SemaDecl.cpp revision bda0b626e74513950405c27525af87e214e605e2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const {
36  Decl *IIDecl = II.getFETokenInfo<Decl>();
37  // Find first occurance of none-tagged declaration
38  while(IIDecl && IIDecl->getIdentifierNamespace() != Decl::IDNS_Ordinary)
39    IIDecl = cast<ScopedDecl>(IIDecl)->getNext();
40  if (!IIDecl)
41    return 0;
42  if (isa<TypedefDecl>(IIDecl) || isa<ObjCInterfaceDecl>(IIDecl))
43    return IIDecl;
44  if (ObjCCompatibleAliasDecl *ADecl =
45      dyn_cast<ObjCCompatibleAliasDecl>(IIDecl))
46    return ADecl->getClassInterface();
47  return 0;
48}
49
50void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
51  if (S->decl_empty()) return;
52  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
53
54  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
55       I != E; ++I) {
56    Decl *TmpD = static_cast<Decl*>(*I);
57    assert(TmpD && "This decl didn't get pushed??");
58    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
59    assert(D && "This decl isn't a ScopedDecl?");
60
61    IdentifierInfo *II = D->getIdentifier();
62    if (!II) continue;
63
64    // Unlink this decl from the identifier.  Because the scope contains decls
65    // in an unordered collection, and because we have multiple identifier
66    // namespaces (e.g. tag, normal, label),the decl may not be the first entry.
67    if (II->getFETokenInfo<Decl>() == D) {
68      // Normal case, no multiple decls in different namespaces.
69      II->setFETokenInfo(D->getNext());
70    } else {
71      // Scan ahead.  There are only three namespaces in C, so this loop can
72      // never execute more than 3 times.
73      ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>();
74      while (SomeDecl->getNext() != D) {
75        SomeDecl = SomeDecl->getNext();
76        assert(SomeDecl && "Didn't find this decl on its identifier's chain!");
77      }
78      SomeDecl->setNext(D->getNext());
79    }
80
81    // This will have to be revisited for C++: there we want to nest stuff in
82    // namespace decls etc.  Even for C, we might want a top-level translation
83    // unit decl or something.
84    if (!CurFunctionDecl)
85      continue;
86
87    // Chain this decl to the containing function, it now owns the memory for
88    // the decl.
89    D->setNext(CurFunctionDecl->getDeclChain());
90    CurFunctionDecl->setDeclChain(D);
91  }
92}
93
94/// LookupInterfaceDecl - Lookup interface declaration in the scope chain.
95/// Return the first declaration found (which may or may not be a class
96/// declaration. Caller is responsible for handling the none-class case.
97/// Bypassing the alias of a class by returning the aliased class.
98ScopedDecl *Sema::LookupInterfaceDecl(IdentifierInfo *ClassName) {
99  ScopedDecl *IDecl;
100  // Scan up the scope chain looking for a decl that matches this identifier
101  // that is in the appropriate namespace.
102  for (IDecl = ClassName->getFETokenInfo<ScopedDecl>(); IDecl;
103       IDecl = IDecl->getNext())
104    if (IDecl->getIdentifierNamespace() == Decl::IDNS_Ordinary)
105      break;
106
107  if (ObjCCompatibleAliasDecl *ADecl =
108      dyn_cast_or_null<ObjCCompatibleAliasDecl>(IDecl))
109    return ADecl->getClassInterface();
110  return IDecl;
111}
112
113/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
114/// return 0 if one not found.
115ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
116  ScopedDecl *IdDecl = LookupInterfaceDecl(Id);
117  return cast_or_null<ObjCInterfaceDecl>(IdDecl);
118}
119
120/// LookupScopedDecl - Look up the inner-most declaration in the specified
121/// namespace.
122ScopedDecl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI,
123                                   SourceLocation IdLoc, Scope *S) {
124  if (II == 0) return 0;
125  Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI;
126
127  // Scan up the scope chain looking for a decl that matches this identifier
128  // that is in the appropriate namespace.  This search should not take long, as
129  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
130  for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext())
131    if (D->getIdentifierNamespace() == NS)
132      return D;
133
134  // If we didn't find a use of this identifier, and if the identifier
135  // corresponds to a compiler builtin, create the decl object for the builtin
136  // now, injecting it into translation unit scope, and return it.
137  if (NS == Decl::IDNS_Ordinary) {
138    // If this is a builtin on this (or all) targets, create the decl.
139    if (unsigned BuiltinID = II->getBuiltinID())
140      return LazilyCreateBuiltin(II, BuiltinID, S);
141  }
142  return 0;
143}
144
145void Sema::InitBuiltinVaListType()
146{
147  if (!Context.getBuiltinVaListType().isNull())
148    return;
149
150  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
151  ScopedDecl *VaDecl = LookupScopedDecl(VaIdent, Decl::IDNS_Ordinary,
152                                          SourceLocation(), TUScope);
153  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
154  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
155}
156
157/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
158/// lazily create a decl for it.
159ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
160                                      Scope *S) {
161  Builtin::ID BID = (Builtin::ID)bid;
162
163  if (BID == Builtin::BI__builtin_va_start ||
164       BID == Builtin::BI__builtin_va_copy ||
165       BID == Builtin::BI__builtin_va_end)
166    InitBuiltinVaListType();
167
168  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
169  FunctionDecl *New = FunctionDecl::Create(Context, SourceLocation(), II, R,
170                                           FunctionDecl::Extern, false, 0);
171
172  // Find translation-unit scope to insert this function into.
173  if (Scope *FnS = S->getFnParent())
174    S = FnS->getParent();   // Skip all scopes in a function at once.
175  while (S->getParent())
176    S = S->getParent();
177  S->AddDecl(New);
178
179  // Add this decl to the end of the identifier info.
180  if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) {
181    // Scan until we find the last (outermost) decl in the id chain.
182    while (LastDecl->getNext())
183      LastDecl = LastDecl->getNext();
184    // Insert before (outside) it.
185    LastDecl->setNext(New);
186  } else {
187    II->setFETokenInfo(New);
188  }
189  return New;
190}
191
192/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
193/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
194/// situation, merging decls or emitting diagnostics as appropriate.
195///
196TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, ScopedDecl *OldD) {
197  // Verify the old decl was also a typedef.
198  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
199  if (!Old) {
200    Diag(New->getLocation(), diag::err_redefinition_different_kind,
201         New->getName());
202    Diag(OldD->getLocation(), diag::err_previous_definition);
203    return New;
204  }
205
206  // Allow multiple definitions for ObjC built-in typedefs.
207  // FIXME: Verify the underlying types are equivalent!
208  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
209    return Old;
210
211  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
212  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
213  // *either* declaration is in a system header. The code below implements
214  // this adhoc compatibility rule. FIXME: The following code will not
215  // work properly when compiling ".i" files (containing preprocessed output).
216  SourceManager &SrcMgr = Context.getSourceManager();
217  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
218  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
219  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
220  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
221  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
222
223  if ((OldDirType == DirectoryLookup::ExternCSystemHeaderDir ||
224       NewDirType == DirectoryLookup::ExternCSystemHeaderDir) ||
225      getLangOptions().Microsoft)
226    return New;
227
228  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
229  // TODO: This is totally simplistic.  It should handle merging functions
230  // together etc, merging extern int X; int X; ...
231  Diag(New->getLocation(), diag::err_redefinition, New->getName());
232  Diag(Old->getLocation(), diag::err_previous_definition);
233  return New;
234}
235
236/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
237static bool DeclHasAttr(const Decl *decl, const Attr *target) {
238  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
239    if (attr->getKind() == target->getKind())
240      return true;
241
242  return false;
243}
244
245/// MergeAttributes - append attributes from the Old decl to the New one.
246static void MergeAttributes(Decl *New, Decl *Old) {
247  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
248
249// FIXME: fix this code to cleanup the Old attrs correctly
250  while (attr) {
251     tmp = attr;
252     attr = attr->getNext();
253
254    if (!DeclHasAttr(New, tmp)) {
255       New->addAttr(tmp);
256    } else {
257       tmp->setNext(0);
258       delete(tmp);
259    }
260  }
261}
262
263/// MergeFunctionDecl - We just parsed a function 'New' which has the same name
264/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
265/// situation, merging decls or emitting diagnostics as appropriate.
266///
267FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, ScopedDecl *OldD) {
268  // Verify the old decl was also a function.
269  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
270  if (!Old) {
271    Diag(New->getLocation(), diag::err_redefinition_different_kind,
272         New->getName());
273    Diag(OldD->getLocation(), diag::err_previous_definition);
274    return New;
275  }
276
277  MergeAttributes(New, Old);
278
279
280  QualType OldQType = Old->getCanonicalType();
281  QualType NewQType = New->getCanonicalType();
282
283  // Function types need to be compatible, not identical. This handles
284  // duplicate function decls like "void f(int); void f(enum X);" properly.
285  if (Context.functionTypesAreCompatible(OldQType, NewQType))
286    return New;
287
288  // A function that has already been declared has been redeclared or defined
289  // with a different type- show appropriate diagnostic
290  diag::kind PrevDiag = Old->getBody() ? diag::err_previous_definition :
291                                         diag::err_previous_declaration;
292
293  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
294  // TODO: This is totally simplistic.  It should handle merging functions
295  // together etc, merging extern int X; int X; ...
296  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
297  Diag(Old->getLocation(), PrevDiag);
298  return New;
299}
300
301/// equivalentArrayTypes - Used to determine whether two array types are
302/// equivalent.
303/// We need to check this explicitly as an incomplete array definition is
304/// considered a VariableArrayType, so will not match a complete array
305/// definition that would be otherwise equivalent.
306static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
307  const ArrayType *NewAT = NewQType->getAsArrayType();
308  const ArrayType *OldAT = OldQType->getAsArrayType();
309
310  if (!NewAT || !OldAT)
311    return false;
312
313  // If either (or both) array types in incomplete we need to strip off the
314  // outer VariableArrayType.  Once the outer VAT is removed the remaining
315  // types must be identical if the array types are to be considered
316  // equivalent.
317  // eg. int[][1] and int[1][1] become
318  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
319  // removing the outermost VAT gives
320  //     CAT(1, int) and CAT(1, int)
321  // which are equal, therefore the array types are equivalent.
322  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
323    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
324      return false;
325    NewQType = NewAT->getElementType().getCanonicalType();
326    OldQType = OldAT->getElementType().getCanonicalType();
327  }
328
329  return NewQType == OldQType;
330}
331
332/// MergeVarDecl - We just parsed a variable 'New' which has the same name
333/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
334/// situation, merging decls or emitting diagnostics as appropriate.
335///
336/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
337/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
338///
339VarDecl *Sema::MergeVarDecl(VarDecl *New, ScopedDecl *OldD) {
340  // Verify the old decl was also a variable.
341  VarDecl *Old = dyn_cast<VarDecl>(OldD);
342  if (!Old) {
343    Diag(New->getLocation(), diag::err_redefinition_different_kind,
344         New->getName());
345    Diag(OldD->getLocation(), diag::err_previous_definition);
346    return New;
347  }
348
349  MergeAttributes(New, Old);
350
351  // Verify the types match.
352  if (Old->getCanonicalType() != New->getCanonicalType() &&
353      !areEquivalentArrayTypes(New->getCanonicalType(), Old->getCanonicalType())) {
354    Diag(New->getLocation(), diag::err_redefinition, New->getName());
355    Diag(Old->getLocation(), diag::err_previous_definition);
356    return New;
357  }
358  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
359  if (New->getStorageClass() == VarDecl::Static &&
360      (Old->getStorageClass() == VarDecl::None ||
361       Old->getStorageClass() == VarDecl::Extern)) {
362    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
363    Diag(Old->getLocation(), diag::err_previous_definition);
364    return New;
365  }
366  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
367  if (New->getStorageClass() != VarDecl::Static &&
368      Old->getStorageClass() == VarDecl::Static) {
369    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
370    Diag(Old->getLocation(), diag::err_previous_definition);
371    return New;
372  }
373  // We've verified the types match, now handle "tentative" definitions.
374  FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old);
375  FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New);
376
377  if (OldFSDecl && NewFSDecl) {
378    // Handle C "tentative" external object definitions (C99 6.9.2).
379    bool OldIsTentative = false;
380    bool NewIsTentative = false;
381
382    if (!OldFSDecl->getInit() &&
383        (OldFSDecl->getStorageClass() == VarDecl::None ||
384         OldFSDecl->getStorageClass() == VarDecl::Static))
385      OldIsTentative = true;
386
387    // FIXME: this check doesn't work (since the initializer hasn't been
388    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
389    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
390    // thrown out the old decl.
391    if (!NewFSDecl->getInit() &&
392        (NewFSDecl->getStorageClass() == VarDecl::None ||
393         NewFSDecl->getStorageClass() == VarDecl::Static))
394      ; // change to NewIsTentative = true; once the code is moved.
395
396    if (NewIsTentative || OldIsTentative)
397      return New;
398  }
399  if (Old->getStorageClass() != VarDecl::Extern &&
400      New->getStorageClass() != VarDecl::Extern) {
401    Diag(New->getLocation(), diag::err_redefinition, New->getName());
402    Diag(Old->getLocation(), diag::err_previous_definition);
403  }
404  return New;
405}
406
407/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
408/// no declarator (e.g. "struct foo;") is parsed.
409Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
410  // TODO: emit error on 'int;' or 'const enum foo;'.
411  // TODO: emit error on 'typedef int;'
412  // if (!DS.isMissingDeclaratorOk()) Diag(...);
413
414  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
415}
416
417bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
418  // Get the type before calling CheckSingleAssignmentConstraints(), since
419  // it can promote the expression.
420  QualType InitType = Init->getType();
421
422  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
423  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
424                                  InitType, Init, "initializing");
425}
426
427bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
428                         QualType ElementType) {
429  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
430  if (CheckSingleInitializer(expr, ElementType))
431    return true; // types weren't compatible.
432
433  if (savExpr != expr) // The type was promoted, update initializer list.
434    IList->setInit(slot, expr);
435  return false;
436}
437
438bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
439  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
440    // C99 6.7.8p14. We have an array of character type with unknown size
441    // being initialized to a string literal.
442    llvm::APSInt ConstVal(32);
443    ConstVal = strLiteral->getByteLength() + 1;
444    // Return a new array type (C99 6.7.8p22).
445    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
446                                         ArrayType::Normal, 0);
447  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
448    // C99 6.7.8p14. We have an array of character type with known size.
449    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
450      Diag(strLiteral->getSourceRange().getBegin(),
451           diag::warn_initializer_string_for_char_array_too_long,
452           strLiteral->getSourceRange());
453  } else {
454    assert(0 && "HandleStringLiteralInit(): Invalid array type");
455  }
456  // Set type from "char *" to "constant array of char".
457  strLiteral->setType(DeclT);
458  // For now, we always return false (meaning success).
459  return false;
460}
461
462StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
463  const ArrayType *AT = DeclType->getAsArrayType();
464  if (AT && AT->getElementType()->isCharType()) {
465    return dyn_cast<StringLiteral>(Init);
466  }
467  return 0;
468}
469
470// CheckInitializerListTypes - Checks the types of elements of an initializer
471// list. This function is recursive: it calls itself to initialize subelements
472// of aggregate types.  Note that the topLevel parameter essentially refers to
473// whether this expression "owns" the initializer list passed in, or if this
474// initialization is taking elements out of a parent initializer.  Each
475// call to this function adds zero or more to startIndex, reports any errors,
476// and returns true if it found any inconsistent types.
477bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
478                                     bool topLevel, unsigned& startIndex) {
479  bool hadError = false;
480
481  if (DeclType->isScalarType()) {
482    // The simplest case: initializing a single scalar
483    if (topLevel) {
484      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
485           IList->getSourceRange());
486    }
487    if (startIndex < IList->getNumInits()) {
488      Expr* expr = IList->getInit(startIndex);
489      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
490        // FIXME: Should an error be reported here instead?
491        unsigned newIndex = 0;
492        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
493      } else {
494        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
495      }
496      ++startIndex;
497    }
498    // FIXME: Should an error be reported for empty initializer list + scalar?
499  } else if (DeclType->isVectorType()) {
500    if (startIndex < IList->getNumInits()) {
501      const VectorType *VT = DeclType->getAsVectorType();
502      int maxElements = VT->getNumElements();
503      QualType elementType = VT->getElementType();
504
505      for (int i = 0; i < maxElements; ++i) {
506        // Don't attempt to go past the end of the init list
507        if (startIndex >= IList->getNumInits())
508          break;
509        Expr* expr = IList->getInit(startIndex);
510        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
511          unsigned newIndex = 0;
512          hadError |= CheckInitializerListTypes(SubInitList, elementType,
513                                                true, newIndex);
514          ++startIndex;
515        } else {
516          hadError |= CheckInitializerListTypes(IList, elementType,
517                                                false, startIndex);
518        }
519      }
520    }
521  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
522    if (DeclType->isStructureType() || DeclType->isUnionType()) {
523      if (startIndex < IList->getNumInits() && !topLevel &&
524          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
525                                     DeclType)) {
526        // We found a compatible struct; per the standard, this initializes the
527        // struct.  (The C standard technically says that this only applies for
528        // initializers for declarations with automatic scope; however, this
529        // construct is unambiguous anyway because a struct cannot contain
530        // a type compatible with itself. We'll output an error when we check
531        // if the initializer is constant.)
532        // FIXME: Is a call to CheckSingleInitializer required here?
533        ++startIndex;
534      } else {
535        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
536
537        // If the record is invalid, some of it's members are invalid. To avoid
538        // confusion, we forgo checking the intializer for the entire record.
539        if (structDecl->isInvalidDecl())
540          return true;
541
542        // If structDecl is a forward declaration, this loop won't do anything;
543        // That's okay, because an error should get printed out elsewhere. It
544        // might be worthwhile to skip over the rest of the initializer, though.
545        int numMembers = structDecl->getNumMembers() -
546                         structDecl->hasFlexibleArrayMember();
547        for (int i = 0; i < numMembers; i++) {
548          // Don't attempt to go past the end of the init list
549          if (startIndex >= IList->getNumInits())
550            break;
551          FieldDecl * curField = structDecl->getMember(i);
552          if (!curField->getIdentifier()) {
553            // Don't initialize unnamed fields, e.g. "int : 20;"
554            continue;
555          }
556          QualType fieldType = curField->getType();
557          Expr* expr = IList->getInit(startIndex);
558          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
559            unsigned newStart = 0;
560            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
561                                                  true, newStart);
562            ++startIndex;
563          } else {
564            hadError |= CheckInitializerListTypes(IList, fieldType,
565                                                  false, startIndex);
566          }
567          if (DeclType->isUnionType())
568            break;
569        }
570        // FIXME: Implement flexible array initialization GCC extension (it's a
571        // really messy extension to implement, unfortunately...the necessary
572        // information isn't actually even here!)
573      }
574    } else if (DeclType->isArrayType()) {
575      // Check for the special-case of initializing an array with a string.
576      if (startIndex < IList->getNumInits()) {
577        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
578                                                     DeclType)) {
579          CheckStringLiteralInit(lit, DeclType);
580          ++startIndex;
581          if (topLevel && startIndex < IList->getNumInits()) {
582            // We have leftover initializers; warn
583            Diag(IList->getInit(startIndex)->getLocStart(),
584                 diag::err_excess_initializers_in_char_array_initializer,
585                 IList->getInit(startIndex)->getSourceRange());
586          }
587          return false;
588        }
589      }
590      int maxElements;
591      if (DeclType->isIncompleteArrayType()) {
592        // FIXME: use a proper constant
593        maxElements = 0x7FFFFFFF;
594      } else if (const VariableArrayType *VAT =
595                                DeclType->getAsVariableArrayType()) {
596        // Check for VLAs; in standard C it would be possible to check this
597        // earlier, but I don't know where clang accepts VLAs (gcc accepts
598        // them in all sorts of strange places).
599        Diag(VAT->getSizeExpr()->getLocStart(),
600             diag::err_variable_object_no_init,
601             VAT->getSizeExpr()->getSourceRange());
602        hadError = true;
603        maxElements = 0x7FFFFFFF;
604      } else {
605        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
606        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
607      }
608      QualType elementType = DeclType->getAsArrayType()->getElementType();
609      int numElements = 0;
610      for (int i = 0; i < maxElements; ++i, ++numElements) {
611        // Don't attempt to go past the end of the init list
612        if (startIndex >= IList->getNumInits())
613          break;
614        Expr* expr = IList->getInit(startIndex);
615        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
616          unsigned newIndex = 0;
617          hadError |= CheckInitializerListTypes(SubInitList, elementType,
618                                                true, newIndex);
619          ++startIndex;
620        } else {
621          hadError |= CheckInitializerListTypes(IList, elementType,
622                                                false, startIndex);
623        }
624      }
625      if (DeclType->isIncompleteArrayType()) {
626        // If this is an incomplete array type, the actual type needs to
627        // be calculated here
628        if (numElements == 0) {
629          // Sizing an array implicitly to zero is not allowed
630          // (It could in theory be allowed, but it doesn't really matter.)
631          Diag(IList->getLocStart(),
632               diag::err_at_least_one_initializer_needed_to_size_array);
633          hadError = true;
634        } else {
635          llvm::APSInt ConstVal(32);
636          ConstVal = numElements;
637          DeclType = Context.getConstantArrayType(elementType, ConstVal,
638                                                  ArrayType::Normal, 0);
639        }
640      }
641    } else {
642      assert(0 && "Aggregate that isn't a function or array?!");
643    }
644  } else {
645    // In C, all types are either scalars or aggregates, but
646    // additional handling is needed here for C++ (and possibly others?).
647    assert(0 && "Unsupported initializer type");
648  }
649
650  // If this init list is a base list, we set the type; an initializer doesn't
651  // fundamentally have a type, but this makes the ASTs a bit easier to read
652  if (topLevel)
653    IList->setType(DeclType);
654
655  if (topLevel && startIndex < IList->getNumInits()) {
656    // We have leftover initializers; warn
657    Diag(IList->getInit(startIndex)->getLocStart(),
658         diag::warn_excess_initializers,
659         IList->getInit(startIndex)->getSourceRange());
660  }
661  return hadError;
662}
663
664bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
665  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
666  // of unknown size ("[]") or an object type that is not a variable array type.
667  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
668    return Diag(VAT->getSizeExpr()->getLocStart(),
669                diag::err_variable_object_no_init,
670                VAT->getSizeExpr()->getSourceRange());
671
672  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
673  if (!InitList) {
674    // FIXME: Handle wide strings
675    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
676      return CheckStringLiteralInit(strLiteral, DeclType);
677
678    if (DeclType->isArrayType())
679      return Diag(Init->getLocStart(),
680                  diag::err_array_init_list_required,
681                  Init->getSourceRange());
682
683    return CheckSingleInitializer(Init, DeclType);
684  }
685  unsigned newIndex = 0;
686  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
687}
688
689Sema::DeclTy *
690Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
691  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
692  IdentifierInfo *II = D.getIdentifier();
693
694  // All of these full declarators require an identifier.  If it doesn't have
695  // one, the ParsedFreeStandingDeclSpec action should be used.
696  if (II == 0) {
697    Diag(D.getDeclSpec().getSourceRange().getBegin(),
698         diag::err_declarator_need_ident,
699         D.getDeclSpec().getSourceRange(), D.getSourceRange());
700    return 0;
701  }
702
703  // The scope passed in may not be a decl scope.  Zip up the scope tree until
704  // we find one that is.
705  while ((S->getFlags() & Scope::DeclScope) == 0)
706    S = S->getParent();
707
708  // See if this is a redefinition of a variable in the same scope.
709  ScopedDecl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary,
710                                          D.getIdentifierLoc(), S);
711  ScopedDecl *New;
712  bool InvalidDecl = false;
713
714  QualType R = GetTypeForDeclarator(D, S);
715  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
716
717  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
718    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
719    if (!NewTD) return 0;
720
721    // Handle attributes prior to checking for duplicates in MergeVarDecl
722    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
723                         D.getAttributes());
724    // Merge the decl with the existing one if appropriate. If the decl is
725    // in an outer scope, it isn't the same thing.
726    if (PrevDecl && S->isDeclScope(PrevDecl)) {
727      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
728      if (NewTD == 0) return 0;
729    }
730    New = NewTD;
731    if (S->getParent() == 0) {
732      // C99 6.7.7p2: If a typedef name specifies a variably modified type
733      // then it shall have block scope.
734      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
735        // FIXME: Diagnostic needs to be fixed.
736        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
737        InvalidDecl = true;
738      }
739    }
740  } else if (R.getTypePtr()->isFunctionType()) {
741    FunctionDecl::StorageClass SC = FunctionDecl::None;
742    switch (D.getDeclSpec().getStorageClassSpec()) {
743      default: assert(0 && "Unknown storage class!");
744      case DeclSpec::SCS_auto:
745      case DeclSpec::SCS_register:
746        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
747             R.getAsString());
748        InvalidDecl = true;
749        break;
750      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
751      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
752      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
753      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
754    }
755
756    bool isInline = D.getDeclSpec().isInlineSpecified();
757    FunctionDecl *NewFD = FunctionDecl::Create(Context, D.getIdentifierLoc(),
758                                               II, R, SC, isInline,
759                                               LastDeclarator);
760    // Handle attributes.
761    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
762                         D.getAttributes());
763
764    // Merge the decl with the existing one if appropriate. Since C functions
765    // are in a flat namespace, make sure we consider decls in outer scopes.
766    if (PrevDecl) {
767      NewFD = MergeFunctionDecl(NewFD, PrevDecl);
768      if (NewFD == 0) return 0;
769    }
770    New = NewFD;
771  } else {
772    if (R.getTypePtr()->isObjCInterfaceType()) {
773      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
774           D.getIdentifier()->getName());
775      InvalidDecl = true;
776    }
777
778    VarDecl *NewVD;
779    VarDecl::StorageClass SC;
780    switch (D.getDeclSpec().getStorageClassSpec()) {
781    default: assert(0 && "Unknown storage class!");
782    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
783    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
784    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
785    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
786    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
787    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
788    }
789    if (S->getParent() == 0) {
790      // C99 6.9p2: The storage-class specifiers auto and register shall not
791      // appear in the declaration specifiers in an external declaration.
792      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
793        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
794             R.getAsString());
795        InvalidDecl = true;
796      }
797      NewVD = FileVarDecl::Create(Context, D.getIdentifierLoc(), II, R, SC,
798                                  LastDeclarator);
799    } else {
800      NewVD = BlockVarDecl::Create(Context, D.getIdentifierLoc(), II, R, SC,
801                                   LastDeclarator);
802    }
803    // Handle attributes prior to checking for duplicates in MergeVarDecl
804    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
805                         D.getAttributes());
806
807    // Emit an error if an address space was applied to decl with local storage.
808    // This includes arrays of objects with address space qualifiers, but not
809    // automatic variables that point to other address spaces.
810    // ISO/IEC TR 18037 S5.1.2
811    if (NewVD->hasLocalStorage()) {
812      QualType AutoTy = NewVD->getCanonicalType();
813      if (const ArrayType *AT = AutoTy->getAsArrayType())
814        AutoTy = AT->getElementType().getCanonicalType();
815      if (AutoTy.getAddressSpace() != 0) {
816        Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
817        InvalidDecl = true;
818      }
819    }
820    // Merge the decl with the existing one if appropriate. If the decl is
821    // in an outer scope, it isn't the same thing.
822    if (PrevDecl && S->isDeclScope(PrevDecl)) {
823      NewVD = MergeVarDecl(NewVD, PrevDecl);
824      if (NewVD == 0) return 0;
825    }
826    New = NewVD;
827  }
828
829  // If this has an identifier, add it to the scope stack.
830  if (II) {
831    New->setNext(II->getFETokenInfo<ScopedDecl>());
832    II->setFETokenInfo(New);
833    S->AddDecl(New);
834  }
835  // If any semantic error occurred, mark the decl as invalid.
836  if (D.getInvalidType() || InvalidDecl)
837    New->setInvalidDecl();
838
839  return New;
840}
841
842bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
843  SourceLocation loc;
844  // FIXME: Remove the isReference check and handle assignment to a reference.
845  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
846    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
847    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
848    return true;
849  }
850  return false;
851}
852
853void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
854  Decl *RealDecl = static_cast<Decl *>(dcl);
855  Expr *Init = static_cast<Expr *>(init);
856  assert(Init && "missing initializer");
857
858  // If there is no declaration, there was an error parsing it.  Just ignore
859  // the initializer.
860  if (RealDecl == 0) {
861    delete Init;
862    return;
863  }
864
865  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
866  if (!VDecl) {
867    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
868         diag::err_illegal_initializer);
869    RealDecl->setInvalidDecl();
870    return;
871  }
872  // Get the decls type and save a reference for later, since
873  // CheckInitializerTypes may change it.
874  QualType DclT = VDecl->getType(), SavT = DclT;
875  if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) {
876    VarDecl::StorageClass SC = BVD->getStorageClass();
877    if (SC == VarDecl::Extern) { // C99 6.7.8p5
878      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
879      BVD->setInvalidDecl();
880    } else if (!BVD->isInvalidDecl()) {
881      if (CheckInitializerTypes(Init, DclT))
882        BVD->setInvalidDecl();
883      if (SC == VarDecl::Static) // C99 6.7.8p4.
884        CheckForConstantInitializer(Init, DclT);
885    }
886  } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) {
887    if (FVD->getStorageClass() == VarDecl::Extern)
888      Diag(VDecl->getLocation(), diag::warn_extern_init);
889    if (!FVD->isInvalidDecl())
890      if (CheckInitializerTypes(Init, DclT))
891        FVD->setInvalidDecl();
892
893    // C99 6.7.8p4. All file scoped initializers need to be constant.
894    CheckForConstantInitializer(Init, DclT);
895  }
896  // If the type changed, it means we had an incomplete type that was
897  // completed by the initializer. For example:
898  //   int ary[] = { 1, 3, 5 };
899  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
900  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
901    VDecl->setType(DclT);
902    Init->setType(DclT);
903  }
904
905  // Attach the initializer to the decl.
906  VDecl->setInit(Init);
907  return;
908}
909
910/// The declarators are chained together backwards, reverse the list.
911Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
912  // Often we have single declarators, handle them quickly.
913  Decl *GroupDecl = static_cast<Decl*>(group);
914  if (GroupDecl == 0)
915    return 0;
916
917  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
918  ScopedDecl *NewGroup = 0;
919  if (Group->getNextDeclarator() == 0)
920    NewGroup = Group;
921  else { // reverse the list.
922    while (Group) {
923      ScopedDecl *Next = Group->getNextDeclarator();
924      Group->setNextDeclarator(NewGroup);
925      NewGroup = Group;
926      Group = Next;
927    }
928  }
929  // Perform semantic analysis that depends on having fully processed both
930  // the declarator and initializer.
931  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
932    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
933    if (!IDecl)
934      continue;
935    FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl);
936    BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl);
937    QualType T = IDecl->getType();
938
939    // C99 6.7.5.2p2: If an identifier is declared to be an object with
940    // static storage duration, it shall not have a variable length array.
941    if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) {
942      if (T->getAsVariableArrayType()) {
943        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
944        IDecl->setInvalidDecl();
945      }
946    }
947    // Block scope. C99 6.7p7: If an identifier for an object is declared with
948    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
949    if (BVD && IDecl->getStorageClass() != VarDecl::Extern) {
950      if (T->isIncompleteType()) {
951        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
952             T.getAsString());
953        IDecl->setInvalidDecl();
954      }
955    }
956    // File scope. C99 6.9.2p2: A declaration of an identifier for and
957    // object that has file scope without an initializer, and without a
958    // storage-class specifier or with the storage-class specifier "static",
959    // constitutes a tentative definition. Note: A tentative definition with
960    // external linkage is valid (C99 6.2.2p5).
961    if (FVD && !FVD->getInit() && (FVD->getStorageClass() == VarDecl::Static ||
962                                   FVD->getStorageClass() == VarDecl::None)) {
963      if (T->isIncompleteArrayType()) {
964        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
965        // array to be completed. Don't issue a diagnostic.
966      } else if (T->isIncompleteType()) {
967        // C99 6.9.2p3: If the declaration of an identifier for an object is
968        // a tentative definition and has internal linkage (C99 6.2.2p3), the
969        // declared type shall not be an incomplete type.
970        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
971             T.getAsString());
972        IDecl->setInvalidDecl();
973      }
974    }
975  }
976  return NewGroup;
977}
978
979// Called from Sema::ParseStartOfFunctionDef().
980ParmVarDecl *
981Sema::ActOnParamDeclarator(struct DeclaratorChunk::ParamInfo &PI,
982                           Scope *FnScope) {
983  IdentifierInfo *II = PI.Ident;
984  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
985  // Can this happen for params?  We already checked that they don't conflict
986  // among each other.  Here they can only shadow globals, which is ok.
987  if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary,
988                                        PI.IdentLoc, FnScope)) {
989
990  }
991
992  // FIXME: Handle storage class (auto, register). No declarator?
993  // TODO: Chain to previous parameter with the prevdeclarator chain?
994
995  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
996  // Doing the promotion here has a win and a loss. The win is the type for
997  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
998  // code generator). The loss is the orginal type isn't preserved. For example:
999  //
1000  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1001  //    int blockvardecl[5];
1002  //    sizeof(parmvardecl);  // size == 4
1003  //    sizeof(blockvardecl); // size == 20
1004  // }
1005  //
1006  // For expressions, all implicit conversions are captured using the
1007  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1008  //
1009  // FIXME: If a source translation tool needs to see the original type, then
1010  // we need to consider storing both types (in ParmVarDecl)...
1011  //
1012  QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo);
1013  if (const ArrayType *AT = parmDeclType->getAsArrayType()) {
1014    // int x[restrict 4] ->  int *restrict
1015    parmDeclType = Context.getPointerType(AT->getElementType());
1016    parmDeclType = parmDeclType.getQualifiedType(AT->getIndexTypeQualifier());
1017  } else if (parmDeclType->isFunctionType())
1018    parmDeclType = Context.getPointerType(parmDeclType);
1019
1020  ParmVarDecl *New = ParmVarDecl::Create(Context, PI.IdentLoc, II, parmDeclType,
1021                                         VarDecl::None, 0);
1022
1023  if (PI.InvalidType)
1024    New->setInvalidDecl();
1025
1026  // If this has an identifier, add it to the scope stack.
1027  if (II) {
1028    New->setNext(II->getFETokenInfo<ScopedDecl>());
1029    II->setFETokenInfo(New);
1030    FnScope->AddDecl(New);
1031  }
1032
1033  HandleDeclAttributes(New, PI.AttrList, 0);
1034  return New;
1035}
1036
1037Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1038  assert(CurFunctionDecl == 0 && "Function parsing confused");
1039  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1040         "Not a function declarator!");
1041  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1042
1043  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1044  // for a K&R function.
1045  if (!FTI.hasPrototype) {
1046    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1047      if (FTI.ArgInfo[i].TypeInfo == 0) {
1048        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1049             FTI.ArgInfo[i].Ident->getName());
1050        // Implicitly declare the argument as type 'int' for lack of a better
1051        // type.
1052        FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr();
1053      }
1054    }
1055
1056    // Since this is a function definition, act as though we have information
1057    // about the arguments.
1058    if (FTI.NumArgs)
1059      FTI.hasPrototype = true;
1060  } else {
1061    // FIXME: Diagnose arguments without names in C.
1062
1063  }
1064
1065  Scope *GlobalScope = FnBodyScope->getParent();
1066
1067  // See if this is a redefinition.
1068  ScopedDecl *PrevDcl = LookupScopedDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1069                                         D.getIdentifierLoc(), GlobalScope);
1070  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
1071    if (FD->getBody()) {
1072      Diag(D.getIdentifierLoc(), diag::err_redefinition,
1073           D.getIdentifier()->getName());
1074      Diag(FD->getLocation(), diag::err_previous_definition);
1075    }
1076  }
1077  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1078  FunctionDecl *FD = cast<FunctionDecl>(decl);
1079  CurFunctionDecl = FD;
1080
1081  // Create Decl objects for each parameter, adding them to the FunctionDecl.
1082  llvm::SmallVector<ParmVarDecl*, 16> Params;
1083
1084  // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
1085  // no arguments, not a function that takes a single void argument.
1086  if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1087      !QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo).getCVRQualifiers() &&
1088      QualType::getFromOpaquePtr(FTI.ArgInfo[0].TypeInfo)->isVoidType()) {
1089    // empty arg list, don't push any params.
1090  } else {
1091    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1092      Params.push_back(ActOnParamDeclarator(D.getTypeObject(0).Fun.ArgInfo[i],
1093                                            FnBodyScope));
1094    }
1095  }
1096
1097  FD->setParams(&Params[0], Params.size());
1098
1099  return FD;
1100}
1101
1102Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1103  Decl *dcl = static_cast<Decl *>(D);
1104  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1105    FD->setBody((Stmt*)Body);
1106    assert(FD == CurFunctionDecl && "Function parsing confused");
1107    CurFunctionDecl = 0;
1108  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1109    MD->setBody((Stmt*)Body);
1110    CurMethodDecl = 0;
1111  }
1112  // Verify and clean out per-function state.
1113
1114  // Check goto/label use.
1115  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1116       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1117    // Verify that we have no forward references left.  If so, there was a goto
1118    // or address of a label taken, but no definition of it.  Label fwd
1119    // definitions are indicated with a null substmt.
1120    if (I->second->getSubStmt() == 0) {
1121      LabelStmt *L = I->second;
1122      // Emit error.
1123      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1124
1125      // At this point, we have gotos that use the bogus label.  Stitch it into
1126      // the function body so that they aren't leaked and that the AST is well
1127      // formed.
1128      if (Body) {
1129        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1130        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1131      } else {
1132        // The whole function wasn't parsed correctly, just delete this.
1133        delete L;
1134      }
1135    }
1136  }
1137  LabelMap.clear();
1138
1139  return D;
1140}
1141
1142/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1143/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1144ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1145                                           IdentifierInfo &II, Scope *S) {
1146  if (getLangOptions().C99)  // Extension in C99.
1147    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1148  else  // Legal in C90, but warn about it.
1149    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1150
1151  // FIXME: handle stuff like:
1152  // void foo() { extern float X(); }
1153  // void bar() { X(); }  <-- implicit decl for X in another scope.
1154
1155  // Set a Declarator for the implicit definition: int foo();
1156  const char *Dummy;
1157  DeclSpec DS;
1158  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1159  Error = Error; // Silence warning.
1160  assert(!Error && "Error setting up implicit decl!");
1161  Declarator D(DS, Declarator::BlockContext);
1162  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1163  D.SetIdentifier(&II, Loc);
1164
1165  // Find translation-unit scope to insert this function into.
1166  if (Scope *FnS = S->getFnParent())
1167    S = FnS->getParent();   // Skip all scopes in a function at once.
1168  while (S->getParent())
1169    S = S->getParent();
1170
1171  return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
1172}
1173
1174
1175TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1176                                    ScopedDecl *LastDeclarator) {
1177  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1178  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1179
1180  // Scope manipulation handled by caller.
1181  TypedefDecl *NewTD = TypedefDecl::Create(Context, D.getIdentifierLoc(),
1182                                           D.getIdentifier(),
1183                                           T, LastDeclarator);
1184  if (D.getInvalidType())
1185    NewTD->setInvalidDecl();
1186  return NewTD;
1187}
1188
1189/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1190/// former case, Name will be non-null.  In the later case, Name will be null.
1191/// TagType indicates what kind of tag this is. TK indicates whether this is a
1192/// reference/declaration/definition of a tag.
1193Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1194                             SourceLocation KWLoc, IdentifierInfo *Name,
1195                             SourceLocation NameLoc, AttributeList *Attr) {
1196  // If this is a use of an existing tag, it must have a name.
1197  assert((Name != 0 || TK == TK_Definition) &&
1198         "Nameless record must be a definition!");
1199
1200  Decl::Kind Kind;
1201  switch (TagType) {
1202  default: assert(0 && "Unknown tag type!");
1203  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1204  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1205//case DeclSpec::TST_class:  Kind = Decl::Class; break;
1206  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1207  }
1208
1209  // If this is a named struct, check to see if there was a previous forward
1210  // declaration or definition.
1211  if (TagDecl *PrevDecl =
1212          dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag,
1213                                                     NameLoc, S))) {
1214
1215    // If this is a use of a previous tag, or if the tag is already declared in
1216    // the same scope (so that the definition/declaration completes or
1217    // rementions the tag), reuse the decl.
1218    if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
1219      // Make sure that this wasn't declared as an enum and now used as a struct
1220      // or something similar.
1221      if (PrevDecl->getKind() != Kind) {
1222        Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1223        Diag(PrevDecl->getLocation(), diag::err_previous_use);
1224      }
1225
1226      // If this is a use or a forward declaration, we're good.
1227      if (TK != TK_Definition)
1228        return PrevDecl;
1229
1230      // Diagnose attempts to redefine a tag.
1231      if (PrevDecl->isDefinition()) {
1232        Diag(NameLoc, diag::err_redefinition, Name->getName());
1233        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1234        // If this is a redefinition, recover by making this struct be
1235        // anonymous, which will make any later references get the previous
1236        // definition.
1237        Name = 0;
1238      } else {
1239        // Okay, this is definition of a previously declared or referenced tag.
1240        // Move the location of the decl to be the definition site.
1241        PrevDecl->setLocation(NameLoc);
1242        return PrevDecl;
1243      }
1244    }
1245    // If we get here, this is a definition of a new struct type in a nested
1246    // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1247    // type.
1248  }
1249
1250  // If there is an identifier, use the location of the identifier as the
1251  // location of the decl, otherwise use the location of the struct/union
1252  // keyword.
1253  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1254
1255  // Otherwise, if this is the first time we've seen this tag, create the decl.
1256  TagDecl *New;
1257  switch (Kind) {
1258  default: assert(0 && "Unknown tag kind!");
1259  case Decl::Enum:
1260    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1261    // enum X { A, B, C } D;    D should chain to X.
1262    New = EnumDecl::Create(Context, Loc, Name, 0);
1263    // If this is an undefined enum, warn.
1264    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1265    break;
1266  case Decl::Union:
1267  case Decl::Struct:
1268  case Decl::Class:
1269    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1270    // struct X { int A; } D;    D should chain to X.
1271    New = RecordDecl::Create(Context, Kind, Loc, Name, 0);
1272    break;
1273  }
1274
1275  // If this has an identifier, add it to the scope stack.
1276  if (Name) {
1277    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1278    // we find one that is.
1279    while ((S->getFlags() & Scope::DeclScope) == 0)
1280      S = S->getParent();
1281
1282    // Add it to the decl chain.
1283    New->setNext(Name->getFETokenInfo<ScopedDecl>());
1284    Name->setFETokenInfo(New);
1285    S->AddDecl(New);
1286  }
1287
1288  HandleDeclAttributes(New, Attr, 0);
1289  return New;
1290}
1291
1292/// ActOnField - Each field of a struct/union/class is passed into this in order
1293/// to create a FieldDecl object for it.
1294Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagDecl,
1295                               SourceLocation DeclStart,
1296                               Declarator &D, ExprTy *BitfieldWidth) {
1297  IdentifierInfo *II = D.getIdentifier();
1298  Expr *BitWidth = (Expr*)BitfieldWidth;
1299  SourceLocation Loc = DeclStart;
1300  if (II) Loc = D.getIdentifierLoc();
1301
1302  // FIXME: Unnamed fields can be handled in various different ways, for
1303  // example, unnamed unions inject all members into the struct namespace!
1304
1305
1306  if (BitWidth) {
1307    // TODO: Validate.
1308    //printf("WARNING: BITFIELDS IGNORED!\n");
1309
1310    // 6.7.2.1p3
1311    // 6.7.2.1p4
1312
1313  } else {
1314    // Not a bitfield.
1315
1316    // validate II.
1317
1318  }
1319
1320  QualType T = GetTypeForDeclarator(D, S);
1321  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1322  bool InvalidDecl = false;
1323
1324  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1325  // than a variably modified type.
1326  if (T->isVariablyModifiedType()) {
1327    // FIXME: This diagnostic needs work
1328    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1329    InvalidDecl = true;
1330  }
1331  // FIXME: Chain fielddecls together.
1332  FieldDecl *NewFD;
1333
1334  if (isa<RecordDecl>(static_cast<Decl *>(TagDecl)))
1335    NewFD = new FieldDecl(Loc, II, T, BitWidth);
1336  else if (isa<ObjCInterfaceDecl>(static_cast<Decl *>(TagDecl)) ||
1337           isa<ObjCImplementationDecl>(static_cast<Decl *>(TagDecl)) ||
1338           isa<ObjCCategoryDecl>(static_cast<Decl *>(TagDecl)) ||
1339           // FIXME: ivars are currently used to model properties, and
1340           // properties can appear within a protocol.
1341           // See corresponding FIXME in DeclObjC.h:ObjCPropertyDecl.
1342           isa<ObjCProtocolDecl>(static_cast<Decl *>(TagDecl)))
1343    NewFD = new ObjCIvarDecl(Loc, II, T);
1344  else
1345    assert(0 && "Sema::ActOnField(): Unknown TagDecl");
1346
1347  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1348                       D.getAttributes());
1349
1350  if (D.getInvalidType() || InvalidDecl)
1351    NewFD->setInvalidDecl();
1352  return NewFD;
1353}
1354
1355/// TranslateIvarVisibility - Translate visibility from a token ID to an
1356///  AST enum value.
1357static ObjCIvarDecl::AccessControl
1358TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1359  switch (ivarVisibility) {
1360    case tok::objc_private: return ObjCIvarDecl::Private;
1361    case tok::objc_public: return ObjCIvarDecl::Public;
1362    case tok::objc_protected: return ObjCIvarDecl::Protected;
1363    case tok::objc_package: return ObjCIvarDecl::Package;
1364    default: assert(false && "Unknown visitibility kind");
1365  }
1366}
1367
1368void Sema::ActOnFields(Scope* S,
1369                       SourceLocation RecLoc, DeclTy *RecDecl,
1370                       DeclTy **Fields, unsigned NumFields,
1371                       SourceLocation LBrac, SourceLocation RBrac,
1372                       tok::ObjCKeywordKind *visibility) {
1373  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1374  assert(EnclosingDecl && "missing record or interface decl");
1375  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1376
1377  if (Record && Record->isDefinition()) {
1378    // Diagnose code like:
1379    //     struct S { struct S {} X; };
1380    // We discover this when we complete the outer S.  Reject and ignore the
1381    // outer S.
1382    Diag(Record->getLocation(), diag::err_nested_redefinition,
1383         Record->getKindName());
1384    Diag(RecLoc, diag::err_previous_definition);
1385    Record->setInvalidDecl();
1386    return;
1387  }
1388  // Verify that all the fields are okay.
1389  unsigned NumNamedMembers = 0;
1390  llvm::SmallVector<FieldDecl*, 32> RecFields;
1391  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1392
1393  for (unsigned i = 0; i != NumFields; ++i) {
1394
1395    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1396    assert(FD && "missing field decl");
1397
1398    // Remember all fields.
1399    RecFields.push_back(FD);
1400
1401    // Get the type for the field.
1402    Type *FDTy = FD->getType().getTypePtr();
1403
1404    // If we have visibility info, make sure the AST is set accordingly.
1405    if (visibility)
1406      cast<ObjCIvarDecl>(FD)->setAccessControl(
1407                                TranslateIvarVisibility(visibility[i]));
1408
1409    // C99 6.7.2.1p2 - A field may not be a function type.
1410    if (FDTy->isFunctionType()) {
1411      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1412           FD->getName());
1413      FD->setInvalidDecl();
1414      EnclosingDecl->setInvalidDecl();
1415      continue;
1416    }
1417    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1418    if (FDTy->isIncompleteType()) {
1419      if (!Record) {  // Incomplete ivar type is always an error.
1420        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1421        FD->setInvalidDecl();
1422        EnclosingDecl->setInvalidDecl();
1423        continue;
1424      }
1425      if (i != NumFields-1 ||                   // ... that the last member ...
1426          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1427          !FDTy->isArrayType()) {         //... may have incomplete array type.
1428        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1429        FD->setInvalidDecl();
1430        EnclosingDecl->setInvalidDecl();
1431        continue;
1432      }
1433      if (NumNamedMembers < 1) {  //... must have more than named member ...
1434        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1435             FD->getName());
1436        FD->setInvalidDecl();
1437        EnclosingDecl->setInvalidDecl();
1438        continue;
1439      }
1440      // Okay, we have a legal flexible array member at the end of the struct.
1441      if (Record)
1442        Record->setHasFlexibleArrayMember(true);
1443    }
1444    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1445    /// field of another structure or the element of an array.
1446    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1447      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1448        // If this is a member of a union, then entire union becomes "flexible".
1449        if (Record && Record->getKind() == Decl::Union) {
1450          Record->setHasFlexibleArrayMember(true);
1451        } else {
1452          // If this is a struct/class and this is not the last element, reject
1453          // it.  Note that GCC supports variable sized arrays in the middle of
1454          // structures.
1455          if (i != NumFields-1) {
1456            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1457                 FD->getName());
1458            FD->setInvalidDecl();
1459            EnclosingDecl->setInvalidDecl();
1460            continue;
1461          }
1462          // We support flexible arrays at the end of structs in other structs
1463          // as an extension.
1464          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1465               FD->getName());
1466          if (Record)
1467            Record->setHasFlexibleArrayMember(true);
1468        }
1469      }
1470    }
1471    /// A field cannot be an Objective-c object
1472    if (FDTy->isObjCInterfaceType()) {
1473      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1474           FD->getName());
1475      FD->setInvalidDecl();
1476      EnclosingDecl->setInvalidDecl();
1477      continue;
1478    }
1479    // Keep track of the number of named members.
1480    if (IdentifierInfo *II = FD->getIdentifier()) {
1481      // Detect duplicate member names.
1482      if (!FieldIDs.insert(II)) {
1483        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1484        // Find the previous decl.
1485        SourceLocation PrevLoc;
1486        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1487          assert(i != e && "Didn't find previous def!");
1488          if (RecFields[i]->getIdentifier() == II) {
1489            PrevLoc = RecFields[i]->getLocation();
1490            break;
1491          }
1492        }
1493        Diag(PrevLoc, diag::err_previous_definition);
1494        FD->setInvalidDecl();
1495        EnclosingDecl->setInvalidDecl();
1496        continue;
1497      }
1498      ++NumNamedMembers;
1499    }
1500  }
1501
1502  // Okay, we successfully defined 'Record'.
1503  if (Record) {
1504    Record->defineBody(&RecFields[0], RecFields.size());
1505    Consumer.HandleTagDeclDefinition(Record);
1506  } else {
1507    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1508    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1509      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1510    else if (ObjCImplementationDecl *IMPDecl =
1511               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1512      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1513      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1514      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1515    }
1516  }
1517}
1518
1519Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1520                                      DeclTy *lastEnumConst,
1521                                      SourceLocation IdLoc, IdentifierInfo *Id,
1522                                      SourceLocation EqualLoc, ExprTy *val) {
1523  theEnumDecl = theEnumDecl;  // silence unused warning.
1524  EnumConstantDecl *LastEnumConst =
1525    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1526  Expr *Val = static_cast<Expr*>(val);
1527
1528  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1529  // we find one that is.
1530  while ((S->getFlags() & Scope::DeclScope) == 0)
1531    S = S->getParent();
1532
1533  // Verify that there isn't already something declared with this name in this
1534  // scope.
1535  if (ScopedDecl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary,
1536                                              IdLoc, S)) {
1537    if (S->isDeclScope(PrevDecl)) {
1538      if (isa<EnumConstantDecl>(PrevDecl))
1539        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1540      else
1541        Diag(IdLoc, diag::err_redefinition, Id->getName());
1542      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1543      delete Val;
1544      return 0;
1545    }
1546  }
1547
1548  llvm::APSInt EnumVal(32);
1549  QualType EltTy;
1550  if (Val) {
1551    // Make sure to promote the operand type to int.
1552    UsualUnaryConversions(Val);
1553
1554    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1555    SourceLocation ExpLoc;
1556    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1557      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1558           Id->getName());
1559      delete Val;
1560      Val = 0;  // Just forget about it.
1561    } else {
1562      EltTy = Val->getType();
1563    }
1564  }
1565
1566  if (!Val) {
1567    if (LastEnumConst) {
1568      // Assign the last value + 1.
1569      EnumVal = LastEnumConst->getInitVal();
1570      ++EnumVal;
1571
1572      // Check for overflow on increment.
1573      if (EnumVal < LastEnumConst->getInitVal())
1574        Diag(IdLoc, diag::warn_enum_value_overflow);
1575
1576      EltTy = LastEnumConst->getType();
1577    } else {
1578      // First value, set to zero.
1579      EltTy = Context.IntTy;
1580      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1581    }
1582  }
1583
1584  EnumConstantDecl *New =
1585    EnumConstantDecl::Create(Context, IdLoc, Id, EltTy, Val, EnumVal,
1586                             LastEnumConst);
1587
1588  // Register this decl in the current scope stack.
1589  New->setNext(Id->getFETokenInfo<ScopedDecl>());
1590  Id->setFETokenInfo(New);
1591  S->AddDecl(New);
1592  return New;
1593}
1594
1595void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1596                         DeclTy **Elements, unsigned NumElements) {
1597  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1598  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1599
1600  // TODO: If the result value doesn't fit in an int, it must be a long or long
1601  // long value.  ISO C does not support this, but GCC does as an extension,
1602  // emit a warning.
1603  unsigned IntWidth = Context.Target.getIntWidth();
1604
1605  // Verify that all the values are okay, compute the size of the values, and
1606  // reverse the list.
1607  unsigned NumNegativeBits = 0;
1608  unsigned NumPositiveBits = 0;
1609
1610  // Keep track of whether all elements have type int.
1611  bool AllElementsInt = true;
1612
1613  EnumConstantDecl *EltList = 0;
1614  for (unsigned i = 0; i != NumElements; ++i) {
1615    EnumConstantDecl *ECD =
1616      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1617    if (!ECD) continue;  // Already issued a diagnostic.
1618
1619    // If the enum value doesn't fit in an int, emit an extension warning.
1620    const llvm::APSInt &InitVal = ECD->getInitVal();
1621    assert(InitVal.getBitWidth() >= IntWidth &&
1622           "Should have promoted value to int");
1623    if (InitVal.getBitWidth() > IntWidth) {
1624      llvm::APSInt V(InitVal);
1625      V.trunc(IntWidth);
1626      V.extend(InitVal.getBitWidth());
1627      if (V != InitVal)
1628        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1629             InitVal.toString());
1630    }
1631
1632    // Keep track of the size of positive and negative values.
1633    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1634      NumPositiveBits = std::max(NumPositiveBits,
1635                                 (unsigned)InitVal.getActiveBits());
1636    else
1637      NumNegativeBits = std::max(NumNegativeBits,
1638                                 (unsigned)InitVal.getMinSignedBits());
1639
1640    // Keep track of whether every enum element has type int (very commmon).
1641    if (AllElementsInt)
1642      AllElementsInt = ECD->getType() == Context.IntTy;
1643
1644    ECD->setNextDeclarator(EltList);
1645    EltList = ECD;
1646  }
1647
1648  // Figure out the type that should be used for this enum.
1649  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1650  QualType BestType;
1651  unsigned BestWidth;
1652
1653  if (NumNegativeBits) {
1654    // If there is a negative value, figure out the smallest integer type (of
1655    // int/long/longlong) that fits.
1656    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1657      BestType = Context.IntTy;
1658      BestWidth = IntWidth;
1659    } else {
1660      BestWidth = Context.Target.getLongWidth();
1661
1662      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1663        BestType = Context.LongTy;
1664      else {
1665        BestWidth = Context.Target.getLongLongWidth();
1666
1667        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1668          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1669        BestType = Context.LongLongTy;
1670      }
1671    }
1672  } else {
1673    // If there is no negative value, figure out which of uint, ulong, ulonglong
1674    // fits.
1675    if (NumPositiveBits <= IntWidth) {
1676      BestType = Context.UnsignedIntTy;
1677      BestWidth = IntWidth;
1678    } else if (NumPositiveBits <=
1679               (BestWidth = Context.Target.getLongWidth())) {
1680      BestType = Context.UnsignedLongTy;
1681    } else {
1682      BestWidth = Context.Target.getLongLongWidth();
1683      assert(NumPositiveBits <= BestWidth &&
1684             "How could an initializer get larger than ULL?");
1685      BestType = Context.UnsignedLongLongTy;
1686    }
1687  }
1688
1689  // Loop over all of the enumerator constants, changing their types to match
1690  // the type of the enum if needed.
1691  for (unsigned i = 0; i != NumElements; ++i) {
1692    EnumConstantDecl *ECD =
1693      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1694    if (!ECD) continue;  // Already issued a diagnostic.
1695
1696    // Standard C says the enumerators have int type, but we allow, as an
1697    // extension, the enumerators to be larger than int size.  If each
1698    // enumerator value fits in an int, type it as an int, otherwise type it the
1699    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1700    // that X has type 'int', not 'unsigned'.
1701    if (ECD->getType() == Context.IntTy) {
1702      // Make sure the init value is signed.
1703      llvm::APSInt IV = ECD->getInitVal();
1704      IV.setIsSigned(true);
1705      ECD->setInitVal(IV);
1706      continue;  // Already int type.
1707    }
1708
1709    // Determine whether the value fits into an int.
1710    llvm::APSInt InitVal = ECD->getInitVal();
1711    bool FitsInInt;
1712    if (InitVal.isUnsigned() || !InitVal.isNegative())
1713      FitsInInt = InitVal.getActiveBits() < IntWidth;
1714    else
1715      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1716
1717    // If it fits into an integer type, force it.  Otherwise force it to match
1718    // the enum decl type.
1719    QualType NewTy;
1720    unsigned NewWidth;
1721    bool NewSign;
1722    if (FitsInInt) {
1723      NewTy = Context.IntTy;
1724      NewWidth = IntWidth;
1725      NewSign = true;
1726    } else if (ECD->getType() == BestType) {
1727      // Already the right type!
1728      continue;
1729    } else {
1730      NewTy = BestType;
1731      NewWidth = BestWidth;
1732      NewSign = BestType->isSignedIntegerType();
1733    }
1734
1735    // Adjust the APSInt value.
1736    InitVal.extOrTrunc(NewWidth);
1737    InitVal.setIsSigned(NewSign);
1738    ECD->setInitVal(InitVal);
1739
1740    // Adjust the Expr initializer and type.
1741    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1742    ECD->setType(NewTy);
1743  }
1744
1745  Enum->defineElements(EltList, BestType);
1746  Consumer.HandleTagDeclDefinition(Enum);
1747}
1748
1749Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1750                                          ExprTy *expr) {
1751  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1752
1753  return new FileScopeAsmDecl(Loc, AsmString);
1754}
1755
1756Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1757                                     SourceLocation LBrace,
1758                                     SourceLocation RBrace,
1759                                     const char *Lang,
1760                                     unsigned StrSize,
1761                                     DeclTy *D) {
1762  LinkageSpecDecl::LanguageIDs Language;
1763  Decl *dcl = static_cast<Decl *>(D);
1764  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1765    Language = LinkageSpecDecl::lang_c;
1766  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1767    Language = LinkageSpecDecl::lang_cxx;
1768  else {
1769    Diag(Loc, diag::err_bad_language);
1770    return 0;
1771  }
1772
1773  // FIXME: Add all the various semantics of linkage specifications
1774  return new LinkageSpecDecl(Loc, Language, dcl);
1775}
1776
1777void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
1778
1779  switch (Attr->getKind()) {
1780  case AttributeList::AT_vector_size:
1781    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1782      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
1783      if (!newType.isNull()) // install the new vector type into the decl
1784        vDecl->setType(newType);
1785    }
1786    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1787      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
1788                                                   Attr);
1789      if (!newType.isNull()) // install the new vector type into the decl
1790        tDecl->setUnderlyingType(newType);
1791    }
1792    break;
1793  case AttributeList::AT_ocu_vector_type:
1794    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
1795      HandleOCUVectorTypeAttribute(tDecl, Attr);
1796    else
1797      Diag(Attr->getLoc(),
1798           diag::err_typecheck_ocu_vector_not_typedef);
1799    break;
1800  case AttributeList::AT_address_space:
1801    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1802      QualType newType = HandleAddressSpaceTypeAttribute(
1803                                                  tDecl->getUnderlyingType(),
1804                                                  Attr);
1805      tDecl->setUnderlyingType(newType);
1806    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1807      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
1808                                                         Attr);
1809      // install the new addr spaced type into the decl
1810      vDecl->setType(newType);
1811    }
1812    break;
1813  case AttributeList::AT_deprecated:
1814    HandleDeprecatedAttribute(New, Attr);
1815    break;
1816  case AttributeList::AT_visibility:
1817    HandleVisibilityAttribute(New, Attr);
1818    break;
1819  case AttributeList::AT_weak:
1820    HandleWeakAttribute(New, Attr);
1821    break;
1822  case AttributeList::AT_dllimport:
1823    HandleDLLImportAttribute(New, Attr);
1824    break;
1825  case AttributeList::AT_dllexport:
1826    HandleDLLExportAttribute(New, Attr);
1827    break;
1828  case AttributeList::AT_nothrow:
1829    HandleNothrowAttribute(New, Attr);
1830    break;
1831  case AttributeList::AT_stdcall:
1832    HandleStdCallAttribute(New, Attr);
1833    break;
1834  case AttributeList::AT_fastcall:
1835    HandleFastCallAttribute(New, Attr);
1836    break;
1837  case AttributeList::AT_aligned:
1838    HandleAlignedAttribute(New, Attr);
1839    break;
1840  case AttributeList::AT_packed:
1841    HandlePackedAttribute(New, Attr);
1842    break;
1843  case AttributeList::AT_annotate:
1844    HandleAnnotateAttribute(New, Attr);
1845    break;
1846  case AttributeList::AT_noreturn:
1847    HandleNoReturnAttribute(New, Attr);
1848    break;
1849  case AttributeList::AT_format:
1850    HandleFormatAttribute(New, Attr);
1851    break;
1852  default:
1853#if 0
1854    // TODO: when we have the full set of attributes, warn about unknown ones.
1855    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
1856         Attr->getName()->getName());
1857#endif
1858    break;
1859  }
1860}
1861
1862void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
1863                                AttributeList *declarator_postfix) {
1864  while (declspec_prefix) {
1865    HandleDeclAttribute(New, declspec_prefix);
1866    declspec_prefix = declspec_prefix->getNext();
1867  }
1868  while (declarator_postfix) {
1869    HandleDeclAttribute(New, declarator_postfix);
1870    declarator_postfix = declarator_postfix->getNext();
1871  }
1872}
1873
1874void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
1875                                        AttributeList *rawAttr) {
1876  QualType curType = tDecl->getUnderlyingType();
1877  // check the attribute arguments.
1878  if (rawAttr->getNumArgs() != 1) {
1879    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1880         std::string("1"));
1881    return;
1882  }
1883  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1884  llvm::APSInt vecSize(32);
1885  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1886    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1887         "ocu_vector_type", sizeExpr->getSourceRange());
1888    return;
1889  }
1890  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
1891  // in conjunction with complex types (pointers, arrays, functions, etc.).
1892  Type *canonType = curType.getCanonicalType().getTypePtr();
1893  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1894    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1895         curType.getCanonicalType().getAsString());
1896    return;
1897  }
1898  // unlike gcc's vector_size attribute, the size is specified as the
1899  // number of elements, not the number of bytes.
1900  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
1901
1902  if (vectorSize == 0) {
1903    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1904         sizeExpr->getSourceRange());
1905    return;
1906  }
1907  // Instantiate/Install the vector type, the number of elements is > 0.
1908  tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
1909  // Remember this typedef decl, we will need it later for diagnostics.
1910  OCUVectorDecls.push_back(tDecl);
1911}
1912
1913QualType Sema::HandleVectorTypeAttribute(QualType curType,
1914                                         AttributeList *rawAttr) {
1915  // check the attribute arugments.
1916  if (rawAttr->getNumArgs() != 1) {
1917    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1918         std::string("1"));
1919    return QualType();
1920  }
1921  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
1922  llvm::APSInt vecSize(32);
1923  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
1924    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
1925         "vector_size", sizeExpr->getSourceRange());
1926    return QualType();
1927  }
1928  // navigate to the base type - we need to provide for vector pointers,
1929  // vector arrays, and functions returning vectors.
1930  Type *canonType = curType.getCanonicalType().getTypePtr();
1931
1932  if (canonType->isPointerType() || canonType->isArrayType() ||
1933      canonType->isFunctionType()) {
1934    assert(0 && "HandleVector(): Complex type construction unimplemented");
1935    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
1936        do {
1937          if (PointerType *PT = dyn_cast<PointerType>(canonType))
1938            canonType = PT->getPointeeType().getTypePtr();
1939          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
1940            canonType = AT->getElementType().getTypePtr();
1941          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
1942            canonType = FT->getResultType().getTypePtr();
1943        } while (canonType->isPointerType() || canonType->isArrayType() ||
1944                 canonType->isFunctionType());
1945    */
1946  }
1947  // the base type must be integer or float.
1948  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
1949    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
1950         curType.getCanonicalType().getAsString());
1951    return QualType();
1952  }
1953  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
1954  // vecSize is specified in bytes - convert to bits.
1955  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
1956
1957  // the vector size needs to be an integral multiple of the type size.
1958  if (vectorSize % typeSize) {
1959    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
1960         sizeExpr->getSourceRange());
1961    return QualType();
1962  }
1963  if (vectorSize == 0) {
1964    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
1965         sizeExpr->getSourceRange());
1966    return QualType();
1967  }
1968  // Instantiate the vector type, the number of elements is > 0, and not
1969  // required to be a power of 2, unlike GCC.
1970  return Context.getVectorType(curType, vectorSize/typeSize);
1971}
1972
1973void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
1974  // check the attribute arguments.
1975  if (rawAttr->getNumArgs() > 0) {
1976    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
1977         std::string("0"));
1978    return;
1979  }
1980
1981  if (TagDecl *TD = dyn_cast<TagDecl>(d))
1982    TD->addAttr(new PackedAttr);
1983  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
1984    // If the alignment is less than or equal to 8 bits, the packed attribute
1985    // has no effect.
1986    if (Context.getTypeAlign(FD->getType()) <= 8)
1987      Diag(rawAttr->getLoc(),
1988           diag::warn_attribute_ignored_for_field_of_type,
1989           rawAttr->getName()->getName(), FD->getType().getAsString());
1990    else
1991      FD->addAttr(new PackedAttr);
1992  } else
1993    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
1994         rawAttr->getName()->getName());
1995}
1996
1997void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
1998  // check the attribute arguments.
1999  if (rawAttr->getNumArgs() != 0) {
2000    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2001         std::string("0"));
2002    return;
2003  }
2004
2005  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2006
2007  if (!Fn) {
2008    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2009         "noreturn", "function");
2010    return;
2011  }
2012
2013  d->addAttr(new NoReturnAttr());
2014}
2015
2016void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2017  // check the attribute arguments.
2018  if (rawAttr->getNumArgs() != 0) {
2019    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2020         std::string("0"));
2021    return;
2022  }
2023
2024  d->addAttr(new DeprecatedAttr());
2025}
2026
2027void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2028  // check the attribute arguments.
2029  if (rawAttr->getNumArgs() != 1) {
2030    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2031         std::string("1"));
2032    return;
2033  }
2034
2035  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2036  Arg = Arg->IgnoreParenCasts();
2037  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2038
2039  if (Str == 0 || Str->isWide()) {
2040    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2041         "visibility", std::string("1"));
2042    return;
2043  }
2044
2045  const char *TypeStr = Str->getStrData();
2046  unsigned TypeLen = Str->getByteLength();
2047  llvm::GlobalValue::VisibilityTypes type;
2048
2049  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2050    type = llvm::GlobalValue::DefaultVisibility;
2051  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2052    type = llvm::GlobalValue::HiddenVisibility;
2053  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2054    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2055  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2056    type = llvm::GlobalValue::ProtectedVisibility;
2057  else {
2058    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2059           "visibility", TypeStr);
2060    return;
2061  }
2062
2063  d->addAttr(new VisibilityAttr(type));
2064}
2065
2066void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2067  // check the attribute arguments.
2068  if (rawAttr->getNumArgs() != 0) {
2069    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2070         std::string("0"));
2071    return;
2072  }
2073
2074  d->addAttr(new WeakAttr());
2075}
2076
2077void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2078  // check the attribute arguments.
2079  if (rawAttr->getNumArgs() != 0) {
2080    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2081         std::string("0"));
2082    return;
2083  }
2084
2085  d->addAttr(new DLLImportAttr());
2086}
2087
2088void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2089  // check the attribute arguments.
2090  if (rawAttr->getNumArgs() != 0) {
2091    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2092         std::string("0"));
2093    return;
2094  }
2095
2096  d->addAttr(new DLLExportAttr());
2097}
2098
2099void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2100  // check the attribute arguments.
2101  if (rawAttr->getNumArgs() != 0) {
2102    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2103         std::string("0"));
2104    return;
2105  }
2106
2107  d->addAttr(new StdCallAttr());
2108}
2109
2110void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2111  // check the attribute arguments.
2112  if (rawAttr->getNumArgs() != 0) {
2113    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2114         std::string("0"));
2115    return;
2116  }
2117
2118  d->addAttr(new FastCallAttr());
2119}
2120
2121void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2122  // check the attribute arguments.
2123  if (rawAttr->getNumArgs() != 0) {
2124    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2125         std::string("0"));
2126    return;
2127  }
2128
2129  d->addAttr(new NoThrowAttr());
2130}
2131
2132/// Handle __attribute__((format(type,idx,firstarg))) attributes
2133/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2134void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2135
2136  if (!rawAttr->getParameterName()) {
2137    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2138           "format", std::string("1"));
2139    return;
2140  }
2141
2142  if (rawAttr->getNumArgs() != 2) {
2143    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2144         std::string("3"));
2145    return;
2146  }
2147
2148  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2149  if (!Fn) {
2150    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2151           "format", "function");
2152    return;
2153  }
2154
2155  const FunctionTypeProto *proto =
2156      dyn_cast<FunctionTypeProto>(Fn->getType()->getAsFunctionType());
2157  if (!proto)
2158    return;
2159
2160  // FIXME: in C++ the implicit 'this' function parameter also counts.
2161  // this is needed in order to be compatible with GCC
2162  // the index must start in 1 and the limit is numargs+1
2163  unsigned NumArgs  = Fn->getNumParams();
2164  unsigned FirstIdx = 1;
2165
2166  const char *Format = rawAttr->getParameterName()->getName();
2167  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2168
2169  // Normalize the argument, __foo__ becomes foo.
2170  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2171      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2172    Format += 2;
2173    FormatLen -= 4;
2174  }
2175
2176  if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
2177     || (FormatLen == 6 && !memcmp(Format, "printf", 6))
2178     || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
2179     || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
2180    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2181           "format", rawAttr->getParameterName()->getName());
2182    return;
2183  }
2184
2185  // checks for the 2nd argument
2186  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2187  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2188  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2189    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2190           "format", std::string("2"), IdxExpr->getSourceRange());
2191    return;
2192  }
2193
2194  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2195    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2196           "format", std::string("2"), IdxExpr->getSourceRange());
2197    return;
2198  }
2199
2200  // make sure the format string is really a string
2201  QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
2202  if (!Ty->isPointerType() ||
2203      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2204    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2205         IdxExpr->getSourceRange());
2206    return;
2207  }
2208
2209
2210  // check the 3rd argument
2211  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2212  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2213  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2214    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2215           "format", std::string("3"), FirstArgExpr->getSourceRange());
2216    return;
2217  }
2218
2219  // check if the function is variadic if the 3rd argument non-zero
2220  if (FirstArg != 0) {
2221    if (proto->isVariadic()) {
2222      ++NumArgs; // +1 for ...
2223    } else {
2224      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2225      return;
2226    }
2227  }
2228
2229  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2230  // the input is just the current time + the format string
2231  if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
2232    if (FirstArg != 0) {
2233      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2234             FirstArgExpr->getSourceRange());
2235      return;
2236    }
2237  // if 0 it disables parameter checking (to use with e.g. va_list)
2238  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2239    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2240           "format", std::string("3"), FirstArgExpr->getSourceRange());
2241    return;
2242  }
2243
2244  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2245                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2246}
2247
2248void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2249  // check the attribute arguments.
2250  if (rawAttr->getNumArgs() != 1) {
2251    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2252         std::string("1"));
2253    return;
2254  }
2255  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2256  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2257
2258  // Make sure that there is a string literal as the annotation's single
2259  // argument.
2260  if (!SE) {
2261    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2262    return;
2263  }
2264  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2265                                          SE->getByteLength())));
2266}
2267
2268void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2269{
2270  // check the attribute arguments.
2271  if (rawAttr->getNumArgs() > 1) {
2272    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2273         std::string("1"));
2274    return;
2275  }
2276
2277  unsigned Align = 0;
2278
2279  if (rawAttr->getNumArgs() == 0) {
2280    // FIXME: This should be the target specific maximum alignment.
2281    // (For now we just use 128 bits which is the maximum on X86.
2282    Align = 128;
2283    return;
2284  } else {
2285    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2286    llvm::APSInt alignment(32);
2287    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2288      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2289           "aligned", alignmentExpr->getSourceRange());
2290      return;
2291    }
2292
2293    Align = alignment.getZExtValue() * 8;
2294  }
2295
2296  d->addAttr(new AlignedAttr(Align));
2297}
2298