SemaDecl.cpp revision ba3e8b753a3e2262877f0f10c2977be51aef7c65
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
32  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
33
34  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
35                 isa<ObjCInterfaceDecl>(IIDecl) ||
36                 isa<TagDecl>(IIDecl)))
37    return IIDecl;
38  return 0;
39}
40
41DeclContext *Sema::getDCParent(DeclContext *DC) {
42  // If CurContext is a ObjC method, getParent() will return NULL.
43  if (isa<ObjCMethodDecl>(DC))
44    return Context.getTranslationUnitDecl();
45
46  // A C++ inline method is parsed *after* the topmost class it was declared in
47  // is fully parsed (it's "complete").
48  // The parsing of a C++ inline method happens at the declaration context of
49  // the topmost (non-nested) class it is declared in.
50  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
51    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
52    DC = MD->getParent();
53    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
54      DC = RD;
55
56    // Return the declaration context of the topmost class the inline method is
57    // declared in.
58    return DC;
59  }
60
61  return DC->getParent();
62}
63
64void Sema::PushDeclContext(DeclContext *DC) {
65  assert(getDCParent(DC) == CurContext &&
66       "The next DeclContext should be directly contained in the current one.");
67  CurContext = DC;
68}
69
70void Sema::PopDeclContext() {
71  assert(CurContext && "DeclContext imbalance!");
72  CurContext = getDCParent(CurContext);
73}
74
75/// Add this decl to the scope shadowed decl chains.
76void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
77  S->AddDecl(D);
78
79  // C++ [basic.scope]p4:
80  //   -- exactly one declaration shall declare a class name or
81  //   enumeration name that is not a typedef name and the other
82  //   declarations shall all refer to the same object or
83  //   enumerator, or all refer to functions and function templates;
84  //   in this case the class name or enumeration name is hidden.
85  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
86    // We are pushing the name of a tag (enum or class).
87    IdentifierResolver::iterator
88        I = IdResolver.begin(TD->getIdentifier(),
89                             TD->getDeclContext(), false/*LookInParentCtx*/);
90    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
99    FunctionDecl *FD = cast<FunctionDecl>(D);
100    // We are pushing the name of a function, which might be an
101    // overloaded name.
102    IdentifierResolver::iterator
103        I = IdResolver.begin(FD->getIdentifier(),
104                             FD->getDeclContext(), false/*LookInParentCtx*/);
105    if (I != IdResolver.end() &&
106        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
107        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
108      // There is already a declaration with the same name in the same
109      // scope. It must be a function or an overloaded function.
110      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
111      if (!Ovl) {
112        // We haven't yet overloaded this function. Take the existing
113        // FunctionDecl and put it into an OverloadedFunctionDecl.
114        Ovl = OverloadedFunctionDecl::Create(Context,
115                                             FD->getDeclContext(),
116                                             FD->getIdentifier());
117        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
118
119        // Remove the name binding to the existing FunctionDecl...
120        IdResolver.RemoveDecl(*I);
121
122        // ... and put the OverloadedFunctionDecl in its place.
123        IdResolver.AddDecl(Ovl);
124      }
125
126      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
127      // to its list of overloads.
128      Ovl->addOverload(FD);
129
130      return;
131    }
132  }
133
134  IdResolver.AddDecl(D);
135}
136
137void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
138  if (S->decl_empty()) return;
139  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
140
141  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
142       I != E; ++I) {
143    Decl *TmpD = static_cast<Decl*>(*I);
144    assert(TmpD && "This decl didn't get pushed??");
145
146    if (isa<CXXFieldDecl>(TmpD)) continue;
147
148    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
149    ScopedDecl *D = cast<ScopedDecl>(TmpD);
150
151    IdentifierInfo *II = D->getIdentifier();
152    if (!II) continue;
153
154    // We only want to remove the decls from the identifier decl chains for
155    // local scopes, when inside a function/method.
156    if (S->getFnParent() != 0)
157      IdResolver.RemoveDecl(D);
158
159    // Chain this decl to the containing DeclContext.
160    D->setNext(CurContext->getDeclChain());
161    CurContext->setDeclChain(D);
162  }
163}
164
165/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
166/// return 0 if one not found.
167ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
168  // The third "scope" argument is 0 since we aren't enabling lazy built-in
169  // creation from this context.
170  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
171
172  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
173}
174
175/// LookupDecl - Look up the inner-most declaration in the specified
176/// namespace.
177Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
178                       Scope *S, bool enableLazyBuiltinCreation) {
179  if (II == 0) return 0;
180  unsigned NS = NSI;
181  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
182    NS |= Decl::IDNS_Tag;
183
184  // Scan up the scope chain looking for a decl that matches this identifier
185  // that is in the appropriate namespace.  This search should not take long, as
186  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
187  for (IdentifierResolver::iterator
188       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
189    if ((*I)->getIdentifierNamespace() & NS)
190      return *I;
191
192  // If we didn't find a use of this identifier, and if the identifier
193  // corresponds to a compiler builtin, create the decl object for the builtin
194  // now, injecting it into translation unit scope, and return it.
195  if (NS & Decl::IDNS_Ordinary) {
196    if (enableLazyBuiltinCreation) {
197      // If this is a builtin on this (or all) targets, create the decl.
198      if (unsigned BuiltinID = II->getBuiltinID())
199        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
200    }
201    if (getLangOptions().ObjC1) {
202      // @interface and @compatibility_alias introduce typedef-like names.
203      // Unlike typedef's, they can only be introduced at file-scope (and are
204      // therefore not scoped decls). They can, however, be shadowed by
205      // other names in IDNS_Ordinary.
206      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
207      if (IDI != ObjCInterfaceDecls.end())
208        return IDI->second;
209      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
210      if (I != ObjCAliasDecls.end())
211        return I->second->getClassInterface();
212    }
213  }
214  return 0;
215}
216
217void Sema::InitBuiltinVaListType() {
218  if (!Context.getBuiltinVaListType().isNull())
219    return;
220
221  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
222  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
223  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
224  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
225}
226
227/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
228/// lazily create a decl for it.
229ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
230                                      Scope *S) {
231  Builtin::ID BID = (Builtin::ID)bid;
232
233  if (Context.BuiltinInfo.hasVAListUse(BID))
234    InitBuiltinVaListType();
235
236  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
237  FunctionDecl *New = FunctionDecl::Create(Context,
238                                           Context.getTranslationUnitDecl(),
239                                           SourceLocation(), II, R,
240                                           FunctionDecl::Extern, false, 0);
241
242  // Create Decl objects for each parameter, adding them to the
243  // FunctionDecl.
244  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
245    llvm::SmallVector<ParmVarDecl*, 16> Params;
246    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
247      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
248                                           FT->getArgType(i), VarDecl::None, 0,
249                                           0));
250    New->setParams(&Params[0], Params.size());
251  }
252
253
254
255  // TUScope is the translation-unit scope to insert this function into.
256  PushOnScopeChains(New, TUScope);
257  return New;
258}
259
260/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
261/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
262/// situation, merging decls or emitting diagnostics as appropriate.
263///
264TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
265  // Allow multiple definitions for ObjC built-in typedefs.
266  // FIXME: Verify the underlying types are equivalent!
267  if (getLangOptions().ObjC1) {
268    const IdentifierInfo *typeIdent = New->getIdentifier();
269    if (typeIdent == Ident_id) {
270      Context.setObjCIdType(New);
271      return New;
272    } else if (typeIdent == Ident_Class) {
273      Context.setObjCClassType(New);
274      return New;
275    } else if (typeIdent == Ident_SEL) {
276      Context.setObjCSelType(New);
277      return New;
278    } else if (typeIdent == Ident_Protocol) {
279      Context.setObjCProtoType(New->getUnderlyingType());
280      return New;
281    }
282    // Fall through - the typedef name was not a builtin type.
283  }
284  // Verify the old decl was also a typedef.
285  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
286  if (!Old) {
287    Diag(New->getLocation(), diag::err_redefinition_different_kind,
288         New->getName());
289    Diag(OldD->getLocation(), diag::err_previous_definition);
290    return New;
291  }
292
293  // If the typedef types are not identical, reject them in all languages and
294  // with any extensions enabled.
295  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
296      Context.getCanonicalType(Old->getUnderlyingType()) !=
297      Context.getCanonicalType(New->getUnderlyingType())) {
298    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
299         New->getUnderlyingType().getAsString(),
300         Old->getUnderlyingType().getAsString());
301    Diag(Old->getLocation(), diag::err_previous_definition);
302    return Old;
303  }
304
305  if (getLangOptions().Microsoft) return New;
306
307  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
308  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
309  // *either* declaration is in a system header. The code below implements
310  // this adhoc compatibility rule. FIXME: The following code will not
311  // work properly when compiling ".i" files (containing preprocessed output).
312  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
313    SourceManager &SrcMgr = Context.getSourceManager();
314    if (SrcMgr.isInSystemHeader(Old->getLocation()))
315      return New;
316    if (SrcMgr.isInSystemHeader(New->getLocation()))
317      return New;
318  }
319
320  Diag(New->getLocation(), diag::err_redefinition, New->getName());
321  Diag(Old->getLocation(), diag::err_previous_definition);
322  return New;
323}
324
325/// DeclhasAttr - returns true if decl Declaration already has the target
326/// attribute.
327static bool DeclHasAttr(const Decl *decl, const Attr *target) {
328  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
329    if (attr->getKind() == target->getKind())
330      return true;
331
332  return false;
333}
334
335/// MergeAttributes - append attributes from the Old decl to the New one.
336static void MergeAttributes(Decl *New, Decl *Old) {
337  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
338
339  while (attr) {
340     tmp = attr;
341     attr = attr->getNext();
342
343    if (!DeclHasAttr(New, tmp)) {
344       New->addAttr(tmp);
345    } else {
346       tmp->setNext(0);
347       delete(tmp);
348    }
349  }
350
351  Old->invalidateAttrs();
352}
353
354/// MergeFunctionDecl - We just parsed a function 'New' from
355/// declarator D which has the same name and scope as a previous
356/// declaration 'Old'.  Figure out how to resolve this situation,
357/// merging decls or emitting diagnostics as appropriate.
358/// Redeclaration will be set true if this New is a redeclaration OldD.
359///
360/// In C++, New and Old must be declarations that are not
361/// overloaded. Use IsOverload to determine whether New and Old are
362/// overloaded, and to select the Old declaration that New should be
363/// merged with.
364FunctionDecl *
365Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
366  assert(!isa<OverloadedFunctionDecl>(OldD) &&
367         "Cannot merge with an overloaded function declaration");
368
369  Redeclaration = false;
370  // Verify the old decl was also a function.
371  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
372  if (!Old) {
373    Diag(New->getLocation(), diag::err_redefinition_different_kind,
374         New->getName());
375    Diag(OldD->getLocation(), diag::err_previous_definition);
376    return New;
377  }
378
379  // Determine whether the previous declaration was a definition,
380  // implicit declaration, or a declaration.
381  diag::kind PrevDiag;
382  if (Old->isThisDeclarationADefinition())
383    PrevDiag = diag::err_previous_definition;
384  else if (Old->isImplicit())
385    PrevDiag = diag::err_previous_implicit_declaration;
386  else
387    PrevDiag = diag::err_previous_declaration;
388
389  QualType OldQType = Context.getCanonicalType(Old->getType());
390  QualType NewQType = Context.getCanonicalType(New->getType());
391
392  if (getLangOptions().CPlusPlus) {
393    // (C++98 13.1p2):
394    //   Certain function declarations cannot be overloaded:
395    //     -- Function declarations that differ only in the return type
396    //        cannot be overloaded.
397    QualType OldReturnType
398      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
399    QualType NewReturnType
400      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
401    if (OldReturnType != NewReturnType) {
402      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
403      Diag(Old->getLocation(), PrevDiag);
404      return New;
405    }
406
407    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
408    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
409    if (OldMethod && NewMethod) {
410      //    -- Member function declarations with the same name and the
411      //       same parameter types cannot be overloaded if any of them
412      //       is a static member function declaration.
413      if (OldMethod->isStatic() || NewMethod->isStatic()) {
414        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
415        Diag(Old->getLocation(), PrevDiag);
416        return New;
417      }
418    }
419
420    // (C++98 8.3.5p3):
421    //   All declarations for a function shall agree exactly in both the
422    //   return type and the parameter-type-list.
423    if (OldQType == NewQType) {
424      // We have a redeclaration.
425      MergeAttributes(New, Old);
426      Redeclaration = true;
427      return MergeCXXFunctionDecl(New, Old);
428    }
429
430    // Fall through for conflicting redeclarations and redefinitions.
431  }
432
433  // C: Function types need to be compatible, not identical. This handles
434  // duplicate function decls like "void f(int); void f(enum X);" properly.
435  if (!getLangOptions().CPlusPlus &&
436      Context.typesAreCompatible(OldQType, NewQType)) {
437    MergeAttributes(New, Old);
438    Redeclaration = true;
439    return New;
440  }
441
442  // A function that has already been declared has been redeclared or defined
443  // with a different type- show appropriate diagnostic
444
445  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
446  // TODO: This is totally simplistic.  It should handle merging functions
447  // together etc, merging extern int X; int X; ...
448  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
449  Diag(Old->getLocation(), PrevDiag);
450  return New;
451}
452
453/// Predicate for C "tentative" external object definitions (C99 6.9.2).
454static bool isTentativeDefinition(VarDecl *VD) {
455  if (VD->isFileVarDecl())
456    return (!VD->getInit() &&
457            (VD->getStorageClass() == VarDecl::None ||
458             VD->getStorageClass() == VarDecl::Static));
459  return false;
460}
461
462/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
463/// when dealing with C "tentative" external object definitions (C99 6.9.2).
464void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
465  bool VDIsTentative = isTentativeDefinition(VD);
466  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
467
468  for (IdentifierResolver::iterator
469       I = IdResolver.begin(VD->getIdentifier(),
470                            VD->getDeclContext(), false/*LookInParentCtx*/),
471       E = IdResolver.end(); I != E; ++I) {
472    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
473      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
474
475      // Handle the following case:
476      //   int a[10];
477      //   int a[];   - the code below makes sure we set the correct type.
478      //   int a[11]; - this is an error, size isn't 10.
479      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
480          OldDecl->getType()->isConstantArrayType())
481        VD->setType(OldDecl->getType());
482
483      // Check for "tentative" definitions. We can't accomplish this in
484      // MergeVarDecl since the initializer hasn't been attached.
485      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
486        continue;
487
488      // Handle __private_extern__ just like extern.
489      if (OldDecl->getStorageClass() != VarDecl::Extern &&
490          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
491          VD->getStorageClass() != VarDecl::Extern &&
492          VD->getStorageClass() != VarDecl::PrivateExtern) {
493        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
494        Diag(OldDecl->getLocation(), diag::err_previous_definition);
495      }
496    }
497  }
498}
499
500/// MergeVarDecl - We just parsed a variable 'New' which has the same name
501/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
502/// situation, merging decls or emitting diagnostics as appropriate.
503///
504/// Tentative definition rules (C99 6.9.2p2) are checked by
505/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
506/// definitions here, since the initializer hasn't been attached.
507///
508VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
509  // Verify the old decl was also a variable.
510  VarDecl *Old = dyn_cast<VarDecl>(OldD);
511  if (!Old) {
512    Diag(New->getLocation(), diag::err_redefinition_different_kind,
513         New->getName());
514    Diag(OldD->getLocation(), diag::err_previous_definition);
515    return New;
516  }
517
518  MergeAttributes(New, Old);
519
520  // Verify the types match.
521  QualType OldCType = Context.getCanonicalType(Old->getType());
522  QualType NewCType = Context.getCanonicalType(New->getType());
523  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
524    Diag(New->getLocation(), diag::err_redefinition, New->getName());
525    Diag(Old->getLocation(), diag::err_previous_definition);
526    return New;
527  }
528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
529  if (New->getStorageClass() == VarDecl::Static &&
530      (Old->getStorageClass() == VarDecl::None ||
531       Old->getStorageClass() == VarDecl::Extern)) {
532    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
533    Diag(Old->getLocation(), diag::err_previous_definition);
534    return New;
535  }
536  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
537  if (New->getStorageClass() != VarDecl::Static &&
538      Old->getStorageClass() == VarDecl::Static) {
539    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
540    Diag(Old->getLocation(), diag::err_previous_definition);
541    return New;
542  }
543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
544  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
545    Diag(New->getLocation(), diag::err_redefinition, New->getName());
546    Diag(Old->getLocation(), diag::err_previous_definition);
547  }
548  return New;
549}
550
551/// CheckParmsForFunctionDef - Check that the parameters of the given
552/// function are appropriate for the definition of a function. This
553/// takes care of any checks that cannot be performed on the
554/// declaration itself, e.g., that the types of each of the function
555/// parameters are complete.
556bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
557  bool HasInvalidParm = false;
558  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
559    ParmVarDecl *Param = FD->getParamDecl(p);
560
561    // C99 6.7.5.3p4: the parameters in a parameter type list in a
562    // function declarator that is part of a function definition of
563    // that function shall not have incomplete type.
564    if (Param->getType()->isIncompleteType() &&
565        !Param->isInvalidDecl()) {
566      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
567           Param->getType().getAsString());
568      Param->setInvalidDecl();
569      HasInvalidParm = true;
570    }
571  }
572
573  return HasInvalidParm;
574}
575
576/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
577/// no declarator (e.g. "struct foo;") is parsed.
578Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
579  // TODO: emit error on 'int;' or 'const enum foo;'.
580  // TODO: emit error on 'typedef int;'
581  // if (!DS.isMissingDeclaratorOk()) Diag(...);
582
583  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
584}
585
586bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
587  // Get the type before calling CheckSingleAssignmentConstraints(), since
588  // it can promote the expression.
589  QualType InitType = Init->getType();
590
591  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
592  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
593                                  InitType, Init, "initializing");
594}
595
596bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
597  const ArrayType *AT = Context.getAsArrayType(DeclT);
598
599  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
600    // C99 6.7.8p14. We have an array of character type with unknown size
601    // being initialized to a string literal.
602    llvm::APSInt ConstVal(32);
603    ConstVal = strLiteral->getByteLength() + 1;
604    // Return a new array type (C99 6.7.8p22).
605    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
606                                         ArrayType::Normal, 0);
607  } else {
608    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
609    // C99 6.7.8p14. We have an array of character type with known size.
610    // FIXME: Avoid truncation for 64-bit length strings.
611    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
612      Diag(strLiteral->getSourceRange().getBegin(),
613           diag::warn_initializer_string_for_char_array_too_long,
614           strLiteral->getSourceRange());
615  }
616  // Set type from "char *" to "constant array of char".
617  strLiteral->setType(DeclT);
618  // For now, we always return false (meaning success).
619  return false;
620}
621
622StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
623  const ArrayType *AT = Context.getAsArrayType(DeclType);
624  if (AT && AT->getElementType()->isCharType()) {
625    return dyn_cast<StringLiteral>(Init);
626  }
627  return 0;
628}
629
630bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
631  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
632  // of unknown size ("[]") or an object type that is not a variable array type.
633  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
634    return Diag(VAT->getSizeExpr()->getLocStart(),
635                diag::err_variable_object_no_init,
636                VAT->getSizeExpr()->getSourceRange());
637
638  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
639  if (!InitList) {
640    // FIXME: Handle wide strings
641    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
642      return CheckStringLiteralInit(strLiteral, DeclType);
643
644    // C99 6.7.8p16.
645    if (DeclType->isArrayType())
646      return Diag(Init->getLocStart(),
647                  diag::err_array_init_list_required,
648                  Init->getSourceRange());
649
650    return CheckSingleInitializer(Init, DeclType);
651  }
652
653  InitListChecker CheckInitList(this, InitList, DeclType);
654  return CheckInitList.HadError();
655}
656
657Sema::DeclTy *
658Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
659  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
660  IdentifierInfo *II = D.getIdentifier();
661
662  // All of these full declarators require an identifier.  If it doesn't have
663  // one, the ParsedFreeStandingDeclSpec action should be used.
664  if (II == 0) {
665    Diag(D.getDeclSpec().getSourceRange().getBegin(),
666         diag::err_declarator_need_ident,
667         D.getDeclSpec().getSourceRange(), D.getSourceRange());
668    return 0;
669  }
670
671  // The scope passed in may not be a decl scope.  Zip up the scope tree until
672  // we find one that is.
673  while ((S->getFlags() & Scope::DeclScope) == 0)
674    S = S->getParent();
675
676  // See if this is a redefinition of a variable in the same scope.
677  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
678  ScopedDecl *New;
679  bool InvalidDecl = false;
680
681  // In C++, the previous declaration we find might be a tag type
682  // (class or enum). In this case, the new declaration will hide the
683  // tag type.
684  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
685    PrevDecl = 0;
686
687  QualType R = GetTypeForDeclarator(D, S);
688  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
689
690  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
691    // Check that there are no default arguments (C++ only).
692    if (getLangOptions().CPlusPlus)
693      CheckExtraCXXDefaultArguments(D);
694
695    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
696    if (!NewTD) return 0;
697
698    // Handle attributes prior to checking for duplicates in MergeVarDecl
699    ProcessDeclAttributes(NewTD, D);
700    // Merge the decl with the existing one if appropriate. If the decl is
701    // in an outer scope, it isn't the same thing.
702    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
703      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
704      if (NewTD == 0) return 0;
705    }
706    New = NewTD;
707    if (S->getFnParent() == 0) {
708      // C99 6.7.7p2: If a typedef name specifies a variably modified type
709      // then it shall have block scope.
710      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
711        // FIXME: Diagnostic needs to be fixed.
712        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
713        InvalidDecl = true;
714      }
715    }
716  } else if (R.getTypePtr()->isFunctionType()) {
717    FunctionDecl::StorageClass SC = FunctionDecl::None;
718    switch (D.getDeclSpec().getStorageClassSpec()) {
719      default: assert(0 && "Unknown storage class!");
720      case DeclSpec::SCS_auto:
721      case DeclSpec::SCS_register:
722        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
723             R.getAsString());
724        InvalidDecl = true;
725        break;
726      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
727      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
728      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
729      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
730    }
731
732    bool isInline = D.getDeclSpec().isInlineSpecified();
733    FunctionDecl *NewFD;
734    if (D.getContext() == Declarator::MemberContext) {
735      // This is a C++ method declaration.
736      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
737                                    D.getIdentifierLoc(), II, R,
738                                    (SC == FunctionDecl::Static), isInline,
739                                    LastDeclarator);
740    } else {
741      NewFD = FunctionDecl::Create(Context, CurContext,
742                                   D.getIdentifierLoc(),
743                                   II, R, SC, isInline, LastDeclarator,
744                                   // FIXME: Move to DeclGroup...
745                                   D.getDeclSpec().getSourceRange().getBegin());
746    }
747    // Handle attributes.
748    ProcessDeclAttributes(NewFD, D);
749
750    // Handle GNU asm-label extension (encoded as an attribute).
751    if (Expr *E = (Expr*) D.getAsmLabel()) {
752      // The parser guarantees this is a string.
753      StringLiteral *SE = cast<StringLiteral>(E);
754      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
755                                                  SE->getByteLength())));
756    }
757
758    // Copy the parameter declarations from the declarator D to
759    // the function declaration NewFD, if they are available.
760    if (D.getNumTypeObjects() > 0) {
761      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
762
763      // Create Decl objects for each parameter, adding them to the
764      // FunctionDecl.
765      llvm::SmallVector<ParmVarDecl*, 16> Params;
766
767      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
768      // function that takes no arguments, not a function that takes a
769      // single void argument.
770      // We let through "const void" here because Sema::GetTypeForDeclarator
771      // already checks for that case.
772      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
773          FTI.ArgInfo[0].Param &&
774          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
775        // empty arg list, don't push any params.
776        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
777
778        // In C++, the empty parameter-type-list must be spelled "void"; a
779        // typedef of void is not permitted.
780        if (getLangOptions().CPlusPlus &&
781            Param->getType().getUnqualifiedType() != Context.VoidTy) {
782          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
783        }
784      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
785        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
786          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
787      }
788
789      NewFD->setParams(&Params[0], Params.size());
790    } else if (R->getAsTypedefType()) {
791      // When we're declaring a function with a typedef, as in the
792      // following example, we'll need to synthesize (unnamed)
793      // parameters for use in the declaration.
794      //
795      // @code
796      // typedef void fn(int);
797      // fn f;
798      // @endcode
799      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
800      if (!FT) {
801        // This is a typedef of a function with no prototype, so we
802        // don't need to do anything.
803      } else if ((FT->getNumArgs() == 0) ||
804          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
805           FT->getArgType(0)->isVoidType())) {
806        // This is a zero-argument function. We don't need to do anything.
807      } else {
808        // Synthesize a parameter for each argument type.
809        llvm::SmallVector<ParmVarDecl*, 16> Params;
810        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
811             ArgType != FT->arg_type_end(); ++ArgType) {
812          Params.push_back(ParmVarDecl::Create(Context, CurContext,
813                                               SourceLocation(), 0,
814                                               *ArgType, VarDecl::None,
815                                               0, 0));
816        }
817
818        NewFD->setParams(&Params[0], Params.size());
819      }
820    }
821
822    // Merge the decl with the existing one if appropriate. Since C functions
823    // are in a flat namespace, make sure we consider decls in outer scopes.
824    if (PrevDecl &&
825        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
826      bool Redeclaration = false;
827
828      // If C++, determine whether NewFD is an overload of PrevDecl or
829      // a declaration that requires merging. If it's an overload,
830      // there's no more work to do here; we'll just add the new
831      // function to the scope.
832      OverloadedFunctionDecl::function_iterator MatchedDecl;
833      if (!getLangOptions().CPlusPlus ||
834          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
835        Decl *OldDecl = PrevDecl;
836
837        // If PrevDecl was an overloaded function, extract the
838        // FunctionDecl that matched.
839        if (isa<OverloadedFunctionDecl>(PrevDecl))
840          OldDecl = *MatchedDecl;
841
842        // NewFD and PrevDecl represent declarations that need to be
843        // merged.
844        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
845
846        if (NewFD == 0) return 0;
847        if (Redeclaration) {
848          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
849
850          if (OldDecl == PrevDecl) {
851            // Remove the name binding for the previous
852            // declaration. We'll add the binding back later, but then
853            // it will refer to the new declaration (which will
854            // contain more information).
855            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
856          } else {
857            // We need to update the OverloadedFunctionDecl with the
858            // latest declaration of this function, so that name
859            // lookup will always refer to the latest declaration of
860            // this function.
861            *MatchedDecl = NewFD;
862
863            // Add the redeclaration to the current scope, since we'll
864            // be skipping PushOnScopeChains.
865            S->AddDecl(NewFD);
866
867            return NewFD;
868          }
869        }
870      }
871    }
872    New = NewFD;
873
874    // In C++, check default arguments now that we have merged decls.
875    if (getLangOptions().CPlusPlus)
876      CheckCXXDefaultArguments(NewFD);
877  } else {
878    // Check that there are no default arguments (C++ only).
879    if (getLangOptions().CPlusPlus)
880      CheckExtraCXXDefaultArguments(D);
881
882    if (R.getTypePtr()->isObjCInterfaceType()) {
883      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
884           D.getIdentifier()->getName());
885      InvalidDecl = true;
886    }
887
888    VarDecl *NewVD;
889    VarDecl::StorageClass SC;
890    switch (D.getDeclSpec().getStorageClassSpec()) {
891    default: assert(0 && "Unknown storage class!");
892    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
893    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
894    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
895    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
896    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
897    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
898    }
899    if (D.getContext() == Declarator::MemberContext) {
900      assert(SC == VarDecl::Static && "Invalid storage class for member!");
901      // This is a static data member for a C++ class.
902      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
903                                      D.getIdentifierLoc(), II,
904                                      R, LastDeclarator);
905    } else {
906      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
907      if (S->getFnParent() == 0) {
908        // C99 6.9p2: The storage-class specifiers auto and register shall not
909        // appear in the declaration specifiers in an external declaration.
910        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
911          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
912               R.getAsString());
913          InvalidDecl = true;
914        }
915      }
916        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
917                                II, R, SC, LastDeclarator,
918                                // FIXME: Move to DeclGroup...
919                                D.getDeclSpec().getSourceRange().getBegin());
920        NewVD->setThreadSpecified(ThreadSpecified);
921    }
922    // Handle attributes prior to checking for duplicates in MergeVarDecl
923    ProcessDeclAttributes(NewVD, D);
924
925    // Handle GNU asm-label extension (encoded as an attribute).
926    if (Expr *E = (Expr*) D.getAsmLabel()) {
927      // The parser guarantees this is a string.
928      StringLiteral *SE = cast<StringLiteral>(E);
929      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
930                                                  SE->getByteLength())));
931    }
932
933    // Emit an error if an address space was applied to decl with local storage.
934    // This includes arrays of objects with address space qualifiers, but not
935    // automatic variables that point to other address spaces.
936    // ISO/IEC TR 18037 S5.1.2
937    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
938      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
939      InvalidDecl = true;
940    }
941    // Merge the decl with the existing one if appropriate. If the decl is
942    // in an outer scope, it isn't the same thing.
943    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
944      NewVD = MergeVarDecl(NewVD, PrevDecl);
945      if (NewVD == 0) return 0;
946    }
947    New = NewVD;
948  }
949
950  // If this has an identifier, add it to the scope stack.
951  if (II)
952    PushOnScopeChains(New, S);
953  // If any semantic error occurred, mark the decl as invalid.
954  if (D.getInvalidType() || InvalidDecl)
955    New->setInvalidDecl();
956
957  return New;
958}
959
960bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
961  switch (Init->getStmtClass()) {
962  default:
963    Diag(Init->getExprLoc(),
964         diag::err_init_element_not_constant, Init->getSourceRange());
965    return true;
966  case Expr::ParenExprClass: {
967    const ParenExpr* PE = cast<ParenExpr>(Init);
968    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
969  }
970  case Expr::CompoundLiteralExprClass:
971    return cast<CompoundLiteralExpr>(Init)->isFileScope();
972  case Expr::DeclRefExprClass: {
973    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
974    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
975      if (VD->hasGlobalStorage())
976        return false;
977      Diag(Init->getExprLoc(),
978           diag::err_init_element_not_constant, Init->getSourceRange());
979      return true;
980    }
981    if (isa<FunctionDecl>(D))
982      return false;
983    Diag(Init->getExprLoc(),
984         diag::err_init_element_not_constant, Init->getSourceRange());
985    return true;
986  }
987  case Expr::MemberExprClass: {
988    const MemberExpr *M = cast<MemberExpr>(Init);
989    if (M->isArrow())
990      return CheckAddressConstantExpression(M->getBase());
991    return CheckAddressConstantExpressionLValue(M->getBase());
992  }
993  case Expr::ArraySubscriptExprClass: {
994    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
995    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
996    return CheckAddressConstantExpression(ASE->getBase()) ||
997           CheckArithmeticConstantExpression(ASE->getIdx());
998  }
999  case Expr::StringLiteralClass:
1000  case Expr::PredefinedExprClass:
1001    return false;
1002  case Expr::UnaryOperatorClass: {
1003    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1004
1005    // C99 6.6p9
1006    if (Exp->getOpcode() == UnaryOperator::Deref)
1007      return CheckAddressConstantExpression(Exp->getSubExpr());
1008
1009    Diag(Init->getExprLoc(),
1010         diag::err_init_element_not_constant, Init->getSourceRange());
1011    return true;
1012  }
1013  }
1014}
1015
1016bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1017  switch (Init->getStmtClass()) {
1018  default:
1019    Diag(Init->getExprLoc(),
1020         diag::err_init_element_not_constant, Init->getSourceRange());
1021    return true;
1022  case Expr::ParenExprClass:
1023    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1024  case Expr::StringLiteralClass:
1025  case Expr::ObjCStringLiteralClass:
1026    return false;
1027  case Expr::CallExprClass:
1028    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1029    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1030           Builtin::BI__builtin___CFStringMakeConstantString)
1031      return false;
1032
1033    Diag(Init->getExprLoc(),
1034         diag::err_init_element_not_constant, Init->getSourceRange());
1035    return true;
1036
1037  case Expr::UnaryOperatorClass: {
1038    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1039
1040    // C99 6.6p9
1041    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1042      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1043
1044    if (Exp->getOpcode() == UnaryOperator::Extension)
1045      return CheckAddressConstantExpression(Exp->getSubExpr());
1046
1047    Diag(Init->getExprLoc(),
1048         diag::err_init_element_not_constant, Init->getSourceRange());
1049    return true;
1050  }
1051  case Expr::BinaryOperatorClass: {
1052    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1053    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1054
1055    Expr *PExp = Exp->getLHS();
1056    Expr *IExp = Exp->getRHS();
1057    if (IExp->getType()->isPointerType())
1058      std::swap(PExp, IExp);
1059
1060    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1061    return CheckAddressConstantExpression(PExp) ||
1062           CheckArithmeticConstantExpression(IExp);
1063  }
1064  case Expr::ImplicitCastExprClass:
1065  case Expr::ExplicitCastExprClass: {
1066    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1067    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1068      // Check for implicit promotion
1069      if (SubExpr->getType()->isFunctionType() ||
1070          SubExpr->getType()->isArrayType())
1071        return CheckAddressConstantExpressionLValue(SubExpr);
1072    }
1073
1074    // Check for pointer->pointer cast
1075    if (SubExpr->getType()->isPointerType())
1076      return CheckAddressConstantExpression(SubExpr);
1077
1078    if (SubExpr->getType()->isIntegralType()) {
1079      // Check for the special-case of a pointer->int->pointer cast;
1080      // this isn't standard, but some code requires it. See
1081      // PR2720 for an example.
1082      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1083        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1084          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1085          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1086          if (IntWidth >= PointerWidth) {
1087            return CheckAddressConstantExpression(SubCast->getSubExpr());
1088          }
1089        }
1090      }
1091    }
1092    if (SubExpr->getType()->isArithmeticType()) {
1093      return CheckArithmeticConstantExpression(SubExpr);
1094    }
1095
1096    Diag(Init->getExprLoc(),
1097         diag::err_init_element_not_constant, Init->getSourceRange());
1098    return true;
1099  }
1100  case Expr::ConditionalOperatorClass: {
1101    // FIXME: Should we pedwarn here?
1102    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1103    if (!Exp->getCond()->getType()->isArithmeticType()) {
1104      Diag(Init->getExprLoc(),
1105           diag::err_init_element_not_constant, Init->getSourceRange());
1106      return true;
1107    }
1108    if (CheckArithmeticConstantExpression(Exp->getCond()))
1109      return true;
1110    if (Exp->getLHS() &&
1111        CheckAddressConstantExpression(Exp->getLHS()))
1112      return true;
1113    return CheckAddressConstantExpression(Exp->getRHS());
1114  }
1115  case Expr::AddrLabelExprClass:
1116    return false;
1117  }
1118}
1119
1120static const Expr* FindExpressionBaseAddress(const Expr* E);
1121
1122static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1123  switch (E->getStmtClass()) {
1124  default:
1125    return E;
1126  case Expr::ParenExprClass: {
1127    const ParenExpr* PE = cast<ParenExpr>(E);
1128    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1129  }
1130  case Expr::MemberExprClass: {
1131    const MemberExpr *M = cast<MemberExpr>(E);
1132    if (M->isArrow())
1133      return FindExpressionBaseAddress(M->getBase());
1134    return FindExpressionBaseAddressLValue(M->getBase());
1135  }
1136  case Expr::ArraySubscriptExprClass: {
1137    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1138    return FindExpressionBaseAddress(ASE->getBase());
1139  }
1140  case Expr::UnaryOperatorClass: {
1141    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1142
1143    if (Exp->getOpcode() == UnaryOperator::Deref)
1144      return FindExpressionBaseAddress(Exp->getSubExpr());
1145
1146    return E;
1147  }
1148  }
1149}
1150
1151static const Expr* FindExpressionBaseAddress(const Expr* E) {
1152  switch (E->getStmtClass()) {
1153  default:
1154    return E;
1155  case Expr::ParenExprClass: {
1156    const ParenExpr* PE = cast<ParenExpr>(E);
1157    return FindExpressionBaseAddress(PE->getSubExpr());
1158  }
1159  case Expr::UnaryOperatorClass: {
1160    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1161
1162    // C99 6.6p9
1163    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1164      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1165
1166    if (Exp->getOpcode() == UnaryOperator::Extension)
1167      return FindExpressionBaseAddress(Exp->getSubExpr());
1168
1169    return E;
1170  }
1171  case Expr::BinaryOperatorClass: {
1172    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1173
1174    Expr *PExp = Exp->getLHS();
1175    Expr *IExp = Exp->getRHS();
1176    if (IExp->getType()->isPointerType())
1177      std::swap(PExp, IExp);
1178
1179    return FindExpressionBaseAddress(PExp);
1180  }
1181  case Expr::ImplicitCastExprClass: {
1182    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1183
1184    // Check for implicit promotion
1185    if (SubExpr->getType()->isFunctionType() ||
1186        SubExpr->getType()->isArrayType())
1187      return FindExpressionBaseAddressLValue(SubExpr);
1188
1189    // Check for pointer->pointer cast
1190    if (SubExpr->getType()->isPointerType())
1191      return FindExpressionBaseAddress(SubExpr);
1192
1193    // We assume that we have an arithmetic expression here;
1194    // if we don't, we'll figure it out later
1195    return 0;
1196  }
1197  case Expr::ExplicitCastExprClass: {
1198    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1199
1200    // Check for pointer->pointer cast
1201    if (SubExpr->getType()->isPointerType())
1202      return FindExpressionBaseAddress(SubExpr);
1203
1204    // We assume that we have an arithmetic expression here;
1205    // if we don't, we'll figure it out later
1206    return 0;
1207  }
1208  }
1209}
1210
1211bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1212  switch (Init->getStmtClass()) {
1213  default:
1214    Diag(Init->getExprLoc(),
1215         diag::err_init_element_not_constant, Init->getSourceRange());
1216    return true;
1217  case Expr::ParenExprClass: {
1218    const ParenExpr* PE = cast<ParenExpr>(Init);
1219    return CheckArithmeticConstantExpression(PE->getSubExpr());
1220  }
1221  case Expr::FloatingLiteralClass:
1222  case Expr::IntegerLiteralClass:
1223  case Expr::CharacterLiteralClass:
1224  case Expr::ImaginaryLiteralClass:
1225  case Expr::TypesCompatibleExprClass:
1226  case Expr::CXXBoolLiteralExprClass:
1227    return false;
1228  case Expr::CallExprClass: {
1229    const CallExpr *CE = cast<CallExpr>(Init);
1230
1231    // Allow any constant foldable calls to builtins.
1232    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1233      return false;
1234
1235    Diag(Init->getExprLoc(),
1236         diag::err_init_element_not_constant, Init->getSourceRange());
1237    return true;
1238  }
1239  case Expr::DeclRefExprClass: {
1240    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1241    if (isa<EnumConstantDecl>(D))
1242      return false;
1243    Diag(Init->getExprLoc(),
1244         diag::err_init_element_not_constant, Init->getSourceRange());
1245    return true;
1246  }
1247  case Expr::CompoundLiteralExprClass:
1248    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1249    // but vectors are allowed to be magic.
1250    if (Init->getType()->isVectorType())
1251      return false;
1252    Diag(Init->getExprLoc(),
1253         diag::err_init_element_not_constant, Init->getSourceRange());
1254    return true;
1255  case Expr::UnaryOperatorClass: {
1256    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1257
1258    switch (Exp->getOpcode()) {
1259    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1260    // See C99 6.6p3.
1261    default:
1262      Diag(Init->getExprLoc(),
1263           diag::err_init_element_not_constant, Init->getSourceRange());
1264      return true;
1265    case UnaryOperator::SizeOf:
1266    case UnaryOperator::AlignOf:
1267    case UnaryOperator::OffsetOf:
1268      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1269      // See C99 6.5.3.4p2 and 6.6p3.
1270      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1271        return false;
1272      Diag(Init->getExprLoc(),
1273           diag::err_init_element_not_constant, Init->getSourceRange());
1274      return true;
1275    case UnaryOperator::Extension:
1276    case UnaryOperator::LNot:
1277    case UnaryOperator::Plus:
1278    case UnaryOperator::Minus:
1279    case UnaryOperator::Not:
1280      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1281    }
1282  }
1283  case Expr::SizeOfAlignOfTypeExprClass: {
1284    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1285    // Special check for void types, which are allowed as an extension
1286    if (Exp->getArgumentType()->isVoidType())
1287      return false;
1288    // alignof always evaluates to a constant.
1289    // FIXME: is sizeof(int[3.0]) a constant expression?
1290    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1291      Diag(Init->getExprLoc(),
1292           diag::err_init_element_not_constant, Init->getSourceRange());
1293      return true;
1294    }
1295    return false;
1296  }
1297  case Expr::BinaryOperatorClass: {
1298    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1299
1300    if (Exp->getLHS()->getType()->isArithmeticType() &&
1301        Exp->getRHS()->getType()->isArithmeticType()) {
1302      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1303             CheckArithmeticConstantExpression(Exp->getRHS());
1304    }
1305
1306    if (Exp->getLHS()->getType()->isPointerType() &&
1307        Exp->getRHS()->getType()->isPointerType()) {
1308      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1309      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1310
1311      // Only allow a null (constant integer) base; we could
1312      // allow some additional cases if necessary, but this
1313      // is sufficient to cover offsetof-like constructs.
1314      if (!LHSBase && !RHSBase) {
1315        return CheckAddressConstantExpression(Exp->getLHS()) ||
1316               CheckAddressConstantExpression(Exp->getRHS());
1317      }
1318    }
1319
1320    Diag(Init->getExprLoc(),
1321         diag::err_init_element_not_constant, Init->getSourceRange());
1322    return true;
1323  }
1324  case Expr::ImplicitCastExprClass:
1325  case Expr::ExplicitCastExprClass: {
1326    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1327    if (SubExpr->getType()->isArithmeticType())
1328      return CheckArithmeticConstantExpression(SubExpr);
1329
1330    if (SubExpr->getType()->isPointerType()) {
1331      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1332      // If the pointer has a null base, this is an offsetof-like construct
1333      if (!Base)
1334        return CheckAddressConstantExpression(SubExpr);
1335    }
1336
1337    Diag(Init->getExprLoc(),
1338         diag::err_init_element_not_constant, Init->getSourceRange());
1339    return true;
1340  }
1341  case Expr::ConditionalOperatorClass: {
1342    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1343
1344    // If GNU extensions are disabled, we require all operands to be arithmetic
1345    // constant expressions.
1346    if (getLangOptions().NoExtensions) {
1347      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1348          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1349             CheckArithmeticConstantExpression(Exp->getRHS());
1350    }
1351
1352    // Otherwise, we have to emulate some of the behavior of fold here.
1353    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1354    // because it can constant fold things away.  To retain compatibility with
1355    // GCC code, we see if we can fold the condition to a constant (which we
1356    // should always be able to do in theory).  If so, we only require the
1357    // specified arm of the conditional to be a constant.  This is a horrible
1358    // hack, but is require by real world code that uses __builtin_constant_p.
1359    APValue Val;
1360    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1361      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1362      // won't be able to either.  Use it to emit the diagnostic though.
1363      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1364      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1365      return Res;
1366    }
1367
1368    // Verify that the side following the condition is also a constant.
1369    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1370    if (Val.getInt() == 0)
1371      std::swap(TrueSide, FalseSide);
1372
1373    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1374      return true;
1375
1376    // Okay, the evaluated side evaluates to a constant, so we accept this.
1377    // Check to see if the other side is obviously not a constant.  If so,
1378    // emit a warning that this is a GNU extension.
1379    if (FalseSide && !FalseSide->isEvaluatable(Context))
1380      Diag(Init->getExprLoc(),
1381           diag::ext_typecheck_expression_not_constant_but_accepted,
1382           FalseSide->getSourceRange());
1383    return false;
1384  }
1385  }
1386}
1387
1388bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1389  Init = Init->IgnoreParens();
1390
1391  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1392  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1393    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1394
1395  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1396    return CheckForConstantInitializer(e->getInitializer(), DclT);
1397
1398  if (Init->getType()->isReferenceType()) {
1399    // FIXME: Work out how the heck references work.
1400    return false;
1401  }
1402
1403  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1404    unsigned numInits = Exp->getNumInits();
1405    for (unsigned i = 0; i < numInits; i++) {
1406      // FIXME: Need to get the type of the declaration for C++,
1407      // because it could be a reference?
1408      if (CheckForConstantInitializer(Exp->getInit(i),
1409                                      Exp->getInit(i)->getType()))
1410        return true;
1411    }
1412    return false;
1413  }
1414
1415  if (Init->isNullPointerConstant(Context))
1416    return false;
1417  if (Init->getType()->isArithmeticType()) {
1418    QualType InitTy = Context.getCanonicalType(Init->getType())
1419                             .getUnqualifiedType();
1420    if (InitTy == Context.BoolTy) {
1421      // Special handling for pointers implicitly cast to bool;
1422      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1423      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1424        Expr* SubE = ICE->getSubExpr();
1425        if (SubE->getType()->isPointerType() ||
1426            SubE->getType()->isArrayType() ||
1427            SubE->getType()->isFunctionType()) {
1428          return CheckAddressConstantExpression(Init);
1429        }
1430      }
1431    } else if (InitTy->isIntegralType()) {
1432      Expr* SubE = 0;
1433      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1434        SubE = CE->getSubExpr();
1435      // Special check for pointer cast to int; we allow as an extension
1436      // an address constant cast to an integer if the integer
1437      // is of an appropriate width (this sort of code is apparently used
1438      // in some places).
1439      // FIXME: Add pedwarn?
1440      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1441      if (SubE && (SubE->getType()->isPointerType() ||
1442                   SubE->getType()->isArrayType() ||
1443                   SubE->getType()->isFunctionType())) {
1444        unsigned IntWidth = Context.getTypeSize(Init->getType());
1445        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1446        if (IntWidth >= PointerWidth)
1447          return CheckAddressConstantExpression(Init);
1448      }
1449    }
1450
1451    return CheckArithmeticConstantExpression(Init);
1452  }
1453
1454  if (Init->getType()->isPointerType())
1455    return CheckAddressConstantExpression(Init);
1456
1457  // An array type at the top level that isn't an init-list must
1458  // be a string literal
1459  if (Init->getType()->isArrayType())
1460    return false;
1461
1462  if (Init->getType()->isFunctionType())
1463    return false;
1464
1465  // Allow block exprs at top level.
1466  if (Init->getType()->isBlockPointerType())
1467    return false;
1468
1469  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1470       Init->getSourceRange());
1471  return true;
1472}
1473
1474void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1475  Decl *RealDecl = static_cast<Decl *>(dcl);
1476  Expr *Init = static_cast<Expr *>(init);
1477  assert(Init && "missing initializer");
1478
1479  // If there is no declaration, there was an error parsing it.  Just ignore
1480  // the initializer.
1481  if (RealDecl == 0) {
1482    delete Init;
1483    return;
1484  }
1485
1486  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1487  if (!VDecl) {
1488    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1489         diag::err_illegal_initializer);
1490    RealDecl->setInvalidDecl();
1491    return;
1492  }
1493  // Get the decls type and save a reference for later, since
1494  // CheckInitializerTypes may change it.
1495  QualType DclT = VDecl->getType(), SavT = DclT;
1496  if (VDecl->isBlockVarDecl()) {
1497    VarDecl::StorageClass SC = VDecl->getStorageClass();
1498    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1499      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1500      VDecl->setInvalidDecl();
1501    } else if (!VDecl->isInvalidDecl()) {
1502      if (CheckInitializerTypes(Init, DclT))
1503        VDecl->setInvalidDecl();
1504
1505      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1506      if (!getLangOptions().CPlusPlus) {
1507        if (SC == VarDecl::Static) // C99 6.7.8p4.
1508          CheckForConstantInitializer(Init, DclT);
1509      }
1510    }
1511  } else if (VDecl->isFileVarDecl()) {
1512    if (VDecl->getStorageClass() == VarDecl::Extern)
1513      Diag(VDecl->getLocation(), diag::warn_extern_init);
1514    if (!VDecl->isInvalidDecl())
1515      if (CheckInitializerTypes(Init, DclT))
1516        VDecl->setInvalidDecl();
1517
1518    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1519    if (!getLangOptions().CPlusPlus) {
1520      // C99 6.7.8p4. All file scoped initializers need to be constant.
1521      CheckForConstantInitializer(Init, DclT);
1522    }
1523  }
1524  // If the type changed, it means we had an incomplete type that was
1525  // completed by the initializer. For example:
1526  //   int ary[] = { 1, 3, 5 };
1527  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1528  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1529    VDecl->setType(DclT);
1530    Init->setType(DclT);
1531  }
1532
1533  // Attach the initializer to the decl.
1534  VDecl->setInit(Init);
1535  return;
1536}
1537
1538/// The declarators are chained together backwards, reverse the list.
1539Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1540  // Often we have single declarators, handle them quickly.
1541  Decl *GroupDecl = static_cast<Decl*>(group);
1542  if (GroupDecl == 0)
1543    return 0;
1544
1545  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1546  ScopedDecl *NewGroup = 0;
1547  if (Group->getNextDeclarator() == 0)
1548    NewGroup = Group;
1549  else { // reverse the list.
1550    while (Group) {
1551      ScopedDecl *Next = Group->getNextDeclarator();
1552      Group->setNextDeclarator(NewGroup);
1553      NewGroup = Group;
1554      Group = Next;
1555    }
1556  }
1557  // Perform semantic analysis that depends on having fully processed both
1558  // the declarator and initializer.
1559  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1560    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1561    if (!IDecl)
1562      continue;
1563    QualType T = IDecl->getType();
1564
1565    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1566    // static storage duration, it shall not have a variable length array.
1567    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1568        IDecl->getStorageClass() == VarDecl::Static) {
1569      if (T->isVariableArrayType()) {
1570        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1571        IDecl->setInvalidDecl();
1572      }
1573    }
1574    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1575    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1576    if (IDecl->isBlockVarDecl() &&
1577        IDecl->getStorageClass() != VarDecl::Extern) {
1578      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1579        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1580             T.getAsString());
1581        IDecl->setInvalidDecl();
1582      }
1583    }
1584    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1585    // object that has file scope without an initializer, and without a
1586    // storage-class specifier or with the storage-class specifier "static",
1587    // constitutes a tentative definition. Note: A tentative definition with
1588    // external linkage is valid (C99 6.2.2p5).
1589    if (isTentativeDefinition(IDecl)) {
1590      if (T->isIncompleteArrayType()) {
1591        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1592        // array to be completed. Don't issue a diagnostic.
1593      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1594        // C99 6.9.2p3: If the declaration of an identifier for an object is
1595        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1596        // declared type shall not be an incomplete type.
1597        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1598             T.getAsString());
1599        IDecl->setInvalidDecl();
1600      }
1601    }
1602    if (IDecl->isFileVarDecl())
1603      CheckForFileScopedRedefinitions(S, IDecl);
1604  }
1605  return NewGroup;
1606}
1607
1608/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1609/// to introduce parameters into function prototype scope.
1610Sema::DeclTy *
1611Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1612  const DeclSpec &DS = D.getDeclSpec();
1613
1614  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1615  VarDecl::StorageClass StorageClass = VarDecl::None;
1616  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1617    StorageClass = VarDecl::Register;
1618  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1619    Diag(DS.getStorageClassSpecLoc(),
1620         diag::err_invalid_storage_class_in_func_decl);
1621    D.getMutableDeclSpec().ClearStorageClassSpecs();
1622  }
1623  if (DS.isThreadSpecified()) {
1624    Diag(DS.getThreadSpecLoc(),
1625         diag::err_invalid_storage_class_in_func_decl);
1626    D.getMutableDeclSpec().ClearStorageClassSpecs();
1627  }
1628
1629  // Check that there are no default arguments inside the type of this
1630  // parameter (C++ only).
1631  if (getLangOptions().CPlusPlus)
1632    CheckExtraCXXDefaultArguments(D);
1633
1634  // In this context, we *do not* check D.getInvalidType(). If the declarator
1635  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1636  // though it will not reflect the user specified type.
1637  QualType parmDeclType = GetTypeForDeclarator(D, S);
1638
1639  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1640
1641  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1642  // Can this happen for params?  We already checked that they don't conflict
1643  // among each other.  Here they can only shadow globals, which is ok.
1644  IdentifierInfo *II = D.getIdentifier();
1645  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1646    if (S->isDeclScope(PrevDecl)) {
1647      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1648           dyn_cast<NamedDecl>(PrevDecl)->getName());
1649
1650      // Recover by removing the name
1651      II = 0;
1652      D.SetIdentifier(0, D.getIdentifierLoc());
1653    }
1654  }
1655
1656  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1657  // Doing the promotion here has a win and a loss. The win is the type for
1658  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1659  // code generator). The loss is the orginal type isn't preserved. For example:
1660  //
1661  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1662  //    int blockvardecl[5];
1663  //    sizeof(parmvardecl);  // size == 4
1664  //    sizeof(blockvardecl); // size == 20
1665  // }
1666  //
1667  // For expressions, all implicit conversions are captured using the
1668  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1669  //
1670  // FIXME: If a source translation tool needs to see the original type, then
1671  // we need to consider storing both types (in ParmVarDecl)...
1672  //
1673  if (parmDeclType->isArrayType()) {
1674    // int x[restrict 4] ->  int *restrict
1675    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1676  } else if (parmDeclType->isFunctionType())
1677    parmDeclType = Context.getPointerType(parmDeclType);
1678
1679  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1680                                         D.getIdentifierLoc(), II,
1681                                         parmDeclType, StorageClass,
1682                                         0, 0);
1683
1684  if (D.getInvalidType())
1685    New->setInvalidDecl();
1686
1687  if (II)
1688    PushOnScopeChains(New, S);
1689
1690  ProcessDeclAttributes(New, D);
1691  return New;
1692
1693}
1694
1695Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1696  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1697  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1698         "Not a function declarator!");
1699  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1700
1701  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1702  // for a K&R function.
1703  if (!FTI.hasPrototype) {
1704    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1705      if (FTI.ArgInfo[i].Param == 0) {
1706        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1707             FTI.ArgInfo[i].Ident->getName());
1708        // Implicitly declare the argument as type 'int' for lack of a better
1709        // type.
1710        DeclSpec DS;
1711        const char* PrevSpec; // unused
1712        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1713                           PrevSpec);
1714        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1715        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1716        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1717      }
1718    }
1719  } else {
1720    // FIXME: Diagnose arguments without names in C.
1721  }
1722
1723  Scope *GlobalScope = FnBodyScope->getParent();
1724
1725  // See if this is a redefinition.
1726  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1727                             GlobalScope);
1728  if (PrevDcl && isDeclInScope(PrevDcl, CurContext)) {
1729    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1730      const FunctionDecl *Definition;
1731      if (FD->getBody(Definition)) {
1732        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1733             D.getIdentifier()->getName());
1734        Diag(Definition->getLocation(), diag::err_previous_definition);
1735      }
1736    }
1737  }
1738
1739  return ActOnStartOfFunctionDef(FnBodyScope,
1740                                 ActOnDeclarator(GlobalScope, D, 0));
1741}
1742
1743Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1744  Decl *decl = static_cast<Decl*>(D);
1745  FunctionDecl *FD = cast<FunctionDecl>(decl);
1746  PushDeclContext(FD);
1747
1748  // Check the validity of our function parameters
1749  CheckParmsForFunctionDef(FD);
1750
1751  // Introduce our parameters into the function scope
1752  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1753    ParmVarDecl *Param = FD->getParamDecl(p);
1754    // If this has an identifier, add it to the scope stack.
1755    if (Param->getIdentifier())
1756      PushOnScopeChains(Param, FnBodyScope);
1757  }
1758
1759  return FD;
1760}
1761
1762Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1763  Decl *dcl = static_cast<Decl *>(D);
1764  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1765    FD->setBody((Stmt*)Body);
1766    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1767  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1768    MD->setBody((Stmt*)Body);
1769  } else
1770    return 0;
1771  PopDeclContext();
1772  // Verify and clean out per-function state.
1773
1774  // Check goto/label use.
1775  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1776       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1777    // Verify that we have no forward references left.  If so, there was a goto
1778    // or address of a label taken, but no definition of it.  Label fwd
1779    // definitions are indicated with a null substmt.
1780    if (I->second->getSubStmt() == 0) {
1781      LabelStmt *L = I->second;
1782      // Emit error.
1783      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1784
1785      // At this point, we have gotos that use the bogus label.  Stitch it into
1786      // the function body so that they aren't leaked and that the AST is well
1787      // formed.
1788      if (Body) {
1789        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1790        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1791      } else {
1792        // The whole function wasn't parsed correctly, just delete this.
1793        delete L;
1794      }
1795    }
1796  }
1797  LabelMap.clear();
1798
1799  return D;
1800}
1801
1802/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1803/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1804ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1805                                           IdentifierInfo &II, Scope *S) {
1806  // Extension in C99.  Legal in C90, but warn about it.
1807  if (getLangOptions().C99)
1808    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1809  else
1810    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1811
1812  // FIXME: handle stuff like:
1813  // void foo() { extern float X(); }
1814  // void bar() { X(); }  <-- implicit decl for X in another scope.
1815
1816  // Set a Declarator for the implicit definition: int foo();
1817  const char *Dummy;
1818  DeclSpec DS;
1819  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1820  Error = Error; // Silence warning.
1821  assert(!Error && "Error setting up implicit decl!");
1822  Declarator D(DS, Declarator::BlockContext);
1823  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1824  D.SetIdentifier(&II, Loc);
1825
1826  // Insert this function into translation-unit scope.
1827
1828  DeclContext *PrevDC = CurContext;
1829  CurContext = Context.getTranslationUnitDecl();
1830
1831  FunctionDecl *FD =
1832    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1833  FD->setImplicit();
1834
1835  CurContext = PrevDC;
1836
1837  return FD;
1838}
1839
1840
1841TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1842                                    ScopedDecl *LastDeclarator) {
1843  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1844  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1845
1846  // Scope manipulation handled by caller.
1847  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1848                                           D.getIdentifierLoc(),
1849                                           D.getIdentifier(),
1850                                           T, LastDeclarator);
1851  if (D.getInvalidType())
1852    NewTD->setInvalidDecl();
1853  return NewTD;
1854}
1855
1856/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1857/// former case, Name will be non-null.  In the later case, Name will be null.
1858/// TagType indicates what kind of tag this is. TK indicates whether this is a
1859/// reference/declaration/definition of a tag.
1860Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1861                             SourceLocation KWLoc, IdentifierInfo *Name,
1862                             SourceLocation NameLoc, AttributeList *Attr) {
1863  // If this is a use of an existing tag, it must have a name.
1864  assert((Name != 0 || TK == TK_Definition) &&
1865         "Nameless record must be a definition!");
1866
1867  TagDecl::TagKind Kind;
1868  switch (TagType) {
1869  default: assert(0 && "Unknown tag type!");
1870  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1871  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1872  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1873  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1874  }
1875
1876  // Two code paths: a new one for structs/unions/classes where we create
1877  //   separate decls for forward declarations, and an old (eventually to
1878  //   be removed) code path for enums.
1879  if (Kind != TagDecl::TK_enum)
1880    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1881
1882  // If this is a named struct, check to see if there was a previous forward
1883  // declaration or definition.
1884  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1885  ScopedDecl *PrevDecl =
1886    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1887
1888  if (PrevDecl) {
1889    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1890            "unexpected Decl type");
1891    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1892      // If this is a use of a previous tag, or if the tag is already declared
1893      // in the same scope (so that the definition/declaration completes or
1894      // rementions the tag), reuse the decl.
1895      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
1896        // Make sure that this wasn't declared as an enum and now used as a
1897        // struct or something similar.
1898        if (PrevTagDecl->getTagKind() != Kind) {
1899          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1900          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1901          // Recover by making this an anonymous redefinition.
1902          Name = 0;
1903          PrevDecl = 0;
1904        } else {
1905          // If this is a use or a forward declaration, we're good.
1906          if (TK != TK_Definition)
1907            return PrevDecl;
1908
1909          // Diagnose attempts to redefine a tag.
1910          if (PrevTagDecl->isDefinition()) {
1911            Diag(NameLoc, diag::err_redefinition, Name->getName());
1912            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1913            // If this is a redefinition, recover by making this struct be
1914            // anonymous, which will make any later references get the previous
1915            // definition.
1916            Name = 0;
1917          } else {
1918            // Okay, this is definition of a previously declared or referenced
1919            // tag. Move the location of the decl to be the definition site.
1920            PrevDecl->setLocation(NameLoc);
1921            return PrevDecl;
1922          }
1923        }
1924      }
1925      // If we get here, this is a definition of a new struct type in a nested
1926      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1927      // type.
1928    } else {
1929      // PrevDecl is a namespace.
1930      if (isDeclInScope(PrevDecl, CurContext, S)) {
1931        // The tag name clashes with a namespace name, issue an error and
1932        // recover by making this tag be anonymous.
1933        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1934        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1935        Name = 0;
1936      }
1937    }
1938  }
1939
1940  // If there is an identifier, use the location of the identifier as the
1941  // location of the decl, otherwise use the location of the struct/union
1942  // keyword.
1943  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1944
1945  // Otherwise, if this is the first time we've seen this tag, create the decl.
1946  TagDecl *New;
1947  if (Kind == TagDecl::TK_enum) {
1948    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1949    // enum X { A, B, C } D;    D should chain to X.
1950    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1951    // If this is an undefined enum, warn.
1952    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1953  } else {
1954    // struct/union/class
1955
1956    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1957    // struct X { int A; } D;    D should chain to X.
1958    if (getLangOptions().CPlusPlus)
1959      // FIXME: Look for a way to use RecordDecl for simple structs.
1960      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1961    else
1962      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1963  }
1964
1965  // If this has an identifier, add it to the scope stack.
1966  if (Name) {
1967    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1968    // we find one that is.
1969    while ((S->getFlags() & Scope::DeclScope) == 0)
1970      S = S->getParent();
1971
1972    // Add it to the decl chain.
1973    PushOnScopeChains(New, S);
1974  }
1975
1976  if (Attr)
1977    ProcessDeclAttributeList(New, Attr);
1978  return New;
1979}
1980
1981/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1982///  the logic for enums, we create separate decls for forward declarations.
1983///  This is called by ActOnTag, but eventually will replace its logic.
1984Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1985                             SourceLocation KWLoc, IdentifierInfo *Name,
1986                             SourceLocation NameLoc, AttributeList *Attr) {
1987
1988  // If this is a named struct, check to see if there was a previous forward
1989  // declaration or definition.
1990  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1991  ScopedDecl *PrevDecl =
1992    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1993
1994  if (PrevDecl) {
1995    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1996           "unexpected Decl type");
1997
1998    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1999      // If this is a use of a previous tag, or if the tag is already declared
2000      // in the same scope (so that the definition/declaration completes or
2001      // rementions the tag), reuse the decl.
2002      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
2003        // Make sure that this wasn't declared as an enum and now used as a
2004        // struct or something similar.
2005        if (PrevTagDecl->getTagKind() != Kind) {
2006          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2007          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2008          // Recover by making this an anonymous redefinition.
2009          Name = 0;
2010          PrevDecl = 0;
2011        } else {
2012          // If this is a use, return the original decl.
2013
2014          // FIXME: In the future, return a variant or some other clue
2015          //  for the consumer of this Decl to know it doesn't own it.
2016          //  For our current ASTs this shouldn't be a problem, but will
2017          //  need to be changed with DeclGroups.
2018          if (TK == TK_Reference)
2019            return PrevDecl;
2020
2021          // The new decl is a definition?
2022          if (TK == TK_Definition) {
2023            // Diagnose attempts to redefine a tag.
2024            if (RecordDecl* DefRecord =
2025                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2026              Diag(NameLoc, diag::err_redefinition, Name->getName());
2027              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2028              // If this is a redefinition, recover by making this struct be
2029              // anonymous, which will make any later references get the previous
2030              // definition.
2031              Name = 0;
2032              PrevDecl = 0;
2033            }
2034            // Okay, this is definition of a previously declared or referenced
2035            // tag.  We're going to create a new Decl.
2036          }
2037        }
2038        // If we get here we have (another) forward declaration.  Just create
2039        // a new decl.
2040      }
2041      else {
2042        // If we get here, this is a definition of a new struct type in a nested
2043        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2044        // new decl/type.  We set PrevDecl to NULL so that the Records
2045        // have distinct types.
2046        PrevDecl = 0;
2047      }
2048    } else {
2049      // PrevDecl is a namespace.
2050      if (isDeclInScope(PrevDecl, CurContext, S)) {
2051        // The tag name clashes with a namespace name, issue an error and
2052        // recover by making this tag be anonymous.
2053        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2054        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2055        Name = 0;
2056      }
2057    }
2058  }
2059
2060  // If there is an identifier, use the location of the identifier as the
2061  // location of the decl, otherwise use the location of the struct/union
2062  // keyword.
2063  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2064
2065  // Otherwise, if this is the first time we've seen this tag, create the decl.
2066  TagDecl *New;
2067
2068  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2069  // struct X { int A; } D;    D should chain to X.
2070  if (getLangOptions().CPlusPlus)
2071    // FIXME: Look for a way to use RecordDecl for simple structs.
2072    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2073                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2074  else
2075    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2076                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2077
2078  // If this has an identifier, add it to the scope stack.
2079  if ((TK == TK_Definition || !PrevDecl) && Name) {
2080    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2081    // we find one that is.
2082    while ((S->getFlags() & Scope::DeclScope) == 0)
2083      S = S->getParent();
2084
2085    // Add it to the decl chain.
2086    PushOnScopeChains(New, S);
2087  }
2088
2089  // Handle #pragma pack: if the #pragma pack stack has non-default
2090  // alignment, make up a packed attribute for this decl. These
2091  // attributes are checked when the ASTContext lays out the
2092  // structure.
2093  //
2094  // It is important for implementing the correct semantics that this
2095  // happen here (in act on tag decl). The #pragma pack stack is
2096  // maintained as a result of parser callbacks which can occur at
2097  // many points during the parsing of a struct declaration (because
2098  // the #pragma tokens are effectively skipped over during the
2099  // parsing of the struct).
2100  if (unsigned Alignment = PackContext.getAlignment())
2101    New->addAttr(new PackedAttr(Alignment * 8));
2102
2103  if (Attr)
2104    ProcessDeclAttributeList(New, Attr);
2105
2106  return New;
2107}
2108
2109
2110/// Collect the instance variables declared in an Objective-C object.  Used in
2111/// the creation of structures from objects using the @defs directive.
2112static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2113                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2114  if (Class->getSuperClass())
2115    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2116
2117  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2118  for (ObjCInterfaceDecl::ivar_iterator
2119        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2120
2121    ObjCIvarDecl* ID = *I;
2122    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2123                                                ID->getIdentifier(),
2124                                                ID->getType(),
2125                                                ID->getBitWidth()));
2126  }
2127}
2128
2129/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2130/// instance variables of ClassName into Decls.
2131void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2132                     IdentifierInfo *ClassName,
2133                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2134  // Check that ClassName is a valid class
2135  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2136  if (!Class) {
2137    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2138    return;
2139  }
2140  // Collect the instance variables
2141  CollectIvars(Class, Context, Decls);
2142}
2143
2144QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2145  // This method tries to turn a variable array into a constant
2146  // array even when the size isn't an ICE.  This is necessary
2147  // for compatibility with code that depends on gcc's buggy
2148  // constant expression folding, like struct {char x[(int)(char*)2];}
2149  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2150    APValue Result;
2151    if (VLATy->getSizeExpr() &&
2152        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2153      llvm::APSInt &Res = Result.getInt();
2154      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2155        return Context.getConstantArrayType(VLATy->getElementType(),
2156                                            Res, ArrayType::Normal, 0);
2157    }
2158  }
2159  return QualType();
2160}
2161
2162/// ActOnField - Each field of a struct/union/class is passed into this in order
2163/// to create a FieldDecl object for it.
2164Sema::DeclTy *Sema::ActOnField(Scope *S,
2165                               SourceLocation DeclStart,
2166                               Declarator &D, ExprTy *BitfieldWidth) {
2167  IdentifierInfo *II = D.getIdentifier();
2168  Expr *BitWidth = (Expr*)BitfieldWidth;
2169  SourceLocation Loc = DeclStart;
2170  if (II) Loc = D.getIdentifierLoc();
2171
2172  // FIXME: Unnamed fields can be handled in various different ways, for
2173  // example, unnamed unions inject all members into the struct namespace!
2174
2175  if (BitWidth) {
2176    // TODO: Validate.
2177    //printf("WARNING: BITFIELDS IGNORED!\n");
2178
2179    // 6.7.2.1p3
2180    // 6.7.2.1p4
2181
2182  } else {
2183    // Not a bitfield.
2184
2185    // validate II.
2186
2187  }
2188
2189  QualType T = GetTypeForDeclarator(D, S);
2190  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2191  bool InvalidDecl = false;
2192
2193  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2194  // than a variably modified type.
2195  if (T->isVariablyModifiedType()) {
2196    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2197    if (!FixedTy.isNull()) {
2198      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2199      T = FixedTy;
2200    } else {
2201      // FIXME: This diagnostic needs work
2202      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2203      InvalidDecl = true;
2204    }
2205  }
2206  // FIXME: Chain fielddecls together.
2207  FieldDecl *NewFD;
2208
2209  if (getLangOptions().CPlusPlus) {
2210    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2211    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2212                                 Loc, II, T, BitWidth);
2213    if (II)
2214      PushOnScopeChains(NewFD, S);
2215  }
2216  else
2217    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2218
2219  ProcessDeclAttributes(NewFD, D);
2220
2221  if (D.getInvalidType() || InvalidDecl)
2222    NewFD->setInvalidDecl();
2223  return NewFD;
2224}
2225
2226/// TranslateIvarVisibility - Translate visibility from a token ID to an
2227///  AST enum value.
2228static ObjCIvarDecl::AccessControl
2229TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2230  switch (ivarVisibility) {
2231  default: assert(0 && "Unknown visitibility kind");
2232  case tok::objc_private: return ObjCIvarDecl::Private;
2233  case tok::objc_public: return ObjCIvarDecl::Public;
2234  case tok::objc_protected: return ObjCIvarDecl::Protected;
2235  case tok::objc_package: return ObjCIvarDecl::Package;
2236  }
2237}
2238
2239/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2240/// in order to create an IvarDecl object for it.
2241Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2242                              SourceLocation DeclStart,
2243                              Declarator &D, ExprTy *BitfieldWidth,
2244                              tok::ObjCKeywordKind Visibility) {
2245  IdentifierInfo *II = D.getIdentifier();
2246  Expr *BitWidth = (Expr*)BitfieldWidth;
2247  SourceLocation Loc = DeclStart;
2248  if (II) Loc = D.getIdentifierLoc();
2249
2250  // FIXME: Unnamed fields can be handled in various different ways, for
2251  // example, unnamed unions inject all members into the struct namespace!
2252
2253
2254  if (BitWidth) {
2255    // TODO: Validate.
2256    //printf("WARNING: BITFIELDS IGNORED!\n");
2257
2258    // 6.7.2.1p3
2259    // 6.7.2.1p4
2260
2261  } else {
2262    // Not a bitfield.
2263
2264    // validate II.
2265
2266  }
2267
2268  QualType T = GetTypeForDeclarator(D, S);
2269  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2270  bool InvalidDecl = false;
2271
2272  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2273  // than a variably modified type.
2274  if (T->isVariablyModifiedType()) {
2275    // FIXME: This diagnostic needs work
2276    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2277    InvalidDecl = true;
2278  }
2279
2280  // Get the visibility (access control) for this ivar.
2281  ObjCIvarDecl::AccessControl ac =
2282    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2283                                        : ObjCIvarDecl::None;
2284
2285  // Construct the decl.
2286  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2287                                             (Expr *)BitfieldWidth);
2288
2289  // Process attributes attached to the ivar.
2290  ProcessDeclAttributes(NewID, D);
2291
2292  if (D.getInvalidType() || InvalidDecl)
2293    NewID->setInvalidDecl();
2294
2295  return NewID;
2296}
2297
2298void Sema::ActOnFields(Scope* S,
2299                       SourceLocation RecLoc, DeclTy *RecDecl,
2300                       DeclTy **Fields, unsigned NumFields,
2301                       SourceLocation LBrac, SourceLocation RBrac,
2302                       AttributeList *Attr) {
2303  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2304  assert(EnclosingDecl && "missing record or interface decl");
2305  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2306
2307  if (Record)
2308    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2309      // Diagnose code like:
2310      //     struct S { struct S {} X; };
2311      // We discover this when we complete the outer S.  Reject and ignore the
2312      // outer S.
2313      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2314           DefRecord->getKindName());
2315      Diag(RecLoc, diag::err_previous_definition);
2316      Record->setInvalidDecl();
2317      return;
2318    }
2319
2320  // Verify that all the fields are okay.
2321  unsigned NumNamedMembers = 0;
2322  llvm::SmallVector<FieldDecl*, 32> RecFields;
2323  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2324
2325  for (unsigned i = 0; i != NumFields; ++i) {
2326
2327    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2328    assert(FD && "missing field decl");
2329
2330    // Remember all fields.
2331    RecFields.push_back(FD);
2332
2333    // Get the type for the field.
2334    Type *FDTy = FD->getType().getTypePtr();
2335
2336    // C99 6.7.2.1p2 - A field may not be a function type.
2337    if (FDTy->isFunctionType()) {
2338      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2339           FD->getName());
2340      FD->setInvalidDecl();
2341      EnclosingDecl->setInvalidDecl();
2342      continue;
2343    }
2344    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2345    if (FDTy->isIncompleteType()) {
2346      if (!Record) {  // Incomplete ivar type is always an error.
2347        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2348        FD->setInvalidDecl();
2349        EnclosingDecl->setInvalidDecl();
2350        continue;
2351      }
2352      if (i != NumFields-1 ||                   // ... that the last member ...
2353          !Record->isStruct() ||  // ... of a structure ...
2354          !FDTy->isArrayType()) {         //... may have incomplete array type.
2355        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2356        FD->setInvalidDecl();
2357        EnclosingDecl->setInvalidDecl();
2358        continue;
2359      }
2360      if (NumNamedMembers < 1) {  //... must have more than named member ...
2361        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2362             FD->getName());
2363        FD->setInvalidDecl();
2364        EnclosingDecl->setInvalidDecl();
2365        continue;
2366      }
2367      // Okay, we have a legal flexible array member at the end of the struct.
2368      if (Record)
2369        Record->setHasFlexibleArrayMember(true);
2370    }
2371    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2372    /// field of another structure or the element of an array.
2373    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2374      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2375        // If this is a member of a union, then entire union becomes "flexible".
2376        if (Record && Record->isUnion()) {
2377          Record->setHasFlexibleArrayMember(true);
2378        } else {
2379          // If this is a struct/class and this is not the last element, reject
2380          // it.  Note that GCC supports variable sized arrays in the middle of
2381          // structures.
2382          if (i != NumFields-1) {
2383            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2384                 FD->getName());
2385            FD->setInvalidDecl();
2386            EnclosingDecl->setInvalidDecl();
2387            continue;
2388          }
2389          // We support flexible arrays at the end of structs in other structs
2390          // as an extension.
2391          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2392               FD->getName());
2393          if (Record)
2394            Record->setHasFlexibleArrayMember(true);
2395        }
2396      }
2397    }
2398    /// A field cannot be an Objective-c object
2399    if (FDTy->isObjCInterfaceType()) {
2400      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2401           FD->getName());
2402      FD->setInvalidDecl();
2403      EnclosingDecl->setInvalidDecl();
2404      continue;
2405    }
2406    // Keep track of the number of named members.
2407    if (IdentifierInfo *II = FD->getIdentifier()) {
2408      // Detect duplicate member names.
2409      if (!FieldIDs.insert(II)) {
2410        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2411        // Find the previous decl.
2412        SourceLocation PrevLoc;
2413        for (unsigned i = 0; ; ++i) {
2414          assert(i != RecFields.size() && "Didn't find previous def!");
2415          if (RecFields[i]->getIdentifier() == II) {
2416            PrevLoc = RecFields[i]->getLocation();
2417            break;
2418          }
2419        }
2420        Diag(PrevLoc, diag::err_previous_definition);
2421        FD->setInvalidDecl();
2422        EnclosingDecl->setInvalidDecl();
2423        continue;
2424      }
2425      ++NumNamedMembers;
2426    }
2427  }
2428
2429  // Okay, we successfully defined 'Record'.
2430  if (Record) {
2431    Record->defineBody(Context, &RecFields[0], RecFields.size());
2432    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2433    // Sema::ActOnFinishCXXClassDef.
2434    if (!isa<CXXRecordDecl>(Record))
2435      Consumer.HandleTagDeclDefinition(Record);
2436  } else {
2437    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2438    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2439      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2440    else if (ObjCImplementationDecl *IMPDecl =
2441               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2442      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2443      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2444      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2445    }
2446  }
2447
2448  if (Attr)
2449    ProcessDeclAttributeList(Record, Attr);
2450}
2451
2452Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2453                                      DeclTy *lastEnumConst,
2454                                      SourceLocation IdLoc, IdentifierInfo *Id,
2455                                      SourceLocation EqualLoc, ExprTy *val) {
2456  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2457  EnumConstantDecl *LastEnumConst =
2458    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2459  Expr *Val = static_cast<Expr*>(val);
2460
2461  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2462  // we find one that is.
2463  while ((S->getFlags() & Scope::DeclScope) == 0)
2464    S = S->getParent();
2465
2466  // Verify that there isn't already something declared with this name in this
2467  // scope.
2468  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2469    // When in C++, we may get a TagDecl with the same name; in this case the
2470    // enum constant will 'hide' the tag.
2471    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2472           "Received TagDecl when not in C++!");
2473    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2474      if (isa<EnumConstantDecl>(PrevDecl))
2475        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2476      else
2477        Diag(IdLoc, diag::err_redefinition, Id->getName());
2478      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2479      delete Val;
2480      return 0;
2481    }
2482  }
2483
2484  llvm::APSInt EnumVal(32);
2485  QualType EltTy;
2486  if (Val) {
2487    // Make sure to promote the operand type to int.
2488    UsualUnaryConversions(Val);
2489
2490    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2491    SourceLocation ExpLoc;
2492    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2493      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2494           Id->getName());
2495      delete Val;
2496      Val = 0;  // Just forget about it.
2497    } else {
2498      EltTy = Val->getType();
2499    }
2500  }
2501
2502  if (!Val) {
2503    if (LastEnumConst) {
2504      // Assign the last value + 1.
2505      EnumVal = LastEnumConst->getInitVal();
2506      ++EnumVal;
2507
2508      // Check for overflow on increment.
2509      if (EnumVal < LastEnumConst->getInitVal())
2510        Diag(IdLoc, diag::warn_enum_value_overflow);
2511
2512      EltTy = LastEnumConst->getType();
2513    } else {
2514      // First value, set to zero.
2515      EltTy = Context.IntTy;
2516      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2517    }
2518  }
2519
2520  EnumConstantDecl *New =
2521    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2522                             Val, EnumVal,
2523                             LastEnumConst);
2524
2525  // Register this decl in the current scope stack.
2526  PushOnScopeChains(New, S);
2527  return New;
2528}
2529
2530// FIXME: For consistency with ActOnFields(), we should have the parser
2531// pass in the source location for the left/right braces.
2532void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2533                         DeclTy **Elements, unsigned NumElements) {
2534  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2535
2536  if (Enum && Enum->isDefinition()) {
2537    // Diagnose code like:
2538    //   enum e0 {
2539    //     E0 = sizeof(enum e0 { E1 })
2540    //   };
2541    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2542         Enum->getName());
2543    Diag(EnumLoc, diag::err_previous_definition);
2544    Enum->setInvalidDecl();
2545    return;
2546  }
2547  // TODO: If the result value doesn't fit in an int, it must be a long or long
2548  // long value.  ISO C does not support this, but GCC does as an extension,
2549  // emit a warning.
2550  unsigned IntWidth = Context.Target.getIntWidth();
2551
2552  // Verify that all the values are okay, compute the size of the values, and
2553  // reverse the list.
2554  unsigned NumNegativeBits = 0;
2555  unsigned NumPositiveBits = 0;
2556
2557  // Keep track of whether all elements have type int.
2558  bool AllElementsInt = true;
2559
2560  EnumConstantDecl *EltList = 0;
2561  for (unsigned i = 0; i != NumElements; ++i) {
2562    EnumConstantDecl *ECD =
2563      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2564    if (!ECD) continue;  // Already issued a diagnostic.
2565
2566    // If the enum value doesn't fit in an int, emit an extension warning.
2567    const llvm::APSInt &InitVal = ECD->getInitVal();
2568    assert(InitVal.getBitWidth() >= IntWidth &&
2569           "Should have promoted value to int");
2570    if (InitVal.getBitWidth() > IntWidth) {
2571      llvm::APSInt V(InitVal);
2572      V.trunc(IntWidth);
2573      V.extend(InitVal.getBitWidth());
2574      if (V != InitVal)
2575        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2576             InitVal.toString(10));
2577    }
2578
2579    // Keep track of the size of positive and negative values.
2580    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2581      NumPositiveBits = std::max(NumPositiveBits,
2582                                 (unsigned)InitVal.getActiveBits());
2583    else
2584      NumNegativeBits = std::max(NumNegativeBits,
2585                                 (unsigned)InitVal.getMinSignedBits());
2586
2587    // Keep track of whether every enum element has type int (very commmon).
2588    if (AllElementsInt)
2589      AllElementsInt = ECD->getType() == Context.IntTy;
2590
2591    ECD->setNextDeclarator(EltList);
2592    EltList = ECD;
2593  }
2594
2595  // Figure out the type that should be used for this enum.
2596  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2597  QualType BestType;
2598  unsigned BestWidth;
2599
2600  if (NumNegativeBits) {
2601    // If there is a negative value, figure out the smallest integer type (of
2602    // int/long/longlong) that fits.
2603    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2604      BestType = Context.IntTy;
2605      BestWidth = IntWidth;
2606    } else {
2607      BestWidth = Context.Target.getLongWidth();
2608
2609      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2610        BestType = Context.LongTy;
2611      else {
2612        BestWidth = Context.Target.getLongLongWidth();
2613
2614        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2615          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2616        BestType = Context.LongLongTy;
2617      }
2618    }
2619  } else {
2620    // If there is no negative value, figure out which of uint, ulong, ulonglong
2621    // fits.
2622    if (NumPositiveBits <= IntWidth) {
2623      BestType = Context.UnsignedIntTy;
2624      BestWidth = IntWidth;
2625    } else if (NumPositiveBits <=
2626               (BestWidth = Context.Target.getLongWidth())) {
2627      BestType = Context.UnsignedLongTy;
2628    } else {
2629      BestWidth = Context.Target.getLongLongWidth();
2630      assert(NumPositiveBits <= BestWidth &&
2631             "How could an initializer get larger than ULL?");
2632      BestType = Context.UnsignedLongLongTy;
2633    }
2634  }
2635
2636  // Loop over all of the enumerator constants, changing their types to match
2637  // the type of the enum if needed.
2638  for (unsigned i = 0; i != NumElements; ++i) {
2639    EnumConstantDecl *ECD =
2640      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2641    if (!ECD) continue;  // Already issued a diagnostic.
2642
2643    // Standard C says the enumerators have int type, but we allow, as an
2644    // extension, the enumerators to be larger than int size.  If each
2645    // enumerator value fits in an int, type it as an int, otherwise type it the
2646    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2647    // that X has type 'int', not 'unsigned'.
2648    if (ECD->getType() == Context.IntTy) {
2649      // Make sure the init value is signed.
2650      llvm::APSInt IV = ECD->getInitVal();
2651      IV.setIsSigned(true);
2652      ECD->setInitVal(IV);
2653      continue;  // Already int type.
2654    }
2655
2656    // Determine whether the value fits into an int.
2657    llvm::APSInt InitVal = ECD->getInitVal();
2658    bool FitsInInt;
2659    if (InitVal.isUnsigned() || !InitVal.isNegative())
2660      FitsInInt = InitVal.getActiveBits() < IntWidth;
2661    else
2662      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2663
2664    // If it fits into an integer type, force it.  Otherwise force it to match
2665    // the enum decl type.
2666    QualType NewTy;
2667    unsigned NewWidth;
2668    bool NewSign;
2669    if (FitsInInt) {
2670      NewTy = Context.IntTy;
2671      NewWidth = IntWidth;
2672      NewSign = true;
2673    } else if (ECD->getType() == BestType) {
2674      // Already the right type!
2675      continue;
2676    } else {
2677      NewTy = BestType;
2678      NewWidth = BestWidth;
2679      NewSign = BestType->isSignedIntegerType();
2680    }
2681
2682    // Adjust the APSInt value.
2683    InitVal.extOrTrunc(NewWidth);
2684    InitVal.setIsSigned(NewSign);
2685    ECD->setInitVal(InitVal);
2686
2687    // Adjust the Expr initializer and type.
2688    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2689    ECD->setType(NewTy);
2690  }
2691
2692  Enum->defineElements(EltList, BestType);
2693  Consumer.HandleTagDeclDefinition(Enum);
2694}
2695
2696Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2697                                          ExprTy *expr) {
2698  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2699
2700  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2701}
2702
2703Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2704                                     SourceLocation LBrace,
2705                                     SourceLocation RBrace,
2706                                     const char *Lang,
2707                                     unsigned StrSize,
2708                                     DeclTy *D) {
2709  LinkageSpecDecl::LanguageIDs Language;
2710  Decl *dcl = static_cast<Decl *>(D);
2711  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2712    Language = LinkageSpecDecl::lang_c;
2713  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2714    Language = LinkageSpecDecl::lang_cxx;
2715  else {
2716    Diag(Loc, diag::err_bad_language);
2717    return 0;
2718  }
2719
2720  // FIXME: Add all the various semantics of linkage specifications
2721  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2722}
2723
2724void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
2725                           ExprTy *alignment, SourceLocation PragmaLoc,
2726                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
2727  Expr *Alignment = static_cast<Expr *>(alignment);
2728
2729  // If specified then alignment must be a "small" power of two.
2730  unsigned AlignmentVal = 0;
2731  if (Alignment) {
2732    llvm::APSInt Val;
2733    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
2734        !Val.isPowerOf2() ||
2735        Val.getZExtValue() > 16) {
2736      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
2737      delete Alignment;
2738      return; // Ignore
2739    }
2740
2741    AlignmentVal = (unsigned) Val.getZExtValue();
2742  }
2743
2744  switch (Kind) {
2745  case Action::PPK_Default: // pack([n])
2746    PackContext.setAlignment(AlignmentVal);
2747    break;
2748
2749  case Action::PPK_Show: // pack(show)
2750    // Show the current alignment, making sure to show the right value
2751    // for the default.
2752    AlignmentVal = PackContext.getAlignment();
2753    // FIXME: This should come from the target.
2754    if (AlignmentVal == 0)
2755      AlignmentVal = 8;
2756    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
2757    break;
2758
2759  case Action::PPK_Push: // pack(push [, id] [, [n])
2760    PackContext.push(Name);
2761    // Set the new alignment if specified.
2762    if (Alignment)
2763      PackContext.setAlignment(AlignmentVal);
2764    break;
2765
2766  case Action::PPK_Pop: // pack(pop [, id] [,  n])
2767    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
2768    // "#pragma pack(pop, identifier, n) is undefined"
2769    if (Alignment && Name)
2770      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
2771
2772    // Do the pop.
2773    if (!PackContext.pop(Name)) {
2774      // If a name was specified then failure indicates the name
2775      // wasn't found. Otherwise failure indicates the stack was
2776      // empty.
2777      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
2778           Name ? "no record matching name" : "stack empty");
2779
2780      // FIXME: Warn about popping named records as MSVC does.
2781    } else {
2782      // Pop succeeded, set the new alignment if specified.
2783      if (Alignment)
2784        PackContext.setAlignment(AlignmentVal);
2785    }
2786    break;
2787
2788  default:
2789    assert(0 && "Invalid #pragma pack kind.");
2790  }
2791}
2792
2793bool PragmaPackStack::pop(IdentifierInfo *Name) {
2794  if (Stack.empty())
2795    return false;
2796
2797  // If name is empty just pop top.
2798  if (!Name) {
2799    Alignment = Stack.back().first;
2800    Stack.pop_back();
2801    return true;
2802  }
2803
2804  // Otherwise, find the named record.
2805  for (unsigned i = Stack.size(); i != 0; ) {
2806    --i;
2807    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
2808      // Found it, pop up to and including this record.
2809      Alignment = Stack[i].first;
2810      Stack.erase(Stack.begin() + i, Stack.end());
2811      return true;
2812    }
2813  }
2814
2815  return false;
2816}
2817