SemaDecl.cpp revision bc9ef257b887506228e86a7f4c933aecc8f554a9
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Basic/SourceManager.h"
25// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Lex/HeaderSearch.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include <algorithm>
31#include <functional>
32using namespace clang;
33
34/// getDeclName - Return a pretty name for the specified decl if possible, or
35/// an empty string if not.  This is used for pretty crash reporting.
36std::string Sema::getDeclName(DeclPtrTy d) {
37  Decl *D = d.getAs<Decl>();
38  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
39    return DN->getQualifiedNameAsString();
40  return "";
41}
42
43Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
44  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
45}
46
47/// \brief If the identifier refers to a type name within this scope,
48/// return the declaration of that type.
49///
50/// This routine performs ordinary name lookup of the identifier II
51/// within the given scope, with optional C++ scope specifier SS, to
52/// determine whether the name refers to a type. If so, returns an
53/// opaque pointer (actually a QualType) corresponding to that
54/// type. Otherwise, returns NULL.
55///
56/// If name lookup results in an ambiguity, this routine will complain
57/// and then return NULL.
58Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
59                                Scope *S, const CXXScopeSpec *SS) {
60  // C++ [temp.res]p3:
61  //   A qualified-id that refers to a type and in which the
62  //   nested-name-specifier depends on a template-parameter (14.6.2)
63  //   shall be prefixed by the keyword typename to indicate that the
64  //   qualified-id denotes a type, forming an
65  //   elaborated-type-specifier (7.1.5.3).
66  //
67  // We therefore do not perform any name lookup up SS is a dependent
68  // scope name. FIXME: we will need to perform a special kind of
69  // lookup if the scope specifier names a member of the current
70  // instantiation.
71  if (SS && isDependentScopeSpecifier(*SS))
72    return 0;
73
74  NamedDecl *IIDecl = 0;
75  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
76                                         false, false);
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      T = Context.getTypeDeclType(TD);
128    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
129      // Check whether we can use this interface.
130      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
131
132      T = Context.getObjCInterfaceType(IDecl);
133    } else
134      return 0;
135
136    if (SS)
137      T = getQualifiedNameType(*SS, T);
138
139    return T.getAsOpaquePtr();
140  }
141
142  return 0;
143}
144
145/// isTagName() - This method is called *for error recovery purposes only*
146/// to determine if the specified name is a valid tag name ("struct foo").  If
147/// so, this returns the TST for the tag corresponding to it (TST_enum,
148/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
149/// where the user forgot to specify the tag.
150DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
151  // Do a tag name lookup in this scope.
152  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
153  if (R.getKind() == LookupResult::Found)
154    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
155      switch (TD->getTagKind()) {
156      case TagDecl::TK_struct: return DeclSpec::TST_struct;
157      case TagDecl::TK_union:  return DeclSpec::TST_union;
158      case TagDecl::TK_class:  return DeclSpec::TST_class;
159      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
160      }
161    }
162
163  return DeclSpec::TST_unspecified;
164}
165
166
167
168DeclContext *Sema::getContainingDC(DeclContext *DC) {
169  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
170    // A C++ out-of-line method will return to the file declaration context.
171    if (MD->isOutOfLineDefinition())
172      return MD->getLexicalDeclContext();
173
174    // A C++ inline method is parsed *after* the topmost class it was declared
175    // in is fully parsed (it's "complete").
176    // The parsing of a C++ inline method happens at the declaration context of
177    // the topmost (non-nested) class it is lexically declared in.
178    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
179    DC = MD->getParent();
180    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
181      DC = RD;
182
183    // Return the declaration context of the topmost class the inline method is
184    // declared in.
185    return DC;
186  }
187
188  if (isa<ObjCMethodDecl>(DC))
189    return Context.getTranslationUnitDecl();
190
191  return DC->getLexicalParent();
192}
193
194void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
195  assert(getContainingDC(DC) == CurContext &&
196      "The next DeclContext should be lexically contained in the current one.");
197  CurContext = DC;
198  S->setEntity(DC);
199}
200
201void Sema::PopDeclContext() {
202  assert(CurContext && "DeclContext imbalance!");
203
204  CurContext = getContainingDC(CurContext);
205}
206
207/// \brief Determine whether we allow overloading of the function
208/// PrevDecl with another declaration.
209///
210/// This routine determines whether overloading is possible, not
211/// whether some new function is actually an overload. It will return
212/// true in C++ (where we can always provide overloads) or, as an
213/// extension, in C when the previous function is already an
214/// overloaded function declaration or has the "overloadable"
215/// attribute.
216static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
217  if (Context.getLangOptions().CPlusPlus)
218    return true;
219
220  if (isa<OverloadedFunctionDecl>(PrevDecl))
221    return true;
222
223  return PrevDecl->getAttr<OverloadableAttr>() != 0;
224}
225
226/// Add this decl to the scope shadowed decl chains.
227void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
228  // Move up the scope chain until we find the nearest enclosing
229  // non-transparent context. The declaration will be introduced into this
230  // scope.
231  while (S->getEntity() &&
232         ((DeclContext *)S->getEntity())->isTransparentContext())
233    S = S->getParent();
234
235  S->AddDecl(DeclPtrTy::make(D));
236
237  // Add scoped declarations into their context, so that they can be
238  // found later. Declarations without a context won't be inserted
239  // into any context.
240  CurContext->addDecl(Context, D);
241
242  // C++ [basic.scope]p4:
243  //   -- exactly one declaration shall declare a class name or
244  //   enumeration name that is not a typedef name and the other
245  //   declarations shall all refer to the same object or
246  //   enumerator, or all refer to functions and function templates;
247  //   in this case the class name or enumeration name is hidden.
248  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
249    // We are pushing the name of a tag (enum or class).
250    if (CurContext->getLookupContext()
251          == TD->getDeclContext()->getLookupContext()) {
252      // We're pushing the tag into the current context, which might
253      // require some reshuffling in the identifier resolver.
254      IdentifierResolver::iterator
255        I = IdResolver.begin(TD->getDeclName()),
256        IEnd = IdResolver.end();
257      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
258        NamedDecl *PrevDecl = *I;
259        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
260             PrevDecl = *I, ++I) {
261          if (TD->declarationReplaces(*I)) {
262            // This is a redeclaration. Remove it from the chain and
263            // break out, so that we'll add in the shadowed
264            // declaration.
265            S->RemoveDecl(DeclPtrTy::make(*I));
266            if (PrevDecl == *I) {
267              IdResolver.RemoveDecl(*I);
268              IdResolver.AddDecl(TD);
269              return;
270            } else {
271              IdResolver.RemoveDecl(*I);
272              break;
273            }
274          }
275        }
276
277        // There is already a declaration with the same name in the same
278        // scope, which is not a tag declaration. It must be found
279        // before we find the new declaration, so insert the new
280        // declaration at the end of the chain.
281        IdResolver.AddShadowedDecl(TD, PrevDecl);
282
283        return;
284      }
285    }
286  } else if (isa<FunctionDecl>(D) &&
287             AllowOverloadingOfFunction(D, Context)) {
288    // We are pushing the name of a function, which might be an
289    // overloaded name.
290    FunctionDecl *FD = cast<FunctionDecl>(D);
291    IdentifierResolver::iterator Redecl
292      = std::find_if(IdResolver.begin(FD->getDeclName()),
293                     IdResolver.end(),
294                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
295                                  FD));
296    if (Redecl != IdResolver.end() &&
297        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
298      // There is already a declaration of a function on our
299      // IdResolver chain. Replace it with this declaration.
300      S->RemoveDecl(DeclPtrTy::make(*Redecl));
301      IdResolver.RemoveDecl(*Redecl);
302    }
303  } else if (isa<ObjCInterfaceDecl>(D)) {
304    // We're pushing an Objective-C interface into the current
305    // context. If there is already an alias declaration, remove it first.
306    for (IdentifierResolver::iterator
307           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
308         I != IEnd; ++I) {
309      if (isa<ObjCCompatibleAliasDecl>(*I)) {
310        S->RemoveDecl(DeclPtrTy::make(*I));
311        IdResolver.RemoveDecl(*I);
312        break;
313      }
314    }
315  }
316
317  IdResolver.AddDecl(D);
318}
319
320void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
321  if (S->decl_empty()) return;
322  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
323	 "Scope shouldn't contain decls!");
324
325  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
326       I != E; ++I) {
327    Decl *TmpD = (*I).getAs<Decl>();
328    assert(TmpD && "This decl didn't get pushed??");
329
330    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
331    NamedDecl *D = cast<NamedDecl>(TmpD);
332
333    if (!D->getDeclName()) continue;
334
335    // Remove this name from our lexical scope.
336    IdResolver.RemoveDecl(D);
337  }
338}
339
340/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
341/// return 0 if one not found.
342ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
343  // The third "scope" argument is 0 since we aren't enabling lazy built-in
344  // creation from this context.
345  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
346
347  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
348}
349
350/// getNonFieldDeclScope - Retrieves the innermost scope, starting
351/// from S, where a non-field would be declared. This routine copes
352/// with the difference between C and C++ scoping rules in structs and
353/// unions. For example, the following code is well-formed in C but
354/// ill-formed in C++:
355/// @code
356/// struct S6 {
357///   enum { BAR } e;
358/// };
359///
360/// void test_S6() {
361///   struct S6 a;
362///   a.e = BAR;
363/// }
364/// @endcode
365/// For the declaration of BAR, this routine will return a different
366/// scope. The scope S will be the scope of the unnamed enumeration
367/// within S6. In C++, this routine will return the scope associated
368/// with S6, because the enumeration's scope is a transparent
369/// context but structures can contain non-field names. In C, this
370/// routine will return the translation unit scope, since the
371/// enumeration's scope is a transparent context and structures cannot
372/// contain non-field names.
373Scope *Sema::getNonFieldDeclScope(Scope *S) {
374  while (((S->getFlags() & Scope::DeclScope) == 0) ||
375         (S->getEntity() &&
376          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
377         (S->isClassScope() && !getLangOptions().CPlusPlus))
378    S = S->getParent();
379  return S;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
393/// file scope.  lazily create a decl for it. ForRedeclaration is true
394/// if we're creating this built-in in anticipation of redeclaring the
395/// built-in.
396NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
397                                     Scope *S, bool ForRedeclaration,
398                                     SourceLocation Loc) {
399  Builtin::ID BID = (Builtin::ID)bid;
400
401  if (Context.BuiltinInfo.hasVAListUse(BID))
402    InitBuiltinVaListType();
403
404  Builtin::Context::GetBuiltinTypeError Error;
405  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
406  switch (Error) {
407  case Builtin::Context::GE_None:
408    // Okay
409    break;
410
411  case Builtin::Context::GE_Missing_FILE:
412    if (ForRedeclaration)
413      Diag(Loc, diag::err_implicit_decl_requires_stdio)
414        << Context.BuiltinInfo.GetName(BID);
415    return 0;
416  }
417
418  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
419    Diag(Loc, diag::ext_implicit_lib_function_decl)
420      << Context.BuiltinInfo.GetName(BID)
421      << R;
422    if (Context.BuiltinInfo.getHeaderName(BID) &&
423        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
424          != Diagnostic::Ignored)
425      Diag(Loc, diag::note_please_include_header)
426        << Context.BuiltinInfo.getHeaderName(BID)
427        << Context.BuiltinInfo.GetName(BID);
428  }
429
430  FunctionDecl *New = FunctionDecl::Create(Context,
431                                           Context.getTranslationUnitDecl(),
432                                           Loc, II, R,
433                                           FunctionDecl::Extern, false,
434                                           /*hasPrototype=*/true);
435  New->setImplicit();
436
437  // Create Decl objects for each parameter, adding them to the
438  // FunctionDecl.
439  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
440    llvm::SmallVector<ParmVarDecl*, 16> Params;
441    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
442      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
443                                           FT->getArgType(i), VarDecl::None, 0));
444    New->setParams(Context, &Params[0], Params.size());
445  }
446
447  AddKnownFunctionAttributes(New);
448
449  // TUScope is the translation-unit scope to insert this function into.
450  // FIXME: This is hideous. We need to teach PushOnScopeChains to
451  // relate Scopes to DeclContexts, and probably eliminate CurContext
452  // entirely, but we're not there yet.
453  DeclContext *SavedContext = CurContext;
454  CurContext = Context.getTranslationUnitDecl();
455  PushOnScopeChains(New, TUScope);
456  CurContext = SavedContext;
457  return New;
458}
459
460/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
461/// everything from the standard library is defined.
462NamespaceDecl *Sema::GetStdNamespace() {
463  if (!StdNamespace) {
464    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
465    DeclContext *Global = Context.getTranslationUnitDecl();
466    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
467    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
468  }
469  return StdNamespace;
470}
471
472/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
473/// same name and scope as a previous declaration 'Old'.  Figure out
474/// how to resolve this situation, merging decls or emitting
475/// diagnostics as appropriate. If there was an error, set New to be invalid.
476///
477void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
478  // If either decl is known invalid already, set the new one to be invalid and
479  // don't bother doing any merging checks.
480  if (New->isInvalidDecl() || OldD->isInvalidDecl())
481    return New->setInvalidDecl();
482
483  bool objc_types = false;
484
485  // Allow multiple definitions for ObjC built-in typedefs.
486  // FIXME: Verify the underlying types are equivalent!
487  if (getLangOptions().ObjC1) {
488    const IdentifierInfo *TypeID = New->getIdentifier();
489    switch (TypeID->getLength()) {
490    default: break;
491    case 2:
492      if (!TypeID->isStr("id"))
493        break;
494      Context.setObjCIdType(Context.getTypeDeclType(New));
495      objc_types = true;
496      break;
497    case 5:
498      if (!TypeID->isStr("Class"))
499        break;
500      Context.setObjCClassType(Context.getTypeDeclType(New));
501      return;
502    case 3:
503      if (!TypeID->isStr("SEL"))
504        break;
505      Context.setObjCSelType(Context.getTypeDeclType(New));
506      return;
507    case 8:
508      if (!TypeID->isStr("Protocol"))
509        break;
510      Context.setObjCProtoType(New->getUnderlyingType());
511      return;
512    }
513    // Fall through - the typedef name was not a builtin type.
514  }
515  // Verify the old decl was also a type.
516  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
517  if (!Old) {
518    Diag(New->getLocation(), diag::err_redefinition_different_kind)
519      << New->getDeclName();
520    if (OldD->getLocation().isValid())
521      Diag(OldD->getLocation(), diag::note_previous_definition);
522    return New->setInvalidDecl();
523  }
524
525  // Determine the "old" type we'll use for checking and diagnostics.
526  QualType OldType;
527  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
528    OldType = OldTypedef->getUnderlyingType();
529  else
530    OldType = Context.getTypeDeclType(Old);
531
532  // If the typedef types are not identical, reject them in all languages and
533  // with any extensions enabled.
534
535  if (OldType != New->getUnderlyingType() &&
536      Context.getCanonicalType(OldType) !=
537      Context.getCanonicalType(New->getUnderlyingType())) {
538    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
539      << New->getUnderlyingType() << OldType;
540    if (Old->getLocation().isValid())
541      Diag(Old->getLocation(), diag::note_previous_definition);
542    return New->setInvalidDecl();
543  }
544
545  if (objc_types || getLangOptions().Microsoft)
546    return;
547
548  // C++ [dcl.typedef]p2:
549  //   In a given non-class scope, a typedef specifier can be used to
550  //   redefine the name of any type declared in that scope to refer
551  //   to the type to which it already refers.
552  if (getLangOptions().CPlusPlus) {
553    if (!isa<CXXRecordDecl>(CurContext))
554      return;
555    Diag(New->getLocation(), diag::err_redefinition)
556      << New->getDeclName();
557    Diag(Old->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // If we have a redefinition of a typedef in C, emit a warning.  This warning
562  // is normally mapped to an error, but can be controlled with
563  // -Wtypedef-redefinition.
564  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
565    << New->getDeclName();
566  Diag(Old->getLocation(), diag::note_previous_definition);
567  return;
568}
569
570/// DeclhasAttr - returns true if decl Declaration already has the target
571/// attribute.
572static bool DeclHasAttr(const Decl *decl, const Attr *target) {
573  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
574    if (attr->getKind() == target->getKind())
575      return true;
576
577  return false;
578}
579
580/// MergeAttributes - append attributes from the Old decl to the New one.
581static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
582  Attr *attr = const_cast<Attr*>(Old->getAttrs());
583
584  while (attr) {
585    Attr *tmp = attr;
586    attr = attr->getNext();
587
588    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
589      tmp->setInherited(true);
590      New->addAttr(tmp);
591    } else {
592      tmp->setNext(0);
593      tmp->Destroy(C);
594    }
595  }
596
597  Old->invalidateAttrs();
598}
599
600/// Used in MergeFunctionDecl to keep track of function parameters in
601/// C.
602struct GNUCompatibleParamWarning {
603  ParmVarDecl *OldParm;
604  ParmVarDecl *NewParm;
605  QualType PromotedType;
606};
607
608/// MergeFunctionDecl - We just parsed a function 'New' from
609/// declarator D which has the same name and scope as a previous
610/// declaration 'Old'.  Figure out how to resolve this situation,
611/// merging decls or emitting diagnostics as appropriate.
612///
613/// In C++, New and Old must be declarations that are not
614/// overloaded. Use IsOverload to determine whether New and Old are
615/// overloaded, and to select the Old declaration that New should be
616/// merged with.
617///
618/// Returns true if there was an error, false otherwise.
619bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
620  assert(!isa<OverloadedFunctionDecl>(OldD) &&
621         "Cannot merge with an overloaded function declaration");
622
623  // Verify the old decl was also a function.
624  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
625  if (!Old) {
626    Diag(New->getLocation(), diag::err_redefinition_different_kind)
627      << New->getDeclName();
628    Diag(OldD->getLocation(), diag::note_previous_definition);
629    return true;
630  }
631
632  // Determine whether the previous declaration was a definition,
633  // implicit declaration, or a declaration.
634  diag::kind PrevDiag;
635  if (Old->isThisDeclarationADefinition())
636    PrevDiag = diag::note_previous_definition;
637  else if (Old->isImplicit())
638    PrevDiag = diag::note_previous_implicit_declaration;
639  else
640    PrevDiag = diag::note_previous_declaration;
641
642  QualType OldQType = Context.getCanonicalType(Old->getType());
643  QualType NewQType = Context.getCanonicalType(New->getType());
644
645  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
646      New->getStorageClass() == FunctionDecl::Static &&
647      Old->getStorageClass() != FunctionDecl::Static) {
648    Diag(New->getLocation(), diag::err_static_non_static)
649      << New;
650    Diag(Old->getLocation(), PrevDiag);
651    return true;
652  }
653
654  if (getLangOptions().CPlusPlus) {
655    // (C++98 13.1p2):
656    //   Certain function declarations cannot be overloaded:
657    //     -- Function declarations that differ only in the return type
658    //        cannot be overloaded.
659    QualType OldReturnType
660      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
661    QualType NewReturnType
662      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
663    if (OldReturnType != NewReturnType) {
664      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
665      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
666      return true;
667    }
668
669    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
670    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
671    if (OldMethod && NewMethod &&
672        OldMethod->getLexicalDeclContext() ==
673          NewMethod->getLexicalDeclContext()) {
674      //    -- Member function declarations with the same name and the
675      //       same parameter types cannot be overloaded if any of them
676      //       is a static member function declaration.
677      if (OldMethod->isStatic() || NewMethod->isStatic()) {
678        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
679        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
680        return true;
681      }
682
683      // C++ [class.mem]p1:
684      //   [...] A member shall not be declared twice in the
685      //   member-specification, except that a nested class or member
686      //   class template can be declared and then later defined.
687      unsigned NewDiag;
688      if (isa<CXXConstructorDecl>(OldMethod))
689        NewDiag = diag::err_constructor_redeclared;
690      else if (isa<CXXDestructorDecl>(NewMethod))
691        NewDiag = diag::err_destructor_redeclared;
692      else if (isa<CXXConversionDecl>(NewMethod))
693        NewDiag = diag::err_conv_function_redeclared;
694      else
695        NewDiag = diag::err_member_redeclared;
696
697      Diag(New->getLocation(), NewDiag);
698      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
699    }
700
701    // (C++98 8.3.5p3):
702    //   All declarations for a function shall agree exactly in both the
703    //   return type and the parameter-type-list.
704    if (OldQType == NewQType)
705      return MergeCompatibleFunctionDecls(New, Old);
706
707    // Fall through for conflicting redeclarations and redefinitions.
708  }
709
710  // C: Function types need to be compatible, not identical. This handles
711  // duplicate function decls like "void f(int); void f(enum X);" properly.
712  if (!getLangOptions().CPlusPlus &&
713      Context.typesAreCompatible(OldQType, NewQType)) {
714    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
715    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
716    const FunctionProtoType *OldProto = 0;
717    if (isa<FunctionNoProtoType>(NewFuncType) &&
718        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
719      // The old declaration provided a function prototype, but the
720      // new declaration does not. Merge in the prototype.
721      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
722                                                 OldProto->arg_type_end());
723      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
724                                         &ParamTypes[0], ParamTypes.size(),
725                                         OldProto->isVariadic(),
726                                         OldProto->getTypeQuals());
727      New->setType(NewQType);
728      New->setInheritedPrototype();
729
730      // Synthesize a parameter for each argument type.
731      llvm::SmallVector<ParmVarDecl*, 16> Params;
732      for (FunctionProtoType::arg_type_iterator
733             ParamType = OldProto->arg_type_begin(),
734             ParamEnd = OldProto->arg_type_end();
735           ParamType != ParamEnd; ++ParamType) {
736        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
737                                                 SourceLocation(), 0,
738                                                 *ParamType, VarDecl::None,
739                                                 0);
740        Param->setImplicit();
741        Params.push_back(Param);
742      }
743
744      New->setParams(Context, &Params[0], Params.size());
745    }
746
747    return MergeCompatibleFunctionDecls(New, Old);
748  }
749
750  // GNU C permits a K&R definition to follow a prototype declaration
751  // if the declared types of the parameters in the K&R definition
752  // match the types in the prototype declaration, even when the
753  // promoted types of the parameters from the K&R definition differ
754  // from the types in the prototype. GCC then keeps the types from
755  // the prototype.
756  if (!getLangOptions().CPlusPlus &&
757      !getLangOptions().NoExtensions &&
758      Old->hasPrototype() && !New->hasPrototype() &&
759      New->getType()->getAsFunctionProtoType() &&
760      Old->getNumParams() == New->getNumParams()) {
761    llvm::SmallVector<QualType, 16> ArgTypes;
762    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
763    const FunctionProtoType *OldProto
764      = Old->getType()->getAsFunctionProtoType();
765    const FunctionProtoType *NewProto
766      = New->getType()->getAsFunctionProtoType();
767
768    // Determine whether this is the GNU C extension.
769    bool GNUCompatible =
770      Context.typesAreCompatible(OldProto->getResultType(),
771                                 NewProto->getResultType()) &&
772      (OldProto->isVariadic() == NewProto->isVariadic());
773    for (unsigned Idx = 0, End = Old->getNumParams();
774         GNUCompatible && Idx != End; ++Idx) {
775      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
776      ParmVarDecl *NewParm = New->getParamDecl(Idx);
777      if (Context.typesAreCompatible(OldParm->getType(),
778                                     NewProto->getArgType(Idx))) {
779        ArgTypes.push_back(NewParm->getType());
780      } else if (Context.typesAreCompatible(OldParm->getType(),
781                                            NewParm->getType())) {
782        GNUCompatibleParamWarning Warn
783          = { OldParm, NewParm, NewProto->getArgType(Idx) };
784        Warnings.push_back(Warn);
785        ArgTypes.push_back(NewParm->getType());
786      } else
787        GNUCompatible = false;
788    }
789
790    if (GNUCompatible) {
791      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
792        Diag(Warnings[Warn].NewParm->getLocation(),
793             diag::ext_param_promoted_not_compatible_with_prototype)
794          << Warnings[Warn].PromotedType
795          << Warnings[Warn].OldParm->getType();
796        Diag(Warnings[Warn].OldParm->getLocation(),
797             diag::note_previous_declaration);
798      }
799
800      New->setType(Context.getFunctionType(NewProto->getResultType(),
801                                           &ArgTypes[0], ArgTypes.size(),
802                                           NewProto->isVariadic(),
803                                           NewProto->getTypeQuals()));
804      return MergeCompatibleFunctionDecls(New, Old);
805    }
806
807    // Fall through to diagnose conflicting types.
808  }
809
810  // A function that has already been declared has been redeclared or defined
811  // with a different type- show appropriate diagnostic
812  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
813    // The user has declared a builtin function with an incompatible
814    // signature.
815    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
816      // The function the user is redeclaring is a library-defined
817      // function like 'malloc' or 'printf'. Warn about the
818      // redeclaration, then pretend that we don't know about this
819      // library built-in.
820      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
821      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
822        << Old << Old->getType();
823      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
824      Old->setInvalidDecl();
825      return false;
826    }
827
828    PrevDiag = diag::note_previous_builtin_declaration;
829  }
830
831  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
832  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
833  return true;
834}
835
836/// \brief Completes the merge of two function declarations that are
837/// known to be compatible.
838///
839/// This routine handles the merging of attributes and other
840/// properties of function declarations form the old declaration to
841/// the new declaration, once we know that New is in fact a
842/// redeclaration of Old.
843///
844/// \returns false
845bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
846  // Merge the attributes
847  MergeAttributes(New, Old, Context);
848
849  // Merge the storage class.
850  New->setStorageClass(Old->getStorageClass());
851
852  // Merge "inline"
853  if (Old->isInline())
854    New->setInline(true);
855
856  // If this function declaration by itself qualifies as a C99 inline
857  // definition (C99 6.7.4p6), but the previous definition did not,
858  // then the function is not a C99 inline definition.
859  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
860    New->setC99InlineDefinition(false);
861  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
862    // Mark all preceding definitions as not being C99 inline definitions.
863    for (const FunctionDecl *Prev = Old; Prev;
864         Prev = Prev->getPreviousDeclaration())
865      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
866  }
867
868  // Merge "pure" flag.
869  if (Old->isPure())
870    New->setPure();
871
872  // Merge the "deleted" flag.
873  if (Old->isDeleted())
874    New->setDeleted();
875
876  if (getLangOptions().CPlusPlus)
877    return MergeCXXFunctionDecl(New, Old);
878
879  return false;
880}
881
882/// MergeVarDecl - We just parsed a variable 'New' which has the same name
883/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
884/// situation, merging decls or emitting diagnostics as appropriate.
885///
886/// Tentative definition rules (C99 6.9.2p2) are checked by
887/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
888/// definitions here, since the initializer hasn't been attached.
889///
890void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
891  // If either decl is invalid, make sure the new one is marked invalid and
892  // don't do any other checking.
893  if (New->isInvalidDecl() || OldD->isInvalidDecl())
894    return New->setInvalidDecl();
895
896  // Verify the old decl was also a variable.
897  VarDecl *Old = dyn_cast<VarDecl>(OldD);
898  if (!Old) {
899    Diag(New->getLocation(), diag::err_redefinition_different_kind)
900      << New->getDeclName();
901    Diag(OldD->getLocation(), diag::note_previous_definition);
902    return New->setInvalidDecl();
903  }
904
905  MergeAttributes(New, Old, Context);
906
907  // Merge the types
908  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
909  if (MergedT.isNull()) {
910    Diag(New->getLocation(), diag::err_redefinition_different_type)
911      << New->getDeclName();
912    Diag(Old->getLocation(), diag::note_previous_definition);
913    return New->setInvalidDecl();
914  }
915  New->setType(MergedT);
916
917  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
918  if (New->getStorageClass() == VarDecl::Static &&
919      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
920    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
921    Diag(Old->getLocation(), diag::note_previous_definition);
922    return New->setInvalidDecl();
923  }
924  // C99 6.2.2p4:
925  //   For an identifier declared with the storage-class specifier
926  //   extern in a scope in which a prior declaration of that
927  //   identifier is visible,23) if the prior declaration specifies
928  //   internal or external linkage, the linkage of the identifier at
929  //   the later declaration is the same as the linkage specified at
930  //   the prior declaration. If no prior declaration is visible, or
931  //   if the prior declaration specifies no linkage, then the
932  //   identifier has external linkage.
933  if (New->hasExternalStorage() && Old->hasLinkage())
934    /* Okay */;
935  else if (New->getStorageClass() != VarDecl::Static &&
936           Old->getStorageClass() == VarDecl::Static) {
937    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
938    Diag(Old->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
943
944  // FIXME: The test for external storage here seems wrong? We still
945  // need to check for mismatches.
946  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
947      // Don't complain about out-of-line definitions of static members.
948      !(Old->getLexicalDeclContext()->isRecord() &&
949        !New->getLexicalDeclContext()->isRecord())) {
950    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
951    Diag(Old->getLocation(), diag::note_previous_definition);
952    return New->setInvalidDecl();
953  }
954
955  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
956    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
957    Diag(Old->getLocation(), diag::note_previous_definition);
958  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
959    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
960    Diag(Old->getLocation(), diag::note_previous_definition);
961  }
962
963  // Keep a chain of previous declarations.
964  New->setPreviousDeclaration(Old);
965}
966
967/// CheckParmsForFunctionDef - Check that the parameters of the given
968/// function are appropriate for the definition of a function. This
969/// takes care of any checks that cannot be performed on the
970/// declaration itself, e.g., that the types of each of the function
971/// parameters are complete.
972bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
973  bool HasInvalidParm = false;
974  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
975    ParmVarDecl *Param = FD->getParamDecl(p);
976
977    // C99 6.7.5.3p4: the parameters in a parameter type list in a
978    // function declarator that is part of a function definition of
979    // that function shall not have incomplete type.
980    //
981    // This is also C++ [dcl.fct]p6.
982    if (!Param->isInvalidDecl() &&
983        RequireCompleteType(Param->getLocation(), Param->getType(),
984                               diag::err_typecheck_decl_incomplete_type)) {
985      Param->setInvalidDecl();
986      HasInvalidParm = true;
987    }
988
989    // C99 6.9.1p5: If the declarator includes a parameter type list, the
990    // declaration of each parameter shall include an identifier.
991    if (Param->getIdentifier() == 0 &&
992        !Param->isImplicit() &&
993        !getLangOptions().CPlusPlus)
994      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
995  }
996
997  return HasInvalidParm;
998}
999
1000/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1001/// no declarator (e.g. "struct foo;") is parsed.
1002Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1003  // FIXME: Error on auto/register at file scope
1004  // FIXME: Error on inline/virtual/explicit
1005  // FIXME: Error on invalid restrict
1006  // FIXME: Warn on useless __thread
1007  // FIXME: Warn on useless const/volatile
1008  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1009  // FIXME: Warn on useless attributes
1010
1011  TagDecl *Tag = 0;
1012  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1013      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1014      DS.getTypeSpecType() == DeclSpec::TST_union ||
1015      DS.getTypeSpecType() == DeclSpec::TST_enum)
1016    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1017
1018  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1019    if (!Record->getDeclName() && Record->isDefinition() &&
1020        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1021      if (getLangOptions().CPlusPlus ||
1022          Record->getDeclContext()->isRecord())
1023        return BuildAnonymousStructOrUnion(S, DS, Record);
1024
1025      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1026        << DS.getSourceRange();
1027    }
1028
1029    // Microsoft allows unnamed struct/union fields. Don't complain
1030    // about them.
1031    // FIXME: Should we support Microsoft's extensions in this area?
1032    if (Record->getDeclName() && getLangOptions().Microsoft)
1033      return DeclPtrTy::make(Tag);
1034  }
1035
1036  if (!DS.isMissingDeclaratorOk() &&
1037      DS.getTypeSpecType() != DeclSpec::TST_error) {
1038    // Warn about typedefs of enums without names, since this is an
1039    // extension in both Microsoft an GNU.
1040    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1041        Tag && isa<EnumDecl>(Tag)) {
1042      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1043        << DS.getSourceRange();
1044      return DeclPtrTy::make(Tag);
1045    }
1046
1047    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1048      << DS.getSourceRange();
1049    return DeclPtrTy();
1050  }
1051
1052  return DeclPtrTy::make(Tag);
1053}
1054
1055/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1056/// anonymous struct or union AnonRecord into the owning context Owner
1057/// and scope S. This routine will be invoked just after we realize
1058/// that an unnamed union or struct is actually an anonymous union or
1059/// struct, e.g.,
1060///
1061/// @code
1062/// union {
1063///   int i;
1064///   float f;
1065/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1066///    // f into the surrounding scope.x
1067/// @endcode
1068///
1069/// This routine is recursive, injecting the names of nested anonymous
1070/// structs/unions into the owning context and scope as well.
1071bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1072                                               RecordDecl *AnonRecord) {
1073  bool Invalid = false;
1074  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1075                               FEnd = AnonRecord->field_end(Context);
1076       F != FEnd; ++F) {
1077    if ((*F)->getDeclName()) {
1078      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1079                                                LookupOrdinaryName, true);
1080      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1081        // C++ [class.union]p2:
1082        //   The names of the members of an anonymous union shall be
1083        //   distinct from the names of any other entity in the
1084        //   scope in which the anonymous union is declared.
1085        unsigned diagKind
1086          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1087                                 : diag::err_anonymous_struct_member_redecl;
1088        Diag((*F)->getLocation(), diagKind)
1089          << (*F)->getDeclName();
1090        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1091        Invalid = true;
1092      } else {
1093        // C++ [class.union]p2:
1094        //   For the purpose of name lookup, after the anonymous union
1095        //   definition, the members of the anonymous union are
1096        //   considered to have been defined in the scope in which the
1097        //   anonymous union is declared.
1098        Owner->makeDeclVisibleInContext(Context, *F);
1099        S->AddDecl(DeclPtrTy::make(*F));
1100        IdResolver.AddDecl(*F);
1101      }
1102    } else if (const RecordType *InnerRecordType
1103                 = (*F)->getType()->getAsRecordType()) {
1104      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1105      if (InnerRecord->isAnonymousStructOrUnion())
1106        Invalid = Invalid ||
1107          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1108    }
1109  }
1110
1111  return Invalid;
1112}
1113
1114/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1115/// anonymous structure or union. Anonymous unions are a C++ feature
1116/// (C++ [class.union]) and a GNU C extension; anonymous structures
1117/// are a GNU C and GNU C++ extension.
1118Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1119                                                  RecordDecl *Record) {
1120  DeclContext *Owner = Record->getDeclContext();
1121
1122  // Diagnose whether this anonymous struct/union is an extension.
1123  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1124    Diag(Record->getLocation(), diag::ext_anonymous_union);
1125  else if (!Record->isUnion())
1126    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1127
1128  // C and C++ require different kinds of checks for anonymous
1129  // structs/unions.
1130  bool Invalid = false;
1131  if (getLangOptions().CPlusPlus) {
1132    const char* PrevSpec = 0;
1133    // C++ [class.union]p3:
1134    //   Anonymous unions declared in a named namespace or in the
1135    //   global namespace shall be declared static.
1136    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1137        (isa<TranslationUnitDecl>(Owner) ||
1138         (isa<NamespaceDecl>(Owner) &&
1139          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1140      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1141      Invalid = true;
1142
1143      // Recover by adding 'static'.
1144      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1145    }
1146    // C++ [class.union]p3:
1147    //   A storage class is not allowed in a declaration of an
1148    //   anonymous union in a class scope.
1149    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1150             isa<RecordDecl>(Owner)) {
1151      Diag(DS.getStorageClassSpecLoc(),
1152           diag::err_anonymous_union_with_storage_spec);
1153      Invalid = true;
1154
1155      // Recover by removing the storage specifier.
1156      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1157                             PrevSpec);
1158    }
1159
1160    // C++ [class.union]p2:
1161    //   The member-specification of an anonymous union shall only
1162    //   define non-static data members. [Note: nested types and
1163    //   functions cannot be declared within an anonymous union. ]
1164    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1165                                 MemEnd = Record->decls_end(Context);
1166         Mem != MemEnd; ++Mem) {
1167      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1168        // C++ [class.union]p3:
1169        //   An anonymous union shall not have private or protected
1170        //   members (clause 11).
1171        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1172          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1173            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1174          Invalid = true;
1175        }
1176      } else if ((*Mem)->isImplicit()) {
1177        // Any implicit members are fine.
1178      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1179        // This is a type that showed up in an
1180        // elaborated-type-specifier inside the anonymous struct or
1181        // union, but which actually declares a type outside of the
1182        // anonymous struct or union. It's okay.
1183      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1184        if (!MemRecord->isAnonymousStructOrUnion() &&
1185            MemRecord->getDeclName()) {
1186          // This is a nested type declaration.
1187          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1188            << (int)Record->isUnion();
1189          Invalid = true;
1190        }
1191      } else {
1192        // We have something that isn't a non-static data
1193        // member. Complain about it.
1194        unsigned DK = diag::err_anonymous_record_bad_member;
1195        if (isa<TypeDecl>(*Mem))
1196          DK = diag::err_anonymous_record_with_type;
1197        else if (isa<FunctionDecl>(*Mem))
1198          DK = diag::err_anonymous_record_with_function;
1199        else if (isa<VarDecl>(*Mem))
1200          DK = diag::err_anonymous_record_with_static;
1201        Diag((*Mem)->getLocation(), DK)
1202            << (int)Record->isUnion();
1203          Invalid = true;
1204      }
1205    }
1206  }
1207
1208  if (!Record->isUnion() && !Owner->isRecord()) {
1209    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1210      << (int)getLangOptions().CPlusPlus;
1211    Invalid = true;
1212  }
1213
1214  // Create a declaration for this anonymous struct/union.
1215  NamedDecl *Anon = 0;
1216  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1217    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1218                             /*IdentifierInfo=*/0,
1219                             Context.getTypeDeclType(Record),
1220                             /*BitWidth=*/0, /*Mutable=*/false);
1221    Anon->setAccess(AS_public);
1222    if (getLangOptions().CPlusPlus)
1223      FieldCollector->Add(cast<FieldDecl>(Anon));
1224  } else {
1225    VarDecl::StorageClass SC;
1226    switch (DS.getStorageClassSpec()) {
1227    default: assert(0 && "Unknown storage class!");
1228    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1229    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1230    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1231    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1232    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1233    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1234    case DeclSpec::SCS_mutable:
1235      // mutable can only appear on non-static class members, so it's always
1236      // an error here
1237      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1238      Invalid = true;
1239      SC = VarDecl::None;
1240      break;
1241    }
1242
1243    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1244                           /*IdentifierInfo=*/0,
1245                           Context.getTypeDeclType(Record),
1246                           SC, DS.getSourceRange().getBegin());
1247  }
1248  Anon->setImplicit();
1249
1250  // Add the anonymous struct/union object to the current
1251  // context. We'll be referencing this object when we refer to one of
1252  // its members.
1253  Owner->addDecl(Context, Anon);
1254
1255  // Inject the members of the anonymous struct/union into the owning
1256  // context and into the identifier resolver chain for name lookup
1257  // purposes.
1258  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1259    Invalid = true;
1260
1261  // Mark this as an anonymous struct/union type. Note that we do not
1262  // do this until after we have already checked and injected the
1263  // members of this anonymous struct/union type, because otherwise
1264  // the members could be injected twice: once by DeclContext when it
1265  // builds its lookup table, and once by
1266  // InjectAnonymousStructOrUnionMembers.
1267  Record->setAnonymousStructOrUnion(true);
1268
1269  if (Invalid)
1270    Anon->setInvalidDecl();
1271
1272  return DeclPtrTy::make(Anon);
1273}
1274
1275
1276/// GetNameForDeclarator - Determine the full declaration name for the
1277/// given Declarator.
1278DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1279  switch (D.getKind()) {
1280  case Declarator::DK_Abstract:
1281    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1282    return DeclarationName();
1283
1284  case Declarator::DK_Normal:
1285    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1286    return DeclarationName(D.getIdentifier());
1287
1288  case Declarator::DK_Constructor: {
1289    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1290    Ty = Context.getCanonicalType(Ty);
1291    return Context.DeclarationNames.getCXXConstructorName(Ty);
1292  }
1293
1294  case Declarator::DK_Destructor: {
1295    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1296    Ty = Context.getCanonicalType(Ty);
1297    return Context.DeclarationNames.getCXXDestructorName(Ty);
1298  }
1299
1300  case Declarator::DK_Conversion: {
1301    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1302    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1303    Ty = Context.getCanonicalType(Ty);
1304    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1305  }
1306
1307  case Declarator::DK_Operator:
1308    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1309    return Context.DeclarationNames.getCXXOperatorName(
1310                                                D.getOverloadedOperator());
1311  }
1312
1313  assert(false && "Unknown name kind");
1314  return DeclarationName();
1315}
1316
1317/// isNearlyMatchingFunction - Determine whether the C++ functions
1318/// Declaration and Definition are "nearly" matching. This heuristic
1319/// is used to improve diagnostics in the case where an out-of-line
1320/// function definition doesn't match any declaration within
1321/// the class or namespace.
1322static bool isNearlyMatchingFunction(ASTContext &Context,
1323                                     FunctionDecl *Declaration,
1324                                     FunctionDecl *Definition) {
1325  if (Declaration->param_size() != Definition->param_size())
1326    return false;
1327  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1328    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1329    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1330
1331    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1332    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1333    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1334      return false;
1335  }
1336
1337  return true;
1338}
1339
1340Sema::DeclPtrTy
1341Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1342  DeclarationName Name = GetNameForDeclarator(D);
1343
1344  // All of these full declarators require an identifier.  If it doesn't have
1345  // one, the ParsedFreeStandingDeclSpec action should be used.
1346  if (!Name) {
1347    if (!D.isInvalidType())  // Reject this if we think it is valid.
1348      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1349           diag::err_declarator_need_ident)
1350        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1351    return DeclPtrTy();
1352  }
1353
1354  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1355  // we find one that is.
1356  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1357         (S->getFlags() & Scope::TemplateParamScope) != 0)
1358    S = S->getParent();
1359
1360  DeclContext *DC;
1361  NamedDecl *PrevDecl;
1362  NamedDecl *New;
1363
1364  QualType R = GetTypeForDeclarator(D, S);
1365
1366  // See if this is a redefinition of a variable in the same scope.
1367  if (D.getCXXScopeSpec().isInvalid()) {
1368    DC = CurContext;
1369    PrevDecl = 0;
1370    D.setInvalidType();
1371  } else if (!D.getCXXScopeSpec().isSet()) {
1372    LookupNameKind NameKind = LookupOrdinaryName;
1373
1374    // If the declaration we're planning to build will be a function
1375    // or object with linkage, then look for another declaration with
1376    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1377    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1378      /* Do nothing*/;
1379    else if (R->isFunctionType()) {
1380      if (CurContext->isFunctionOrMethod())
1381        NameKind = LookupRedeclarationWithLinkage;
1382    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1383      NameKind = LookupRedeclarationWithLinkage;
1384
1385    DC = CurContext;
1386    PrevDecl = LookupName(S, Name, NameKind, true,
1387                          D.getDeclSpec().getStorageClassSpec() !=
1388                            DeclSpec::SCS_static,
1389                          D.getIdentifierLoc());
1390  } else { // Something like "int foo::x;"
1391    DC = computeDeclContext(D.getCXXScopeSpec());
1392    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1393    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1394
1395    // C++ 7.3.1.2p2:
1396    // Members (including explicit specializations of templates) of a named
1397    // namespace can also be defined outside that namespace by explicit
1398    // qualification of the name being defined, provided that the entity being
1399    // defined was already declared in the namespace and the definition appears
1400    // after the point of declaration in a namespace that encloses the
1401    // declarations namespace.
1402    //
1403    // Note that we only check the context at this point. We don't yet
1404    // have enough information to make sure that PrevDecl is actually
1405    // the declaration we want to match. For example, given:
1406    //
1407    //   class X {
1408    //     void f();
1409    //     void f(float);
1410    //   };
1411    //
1412    //   void X::f(int) { } // ill-formed
1413    //
1414    // In this case, PrevDecl will point to the overload set
1415    // containing the two f's declared in X, but neither of them
1416    // matches.
1417
1418    // First check whether we named the global scope.
1419    if (isa<TranslationUnitDecl>(DC)) {
1420      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1421        << Name << D.getCXXScopeSpec().getRange();
1422    } else if (!CurContext->Encloses(DC)) {
1423      // The qualifying scope doesn't enclose the original declaration.
1424      // Emit diagnostic based on current scope.
1425      SourceLocation L = D.getIdentifierLoc();
1426      SourceRange R = D.getCXXScopeSpec().getRange();
1427      if (isa<FunctionDecl>(CurContext))
1428        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1429      else
1430        Diag(L, diag::err_invalid_declarator_scope)
1431          << Name << cast<NamedDecl>(DC) << R;
1432      D.setInvalidType();
1433    }
1434  }
1435
1436  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1437    // Maybe we will complain about the shadowed template parameter.
1438    if (!D.isInvalidType())
1439      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1440        D.setInvalidType();
1441
1442    // Just pretend that we didn't see the previous declaration.
1443    PrevDecl = 0;
1444  }
1445
1446  // In C++, the previous declaration we find might be a tag type
1447  // (class or enum). In this case, the new declaration will hide the
1448  // tag type. Note that this does does not apply if we're declaring a
1449  // typedef (C++ [dcl.typedef]p4).
1450  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1451      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1452    PrevDecl = 0;
1453
1454  bool Redeclaration = false;
1455  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1456    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1457  } else if (R->isFunctionType()) {
1458    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1459                                  IsFunctionDefinition, Redeclaration);
1460  } else {
1461    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1462  }
1463
1464  if (New == 0)
1465    return DeclPtrTy();
1466
1467  // If this has an identifier and is not an invalid redeclaration,
1468  // add it to the scope stack.
1469  if (Name && !(Redeclaration && New->isInvalidDecl()))
1470    PushOnScopeChains(New, S);
1471
1472  return DeclPtrTy::make(New);
1473}
1474
1475/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1476/// types into constant array types in certain situations which would otherwise
1477/// be errors (for GCC compatibility).
1478static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1479                                                    ASTContext &Context,
1480                                                    bool &SizeIsNegative) {
1481  // This method tries to turn a variable array into a constant
1482  // array even when the size isn't an ICE.  This is necessary
1483  // for compatibility with code that depends on gcc's buggy
1484  // constant expression folding, like struct {char x[(int)(char*)2];}
1485  SizeIsNegative = false;
1486
1487  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1488    QualType Pointee = PTy->getPointeeType();
1489    QualType FixedType =
1490        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1491    if (FixedType.isNull()) return FixedType;
1492    FixedType = Context.getPointerType(FixedType);
1493    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1494    return FixedType;
1495  }
1496
1497  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1498  if (!VLATy)
1499    return QualType();
1500  // FIXME: We should probably handle this case
1501  if (VLATy->getElementType()->isVariablyModifiedType())
1502    return QualType();
1503
1504  Expr::EvalResult EvalResult;
1505  if (!VLATy->getSizeExpr() ||
1506      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1507      !EvalResult.Val.isInt())
1508    return QualType();
1509
1510  llvm::APSInt &Res = EvalResult.Val.getInt();
1511  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1512    return Context.getConstantArrayType(VLATy->getElementType(),
1513                                        Res, ArrayType::Normal, 0);
1514
1515  SizeIsNegative = true;
1516  return QualType();
1517}
1518
1519/// \brief Register the given locally-scoped external C declaration so
1520/// that it can be found later for redeclarations
1521void
1522Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1523                                       Scope *S) {
1524  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1525         "Decl is not a locally-scoped decl!");
1526  // Note that we have a locally-scoped external with this name.
1527  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1528
1529  if (!PrevDecl)
1530    return;
1531
1532  // If there was a previous declaration of this variable, it may be
1533  // in our identifier chain. Update the identifier chain with the new
1534  // declaration.
1535  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1536    // The previous declaration was found on the identifer resolver
1537    // chain, so remove it from its scope.
1538    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1539      S = S->getParent();
1540
1541    if (S)
1542      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1543  }
1544}
1545
1546/// \brief Diagnose function specifiers on a declaration of an identifier that
1547/// does not identify a function.
1548void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1549  // FIXME: We should probably indicate the identifier in question to avoid
1550  // confusion for constructs like "inline int a(), b;"
1551  if (D.getDeclSpec().isInlineSpecified())
1552    Diag(D.getDeclSpec().getInlineSpecLoc(),
1553         diag::err_inline_non_function);
1554
1555  if (D.getDeclSpec().isVirtualSpecified())
1556    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1557         diag::err_virtual_non_function);
1558
1559  if (D.getDeclSpec().isExplicitSpecified())
1560    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1561         diag::err_explicit_non_function);
1562}
1563
1564NamedDecl*
1565Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1566                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1567  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1568  if (D.getCXXScopeSpec().isSet()) {
1569    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1570      << D.getCXXScopeSpec().getRange();
1571    D.setInvalidType();
1572    // Pretend we didn't see the scope specifier.
1573    DC = 0;
1574  }
1575
1576  if (getLangOptions().CPlusPlus) {
1577    // Check that there are no default arguments (C++ only).
1578    CheckExtraCXXDefaultArguments(D);
1579  }
1580
1581  DiagnoseFunctionSpecifiers(D);
1582
1583  if (D.getDeclSpec().isThreadSpecified())
1584    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1585
1586  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1587  if (!NewTD) return 0;
1588
1589  if (D.isInvalidType())
1590    NewTD->setInvalidDecl();
1591
1592  // Handle attributes prior to checking for duplicates in MergeVarDecl
1593  ProcessDeclAttributes(NewTD, D);
1594  // Merge the decl with the existing one if appropriate. If the decl is
1595  // in an outer scope, it isn't the same thing.
1596  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1597    Redeclaration = true;
1598    MergeTypeDefDecl(NewTD, PrevDecl);
1599  }
1600
1601  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1602  // then it shall have block scope.
1603  QualType T = NewTD->getUnderlyingType();
1604  if (T->isVariablyModifiedType()) {
1605    CurFunctionNeedsScopeChecking = true;
1606
1607    if (S->getFnParent() == 0) {
1608      bool SizeIsNegative;
1609      QualType FixedTy =
1610          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1611      if (!FixedTy.isNull()) {
1612        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1613        NewTD->setUnderlyingType(FixedTy);
1614      } else {
1615        if (SizeIsNegative)
1616          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1617        else if (T->isVariableArrayType())
1618          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1619        else
1620          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1621        NewTD->setInvalidDecl();
1622      }
1623    }
1624  }
1625  return NewTD;
1626}
1627
1628/// \brief Determines whether the given declaration is an out-of-scope
1629/// previous declaration.
1630///
1631/// This routine should be invoked when name lookup has found a
1632/// previous declaration (PrevDecl) that is not in the scope where a
1633/// new declaration by the same name is being introduced. If the new
1634/// declaration occurs in a local scope, previous declarations with
1635/// linkage may still be considered previous declarations (C99
1636/// 6.2.2p4-5, C++ [basic.link]p6).
1637///
1638/// \param PrevDecl the previous declaration found by name
1639/// lookup
1640///
1641/// \param DC the context in which the new declaration is being
1642/// declared.
1643///
1644/// \returns true if PrevDecl is an out-of-scope previous declaration
1645/// for a new delcaration with the same name.
1646static bool
1647isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1648                                ASTContext &Context) {
1649  if (!PrevDecl)
1650    return 0;
1651
1652  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1653  // case we need to check each of the overloaded functions.
1654  if (!PrevDecl->hasLinkage())
1655    return false;
1656
1657  if (Context.getLangOptions().CPlusPlus) {
1658    // C++ [basic.link]p6:
1659    //   If there is a visible declaration of an entity with linkage
1660    //   having the same name and type, ignoring entities declared
1661    //   outside the innermost enclosing namespace scope, the block
1662    //   scope declaration declares that same entity and receives the
1663    //   linkage of the previous declaration.
1664    DeclContext *OuterContext = DC->getLookupContext();
1665    if (!OuterContext->isFunctionOrMethod())
1666      // This rule only applies to block-scope declarations.
1667      return false;
1668    else {
1669      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1670      if (PrevOuterContext->isRecord())
1671        // We found a member function: ignore it.
1672        return false;
1673      else {
1674        // Find the innermost enclosing namespace for the new and
1675        // previous declarations.
1676        while (!OuterContext->isFileContext())
1677          OuterContext = OuterContext->getParent();
1678        while (!PrevOuterContext->isFileContext())
1679          PrevOuterContext = PrevOuterContext->getParent();
1680
1681        // The previous declaration is in a different namespace, so it
1682        // isn't the same function.
1683        if (OuterContext->getPrimaryContext() !=
1684            PrevOuterContext->getPrimaryContext())
1685          return false;
1686      }
1687    }
1688  }
1689
1690  return true;
1691}
1692
1693NamedDecl*
1694Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1695                              QualType R,NamedDecl* PrevDecl,
1696                              bool &Redeclaration) {
1697  DeclarationName Name = GetNameForDeclarator(D);
1698
1699  // Check that there are no default arguments (C++ only).
1700  if (getLangOptions().CPlusPlus)
1701    CheckExtraCXXDefaultArguments(D);
1702
1703  VarDecl *NewVD;
1704  VarDecl::StorageClass SC;
1705  switch (D.getDeclSpec().getStorageClassSpec()) {
1706  default: assert(0 && "Unknown storage class!");
1707  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1708  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1709  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1710  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1711  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1712  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1713  case DeclSpec::SCS_mutable:
1714    // mutable can only appear on non-static class members, so it's always
1715    // an error here
1716    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1717    D.setInvalidType();
1718    SC = VarDecl::None;
1719    break;
1720  }
1721
1722  IdentifierInfo *II = Name.getAsIdentifierInfo();
1723  if (!II) {
1724    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1725      << Name.getAsString();
1726    return 0;
1727  }
1728
1729  DiagnoseFunctionSpecifiers(D);
1730
1731  if (!DC->isRecord() && S->getFnParent() == 0) {
1732    // C99 6.9p2: The storage-class specifiers auto and register shall not
1733    // appear in the declaration specifiers in an external declaration.
1734    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1735      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1736      D.setInvalidType();
1737    }
1738  }
1739  if (DC->isRecord() && !CurContext->isRecord()) {
1740    // This is an out-of-line definition of a static data member.
1741    if (SC == VarDecl::Static) {
1742      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1743           diag::err_static_out_of_line)
1744        << CodeModificationHint::CreateRemoval(
1745                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1746    } else if (SC == VarDecl::None)
1747      SC = VarDecl::Static;
1748  }
1749
1750  // The variable can not
1751  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1752                          II, R, SC,
1753                          // FIXME: Move to DeclGroup...
1754                          D.getDeclSpec().getSourceRange().getBegin());
1755
1756  if (D.isInvalidType())
1757    NewVD->setInvalidDecl();
1758
1759  if (D.getDeclSpec().isThreadSpecified()) {
1760    if (NewVD->hasLocalStorage())
1761      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1762    else if (!Context.Target.isTLSSupported())
1763      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1764    else
1765      NewVD->setThreadSpecified(true);
1766  }
1767
1768  // Set the lexical context. If the declarator has a C++ scope specifier, the
1769  // lexical context will be different from the semantic context.
1770  NewVD->setLexicalDeclContext(CurContext);
1771
1772  // Handle attributes prior to checking for duplicates in MergeVarDecl
1773  ProcessDeclAttributes(NewVD, D);
1774
1775  // Handle GNU asm-label extension (encoded as an attribute).
1776  if (Expr *E = (Expr*) D.getAsmLabel()) {
1777    // The parser guarantees this is a string.
1778    StringLiteral *SE = cast<StringLiteral>(E);
1779    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1780                                                        SE->getByteLength())));
1781  }
1782
1783  // If name lookup finds a previous declaration that is not in the
1784  // same scope as the new declaration, this may still be an
1785  // acceptable redeclaration.
1786  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1787      !(NewVD->hasLinkage() &&
1788        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1789    PrevDecl = 0;
1790
1791  // Merge the decl with the existing one if appropriate.
1792  if (PrevDecl) {
1793    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1794      // The user tried to define a non-static data member
1795      // out-of-line (C++ [dcl.meaning]p1).
1796      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1797        << D.getCXXScopeSpec().getRange();
1798      PrevDecl = 0;
1799      NewVD->setInvalidDecl();
1800    }
1801  } else if (D.getCXXScopeSpec().isSet()) {
1802    // No previous declaration in the qualifying scope.
1803    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1804      << Name << D.getCXXScopeSpec().getRange();
1805    NewVD->setInvalidDecl();
1806  }
1807
1808  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1809
1810  // If this is a locally-scoped extern C variable, update the map of
1811  // such variables.
1812  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1813      !NewVD->isInvalidDecl())
1814    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1815
1816  return NewVD;
1817}
1818
1819/// \brief Perform semantic checking on a newly-created variable
1820/// declaration.
1821///
1822/// This routine performs all of the type-checking required for a
1823/// variable declaration once it has been build. It is used both to
1824/// check variables after they have been parsed and their declarators
1825/// have been translated into a declaration, and to check
1826///
1827/// Sets NewVD->isInvalidDecl() if an error was encountered.
1828void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1829                                    bool &Redeclaration) {
1830  // If the decl is already known invalid, don't check it.
1831  if (NewVD->isInvalidDecl())
1832    return;
1833
1834  QualType T = NewVD->getType();
1835
1836  if (T->isObjCInterfaceType()) {
1837    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1838    return NewVD->setInvalidDecl();
1839  }
1840
1841  // The variable can not have an abstract class type.
1842  if (RequireNonAbstractType(NewVD->getLocation(), T,
1843                             diag::err_abstract_type_in_decl,
1844                             AbstractVariableType))
1845    return NewVD->setInvalidDecl();
1846
1847  // Emit an error if an address space was applied to decl with local storage.
1848  // This includes arrays of objects with address space qualifiers, but not
1849  // automatic variables that point to other address spaces.
1850  // ISO/IEC TR 18037 S5.1.2
1851  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1852    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1853    return NewVD->setInvalidDecl();
1854  }
1855
1856  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1857      && !NewVD->hasAttr<BlocksAttr>())
1858    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1859
1860  bool isVM = T->isVariablyModifiedType();
1861  if (isVM || NewVD->hasAttr<CleanupAttr>())
1862    CurFunctionNeedsScopeChecking = true;
1863
1864  if ((isVM && NewVD->hasLinkage()) ||
1865      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1866    bool SizeIsNegative;
1867    QualType FixedTy =
1868        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1869
1870    if (FixedTy.isNull() && T->isVariableArrayType()) {
1871      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1872      // FIXME: This won't give the correct result for
1873      // int a[10][n];
1874      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1875
1876      if (NewVD->isFileVarDecl())
1877        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1878        << SizeRange;
1879      else if (NewVD->getStorageClass() == VarDecl::Static)
1880        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1881        << SizeRange;
1882      else
1883        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1884        << SizeRange;
1885      return NewVD->setInvalidDecl();
1886    }
1887
1888    if (FixedTy.isNull()) {
1889      if (NewVD->isFileVarDecl())
1890        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1891      else
1892        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1893      return NewVD->setInvalidDecl();
1894    }
1895
1896    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1897    NewVD->setType(FixedTy);
1898  }
1899
1900  if (!PrevDecl && NewVD->isExternC(Context)) {
1901    // Since we did not find anything by this name and we're declaring
1902    // an extern "C" variable, look for a non-visible extern "C"
1903    // declaration with the same name.
1904    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1905      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1906    if (Pos != LocallyScopedExternalDecls.end())
1907      PrevDecl = Pos->second;
1908  }
1909
1910  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1911    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1912      << T;
1913    return NewVD->setInvalidDecl();
1914  }
1915
1916  if (PrevDecl) {
1917    Redeclaration = true;
1918    MergeVarDecl(NewVD, PrevDecl);
1919  }
1920}
1921
1922NamedDecl*
1923Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1924                              QualType R, NamedDecl* PrevDecl,
1925                              bool IsFunctionDefinition, bool &Redeclaration) {
1926  assert(R.getTypePtr()->isFunctionType());
1927
1928  DeclarationName Name = GetNameForDeclarator(D);
1929  FunctionDecl::StorageClass SC = FunctionDecl::None;
1930  switch (D.getDeclSpec().getStorageClassSpec()) {
1931  default: assert(0 && "Unknown storage class!");
1932  case DeclSpec::SCS_auto:
1933  case DeclSpec::SCS_register:
1934  case DeclSpec::SCS_mutable:
1935    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1936         diag::err_typecheck_sclass_func);
1937    D.setInvalidType();
1938    break;
1939  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1940  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1941  case DeclSpec::SCS_static: {
1942    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1943      // C99 6.7.1p5:
1944      //   The declaration of an identifier for a function that has
1945      //   block scope shall have no explicit storage-class specifier
1946      //   other than extern
1947      // See also (C++ [dcl.stc]p4).
1948      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1949           diag::err_static_block_func);
1950      SC = FunctionDecl::None;
1951    } else
1952      SC = FunctionDecl::Static;
1953    break;
1954  }
1955  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1956  }
1957
1958  if (D.getDeclSpec().isThreadSpecified())
1959    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1960
1961  bool isInline = D.getDeclSpec().isInlineSpecified();
1962  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1963  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1964
1965  // Check that the return type is not an abstract class type.
1966  // For record types, this is done by the AbstractClassUsageDiagnoser once
1967  // the class has been completely parsed.
1968  if (!DC->isRecord() &&
1969      RequireNonAbstractType(D.getIdentifierLoc(),
1970                             R->getAsFunctionType()->getResultType(),
1971                             diag::err_abstract_type_in_decl,
1972                             AbstractReturnType))
1973    D.setInvalidType();
1974
1975  // Do not allow returning a objc interface by-value.
1976  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1977    Diag(D.getIdentifierLoc(),
1978         diag::err_object_cannot_be_passed_returned_by_value) << 0
1979      << R->getAsFunctionType()->getResultType();
1980    D.setInvalidType();
1981  }
1982
1983  bool isVirtualOkay = false;
1984  FunctionDecl *NewFD;
1985  if (D.getKind() == Declarator::DK_Constructor) {
1986    // This is a C++ constructor declaration.
1987    assert(DC->isRecord() &&
1988           "Constructors can only be declared in a member context");
1989
1990    R = CheckConstructorDeclarator(D, R, SC);
1991
1992    // Create the new declaration
1993    NewFD = CXXConstructorDecl::Create(Context,
1994                                       cast<CXXRecordDecl>(DC),
1995                                       D.getIdentifierLoc(), Name, R,
1996                                       isExplicit, isInline,
1997                                       /*isImplicitlyDeclared=*/false);
1998  } else if (D.getKind() == Declarator::DK_Destructor) {
1999    // This is a C++ destructor declaration.
2000    if (DC->isRecord()) {
2001      R = CheckDestructorDeclarator(D, SC);
2002
2003      NewFD = CXXDestructorDecl::Create(Context,
2004                                        cast<CXXRecordDecl>(DC),
2005                                        D.getIdentifierLoc(), Name, R,
2006                                        isInline,
2007                                        /*isImplicitlyDeclared=*/false);
2008
2009      isVirtualOkay = true;
2010    } else {
2011      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2012
2013      // Create a FunctionDecl to satisfy the function definition parsing
2014      // code path.
2015      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2016                                   Name, R, SC, isInline,
2017                                   /*hasPrototype=*/true,
2018                                   // FIXME: Move to DeclGroup...
2019                                   D.getDeclSpec().getSourceRange().getBegin());
2020      D.setInvalidType();
2021    }
2022  } else if (D.getKind() == Declarator::DK_Conversion) {
2023    if (!DC->isRecord()) {
2024      Diag(D.getIdentifierLoc(),
2025           diag::err_conv_function_not_member);
2026      return 0;
2027    }
2028
2029    CheckConversionDeclarator(D, R, SC);
2030    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2031                                      D.getIdentifierLoc(), Name, R,
2032                                      isInline, isExplicit);
2033
2034    isVirtualOkay = true;
2035  } else if (DC->isRecord()) {
2036    // This is a C++ method declaration.
2037    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2038                                  D.getIdentifierLoc(), Name, R,
2039                                  (SC == FunctionDecl::Static), isInline);
2040
2041    isVirtualOkay = (SC != FunctionDecl::Static);
2042  } else {
2043    // Determine whether the function was written with a
2044    // prototype. This true when:
2045    //   - we're in C++ (where every function has a prototype),
2046    //   - there is a prototype in the declarator, or
2047    //   - the type R of the function is some kind of typedef or other reference
2048    //     to a type name (which eventually refers to a function type).
2049    bool HasPrototype =
2050       getLangOptions().CPlusPlus ||
2051       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2052       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2053
2054    NewFD = FunctionDecl::Create(Context, DC,
2055                                 D.getIdentifierLoc(),
2056                                 Name, R, SC, isInline, HasPrototype,
2057                                 // FIXME: Move to DeclGroup...
2058                                 D.getDeclSpec().getSourceRange().getBegin());
2059  }
2060
2061  if (D.isInvalidType())
2062    NewFD->setInvalidDecl();
2063
2064  // Set the lexical context. If the declarator has a C++
2065  // scope specifier, the lexical context will be different
2066  // from the semantic context.
2067  NewFD->setLexicalDeclContext(CurContext);
2068
2069  // C++ [dcl.fct.spec]p5:
2070  //   The virtual specifier shall only be used in declarations of
2071  //   nonstatic class member functions that appear within a
2072  //   member-specification of a class declaration; see 10.3.
2073  //
2074  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2075  // function is also virtual if it overrides an already virtual
2076  // function. This is important to do here because it's part of the
2077  // declaration.
2078  if (isVirtual && !NewFD->isInvalidDecl()) {
2079    if (!isVirtualOkay) {
2080       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2081           diag::err_virtual_non_function);
2082    } else if (!CurContext->isRecord()) {
2083      // 'virtual' was specified outside of the class.
2084      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2085        << CodeModificationHint::CreateRemoval(
2086                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2087    } else {
2088      // Okay: Add virtual to the method.
2089      cast<CXXMethodDecl>(NewFD)->setVirtual();
2090      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2091      CurClass->setAggregate(false);
2092      CurClass->setPOD(false);
2093      CurClass->setPolymorphic(true);
2094      CurClass->setHasTrivialConstructor(false);
2095    }
2096  }
2097
2098  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2099      !CurContext->isRecord()) {
2100    // C++ [class.static]p1:
2101    //   A data or function member of a class may be declared static
2102    //   in a class definition, in which case it is a static member of
2103    //   the class.
2104
2105    // Complain about the 'static' specifier if it's on an out-of-line
2106    // member function definition.
2107    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2108         diag::err_static_out_of_line)
2109      << CodeModificationHint::CreateRemoval(
2110                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2111  }
2112
2113  // Handle GNU asm-label extension (encoded as an attribute).
2114  if (Expr *E = (Expr*) D.getAsmLabel()) {
2115    // The parser guarantees this is a string.
2116    StringLiteral *SE = cast<StringLiteral>(E);
2117    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2118                                                        SE->getByteLength())));
2119  }
2120
2121  // Copy the parameter declarations from the declarator D to the function
2122  // declaration NewFD, if they are available.  First scavenge them into Params.
2123  llvm::SmallVector<ParmVarDecl*, 16> Params;
2124  if (D.getNumTypeObjects() > 0) {
2125    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2126
2127    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2128    // function that takes no arguments, not a function that takes a
2129    // single void argument.
2130    // We let through "const void" here because Sema::GetTypeForDeclarator
2131    // already checks for that case.
2132    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2133        FTI.ArgInfo[0].Param &&
2134        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2135      // Empty arg list, don't push any params.
2136      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2137
2138      // In C++, the empty parameter-type-list must be spelled "void"; a
2139      // typedef of void is not permitted.
2140      if (getLangOptions().CPlusPlus &&
2141          Param->getType().getUnqualifiedType() != Context.VoidTy)
2142        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2143      // FIXME: Leaks decl?
2144    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2145      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2146        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2147    }
2148
2149  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2150    // When we're declaring a function with a typedef, typeof, etc as in the
2151    // following example, we'll need to synthesize (unnamed)
2152    // parameters for use in the declaration.
2153    //
2154    // @code
2155    // typedef void fn(int);
2156    // fn f;
2157    // @endcode
2158
2159    // Synthesize a parameter for each argument type.
2160    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2161         AE = FT->arg_type_end(); AI != AE; ++AI) {
2162      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2163                                               SourceLocation(), 0,
2164                                               *AI, VarDecl::None, 0);
2165      Param->setImplicit();
2166      Params.push_back(Param);
2167    }
2168  } else {
2169    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2170           "Should not need args for typedef of non-prototype fn");
2171  }
2172  // Finally, we know we have the right number of parameters, install them.
2173  NewFD->setParams(Context, &Params[0], Params.size());
2174
2175
2176
2177  // If name lookup finds a previous declaration that is not in the
2178  // same scope as the new declaration, this may still be an
2179  // acceptable redeclaration.
2180  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2181      !(NewFD->hasLinkage() &&
2182        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2183    PrevDecl = 0;
2184
2185  // FIXME: We need to determine whether the GNU inline attribute will
2186  // be applied to this function declaration, since it affects
2187  // declaration merging. This hack will go away when the FIXME below
2188  // is resolved, since we should be putting *all* attributes onto the
2189  // declaration now.
2190  for (const AttributeList *Attr = D.getDeclSpec().getAttributes();
2191       Attr; Attr = Attr->getNext()) {
2192    if (Attr->getKind() == AttributeList::AT_gnu_inline) {
2193      NewFD->addAttr(::new (Context) GNUInlineAttr());
2194      break;
2195    }
2196  }
2197
2198  // Perform semantic checking on the function declaration.
2199  bool OverloadableAttrRequired = false; // FIXME: HACK!
2200  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2201                           /*FIXME:*/OverloadableAttrRequired);
2202
2203  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2204    // An out-of-line member function declaration must also be a
2205    // definition (C++ [dcl.meaning]p1).
2206    if (!IsFunctionDefinition) {
2207      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2208        << D.getCXXScopeSpec().getRange();
2209      NewFD->setInvalidDecl();
2210    } else if (!Redeclaration) {
2211      // The user tried to provide an out-of-line definition for a
2212      // function that is a member of a class or namespace, but there
2213      // was no such member function declared (C++ [class.mfct]p2,
2214      // C++ [namespace.memdef]p2). For example:
2215      //
2216      // class X {
2217      //   void f() const;
2218      // };
2219      //
2220      // void X::f() { } // ill-formed
2221      //
2222      // Complain about this problem, and attempt to suggest close
2223      // matches (e.g., those that differ only in cv-qualifiers and
2224      // whether the parameter types are references).
2225      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2226        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2227      NewFD->setInvalidDecl();
2228
2229      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2230                                              true);
2231      assert(!Prev.isAmbiguous() &&
2232             "Cannot have an ambiguity in previous-declaration lookup");
2233      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2234           Func != FuncEnd; ++Func) {
2235        if (isa<FunctionDecl>(*Func) &&
2236            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2237          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2238      }
2239
2240      PrevDecl = 0;
2241    }
2242  }
2243
2244  // Handle attributes. We need to have merged decls when handling attributes
2245  // (for example to check for conflicts, etc).
2246  // FIXME: This needs to happen before we merge declarations. Then,
2247  // let attribute merging cope with attribute conflicts.
2248  ProcessDeclAttributes(NewFD, D);
2249  AddKnownFunctionAttributes(NewFD);
2250
2251  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2252    // If a function name is overloadable in C, then every function
2253    // with that name must be marked "overloadable".
2254    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2255      << Redeclaration << NewFD;
2256    if (PrevDecl)
2257      Diag(PrevDecl->getLocation(),
2258           diag::note_attribute_overloadable_prev_overload);
2259    NewFD->addAttr(::new (Context) OverloadableAttr());
2260  }
2261
2262  // If this is a locally-scoped extern C function, update the
2263  // map of such names.
2264  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2265      && !NewFD->isInvalidDecl())
2266    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2267
2268  return NewFD;
2269}
2270
2271/// \brief Perform semantic checking of a new function declaration.
2272///
2273/// Performs semantic analysis of the new function declaration
2274/// NewFD. This routine performs all semantic checking that does not
2275/// require the actual declarator involved in the declaration, and is
2276/// used both for the declaration of functions as they are parsed
2277/// (called via ActOnDeclarator) and for the declaration of functions
2278/// that have been instantiated via C++ template instantiation (called
2279/// via InstantiateDecl).
2280///
2281/// This sets NewFD->isInvalidDecl() to true if there was an error.
2282void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2283                                    bool &Redeclaration,
2284                                    bool &OverloadableAttrRequired) {
2285  // If NewFD is already known erroneous, don't do any of this checking.
2286  if (NewFD->isInvalidDecl())
2287    return;
2288
2289  // Semantic checking for this function declaration (in isolation).
2290  if (getLangOptions().CPlusPlus) {
2291    // C++-specific checks.
2292    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2293      CheckConstructor(Constructor);
2294    } else if (isa<CXXDestructorDecl>(NewFD)) {
2295      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2296      Record->setUserDeclaredDestructor(true);
2297      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2298      // user-defined destructor.
2299      Record->setPOD(false);
2300
2301      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2302      // declared destructor.
2303      Record->setHasTrivialDestructor(false);
2304    } else if (CXXConversionDecl *Conversion
2305               = dyn_cast<CXXConversionDecl>(NewFD))
2306      ActOnConversionDeclarator(Conversion);
2307
2308    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2309    if (NewFD->isOverloadedOperator() &&
2310        CheckOverloadedOperatorDeclaration(NewFD))
2311      return NewFD->setInvalidDecl();
2312  }
2313
2314  // C99 6.7.4p6:
2315  //   [... ] For a function with external linkage, the following
2316  //   restrictions apply: [...] If all of the file scope declarations
2317  //   for a function in a translation unit include the inline
2318  //   function specifier without extern, then the definition in that
2319  //   translation unit is an inline definition. An inline definition
2320  //   does not provide an external definition for the function, and
2321  //   does not forbid an external definition in another translation
2322  //   unit.
2323  //
2324  // Here we determine whether this function, in isolation, would be a
2325  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2326  // previous declarations.
2327  if (NewFD->isInline() &&
2328      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2329    bool GNUInline = NewFD->hasAttr<GNUInlineAttr>() ||
2330      (PrevDecl && PrevDecl->hasAttr<GNUInlineAttr>());
2331    if (GNUInline || (!getLangOptions().CPlusPlus && !getLangOptions().C99)) {
2332      // GNU "extern inline" is the same as "inline" in C99.
2333      if (NewFD->getStorageClass() == FunctionDecl::Extern)
2334        NewFD->setC99InlineDefinition(true);
2335    } else if (getLangOptions().C99 &&
2336               NewFD->getStorageClass() == FunctionDecl::None)
2337      NewFD->setC99InlineDefinition(true);
2338  }
2339
2340  // Check for a previous declaration of this name.
2341  if (!PrevDecl && NewFD->isExternC(Context)) {
2342    // Since we did not find anything by this name and we're declaring
2343    // an extern "C" function, look for a non-visible extern "C"
2344    // declaration with the same name.
2345    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2346      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2347    if (Pos != LocallyScopedExternalDecls.end())
2348      PrevDecl = Pos->second;
2349  }
2350
2351  // Merge or overload the declaration with an existing declaration of
2352  // the same name, if appropriate.
2353  if (PrevDecl) {
2354    // Determine whether NewFD is an overload of PrevDecl or
2355    // a declaration that requires merging. If it's an overload,
2356    // there's no more work to do here; we'll just add the new
2357    // function to the scope.
2358    OverloadedFunctionDecl::function_iterator MatchedDecl;
2359
2360    if (!getLangOptions().CPlusPlus &&
2361        AllowOverloadingOfFunction(PrevDecl, Context)) {
2362      OverloadableAttrRequired = true;
2363
2364      // Functions marked "overloadable" must have a prototype (that
2365      // we can't get through declaration merging).
2366      if (!NewFD->getType()->getAsFunctionProtoType()) {
2367        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2368          << NewFD;
2369        Redeclaration = true;
2370
2371        // Turn this into a variadic function with no parameters.
2372        QualType R = Context.getFunctionType(
2373                       NewFD->getType()->getAsFunctionType()->getResultType(),
2374                       0, 0, true, 0);
2375        NewFD->setType(R);
2376        return NewFD->setInvalidDecl();
2377      }
2378    }
2379
2380    if (PrevDecl &&
2381        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2382         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2383      Redeclaration = true;
2384      Decl *OldDecl = PrevDecl;
2385
2386      // If PrevDecl was an overloaded function, extract the
2387      // FunctionDecl that matched.
2388      if (isa<OverloadedFunctionDecl>(PrevDecl))
2389        OldDecl = *MatchedDecl;
2390
2391      // NewFD and OldDecl represent declarations that need to be
2392      // merged.
2393      if (MergeFunctionDecl(NewFD, OldDecl))
2394        return NewFD->setInvalidDecl();
2395
2396      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2397    }
2398  }
2399
2400  // In C++, check default arguments now that we have merged decls. Unless
2401  // the lexical context is the class, because in this case this is done
2402  // during delayed parsing anyway.
2403  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2404    CheckCXXDefaultArguments(NewFD);
2405}
2406
2407bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2408  // FIXME: Need strict checking.  In C89, we need to check for
2409  // any assignment, increment, decrement, function-calls, or
2410  // commas outside of a sizeof.  In C99, it's the same list,
2411  // except that the aforementioned are allowed in unevaluated
2412  // expressions.  Everything else falls under the
2413  // "may accept other forms of constant expressions" exception.
2414  // (We never end up here for C++, so the constant expression
2415  // rules there don't matter.)
2416  if (Init->isConstantInitializer(Context))
2417    return false;
2418  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2419    << Init->getSourceRange();
2420  return true;
2421}
2422
2423void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2424  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2425}
2426
2427/// AddInitializerToDecl - Adds the initializer Init to the
2428/// declaration dcl. If DirectInit is true, this is C++ direct
2429/// initialization rather than copy initialization.
2430void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2431  Decl *RealDecl = dcl.getAs<Decl>();
2432  // If there is no declaration, there was an error parsing it.  Just ignore
2433  // the initializer.
2434  if (RealDecl == 0)
2435    return;
2436
2437  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2438    // With declarators parsed the way they are, the parser cannot
2439    // distinguish between a normal initializer and a pure-specifier.
2440    // Thus this grotesque test.
2441    IntegerLiteral *IL;
2442    Expr *Init = static_cast<Expr *>(init.get());
2443    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2444        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2445      if (Method->isVirtual()) {
2446        Method->setPure();
2447
2448        // A class is abstract if at least one function is pure virtual.
2449        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2450      } else if (!Method->isInvalidDecl()) {
2451        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2452          << Method->getDeclName() << Init->getSourceRange();
2453        Method->setInvalidDecl();
2454      }
2455    } else {
2456      Diag(Method->getLocation(), diag::err_member_function_initialization)
2457        << Method->getDeclName() << Init->getSourceRange();
2458      Method->setInvalidDecl();
2459    }
2460    return;
2461  }
2462
2463  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2464  if (!VDecl) {
2465    if (getLangOptions().CPlusPlus &&
2466        RealDecl->getLexicalDeclContext()->isRecord() &&
2467        isa<NamedDecl>(RealDecl))
2468      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2469        << cast<NamedDecl>(RealDecl)->getDeclName();
2470    else
2471      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2472    RealDecl->setInvalidDecl();
2473    return;
2474  }
2475
2476  if (!VDecl->getType()->isArrayType() &&
2477      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2478                          diag::err_typecheck_decl_incomplete_type)) {
2479    RealDecl->setInvalidDecl();
2480    return;
2481  }
2482
2483  const VarDecl *Def = 0;
2484  if (VDecl->getDefinition(Def)) {
2485    Diag(VDecl->getLocation(), diag::err_redefinition)
2486      << VDecl->getDeclName();
2487    Diag(Def->getLocation(), diag::note_previous_definition);
2488    VDecl->setInvalidDecl();
2489    return;
2490  }
2491
2492  // Take ownership of the expression, now that we're sure we have somewhere
2493  // to put it.
2494  Expr *Init = static_cast<Expr *>(init.release());
2495  assert(Init && "missing initializer");
2496
2497  // Get the decls type and save a reference for later, since
2498  // CheckInitializerTypes may change it.
2499  QualType DclT = VDecl->getType(), SavT = DclT;
2500  if (VDecl->isBlockVarDecl()) {
2501    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2502      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2503      VDecl->setInvalidDecl();
2504    } else if (!VDecl->isInvalidDecl()) {
2505      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2506                                VDecl->getDeclName(), DirectInit))
2507        VDecl->setInvalidDecl();
2508
2509      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2510      // Don't check invalid declarations to avoid emitting useless diagnostics.
2511      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2512        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2513          CheckForConstantInitializer(Init, DclT);
2514      }
2515    }
2516  } else if (VDecl->isStaticDataMember() &&
2517             VDecl->getLexicalDeclContext()->isRecord()) {
2518    // This is an in-class initialization for a static data member, e.g.,
2519    //
2520    // struct S {
2521    //   static const int value = 17;
2522    // };
2523
2524    // Attach the initializer
2525    VDecl->setInit(Init);
2526
2527    // C++ [class.mem]p4:
2528    //   A member-declarator can contain a constant-initializer only
2529    //   if it declares a static member (9.4) of const integral or
2530    //   const enumeration type, see 9.4.2.
2531    QualType T = VDecl->getType();
2532    if (!T->isDependentType() &&
2533        (!Context.getCanonicalType(T).isConstQualified() ||
2534         !T->isIntegralType())) {
2535      Diag(VDecl->getLocation(), diag::err_member_initialization)
2536        << VDecl->getDeclName() << Init->getSourceRange();
2537      VDecl->setInvalidDecl();
2538    } else {
2539      // C++ [class.static.data]p4:
2540      //   If a static data member is of const integral or const
2541      //   enumeration type, its declaration in the class definition
2542      //   can specify a constant-initializer which shall be an
2543      //   integral constant expression (5.19).
2544      if (!Init->isTypeDependent() &&
2545          !Init->getType()->isIntegralType()) {
2546        // We have a non-dependent, non-integral or enumeration type.
2547        Diag(Init->getSourceRange().getBegin(),
2548             diag::err_in_class_initializer_non_integral_type)
2549          << Init->getType() << Init->getSourceRange();
2550        VDecl->setInvalidDecl();
2551      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2552        // Check whether the expression is a constant expression.
2553        llvm::APSInt Value;
2554        SourceLocation Loc;
2555        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2556          Diag(Loc, diag::err_in_class_initializer_non_constant)
2557            << Init->getSourceRange();
2558          VDecl->setInvalidDecl();
2559        } else if (!VDecl->getType()->isDependentType())
2560          ImpCastExprToType(Init, VDecl->getType());
2561      }
2562    }
2563  } else if (VDecl->isFileVarDecl()) {
2564    if (VDecl->getStorageClass() == VarDecl::Extern)
2565      Diag(VDecl->getLocation(), diag::warn_extern_init);
2566    if (!VDecl->isInvalidDecl())
2567      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2568                                VDecl->getDeclName(), DirectInit))
2569        VDecl->setInvalidDecl();
2570
2571    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2572    // Don't check invalid declarations to avoid emitting useless diagnostics.
2573    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2574      // C99 6.7.8p4. All file scoped initializers need to be constant.
2575      CheckForConstantInitializer(Init, DclT);
2576    }
2577  }
2578  // If the type changed, it means we had an incomplete type that was
2579  // completed by the initializer. For example:
2580  //   int ary[] = { 1, 3, 5 };
2581  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2582  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2583    VDecl->setType(DclT);
2584    Init->setType(DclT);
2585  }
2586
2587  // Attach the initializer to the decl.
2588  VDecl->setInit(Init);
2589
2590  // If the previous declaration of VDecl was a tentative definition,
2591  // remove it from the set of tentative definitions.
2592  if (VDecl->getPreviousDeclaration() &&
2593      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2594    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2595      = TentativeDefinitions.find(VDecl->getDeclName());
2596    assert(Pos != TentativeDefinitions.end() &&
2597           "Unrecorded tentative definition?");
2598    TentativeDefinitions.erase(Pos);
2599  }
2600
2601  return;
2602}
2603
2604void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2605  Decl *RealDecl = dcl.getAs<Decl>();
2606
2607  // If there is no declaration, there was an error parsing it. Just ignore it.
2608  if (RealDecl == 0)
2609    return;
2610
2611  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2612    QualType Type = Var->getType();
2613
2614    // Record tentative definitions.
2615    if (Var->isTentativeDefinition(Context))
2616      TentativeDefinitions[Var->getDeclName()] = Var;
2617
2618    // C++ [dcl.init.ref]p3:
2619    //   The initializer can be omitted for a reference only in a
2620    //   parameter declaration (8.3.5), in the declaration of a
2621    //   function return type, in the declaration of a class member
2622    //   within its class declaration (9.2), and where the extern
2623    //   specifier is explicitly used.
2624    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2625      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2626        << Var->getDeclName()
2627        << SourceRange(Var->getLocation(), Var->getLocation());
2628      Var->setInvalidDecl();
2629      return;
2630    }
2631
2632    // C++ [dcl.init]p9:
2633    //
2634    //   If no initializer is specified for an object, and the object
2635    //   is of (possibly cv-qualified) non-POD class type (or array
2636    //   thereof), the object shall be default-initialized; if the
2637    //   object is of const-qualified type, the underlying class type
2638    //   shall have a user-declared default constructor.
2639    if (getLangOptions().CPlusPlus) {
2640      QualType InitType = Type;
2641      if (const ArrayType *Array = Context.getAsArrayType(Type))
2642        InitType = Array->getElementType();
2643      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2644        CXXRecordDecl *RD =
2645          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2646        CXXConstructorDecl *Constructor = 0;
2647        if (!RequireCompleteType(Var->getLocation(), InitType,
2648                                    diag::err_invalid_incomplete_type_use))
2649          Constructor
2650            = PerformInitializationByConstructor(InitType, 0, 0,
2651                                                 Var->getLocation(),
2652                                               SourceRange(Var->getLocation(),
2653                                                           Var->getLocation()),
2654                                                 Var->getDeclName(),
2655                                                 IK_Default);
2656        if (!Constructor)
2657          Var->setInvalidDecl();
2658        else if (!RD->hasTrivialConstructor())
2659          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2660      }
2661    }
2662
2663#if 0
2664    // FIXME: Temporarily disabled because we are not properly parsing
2665    // linkage specifications on declarations, e.g.,
2666    //
2667    //   extern "C" const CGPoint CGPointerZero;
2668    //
2669    // C++ [dcl.init]p9:
2670    //
2671    //     If no initializer is specified for an object, and the
2672    //     object is of (possibly cv-qualified) non-POD class type (or
2673    //     array thereof), the object shall be default-initialized; if
2674    //     the object is of const-qualified type, the underlying class
2675    //     type shall have a user-declared default
2676    //     constructor. Otherwise, if no initializer is specified for
2677    //     an object, the object and its subobjects, if any, have an
2678    //     indeterminate initial value; if the object or any of its
2679    //     subobjects are of const-qualified type, the program is
2680    //     ill-formed.
2681    //
2682    // This isn't technically an error in C, so we don't diagnose it.
2683    //
2684    // FIXME: Actually perform the POD/user-defined default
2685    // constructor check.
2686    if (getLangOptions().CPlusPlus &&
2687        Context.getCanonicalType(Type).isConstQualified() &&
2688        !Var->hasExternalStorage())
2689      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2690        << Var->getName()
2691        << SourceRange(Var->getLocation(), Var->getLocation());
2692#endif
2693  }
2694}
2695
2696Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2697                                                   unsigned NumDecls) {
2698  llvm::SmallVector<Decl*, 8> Decls;
2699
2700  for (unsigned i = 0; i != NumDecls; ++i)
2701    if (Decl *D = Group[i].getAs<Decl>())
2702      Decls.push_back(D);
2703
2704  // Perform semantic analysis that depends on having fully processed both
2705  // the declarator and initializer.
2706  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2707    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2708    if (!IDecl)
2709      continue;
2710    QualType T = IDecl->getType();
2711
2712    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2713    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2714    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2715      if (!IDecl->isInvalidDecl() &&
2716          RequireCompleteType(IDecl->getLocation(), T,
2717                              diag::err_typecheck_decl_incomplete_type))
2718        IDecl->setInvalidDecl();
2719    }
2720    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2721    // object that has file scope without an initializer, and without a
2722    // storage-class specifier or with the storage-class specifier "static",
2723    // constitutes a tentative definition. Note: A tentative definition with
2724    // external linkage is valid (C99 6.2.2p5).
2725    if (IDecl->isTentativeDefinition(Context)) {
2726      QualType CheckType = T;
2727      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2728
2729      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2730      if (ArrayT) {
2731        CheckType = ArrayT->getElementType();
2732        DiagID = diag::err_illegal_decl_array_incomplete_type;
2733      }
2734
2735      if (IDecl->isInvalidDecl()) {
2736        // Do nothing with invalid declarations
2737      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2738                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2739        // C99 6.9.2p3: If the declaration of an identifier for an object is
2740        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2741        // declared type shall not be an incomplete type.
2742        IDecl->setInvalidDecl();
2743      }
2744    }
2745  }
2746  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2747                                                   &Decls[0], Decls.size()));
2748}
2749
2750
2751/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2752/// to introduce parameters into function prototype scope.
2753Sema::DeclPtrTy
2754Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2755  const DeclSpec &DS = D.getDeclSpec();
2756
2757  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2758  VarDecl::StorageClass StorageClass = VarDecl::None;
2759  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2760    StorageClass = VarDecl::Register;
2761  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2762    Diag(DS.getStorageClassSpecLoc(),
2763         diag::err_invalid_storage_class_in_func_decl);
2764    D.getMutableDeclSpec().ClearStorageClassSpecs();
2765  }
2766
2767  if (D.getDeclSpec().isThreadSpecified())
2768    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2769
2770  DiagnoseFunctionSpecifiers(D);
2771
2772  // Check that there are no default arguments inside the type of this
2773  // parameter (C++ only).
2774  if (getLangOptions().CPlusPlus)
2775    CheckExtraCXXDefaultArguments(D);
2776
2777  QualType parmDeclType = GetTypeForDeclarator(D, S);
2778
2779  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2780  // Can this happen for params?  We already checked that they don't conflict
2781  // among each other.  Here they can only shadow globals, which is ok.
2782  IdentifierInfo *II = D.getIdentifier();
2783  if (II) {
2784    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2785      if (PrevDecl->isTemplateParameter()) {
2786        // Maybe we will complain about the shadowed template parameter.
2787        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2788        // Just pretend that we didn't see the previous declaration.
2789        PrevDecl = 0;
2790      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2791        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2792
2793        // Recover by removing the name
2794        II = 0;
2795        D.SetIdentifier(0, D.getIdentifierLoc());
2796      }
2797    }
2798  }
2799
2800  // Parameters can not be abstract class types.
2801  // For record types, this is done by the AbstractClassUsageDiagnoser once
2802  // the class has been completely parsed.
2803  if (!CurContext->isRecord() &&
2804      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2805                             diag::err_abstract_type_in_decl,
2806                             AbstractParamType))
2807    D.setInvalidType(true);
2808
2809  QualType T = adjustParameterType(parmDeclType);
2810
2811  ParmVarDecl *New;
2812  if (T == parmDeclType) // parameter type did not need adjustment
2813    New = ParmVarDecl::Create(Context, CurContext,
2814                              D.getIdentifierLoc(), II,
2815                              parmDeclType, StorageClass,
2816                              0);
2817  else // keep track of both the adjusted and unadjusted types
2818    New = OriginalParmVarDecl::Create(Context, CurContext,
2819                                      D.getIdentifierLoc(), II, T,
2820                                      parmDeclType, StorageClass, 0);
2821
2822  if (D.isInvalidType())
2823    New->setInvalidDecl();
2824
2825  // Parameter declarators cannot be interface types. All ObjC objects are
2826  // passed by reference.
2827  if (T->isObjCInterfaceType()) {
2828    Diag(D.getIdentifierLoc(),
2829         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2830    New->setInvalidDecl();
2831  }
2832
2833  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2834  if (D.getCXXScopeSpec().isSet()) {
2835    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2836      << D.getCXXScopeSpec().getRange();
2837    New->setInvalidDecl();
2838  }
2839
2840  // Add the parameter declaration into this scope.
2841  S->AddDecl(DeclPtrTy::make(New));
2842  if (II)
2843    IdResolver.AddDecl(New);
2844
2845  ProcessDeclAttributes(New, D);
2846  return DeclPtrTy::make(New);
2847}
2848
2849void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2850                                           SourceLocation LocAfterDecls) {
2851  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2852         "Not a function declarator!");
2853  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2854
2855  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2856  // for a K&R function.
2857  if (!FTI.hasPrototype) {
2858    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2859      --i;
2860      if (FTI.ArgInfo[i].Param == 0) {
2861        std::string Code = "  int ";
2862        Code += FTI.ArgInfo[i].Ident->getName();
2863        Code += ";\n";
2864        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2865          << FTI.ArgInfo[i].Ident
2866          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2867
2868        // Implicitly declare the argument as type 'int' for lack of a better
2869        // type.
2870        DeclSpec DS;
2871        const char* PrevSpec; // unused
2872        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2873                           PrevSpec);
2874        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2875        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2876        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2877      }
2878    }
2879  }
2880}
2881
2882Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2883                                              Declarator &D) {
2884  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2885  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2886         "Not a function declarator!");
2887  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2888
2889  if (FTI.hasPrototype) {
2890    // FIXME: Diagnose arguments without names in C.
2891  }
2892
2893  Scope *ParentScope = FnBodyScope->getParent();
2894
2895  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2896  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2897}
2898
2899Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2900  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2901
2902  CurFunctionNeedsScopeChecking = false;
2903
2904  // See if this is a redefinition.
2905  const FunctionDecl *Definition;
2906  if (FD->getBody(Context, Definition)) {
2907    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2908    Diag(Definition->getLocation(), diag::note_previous_definition);
2909  }
2910
2911  // Builtin functions cannot be defined.
2912  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2913    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2914      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2915      FD->setInvalidDecl();
2916    }
2917  }
2918
2919  // The return type of a function definition must be complete
2920  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2921  QualType ResultType = FD->getResultType();
2922  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2923      RequireCompleteType(FD->getLocation(), ResultType,
2924                          diag::err_func_def_incomplete_result))
2925    FD->setInvalidDecl();
2926
2927  // GNU warning -Wmissing-prototypes:
2928  //   Warn if a global function is defined without a previous
2929  //   prototype declaration. This warning is issued even if the
2930  //   definition itself provides a prototype. The aim is to detect
2931  //   global functions that fail to be declared in header files.
2932  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2933      !FD->isMain()) {
2934    bool MissingPrototype = true;
2935    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2936         Prev; Prev = Prev->getPreviousDeclaration()) {
2937      // Ignore any declarations that occur in function or method
2938      // scope, because they aren't visible from the header.
2939      if (Prev->getDeclContext()->isFunctionOrMethod())
2940        continue;
2941
2942      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2943      break;
2944    }
2945
2946    if (MissingPrototype)
2947      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2948  }
2949
2950  PushDeclContext(FnBodyScope, FD);
2951
2952  // Check the validity of our function parameters
2953  CheckParmsForFunctionDef(FD);
2954
2955  // Introduce our parameters into the function scope
2956  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2957    ParmVarDecl *Param = FD->getParamDecl(p);
2958    Param->setOwningFunction(FD);
2959
2960    // If this has an identifier, add it to the scope stack.
2961    if (Param->getIdentifier())
2962      PushOnScopeChains(Param, FnBodyScope);
2963  }
2964
2965  // Checking attributes of current function definition
2966  // dllimport attribute.
2967  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2968    // dllimport attribute cannot be applied to definition.
2969    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2970      Diag(FD->getLocation(),
2971           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2972        << "dllimport";
2973      FD->setInvalidDecl();
2974      return DeclPtrTy::make(FD);
2975    } else {
2976      // If a symbol previously declared dllimport is later defined, the
2977      // attribute is ignored in subsequent references, and a warning is
2978      // emitted.
2979      Diag(FD->getLocation(),
2980           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2981        << FD->getNameAsCString() << "dllimport";
2982    }
2983  }
2984  return DeclPtrTy::make(FD);
2985}
2986
2987
2988Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2989  Decl *dcl = D.getAs<Decl>();
2990  Stmt *Body = BodyArg.takeAs<Stmt>();
2991  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2992    FD->setBody(Body);
2993    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2994  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2995    assert(MD == getCurMethodDecl() && "Method parsing confused");
2996    MD->setBody(Body);
2997  } else {
2998    Body->Destroy(Context);
2999    return DeclPtrTy();
3000  }
3001  PopDeclContext();
3002  // Verify and clean out per-function state.
3003
3004  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3005
3006  // Check goto/label use.
3007  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3008       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3009    LabelStmt *L = I->second;
3010
3011    // Verify that we have no forward references left.  If so, there was a goto
3012    // or address of a label taken, but no definition of it.  Label fwd
3013    // definitions are indicated with a null substmt.
3014    if (L->getSubStmt() != 0)
3015      continue;
3016
3017    // Emit error.
3018    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3019
3020    // At this point, we have gotos that use the bogus label.  Stitch it into
3021    // the function body so that they aren't leaked and that the AST is well
3022    // formed.
3023    if (Body == 0) {
3024      // The whole function wasn't parsed correctly, just delete this.
3025      L->Destroy(Context);
3026      continue;
3027    }
3028
3029    // Otherwise, the body is valid: we want to stitch the label decl into the
3030    // function somewhere so that it is properly owned and so that the goto
3031    // has a valid target.  Do this by creating a new compound stmt with the
3032    // label in it.
3033
3034    // Give the label a sub-statement.
3035    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3036
3037    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3038                               cast<CXXTryStmt>(Body)->getTryBlock() :
3039                               cast<CompoundStmt>(Body);
3040    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3041    Elements.push_back(L);
3042    Compound->setStmts(Context, &Elements[0], Elements.size());
3043  }
3044  FunctionLabelMap.clear();
3045
3046  if (!Body) return D;
3047
3048  // Verify that that gotos and switch cases don't jump into scopes illegally.
3049  if (CurFunctionNeedsScopeChecking)
3050    DiagnoseInvalidJumps(Body);
3051
3052  return D;
3053}
3054
3055/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3056/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3057NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3058                                          IdentifierInfo &II, Scope *S) {
3059  // Before we produce a declaration for an implicitly defined
3060  // function, see whether there was a locally-scoped declaration of
3061  // this name as a function or variable. If so, use that
3062  // (non-visible) declaration, and complain about it.
3063  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3064    = LocallyScopedExternalDecls.find(&II);
3065  if (Pos != LocallyScopedExternalDecls.end()) {
3066    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3067    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3068    return Pos->second;
3069  }
3070
3071  // Extension in C99.  Legal in C90, but warn about it.
3072  if (getLangOptions().C99)
3073    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3074  else
3075    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3076
3077  // FIXME: handle stuff like:
3078  // void foo() { extern float X(); }
3079  // void bar() { X(); }  <-- implicit decl for X in another scope.
3080
3081  // Set a Declarator for the implicit definition: int foo();
3082  const char *Dummy;
3083  DeclSpec DS;
3084  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3085  Error = Error; // Silence warning.
3086  assert(!Error && "Error setting up implicit decl!");
3087  Declarator D(DS, Declarator::BlockContext);
3088  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3089                                             0, 0, 0, Loc, D),
3090                SourceLocation());
3091  D.SetIdentifier(&II, Loc);
3092
3093  // Insert this function into translation-unit scope.
3094
3095  DeclContext *PrevDC = CurContext;
3096  CurContext = Context.getTranslationUnitDecl();
3097
3098  FunctionDecl *FD =
3099 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3100  FD->setImplicit();
3101
3102  CurContext = PrevDC;
3103
3104  AddKnownFunctionAttributes(FD);
3105
3106  return FD;
3107}
3108
3109/// \brief Adds any function attributes that we know a priori based on
3110/// the declaration of this function.
3111///
3112/// These attributes can apply both to implicitly-declared builtins
3113/// (like __builtin___printf_chk) or to library-declared functions
3114/// like NSLog or printf.
3115void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3116  if (FD->isInvalidDecl())
3117    return;
3118
3119  // If this is a built-in function, map its builtin attributes to
3120  // actual attributes.
3121  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3122    // Handle printf-formatting attributes.
3123    unsigned FormatIdx;
3124    bool HasVAListArg;
3125    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3126      if (!FD->getAttr<FormatAttr>())
3127        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3128                                               FormatIdx + 2));
3129    }
3130
3131    // Mark const if we don't care about errno and that is the only
3132    // thing preventing the function from being const. This allows
3133    // IRgen to use LLVM intrinsics for such functions.
3134    if (!getLangOptions().MathErrno &&
3135        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3136      if (!FD->getAttr<ConstAttr>())
3137        FD->addAttr(::new (Context) ConstAttr());
3138    }
3139  }
3140
3141  IdentifierInfo *Name = FD->getIdentifier();
3142  if (!Name)
3143    return;
3144  if ((!getLangOptions().CPlusPlus &&
3145       FD->getDeclContext()->isTranslationUnit()) ||
3146      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3147       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3148       LinkageSpecDecl::lang_c)) {
3149    // Okay: this could be a libc/libm/Objective-C function we know
3150    // about.
3151  } else
3152    return;
3153
3154  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3155    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3156      // FIXME: We known better than our headers.
3157      const_cast<FormatAttr *>(Format)->setType("printf");
3158    } else
3159      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3160  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3161    if (!FD->getAttr<FormatAttr>())
3162      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3163  }
3164}
3165
3166TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3167  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3168  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3169
3170  // Scope manipulation handled by caller.
3171  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3172                                           D.getIdentifierLoc(),
3173                                           D.getIdentifier(),
3174                                           T);
3175
3176  if (TagType *TT = dyn_cast<TagType>(T)) {
3177    TagDecl *TD = TT->getDecl();
3178
3179    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3180    // keep track of the TypedefDecl.
3181    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3182      TD->setTypedefForAnonDecl(NewTD);
3183  }
3184
3185  if (D.isInvalidType())
3186    NewTD->setInvalidDecl();
3187  return NewTD;
3188}
3189
3190/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3191/// former case, Name will be non-null.  In the later case, Name will be null.
3192/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3193/// reference/declaration/definition of a tag.
3194Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3195                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3196                               IdentifierInfo *Name, SourceLocation NameLoc,
3197                               AttributeList *Attr, AccessSpecifier AS) {
3198  // If this is not a definition, it must have a name.
3199  assert((Name != 0 || TK == TK_Definition) &&
3200         "Nameless record must be a definition!");
3201
3202  TagDecl::TagKind Kind;
3203  switch (TagSpec) {
3204  default: assert(0 && "Unknown tag type!");
3205  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3206  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3207  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3208  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3209  }
3210
3211  DeclContext *SearchDC = CurContext;
3212  DeclContext *DC = CurContext;
3213  NamedDecl *PrevDecl = 0;
3214
3215  bool Invalid = false;
3216
3217  if (Name && SS.isNotEmpty()) {
3218    // We have a nested-name tag ('struct foo::bar').
3219
3220    // Check for invalid 'foo::'.
3221    if (SS.isInvalid()) {
3222      Name = 0;
3223      goto CreateNewDecl;
3224    }
3225
3226    // FIXME: RequireCompleteDeclContext(SS)?
3227    DC = computeDeclContext(SS);
3228    SearchDC = DC;
3229    // Look-up name inside 'foo::'.
3230    PrevDecl = dyn_cast_or_null<TagDecl>(
3231                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3232
3233    // A tag 'foo::bar' must already exist.
3234    if (PrevDecl == 0) {
3235      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3236      Name = 0;
3237      goto CreateNewDecl;
3238    }
3239  } else if (Name) {
3240    // If this is a named struct, check to see if there was a previous forward
3241    // declaration or definition.
3242    // FIXME: We're looking into outer scopes here, even when we
3243    // shouldn't be. Doing so can result in ambiguities that we
3244    // shouldn't be diagnosing.
3245    LookupResult R = LookupName(S, Name, LookupTagName,
3246                                /*RedeclarationOnly=*/(TK != TK_Reference));
3247    if (R.isAmbiguous()) {
3248      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3249      // FIXME: This is not best way to recover from case like:
3250      //
3251      // struct S s;
3252      //
3253      // causes needless "incomplete type" error later.
3254      Name = 0;
3255      PrevDecl = 0;
3256      Invalid = true;
3257    }
3258    else
3259      PrevDecl = R;
3260
3261    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3262      // FIXME: This makes sure that we ignore the contexts associated
3263      // with C structs, unions, and enums when looking for a matching
3264      // tag declaration or definition. See the similar lookup tweak
3265      // in Sema::LookupName; is there a better way to deal with this?
3266      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3267        SearchDC = SearchDC->getParent();
3268    }
3269  }
3270
3271  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3272    // Maybe we will complain about the shadowed template parameter.
3273    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3274    // Just pretend that we didn't see the previous declaration.
3275    PrevDecl = 0;
3276  }
3277
3278  if (PrevDecl) {
3279    // Check whether the previous declaration is usable.
3280    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3281
3282    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3283      // If this is a use of a previous tag, or if the tag is already declared
3284      // in the same scope (so that the definition/declaration completes or
3285      // rementions the tag), reuse the decl.
3286      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3287        // Make sure that this wasn't declared as an enum and now used as a
3288        // struct or something similar.
3289        if (PrevTagDecl->getTagKind() != Kind) {
3290          bool SafeToContinue
3291            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3292               Kind != TagDecl::TK_enum);
3293          if (SafeToContinue)
3294            Diag(KWLoc, diag::err_use_with_wrong_tag)
3295              << Name
3296              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3297                                                  PrevTagDecl->getKindName());
3298          else
3299            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3300          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3301
3302          if (SafeToContinue)
3303            Kind = PrevTagDecl->getTagKind();
3304          else {
3305            // Recover by making this an anonymous redefinition.
3306            Name = 0;
3307            PrevDecl = 0;
3308            Invalid = true;
3309          }
3310        }
3311
3312        if (!Invalid) {
3313          // If this is a use, just return the declaration we found.
3314
3315          // FIXME: In the future, return a variant or some other clue
3316          // for the consumer of this Decl to know it doesn't own it.
3317          // For our current ASTs this shouldn't be a problem, but will
3318          // need to be changed with DeclGroups.
3319          if (TK == TK_Reference)
3320            return DeclPtrTy::make(PrevDecl);
3321
3322          // Diagnose attempts to redefine a tag.
3323          if (TK == TK_Definition) {
3324            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3325              Diag(NameLoc, diag::err_redefinition) << Name;
3326              Diag(Def->getLocation(), diag::note_previous_definition);
3327              // If this is a redefinition, recover by making this
3328              // struct be anonymous, which will make any later
3329              // references get the previous definition.
3330              Name = 0;
3331              PrevDecl = 0;
3332              Invalid = true;
3333            } else {
3334              // If the type is currently being defined, complain
3335              // about a nested redefinition.
3336              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3337              if (Tag->isBeingDefined()) {
3338                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3339                Diag(PrevTagDecl->getLocation(),
3340                     diag::note_previous_definition);
3341                Name = 0;
3342                PrevDecl = 0;
3343                Invalid = true;
3344              }
3345            }
3346
3347            // Okay, this is definition of a previously declared or referenced
3348            // tag PrevDecl. We're going to create a new Decl for it.
3349          }
3350        }
3351        // If we get here we have (another) forward declaration or we
3352        // have a definition.  Just create a new decl.
3353      } else {
3354        // If we get here, this is a definition of a new tag type in a nested
3355        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3356        // new decl/type.  We set PrevDecl to NULL so that the entities
3357        // have distinct types.
3358        PrevDecl = 0;
3359      }
3360      // If we get here, we're going to create a new Decl. If PrevDecl
3361      // is non-NULL, it's a definition of the tag declared by
3362      // PrevDecl. If it's NULL, we have a new definition.
3363    } else {
3364      // PrevDecl is a namespace, template, or anything else
3365      // that lives in the IDNS_Tag identifier namespace.
3366      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3367        // The tag name clashes with a namespace name, issue an error and
3368        // recover by making this tag be anonymous.
3369        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3370        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3371        Name = 0;
3372        PrevDecl = 0;
3373        Invalid = true;
3374      } else {
3375        // The existing declaration isn't relevant to us; we're in a
3376        // new scope, so clear out the previous declaration.
3377        PrevDecl = 0;
3378      }
3379    }
3380  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3381             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3382    // C.scope.pdecl]p5:
3383    //   -- for an elaborated-type-specifier of the form
3384    //
3385    //          class-key identifier
3386    //
3387    //      if the elaborated-type-specifier is used in the
3388    //      decl-specifier-seq or parameter-declaration-clause of a
3389    //      function defined in namespace scope, the identifier is
3390    //      declared as a class-name in the namespace that contains
3391    //      the declaration; otherwise, except as a friend
3392    //      declaration, the identifier is declared in the smallest
3393    //      non-class, non-function-prototype scope that contains the
3394    //      declaration.
3395    //
3396    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3397    // C structs and unions.
3398    //
3399    // GNU C also supports this behavior as part of its incomplete
3400    // enum types extension, while GNU C++ does not.
3401    //
3402    // Find the context where we'll be declaring the tag.
3403    // FIXME: We would like to maintain the current DeclContext as the
3404    // lexical context,
3405    while (SearchDC->isRecord())
3406      SearchDC = SearchDC->getParent();
3407
3408    // Find the scope where we'll be declaring the tag.
3409    while (S->isClassScope() ||
3410           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3411           ((S->getFlags() & Scope::DeclScope) == 0) ||
3412           (S->getEntity() &&
3413            ((DeclContext *)S->getEntity())->isTransparentContext()))
3414      S = S->getParent();
3415  }
3416
3417CreateNewDecl:
3418
3419  // If there is an identifier, use the location of the identifier as the
3420  // location of the decl, otherwise use the location of the struct/union
3421  // keyword.
3422  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3423
3424  // Otherwise, create a new declaration. If there is a previous
3425  // declaration of the same entity, the two will be linked via
3426  // PrevDecl.
3427  TagDecl *New;
3428
3429  if (Kind == TagDecl::TK_enum) {
3430    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3431    // enum X { A, B, C } D;    D should chain to X.
3432    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3433                           cast_or_null<EnumDecl>(PrevDecl));
3434    // If this is an undefined enum, warn.
3435    if (TK != TK_Definition && !Invalid)  {
3436      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3437                                              : diag::ext_forward_ref_enum;
3438      Diag(Loc, DK);
3439    }
3440  } else {
3441    // struct/union/class
3442
3443    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3444    // struct X { int A; } D;    D should chain to X.
3445    if (getLangOptions().CPlusPlus)
3446      // FIXME: Look for a way to use RecordDecl for simple structs.
3447      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3448                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3449    else
3450      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3451                               cast_or_null<RecordDecl>(PrevDecl));
3452  }
3453
3454  if (Kind != TagDecl::TK_enum) {
3455    // Handle #pragma pack: if the #pragma pack stack has non-default
3456    // alignment, make up a packed attribute for this decl. These
3457    // attributes are checked when the ASTContext lays out the
3458    // structure.
3459    //
3460    // It is important for implementing the correct semantics that this
3461    // happen here (in act on tag decl). The #pragma pack stack is
3462    // maintained as a result of parser callbacks which can occur at
3463    // many points during the parsing of a struct declaration (because
3464    // the #pragma tokens are effectively skipped over during the
3465    // parsing of the struct).
3466    if (unsigned Alignment = getPragmaPackAlignment())
3467      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3468  }
3469
3470  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3471    // C++ [dcl.typedef]p3:
3472    //   [...] Similarly, in a given scope, a class or enumeration
3473    //   shall not be declared with the same name as a typedef-name
3474    //   that is declared in that scope and refers to a type other
3475    //   than the class or enumeration itself.
3476    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3477    TypedefDecl *PrevTypedef = 0;
3478    if (Lookup.getKind() == LookupResult::Found)
3479      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3480
3481    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3482        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3483          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3484      Diag(Loc, diag::err_tag_definition_of_typedef)
3485        << Context.getTypeDeclType(New)
3486        << PrevTypedef->getUnderlyingType();
3487      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3488      Invalid = true;
3489    }
3490  }
3491
3492  if (Invalid)
3493    New->setInvalidDecl();
3494
3495  if (Attr)
3496    ProcessDeclAttributeList(New, Attr);
3497
3498  // If we're declaring or defining a tag in function prototype scope
3499  // in C, note that this type can only be used within the function.
3500  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3501    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3502
3503  // Set the lexical context. If the tag has a C++ scope specifier, the
3504  // lexical context will be different from the semantic context.
3505  New->setLexicalDeclContext(CurContext);
3506
3507  // Set the access specifier.
3508  SetMemberAccessSpecifier(New, PrevDecl, AS);
3509
3510  if (TK == TK_Definition)
3511    New->startDefinition();
3512
3513  // If this has an identifier, add it to the scope stack.
3514  if (Name) {
3515    S = getNonFieldDeclScope(S);
3516    PushOnScopeChains(New, S);
3517  } else {
3518    CurContext->addDecl(Context, New);
3519  }
3520
3521  return DeclPtrTy::make(New);
3522}
3523
3524void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3525  AdjustDeclIfTemplate(TagD);
3526  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3527
3528  // Enter the tag context.
3529  PushDeclContext(S, Tag);
3530
3531  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3532    FieldCollector->StartClass();
3533
3534    if (Record->getIdentifier()) {
3535      // C++ [class]p2:
3536      //   [...] The class-name is also inserted into the scope of the
3537      //   class itself; this is known as the injected-class-name. For
3538      //   purposes of access checking, the injected-class-name is treated
3539      //   as if it were a public member name.
3540      CXXRecordDecl *InjectedClassName
3541        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3542                                CurContext, Record->getLocation(),
3543                                Record->getIdentifier(), Record);
3544      InjectedClassName->setImplicit();
3545      InjectedClassName->setAccess(AS_public);
3546      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3547        InjectedClassName->setDescribedClassTemplate(Template);
3548      PushOnScopeChains(InjectedClassName, S);
3549      assert(InjectedClassName->isInjectedClassName() &&
3550             "Broken injected-class-name");
3551    }
3552  }
3553}
3554
3555void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3556  AdjustDeclIfTemplate(TagD);
3557  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3558
3559  if (isa<CXXRecordDecl>(Tag))
3560    FieldCollector->FinishClass();
3561
3562  // Exit this scope of this tag's definition.
3563  PopDeclContext();
3564
3565  // Notify the consumer that we've defined a tag.
3566  Consumer.HandleTagDeclDefinition(Tag);
3567}
3568
3569// Note that FieldName may be null for anonymous bitfields.
3570bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3571                          QualType FieldTy, const Expr *BitWidth) {
3572
3573  // C99 6.7.2.1p4 - verify the field type.
3574  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3575  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3576    // Handle incomplete types with specific error.
3577    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3578      return true;
3579    if (FieldName)
3580      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3581        << FieldName << FieldTy << BitWidth->getSourceRange();
3582    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3583      << FieldTy << BitWidth->getSourceRange();
3584  }
3585
3586  // If the bit-width is type- or value-dependent, don't try to check
3587  // it now.
3588  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3589    return false;
3590
3591  llvm::APSInt Value;
3592  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3593    return true;
3594
3595  // Zero-width bitfield is ok for anonymous field.
3596  if (Value == 0 && FieldName)
3597    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3598
3599  if (Value.isSigned() && Value.isNegative()) {
3600    if (FieldName)
3601      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3602               << FieldName << Value.toString(10);
3603    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3604      << Value.toString(10);
3605  }
3606
3607  if (!FieldTy->isDependentType()) {
3608    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3609    if (Value.getZExtValue() > TypeSize) {
3610      if (FieldName)
3611        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3612          << FieldName << (unsigned)TypeSize;
3613      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3614        << (unsigned)TypeSize;
3615    }
3616  }
3617
3618  return false;
3619}
3620
3621/// ActOnField - Each field of a struct/union/class is passed into this in order
3622/// to create a FieldDecl object for it.
3623Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3624                                 SourceLocation DeclStart,
3625                                 Declarator &D, ExprTy *BitfieldWidth) {
3626  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3627                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3628                               AS_public);
3629  return DeclPtrTy::make(Res);
3630}
3631
3632/// HandleField - Analyze a field of a C struct or a C++ data member.
3633///
3634FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3635                             SourceLocation DeclStart,
3636                             Declarator &D, Expr *BitWidth,
3637                             AccessSpecifier AS) {
3638  IdentifierInfo *II = D.getIdentifier();
3639  SourceLocation Loc = DeclStart;
3640  if (II) Loc = D.getIdentifierLoc();
3641
3642  QualType T = GetTypeForDeclarator(D, S);
3643  if (getLangOptions().CPlusPlus)
3644    CheckExtraCXXDefaultArguments(D);
3645
3646  DiagnoseFunctionSpecifiers(D);
3647
3648  if (D.getDeclSpec().isThreadSpecified())
3649    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3650
3651  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3652  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3653    PrevDecl = 0;
3654
3655  FieldDecl *NewFD
3656    = CheckFieldDecl(II, T, Record, Loc,
3657               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3658                     BitWidth, AS, PrevDecl, &D);
3659  if (NewFD->isInvalidDecl() && PrevDecl) {
3660    // Don't introduce NewFD into scope; there's already something
3661    // with the same name in the same scope.
3662  } else if (II) {
3663    PushOnScopeChains(NewFD, S);
3664  } else
3665    Record->addDecl(Context, NewFD);
3666
3667  return NewFD;
3668}
3669
3670/// \brief Build a new FieldDecl and check its well-formedness.
3671///
3672/// This routine builds a new FieldDecl given the fields name, type,
3673/// record, etc. \p PrevDecl should refer to any previous declaration
3674/// with the same name and in the same scope as the field to be
3675/// created.
3676///
3677/// \returns a new FieldDecl.
3678///
3679/// \todo The Declarator argument is a hack. It will be removed once
3680FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3681                                RecordDecl *Record, SourceLocation Loc,
3682                                bool Mutable, Expr *BitWidth,
3683                                AccessSpecifier AS, NamedDecl *PrevDecl,
3684                                Declarator *D) {
3685  IdentifierInfo *II = Name.getAsIdentifierInfo();
3686  bool InvalidDecl = false;
3687  if (D) InvalidDecl = D->isInvalidType();
3688
3689  // If we receive a broken type, recover by assuming 'int' and
3690  // marking this declaration as invalid.
3691  if (T.isNull()) {
3692    InvalidDecl = true;
3693    T = Context.IntTy;
3694  }
3695
3696  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3697  // than a variably modified type.
3698  if (T->isVariablyModifiedType()) {
3699    bool SizeIsNegative;
3700    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3701                                                           SizeIsNegative);
3702    if (!FixedTy.isNull()) {
3703      Diag(Loc, diag::warn_illegal_constant_array_size);
3704      T = FixedTy;
3705    } else {
3706      if (SizeIsNegative)
3707        Diag(Loc, diag::err_typecheck_negative_array_size);
3708      else
3709        Diag(Loc, diag::err_typecheck_field_variable_size);
3710      T = Context.IntTy;
3711      InvalidDecl = true;
3712    }
3713  }
3714
3715  // Fields can not have abstract class types
3716  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3717                             AbstractFieldType))
3718    InvalidDecl = true;
3719
3720  // If this is declared as a bit-field, check the bit-field.
3721  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3722    InvalidDecl = true;
3723    DeleteExpr(BitWidth);
3724    BitWidth = 0;
3725  }
3726
3727  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3728                                       Mutable);
3729  if (InvalidDecl)
3730    NewFD->setInvalidDecl();
3731
3732  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3733    Diag(Loc, diag::err_duplicate_member) << II;
3734    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3735    NewFD->setInvalidDecl();
3736    Record->setInvalidDecl();
3737  }
3738
3739  if (getLangOptions().CPlusPlus && !T->isPODType())
3740    cast<CXXRecordDecl>(Record)->setPOD(false);
3741
3742  // FIXME: We need to pass in the attributes given an AST
3743  // representation, not a parser representation.
3744  if (D)
3745    ProcessDeclAttributes(NewFD, *D);
3746
3747  if (T.isObjCGCWeak())
3748    Diag(Loc, diag::warn_attribute_weak_on_field);
3749
3750  NewFD->setAccess(AS);
3751
3752  // C++ [dcl.init.aggr]p1:
3753  //   An aggregate is an array or a class (clause 9) with [...] no
3754  //   private or protected non-static data members (clause 11).
3755  // A POD must be an aggregate.
3756  if (getLangOptions().CPlusPlus &&
3757      (AS == AS_private || AS == AS_protected)) {
3758    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3759    CXXRecord->setAggregate(false);
3760    CXXRecord->setPOD(false);
3761  }
3762
3763  return NewFD;
3764}
3765
3766/// TranslateIvarVisibility - Translate visibility from a token ID to an
3767///  AST enum value.
3768static ObjCIvarDecl::AccessControl
3769TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3770  switch (ivarVisibility) {
3771  default: assert(0 && "Unknown visitibility kind");
3772  case tok::objc_private: return ObjCIvarDecl::Private;
3773  case tok::objc_public: return ObjCIvarDecl::Public;
3774  case tok::objc_protected: return ObjCIvarDecl::Protected;
3775  case tok::objc_package: return ObjCIvarDecl::Package;
3776  }
3777}
3778
3779/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3780/// in order to create an IvarDecl object for it.
3781Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3782                                SourceLocation DeclStart,
3783                                Declarator &D, ExprTy *BitfieldWidth,
3784                                tok::ObjCKeywordKind Visibility) {
3785
3786  IdentifierInfo *II = D.getIdentifier();
3787  Expr *BitWidth = (Expr*)BitfieldWidth;
3788  SourceLocation Loc = DeclStart;
3789  if (II) Loc = D.getIdentifierLoc();
3790
3791  // FIXME: Unnamed fields can be handled in various different ways, for
3792  // example, unnamed unions inject all members into the struct namespace!
3793
3794  QualType T = GetTypeForDeclarator(D, S);
3795
3796  if (BitWidth) {
3797    // 6.7.2.1p3, 6.7.2.1p4
3798    if (VerifyBitField(Loc, II, T, BitWidth)) {
3799      D.setInvalidType();
3800      DeleteExpr(BitWidth);
3801      BitWidth = 0;
3802    }
3803  } else {
3804    // Not a bitfield.
3805
3806    // validate II.
3807
3808  }
3809
3810  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3811  // than a variably modified type.
3812  if (T->isVariablyModifiedType()) {
3813    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3814    D.setInvalidType();
3815  }
3816
3817  // Get the visibility (access control) for this ivar.
3818  ObjCIvarDecl::AccessControl ac =
3819    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3820                                        : ObjCIvarDecl::None;
3821
3822  // Construct the decl.
3823  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3824                                             (Expr *)BitfieldWidth);
3825
3826  if (II) {
3827    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3828    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3829        && !isa<TagDecl>(PrevDecl)) {
3830      Diag(Loc, diag::err_duplicate_member) << II;
3831      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3832      NewID->setInvalidDecl();
3833    }
3834  }
3835
3836  // Process attributes attached to the ivar.
3837  ProcessDeclAttributes(NewID, D);
3838
3839  if (D.isInvalidType())
3840    NewID->setInvalidDecl();
3841
3842  if (II) {
3843    // FIXME: When interfaces are DeclContexts, we'll need to add
3844    // these to the interface.
3845    S->AddDecl(DeclPtrTy::make(NewID));
3846    IdResolver.AddDecl(NewID);
3847  }
3848
3849  return DeclPtrTy::make(NewID);
3850}
3851
3852void Sema::ActOnFields(Scope* S,
3853                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3854                       DeclPtrTy *Fields, unsigned NumFields,
3855                       SourceLocation LBrac, SourceLocation RBrac,
3856                       AttributeList *Attr) {
3857  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3858  assert(EnclosingDecl && "missing record or interface decl");
3859
3860  // If the decl this is being inserted into is invalid, then it may be a
3861  // redeclaration or some other bogus case.  Don't try to add fields to it.
3862  if (EnclosingDecl->isInvalidDecl()) {
3863    // FIXME: Deallocate fields?
3864    return;
3865  }
3866
3867
3868  // Verify that all the fields are okay.
3869  unsigned NumNamedMembers = 0;
3870  llvm::SmallVector<FieldDecl*, 32> RecFields;
3871
3872  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3873  for (unsigned i = 0; i != NumFields; ++i) {
3874    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3875
3876    // Get the type for the field.
3877    Type *FDTy = FD->getType().getTypePtr();
3878
3879    if (!FD->isAnonymousStructOrUnion()) {
3880      // Remember all fields written by the user.
3881      RecFields.push_back(FD);
3882    }
3883
3884    // If the field is already invalid for some reason, don't emit more
3885    // diagnostics about it.
3886    if (FD->isInvalidDecl())
3887      continue;
3888
3889    // C99 6.7.2.1p2:
3890    //   A structure or union shall not contain a member with
3891    //   incomplete or function type (hence, a structure shall not
3892    //   contain an instance of itself, but may contain a pointer to
3893    //   an instance of itself), except that the last member of a
3894    //   structure with more than one named member may have incomplete
3895    //   array type; such a structure (and any union containing,
3896    //   possibly recursively, a member that is such a structure)
3897    //   shall not be a member of a structure or an element of an
3898    //   array.
3899    if (FDTy->isFunctionType()) {
3900      // Field declared as a function.
3901      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3902        << FD->getDeclName();
3903      FD->setInvalidDecl();
3904      EnclosingDecl->setInvalidDecl();
3905      continue;
3906    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3907               Record && Record->isStruct()) {
3908      // Flexible array member.
3909      if (NumNamedMembers < 1) {
3910        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3911          << FD->getDeclName();
3912        FD->setInvalidDecl();
3913        EnclosingDecl->setInvalidDecl();
3914        continue;
3915      }
3916      // Okay, we have a legal flexible array member at the end of the struct.
3917      if (Record)
3918        Record->setHasFlexibleArrayMember(true);
3919    } else if (!FDTy->isDependentType() &&
3920               RequireCompleteType(FD->getLocation(), FD->getType(),
3921                                   diag::err_field_incomplete)) {
3922      // Incomplete type
3923      FD->setInvalidDecl();
3924      EnclosingDecl->setInvalidDecl();
3925      continue;
3926    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3927      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3928        // If this is a member of a union, then entire union becomes "flexible".
3929        if (Record && Record->isUnion()) {
3930          Record->setHasFlexibleArrayMember(true);
3931        } else {
3932          // If this is a struct/class and this is not the last element, reject
3933          // it.  Note that GCC supports variable sized arrays in the middle of
3934          // structures.
3935          if (i != NumFields-1)
3936            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3937              << FD->getDeclName() << FD->getType();
3938          else {
3939            // We support flexible arrays at the end of structs in
3940            // other structs as an extension.
3941            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3942              << FD->getDeclName();
3943            if (Record)
3944              Record->setHasFlexibleArrayMember(true);
3945          }
3946        }
3947      }
3948    } else if (FDTy->isObjCInterfaceType()) {
3949      /// A field cannot be an Objective-c object
3950      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3951      FD->setInvalidDecl();
3952      EnclosingDecl->setInvalidDecl();
3953      continue;
3954    }
3955    // Keep track of the number of named members.
3956    if (FD->getIdentifier())
3957      ++NumNamedMembers;
3958  }
3959
3960  // Okay, we successfully defined 'Record'.
3961  if (Record) {
3962    Record->completeDefinition(Context);
3963  } else {
3964    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3965    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3966      ID->setIVarList(ClsFields, RecFields.size(), Context);
3967      ID->setLocEnd(RBrac);
3968
3969      // Must enforce the rule that ivars in the base classes may not be
3970      // duplicates.
3971      if (ID->getSuperClass()) {
3972        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3973             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3974          ObjCIvarDecl* Ivar = (*IVI);
3975          IdentifierInfo *II = Ivar->getIdentifier();
3976          ObjCIvarDecl* prevIvar =
3977            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3978          if (prevIvar) {
3979            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3980            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3981          }
3982        }
3983      }
3984    } else if (ObjCImplementationDecl *IMPDecl =
3985                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3986      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3987      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
3988        // FIXME: Set the DeclContext correctly when we build the
3989        // declarations.
3990        ClsFields[I]->setLexicalDeclContext(IMPDecl);
3991        IMPDecl->addDecl(Context, ClsFields[I]);
3992      }
3993      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3994    }
3995  }
3996
3997  if (Attr)
3998    ProcessDeclAttributeList(Record, Attr);
3999}
4000
4001EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4002                                          EnumConstantDecl *LastEnumConst,
4003                                          SourceLocation IdLoc,
4004                                          IdentifierInfo *Id,
4005                                          ExprArg val) {
4006  Expr *Val = (Expr *)val.get();
4007
4008  llvm::APSInt EnumVal(32);
4009  QualType EltTy;
4010  if (Val && !Val->isTypeDependent()) {
4011    // Make sure to promote the operand type to int.
4012    UsualUnaryConversions(Val);
4013    if (Val != val.get()) {
4014      val.release();
4015      val = Val;
4016    }
4017
4018    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4019    SourceLocation ExpLoc;
4020    if (!Val->isValueDependent() &&
4021        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4022      Val = 0;
4023    } else {
4024      EltTy = Val->getType();
4025    }
4026  }
4027
4028  if (!Val) {
4029    if (LastEnumConst) {
4030      // Assign the last value + 1.
4031      EnumVal = LastEnumConst->getInitVal();
4032      ++EnumVal;
4033
4034      // Check for overflow on increment.
4035      if (EnumVal < LastEnumConst->getInitVal())
4036        Diag(IdLoc, diag::warn_enum_value_overflow);
4037
4038      EltTy = LastEnumConst->getType();
4039    } else {
4040      // First value, set to zero.
4041      EltTy = Context.IntTy;
4042      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4043    }
4044  }
4045
4046  val.release();
4047  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4048                                  Val, EnumVal);
4049}
4050
4051
4052Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4053                                        DeclPtrTy lastEnumConst,
4054                                        SourceLocation IdLoc,
4055                                        IdentifierInfo *Id,
4056                                        SourceLocation EqualLoc, ExprTy *val) {
4057  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4058  EnumConstantDecl *LastEnumConst =
4059    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4060  Expr *Val = static_cast<Expr*>(val);
4061
4062  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4063  // we find one that is.
4064  S = getNonFieldDeclScope(S);
4065
4066  // Verify that there isn't already something declared with this name in this
4067  // scope.
4068  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4069  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4070    // Maybe we will complain about the shadowed template parameter.
4071    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4072    // Just pretend that we didn't see the previous declaration.
4073    PrevDecl = 0;
4074  }
4075
4076  if (PrevDecl) {
4077    // When in C++, we may get a TagDecl with the same name; in this case the
4078    // enum constant will 'hide' the tag.
4079    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4080           "Received TagDecl when not in C++!");
4081    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4082      if (isa<EnumConstantDecl>(PrevDecl))
4083        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4084      else
4085        Diag(IdLoc, diag::err_redefinition) << Id;
4086      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4087      if (Val) Val->Destroy(Context);
4088      return DeclPtrTy();
4089    }
4090  }
4091
4092  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4093                                            IdLoc, Id, Owned(Val));
4094
4095  // Register this decl in the current scope stack.
4096  if (New)
4097    PushOnScopeChains(New, S);
4098
4099  return DeclPtrTy::make(New);
4100}
4101
4102// FIXME: For consistency with ActOnFields(), we should have the parser
4103// pass in the source location for the left/right braces.
4104void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4105                         DeclPtrTy *Elements, unsigned NumElements) {
4106  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4107  QualType EnumType = Context.getTypeDeclType(Enum);
4108
4109  // TODO: If the result value doesn't fit in an int, it must be a long or long
4110  // long value.  ISO C does not support this, but GCC does as an extension,
4111  // emit a warning.
4112  unsigned IntWidth = Context.Target.getIntWidth();
4113
4114  // Verify that all the values are okay, compute the size of the values, and
4115  // reverse the list.
4116  unsigned NumNegativeBits = 0;
4117  unsigned NumPositiveBits = 0;
4118
4119  // Keep track of whether all elements have type int.
4120  bool AllElementsInt = true;
4121
4122  for (unsigned i = 0; i != NumElements; ++i) {
4123    EnumConstantDecl *ECD =
4124      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4125    if (!ECD) continue;  // Already issued a diagnostic.
4126
4127    // If the enum value doesn't fit in an int, emit an extension warning.
4128    const llvm::APSInt &InitVal = ECD->getInitVal();
4129    assert(InitVal.getBitWidth() >= IntWidth &&
4130           "Should have promoted value to int");
4131    if (InitVal.getBitWidth() > IntWidth) {
4132      llvm::APSInt V(InitVal);
4133      V.trunc(IntWidth);
4134      V.extend(InitVal.getBitWidth());
4135      if (V != InitVal)
4136        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4137          << InitVal.toString(10);
4138    }
4139
4140    // Keep track of the size of positive and negative values.
4141    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4142      NumPositiveBits = std::max(NumPositiveBits,
4143                                 (unsigned)InitVal.getActiveBits());
4144    else
4145      NumNegativeBits = std::max(NumNegativeBits,
4146                                 (unsigned)InitVal.getMinSignedBits());
4147
4148    // Keep track of whether every enum element has type int (very commmon).
4149    if (AllElementsInt)
4150      AllElementsInt = ECD->getType() == Context.IntTy;
4151  }
4152
4153  // Figure out the type that should be used for this enum.
4154  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4155  QualType BestType;
4156  unsigned BestWidth;
4157
4158  if (NumNegativeBits) {
4159    // If there is a negative value, figure out the smallest integer type (of
4160    // int/long/longlong) that fits.
4161    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4162      BestType = Context.IntTy;
4163      BestWidth = IntWidth;
4164    } else {
4165      BestWidth = Context.Target.getLongWidth();
4166
4167      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4168        BestType = Context.LongTy;
4169      else {
4170        BestWidth = Context.Target.getLongLongWidth();
4171
4172        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4173          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4174        BestType = Context.LongLongTy;
4175      }
4176    }
4177  } else {
4178    // If there is no negative value, figure out which of uint, ulong, ulonglong
4179    // fits.
4180    if (NumPositiveBits <= IntWidth) {
4181      BestType = Context.UnsignedIntTy;
4182      BestWidth = IntWidth;
4183    } else if (NumPositiveBits <=
4184               (BestWidth = Context.Target.getLongWidth())) {
4185      BestType = Context.UnsignedLongTy;
4186    } else {
4187      BestWidth = Context.Target.getLongLongWidth();
4188      assert(NumPositiveBits <= BestWidth &&
4189             "How could an initializer get larger than ULL?");
4190      BestType = Context.UnsignedLongLongTy;
4191    }
4192  }
4193
4194  // Loop over all of the enumerator constants, changing their types to match
4195  // the type of the enum if needed.
4196  for (unsigned i = 0; i != NumElements; ++i) {
4197    EnumConstantDecl *ECD =
4198      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4199    if (!ECD) continue;  // Already issued a diagnostic.
4200
4201    // Standard C says the enumerators have int type, but we allow, as an
4202    // extension, the enumerators to be larger than int size.  If each
4203    // enumerator value fits in an int, type it as an int, otherwise type it the
4204    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4205    // that X has type 'int', not 'unsigned'.
4206    if (ECD->getType() == Context.IntTy) {
4207      // Make sure the init value is signed.
4208      llvm::APSInt IV = ECD->getInitVal();
4209      IV.setIsSigned(true);
4210      ECD->setInitVal(IV);
4211
4212      if (getLangOptions().CPlusPlus)
4213        // C++ [dcl.enum]p4: Following the closing brace of an
4214        // enum-specifier, each enumerator has the type of its
4215        // enumeration.
4216        ECD->setType(EnumType);
4217      continue;  // Already int type.
4218    }
4219
4220    // Determine whether the value fits into an int.
4221    llvm::APSInt InitVal = ECD->getInitVal();
4222    bool FitsInInt;
4223    if (InitVal.isUnsigned() || !InitVal.isNegative())
4224      FitsInInt = InitVal.getActiveBits() < IntWidth;
4225    else
4226      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4227
4228    // If it fits into an integer type, force it.  Otherwise force it to match
4229    // the enum decl type.
4230    QualType NewTy;
4231    unsigned NewWidth;
4232    bool NewSign;
4233    if (FitsInInt) {
4234      NewTy = Context.IntTy;
4235      NewWidth = IntWidth;
4236      NewSign = true;
4237    } else if (ECD->getType() == BestType) {
4238      // Already the right type!
4239      if (getLangOptions().CPlusPlus)
4240        // C++ [dcl.enum]p4: Following the closing brace of an
4241        // enum-specifier, each enumerator has the type of its
4242        // enumeration.
4243        ECD->setType(EnumType);
4244      continue;
4245    } else {
4246      NewTy = BestType;
4247      NewWidth = BestWidth;
4248      NewSign = BestType->isSignedIntegerType();
4249    }
4250
4251    // Adjust the APSInt value.
4252    InitVal.extOrTrunc(NewWidth);
4253    InitVal.setIsSigned(NewSign);
4254    ECD->setInitVal(InitVal);
4255
4256    // Adjust the Expr initializer and type.
4257    if (ECD->getInitExpr())
4258      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4259                                                      /*isLvalue=*/false));
4260    if (getLangOptions().CPlusPlus)
4261      // C++ [dcl.enum]p4: Following the closing brace of an
4262      // enum-specifier, each enumerator has the type of its
4263      // enumeration.
4264      ECD->setType(EnumType);
4265    else
4266      ECD->setType(NewTy);
4267  }
4268
4269  Enum->completeDefinition(Context, BestType);
4270}
4271
4272Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4273                                            ExprArg expr) {
4274  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4275
4276  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4277                                                  Loc, AsmString));
4278}
4279
4280