global namespace shall be declared static.
1453    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1454        (isa<TranslationUnitDecl>(Owner) ||
1455         (isa<NamespaceDecl>(Owner) &&
1456          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1457      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1458      Invalid = true;
1459
1460      // Recover by adding 'static'.
1461      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1462                             PrevSpec, DiagID);
1463    }
1464    // C++ [class.union]p3:
1465    //   A storage class is not allowed in a declaration of an
1466    //   anonymous union in a class scope.
1467    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1468             isa<RecordDecl>(Owner)) {
1469      Diag(DS.getStorageClassSpecLoc(),
1470           diag::err_anonymous_union_with_storage_spec);
1471      Invalid = true;
1472
1473      // Recover by removing the storage specifier.
1474      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1475                             PrevSpec, DiagID);
1476    }
1477
1478    // C++ [class.union]p2:
1479    //   The member-specification of an anonymous union shall only
1480    //   define non-static data members. [Note: nested types and
1481    //   functions cannot be declared within an anonymous union. ]
1482    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1483                                 MemEnd = Record->decls_end();
1484         Mem != MemEnd; ++Mem) {
1485      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1486        // C++ [class.union]p3:
1487        //   An anonymous union shall not have private or protected
1488        //   members (clause 11).
1489        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1490          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1491            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1492          Invalid = true;
1493        }
1494      } else if ((*Mem)->isImplicit()) {
1495        // Any implicit members are fine.
1496      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1497        // This is a type that showed up in an
1498        // elaborated-type-specifier inside the anonymous struct or
1499        // union, but which actually declares a type outside of the
1500        // anonymous struct or union. It's okay.
1501      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1502        if (!MemRecord->isAnonymousStructOrUnion() &&
1503            MemRecord->getDeclName()) {
1504          // This is a nested type declaration.
1505          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1506            << (int)Record->isUnion();
1507          Invalid = true;
1508        }
1509      } else {
1510        // We have something that isn't a non-static data
1511        // member. Complain about it.
1512        unsigned DK = diag::err_anonymous_record_bad_member;
1513        if (isa<TypeDecl>(*Mem))
1514          DK = diag::err_anonymous_record_with_type;
1515        else if (isa<FunctionDecl>(*Mem))
1516          DK = diag::err_anonymous_record_with_function;
1517        else if (isa<VarDecl>(*Mem))
1518          DK = diag::err_anonymous_record_with_static;
1519        Diag((*Mem)->getLocation(), DK)
1520            << (int)Record->isUnion();
1521          Invalid = true;
1522      }
1523    }
1524  }
1525
1526  if (!Record->isUnion() && !Owner->isRecord()) {
1527    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1528      << (int)getLangOptions().CPlusPlus;
1529    Invalid = true;
1530  }
1531
1532  // Mock up a declarator.
1533  Declarator Dc(DS, Declarator::TypeNameContext);
1534  DeclaratorInfo *DInfo = 0;
1535  GetTypeForDeclarator(Dc, S, &DInfo);
1536  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1537
1538  // Create a declaration for this anonymous struct/union.
1539  NamedDecl *Anon = 0;
1540  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1541    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1542                             /*IdentifierInfo=*/0,
1543                             Context.getTypeDeclType(Record),
1544                             DInfo,
1545                             /*BitWidth=*/0, /*Mutable=*/false);
1546    Anon->setAccess(AS_public);
1547    if (getLangOptions().CPlusPlus)
1548      FieldCollector->Add(cast<FieldDecl>(Anon));
1549  } else {
1550    VarDecl::StorageClass SC;
1551    switch (DS.getStorageClassSpec()) {
1552    default: assert(0 && "Unknown storage class!");
1553    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1554    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1555    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1556    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1557    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1558    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1559    case DeclSpec::SCS_mutable:
1560      // mutable can only appear on non-static class members, so it's always
1561      // an error here
1562      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1563      Invalid = true;
1564      SC = VarDecl::None;
1565      break;
1566    }
1567
1568    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1569                           /*IdentifierInfo=*/0,
1570                           Context.getTypeDeclType(Record),
1571                           DInfo,
1572                           SC);
1573  }
1574  Anon->setImplicit();
1575
1576  // Add the anonymous struct/union object to the current
1577  // context. We'll be referencing this object when we refer to one of
1578  // its members.
1579  Owner->addDecl(Anon);
1580
1581  // Inject the members of the anonymous struct/union into the owning
1582  // context and into the identifier resolver chain for name lookup
1583  // purposes.
1584  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1585    Invalid = true;
1586
1587  // Mark this as an anonymous struct/union type. Note that we do not
1588  // do this until after we have already checked and injected the
1589  // members of this anonymous struct/union type, because otherwise
1590  // the members could be injected twice: once by DeclContext when it
1591  // builds its lookup table, and once by
1592  // InjectAnonymousStructOrUnionMembers.
1593  Record->setAnonymousStructOrUnion(true);
1594
1595  if (Invalid)
1596    Anon->setInvalidDecl();
1597
1598  return DeclPtrTy::make(Anon);
1599}
1600
1601
1602/// GetNameForDeclarator - Determine the full declaration name for the
1603/// given Declarator.
1604DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1605  switch (D.getKind()) {
1606  case Declarator::DK_Abstract:
1607    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1608    return DeclarationName();
1609
1610  case Declarator::DK_Normal:
1611    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1612    return DeclarationName(D.getIdentifier());
1613
1614  case Declarator::DK_Constructor: {
1615    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1616    return Context.DeclarationNames.getCXXConstructorName(
1617                                                Context.getCanonicalType(Ty));
1618  }
1619
1620  case Declarator::DK_Destructor: {
1621    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1622    return Context.DeclarationNames.getCXXDestructorName(
1623                                                Context.getCanonicalType(Ty));
1624  }
1625
1626  case Declarator::DK_Conversion: {
1627    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1628    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1629    return Context.DeclarationNames.getCXXConversionFunctionName(
1630                                                Context.getCanonicalType(Ty));
1631  }
1632
1633  case Declarator::DK_Operator:
1634    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1635    return Context.DeclarationNames.getCXXOperatorName(
1636                                                D.getOverloadedOperator());
1637
1638  case Declarator::DK_TemplateId: {
1639    TemplateName Name
1640      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1641    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1642      return Template->getDeclName();
1643    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1644      return Ovl->getDeclName();
1645
1646    return DeclarationName();
1647  }
1648  }
1649
1650  assert(false && "Unknown name kind");
1651  return DeclarationName();
1652}
1653
1654/// isNearlyMatchingFunction - Determine whether the C++ functions
1655/// Declaration and Definition are "nearly" matching. This heuristic
1656/// is used to improve diagnostics in the case where an out-of-line
1657/// function definition doesn't match any declaration within
1658/// the class or namespace.
1659static bool isNearlyMatchingFunction(ASTContext &Context,
1660                                     FunctionDecl *Declaration,
1661                                     FunctionDecl *Definition) {
1662  if (Declaration->param_size() != Definition->param_size())
1663    return false;
1664  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1665    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1666    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1667
1668    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1669    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1670    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1671      return false;
1672  }
1673
1674  return true;
1675}
1676
1677Sema::DeclPtrTy
1678Sema::HandleDeclarator(Scope *S, Declarator &D,
1679                       MultiTemplateParamsArg TemplateParamLists,
1680                       bool IsFunctionDefinition) {
1681  DeclarationName Name = GetNameForDeclarator(D);
1682
1683  // All of these full declarators require an identifier.  If it doesn't have
1684  // one, the ParsedFreeStandingDeclSpec action should be used.
1685  if (!Name) {
1686    if (!D.isInvalidType())  // Reject this if we think it is valid.
1687      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1688           diag::err_declarator_need_ident)
1689        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1690    return DeclPtrTy();
1691  }
1692
1693  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1694  // we find one that is.
1695  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1696         (S->getFlags() & Scope::TemplateParamScope) != 0)
1697    S = S->getParent();
1698
1699  // If this is an out-of-line definition of a member of a class template
1700  // or class template partial specialization, we may need to rebuild the
1701  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1702  // for more information.
1703  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1704  // handle expressions properly.
1705  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1706  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1707      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1708      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1709       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1710       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1711       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1712    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1713      // FIXME: Preserve type source info.
1714      QualType T = GetTypeFromParser(DS.getTypeRep());
1715      EnterDeclaratorContext(S, DC);
1716      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1717      ExitDeclaratorContext(S);
1718      if (T.isNull())
1719        return DeclPtrTy();
1720      DS.UpdateTypeRep(T.getAsOpaquePtr());
1721    }
1722  }
1723
1724  DeclContext *DC;
1725  NamedDecl *PrevDecl;
1726  NamedDecl *New;
1727
1728  DeclaratorInfo *DInfo = 0;
1729  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1730
1731  // See if this is a redefinition of a variable in the same scope.
1732  if (D.getCXXScopeSpec().isInvalid()) {
1733    DC = CurContext;
1734    PrevDecl = 0;
1735    D.setInvalidType();
1736  } else if (!D.getCXXScopeSpec().isSet()) {
1737    LookupNameKind NameKind = LookupOrdinaryName;
1738
1739    // If the declaration we're planning to build will be a function
1740    // or object with linkage, then look for another declaration with
1741    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1742    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1743      /* Do nothing*/;
1744    else if (R->isFunctionType()) {
1745      if (CurContext->isFunctionOrMethod() ||
1746          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1747        NameKind = LookupRedeclarationWithLinkage;
1748    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1749      NameKind = LookupRedeclarationWithLinkage;
1750    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1751             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1752      NameKind = LookupRedeclarationWithLinkage;
1753
1754    DC = CurContext;
1755    LookupResult R;
1756    LookupName(R, S, Name, NameKind, true,
1757               NameKind == LookupRedeclarationWithLinkage,
1758               D.getIdentifierLoc());
1759    PrevDecl = R.getAsSingleDecl(Context);
1760  } else { // Something like "int foo::x;"
1761    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1762
1763    if (!DC) {
1764      // If we could not compute the declaration context, it's because the
1765      // declaration context is dependent but does not refer to a class,
1766      // class template, or class template partial specialization. Complain
1767      // and return early, to avoid the coming semantic disaster.
1768      Diag(D.getIdentifierLoc(),
1769           diag::err_template_qualified_declarator_no_match)
1770        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1771        << D.getCXXScopeSpec().getRange();
1772      return DeclPtrTy();
1773    }
1774
1775    if (!DC->isDependentContext() &&
1776        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1777      return DeclPtrTy();
1778
1779    LookupResult Res;
1780    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1781    PrevDecl = Res.getAsSingleDecl(Context);
1782
1783    // C++ 7.3.1.2p2:
1784    // Members (including explicit specializations of templates) of a named
1785    // namespace can also be defined outside that namespace by explicit
1786    // qualification of the name being defined, provided that the entity being
1787    // defined was already declared in the namespace and the definition appears
1788    // after the point of declaration in a namespace that encloses the
1789    // declarations namespace.
1790    //
1791    // Note that we only check the context at this point. We don't yet
1792    // have enough information to make sure that PrevDecl is actually
1793    // the declaration we want to match. For example, given:
1794    //
1795    //   class X {
1796    //     void f();
1797    //     void f(float);
1798    //   };
1799    //
1800    //   void X::f(int) { } // ill-formed
1801    //
1802    // In this case, PrevDecl will point to the overload set
1803    // containing the two f's declared in X, but neither of them
1804    // matches.
1805
1806    // First check whether we named the global scope.
1807    if (isa<TranslationUnitDecl>(DC)) {
1808      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1809        << Name << D.getCXXScopeSpec().getRange();
1810    } else if (!CurContext->Encloses(DC)) {
1811      // The qualifying scope doesn't enclose the original declaration.
1812      // Emit diagnostic based on current scope.
1813      SourceLocation L = D.getIdentifierLoc();
1814      SourceRange R = D.getCXXScopeSpec().getRange();
1815      if (isa<FunctionDecl>(CurContext))
1816        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1817      else
1818        Diag(L, diag::err_invalid_declarator_scope)
1819          << Name << cast<NamedDecl>(DC) << R;
1820      D.setInvalidType();
1821    }
1822  }
1823
1824  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1825    // Maybe we will complain about the shadowed template parameter.
1826    if (!D.isInvalidType())
1827      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1828        D.setInvalidType();
1829
1830    // Just pretend that we didn't see the previous declaration.
1831    PrevDecl = 0;
1832  }
1833
1834  // In C++, the previous declaration we find might be a tag type
1835  // (class or enum). In this case, the new declaration will hide the
1836  // tag type. Note that this does does not apply if we're declaring a
1837  // typedef (C++ [dcl.typedef]p4).
1838  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1839      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1840    PrevDecl = 0;
1841
1842  bool Redeclaration = false;
1843  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1844    if (TemplateParamLists.size()) {
1845      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1846      return DeclPtrTy();
1847    }
1848
1849    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1850  } else if (R->isFunctionType()) {
1851    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1852                                  move(TemplateParamLists),
1853                                  IsFunctionDefinition, Redeclaration);
1854  } else {
1855    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1856                                  move(TemplateParamLists),
1857                                  Redeclaration);
1858  }
1859
1860  if (New == 0)
1861    return DeclPtrTy();
1862
1863  // If this has an identifier and is not an invalid redeclaration or
1864  // function template specialization, add it to the scope stack.
1865  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1866      !(isa<FunctionDecl>(New) &&
1867        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1868    PushOnScopeChains(New, S);
1869
1870  return DeclPtrTy::make(New);
1871}
1872
1873/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1874/// types into constant array types in certain situations which would otherwise
1875/// be errors (for GCC compatibility).
1876static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1877                                                    ASTContext &Context,
1878                                                    bool &SizeIsNegative) {
1879  // This method tries to turn a variable array into a constant
1880  // array even when the size isn't an ICE.  This is necessary
1881  // for compatibility with code that depends on gcc's buggy
1882  // constant expression folding, like struct {char x[(int)(char*)2];}
1883  SizeIsNegative = false;
1884
1885  QualifierCollector Qs;
1886  const Type *Ty = Qs.strip(T);
1887
1888  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1889    QualType Pointee = PTy->getPointeeType();
1890    QualType FixedType =
1891        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1892    if (FixedType.isNull()) return FixedType;
1893    FixedType = Context.getPointerType(FixedType);
1894    return Qs.apply(FixedType);
1895  }
1896
1897  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1898  if (!VLATy)
1899    return QualType();
1900  // FIXME: We should probably handle this case
1901  if (VLATy->getElementType()->isVariablyModifiedType())
1902    return QualType();
1903
1904  Expr::EvalResult EvalResult;
1905  if (!VLATy->getSizeExpr() ||
1906      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1907      !EvalResult.Val.isInt())
1908    return QualType();
1909
1910  llvm::APSInt &Res = EvalResult.Val.getInt();
1911  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1912    // TODO: preserve the size expression in declarator info
1913    return Context.getConstantArrayType(VLATy->getElementType(),
1914                                        Res, ArrayType::Normal, 0);
1915  }
1916
1917  SizeIsNegative = true;
1918  return QualType();
1919}
1920
1921/// \brief Register the given locally-scoped external C declaration so
1922/// that it can be found later for redeclarations
1923void
1924Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1925                                       Scope *S) {
1926  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1927         "Decl is not a locally-scoped decl!");
1928  // Note that we have a locally-scoped external with this name.
1929  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1930
1931  if (!PrevDecl)
1932    return;
1933
1934  // If there was a previous declaration of this variable, it may be
1935  // in our identifier chain. Update the identifier chain with the new
1936  // declaration.
1937  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1938    // The previous declaration was found on the identifer resolver
1939    // chain, so remove it from its scope.
1940    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1941      S = S->getParent();
1942
1943    if (S)
1944      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1945  }
1946}
1947
1948/// \brief Diagnose function specifiers on a declaration of an identifier that
1949/// does not identify a function.
1950void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1951  // FIXME: We should probably indicate the identifier in question to avoid
1952  // confusion for constructs like "inline int a(), b;"
1953  if (D.getDeclSpec().isInlineSpecified())
1954    Diag(D.getDeclSpec().getInlineSpecLoc(),
1955         diag::err_inline_non_function);
1956
1957  if (D.getDeclSpec().isVirtualSpecified())
1958    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1959         diag::err_virtual_non_function);
1960
1961  if (D.getDeclSpec().isExplicitSpecified())
1962    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1963         diag::err_explicit_non_function);
1964}
1965
1966NamedDecl*
1967Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1968                             QualType R,  DeclaratorInfo *DInfo,
1969                             NamedDecl* PrevDecl, bool &Redeclaration) {
1970  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1971  if (D.getCXXScopeSpec().isSet()) {
1972    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1973      << D.getCXXScopeSpec().getRange();
1974    D.setInvalidType();
1975    // Pretend we didn't see the scope specifier.
1976    DC = 0;
1977  }
1978
1979  if (getLangOptions().CPlusPlus) {
1980    // Check that there are no default arguments (C++ only).
1981    CheckExtraCXXDefaultArguments(D);
1982  }
1983
1984  DiagnoseFunctionSpecifiers(D);
1985
1986  if (D.getDeclSpec().isThreadSpecified())
1987    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1988
1989  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
1990  if (!NewTD) return 0;
1991
1992  // Handle attributes prior to checking for duplicates in MergeVarDecl
1993  ProcessDeclAttributes(S, NewTD, D);
1994  // Merge the decl with the existing one if appropriate. If the decl is
1995  // in an outer scope, it isn't the same thing.
1996  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1997    Redeclaration = true;
1998    MergeTypeDefDecl(NewTD, PrevDecl);
1999  }
2000
2001  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2002  // then it shall have block scope.
2003  QualType T = NewTD->getUnderlyingType();
2004  if (T->isVariablyModifiedType()) {
2005    CurFunctionNeedsScopeChecking = true;
2006
2007    if (S->getFnParent() == 0) {
2008      bool SizeIsNegative;
2009      QualType FixedTy =
2010          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2011      if (!FixedTy.isNull()) {
2012        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2013        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2014      } else {
2015        if (SizeIsNegative)
2016          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2017        else if (T->isVariableArrayType())
2018          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2019        else
2020          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2021        NewTD->setInvalidDecl();
2022      }
2023    }
2024  }
2025
2026  // If this is the C FILE type, notify the AST context.
2027  if (IdentifierInfo *II = NewTD->getIdentifier())
2028    if (!NewTD->isInvalidDecl() &&
2029        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2030      if (II->isStr("FILE"))
2031        Context.setFILEDecl(NewTD);
2032      else if (II->isStr("jmp_buf"))
2033        Context.setjmp_bufDecl(NewTD);
2034      else if (II->isStr("sigjmp_buf"))
2035        Context.setsigjmp_bufDecl(NewTD);
2036    }
2037
2038  return NewTD;
2039}
2040
2041/// \brief Determines whether the given declaration is an out-of-scope
2042/// previous declaration.
2043///
2044/// This routine should be invoked when name lookup has found a
2045/// previous declaration (PrevDecl) that is not in the scope where a
2046/// new declaration by the same name is being introduced. If the new
2047/// declaration occurs in a local scope, previous declarations with
2048/// linkage may still be considered previous declarations (C99
2049/// 6.2.2p4-5, C++ [basic.link]p6).
2050///
2051/// \param PrevDecl the previous declaration found by name
2052/// lookup
2053///
2054/// \param DC the context in which the new declaration is being
2055/// declared.
2056///
2057/// \returns true if PrevDecl is an out-of-scope previous declaration
2058/// for a new delcaration with the same name.
2059static bool
2060isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2061                                ASTContext &Context) {
2062  if (!PrevDecl)
2063    return 0;
2064
2065  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2066  // case we need to check each of the overloaded functions.
2067  if (!PrevDecl->hasLinkage())
2068    return false;
2069
2070  if (Context.getLangOptions().CPlusPlus) {
2071    // C++ [basic.link]p6:
2072    //   If there is a visible declaration of an entity with linkage
2073    //   having the same name and type, ignoring entities declared
2074    //   outside the innermost enclosing namespace scope, the block
2075    //   scope declaration declares that same entity and receives the
2076    //   linkage of the previous declaration.
2077    DeclContext *OuterContext = DC->getLookupContext();
2078    if (!OuterContext->isFunctionOrMethod())
2079      // This rule only applies to block-scope declarations.
2080      return false;
2081    else {
2082      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2083      if (PrevOuterContext->isRecord())
2084        // We found a member function: ignore it.
2085        return false;
2086      else {
2087        // Find the innermost enclosing namespace for the new and
2088        // previous declarations.
2089        while (!OuterContext->isFileContext())
2090          OuterContext = OuterContext->getParent();
2091        while (!PrevOuterContext->isFileContext())
2092          PrevOuterContext = PrevOuterContext->getParent();
2093
2094        // The previous declaration is in a different namespace, so it
2095        // isn't the same function.
2096        if (OuterContext->getPrimaryContext() !=
2097            PrevOuterContext->getPrimaryContext())
2098          return false;
2099      }
2100    }
2101  }
2102
2103  return true;
2104}
2105
2106NamedDecl*
2107Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2108                              QualType R, DeclaratorInfo *DInfo,
2109                              NamedDecl* PrevDecl,
2110                              MultiTemplateParamsArg TemplateParamLists,
2111                              bool &Redeclaration) {
2112  DeclarationName Name = GetNameForDeclarator(D);
2113
2114  // Check that there are no default arguments (C++ only).
2115  if (getLangOptions().CPlusPlus)
2116    CheckExtraCXXDefaultArguments(D);
2117
2118  VarDecl *NewVD;
2119  VarDecl::StorageClass SC;
2120  switch (D.getDeclSpec().getStorageClassSpec()) {
2121  default: assert(0 && "Unknown storage class!");
2122  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2123  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2124  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2125  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2126  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2127  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2128  case DeclSpec::SCS_mutable:
2129    // mutable can only appear on non-static class members, so it's always
2130    // an error here
2131    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2132    D.setInvalidType();
2133    SC = VarDecl::None;
2134    break;
2135  }
2136
2137  IdentifierInfo *II = Name.getAsIdentifierInfo();
2138  if (!II) {
2139    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2140      << Name.getAsString();
2141    return 0;
2142  }
2143
2144  DiagnoseFunctionSpecifiers(D);
2145
2146  if (!DC->isRecord() && S->getFnParent() == 0) {
2147    // C99 6.9p2: The storage-class specifiers auto and register shall not
2148    // appear in the declaration specifiers in an external declaration.
2149    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2150
2151      // If this is a register variable with an asm label specified, then this
2152      // is a GNU extension.
2153      if (SC == VarDecl::Register && D.getAsmLabel())
2154        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2155      else
2156        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2157      D.setInvalidType();
2158    }
2159  }
2160  if (DC->isRecord() && !CurContext->isRecord()) {
2161    // This is an out-of-line definition of a static data member.
2162    if (SC == VarDecl::Static) {
2163      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2164           diag::err_static_out_of_line)
2165        << CodeModificationHint::CreateRemoval(
2166                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2167    } else if (SC == VarDecl::None)
2168      SC = VarDecl::Static;
2169  }
2170  if (SC == VarDecl::Static) {
2171    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2172      if (RD->isLocalClass())
2173        Diag(D.getIdentifierLoc(),
2174             diag::err_static_data_member_not_allowed_in_local_class)
2175          << Name << RD->getDeclName();
2176    }
2177  }
2178
2179  // Match up the template parameter lists with the scope specifier, then
2180  // determine whether we have a template or a template specialization.
2181  bool isExplicitSpecialization = false;
2182  if (TemplateParameterList *TemplateParams
2183        = MatchTemplateParametersToScopeSpecifier(
2184                                  D.getDeclSpec().getSourceRange().getBegin(),
2185                                                  D.getCXXScopeSpec(),
2186                        (TemplateParameterList**)TemplateParamLists.get(),
2187                                                   TemplateParamLists.size(),
2188                                                  isExplicitSpecialization)) {
2189    if (TemplateParams->size() > 0) {
2190      // There is no such thing as a variable template.
2191      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2192        << II
2193        << SourceRange(TemplateParams->getTemplateLoc(),
2194                       TemplateParams->getRAngleLoc());
2195      return 0;
2196    } else {
2197      // There is an extraneous 'template<>' for this variable. Complain
2198      // about it, but allow the declaration of the variable.
2199      Diag(TemplateParams->getTemplateLoc(),
2200           diag::err_template_variable_noparams)
2201        << II
2202        << SourceRange(TemplateParams->getTemplateLoc(),
2203                       TemplateParams->getRAngleLoc());
2204
2205      isExplicitSpecialization = true;
2206    }
2207  }
2208
2209  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2210                          II, R, DInfo, SC);
2211
2212  if (D.isInvalidType())
2213    NewVD->setInvalidDecl();
2214
2215  if (D.getDeclSpec().isThreadSpecified()) {
2216    if (NewVD->hasLocalStorage())
2217      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2218    else if (!Context.Target.isTLSSupported())
2219      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2220    else
2221      NewVD->setThreadSpecified(true);
2222  }
2223
2224  // Set the lexical context. If the declarator has a C++ scope specifier, the
2225  // lexical context will be different from the semantic context.
2226  NewVD->setLexicalDeclContext(CurContext);
2227
2228  // Handle attributes prior to checking for duplicates in MergeVarDecl
2229  ProcessDeclAttributes(S, NewVD, D);
2230
2231  // Handle GNU asm-label extension (encoded as an attribute).
2232  if (Expr *E = (Expr*) D.getAsmLabel()) {
2233    // The parser guarantees this is a string.
2234    StringLiteral *SE = cast<StringLiteral>(E);
2235    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2236                                                        SE->getByteLength())));
2237  }
2238
2239  // If name lookup finds a previous declaration that is not in the
2240  // same scope as the new declaration, this may still be an
2241  // acceptable redeclaration.
2242  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2243      !(NewVD->hasLinkage() &&
2244        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2245    PrevDecl = 0;
2246
2247  // Merge the decl with the existing one if appropriate.
2248  if (PrevDecl) {
2249    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2250      // The user tried to define a non-static data member
2251      // out-of-line (C++ [dcl.meaning]p1).
2252      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2253        << D.getCXXScopeSpec().getRange();
2254      PrevDecl = 0;
2255      NewVD->setInvalidDecl();
2256    }
2257  } else if (D.getCXXScopeSpec().isSet()) {
2258    // No previous declaration in the qualifying scope.
2259    Diag(D.getIdentifierLoc(), diag::err_no_member)
2260      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2261      << D.getCXXScopeSpec().getRange();
2262    NewVD->setInvalidDecl();
2263  }
2264
2265  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2266
2267  // This is an explicit specialization of a static data member. Check it.
2268  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2269      CheckMemberSpecialization(NewVD, PrevDecl))
2270    NewVD->setInvalidDecl();
2271
2272  // attributes declared post-definition are currently ignored
2273  if (PrevDecl) {
2274    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2275    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2276      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2277      Diag(Def->getLocation(), diag::note_previous_definition);
2278    }
2279  }
2280
2281  // If this is a locally-scoped extern C variable, update the map of
2282  // such variables.
2283  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2284      !NewVD->isInvalidDecl())
2285    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2286
2287  return NewVD;
2288}
2289
2290/// \brief Perform semantic checking on a newly-created variable
2291/// declaration.
2292///
2293/// This routine performs all of the type-checking required for a
2294/// variable declaration once it has been built. It is used both to
2295/// check variables after they have been parsed and their declarators
2296/// have been translated into a declaration, and to check variables
2297/// that have been instantiated from a template.
2298///
2299/// Sets NewVD->isInvalidDecl() if an error was encountered.
2300void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2301                                    bool &Redeclaration) {
2302  // If the decl is already known invalid, don't check it.
2303  if (NewVD->isInvalidDecl())
2304    return;
2305
2306  QualType T = NewVD->getType();
2307
2308  if (T->isObjCInterfaceType()) {
2309    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2310    return NewVD->setInvalidDecl();
2311  }
2312
2313  // The variable can not have an abstract class type.
2314  if (RequireNonAbstractType(NewVD->getLocation(), T,
2315                             diag::err_abstract_type_in_decl,
2316                             AbstractVariableType))
2317    return NewVD->setInvalidDecl();
2318
2319  // Emit an error if an address space was applied to decl with local storage.
2320  // This includes arrays of objects with address space qualifiers, but not
2321  // automatic variables that point to other address spaces.
2322  // ISO/IEC TR 18037 S5.1.2
2323  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2324    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2325    return NewVD->setInvalidDecl();
2326  }
2327
2328  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2329      && !NewVD->hasAttr<BlocksAttr>())
2330    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2331
2332  bool isVM = T->isVariablyModifiedType();
2333  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2334      NewVD->hasAttr<BlocksAttr>())
2335    CurFunctionNeedsScopeChecking = true;
2336
2337  if ((isVM && NewVD->hasLinkage()) ||
2338      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2339    bool SizeIsNegative;
2340    QualType FixedTy =
2341        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2342
2343    if (FixedTy.isNull() && T->isVariableArrayType()) {
2344      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2345      // FIXME: This won't give the correct result for
2346      // int a[10][n];
2347      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2348
2349      if (NewVD->isFileVarDecl())
2350        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2351        << SizeRange;
2352      else if (NewVD->getStorageClass() == VarDecl::Static)
2353        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2354        << SizeRange;
2355      else
2356        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2357        << SizeRange;
2358      return NewVD->setInvalidDecl();
2359    }
2360
2361    if (FixedTy.isNull()) {
2362      if (NewVD->isFileVarDecl())
2363        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2364      else
2365        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2366      return NewVD->setInvalidDecl();
2367    }
2368
2369    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2370    NewVD->setType(FixedTy);
2371  }
2372
2373  if (!PrevDecl && NewVD->isExternC()) {
2374    // Since we did not find anything by this name and we're declaring
2375    // an extern "C" variable, look for a non-visible extern "C"
2376    // declaration with the same name.
2377    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2378      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2379    if (Pos != LocallyScopedExternalDecls.end())
2380      PrevDecl = Pos->second;
2381  }
2382
2383  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2384    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2385      << T;
2386    return NewVD->setInvalidDecl();
2387  }
2388
2389  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2390    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2391    return NewVD->setInvalidDecl();
2392  }
2393
2394  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2395    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2396    return NewVD->setInvalidDecl();
2397  }
2398
2399  if (PrevDecl) {
2400    Redeclaration = true;
2401    MergeVarDecl(NewVD, PrevDecl);
2402  }
2403}
2404
2405static bool isUsingDecl(Decl *D) {
2406  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2407}
2408
2409/// \brief Data used with FindOverriddenMethod
2410struct FindOverriddenMethodData {
2411  Sema *S;
2412  CXXMethodDecl *Method;
2413};
2414
2415/// \brief Member lookup function that determines whether a given C++
2416/// method overrides a method in a base class, to be used with
2417/// CXXRecordDecl::lookupInBases().
2418static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2419                                 CXXBasePath &Path,
2420                                 void *UserData) {
2421  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2422
2423  FindOverriddenMethodData *Data
2424    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2425  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2426       Path.Decls.first != Path.Decls.second;
2427       ++Path.Decls.first) {
2428    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2429      OverloadedFunctionDecl::function_iterator MatchedDecl;
2430      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2431        return true;
2432    }
2433  }
2434
2435  return false;
2436}
2437
2438NamedDecl*
2439Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2440                              QualType R, DeclaratorInfo *DInfo,
2441                              NamedDecl* PrevDecl,
2442                              MultiTemplateParamsArg TemplateParamLists,
2443                              bool IsFunctionDefinition, bool &Redeclaration) {
2444  assert(R.getTypePtr()->isFunctionType());
2445
2446  DeclarationName Name = GetNameForDeclarator(D);
2447  FunctionDecl::StorageClass SC = FunctionDecl::None;
2448  switch (D.getDeclSpec().getStorageClassSpec()) {
2449  default: assert(0 && "Unknown storage class!");
2450  case DeclSpec::SCS_auto:
2451  case DeclSpec::SCS_register:
2452  case DeclSpec::SCS_mutable:
2453    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2454         diag::err_typecheck_sclass_func);
2455    D.setInvalidType();
2456    break;
2457  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2458  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2459  case DeclSpec::SCS_static: {
2460    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2461      // C99 6.7.1p5:
2462      //   The declaration of an identifier for a function that has
2463      //   block scope shall have no explicit storage-class specifier
2464      //   other than extern
2465      // See also (C++ [dcl.stc]p4).
2466      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2467           diag::err_static_block_func);
2468      SC = FunctionDecl::None;
2469    } else
2470      SC = FunctionDecl::Static;
2471    break;
2472  }
2473  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2474  }
2475
2476  if (D.getDeclSpec().isThreadSpecified())
2477    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2478
2479  bool isFriend = D.getDeclSpec().isFriendSpecified();
2480  bool isInline = D.getDeclSpec().isInlineSpecified();
2481  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2482  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2483
2484  // Check that the return type is not an abstract class type.
2485  // For record types, this is done by the AbstractClassUsageDiagnoser once
2486  // the class has been completely parsed.
2487  if (!DC->isRecord() &&
2488      RequireNonAbstractType(D.getIdentifierLoc(),
2489                             R->getAs<FunctionType>()->getResultType(),
2490                             diag::err_abstract_type_in_decl,
2491                             AbstractReturnType))
2492    D.setInvalidType();
2493
2494  // Do not allow returning a objc interface by-value.
2495  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2496    Diag(D.getIdentifierLoc(),
2497         diag::err_object_cannot_be_passed_returned_by_value) << 0
2498      << R->getAs<FunctionType>()->getResultType();
2499    D.setInvalidType();
2500  }
2501
2502  bool isVirtualOkay = false;
2503  FunctionDecl *NewFD;
2504
2505  if (isFriend) {
2506    // DC is the namespace in which the function is being declared.
2507    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2508           "friend function being created in a non-namespace context");
2509
2510    // C++ [class.friend]p5
2511    //   A function can be defined in a friend declaration of a
2512    //   class . . . . Such a function is implicitly inline.
2513    isInline |= IsFunctionDefinition;
2514  }
2515
2516  if (D.getKind() == Declarator::DK_Constructor) {
2517    // This is a C++ constructor declaration.
2518    assert(DC->isRecord() &&
2519           "Constructors can only be declared in a member context");
2520
2521    R = CheckConstructorDeclarator(D, R, SC);
2522
2523    // Create the new declaration
2524    NewFD = CXXConstructorDecl::Create(Context,
2525                                       cast<CXXRecordDecl>(DC),
2526                                       D.getIdentifierLoc(), Name, R, DInfo,
2527                                       isExplicit, isInline,
2528                                       /*isImplicitlyDeclared=*/false);
2529  } else if (D.getKind() == Declarator::DK_Destructor) {
2530    // This is a C++ destructor declaration.
2531    if (DC->isRecord()) {
2532      R = CheckDestructorDeclarator(D, SC);
2533
2534      NewFD = CXXDestructorDecl::Create(Context,
2535                                        cast<CXXRecordDecl>(DC),
2536                                        D.getIdentifierLoc(), Name, R,
2537                                        isInline,
2538                                        /*isImplicitlyDeclared=*/false);
2539
2540      isVirtualOkay = true;
2541    } else {
2542      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2543
2544      // Create a FunctionDecl to satisfy the function definition parsing
2545      // code path.
2546      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2547                                   Name, R, DInfo, SC, isInline,
2548                                   /*hasPrototype=*/true);
2549      D.setInvalidType();
2550    }
2551  } else if (D.getKind() == Declarator::DK_Conversion) {
2552    if (!DC->isRecord()) {
2553      Diag(D.getIdentifierLoc(),
2554           diag::err_conv_function_not_member);
2555      return 0;
2556    }
2557
2558    CheckConversionDeclarator(D, R, SC);
2559    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2560                                      D.getIdentifierLoc(), Name, R, DInfo,
2561                                      isInline, isExplicit);
2562
2563    isVirtualOkay = true;
2564  } else if (DC->isRecord()) {
2565    // If the of the function is the same as the name of the record, then this
2566    // must be an invalid constructor that has a return type.
2567    // (The parser checks for a return type and makes the declarator a
2568    // constructor if it has no return type).
2569    // must have an invalid constructor that has a return type
2570    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2571      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2572        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2573        << SourceRange(D.getIdentifierLoc());
2574      return 0;
2575    }
2576
2577    // This is a C++ method declaration.
2578    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2579                                  D.getIdentifierLoc(), Name, R, DInfo,
2580                                  (SC == FunctionDecl::Static), isInline);
2581
2582    isVirtualOkay = (SC != FunctionDecl::Static);
2583  } else {
2584    // Determine whether the function was written with a
2585    // prototype. This true when:
2586    //   - we're in C++ (where every function has a prototype),
2587    //   - there is a prototype in the declarator, or
2588    //   - the type R of the function is some kind of typedef or other reference
2589    //     to a type name (which eventually refers to a function type).
2590    bool HasPrototype =
2591       getLangOptions().CPlusPlus ||
2592       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2593       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2594
2595    NewFD = FunctionDecl::Create(Context, DC,
2596                                 D.getIdentifierLoc(),
2597                                 Name, R, DInfo, SC, isInline, HasPrototype);
2598  }
2599
2600  if (D.isInvalidType())
2601    NewFD->setInvalidDecl();
2602
2603  // Set the lexical context. If the declarator has a C++
2604  // scope specifier, or is the object of a friend declaration, the
2605  // lexical context will be different from the semantic context.
2606  NewFD->setLexicalDeclContext(CurContext);
2607
2608  // Match up the template parameter lists with the scope specifier, then
2609  // determine whether we have a template or a template specialization.
2610  FunctionTemplateDecl *FunctionTemplate = 0;
2611  bool isExplicitSpecialization = false;
2612  bool isFunctionTemplateSpecialization = false;
2613  if (TemplateParameterList *TemplateParams
2614        = MatchTemplateParametersToScopeSpecifier(
2615                                  D.getDeclSpec().getSourceRange().getBegin(),
2616                                  D.getCXXScopeSpec(),
2617                           (TemplateParameterList**)TemplateParamLists.get(),
2618                                                  TemplateParamLists.size(),
2619                                                  isExplicitSpecialization)) {
2620    if (TemplateParams->size() > 0) {
2621      // This is a function template
2622
2623      // Check that we can declare a template here.
2624      if (CheckTemplateDeclScope(S, TemplateParams))
2625        return 0;
2626
2627      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2628                                                      NewFD->getLocation(),
2629                                                      Name, TemplateParams,
2630                                                      NewFD);
2631      FunctionTemplate->setLexicalDeclContext(CurContext);
2632      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2633    } else {
2634      // This is a function template specialization.
2635      isFunctionTemplateSpecialization = true;
2636    }
2637
2638    // FIXME: Free this memory properly.
2639    TemplateParamLists.release();
2640  }
2641
2642  // C++ [dcl.fct.spec]p5:
2643  //   The virtual specifier shall only be used in declarations of
2644  //   nonstatic class member functions that appear within a
2645  //   member-specification of a class declaration; see 10.3.
2646  //
2647  if (isVirtual && !NewFD->isInvalidDecl()) {
2648    if (!isVirtualOkay) {
2649       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2650           diag::err_virtual_non_function);
2651    } else if (!CurContext->isRecord()) {
2652      // 'virtual' was specified outside of the class.
2653      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2654        << CodeModificationHint::CreateRemoval(
2655                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2656    } else {
2657      // Okay: Add virtual to the method.
2658      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2659      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2660      CurClass->setAggregate(false);
2661      CurClass->setPOD(false);
2662      CurClass->setEmpty(false);
2663      CurClass->setPolymorphic(true);
2664      CurClass->setHasTrivialConstructor(false);
2665      CurClass->setHasTrivialCopyConstructor(false);
2666      CurClass->setHasTrivialCopyAssignment(false);
2667    }
2668  }
2669
2670  if (isFriend) {
2671    if (FunctionTemplate) {
2672      FunctionTemplate->setObjectOfFriendDecl(
2673                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2674      FunctionTemplate->setAccess(AS_public);
2675    }
2676    else
2677      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2678
2679    NewFD->setAccess(AS_public);
2680  }
2681
2682
2683  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2684    // Look for virtual methods in base classes that this method might override.
2685    CXXBasePaths Paths;
2686    FindOverriddenMethodData Data;
2687    Data.Method = NewMD;
2688    Data.S = this;
2689    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2690                                                Paths)) {
2691      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2692           E = Paths.found_decls_end(); I != E; ++I) {
2693        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2694          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2695              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2696            NewMD->addOverriddenMethod(OldMD);
2697        }
2698      }
2699    }
2700  }
2701
2702  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2703      !CurContext->isRecord()) {
2704    // C++ [class.static]p1:
2705    //   A data or function member of a class may be declared static
2706    //   in a class definition, in which case it is a static member of
2707    //   the class.
2708
2709    // Complain about the 'static' specifier if it's on an out-of-line
2710    // member function definition.
2711    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2712         diag::err_static_out_of_line)
2713      << CodeModificationHint::CreateRemoval(
2714                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2715  }
2716
2717  // Handle GNU asm-label extension (encoded as an attribute).
2718  if (Expr *E = (Expr*) D.getAsmLabel()) {
2719    // The parser guarantees this is a string.
2720    StringLiteral *SE = cast<StringLiteral>(E);
2721    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2722                                                        SE->getByteLength())));
2723  }
2724
2725  // Copy the parameter declarations from the declarator D to the function
2726  // declaration NewFD, if they are available.  First scavenge them into Params.
2727  llvm::SmallVector<ParmVarDecl*, 16> Params;
2728  if (D.getNumTypeObjects() > 0) {
2729    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2730
2731    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2732    // function that takes no arguments, not a function that takes a
2733    // single void argument.
2734    // We let through "const void" here because Sema::GetTypeForDeclarator
2735    // already checks for that case.
2736    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2737        FTI.ArgInfo[0].Param &&
2738        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2739      // Empty arg list, don't push any params.
2740      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2741
2742      // In C++, the empty parameter-type-list must be spelled "void"; a
2743      // typedef of void is not permitted.
2744      if (getLangOptions().CPlusPlus &&
2745          Param->getType().getUnqualifiedType() != Context.VoidTy)
2746        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2747      // FIXME: Leaks decl?
2748    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2749      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2750        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2751        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2752        Param->setDeclContext(NewFD);
2753        Params.push_back(Param);
2754      }
2755    }
2756
2757  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2758    // When we're declaring a function with a typedef, typeof, etc as in the
2759    // following example, we'll need to synthesize (unnamed)
2760    // parameters for use in the declaration.
2761    //
2762    // @code
2763    // typedef void fn(int);
2764    // fn f;
2765    // @endcode
2766
2767    // Synthesize a parameter for each argument type.
2768    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2769         AE = FT->arg_type_end(); AI != AE; ++AI) {
2770      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2771                                               SourceLocation(), 0,
2772                                               *AI, /*DInfo=*/0,
2773                                               VarDecl::None, 0);
2774      Param->setImplicit();
2775      Params.push_back(Param);
2776    }
2777  } else {
2778    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2779           "Should not need args for typedef of non-prototype fn");
2780  }
2781  // Finally, we know we have the right number of parameters, install them.
2782  NewFD->setParams(Context, Params.data(), Params.size());
2783
2784  // If name lookup finds a previous declaration that is not in the
2785  // same scope as the new declaration, this may still be an
2786  // acceptable redeclaration.
2787  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2788      !(NewFD->hasLinkage() &&
2789        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2790    PrevDecl = 0;
2791
2792  // If the declarator is a template-id, translate the parser's template
2793  // argument list into our AST format.
2794  bool HasExplicitTemplateArgs = false;
2795  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2796  SourceLocation LAngleLoc, RAngleLoc;
2797  if (D.getKind() == Declarator::DK_TemplateId) {
2798    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2799    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2800                                       TemplateId->getTemplateArgs(),
2801                                       TemplateId->getTemplateArgIsType(),
2802                                       TemplateId->NumArgs);
2803    translateTemplateArguments(TemplateArgsPtr,
2804                               TemplateId->getTemplateArgLocations(),
2805                               TemplateArgs);
2806    TemplateArgsPtr.release();
2807
2808    HasExplicitTemplateArgs = true;
2809    LAngleLoc = TemplateId->LAngleLoc;
2810    RAngleLoc = TemplateId->RAngleLoc;
2811
2812    if (FunctionTemplate) {
2813      // FIXME: Diagnose function template with explicit template
2814      // arguments.
2815      HasExplicitTemplateArgs = false;
2816    } else if (!isFunctionTemplateSpecialization &&
2817               !D.getDeclSpec().isFriendSpecified()) {
2818      // We have encountered something that the user meant to be a
2819      // specialization (because it has explicitly-specified template
2820      // arguments) but that was not introduced with a "template<>" (or had
2821      // too few of them).
2822      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2823        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2824        << CodeModificationHint::CreateInsertion(
2825                                   D.getDeclSpec().getSourceRange().getBegin(),
2826                                                 "template<> ");
2827      isFunctionTemplateSpecialization = true;
2828    }
2829  }
2830
2831  if (isFunctionTemplateSpecialization) {
2832      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2833                                              LAngleLoc, TemplateArgs.data(),
2834                                              TemplateArgs.size(), RAngleLoc,
2835                                              PrevDecl))
2836        NewFD->setInvalidDecl();
2837  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2838             CheckMemberSpecialization(NewFD, PrevDecl))
2839    NewFD->setInvalidDecl();
2840
2841  // Perform semantic checking on the function declaration.
2842  bool OverloadableAttrRequired = false; // FIXME: HACK!
2843  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2844                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2845
2846  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2847    // An out-of-line member function declaration must also be a
2848    // definition (C++ [dcl.meaning]p1).
2849    // Note that this is not the case for explicit specializations of
2850    // function templates or member functions of class templates, per
2851    // C++ [temp.expl.spec]p2.
2852    if (!IsFunctionDefinition && !isFriend &&
2853        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2854      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2855        << D.getCXXScopeSpec().getRange();
2856      NewFD->setInvalidDecl();
2857    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2858      // The user tried to provide an out-of-line definition for a
2859      // function that is a member of a class or namespace, but there
2860      // was no such member function declared (C++ [class.mfct]p2,
2861      // C++ [namespace.memdef]p2). For example:
2862      //
2863      // class X {
2864      //   void f() const;
2865      // };
2866      //
2867      // void X::f() { } // ill-formed
2868      //
2869      // Complain about this problem, and attempt to suggest close
2870      // matches (e.g., those that differ only in cv-qualifiers and
2871      // whether the parameter types are references).
2872      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2873        << Name << DC << D.getCXXScopeSpec().getRange();
2874      NewFD->setInvalidDecl();
2875
2876      LookupResult Prev;
2877      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2878      assert(!Prev.isAmbiguous() &&
2879             "Cannot have an ambiguity in previous-declaration lookup");
2880      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2881           Func != FuncEnd; ++Func) {
2882        if (isa<FunctionDecl>(*Func) &&
2883            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2884          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2885      }
2886
2887      PrevDecl = 0;
2888    }
2889  }
2890
2891  // Handle attributes. We need to have merged decls when handling attributes
2892  // (for example to check for conflicts, etc).
2893  // FIXME: This needs to happen before we merge declarations. Then,
2894  // let attribute merging cope with attribute conflicts.
2895  ProcessDeclAttributes(S, NewFD, D);
2896
2897  // attributes declared post-definition are currently ignored
2898  if (Redeclaration && PrevDecl) {
2899    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2900    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2901      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2902      Diag(Def->getLocation(), diag::note_previous_definition);
2903    }
2904  }
2905
2906  AddKnownFunctionAttributes(NewFD);
2907
2908  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2909    // If a function name is overloadable in C, then every function
2910    // with that name must be marked "overloadable".
2911    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2912      << Redeclaration << NewFD;
2913    if (PrevDecl)
2914      Diag(PrevDecl->getLocation(),
2915           diag::note_attribute_overloadable_prev_overload);
2916    NewFD->addAttr(::new (Context) OverloadableAttr());
2917  }
2918
2919  // If this is a locally-scoped extern C function, update the
2920  // map of such names.
2921  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2922      && !NewFD->isInvalidDecl())
2923    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2924
2925  // Set this FunctionDecl's range up to the right paren.
2926  NewFD->setLocEnd(D.getSourceRange().getEnd());
2927
2928  if (FunctionTemplate && NewFD->isInvalidDecl())
2929    FunctionTemplate->setInvalidDecl();
2930
2931  if (FunctionTemplate)
2932    return FunctionTemplate;
2933
2934  return NewFD;
2935}
2936
2937/// \brief Perform semantic checking of a new function declaration.
2938///
2939/// Performs semantic analysis of the new function declaration
2940/// NewFD. This routine performs all semantic checking that does not
2941/// require the actual declarator involved in the declaration, and is
2942/// used both for the declaration of functions as they are parsed
2943/// (called via ActOnDeclarator) and for the declaration of functions
2944/// that have been instantiated via C++ template instantiation (called
2945/// via InstantiateDecl).
2946///
2947/// \param IsExplicitSpecialiation whether this new function declaration is
2948/// an explicit specialization of the previous declaration.
2949///
2950/// This sets NewFD->isInvalidDecl() to true if there was an error.
2951void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2952                                    bool IsExplicitSpecialization,
2953                                    bool &Redeclaration,
2954                                    bool &OverloadableAttrRequired) {
2955  // If NewFD is already known erroneous, don't do any of this checking.
2956  if (NewFD->isInvalidDecl())
2957    return;
2958
2959  if (NewFD->getResultType()->isVariablyModifiedType()) {
2960    // Functions returning a variably modified type violate C99 6.7.5.2p2
2961    // because all functions have linkage.
2962    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2963    return NewFD->setInvalidDecl();
2964  }
2965
2966  if (NewFD->isMain())
2967    CheckMain(NewFD);
2968
2969  // Check for a previous declaration of this name.
2970  if (!PrevDecl && NewFD->isExternC()) {
2971    // Since we did not find anything by this name and we're declaring
2972    // an extern "C" function, look for a non-visible extern "C"
2973    // declaration with the same name.
2974    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2975      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2976    if (Pos != LocallyScopedExternalDecls.end())
2977      PrevDecl = Pos->second;
2978  }
2979
2980  // Merge or overload the declaration with an existing declaration of
2981  // the same name, if appropriate.
2982  if (PrevDecl) {
2983    // Determine whether NewFD is an overload of PrevDecl or
2984    // a declaration that requires merging. If it's an overload,
2985    // there's no more work to do here; we'll just add the new
2986    // function to the scope.
2987    OverloadedFunctionDecl::function_iterator MatchedDecl;
2988
2989    if (!getLangOptions().CPlusPlus &&
2990        AllowOverloadingOfFunction(PrevDecl, Context)) {
2991      OverloadableAttrRequired = true;
2992
2993      // Functions marked "overloadable" must have a prototype (that
2994      // we can't get through declaration merging).
2995      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2996        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2997          << NewFD;
2998        Redeclaration = true;
2999
3000        // Turn this into a variadic function with no parameters.
3001        QualType R = Context.getFunctionType(
3002                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3003                       0, 0, true, 0);
3004        NewFD->setType(R);
3005        return NewFD->setInvalidDecl();
3006      }
3007    }
3008
3009    if (PrevDecl &&
3010        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3011         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3012      Redeclaration = true;
3013      Decl *OldDecl = PrevDecl;
3014
3015      // If PrevDecl was an overloaded function, extract the
3016      // FunctionDecl that matched.
3017      if (isa<OverloadedFunctionDecl>(PrevDecl))
3018        OldDecl = *MatchedDecl;
3019
3020      // NewFD and OldDecl represent declarations that need to be
3021      // merged.
3022      if (MergeFunctionDecl(NewFD, OldDecl))
3023        return NewFD->setInvalidDecl();
3024
3025      if (FunctionTemplateDecl *OldTemplateDecl
3026                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3027        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3028        FunctionTemplateDecl *NewTemplateDecl
3029          = NewFD->getDescribedFunctionTemplate();
3030        assert(NewTemplateDecl && "Template/non-template mismatch");
3031        if (CXXMethodDecl *Method
3032              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3033          Method->setAccess(OldTemplateDecl->getAccess());
3034          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3035        }
3036
3037        // If this is an explicit specialization of a member that is a function
3038        // template, mark it as a member specialization.
3039        if (IsExplicitSpecialization &&
3040            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3041          NewTemplateDecl->setMemberSpecialization();
3042          assert(OldTemplateDecl->isMemberSpecialization());
3043        }
3044      } else {
3045        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3046          NewFD->setAccess(OldDecl->getAccess());
3047        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3048      }
3049    }
3050  }
3051
3052  // Semantic checking for this function declaration (in isolation).
3053  if (getLangOptions().CPlusPlus) {
3054    // C++-specific checks.
3055    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3056      CheckConstructor(Constructor);
3057    } else if (isa<CXXDestructorDecl>(NewFD)) {
3058      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3059      QualType ClassType = Context.getTypeDeclType(Record);
3060      if (!ClassType->isDependentType()) {
3061        DeclarationName Name
3062          = Context.DeclarationNames.getCXXDestructorName(
3063                                        Context.getCanonicalType(ClassType));
3064        if (NewFD->getDeclName() != Name) {
3065          Diag(NewFD->getLocation(), diag::err_destructor_name);
3066          return NewFD->setInvalidDecl();
3067        }
3068      }
3069      Record->setUserDeclaredDestructor(true);
3070      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3071      // user-defined destructor.
3072      Record->setPOD(false);
3073
3074      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3075      // declared destructor.
3076      // FIXME: C++0x: don't do this for "= default" destructors
3077      Record->setHasTrivialDestructor(false);
3078    } else if (CXXConversionDecl *Conversion
3079               = dyn_cast<CXXConversionDecl>(NewFD))
3080      ActOnConversionDeclarator(Conversion);
3081
3082    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3083    if (NewFD->isOverloadedOperator() &&
3084        CheckOverloadedOperatorDeclaration(NewFD))
3085      return NewFD->setInvalidDecl();
3086
3087    // In C++, check default arguments now that we have merged decls. Unless
3088    // the lexical context is the class, because in this case this is done
3089    // during delayed parsing anyway.
3090    if (!CurContext->isRecord())
3091      CheckCXXDefaultArguments(NewFD);
3092  }
3093}
3094
3095void Sema::CheckMain(FunctionDecl* FD) {
3096  // C++ [basic.start.main]p3:  A program that declares main to be inline
3097  //   or static is ill-formed.
3098  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3099  //   shall not appear in a declaration of main.
3100  // static main is not an error under C99, but we should warn about it.
3101  bool isInline = FD->isInline();
3102  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3103  if (isInline || isStatic) {
3104    unsigned diagID = diag::warn_unusual_main_decl;
3105    if (isInline || getLangOptions().CPlusPlus)
3106      diagID = diag::err_unusual_main_decl;
3107
3108    int which = isStatic + (isInline << 1) - 1;
3109    Diag(FD->getLocation(), diagID) << which;
3110  }
3111
3112  QualType T = FD->getType();
3113  assert(T->isFunctionType() && "function decl is not of function type");
3114  const FunctionType* FT = T->getAs<FunctionType>();
3115
3116  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3117    // TODO: add a replacement fixit to turn the return type into 'int'.
3118    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3119    FD->setInvalidDecl(true);
3120  }
3121
3122  // Treat protoless main() as nullary.
3123  if (isa<FunctionNoProtoType>(FT)) return;
3124
3125  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3126  unsigned nparams = FTP->getNumArgs();
3127  assert(FD->getNumParams() == nparams);
3128
3129  if (nparams > 3) {
3130    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3131    FD->setInvalidDecl(true);
3132    nparams = 3;
3133  }
3134
3135  // FIXME: a lot of the following diagnostics would be improved
3136  // if we had some location information about types.
3137
3138  QualType CharPP =
3139    Context.getPointerType(Context.getPointerType(Context.CharTy));
3140  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3141
3142  for (unsigned i = 0; i < nparams; ++i) {
3143    QualType AT = FTP->getArgType(i);
3144
3145    bool mismatch = true;
3146
3147    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3148      mismatch = false;
3149    else if (Expected[i] == CharPP) {
3150      // As an extension, the following forms are okay:
3151      //   char const **
3152      //   char const * const *
3153      //   char * const *
3154
3155      QualifierCollector qs;
3156      const PointerType* PT;
3157      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3158          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3159          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3160        qs.removeConst();
3161        mismatch = !qs.empty();
3162      }
3163    }
3164
3165    if (mismatch) {
3166      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3167      // TODO: suggest replacing given type with expected type
3168      FD->setInvalidDecl(true);
3169    }
3170  }
3171
3172  if (nparams == 1 && !FD->isInvalidDecl()) {
3173    Diag(FD->getLocation(), diag::warn_main_one_arg);
3174  }
3175}
3176
3177bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3178  // FIXME: Need strict checking.  In C89, we need to check for
3179  // any assignment, increment, decrement, function-calls, or
3180  // commas outside of a sizeof.  In C99, it's the same list,
3181  // except that the aforementioned are allowed in unevaluated
3182  // expressions.  Everything else falls under the
3183  // "may accept other forms of constant expressions" exception.
3184  // (We never end up here for C++, so the constant expression
3185  // rules there don't matter.)
3186  if (Init->isConstantInitializer(Context))
3187    return false;
3188  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3189    << Init->getSourceRange();
3190  return true;
3191}
3192
3193void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3194  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3195}
3196
3197/// AddInitializerToDecl - Adds the initializer Init to the
3198/// declaration dcl. If DirectInit is true, this is C++ direct
3199/// initialization rather than copy initialization.
3200void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3201  Decl *RealDecl = dcl.getAs<Decl>();
3202  // If there is no declaration, there was an error parsing it.  Just ignore
3203  // the initializer.
3204  if (RealDecl == 0)
3205    return;
3206
3207  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3208    // With declarators parsed the way they are, the parser cannot
3209    // distinguish between a normal initializer and a pure-specifier.
3210    // Thus this grotesque test.
3211    IntegerLiteral *IL;
3212    Expr *Init = static_cast<Expr *>(init.get());
3213    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3214        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3215      if (Method->isVirtualAsWritten()) {
3216        Method->setPure();
3217
3218        // A class is abstract if at least one function is pure virtual.
3219        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3220      } else if (!Method->isInvalidDecl()) {
3221        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3222          << Method->getDeclName() << Init->getSourceRange();
3223        Method->setInvalidDecl();
3224      }
3225    } else {
3226      Diag(Method->getLocation(), diag::err_member_function_initialization)
3227        << Method->getDeclName() << Init->getSourceRange();
3228      Method->setInvalidDecl();
3229    }
3230    return;
3231  }
3232
3233  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3234  if (!VDecl) {
3235    if (getLangOptions().CPlusPlus &&
3236        RealDecl->getLexicalDeclContext()->isRecord() &&
3237        isa<NamedDecl>(RealDecl))
3238      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3239        << cast<NamedDecl>(RealDecl)->getDeclName();
3240    else
3241      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3242    RealDecl->setInvalidDecl();
3243    return;
3244  }
3245
3246  if (!VDecl->getType()->isArrayType() &&
3247      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3248                          diag::err_typecheck_decl_incomplete_type)) {
3249    RealDecl->setInvalidDecl();
3250    return;
3251  }
3252
3253  const VarDecl *Def = 0;
3254  if (VDecl->getDefinition(Def)) {
3255    Diag(VDecl->getLocation(), diag::err_redefinition)
3256      << VDecl->getDeclName();
3257    Diag(Def->getLocation(), diag::note_previous_definition);
3258    VDecl->setInvalidDecl();
3259    return;
3260  }
3261
3262  // Take ownership of the expression, now that we're sure we have somewhere
3263  // to put it.
3264  Expr *Init = init.takeAs<Expr>();
3265  assert(Init && "missing initializer");
3266
3267  // Get the decls type and save a reference for later, since
3268  // CheckInitializerTypes may change it.
3269  QualType DclT = VDecl->getType(), SavT = DclT;
3270  if (VDecl->isBlockVarDecl()) {
3271    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3272      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3273      VDecl->setInvalidDecl();
3274    } else if (!VDecl->isInvalidDecl()) {
3275      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3276                                VDecl->getDeclName(), DirectInit))
3277        VDecl->setInvalidDecl();
3278
3279      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3280      // Don't check invalid declarations to avoid emitting useless diagnostics.
3281      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3282        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3283          CheckForConstantInitializer(Init, DclT);
3284      }
3285    }
3286  } else if (VDecl->isStaticDataMember() &&
3287             VDecl->getLexicalDeclContext()->isRecord()) {
3288    // This is an in-class initialization for a static data member, e.g.,
3289    //
3290    // struct S {
3291    //   static const int value = 17;
3292    // };
3293
3294    // Attach the initializer
3295    VDecl->setInit(Context, Init);
3296
3297    // C++ [class.mem]p4:
3298    //   A member-declarator can contain a constant-initializer only
3299    //   if it declares a static member (9.4) of const integral or
3300    //   const enumeration type, see 9.4.2.
3301    QualType T = VDecl->getType();
3302    if (!T->isDependentType() &&
3303        (!Context.getCanonicalType(T).isConstQualified() ||
3304         !T->isIntegralType())) {
3305      Diag(VDecl->getLocation(), diag::err_member_initialization)
3306        << VDecl->getDeclName() << Init->getSourceRange();
3307      VDecl->setInvalidDecl();
3308    } else {
3309      // C++ [class.static.data]p4:
3310      //   If a static data member is of const integral or const
3311      //   enumeration type, its declaration in the class definition
3312      //   can specify a constant-initializer which shall be an
3313      //   integral constant expression (5.19).
3314      if (!Init->isTypeDependent() &&
3315          !Init->getType()->isIntegralType()) {
3316        // We have a non-dependent, non-integral or enumeration type.
3317        Diag(Init->getSourceRange().getBegin(),
3318             diag::err_in_class_initializer_non_integral_type)
3319          << Init->getType() << Init->getSourceRange();
3320        VDecl->setInvalidDecl();
3321      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3322        // Check whether the expression is a constant expression.
3323        llvm::APSInt Value;
3324        SourceLocation Loc;
3325        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3326          Diag(Loc, diag::err_in_class_initializer_non_constant)
3327            << Init->getSourceRange();
3328          VDecl->setInvalidDecl();
3329        } else if (!VDecl->getType()->isDependentType())
3330          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3331      }
3332    }
3333  } else if (VDecl->isFileVarDecl()) {
3334    if (VDecl->getStorageClass() == VarDecl::Extern)
3335      Diag(VDecl->getLocation(), diag::warn_extern_init);
3336    if (!VDecl->isInvalidDecl())
3337      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3338                                VDecl->getDeclName(), DirectInit))
3339        VDecl->setInvalidDecl();
3340
3341    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3342    // Don't check invalid declarations to avoid emitting useless diagnostics.
3343    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3344      // C99 6.7.8p4. All file scoped initializers need to be constant.
3345      CheckForConstantInitializer(Init, DclT);
3346    }
3347  }
3348  // If the type changed, it means we had an incomplete type that was
3349  // completed by the initializer. For example:
3350  //   int ary[] = { 1, 3, 5 };
3351  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3352  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3353    VDecl->setType(DclT);
3354    Init->setType(DclT);
3355  }
3356
3357  Init = MaybeCreateCXXExprWithTemporaries(Init,
3358                                           /*ShouldDestroyTemporaries=*/true);
3359  // Attach the initializer to the decl.
3360  VDecl->setInit(Context, Init);
3361
3362  // If the previous declaration of VDecl was a tentative definition,
3363  // remove it from the set of tentative definitions.
3364  if (VDecl->getPreviousDeclaration() &&
3365      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3366    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3367    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3368  }
3369
3370  return;
3371}
3372
3373void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3374                                  bool TypeContainsUndeducedAuto) {
3375  Decl *RealDecl = dcl.getAs<Decl>();
3376
3377  // If there is no declaration, there was an error parsing it. Just ignore it.
3378  if (RealDecl == 0)
3379    return;
3380
3381  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3382    QualType Type = Var->getType();
3383
3384    // Record tentative definitions.
3385    if (Var->isTentativeDefinition(Context)) {
3386      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3387        InsertPair =
3388           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3389
3390      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3391      // want the second one in the map.
3392      InsertPair.first->second = Var;
3393
3394      // However, for the list, we don't care about the order, just make sure
3395      // that there are no dupes for a given declaration name.
3396      if (InsertPair.second)
3397        TentativeDefinitionList.push_back(Var->getDeclName());
3398    }
3399
3400    // C++ [dcl.init.ref]p3:
3401    //   The initializer can be omitted for a reference only in a
3402    //   parameter declaration (8.3.5), in the declaration of a
3403    //   function return type, in the declaration of a class member
3404    //   within its class declaration (9.2), and where the extern
3405    //   specifier is explicitly used.
3406    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3407      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3408        << Var->getDeclName()
3409        << SourceRange(Var->getLocation(), Var->getLocation());
3410      Var->setInvalidDecl();
3411      return;
3412    }
3413
3414    // C++0x [dcl.spec.auto]p3
3415    if (TypeContainsUndeducedAuto) {
3416      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3417        << Var->getDeclName() << Type;
3418      Var->setInvalidDecl();
3419      return;
3420    }
3421
3422    // C++ [temp.expl.spec]p15:
3423    //   An explicit specialization of a static data member of a template is a
3424    //   definition if the declaration includes an initializer; otherwise, it
3425    //   is a declaration.
3426    if (Var->isStaticDataMember() &&
3427        Var->getInstantiatedFromStaticDataMember() &&
3428        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3429      return;
3430
3431    // C++ [dcl.init]p9:
3432    //   If no initializer is specified for an object, and the object
3433    //   is of (possibly cv-qualified) non-POD class type (or array
3434    //   thereof), the object shall be default-initialized; if the
3435    //   object is of const-qualified type, the underlying class type
3436    //   shall have a user-declared default constructor.
3437    //
3438    // FIXME: Diagnose the "user-declared default constructor" bit.
3439    if (getLangOptions().CPlusPlus) {
3440      QualType InitType = Type;
3441      if (const ArrayType *Array = Context.getAsArrayType(Type))
3442        InitType = Array->getElementType();
3443      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3444          InitType->isRecordType() && !InitType->isDependentType()) {
3445        if (!RequireCompleteType(Var->getLocation(), InitType,
3446                                 diag::err_invalid_incomplete_type_use)) {
3447          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3448
3449          CXXConstructorDecl *Constructor
3450            = PerformInitializationByConstructor(InitType,
3451                                                 MultiExprArg(*this, 0, 0),
3452                                                 Var->getLocation(),
3453                                               SourceRange(Var->getLocation(),
3454                                                           Var->getLocation()),
3455                                                 Var->getDeclName(),
3456                                                 IK_Default,
3457                                                 ConstructorArgs);
3458
3459          // FIXME: Location info for the variable initialization?
3460          if (!Constructor)
3461            Var->setInvalidDecl();
3462          else {
3463            // FIXME: Cope with initialization of arrays
3464            if (!Constructor->isTrivial() &&
3465                InitializeVarWithConstructor(Var, Constructor, InitType,
3466                                             move_arg(ConstructorArgs)))
3467              Var->setInvalidDecl();
3468
3469            FinalizeVarWithDestructor(Var, InitType);
3470          }
3471        } else {
3472          Var->setInvalidDecl();
3473        }
3474      }
3475    }
3476
3477#if 0
3478    // FIXME: Temporarily disabled because we are not properly parsing
3479    // linkage specifications on declarations, e.g.,
3480    //
3481    //   extern "C" const CGPoint CGPointerZero;
3482    //
3483    // C++ [dcl.init]p9:
3484    //
3485    //     If no initializer is specified for an object, and the
3486    //     object is of (possibly cv-qualified) non-POD class type (or
3487    //     array thereof), the object shall be default-initialized; if
3488    //     the object is of const-qualified type, the underlying class
3489    //     type shall have a user-declared default
3490    //     constructor. Otherwise, if no initializer is specified for
3491    //     an object, the object and its subobjects, if any, have an
3492    //     indeterminate initial value; if the object or any of its
3493    //     subobjects are of const-qualified type, the program is
3494    //     ill-formed.
3495    //
3496    // This isn't technically an error in C, so we don't diagnose it.
3497    //
3498    // FIXME: Actually perform the POD/user-defined default
3499    // constructor check.
3500    if (getLangOptions().CPlusPlus &&
3501        Context.getCanonicalType(Type).isConstQualified() &&
3502        !Var->hasExternalStorage())
3503      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3504        << Var->getName()
3505        << SourceRange(Var->getLocation(), Var->getLocation());
3506#endif
3507  }
3508}
3509
3510Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3511                                                   DeclPtrTy *Group,
3512                                                   unsigned NumDecls) {
3513  llvm::SmallVector<Decl*, 8> Decls;
3514
3515  if (DS.isTypeSpecOwned())
3516    Decls.push_back((Decl*)DS.getTypeRep());
3517
3518  for (unsigned i = 0; i != NumDecls; ++i)
3519    if (Decl *D = Group[i].getAs<Decl>())
3520      Decls.push_back(D);
3521
3522  // Perform semantic analysis that depends on having fully processed both
3523  // the declarator and initializer.
3524  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3525    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3526    if (!IDecl)
3527      continue;
3528    QualType T = IDecl->getType();
3529
3530    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3531    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3532    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3533      if (T->isDependentType()) {
3534        // If T is dependent, we should not require a complete type.
3535        // (RequireCompleteType shouldn't be called with dependent types.)
3536        // But we still can at least check if we've got an array of unspecified
3537        // size without an initializer.
3538        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3539            !IDecl->getInit()) {
3540          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3541            << T;
3542          IDecl->setInvalidDecl();
3543        }
3544      } else if (!IDecl->isInvalidDecl()) {
3545        // If T is an incomplete array type with an initializer list that is
3546        // dependent on something, its size has not been fixed. We could attempt
3547        // to fix the size for such arrays, but we would still have to check
3548        // here for initializers containing a C++0x vararg expansion, e.g.
3549        // template <typename... Args> void f(Args... args) {
3550        //   int vals[] = { args };
3551        // }
3552        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3553        Expr *Init = IDecl->getInit();
3554        if (IAT && Init &&
3555            (Init->isTypeDependent() || Init->isValueDependent())) {
3556          // Check that the member type of the array is complete, at least.
3557          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3558                                  diag::err_typecheck_decl_incomplete_type))
3559            IDecl->setInvalidDecl();
3560        } else if (RequireCompleteType(IDecl->getLocation(), T,
3561                                      diag::err_typecheck_decl_incomplete_type))
3562          IDecl->setInvalidDecl();
3563      }
3564    }
3565    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3566    // object that has file scope without an initializer, and without a
3567    // storage-class specifier or with the storage-class specifier "static",
3568    // constitutes a tentative definition. Note: A tentative definition with
3569    // external linkage is valid (C99 6.2.2p5).
3570    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3571      if (const IncompleteArrayType *ArrayT
3572          = Context.getAsIncompleteArrayType(T)) {
3573        if (RequireCompleteType(IDecl->getLocation(),
3574                                ArrayT->getElementType(),
3575                                diag::err_illegal_decl_array_incomplete_type))
3576          IDecl->setInvalidDecl();
3577      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3578        // C99 6.9.2p3: If the declaration of an identifier for an object is
3579        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3580        // declared type shall not be an incomplete type.
3581        // NOTE: code such as the following
3582        //     static struct s;
3583        //     struct s { int a; };
3584        // is accepted by gcc. Hence here we issue a warning instead of
3585        // an error and we do not invalidate the static declaration.
3586        // NOTE: to avoid multiple warnings, only check the first declaration.
3587        if (IDecl->getPreviousDeclaration() == 0)
3588          RequireCompleteType(IDecl->getLocation(), T,
3589                              diag::ext_typecheck_decl_incomplete_type);
3590      }
3591    }
3592  }
3593  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3594                                                   Decls.data(), Decls.size()));
3595}
3596
3597
3598/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3599/// to introduce parameters into function prototype scope.
3600Sema::DeclPtrTy
3601Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3602  const DeclSpec &DS = D.getDeclSpec();
3603
3604  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3605  VarDecl::StorageClass StorageClass = VarDecl::None;
3606  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3607    StorageClass = VarDecl::Register;
3608  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3609    Diag(DS.getStorageClassSpecLoc(),
3610         diag::err_invalid_storage_class_in_func_decl);
3611    D.getMutableDeclSpec().ClearStorageClassSpecs();
3612  }
3613
3614  if (D.getDeclSpec().isThreadSpecified())
3615    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3616
3617  DiagnoseFunctionSpecifiers(D);
3618
3619  // Check that there are no default arguments inside the type of this
3620  // parameter (C++ only).
3621  if (getLangOptions().CPlusPlus)
3622    CheckExtraCXXDefaultArguments(D);
3623
3624  DeclaratorInfo *DInfo = 0;
3625  TagDecl *OwnedDecl = 0;
3626  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3627                                               &OwnedDecl);
3628
3629  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3630    // C++ [dcl.fct]p6:
3631    //   Types shall not be defined in return or parameter types.
3632    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3633      << Context.getTypeDeclType(OwnedDecl);
3634  }
3635
3636  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3637  // Can this happen for params?  We already checked that they don't conflict
3638  // among each other.  Here they can only shadow globals, which is ok.
3639  IdentifierInfo *II = D.getIdentifier();
3640  if (II) {
3641    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3642      if (PrevDecl->isTemplateParameter()) {
3643        // Maybe we will complain about the shadowed template parameter.
3644        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3645        // Just pretend that we didn't see the previous declaration.
3646        PrevDecl = 0;
3647      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3648        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3649
3650        // Recover by removing the name
3651        II = 0;
3652        D.SetIdentifier(0, D.getIdentifierLoc());
3653      }
3654    }
3655  }
3656
3657  // Parameters can not be abstract class types.
3658  // For record types, this is done by the AbstractClassUsageDiagnoser once
3659  // the class has been completely parsed.
3660  if (!CurContext->isRecord() &&
3661      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3662                             diag::err_abstract_type_in_decl,
3663                             AbstractParamType))
3664    D.setInvalidType(true);
3665
3666  QualType T = adjustParameterType(parmDeclType);
3667
3668  ParmVarDecl *New
3669    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3670                          T, DInfo, StorageClass, 0);
3671
3672  if (D.isInvalidType())
3673    New->setInvalidDecl();
3674
3675  // Parameter declarators cannot be interface types. All ObjC objects are
3676  // passed by reference.
3677  if (T->isObjCInterfaceType()) {
3678    Diag(D.getIdentifierLoc(),
3679         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3680    New->setInvalidDecl();
3681  }
3682
3683  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3684  if (D.getCXXScopeSpec().isSet()) {
3685    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3686      << D.getCXXScopeSpec().getRange();
3687    New->setInvalidDecl();
3688  }
3689
3690  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3691  // duration shall not be qualified by an address-space qualifier."
3692  // Since all parameters have automatic store duration, they can not have
3693  // an address space.
3694  if (T.getAddressSpace() != 0) {
3695    Diag(D.getIdentifierLoc(),
3696         diag::err_arg_with_address_space);
3697    New->setInvalidDecl();
3698  }
3699
3700
3701  // Add the parameter declaration into this scope.
3702  S->AddDecl(DeclPtrTy::make(New));
3703  if (II)
3704    IdResolver.AddDecl(New);
3705
3706  ProcessDeclAttributes(S, New, D);
3707
3708  if (New->hasAttr<BlocksAttr>()) {
3709    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3710  }
3711  return DeclPtrTy::make(New);
3712}
3713
3714void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3715                                           SourceLocation LocAfterDecls) {
3716  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3717         "Not a function declarator!");
3718  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3719
3720  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3721  // for a K&R function.
3722  if (!FTI.hasPrototype) {
3723    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3724      --i;
3725      if (FTI.ArgInfo[i].Param == 0) {
3726        llvm::SmallString<256> Code;
3727        llvm::raw_svector_ostream(Code) << "  int "
3728                                        << FTI.ArgInfo[i].Ident->getName()
3729                                        << ";\n";
3730        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3731          << FTI.ArgInfo[i].Ident
3732          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3733
3734        // Implicitly declare the argument as type 'int' for lack of a better
3735        // type.
3736        DeclSpec DS;
3737        const char* PrevSpec; // unused
3738        unsigned DiagID; // unused
3739        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3740                           PrevSpec, DiagID);
3741        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3742        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3743        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3744      }
3745    }
3746  }
3747}
3748
3749Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3750                                              Declarator &D) {
3751  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3752  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3753         "Not a function declarator!");
3754  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3755
3756  if (FTI.hasPrototype) {
3757    // FIXME: Diagnose arguments without names in C.
3758  }
3759
3760  Scope *ParentScope = FnBodyScope->getParent();
3761
3762  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3763                                  MultiTemplateParamsArg(*this),
3764                                  /*IsFunctionDefinition=*/true);
3765  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3766}
3767
3768Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3769  if (!D)
3770    return D;
3771  FunctionDecl *FD = 0;
3772
3773  if (FunctionTemplateDecl *FunTmpl
3774        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3775    FD = FunTmpl->getTemplatedDecl();
3776  else
3777    FD = cast<FunctionDecl>(D.getAs<Decl>());
3778
3779  CurFunctionNeedsScopeChecking = false;
3780
3781  // See if this is a redefinition.
3782  const FunctionDecl *Definition;
3783  if (FD->getBody(Definition)) {
3784    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3785    Diag(Definition->getLocation(), diag::note_previous_definition);
3786  }
3787
3788  // Builtin functions cannot be defined.
3789  if (unsigned BuiltinID = FD->getBuiltinID()) {
3790    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3791      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3792      FD->setInvalidDecl();
3793    }
3794  }
3795
3796  // The return type of a function definition must be complete
3797  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3798  QualType ResultType = FD->getResultType();
3799  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3800      !FD->isInvalidDecl() &&
3801      RequireCompleteType(FD->getLocation(), ResultType,
3802                          diag::err_func_def_incomplete_result))
3803    FD->setInvalidDecl();
3804
3805  // GNU warning -Wmissing-prototypes:
3806  //   Warn if a global function is defined without a previous
3807  //   prototype declaration. This warning is issued even if the
3808  //   definition itself provides a prototype. The aim is to detect
3809  //   global functions that fail to be declared in header files.
3810  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3811      !FD->isMain()) {
3812    bool MissingPrototype = true;
3813    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3814         Prev; Prev = Prev->getPreviousDeclaration()) {
3815      // Ignore any declarations that occur in function or method
3816      // scope, because they aren't visible from the header.
3817      if (Prev->getDeclContext()->isFunctionOrMethod())
3818        continue;
3819
3820      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3821      break;
3822    }
3823
3824    if (MissingPrototype)
3825      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3826  }
3827
3828  if (FnBodyScope)
3829    PushDeclContext(FnBodyScope, FD);
3830
3831  // Check the validity of our function parameters
3832  CheckParmsForFunctionDef(FD);
3833
3834  // Introduce our parameters into the function scope
3835  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3836    ParmVarDecl *Param = FD->getParamDecl(p);
3837    Param->setOwningFunction(FD);
3838
3839    // If this has an identifier, add it to the scope stack.
3840    if (Param->getIdentifier() && FnBodyScope)
3841      PushOnScopeChains(Param, FnBodyScope);
3842  }
3843
3844  // Checking attributes of current function definition
3845  // dllimport attribute.
3846  if (FD->getAttr<DLLImportAttr>() &&
3847      (!FD->getAttr<DLLExportAttr>())) {
3848    // dllimport attribute cannot be applied to definition.
3849    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3850      Diag(FD->getLocation(),
3851           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3852        << "dllimport";
3853      FD->setInvalidDecl();
3854      return DeclPtrTy::make(FD);
3855    } else {
3856      // If a symbol previously declared dllimport is later defined, the
3857      // attribute is ignored in subsequent references, and a warning is
3858      // emitted.
3859      Diag(FD->getLocation(),
3860           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3861        << FD->getNameAsCString() << "dllimport";
3862    }
3863  }
3864  return DeclPtrTy::make(FD);
3865}
3866
3867Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3868  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3869}
3870
3871Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3872                                              bool IsInstantiation) {
3873  Decl *dcl = D.getAs<Decl>();
3874  Stmt *Body = BodyArg.takeAs<Stmt>();
3875
3876  FunctionDecl *FD = 0;
3877  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3878  if (FunTmpl)
3879    FD = FunTmpl->getTemplatedDecl();
3880  else
3881    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3882
3883  if (FD) {
3884    FD->setBody(Body);
3885    if (FD->isMain())
3886      // C and C++ allow for main to automagically return 0.
3887      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3888      FD->setHasImplicitReturnZero(true);
3889    else
3890      CheckFallThroughForFunctionDef(FD, Body);
3891
3892    if (!FD->isInvalidDecl())
3893      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3894
3895    // C++ [basic.def.odr]p2:
3896    //   [...] A virtual member function is used if it is not pure. [...]
3897    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3898      if (Method->isVirtual() && !Method->isPure())
3899        MarkDeclarationReferenced(Method->getLocation(), Method);
3900
3901    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3902  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3903    assert(MD == getCurMethodDecl() && "Method parsing confused");
3904    MD->setBody(Body);
3905    CheckFallThroughForFunctionDef(MD, Body);
3906    MD->setEndLoc(Body->getLocEnd());
3907
3908    if (!MD->isInvalidDecl())
3909      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3910  } else {
3911    Body->Destroy(Context);
3912    return DeclPtrTy();
3913  }
3914  if (!IsInstantiation)
3915    PopDeclContext();
3916
3917  // Verify and clean out per-function state.
3918
3919  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3920
3921  // Check goto/label use.
3922  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3923       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3924    LabelStmt *L = I->second;
3925
3926    // Verify that we have no forward references left.  If so, there was a goto
3927    // or address of a label taken, but no definition of it.  Label fwd
3928    // definitions are indicated with a null substmt.
3929    if (L->getSubStmt() != 0)
3930      continue;
3931
3932    // Emit error.
3933    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3934
3935    // At this point, we have gotos that use the bogus label.  Stitch it into
3936    // the function body so that they aren't leaked and that the AST is well
3937    // formed.
3938    if (Body == 0) {
3939      // The whole function wasn't parsed correctly, just delete this.
3940      L->Destroy(Context);
3941      continue;
3942    }
3943
3944    // Otherwise, the body is valid: we want to stitch the label decl into the
3945    // function somewhere so that it is properly owned and so that the goto
3946    // has a valid target.  Do this by creating a new compound stmt with the
3947    // label in it.
3948
3949    // Give the label a sub-statement.
3950    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3951
3952    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3953                               cast<CXXTryStmt>(Body)->getTryBlock() :
3954                               cast<CompoundStmt>(Body);
3955    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3956    Elements.push_back(L);
3957    Compound->setStmts(Context, &Elements[0], Elements.size());
3958  }
3959  FunctionLabelMap.clear();
3960
3961  if (!Body) return D;
3962
3963  // Verify that that gotos and switch cases don't jump into scopes illegally.
3964  if (CurFunctionNeedsScopeChecking)
3965    DiagnoseInvalidJumps(Body);
3966
3967  // C++ constructors that have function-try-blocks can't have return
3968  // statements in the handlers of that block. (C++ [except.handle]p14)
3969  // Verify this.
3970  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3971    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3972
3973  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3974    computeBaseOrMembersToDestroy(Destructor);
3975  return D;
3976}
3977
3978/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3979/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3980NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3981                                          IdentifierInfo &II, Scope *S) {
3982  // Before we produce a declaration for an implicitly defined
3983  // function, see whether there was a locally-scoped declaration of
3984  // this name as a function or variable. If so, use that
3985  // (non-visible) declaration, and complain about it.
3986  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3987    = LocallyScopedExternalDecls.find(&II);
3988  if (Pos != LocallyScopedExternalDecls.end()) {
3989    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3990    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3991    return Pos->second;
3992  }
3993
3994  // Extension in C99.  Legal in C90, but warn about it.
3995  if (II.getName().startswith("__builtin_"))
3996    Diag(Loc, diag::warn_builtin_unknown) << &II;
3997  else if (getLangOptions().C99)
3998    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3999  else
4000    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4001
4002  // Set a Declarator for the implicit definition: int foo();
4003  const char *Dummy;
4004  DeclSpec DS;
4005  unsigned DiagID;
4006  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4007  Error = Error; // Silence warning.
4008  assert(!Error && "Error setting up implicit decl!");
4009  Declarator D(DS, Declarator::BlockContext);
4010  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4011                                             0, 0, false, SourceLocation(),
4012                                             false, 0,0,0, Loc, Loc, D),
4013                SourceLocation());
4014  D.SetIdentifier(&II, Loc);
4015
4016  // Insert this function into translation-unit scope.
4017
4018  DeclContext *PrevDC = CurContext;
4019  CurContext = Context.getTranslationUnitDecl();
4020
4021  FunctionDecl *FD =
4022 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4023  FD->setImplicit();
4024
4025  CurContext = PrevDC;
4026
4027  AddKnownFunctionAttributes(FD);
4028
4029  return FD;
4030}
4031
4032/// \brief Adds any function attributes that we know a priori based on
4033/// the declaration of this function.
4034///
4035/// These attributes can apply both to implicitly-declared builtins
4036/// (like __builtin___printf_chk) or to library-declared functions
4037/// like NSLog or printf.
4038void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4039  if (FD->isInvalidDecl())
4040    return;
4041
4042  // If this is a built-in function, map its builtin attributes to
4043  // actual attributes.
4044  if (unsigned BuiltinID = FD->getBuiltinID()) {
4045    // Handle printf-formatting attributes.
4046    unsigned FormatIdx;
4047    bool HasVAListArg;
4048    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4049      if (!FD->getAttr<FormatAttr>())
4050        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4051                                             HasVAListArg ? 0 : FormatIdx + 2));
4052    }
4053
4054    // Mark const if we don't care about errno and that is the only
4055    // thing preventing the function from being const. This allows
4056    // IRgen to use LLVM intrinsics for such functions.
4057    if (!getLangOptions().MathErrno &&
4058        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4059      if (!FD->getAttr<ConstAttr>())
4060        FD->addAttr(::new (Context) ConstAttr());
4061    }
4062
4063    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4064      FD->addAttr(::new (Context) NoReturnAttr());
4065  }
4066
4067  IdentifierInfo *Name = FD->getIdentifier();
4068  if (!Name)
4069    return;
4070  if ((!getLangOptions().CPlusPlus &&
4071       FD->getDeclContext()->isTranslationUnit()) ||
4072      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4073       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4074       LinkageSpecDecl::lang_c)) {
4075    // Okay: this could be a libc/libm/Objective-C function we know
4076    // about.
4077  } else
4078    return;
4079
4080  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4081    // FIXME: NSLog and NSLogv should be target specific
4082    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4083      // FIXME: We known better than our headers.
4084      const_cast<FormatAttr *>(Format)->setType("printf");
4085    } else
4086      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4087                                             Name->isStr("NSLogv") ? 0 : 2));
4088  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4089    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4090    // target-specific builtins, perhaps?
4091    if (!FD->getAttr<FormatAttr>())
4092      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4093                                             Name->isStr("vasprintf") ? 0 : 3));
4094  }
4095}
4096
4097TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4098                                    DeclaratorInfo *DInfo) {
4099  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4100  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4101
4102  if (!DInfo) {
4103    assert(D.isInvalidType() && "no declarator info for valid type");
4104    DInfo = Context.getTrivialDeclaratorInfo(T);
4105  }
4106
4107  // Scope manipulation handled by caller.
4108  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4109                                           D.getIdentifierLoc(),
4110                                           D.getIdentifier(),
4111                                           DInfo);
4112
4113  if (const TagType *TT = T->getAs<TagType>()) {
4114    TagDecl *TD = TT->getDecl();
4115
4116    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4117    // keep track of the TypedefDecl.
4118    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4119      TD->setTypedefForAnonDecl(NewTD);
4120  }
4121
4122  if (D.isInvalidType())
4123    NewTD->setInvalidDecl();
4124  return NewTD;
4125}
4126
4127
4128/// \brief Determine whether a tag with a given kind is acceptable
4129/// as a redeclaration of the given tag declaration.
4130///
4131/// \returns true if the new tag kind is acceptable, false otherwise.
4132bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4133                                        TagDecl::TagKind NewTag,
4134                                        SourceLocation NewTagLoc,
4135                                        const IdentifierInfo &Name) {
4136  // C++ [dcl.type.elab]p3:
4137  //   The class-key or enum keyword present in the
4138  //   elaborated-type-specifier shall agree in kind with the
4139  //   declaration to which the name in theelaborated-type-specifier
4140  //   refers. This rule also applies to the form of
4141  //   elaborated-type-specifier that declares a class-name or
4142  //   friend class since it can be construed as referring to the
4143  //   definition of the class. Thus, in any
4144  //   elaborated-type-specifier, the enum keyword shall be used to
4145  //   refer to an enumeration (7.2), the union class-keyshall be
4146  //   used to refer to a union (clause 9), and either the class or
4147  //   struct class-key shall be used to refer to a class (clause 9)
4148  //   declared using the class or struct class-key.
4149  TagDecl::TagKind OldTag = Previous->getTagKind();
4150  if (OldTag == NewTag)
4151    return true;
4152
4153  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4154      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4155    // Warn about the struct/class tag mismatch.
4156    bool isTemplate = false;
4157    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4158      isTemplate = Record->getDescribedClassTemplate();
4159
4160    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4161      << (NewTag == TagDecl::TK_class)
4162      << isTemplate << &Name
4163      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4164                              OldTag == TagDecl::TK_class? "class" : "struct");
4165    Diag(Previous->getLocation(), diag::note_previous_use);
4166    return true;
4167  }
4168  return false;
4169}
4170
4171/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4172/// former case, Name will be non-null.  In the later case, Name will be null.
4173/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4174/// reference/declaration/definition of a tag.
4175Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4176                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4177                               IdentifierInfo *Name, SourceLocation NameLoc,
4178                               AttributeList *Attr, AccessSpecifier AS,
4179                               MultiTemplateParamsArg TemplateParameterLists,
4180                               bool &OwnedDecl, bool &IsDependent) {
4181  // If this is not a definition, it must have a name.
4182  assert((Name != 0 || TUK == TUK_Definition) &&
4183         "Nameless record must be a definition!");
4184
4185  OwnedDecl = false;
4186  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4187
4188  // FIXME: Check explicit specializations more carefully.
4189  bool isExplicitSpecialization = false;
4190  if (TUK != TUK_Reference) {
4191    if (TemplateParameterList *TemplateParams
4192          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4193                        (TemplateParameterList**)TemplateParameterLists.get(),
4194                                              TemplateParameterLists.size(),
4195                                                    isExplicitSpecialization)) {
4196      if (TemplateParams->size() > 0) {
4197        // This is a declaration or definition of a class template (which may
4198        // be a member of another template).
4199        OwnedDecl = false;
4200        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4201                                               SS, Name, NameLoc, Attr,
4202                                               TemplateParams,
4203                                               AS);
4204        TemplateParameterLists.release();
4205        return Result.get();
4206      } else {
4207        // The "template<>" header is extraneous.
4208        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4209          << ElaboratedType::getNameForTagKind(Kind) << Name;
4210        isExplicitSpecialization = true;
4211      }
4212    }
4213
4214    TemplateParameterLists.release();
4215  }
4216
4217  DeclContext *SearchDC = CurContext;
4218  DeclContext *DC = CurContext;
4219  NamedDecl *PrevDecl = 0;
4220  bool isStdBadAlloc = false;
4221  bool Invalid = false;
4222
4223  bool RedeclarationOnly = (TUK != TUK_Reference);
4224
4225  if (Name && SS.isNotEmpty()) {
4226    // We have a nested-name tag ('struct foo::bar').
4227
4228    // Check for invalid 'foo::'.
4229    if (SS.isInvalid()) {
4230      Name = 0;
4231      goto CreateNewDecl;
4232    }
4233
4234    // If this is a friend or a reference to a class in a dependent
4235    // context, don't try to make a decl for it.
4236    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4237      DC = computeDeclContext(SS, false);
4238      if (!DC) {
4239        IsDependent = true;
4240        return DeclPtrTy();
4241      }
4242    }
4243
4244    if (RequireCompleteDeclContext(SS))
4245      return DeclPtrTy::make((Decl *)0);
4246
4247    DC = computeDeclContext(SS, true);
4248    SearchDC = DC;
4249    // Look-up name inside 'foo::'.
4250    LookupResult R;
4251    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4252
4253    if (R.isAmbiguous()) {
4254      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4255      return DeclPtrTy();
4256    }
4257
4258    if (R.getKind() == LookupResult::Found)
4259      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4260
4261    // A tag 'foo::bar' must already exist.
4262    if (!PrevDecl) {
4263      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4264      Name = 0;
4265      Invalid = true;
4266      goto CreateNewDecl;
4267    }
4268  } else if (Name) {
4269    // If this is a named struct, check to see if there was a previous forward
4270    // declaration or definition.
4271    // FIXME: We're looking into outer scopes here, even when we
4272    // shouldn't be. Doing so can result in ambiguities that we
4273    // shouldn't be diagnosing.
4274    LookupResult R;
4275    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4276    if (R.isAmbiguous()) {
4277      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4278      // FIXME: This is not best way to recover from case like:
4279      //
4280      // struct S s;
4281      //
4282      // causes needless "incomplete type" error later.
4283      Name = 0;
4284      PrevDecl = 0;
4285      Invalid = true;
4286    } else
4287      PrevDecl = R.getAsSingleDecl(Context);
4288
4289    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4290      // FIXME: This makes sure that we ignore the contexts associated
4291      // with C structs, unions, and enums when looking for a matching
4292      // tag declaration or definition. See the similar lookup tweak
4293      // in Sema::LookupName; is there a better way to deal with this?
4294      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4295        SearchDC = SearchDC->getParent();
4296    }
4297  }
4298
4299  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4300    // Maybe we will complain about the shadowed template parameter.
4301    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4302    // Just pretend that we didn't see the previous declaration.
4303    PrevDecl = 0;
4304  }
4305
4306  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4307      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4308    // This is a declaration of or a reference to "std::bad_alloc".
4309    isStdBadAlloc = true;
4310
4311    if (!PrevDecl && StdBadAlloc) {
4312      // std::bad_alloc has been implicitly declared (but made invisible to
4313      // name lookup). Fill in this implicit declaration as the previous
4314      // declaration, so that the declarations get chained appropriately.
4315      PrevDecl = StdBadAlloc;
4316    }
4317  }
4318
4319  if (PrevDecl) {
4320    // Check whether the previous declaration is usable.
4321    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4322
4323    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4324      // If this is a use of a previous tag, or if the tag is already declared
4325      // in the same scope (so that the definition/declaration completes or
4326      // rementions the tag), reuse the decl.
4327      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4328          isDeclInScope(PrevDecl, SearchDC, S)) {
4329        // Make sure that this wasn't declared as an enum and now used as a
4330        // struct or something similar.
4331        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4332          bool SafeToContinue
4333            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4334               Kind != TagDecl::TK_enum);
4335          if (SafeToContinue)
4336            Diag(KWLoc, diag::err_use_with_wrong_tag)
4337              << Name
4338              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4339                                                  PrevTagDecl->getKindName());
4340          else
4341            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4342          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4343
4344          if (SafeToContinue)
4345            Kind = PrevTagDecl->getTagKind();
4346          else {
4347            // Recover by making this an anonymous redefinition.
4348            Name = 0;
4349            PrevDecl = 0;
4350            Invalid = true;
4351          }
4352        }
4353
4354        if (!Invalid) {
4355          // If this is a use, just return the declaration we found.
4356
4357          // FIXME: In the future, return a variant or some other clue
4358          // for the consumer of this Decl to know it doesn't own it.
4359          // For our current ASTs this shouldn't be a problem, but will
4360          // need to be changed with DeclGroups.
4361          if (TUK == TUK_Reference || TUK == TUK_Friend)
4362            return DeclPtrTy::make(PrevDecl);
4363
4364          // Diagnose attempts to redefine a tag.
4365          if (TUK == TUK_Definition) {
4366            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4367              // If we're defining a specialization and the previous definition
4368              // is from an implicit instantiation, don't emit an error
4369              // here; we'll catch this in the general case below.
4370              if (!isExplicitSpecialization ||
4371                  !isa<CXXRecordDecl>(Def) ||
4372                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4373                                               == TSK_ExplicitSpecialization) {
4374                Diag(NameLoc, diag::err_redefinition) << Name;
4375                Diag(Def->getLocation(), diag::note_previous_definition);
4376                // If this is a redefinition, recover by making this
4377                // struct be anonymous, which will make any later
4378                // references get the previous definition.
4379                Name = 0;
4380                PrevDecl = 0;
4381                Invalid = true;
4382              }
4383            } else {
4384              // If the type is currently being defined, complain
4385              // about a nested redefinition.
4386              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4387              if (Tag->isBeingDefined()) {
4388                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4389                Diag(PrevTagDecl->getLocation(),
4390                     diag::note_previous_definition);
4391                Name = 0;
4392                PrevDecl = 0;
4393                Invalid = true;
4394              }
4395            }
4396
4397            // Okay, this is definition of a previously declared or referenced
4398            // tag PrevDecl. We're going to create a new Decl for it.
4399          }
4400        }
4401        // If we get here we have (another) forward declaration or we
4402        // have a definition.  Just create a new decl.
4403
4404      } else {
4405        // If we get here, this is a definition of a new tag type in a nested
4406        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4407        // new decl/type.  We set PrevDecl to NULL so that the entities
4408        // have distinct types.
4409        PrevDecl = 0;
4410      }
4411      // If we get here, we're going to create a new Decl. If PrevDecl
4412      // is non-NULL, it's a definition of the tag declared by
4413      // PrevDecl. If it's NULL, we have a new definition.
4414    } else {
4415      // PrevDecl is a namespace, template, or anything else
4416      // that lives in the IDNS_Tag identifier namespace.
4417      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4418        // The tag name clashes with a namespace name, issue an error and
4419        // recover by making this tag be anonymous.
4420        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4421        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4422        Name = 0;
4423        PrevDecl = 0;
4424        Invalid = true;
4425      } else {
4426        // The existing declaration isn't relevant to us; we're in a
4427        // new scope, so clear out the previous declaration.
4428        PrevDecl = 0;
4429      }
4430    }
4431  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4432             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4433    // C++ [basic.scope.pdecl]p5:
4434    //   -- for an elaborated-type-specifier of the form
4435    //
4436    //          class-key identifier
4437    //
4438    //      if the elaborated-type-specifier is used in the
4439    //      decl-specifier-seq or parameter-declaration-clause of a
4440    //      function defined in namespace scope, the identifier is
4441    //      declared as a class-name in the namespace that contains
4442    //      the declaration; otherwise, except as a friend
4443    //      declaration, the identifier is declared in the smallest
4444    //      non-class, non-function-prototype scope that contains the
4445    //      declaration.
4446    //
4447    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4448    // C structs and unions.
4449    //
4450    // GNU C also supports this behavior as part of its incomplete
4451    // enum types extension, while GNU C++ does not.
4452    //
4453    // Find the context where we'll be declaring the tag.
4454    // FIXME: We would like to maintain the current DeclContext as the
4455    // lexical context,
4456    while (SearchDC->isRecord())
4457      SearchDC = SearchDC->getParent();
4458
4459    // Find the scope where we'll be declaring the tag.
4460    while (S->isClassScope() ||
4461           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4462           ((S->getFlags() & Scope::DeclScope) == 0) ||
4463           (S->getEntity() &&
4464            ((DeclContext *)S->getEntity())->isTransparentContext()))
4465      S = S->getParent();
4466
4467  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4468    // C++ [namespace.memdef]p3:
4469    //   If a friend declaration in a non-local class first declares a
4470    //   class or function, the friend class or function is a member of
4471    //   the innermost enclosing namespace.
4472    while (!SearchDC->isFileContext())
4473      SearchDC = SearchDC->getParent();
4474
4475    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4476    while (S->getEntity() != SearchDC)
4477      S = S->getParent();
4478  }
4479
4480CreateNewDecl:
4481
4482  // If there is an identifier, use the location of the identifier as the
4483  // location of the decl, otherwise use the location of the struct/union
4484  // keyword.
4485  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4486
4487  // Otherwise, create a new declaration. If there is a previous
4488  // declaration of the same entity, the two will be linked via
4489  // PrevDecl.
4490  TagDecl *New;
4491
4492  if (Kind == TagDecl::TK_enum) {
4493    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4494    // enum X { A, B, C } D;    D should chain to X.
4495    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4496                           cast_or_null<EnumDecl>(PrevDecl));
4497    // If this is an undefined enum, warn.
4498    if (TUK != TUK_Definition && !Invalid)  {
4499      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4500                                              : diag::ext_forward_ref_enum;
4501      Diag(Loc, DK);
4502    }
4503  } else {
4504    // struct/union/class
4505
4506    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4507    // struct X { int A; } D;    D should chain to X.
4508    if (getLangOptions().CPlusPlus) {
4509      // FIXME: Look for a way to use RecordDecl for simple structs.
4510      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4511                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4512
4513      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4514        StdBadAlloc = cast<CXXRecordDecl>(New);
4515    } else
4516      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4517                               cast_or_null<RecordDecl>(PrevDecl));
4518  }
4519
4520  if (Kind != TagDecl::TK_enum) {
4521    // Handle #pragma pack: if the #pragma pack stack has non-default
4522    // alignment, make up a packed attribute for this decl. These
4523    // attributes are checked when the ASTContext lays out the
4524    // structure.
4525    //
4526    // It is important for implementing the correct semantics that this
4527    // happen here (in act on tag decl). The #pragma pack stack is
4528    // maintained as a result of parser callbacks which can occur at
4529    // many points during the parsing of a struct declaration (because
4530    // the #pragma tokens are effectively skipped over during the
4531    // parsing of the struct).
4532    if (unsigned Alignment = getPragmaPackAlignment())
4533      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4534  }
4535
4536  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4537    // C++ [dcl.typedef]p3:
4538    //   [...] Similarly, in a given scope, a class or enumeration
4539    //   shall not be declared with the same name as a typedef-name
4540    //   that is declared in that scope and refers to a type other
4541    //   than the class or enumeration itself.
4542    LookupResult Lookup;
4543    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4544    TypedefDecl *PrevTypedef = 0;
4545    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4546      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4547
4548    NamedDecl *PrevTypedefNamed = PrevTypedef;
4549    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4550        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4551          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4552      Diag(Loc, diag::err_tag_definition_of_typedef)
4553        << Context.getTypeDeclType(New)
4554        << PrevTypedef->getUnderlyingType();
4555      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4556      Invalid = true;
4557    }
4558  }
4559
4560  // If this is a specialization of a member class (of a class template),
4561  // check the specialization.
4562  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4563    Invalid = true;
4564
4565  if (Invalid)
4566    New->setInvalidDecl();
4567
4568  if (Attr)
4569    ProcessDeclAttributeList(S, New, Attr);
4570
4571  // If we're declaring or defining a tag in function prototype scope
4572  // in C, note that this type can only be used within the function.
4573  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4574    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4575
4576  // Set the lexical context. If the tag has a C++ scope specifier, the
4577  // lexical context will be different from the semantic context.
4578  New->setLexicalDeclContext(CurContext);
4579
4580  // Mark this as a friend decl if applicable.
4581  if (TUK == TUK_Friend)
4582    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4583
4584  // Set the access specifier.
4585  if (!Invalid && TUK != TUK_Friend)
4586    SetMemberAccessSpecifier(New, PrevDecl, AS);
4587
4588  if (TUK == TUK_Definition)
4589    New->startDefinition();
4590
4591  // If this has an identifier, add it to the scope stack.
4592  if (TUK == TUK_Friend) {
4593    // We might be replacing an existing declaration in the lookup tables;
4594    // if so, borrow its access specifier.
4595    if (PrevDecl)
4596      New->setAccess(PrevDecl->getAccess());
4597
4598    // Friend tag decls are visible in fairly strange ways.
4599    if (!CurContext->isDependentContext()) {
4600      DeclContext *DC = New->getDeclContext()->getLookupContext();
4601      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4602      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4603        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4604    }
4605  } else if (Name) {
4606    S = getNonFieldDeclScope(S);
4607    PushOnScopeChains(New, S);
4608  } else {
4609    CurContext->addDecl(New);
4610  }
4611
4612  // If this is the C FILE type, notify the AST context.
4613  if (IdentifierInfo *II = New->getIdentifier())
4614    if (!New->isInvalidDecl() &&
4615        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4616        II->isStr("FILE"))
4617      Context.setFILEDecl(New);
4618
4619  OwnedDecl = true;
4620  return DeclPtrTy::make(New);
4621}
4622
4623void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4624  AdjustDeclIfTemplate(TagD);
4625  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4626
4627  // Enter the tag context.
4628  PushDeclContext(S, Tag);
4629
4630  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4631    FieldCollector->StartClass();
4632
4633    if (Record->getIdentifier()) {
4634      // C++ [class]p2:
4635      //   [...] The class-name is also inserted into the scope of the
4636      //   class itself; this is known as the injected-class-name. For
4637      //   purposes of access checking, the injected-class-name is treated
4638      //   as if it were a public member name.
4639      CXXRecordDecl *InjectedClassName
4640        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4641                                CurContext, Record->getLocation(),
4642                                Record->getIdentifier(),
4643                                Record->getTagKeywordLoc(),
4644                                Record);
4645      InjectedClassName->setImplicit();
4646      InjectedClassName->setAccess(AS_public);
4647      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4648        InjectedClassName->setDescribedClassTemplate(Template);
4649      PushOnScopeChains(InjectedClassName, S);
4650      assert(InjectedClassName->isInjectedClassName() &&
4651             "Broken injected-class-name");
4652    }
4653  }
4654}
4655
4656void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4657                                    SourceLocation RBraceLoc) {
4658  AdjustDeclIfTemplate(TagD);
4659  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4660  Tag->setRBraceLoc(RBraceLoc);
4661
4662  if (isa<CXXRecordDecl>(Tag))
4663    FieldCollector->FinishClass();
4664
4665  // Exit this scope of this tag's definition.
4666  PopDeclContext();
4667
4668  // Notify the consumer that we've defined a tag.
4669  Consumer.HandleTagDeclDefinition(Tag);
4670}
4671
4672// Note that FieldName may be null for anonymous bitfields.
4673bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4674                          QualType FieldTy, const Expr *BitWidth,
4675                          bool *ZeroWidth) {
4676  // Default to true; that shouldn't confuse checks for emptiness
4677  if (ZeroWidth)
4678    *ZeroWidth = true;
4679
4680  // C99 6.7.2.1p4 - verify the field type.
4681  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4682  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4683    // Handle incomplete types with specific error.
4684    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4685      return true;
4686    if (FieldName)
4687      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4688        << FieldName << FieldTy << BitWidth->getSourceRange();
4689    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4690      << FieldTy << BitWidth->getSourceRange();
4691  }
4692
4693  // If the bit-width is type- or value-dependent, don't try to check
4694  // it now.
4695  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4696    return false;
4697
4698  llvm::APSInt Value;
4699  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4700    return true;
4701
4702  if (Value != 0 && ZeroWidth)
4703    *ZeroWidth = false;
4704
4705  // Zero-width bitfield is ok for anonymous field.
4706  if (Value == 0 && FieldName)
4707    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4708
4709  if (Value.isSigned() && Value.isNegative()) {
4710    if (FieldName)
4711      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4712               << FieldName << Value.toString(10);
4713    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4714      << Value.toString(10);
4715  }
4716
4717  if (!FieldTy->isDependentType()) {
4718    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4719    if (Value.getZExtValue() > TypeSize) {
4720      if (FieldName)
4721        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4722          << FieldName << (unsigned)TypeSize;
4723      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4724        << (unsigned)TypeSize;
4725    }
4726  }
4727
4728  return false;
4729}
4730
4731/// ActOnField - Each field of a struct/union/class is passed into this in order
4732/// to create a FieldDecl object for it.
4733Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4734                                 SourceLocation DeclStart,
4735                                 Declarator &D, ExprTy *BitfieldWidth) {
4736  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4737                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4738                               AS_public);
4739  return DeclPtrTy::make(Res);
4740}
4741
4742/// HandleField - Analyze a field of a C struct or a C++ data member.
4743///
4744FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4745                             SourceLocation DeclStart,
4746                             Declarator &D, Expr *BitWidth,
4747                             AccessSpecifier AS) {
4748  IdentifierInfo *II = D.getIdentifier();
4749  SourceLocation Loc = DeclStart;
4750  if (II) Loc = D.getIdentifierLoc();
4751
4752  DeclaratorInfo *DInfo = 0;
4753  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4754  if (getLangOptions().CPlusPlus)
4755    CheckExtraCXXDefaultArguments(D);
4756
4757  DiagnoseFunctionSpecifiers(D);
4758
4759  if (D.getDeclSpec().isThreadSpecified())
4760    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4761
4762  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4763
4764  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4765    // Maybe we will complain about the shadowed template parameter.
4766    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4767    // Just pretend that we didn't see the previous declaration.
4768    PrevDecl = 0;
4769  }
4770
4771  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4772    PrevDecl = 0;
4773
4774  bool Mutable
4775    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4776  SourceLocation TSSL = D.getSourceRange().getBegin();
4777  FieldDecl *NewFD
4778    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4779                     AS, PrevDecl, &D);
4780  if (NewFD->isInvalidDecl() && PrevDecl) {
4781    // Don't introduce NewFD into scope; there's already something
4782    // with the same name in the same scope.
4783  } else if (II) {
4784    PushOnScopeChains(NewFD, S);
4785  } else
4786    Record->addDecl(NewFD);
4787
4788  return NewFD;
4789}
4790
4791/// \brief Build a new FieldDecl and check its well-formedness.
4792///
4793/// This routine builds a new FieldDecl given the fields name, type,
4794/// record, etc. \p PrevDecl should refer to any previous declaration
4795/// with the same name and in the same scope as the field to be
4796/// created.
4797///
4798/// \returns a new FieldDecl.
4799///
4800/// \todo The Declarator argument is a hack. It will be removed once
4801FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4802                                DeclaratorInfo *DInfo,
4803                                RecordDecl *Record, SourceLocation Loc,
4804                                bool Mutable, Expr *BitWidth,
4805                                SourceLocation TSSL,
4806                                AccessSpecifier AS, NamedDecl *PrevDecl,
4807                                Declarator *D) {
4808  IdentifierInfo *II = Name.getAsIdentifierInfo();
4809  bool InvalidDecl = false;
4810  if (D) InvalidDecl = D->isInvalidType();
4811
4812  // If we receive a broken type, recover by assuming 'int' and
4813  // marking this declaration as invalid.
4814  if (T.isNull()) {
4815    InvalidDecl = true;
4816    T = Context.IntTy;
4817  }
4818
4819  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4820  // than a variably modified type.
4821  if (T->isVariablyModifiedType()) {
4822    bool SizeIsNegative;
4823    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4824                                                           SizeIsNegative);
4825    if (!FixedTy.isNull()) {
4826      Diag(Loc, diag::warn_illegal_constant_array_size);
4827      T = FixedTy;
4828    } else {
4829      if (SizeIsNegative)
4830        Diag(Loc, diag::err_typecheck_negative_array_size);
4831      else
4832        Diag(Loc, diag::err_typecheck_field_variable_size);
4833      InvalidDecl = true;
4834    }
4835  }
4836
4837  // Fields can not have abstract class types
4838  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4839                             AbstractFieldType))
4840    InvalidDecl = true;
4841
4842  bool ZeroWidth = false;
4843  // If this is declared as a bit-field, check the bit-field.
4844  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4845    InvalidDecl = true;
4846    DeleteExpr(BitWidth);
4847    BitWidth = 0;
4848    ZeroWidth = false;
4849  }
4850
4851  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4852                                       BitWidth, Mutable);
4853  if (InvalidDecl)
4854    NewFD->setInvalidDecl();
4855
4856  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4857    Diag(Loc, diag::err_duplicate_member) << II;
4858    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4859    NewFD->setInvalidDecl();
4860  }
4861
4862  if (getLangOptions().CPlusPlus) {
4863    QualType EltTy = Context.getBaseElementType(T);
4864
4865    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4866
4867    if (!T->isPODType())
4868      CXXRecord->setPOD(false);
4869    if (!ZeroWidth)
4870      CXXRecord->setEmpty(false);
4871
4872    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4873      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4874
4875      if (!RDecl->hasTrivialConstructor())
4876        CXXRecord->setHasTrivialConstructor(false);
4877      if (!RDecl->hasTrivialCopyConstructor())
4878        CXXRecord->setHasTrivialCopyConstructor(false);
4879      if (!RDecl->hasTrivialCopyAssignment())
4880        CXXRecord->setHasTrivialCopyAssignment(false);
4881      if (!RDecl->hasTrivialDestructor())
4882        CXXRecord->setHasTrivialDestructor(false);
4883
4884      // C++ 9.5p1: An object of a class with a non-trivial
4885      // constructor, a non-trivial copy constructor, a non-trivial
4886      // destructor, or a non-trivial copy assignment operator
4887      // cannot be a member of a union, nor can an array of such
4888      // objects.
4889      // TODO: C++0x alters this restriction significantly.
4890      if (Record->isUnion()) {
4891        // We check for copy constructors before constructors
4892        // because otherwise we'll never get complaints about
4893        // copy constructors.
4894
4895        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4896
4897        CXXSpecialMember member;
4898        if (!RDecl->hasTrivialCopyConstructor())
4899          member = CXXCopyConstructor;
4900        else if (!RDecl->hasTrivialConstructor())
4901          member = CXXDefaultConstructor;
4902        else if (!RDecl->hasTrivialCopyAssignment())
4903          member = CXXCopyAssignment;
4904        else if (!RDecl->hasTrivialDestructor())
4905          member = CXXDestructor;
4906        else
4907          member = invalid;
4908
4909        if (member != invalid) {
4910          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4911          DiagnoseNontrivial(RT, member);
4912          NewFD->setInvalidDecl();
4913        }
4914      }
4915    }
4916  }
4917
4918  // FIXME: We need to pass in the attributes given an AST
4919  // representation, not a parser representation.
4920  if (D)
4921    // FIXME: What to pass instead of TUScope?
4922    ProcessDeclAttributes(TUScope, NewFD, *D);
4923
4924  if (T.isObjCGCWeak())
4925    Diag(Loc, diag::warn_attribute_weak_on_field);
4926
4927  NewFD->setAccess(AS);
4928
4929  // C++ [dcl.init.aggr]p1:
4930  //   An aggregate is an array or a class (clause 9) with [...] no
4931  //   private or protected non-static data members (clause 11).
4932  // A POD must be an aggregate.
4933  if (getLangOptions().CPlusPlus &&
4934      (AS == AS_private || AS == AS_protected)) {
4935    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4936    CXXRecord->setAggregate(false);
4937    CXXRecord->setPOD(false);
4938  }
4939
4940  return NewFD;
4941}
4942
4943/// DiagnoseNontrivial - Given that a class has a non-trivial
4944/// special member, figure out why.
4945void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4946  QualType QT(T, 0U);
4947  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4948
4949  // Check whether the member was user-declared.
4950  switch (member) {
4951  case CXXDefaultConstructor:
4952    if (RD->hasUserDeclaredConstructor()) {
4953      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4954      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4955        if (!ci->isImplicitlyDefined(Context)) {
4956          SourceLocation CtorLoc = ci->getLocation();
4957          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4958          return;
4959        }
4960
4961      assert(0 && "found no user-declared constructors");
4962      return;
4963    }
4964    break;
4965
4966  case CXXCopyConstructor:
4967    if (RD->hasUserDeclaredCopyConstructor()) {
4968      SourceLocation CtorLoc =
4969        RD->getCopyConstructor(Context, 0)->getLocation();
4970      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4971      return;
4972    }
4973    break;
4974
4975  case CXXCopyAssignment:
4976    if (RD->hasUserDeclaredCopyAssignment()) {
4977      // FIXME: this should use the location of the copy
4978      // assignment, not the type.
4979      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4980      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4981      return;
4982    }
4983    break;
4984
4985  case CXXDestructor:
4986    if (RD->hasUserDeclaredDestructor()) {
4987      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4988      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4989      return;
4990    }
4991    break;
4992  }
4993
4994  typedef CXXRecordDecl::base_class_iterator base_iter;
4995
4996  // Virtual bases and members inhibit trivial copying/construction,
4997  // but not trivial destruction.
4998  if (member != CXXDestructor) {
4999    // Check for virtual bases.  vbases includes indirect virtual bases,
5000    // so we just iterate through the direct bases.
5001    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5002      if (bi->isVirtual()) {
5003        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5004        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5005        return;
5006      }
5007
5008    // Check for virtual methods.
5009    typedef CXXRecordDecl::method_iterator meth_iter;
5010    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5011         ++mi) {
5012      if (mi->isVirtual()) {
5013        SourceLocation MLoc = mi->getSourceRange().getBegin();
5014        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5015        return;
5016      }
5017    }
5018  }
5019
5020  bool (CXXRecordDecl::*hasTrivial)() const;
5021  switch (member) {
5022  case CXXDefaultConstructor:
5023    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5024  case CXXCopyConstructor:
5025    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5026  case CXXCopyAssignment:
5027    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5028  case CXXDestructor:
5029    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5030  default:
5031    assert(0 && "unexpected special member"); return;
5032  }
5033
5034  // Check for nontrivial bases (and recurse).
5035  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5036    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5037    assert(BaseRT && "Don't know how to handle dependent bases");
5038    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5039    if (!(BaseRecTy->*hasTrivial)()) {
5040      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5041      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5042      DiagnoseNontrivial(BaseRT, member);
5043      return;
5044    }
5045  }
5046
5047  // Check for nontrivial members (and recurse).
5048  typedef RecordDecl::field_iterator field_iter;
5049  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5050       ++fi) {
5051    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5052    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5053      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5054
5055      if (!(EltRD->*hasTrivial)()) {
5056        SourceLocation FLoc = (*fi)->getLocation();
5057        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5058        DiagnoseNontrivial(EltRT, member);
5059        return;
5060      }
5061    }
5062  }
5063
5064  assert(0 && "found no explanation for non-trivial member");
5065}
5066
5067/// TranslateIvarVisibility - Translate visibility from a token ID to an
5068///  AST enum value.
5069static ObjCIvarDecl::AccessControl
5070TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5071  switch (ivarVisibility) {
5072  default: assert(0 && "Unknown visitibility kind");
5073  case tok::objc_private: return ObjCIvarDecl::Private;
5074  case tok::objc_public: return ObjCIvarDecl::Public;
5075  case tok::objc_protected: return ObjCIvarDecl::Protected;
5076  case tok::objc_package: return ObjCIvarDecl::Package;
5077  }
5078}
5079
5080/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5081/// in order to create an IvarDecl object for it.
5082Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5083                                SourceLocation DeclStart,
5084                                DeclPtrTy IntfDecl,
5085                                Declarator &D, ExprTy *BitfieldWidth,
5086                                tok::ObjCKeywordKind Visibility) {
5087
5088  IdentifierInfo *II = D.getIdentifier();
5089  Expr *BitWidth = (Expr*)BitfieldWidth;
5090  SourceLocation Loc = DeclStart;
5091  if (II) Loc = D.getIdentifierLoc();
5092
5093  // FIXME: Unnamed fields can be handled in various different ways, for
5094  // example, unnamed unions inject all members into the struct namespace!
5095
5096  DeclaratorInfo *DInfo = 0;
5097  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5098
5099  if (BitWidth) {
5100    // 6.7.2.1p3, 6.7.2.1p4
5101    if (VerifyBitField(Loc, II, T, BitWidth)) {
5102      D.setInvalidType();
5103      DeleteExpr(BitWidth);
5104      BitWidth = 0;
5105    }
5106  } else {
5107    // Not a bitfield.
5108
5109    // validate II.
5110
5111  }
5112
5113  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5114  // than a variably modified type.
5115  if (T->isVariablyModifiedType()) {
5116    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5117    D.setInvalidType();
5118  }
5119
5120  // Get the visibility (access control) for this ivar.
5121  ObjCIvarDecl::AccessControl ac =
5122    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5123                                        : ObjCIvarDecl::None;
5124  // Must set ivar's DeclContext to its enclosing interface.
5125  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5126  DeclContext *EnclosingContext;
5127  if (ObjCImplementationDecl *IMPDecl =
5128      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5129    // Case of ivar declared in an implementation. Context is that of its class.
5130    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5131    assert(IDecl && "No class- ActOnIvar");
5132    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5133  } else
5134    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5135  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5136
5137  // Construct the decl.
5138  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5139                                             EnclosingContext, Loc, II, T,
5140                                             DInfo, ac, (Expr *)BitfieldWidth);
5141
5142  if (II) {
5143    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5144    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5145        && !isa<TagDecl>(PrevDecl)) {
5146      Diag(Loc, diag::err_duplicate_member) << II;
5147      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5148      NewID->setInvalidDecl();
5149    }
5150  }
5151
5152  // Process attributes attached to the ivar.
5153  ProcessDeclAttributes(S, NewID, D);
5154
5155  if (D.isInvalidType())
5156    NewID->setInvalidDecl();
5157
5158  if (II) {
5159    // FIXME: When interfaces are DeclContexts, we'll need to add
5160    // these to the interface.
5161    S->AddDecl(DeclPtrTy::make(NewID));
5162    IdResolver.AddDecl(NewID);
5163  }
5164
5165  return DeclPtrTy::make(NewID);
5166}
5167
5168void Sema::ActOnFields(Scope* S,
5169                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5170                       DeclPtrTy *Fields, unsigned NumFields,
5171                       SourceLocation LBrac, SourceLocation RBrac,
5172                       AttributeList *Attr) {
5173  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5174  assert(EnclosingDecl && "missing record or interface decl");
5175
5176  // If the decl this is being inserted into is invalid, then it may be a
5177  // redeclaration or some other bogus case.  Don't try to add fields to it.
5178  if (EnclosingDecl->isInvalidDecl()) {
5179    // FIXME: Deallocate fields?
5180    return;
5181  }
5182
5183
5184  // Verify that all the fields are okay.
5185  unsigned NumNamedMembers = 0;
5186  llvm::SmallVector<FieldDecl*, 32> RecFields;
5187
5188  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5189  for (unsigned i = 0; i != NumFields; ++i) {
5190    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5191
5192    // Get the type for the field.
5193    Type *FDTy = FD->getType().getTypePtr();
5194
5195    if (!FD->isAnonymousStructOrUnion()) {
5196      // Remember all fields written by the user.
5197      RecFields.push_back(FD);
5198    }
5199
5200    // If the field is already invalid for some reason, don't emit more
5201    // diagnostics about it.
5202    if (FD->isInvalidDecl())
5203      continue;
5204
5205    // C99 6.7.2.1p2:
5206    //   A structure or union shall not contain a member with
5207    //   incomplete or function type (hence, a structure shall not
5208    //   contain an instance of itself, but may contain a pointer to
5209    //   an instance of itself), except that the last member of a
5210    //   structure with more than one named member may have incomplete
5211    //   array type; such a structure (and any union containing,
5212    //   possibly recursively, a member that is such a structure)
5213    //   shall not be a member of a structure or an element of an
5214    //   array.
5215    if (FDTy->isFunctionType()) {
5216      // Field declared as a function.
5217      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5218        << FD->getDeclName();
5219      FD->setInvalidDecl();
5220      EnclosingDecl->setInvalidDecl();
5221      continue;
5222    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5223               Record && Record->isStruct()) {
5224      // Flexible array member.
5225      if (NumNamedMembers < 1) {
5226        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5227          << FD->getDeclName();
5228        FD->setInvalidDecl();
5229        EnclosingDecl->setInvalidDecl();
5230        continue;
5231      }
5232      // Okay, we have a legal flexible array member at the end of the struct.
5233      if (Record)
5234        Record->setHasFlexibleArrayMember(true);
5235    } else if (!FDTy->isDependentType() &&
5236               RequireCompleteType(FD->getLocation(), FD->getType(),
5237                                   diag::err_field_incomplete)) {
5238      // Incomplete type
5239      FD->setInvalidDecl();
5240      EnclosingDecl->setInvalidDecl();
5241      continue;
5242    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5243      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5244        // If this is a member of a union, then entire union becomes "flexible".
5245        if (Record && Record->isUnion()) {
5246          Record->setHasFlexibleArrayMember(true);
5247        } else {
5248          // If this is a struct/class and this is not the last element, reject
5249          // it.  Note that GCC supports variable sized arrays in the middle of
5250          // structures.
5251          if (i != NumFields-1)
5252            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5253              << FD->getDeclName() << FD->getType();
5254          else {
5255            // We support flexible arrays at the end of structs in
5256            // other structs as an extension.
5257            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5258              << FD->getDeclName();
5259            if (Record)
5260              Record->setHasFlexibleArrayMember(true);
5261          }
5262        }
5263      }
5264      if (Record && FDTTy->getDecl()->hasObjectMember())
5265        Record->setHasObjectMember(true);
5266    } else if (FDTy->isObjCInterfaceType()) {
5267      /// A field cannot be an Objective-c object
5268      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5269      FD->setInvalidDecl();
5270      EnclosingDecl->setInvalidDecl();
5271      continue;
5272    } else if (getLangOptions().ObjC1 &&
5273               getLangOptions().getGCMode() != LangOptions::NonGC &&
5274               Record &&
5275               (FD->getType()->isObjCObjectPointerType() ||
5276                FD->getType().isObjCGCStrong()))
5277      Record->setHasObjectMember(true);
5278    // Keep track of the number of named members.
5279    if (FD->getIdentifier())
5280      ++NumNamedMembers;
5281  }
5282
5283  // Okay, we successfully defined 'Record'.
5284  if (Record) {
5285    Record->completeDefinition(Context);
5286  } else {
5287    ObjCIvarDecl **ClsFields =
5288      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5289    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5290      ID->setIVarList(ClsFields, RecFields.size(), Context);
5291      ID->setLocEnd(RBrac);
5292      // Add ivar's to class's DeclContext.
5293      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5294        ClsFields[i]->setLexicalDeclContext(ID);
5295        ID->addDecl(ClsFields[i]);
5296      }
5297      // Must enforce the rule that ivars in the base classes may not be
5298      // duplicates.
5299      if (ID->getSuperClass()) {
5300        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5301             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5302          ObjCIvarDecl* Ivar = (*IVI);
5303
5304          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5305            ObjCIvarDecl* prevIvar =
5306              ID->getSuperClass()->lookupInstanceVariable(II);
5307            if (prevIvar) {
5308              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5309              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5310            }
5311          }
5312        }
5313      }
5314    } else if (ObjCImplementationDecl *IMPDecl =
5315                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5316      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5317      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5318        // Ivar declared in @implementation never belongs to the implementation.
5319        // Only it is in implementation's lexical context.
5320        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5321      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5322    }
5323  }
5324
5325  if (Attr)
5326    ProcessDeclAttributeList(S, Record, Attr);
5327}
5328
5329EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5330                                          EnumConstantDecl *LastEnumConst,
5331                                          SourceLocation IdLoc,
5332                                          IdentifierInfo *Id,
5333                                          ExprArg val) {
5334  Expr *Val = (Expr *)val.get();
5335
5336  llvm::APSInt EnumVal(32);
5337  QualType EltTy;
5338  if (Val && !Val->isTypeDependent()) {
5339    // Make sure to promote the operand type to int.
5340    UsualUnaryConversions(Val);
5341    if (Val != val.get()) {
5342      val.release();
5343      val = Val;
5344    }
5345
5346    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5347    SourceLocation ExpLoc;
5348    if (!Val->isValueDependent() &&
5349        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5350      Val = 0;
5351    } else {
5352      EltTy = Val->getType();
5353    }
5354  }
5355
5356  if (!Val) {
5357    if (LastEnumConst) {
5358      // Assign the last value + 1.
5359      EnumVal = LastEnumConst->getInitVal();
5360      ++EnumVal;
5361
5362      // Check for overflow on increment.
5363      if (EnumVal < LastEnumConst->getInitVal())
5364        Diag(IdLoc, diag::warn_enum_value_overflow);
5365
5366      EltTy = LastEnumConst->getType();
5367    } else {
5368      // First value, set to zero.
5369      EltTy = Context.IntTy;
5370      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5371    }
5372  }
5373
5374  val.release();
5375  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5376                                  Val, EnumVal);
5377}
5378
5379
5380Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5381                                        DeclPtrTy lastEnumConst,
5382                                        SourceLocation IdLoc,
5383                                        IdentifierInfo *Id,
5384                                        SourceLocation EqualLoc, ExprTy *val) {
5385  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5386  EnumConstantDecl *LastEnumConst =
5387    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5388  Expr *Val = static_cast<Expr*>(val);
5389
5390  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5391  // we find one that is.
5392  S = getNonFieldDeclScope(S);
5393
5394  // Verify that there isn't already something declared with this name in this
5395  // scope.
5396  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5397  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5398    // Maybe we will complain about the shadowed template parameter.
5399    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5400    // Just pretend that we didn't see the previous declaration.
5401    PrevDecl = 0;
5402  }
5403
5404  if (PrevDecl) {
5405    // When in C++, we may get a TagDecl with the same name; in this case the
5406    // enum constant will 'hide' the tag.
5407    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5408           "Received TagDecl when not in C++!");
5409    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5410      if (isa<EnumConstantDecl>(PrevDecl))
5411        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5412      else
5413        Diag(IdLoc, diag::err_redefinition) << Id;
5414      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5415      if (Val) Val->Destroy(Context);
5416      return DeclPtrTy();
5417    }
5418  }
5419
5420  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5421                                            IdLoc, Id, Owned(Val));
5422
5423  // Register this decl in the current scope stack.
5424  if (New)
5425    PushOnScopeChains(New, S);
5426
5427  return DeclPtrTy::make(New);
5428}
5429
5430void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5431                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5432                         DeclPtrTy *Elements, unsigned NumElements,
5433                         Scope *S, AttributeList *Attr) {
5434  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5435  QualType EnumType = Context.getTypeDeclType(Enum);
5436
5437  if (Attr)
5438    ProcessDeclAttributeList(S, Enum, Attr);
5439
5440  // TODO: If the result value doesn't fit in an int, it must be a long or long
5441  // long value.  ISO C does not support this, but GCC does as an extension,
5442  // emit a warning.
5443  unsigned IntWidth = Context.Target.getIntWidth();
5444  unsigned CharWidth = Context.Target.getCharWidth();
5445  unsigned ShortWidth = Context.Target.getShortWidth();
5446
5447  // Verify that all the values are okay, compute the size of the values, and
5448  // reverse the list.
5449  unsigned NumNegativeBits = 0;
5450  unsigned NumPositiveBits = 0;
5451
5452  // Keep track of whether all elements have type int.
5453  bool AllElementsInt = true;
5454
5455  for (unsigned i = 0; i != NumElements; ++i) {
5456    EnumConstantDecl *ECD =
5457      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5458    if (!ECD) continue;  // Already issued a diagnostic.
5459
5460    // If the enum value doesn't fit in an int, emit an extension warning.
5461    const llvm::APSInt &InitVal = ECD->getInitVal();
5462    assert(InitVal.getBitWidth() >= IntWidth &&
5463           "Should have promoted value to int");
5464    if (InitVal.getBitWidth() > IntWidth) {
5465      llvm::APSInt V(InitVal);
5466      V.trunc(IntWidth);
5467      V.extend(InitVal.getBitWidth());
5468      if (V != InitVal)
5469        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5470          << InitVal.toString(10);
5471    }
5472
5473    // Keep track of the size of positive and negative values.
5474    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5475      NumPositiveBits = std::max(NumPositiveBits,
5476                                 (unsigned)InitVal.getActiveBits());
5477    else
5478      NumNegativeBits = std::max(NumNegativeBits,
5479                                 (unsigned)InitVal.getMinSignedBits());
5480
5481    // Keep track of whether every enum element has type int (very commmon).
5482    if (AllElementsInt)
5483      AllElementsInt = ECD->getType() == Context.IntTy;
5484  }
5485
5486  // Figure out the type that should be used for this enum.
5487  // FIXME: Support -fshort-enums.
5488  QualType BestType;
5489  unsigned BestWidth;
5490
5491  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5492
5493  if (NumNegativeBits) {
5494    // If there is a negative value, figure out the smallest integer type (of
5495    // int/long/longlong) that fits.
5496    // If it's packed, check also if it fits a char or a short.
5497    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5498        BestType = Context.SignedCharTy;
5499        BestWidth = CharWidth;
5500    } else if (Packed && NumNegativeBits <= ShortWidth &&
5501               NumPositiveBits < ShortWidth) {
5502        BestType = Context.ShortTy;
5503        BestWidth = ShortWidth;
5504    }
5505    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5506      BestType = Context.IntTy;
5507      BestWidth = IntWidth;
5508    } else {
5509      BestWidth = Context.Target.getLongWidth();
5510
5511      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5512        BestType = Context.LongTy;
5513      else {
5514        BestWidth = Context.Target.getLongLongWidth();
5515
5516        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5517          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5518        BestType = Context.LongLongTy;
5519      }
5520    }
5521  } else {
5522    // If there is no negative value, figure out which of uint, ulong, ulonglong
5523    // fits.
5524    // If it's packed, check also if it fits a char or a short.
5525    if (Packed && NumPositiveBits <= CharWidth) {
5526        BestType = Context.UnsignedCharTy;
5527        BestWidth = CharWidth;
5528    } else if (Packed && NumPositiveBits <= ShortWidth) {
5529        BestType = Context.UnsignedShortTy;
5530        BestWidth = ShortWidth;
5531    }
5532    else if (NumPositiveBits <= IntWidth) {
5533      BestType = Context.UnsignedIntTy;
5534      BestWidth = IntWidth;
5535    } else if (NumPositiveBits <=
5536               (BestWidth = Context.Target.getLongWidth())) {
5537      BestType = Context.UnsignedLongTy;
5538    } else {
5539      BestWidth = Context.Target.getLongLongWidth();
5540      assert(NumPositiveBits <= BestWidth &&
5541             "How could an initializer get larger than ULL?");
5542      BestType = Context.UnsignedLongLongTy;
5543    }
5544  }
5545
5546  // Loop over all of the enumerator constants, changing their types to match
5547  // the type of the enum if needed.
5548  for (unsigned i = 0; i != NumElements; ++i) {
5549    EnumConstantDecl *ECD =
5550      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5551    if (!ECD) continue;  // Already issued a diagnostic.
5552
5553    // Standard C says the enumerators have int type, but we allow, as an
5554    // extension, the enumerators to be larger than int size.  If each
5555    // enumerator value fits in an int, type it as an int, otherwise type it the
5556    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5557    // that X has type 'int', not 'unsigned'.
5558    if (ECD->getType() == Context.IntTy) {
5559      // Make sure the init value is signed.
5560      llvm::APSInt IV = ECD->getInitVal();
5561      IV.setIsSigned(true);
5562      ECD->setInitVal(IV);
5563
5564      if (getLangOptions().CPlusPlus)
5565        // C++ [dcl.enum]p4: Following the closing brace of an
5566        // enum-specifier, each enumerator has the type of its
5567        // enumeration.
5568        ECD->setType(EnumType);
5569      continue;  // Already int type.
5570    }
5571
5572    // Determine whether the value fits into an int.
5573    llvm::APSInt InitVal = ECD->getInitVal();
5574    bool FitsInInt;
5575    if (InitVal.isUnsigned() || !InitVal.isNegative())
5576      FitsInInt = InitVal.getActiveBits() < IntWidth;
5577    else
5578      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5579
5580    // If it fits into an integer type, force it.  Otherwise force it to match
5581    // the enum decl type.
5582    QualType NewTy;
5583    unsigned NewWidth;
5584    bool NewSign;
5585    if (FitsInInt) {
5586      NewTy = Context.IntTy;
5587      NewWidth = IntWidth;
5588      NewSign = true;
5589    } else if (ECD->getType() == BestType) {
5590      // Already the right type!
5591      if (getLangOptions().CPlusPlus)
5592        // C++ [dcl.enum]p4: Following the closing brace of an
5593        // enum-specifier, each enumerator has the type of its
5594        // enumeration.
5595        ECD->setType(EnumType);
5596      continue;
5597    } else {
5598      NewTy = BestType;
5599      NewWidth = BestWidth;
5600      NewSign = BestType->isSignedIntegerType();
5601    }
5602
5603    // Adjust the APSInt value.
5604    InitVal.extOrTrunc(NewWidth);
5605    InitVal.setIsSigned(NewSign);
5606    ECD->setInitVal(InitVal);
5607
5608    // Adjust the Expr initializer and type.
5609    if (ECD->getInitExpr())
5610      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5611                                                      CastExpr::CK_IntegralCast,
5612                                                      ECD->getInitExpr(),
5613                                                      /*isLvalue=*/false));
5614    if (getLangOptions().CPlusPlus)
5615      // C++ [dcl.enum]p4: Following the closing brace of an
5616      // enum-specifier, each enumerator has the type of its
5617      // enumeration.
5618      ECD->setType(EnumType);
5619    else
5620      ECD->setType(NewTy);
5621  }
5622
5623  Enum->completeDefinition(Context, BestType);
5624}
5625
5626Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5627                                            ExprArg expr) {
5628  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5629
5630  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5631                                                   Loc, AsmString);
5632  CurContext->addDecl(New);
5633  return DeclPtrTy::make(New);
5634}
5635
5636void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5637                             SourceLocation PragmaLoc,
5638                             SourceLocation NameLoc) {
5639  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5640
5641  if (PrevDecl) {
5642    PrevDecl->addAttr(::new (Context) WeakAttr());
5643  } else {
5644    (void)WeakUndeclaredIdentifiers.insert(
5645      std::pair<IdentifierInfo*,WeakInfo>
5646        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5647  }
5648}
5649
5650void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5651                                IdentifierInfo* AliasName,
5652                                SourceLocation PragmaLoc,
5653                                SourceLocation NameLoc,
5654                                SourceLocation AliasNameLoc) {
5655  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5656  WeakInfo W = WeakInfo(Name, NameLoc);
5657
5658  if (PrevDecl) {
5659    if (!PrevDecl->hasAttr<AliasAttr>())
5660      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5661        DeclApplyPragmaWeak(TUScope, ND, W);
5662  } else {
5663    (void)WeakUndeclaredIdentifiers.insert(
5664      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5665  }
5666}
5667