SemaDecl.cpp revision bea522ff43a3f11c7a2bc7949119dbb9fce19e39
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->hasExternalLinkage())
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = decl->hasExternalLinkage();
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825static bool isAttributeTargetADefinition(Decl *D) {
1826  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1827    return VD->isThisDeclarationADefinition();
1828  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1829    return TD->isCompleteDefinition() || TD->isBeingDefined();
1830  return true;
1831}
1832
1833/// Merge alignment attributes from \p Old to \p New, taking into account the
1834/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1835///
1836/// \return \c true if any attributes were added to \p New.
1837static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1838  // Look for alignas attributes on Old, and pick out whichever attribute
1839  // specifies the strictest alignment requirement.
1840  AlignedAttr *OldAlignasAttr = 0;
1841  AlignedAttr *OldStrictestAlignAttr = 0;
1842  unsigned OldAlign = 0;
1843  for (specific_attr_iterator<AlignedAttr>
1844         I = Old->specific_attr_begin<AlignedAttr>(),
1845         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1846    // FIXME: We have no way of representing inherited dependent alignments
1847    // in a case like:
1848    //   template<int A, int B> struct alignas(A) X;
1849    //   template<int A, int B> struct alignas(B) X {};
1850    // For now, we just ignore any alignas attributes which are not on the
1851    // definition in such a case.
1852    if (I->isAlignmentDependent())
1853      return false;
1854
1855    if (I->isAlignas())
1856      OldAlignasAttr = *I;
1857
1858    unsigned Align = I->getAlignment(S.Context);
1859    if (Align > OldAlign) {
1860      OldAlign = Align;
1861      OldStrictestAlignAttr = *I;
1862    }
1863  }
1864
1865  // Look for alignas attributes on New.
1866  AlignedAttr *NewAlignasAttr = 0;
1867  unsigned NewAlign = 0;
1868  for (specific_attr_iterator<AlignedAttr>
1869         I = New->specific_attr_begin<AlignedAttr>(),
1870         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1871    if (I->isAlignmentDependent())
1872      return false;
1873
1874    if (I->isAlignas())
1875      NewAlignasAttr = *I;
1876
1877    unsigned Align = I->getAlignment(S.Context);
1878    if (Align > NewAlign)
1879      NewAlign = Align;
1880  }
1881
1882  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1883    // Both declarations have 'alignas' attributes. We require them to match.
1884    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1885    // fall short. (If two declarations both have alignas, they must both match
1886    // every definition, and so must match each other if there is a definition.)
1887
1888    // If either declaration only contains 'alignas(0)' specifiers, then it
1889    // specifies the natural alignment for the type.
1890    if (OldAlign == 0 || NewAlign == 0) {
1891      QualType Ty;
1892      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1893        Ty = VD->getType();
1894      else
1895        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1896
1897      if (OldAlign == 0)
1898        OldAlign = S.Context.getTypeAlign(Ty);
1899      if (NewAlign == 0)
1900        NewAlign = S.Context.getTypeAlign(Ty);
1901    }
1902
1903    if (OldAlign != NewAlign) {
1904      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1905        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1906        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1907      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1908    }
1909  }
1910
1911  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1912    // C++11 [dcl.align]p6:
1913    //   if any declaration of an entity has an alignment-specifier,
1914    //   every defining declaration of that entity shall specify an
1915    //   equivalent alignment.
1916    // C11 6.7.5/7:
1917    //   If the definition of an object does not have an alignment
1918    //   specifier, any other declaration of that object shall also
1919    //   have no alignment specifier.
1920    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1921      << OldAlignasAttr->isC11();
1922    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1923      << OldAlignasAttr->isC11();
1924  }
1925
1926  bool AnyAdded = false;
1927
1928  // Ensure we have an attribute representing the strictest alignment.
1929  if (OldAlign > NewAlign) {
1930    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1931    Clone->setInherited(true);
1932    New->addAttr(Clone);
1933    AnyAdded = true;
1934  }
1935
1936  // Ensure we have an alignas attribute if the old declaration had one.
1937  if (OldAlignasAttr && !NewAlignasAttr &&
1938      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1939    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1940    Clone->setInherited(true);
1941    New->addAttr(Clone);
1942    AnyAdded = true;
1943  }
1944
1945  return AnyAdded;
1946}
1947
1948static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1949                               bool Override) {
1950  InheritableAttr *NewAttr = NULL;
1951  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1952  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1953    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1954                                      AA->getIntroduced(), AA->getDeprecated(),
1955                                      AA->getObsoleted(), AA->getUnavailable(),
1956                                      AA->getMessage(), Override,
1957                                      AttrSpellingListIndex);
1958  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1959    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1960                                    AttrSpellingListIndex);
1961  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1962    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1963                                        AttrSpellingListIndex);
1964  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1965    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1966                                   AttrSpellingListIndex);
1967  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1968    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1969                                   AttrSpellingListIndex);
1970  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1971    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1972                                FA->getFormatIdx(), FA->getFirstArg(),
1973                                AttrSpellingListIndex);
1974  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1975    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1976                                 AttrSpellingListIndex);
1977  else if (isa<AlignedAttr>(Attr))
1978    // AlignedAttrs are handled separately, because we need to handle all
1979    // such attributes on a declaration at the same time.
1980    NewAttr = 0;
1981  else if (!DeclHasAttr(D, Attr))
1982    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
1983
1984  if (NewAttr) {
1985    NewAttr->setInherited(true);
1986    D->addAttr(NewAttr);
1987    return true;
1988  }
1989
1990  return false;
1991}
1992
1993static const Decl *getDefinition(const Decl *D) {
1994  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1995    return TD->getDefinition();
1996  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1997    return VD->getDefinition();
1998  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1999    const FunctionDecl* Def;
2000    if (FD->hasBody(Def))
2001      return Def;
2002  }
2003  return NULL;
2004}
2005
2006static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2007  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2008       I != E; ++I) {
2009    Attr *Attribute = *I;
2010    if (Attribute->getKind() == Kind)
2011      return true;
2012  }
2013  return false;
2014}
2015
2016/// checkNewAttributesAfterDef - If we already have a definition, check that
2017/// there are no new attributes in this declaration.
2018static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2019  if (!New->hasAttrs())
2020    return;
2021
2022  const Decl *Def = getDefinition(Old);
2023  if (!Def || Def == New)
2024    return;
2025
2026  AttrVec &NewAttributes = New->getAttrs();
2027  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2028    const Attr *NewAttribute = NewAttributes[I];
2029    if (hasAttribute(Def, NewAttribute->getKind())) {
2030      ++I;
2031      continue; // regular attr merging will take care of validating this.
2032    }
2033
2034    if (isa<C11NoReturnAttr>(NewAttribute)) {
2035      // C's _Noreturn is allowed to be added to a function after it is defined.
2036      ++I;
2037      continue;
2038    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2039      if (AA->isAlignas()) {
2040        // C++11 [dcl.align]p6:
2041        //   if any declaration of an entity has an alignment-specifier,
2042        //   every defining declaration of that entity shall specify an
2043        //   equivalent alignment.
2044        // C11 6.7.5/7:
2045        //   If the definition of an object does not have an alignment
2046        //   specifier, any other declaration of that object shall also
2047        //   have no alignment specifier.
2048        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2049          << AA->isC11();
2050        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2051          << AA->isC11();
2052        NewAttributes.erase(NewAttributes.begin() + I);
2053        --E;
2054        continue;
2055      }
2056    }
2057
2058    S.Diag(NewAttribute->getLocation(),
2059           diag::warn_attribute_precede_definition);
2060    S.Diag(Def->getLocation(), diag::note_previous_definition);
2061    NewAttributes.erase(NewAttributes.begin() + I);
2062    --E;
2063  }
2064}
2065
2066/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2067void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2068                               AvailabilityMergeKind AMK) {
2069  if (!Old->hasAttrs() && !New->hasAttrs())
2070    return;
2071
2072  // attributes declared post-definition are currently ignored
2073  checkNewAttributesAfterDef(*this, New, Old);
2074
2075  if (!Old->hasAttrs())
2076    return;
2077
2078  bool foundAny = New->hasAttrs();
2079
2080  // Ensure that any moving of objects within the allocated map is done before
2081  // we process them.
2082  if (!foundAny) New->setAttrs(AttrVec());
2083
2084  for (specific_attr_iterator<InheritableAttr>
2085         i = Old->specific_attr_begin<InheritableAttr>(),
2086         e = Old->specific_attr_end<InheritableAttr>();
2087       i != e; ++i) {
2088    bool Override = false;
2089    // Ignore deprecated/unavailable/availability attributes if requested.
2090    if (isa<DeprecatedAttr>(*i) ||
2091        isa<UnavailableAttr>(*i) ||
2092        isa<AvailabilityAttr>(*i)) {
2093      switch (AMK) {
2094      case AMK_None:
2095        continue;
2096
2097      case AMK_Redeclaration:
2098        break;
2099
2100      case AMK_Override:
2101        Override = true;
2102        break;
2103      }
2104    }
2105
2106    if (mergeDeclAttribute(*this, New, *i, Override))
2107      foundAny = true;
2108  }
2109
2110  if (mergeAlignedAttrs(*this, New, Old))
2111    foundAny = true;
2112
2113  if (!foundAny) New->dropAttrs();
2114}
2115
2116/// mergeParamDeclAttributes - Copy attributes from the old parameter
2117/// to the new one.
2118static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2119                                     const ParmVarDecl *oldDecl,
2120                                     Sema &S) {
2121  // C++11 [dcl.attr.depend]p2:
2122  //   The first declaration of a function shall specify the
2123  //   carries_dependency attribute for its declarator-id if any declaration
2124  //   of the function specifies the carries_dependency attribute.
2125  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2126      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2127    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2128           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2129    // Find the first declaration of the parameter.
2130    // FIXME: Should we build redeclaration chains for function parameters?
2131    const FunctionDecl *FirstFD =
2132      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2133    const ParmVarDecl *FirstVD =
2134      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2135    S.Diag(FirstVD->getLocation(),
2136           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2137  }
2138
2139  if (!oldDecl->hasAttrs())
2140    return;
2141
2142  bool foundAny = newDecl->hasAttrs();
2143
2144  // Ensure that any moving of objects within the allocated map is
2145  // done before we process them.
2146  if (!foundAny) newDecl->setAttrs(AttrVec());
2147
2148  for (specific_attr_iterator<InheritableParamAttr>
2149       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2150       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2151    if (!DeclHasAttr(newDecl, *i)) {
2152      InheritableAttr *newAttr =
2153        cast<InheritableParamAttr>((*i)->clone(S.Context));
2154      newAttr->setInherited(true);
2155      newDecl->addAttr(newAttr);
2156      foundAny = true;
2157    }
2158  }
2159
2160  if (!foundAny) newDecl->dropAttrs();
2161}
2162
2163namespace {
2164
2165/// Used in MergeFunctionDecl to keep track of function parameters in
2166/// C.
2167struct GNUCompatibleParamWarning {
2168  ParmVarDecl *OldParm;
2169  ParmVarDecl *NewParm;
2170  QualType PromotedType;
2171};
2172
2173}
2174
2175/// getSpecialMember - get the special member enum for a method.
2176Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2177  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2178    if (Ctor->isDefaultConstructor())
2179      return Sema::CXXDefaultConstructor;
2180
2181    if (Ctor->isCopyConstructor())
2182      return Sema::CXXCopyConstructor;
2183
2184    if (Ctor->isMoveConstructor())
2185      return Sema::CXXMoveConstructor;
2186  } else if (isa<CXXDestructorDecl>(MD)) {
2187    return Sema::CXXDestructor;
2188  } else if (MD->isCopyAssignmentOperator()) {
2189    return Sema::CXXCopyAssignment;
2190  } else if (MD->isMoveAssignmentOperator()) {
2191    return Sema::CXXMoveAssignment;
2192  }
2193
2194  return Sema::CXXInvalid;
2195}
2196
2197/// canRedefineFunction - checks if a function can be redefined. Currently,
2198/// only extern inline functions can be redefined, and even then only in
2199/// GNU89 mode.
2200static bool canRedefineFunction(const FunctionDecl *FD,
2201                                const LangOptions& LangOpts) {
2202  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2203          !LangOpts.CPlusPlus &&
2204          FD->isInlineSpecified() &&
2205          FD->getStorageClass() == SC_Extern);
2206}
2207
2208/// Is the given calling convention the ABI default for the given
2209/// declaration?
2210static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2211  CallingConv ABIDefaultCC;
2212  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2213    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2214  } else {
2215    // Free C function or a static method.
2216    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2217  }
2218  return ABIDefaultCC == CC;
2219}
2220
2221template <typename T>
2222static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2223  const DeclContext *DC = Old->getDeclContext();
2224  if (DC->isRecord())
2225    return false;
2226
2227  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2228  if (OldLinkage == CXXLanguageLinkage &&
2229      New->getDeclContext()->isExternCContext())
2230    return true;
2231  if (OldLinkage == CLanguageLinkage &&
2232      New->getDeclContext()->isExternCXXContext())
2233    return true;
2234  return false;
2235}
2236
2237/// MergeFunctionDecl - We just parsed a function 'New' from
2238/// declarator D which has the same name and scope as a previous
2239/// declaration 'Old'.  Figure out how to resolve this situation,
2240/// merging decls or emitting diagnostics as appropriate.
2241///
2242/// In C++, New and Old must be declarations that are not
2243/// overloaded. Use IsOverload to determine whether New and Old are
2244/// overloaded, and to select the Old declaration that New should be
2245/// merged with.
2246///
2247/// Returns true if there was an error, false otherwise.
2248bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2249  // Verify the old decl was also a function.
2250  FunctionDecl *Old = 0;
2251  if (FunctionTemplateDecl *OldFunctionTemplate
2252        = dyn_cast<FunctionTemplateDecl>(OldD))
2253    Old = OldFunctionTemplate->getTemplatedDecl();
2254  else
2255    Old = dyn_cast<FunctionDecl>(OldD);
2256  if (!Old) {
2257    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2258      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2259      Diag(Shadow->getTargetDecl()->getLocation(),
2260           diag::note_using_decl_target);
2261      Diag(Shadow->getUsingDecl()->getLocation(),
2262           diag::note_using_decl) << 0;
2263      return true;
2264    }
2265
2266    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2267      << New->getDeclName();
2268    Diag(OldD->getLocation(), diag::note_previous_definition);
2269    return true;
2270  }
2271
2272  // Determine whether the previous declaration was a definition,
2273  // implicit declaration, or a declaration.
2274  diag::kind PrevDiag;
2275  if (Old->isThisDeclarationADefinition())
2276    PrevDiag = diag::note_previous_definition;
2277  else if (Old->isImplicit())
2278    PrevDiag = diag::note_previous_implicit_declaration;
2279  else
2280    PrevDiag = diag::note_previous_declaration;
2281
2282  QualType OldQType = Context.getCanonicalType(Old->getType());
2283  QualType NewQType = Context.getCanonicalType(New->getType());
2284
2285  // Don't complain about this if we're in GNU89 mode and the old function
2286  // is an extern inline function.
2287  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2288      New->getStorageClass() == SC_Static &&
2289      Old->getStorageClass() != SC_Static &&
2290      !canRedefineFunction(Old, getLangOpts())) {
2291    if (getLangOpts().MicrosoftExt) {
2292      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2293      Diag(Old->getLocation(), PrevDiag);
2294    } else {
2295      Diag(New->getLocation(), diag::err_static_non_static) << New;
2296      Diag(Old->getLocation(), PrevDiag);
2297      return true;
2298    }
2299  }
2300
2301  // If a function is first declared with a calling convention, but is
2302  // later declared or defined without one, the second decl assumes the
2303  // calling convention of the first.
2304  //
2305  // It's OK if a function is first declared without a calling convention,
2306  // but is later declared or defined with the default calling convention.
2307  //
2308  // For the new decl, we have to look at the NON-canonical type to tell the
2309  // difference between a function that really doesn't have a calling
2310  // convention and one that is declared cdecl. That's because in
2311  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2312  // because it is the default calling convention.
2313  //
2314  // Note also that we DO NOT return at this point, because we still have
2315  // other tests to run.
2316  const FunctionType *OldType = cast<FunctionType>(OldQType);
2317  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2318  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2319  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2320  bool RequiresAdjustment = false;
2321  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2322    // Fast path: nothing to do.
2323
2324  // Inherit the CC from the previous declaration if it was specified
2325  // there but not here.
2326  } else if (NewTypeInfo.getCC() == CC_Default) {
2327    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2328    RequiresAdjustment = true;
2329
2330  // Don't complain about mismatches when the default CC is
2331  // effectively the same as the explict one. Only Old decl contains correct
2332  // information about storage class of CXXMethod.
2333  } else if (OldTypeInfo.getCC() == CC_Default &&
2334             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2335    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2336    RequiresAdjustment = true;
2337
2338  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2339                                     NewTypeInfo.getCC())) {
2340    // Calling conventions really aren't compatible, so complain.
2341    Diag(New->getLocation(), diag::err_cconv_change)
2342      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2343      << (OldTypeInfo.getCC() == CC_Default)
2344      << (OldTypeInfo.getCC() == CC_Default ? "" :
2345          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2346    Diag(Old->getLocation(), diag::note_previous_declaration);
2347    return true;
2348  }
2349
2350  // FIXME: diagnose the other way around?
2351  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2352    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2353    RequiresAdjustment = true;
2354  }
2355
2356  // Merge regparm attribute.
2357  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2358      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2359    if (NewTypeInfo.getHasRegParm()) {
2360      Diag(New->getLocation(), diag::err_regparm_mismatch)
2361        << NewType->getRegParmType()
2362        << OldType->getRegParmType();
2363      Diag(Old->getLocation(), diag::note_previous_declaration);
2364      return true;
2365    }
2366
2367    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2368    RequiresAdjustment = true;
2369  }
2370
2371  // Merge ns_returns_retained attribute.
2372  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2373    if (NewTypeInfo.getProducesResult()) {
2374      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2375      Diag(Old->getLocation(), diag::note_previous_declaration);
2376      return true;
2377    }
2378
2379    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2380    RequiresAdjustment = true;
2381  }
2382
2383  if (RequiresAdjustment) {
2384    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2385    New->setType(QualType(NewType, 0));
2386    NewQType = Context.getCanonicalType(New->getType());
2387  }
2388
2389  // If this redeclaration makes the function inline, we may need to add it to
2390  // UndefinedButUsed.
2391  if (!Old->isInlined() && New->isInlined() &&
2392      !New->hasAttr<GNUInlineAttr>() &&
2393      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2394      Old->isUsed(false) &&
2395      !Old->isDefined() && !New->isThisDeclarationADefinition())
2396    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2397                                           SourceLocation()));
2398
2399  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2400  // about it.
2401  if (New->hasAttr<GNUInlineAttr>() &&
2402      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2403    UndefinedButUsed.erase(Old->getCanonicalDecl());
2404  }
2405
2406  if (getLangOpts().CPlusPlus) {
2407    // (C++98 13.1p2):
2408    //   Certain function declarations cannot be overloaded:
2409    //     -- Function declarations that differ only in the return type
2410    //        cannot be overloaded.
2411    QualType OldReturnType = OldType->getResultType();
2412    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2413    QualType ResQT;
2414    if (OldReturnType != NewReturnType) {
2415      if (NewReturnType->isObjCObjectPointerType()
2416          && OldReturnType->isObjCObjectPointerType())
2417        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2418      if (ResQT.isNull()) {
2419        if (New->isCXXClassMember() && New->isOutOfLine())
2420          Diag(New->getLocation(),
2421               diag::err_member_def_does_not_match_ret_type) << New;
2422        else
2423          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2424        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2425        return true;
2426      }
2427      else
2428        NewQType = ResQT;
2429    }
2430
2431    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2432    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2433    if (OldMethod && NewMethod) {
2434      // Preserve triviality.
2435      NewMethod->setTrivial(OldMethod->isTrivial());
2436
2437      // MSVC allows explicit template specialization at class scope:
2438      // 2 CXMethodDecls referring to the same function will be injected.
2439      // We don't want a redeclartion error.
2440      bool IsClassScopeExplicitSpecialization =
2441                              OldMethod->isFunctionTemplateSpecialization() &&
2442                              NewMethod->isFunctionTemplateSpecialization();
2443      bool isFriend = NewMethod->getFriendObjectKind();
2444
2445      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2446          !IsClassScopeExplicitSpecialization) {
2447        //    -- Member function declarations with the same name and the
2448        //       same parameter types cannot be overloaded if any of them
2449        //       is a static member function declaration.
2450        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2451          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2452          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2453          return true;
2454        }
2455
2456        // C++ [class.mem]p1:
2457        //   [...] A member shall not be declared twice in the
2458        //   member-specification, except that a nested class or member
2459        //   class template can be declared and then later defined.
2460        if (ActiveTemplateInstantiations.empty()) {
2461          unsigned NewDiag;
2462          if (isa<CXXConstructorDecl>(OldMethod))
2463            NewDiag = diag::err_constructor_redeclared;
2464          else if (isa<CXXDestructorDecl>(NewMethod))
2465            NewDiag = diag::err_destructor_redeclared;
2466          else if (isa<CXXConversionDecl>(NewMethod))
2467            NewDiag = diag::err_conv_function_redeclared;
2468          else
2469            NewDiag = diag::err_member_redeclared;
2470
2471          Diag(New->getLocation(), NewDiag);
2472        } else {
2473          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2474            << New << New->getType();
2475        }
2476        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2477
2478      // Complain if this is an explicit declaration of a special
2479      // member that was initially declared implicitly.
2480      //
2481      // As an exception, it's okay to befriend such methods in order
2482      // to permit the implicit constructor/destructor/operator calls.
2483      } else if (OldMethod->isImplicit()) {
2484        if (isFriend) {
2485          NewMethod->setImplicit();
2486        } else {
2487          Diag(NewMethod->getLocation(),
2488               diag::err_definition_of_implicitly_declared_member)
2489            << New << getSpecialMember(OldMethod);
2490          return true;
2491        }
2492      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2493        Diag(NewMethod->getLocation(),
2494             diag::err_definition_of_explicitly_defaulted_member)
2495          << getSpecialMember(OldMethod);
2496        return true;
2497      }
2498    }
2499
2500    // C++11 [dcl.attr.noreturn]p1:
2501    //   The first declaration of a function shall specify the noreturn
2502    //   attribute if any declaration of that function specifies the noreturn
2503    //   attribute.
2504    if (New->hasAttr<CXX11NoReturnAttr>() &&
2505        !Old->hasAttr<CXX11NoReturnAttr>()) {
2506      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2507           diag::err_noreturn_missing_on_first_decl);
2508      Diag(Old->getFirstDeclaration()->getLocation(),
2509           diag::note_noreturn_missing_first_decl);
2510    }
2511
2512    // C++11 [dcl.attr.depend]p2:
2513    //   The first declaration of a function shall specify the
2514    //   carries_dependency attribute for its declarator-id if any declaration
2515    //   of the function specifies the carries_dependency attribute.
2516    if (New->hasAttr<CarriesDependencyAttr>() &&
2517        !Old->hasAttr<CarriesDependencyAttr>()) {
2518      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2519           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2520      Diag(Old->getFirstDeclaration()->getLocation(),
2521           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2522    }
2523
2524    // (C++98 8.3.5p3):
2525    //   All declarations for a function shall agree exactly in both the
2526    //   return type and the parameter-type-list.
2527    // We also want to respect all the extended bits except noreturn.
2528
2529    // noreturn should now match unless the old type info didn't have it.
2530    QualType OldQTypeForComparison = OldQType;
2531    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2532      assert(OldQType == QualType(OldType, 0));
2533      const FunctionType *OldTypeForComparison
2534        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2535      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2536      assert(OldQTypeForComparison.isCanonical());
2537    }
2538
2539    if (haveIncompatibleLanguageLinkages(Old, New)) {
2540      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2541      Diag(Old->getLocation(), PrevDiag);
2542      return true;
2543    }
2544
2545    if (OldQTypeForComparison == NewQType)
2546      return MergeCompatibleFunctionDecls(New, Old, S);
2547
2548    // Fall through for conflicting redeclarations and redefinitions.
2549  }
2550
2551  // C: Function types need to be compatible, not identical. This handles
2552  // duplicate function decls like "void f(int); void f(enum X);" properly.
2553  if (!getLangOpts().CPlusPlus &&
2554      Context.typesAreCompatible(OldQType, NewQType)) {
2555    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2556    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2557    const FunctionProtoType *OldProto = 0;
2558    if (isa<FunctionNoProtoType>(NewFuncType) &&
2559        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2560      // The old declaration provided a function prototype, but the
2561      // new declaration does not. Merge in the prototype.
2562      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2563      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2564                                                 OldProto->arg_type_end());
2565      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2566                                         ParamTypes,
2567                                         OldProto->getExtProtoInfo());
2568      New->setType(NewQType);
2569      New->setHasInheritedPrototype();
2570
2571      // Synthesize a parameter for each argument type.
2572      SmallVector<ParmVarDecl*, 16> Params;
2573      for (FunctionProtoType::arg_type_iterator
2574             ParamType = OldProto->arg_type_begin(),
2575             ParamEnd = OldProto->arg_type_end();
2576           ParamType != ParamEnd; ++ParamType) {
2577        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2578                                                 SourceLocation(),
2579                                                 SourceLocation(), 0,
2580                                                 *ParamType, /*TInfo=*/0,
2581                                                 SC_None, SC_None,
2582                                                 0);
2583        Param->setScopeInfo(0, Params.size());
2584        Param->setImplicit();
2585        Params.push_back(Param);
2586      }
2587
2588      New->setParams(Params);
2589    }
2590
2591    return MergeCompatibleFunctionDecls(New, Old, S);
2592  }
2593
2594  // GNU C permits a K&R definition to follow a prototype declaration
2595  // if the declared types of the parameters in the K&R definition
2596  // match the types in the prototype declaration, even when the
2597  // promoted types of the parameters from the K&R definition differ
2598  // from the types in the prototype. GCC then keeps the types from
2599  // the prototype.
2600  //
2601  // If a variadic prototype is followed by a non-variadic K&R definition,
2602  // the K&R definition becomes variadic.  This is sort of an edge case, but
2603  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2604  // C99 6.9.1p8.
2605  if (!getLangOpts().CPlusPlus &&
2606      Old->hasPrototype() && !New->hasPrototype() &&
2607      New->getType()->getAs<FunctionProtoType>() &&
2608      Old->getNumParams() == New->getNumParams()) {
2609    SmallVector<QualType, 16> ArgTypes;
2610    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2611    const FunctionProtoType *OldProto
2612      = Old->getType()->getAs<FunctionProtoType>();
2613    const FunctionProtoType *NewProto
2614      = New->getType()->getAs<FunctionProtoType>();
2615
2616    // Determine whether this is the GNU C extension.
2617    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2618                                               NewProto->getResultType());
2619    bool LooseCompatible = !MergedReturn.isNull();
2620    for (unsigned Idx = 0, End = Old->getNumParams();
2621         LooseCompatible && Idx != End; ++Idx) {
2622      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2623      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2624      if (Context.typesAreCompatible(OldParm->getType(),
2625                                     NewProto->getArgType(Idx))) {
2626        ArgTypes.push_back(NewParm->getType());
2627      } else if (Context.typesAreCompatible(OldParm->getType(),
2628                                            NewParm->getType(),
2629                                            /*CompareUnqualified=*/true)) {
2630        GNUCompatibleParamWarning Warn
2631          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2632        Warnings.push_back(Warn);
2633        ArgTypes.push_back(NewParm->getType());
2634      } else
2635        LooseCompatible = false;
2636    }
2637
2638    if (LooseCompatible) {
2639      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2640        Diag(Warnings[Warn].NewParm->getLocation(),
2641             diag::ext_param_promoted_not_compatible_with_prototype)
2642          << Warnings[Warn].PromotedType
2643          << Warnings[Warn].OldParm->getType();
2644        if (Warnings[Warn].OldParm->getLocation().isValid())
2645          Diag(Warnings[Warn].OldParm->getLocation(),
2646               diag::note_previous_declaration);
2647      }
2648
2649      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2650                                           OldProto->getExtProtoInfo()));
2651      return MergeCompatibleFunctionDecls(New, Old, S);
2652    }
2653
2654    // Fall through to diagnose conflicting types.
2655  }
2656
2657  // A function that has already been declared has been redeclared or defined
2658  // with a different type- show appropriate diagnostic
2659  if (unsigned BuiltinID = Old->getBuiltinID()) {
2660    // The user has declared a builtin function with an incompatible
2661    // signature.
2662    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2663      // The function the user is redeclaring is a library-defined
2664      // function like 'malloc' or 'printf'. Warn about the
2665      // redeclaration, then pretend that we don't know about this
2666      // library built-in.
2667      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2668      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2669        << Old << Old->getType();
2670      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2671      Old->setInvalidDecl();
2672      return false;
2673    }
2674
2675    PrevDiag = diag::note_previous_builtin_declaration;
2676  }
2677
2678  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2679  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2680  return true;
2681}
2682
2683/// \brief Completes the merge of two function declarations that are
2684/// known to be compatible.
2685///
2686/// This routine handles the merging of attributes and other
2687/// properties of function declarations form the old declaration to
2688/// the new declaration, once we know that New is in fact a
2689/// redeclaration of Old.
2690///
2691/// \returns false
2692bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2693                                        Scope *S) {
2694  // Merge the attributes
2695  mergeDeclAttributes(New, Old);
2696
2697  // Merge the storage class.
2698  if (Old->getStorageClass() != SC_Extern &&
2699      Old->getStorageClass() != SC_None)
2700    New->setStorageClass(Old->getStorageClass());
2701
2702  // Merge "pure" flag.
2703  if (Old->isPure())
2704    New->setPure();
2705
2706  // Merge "used" flag.
2707  if (Old->isUsed(false))
2708    New->setUsed();
2709
2710  // Merge attributes from the parameters.  These can mismatch with K&R
2711  // declarations.
2712  if (New->getNumParams() == Old->getNumParams())
2713    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2714      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2715                               *this);
2716
2717  if (getLangOpts().CPlusPlus)
2718    return MergeCXXFunctionDecl(New, Old, S);
2719
2720  // Merge the function types so the we get the composite types for the return
2721  // and argument types.
2722  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2723  if (!Merged.isNull())
2724    New->setType(Merged);
2725
2726  return false;
2727}
2728
2729
2730void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2731                                ObjCMethodDecl *oldMethod) {
2732
2733  // Merge the attributes, including deprecated/unavailable
2734  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2735
2736  // Merge attributes from the parameters.
2737  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2738                                       oe = oldMethod->param_end();
2739  for (ObjCMethodDecl::param_iterator
2740         ni = newMethod->param_begin(), ne = newMethod->param_end();
2741       ni != ne && oi != oe; ++ni, ++oi)
2742    mergeParamDeclAttributes(*ni, *oi, *this);
2743
2744  CheckObjCMethodOverride(newMethod, oldMethod);
2745}
2746
2747/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2748/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2749/// emitting diagnostics as appropriate.
2750///
2751/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2752/// to here in AddInitializerToDecl. We can't check them before the initializer
2753/// is attached.
2754void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2755  if (New->isInvalidDecl() || Old->isInvalidDecl())
2756    return;
2757
2758  QualType MergedT;
2759  if (getLangOpts().CPlusPlus) {
2760    AutoType *AT = New->getType()->getContainedAutoType();
2761    if (AT && !AT->isDeduced()) {
2762      // We don't know what the new type is until the initializer is attached.
2763      return;
2764    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2765      // These could still be something that needs exception specs checked.
2766      return MergeVarDeclExceptionSpecs(New, Old);
2767    }
2768    // C++ [basic.link]p10:
2769    //   [...] the types specified by all declarations referring to a given
2770    //   object or function shall be identical, except that declarations for an
2771    //   array object can specify array types that differ by the presence or
2772    //   absence of a major array bound (8.3.4).
2773    else if (Old->getType()->isIncompleteArrayType() &&
2774             New->getType()->isArrayType()) {
2775      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2776      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2777      if (Context.hasSameType(OldArray->getElementType(),
2778                              NewArray->getElementType()))
2779        MergedT = New->getType();
2780    } else if (Old->getType()->isArrayType() &&
2781             New->getType()->isIncompleteArrayType()) {
2782      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2783      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2784      if (Context.hasSameType(OldArray->getElementType(),
2785                              NewArray->getElementType()))
2786        MergedT = Old->getType();
2787    } else if (New->getType()->isObjCObjectPointerType()
2788               && Old->getType()->isObjCObjectPointerType()) {
2789        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2790                                                        Old->getType());
2791    }
2792  } else {
2793    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2794  }
2795  if (MergedT.isNull()) {
2796    Diag(New->getLocation(), diag::err_redefinition_different_type)
2797      << New->getDeclName() << New->getType() << Old->getType();
2798    Diag(Old->getLocation(), diag::note_previous_definition);
2799    return New->setInvalidDecl();
2800  }
2801  New->setType(MergedT);
2802}
2803
2804/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2805/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2806/// situation, merging decls or emitting diagnostics as appropriate.
2807///
2808/// Tentative definition rules (C99 6.9.2p2) are checked by
2809/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2810/// definitions here, since the initializer hasn't been attached.
2811///
2812void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2813  // If the new decl is already invalid, don't do any other checking.
2814  if (New->isInvalidDecl())
2815    return;
2816
2817  // Verify the old decl was also a variable.
2818  VarDecl *Old = 0;
2819  if (!Previous.isSingleResult() ||
2820      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2821    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2822      << New->getDeclName();
2823    Diag(Previous.getRepresentativeDecl()->getLocation(),
2824         diag::note_previous_definition);
2825    return New->setInvalidDecl();
2826  }
2827
2828  // C++ [class.mem]p1:
2829  //   A member shall not be declared twice in the member-specification [...]
2830  //
2831  // Here, we need only consider static data members.
2832  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2833    Diag(New->getLocation(), diag::err_duplicate_member)
2834      << New->getIdentifier();
2835    Diag(Old->getLocation(), diag::note_previous_declaration);
2836    New->setInvalidDecl();
2837  }
2838
2839  mergeDeclAttributes(New, Old);
2840  // Warn if an already-declared variable is made a weak_import in a subsequent
2841  // declaration
2842  if (New->getAttr<WeakImportAttr>() &&
2843      Old->getStorageClass() == SC_None &&
2844      !Old->getAttr<WeakImportAttr>()) {
2845    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2846    Diag(Old->getLocation(), diag::note_previous_definition);
2847    // Remove weak_import attribute on new declaration.
2848    New->dropAttr<WeakImportAttr>();
2849  }
2850
2851  // Merge the types.
2852  MergeVarDeclTypes(New, Old);
2853  if (New->isInvalidDecl())
2854    return;
2855
2856  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2857  if (New->getStorageClass() == SC_Static &&
2858      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2859    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2860    Diag(Old->getLocation(), diag::note_previous_definition);
2861    return New->setInvalidDecl();
2862  }
2863  // C99 6.2.2p4:
2864  //   For an identifier declared with the storage-class specifier
2865  //   extern in a scope in which a prior declaration of that
2866  //   identifier is visible,23) if the prior declaration specifies
2867  //   internal or external linkage, the linkage of the identifier at
2868  //   the later declaration is the same as the linkage specified at
2869  //   the prior declaration. If no prior declaration is visible, or
2870  //   if the prior declaration specifies no linkage, then the
2871  //   identifier has external linkage.
2872  if (New->hasExternalStorage() && Old->hasLinkage())
2873    /* Okay */;
2874  else if (New->getStorageClass() != SC_Static &&
2875           Old->getStorageClass() == SC_Static) {
2876    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2877    Diag(Old->getLocation(), diag::note_previous_definition);
2878    return New->setInvalidDecl();
2879  }
2880
2881  // Check if extern is followed by non-extern and vice-versa.
2882  if (New->hasExternalStorage() &&
2883      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2884    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2885    Diag(Old->getLocation(), diag::note_previous_definition);
2886    return New->setInvalidDecl();
2887  }
2888  if (Old->hasExternalStorage() &&
2889      !New->hasLinkage() && New->isLocalVarDecl()) {
2890    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2891    Diag(Old->getLocation(), diag::note_previous_definition);
2892    return New->setInvalidDecl();
2893  }
2894
2895  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2896
2897  // FIXME: The test for external storage here seems wrong? We still
2898  // need to check for mismatches.
2899  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2900      // Don't complain about out-of-line definitions of static members.
2901      !(Old->getLexicalDeclContext()->isRecord() &&
2902        !New->getLexicalDeclContext()->isRecord())) {
2903    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2904    Diag(Old->getLocation(), diag::note_previous_definition);
2905    return New->setInvalidDecl();
2906  }
2907
2908  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2909    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2910    Diag(Old->getLocation(), diag::note_previous_definition);
2911  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2912    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914  }
2915
2916  // C++ doesn't have tentative definitions, so go right ahead and check here.
2917  const VarDecl *Def;
2918  if (getLangOpts().CPlusPlus &&
2919      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2920      (Def = Old->getDefinition())) {
2921    Diag(New->getLocation(), diag::err_redefinition)
2922      << New->getDeclName();
2923    Diag(Def->getLocation(), diag::note_previous_definition);
2924    New->setInvalidDecl();
2925    return;
2926  }
2927
2928  if (haveIncompatibleLanguageLinkages(Old, New)) {
2929    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2930    Diag(Old->getLocation(), diag::note_previous_definition);
2931    New->setInvalidDecl();
2932    return;
2933  }
2934
2935  // c99 6.2.2 P4.
2936  // For an identifier declared with the storage-class specifier extern in a
2937  // scope in which a prior declaration of that identifier is visible, if
2938  // the prior declaration specifies internal or external linkage, the linkage
2939  // of the identifier at the later declaration is the same as the linkage
2940  // specified at the prior declaration.
2941  // FIXME. revisit this code.
2942  if (New->hasExternalStorage() &&
2943      Old->getLinkage() == InternalLinkage)
2944    New->setStorageClass(Old->getStorageClass());
2945
2946  // Merge "used" flag.
2947  if (Old->isUsed(false))
2948    New->setUsed();
2949
2950  // Keep a chain of previous declarations.
2951  New->setPreviousDeclaration(Old);
2952
2953  // Inherit access appropriately.
2954  New->setAccess(Old->getAccess());
2955}
2956
2957/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2958/// no declarator (e.g. "struct foo;") is parsed.
2959Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2960                                       DeclSpec &DS) {
2961  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2962}
2963
2964/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2965/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2966/// parameters to cope with template friend declarations.
2967Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2968                                       DeclSpec &DS,
2969                                       MultiTemplateParamsArg TemplateParams) {
2970  Decl *TagD = 0;
2971  TagDecl *Tag = 0;
2972  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2973      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2974      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2975      DS.getTypeSpecType() == DeclSpec::TST_union ||
2976      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2977    TagD = DS.getRepAsDecl();
2978
2979    if (!TagD) // We probably had an error
2980      return 0;
2981
2982    // Note that the above type specs guarantee that the
2983    // type rep is a Decl, whereas in many of the others
2984    // it's a Type.
2985    if (isa<TagDecl>(TagD))
2986      Tag = cast<TagDecl>(TagD);
2987    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2988      Tag = CTD->getTemplatedDecl();
2989  }
2990
2991  if (Tag) {
2992    getASTContext().addUnnamedTag(Tag);
2993    Tag->setFreeStanding();
2994    if (Tag->isInvalidDecl())
2995      return Tag;
2996  }
2997
2998  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2999    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3000    // or incomplete types shall not be restrict-qualified."
3001    if (TypeQuals & DeclSpec::TQ_restrict)
3002      Diag(DS.getRestrictSpecLoc(),
3003           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3004           << DS.getSourceRange();
3005  }
3006
3007  if (DS.isConstexprSpecified()) {
3008    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3009    // and definitions of functions and variables.
3010    if (Tag)
3011      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3012        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3013            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3014            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3015            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3016    else
3017      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3018    // Don't emit warnings after this error.
3019    return TagD;
3020  }
3021
3022  if (DS.isFriendSpecified()) {
3023    // If we're dealing with a decl but not a TagDecl, assume that
3024    // whatever routines created it handled the friendship aspect.
3025    if (TagD && !Tag)
3026      return 0;
3027    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3028  }
3029
3030  // Track whether we warned about the fact that there aren't any
3031  // declarators.
3032  bool emittedWarning = false;
3033
3034  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3035    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3036        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3037      if (getLangOpts().CPlusPlus ||
3038          Record->getDeclContext()->isRecord())
3039        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3040
3041      Diag(DS.getLocStart(), diag::ext_no_declarators)
3042        << DS.getSourceRange();
3043      emittedWarning = true;
3044    }
3045  }
3046
3047  // Check for Microsoft C extension: anonymous struct.
3048  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3049      CurContext->isRecord() &&
3050      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3051    // Handle 2 kinds of anonymous struct:
3052    //   struct STRUCT;
3053    // and
3054    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3055    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3056    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3057        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3058         DS.getRepAsType().get()->isStructureType())) {
3059      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3060        << DS.getSourceRange();
3061      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3062    }
3063  }
3064
3065  if (getLangOpts().CPlusPlus &&
3066      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3067    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3068      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3069          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
3070        Diag(Enum->getLocation(), diag::ext_no_declarators)
3071          << DS.getSourceRange();
3072        emittedWarning = true;
3073      }
3074
3075  // Skip all the checks below if we have a type error.
3076  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
3077
3078  if (!DS.isMissingDeclaratorOk()) {
3079    // Warn about typedefs of enums without names, since this is an
3080    // extension in both Microsoft and GNU.
3081    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
3082        Tag && isa<EnumDecl>(Tag)) {
3083      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3084        << DS.getSourceRange();
3085      return Tag;
3086    }
3087
3088    Diag(DS.getLocStart(), diag::ext_no_declarators)
3089      << DS.getSourceRange();
3090    emittedWarning = true;
3091  }
3092
3093  // We're going to complain about a bunch of spurious specifiers;
3094  // only do this if we're declaring a tag, because otherwise we
3095  // should be getting diag::ext_no_declarators.
3096  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
3097    return TagD;
3098
3099  // Note that a linkage-specification sets a storage class, but
3100  // 'extern "C" struct foo;' is actually valid and not theoretically
3101  // useless.
3102  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
3103    if (!DS.isExternInLinkageSpec())
3104      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
3105        << DeclSpec::getSpecifierName(scs);
3106
3107  if (DS.isThreadSpecified())
3108    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
3109  if (DS.getTypeQualifiers()) {
3110    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3111      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
3112    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3113      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
3114    // Restrict is covered above.
3115  }
3116  if (DS.isInlineSpecified())
3117    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
3118  if (DS.isVirtualSpecified())
3119    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
3120  if (DS.isExplicitSpecified())
3121    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
3122
3123  if (DS.isModulePrivateSpecified() &&
3124      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3125    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3126      << Tag->getTagKind()
3127      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3128
3129  // Warn about ignored type attributes, for example:
3130  // __attribute__((aligned)) struct A;
3131  // Attributes should be placed after tag to apply to type declaration.
3132  if (!DS.getAttributes().empty()) {
3133    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3134    if (TypeSpecType == DeclSpec::TST_class ||
3135        TypeSpecType == DeclSpec::TST_struct ||
3136        TypeSpecType == DeclSpec::TST_interface ||
3137        TypeSpecType == DeclSpec::TST_union ||
3138        TypeSpecType == DeclSpec::TST_enum) {
3139      AttributeList* attrs = DS.getAttributes().getList();
3140      while (attrs) {
3141        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3142        << attrs->getName()
3143        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3144            TypeSpecType == DeclSpec::TST_struct ? 1 :
3145            TypeSpecType == DeclSpec::TST_union ? 2 :
3146            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3147        attrs = attrs->getNext();
3148      }
3149    }
3150  }
3151
3152  ActOnDocumentableDecl(TagD);
3153
3154  return TagD;
3155}
3156
3157/// We are trying to inject an anonymous member into the given scope;
3158/// check if there's an existing declaration that can't be overloaded.
3159///
3160/// \return true if this is a forbidden redeclaration
3161static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3162                                         Scope *S,
3163                                         DeclContext *Owner,
3164                                         DeclarationName Name,
3165                                         SourceLocation NameLoc,
3166                                         unsigned diagnostic) {
3167  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3168                 Sema::ForRedeclaration);
3169  if (!SemaRef.LookupName(R, S)) return false;
3170
3171  if (R.getAsSingle<TagDecl>())
3172    return false;
3173
3174  // Pick a representative declaration.
3175  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3176  assert(PrevDecl && "Expected a non-null Decl");
3177
3178  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3179    return false;
3180
3181  SemaRef.Diag(NameLoc, diagnostic) << Name;
3182  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3183
3184  return true;
3185}
3186
3187/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3188/// anonymous struct or union AnonRecord into the owning context Owner
3189/// and scope S. This routine will be invoked just after we realize
3190/// that an unnamed union or struct is actually an anonymous union or
3191/// struct, e.g.,
3192///
3193/// @code
3194/// union {
3195///   int i;
3196///   float f;
3197/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3198///    // f into the surrounding scope.x
3199/// @endcode
3200///
3201/// This routine is recursive, injecting the names of nested anonymous
3202/// structs/unions into the owning context and scope as well.
3203static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3204                                                DeclContext *Owner,
3205                                                RecordDecl *AnonRecord,
3206                                                AccessSpecifier AS,
3207                              SmallVector<NamedDecl*, 2> &Chaining,
3208                                                      bool MSAnonStruct) {
3209  unsigned diagKind
3210    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3211                            : diag::err_anonymous_struct_member_redecl;
3212
3213  bool Invalid = false;
3214
3215  // Look every FieldDecl and IndirectFieldDecl with a name.
3216  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3217                               DEnd = AnonRecord->decls_end();
3218       D != DEnd; ++D) {
3219    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3220        cast<NamedDecl>(*D)->getDeclName()) {
3221      ValueDecl *VD = cast<ValueDecl>(*D);
3222      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3223                                       VD->getLocation(), diagKind)) {
3224        // C++ [class.union]p2:
3225        //   The names of the members of an anonymous union shall be
3226        //   distinct from the names of any other entity in the
3227        //   scope in which the anonymous union is declared.
3228        Invalid = true;
3229      } else {
3230        // C++ [class.union]p2:
3231        //   For the purpose of name lookup, after the anonymous union
3232        //   definition, the members of the anonymous union are
3233        //   considered to have been defined in the scope in which the
3234        //   anonymous union is declared.
3235        unsigned OldChainingSize = Chaining.size();
3236        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3237          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3238               PE = IF->chain_end(); PI != PE; ++PI)
3239            Chaining.push_back(*PI);
3240        else
3241          Chaining.push_back(VD);
3242
3243        assert(Chaining.size() >= 2);
3244        NamedDecl **NamedChain =
3245          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3246        for (unsigned i = 0; i < Chaining.size(); i++)
3247          NamedChain[i] = Chaining[i];
3248
3249        IndirectFieldDecl* IndirectField =
3250          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3251                                    VD->getIdentifier(), VD->getType(),
3252                                    NamedChain, Chaining.size());
3253
3254        IndirectField->setAccess(AS);
3255        IndirectField->setImplicit();
3256        SemaRef.PushOnScopeChains(IndirectField, S);
3257
3258        // That includes picking up the appropriate access specifier.
3259        if (AS != AS_none) IndirectField->setAccess(AS);
3260
3261        Chaining.resize(OldChainingSize);
3262      }
3263    }
3264  }
3265
3266  return Invalid;
3267}
3268
3269/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3270/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3271/// illegal input values are mapped to SC_None.
3272static StorageClass
3273StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3274  switch (StorageClassSpec) {
3275  case DeclSpec::SCS_unspecified:    return SC_None;
3276  case DeclSpec::SCS_extern:         return SC_Extern;
3277  case DeclSpec::SCS_static:         return SC_Static;
3278  case DeclSpec::SCS_auto:           return SC_Auto;
3279  case DeclSpec::SCS_register:       return SC_Register;
3280  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3281    // Illegal SCSs map to None: error reporting is up to the caller.
3282  case DeclSpec::SCS_mutable:        // Fall through.
3283  case DeclSpec::SCS_typedef:        return SC_None;
3284  }
3285  llvm_unreachable("unknown storage class specifier");
3286}
3287
3288/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3289/// a StorageClass. Any error reporting is up to the caller:
3290/// illegal input values are mapped to SC_None.
3291static StorageClass
3292StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3293  switch (StorageClassSpec) {
3294  case DeclSpec::SCS_unspecified:    return SC_None;
3295  case DeclSpec::SCS_extern:         return SC_Extern;
3296  case DeclSpec::SCS_static:         return SC_Static;
3297  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3298    // Illegal SCSs map to None: error reporting is up to the caller.
3299  case DeclSpec::SCS_auto:           // Fall through.
3300  case DeclSpec::SCS_mutable:        // Fall through.
3301  case DeclSpec::SCS_register:       // Fall through.
3302  case DeclSpec::SCS_typedef:        return SC_None;
3303  }
3304  llvm_unreachable("unknown storage class specifier");
3305}
3306
3307/// BuildAnonymousStructOrUnion - Handle the declaration of an
3308/// anonymous structure or union. Anonymous unions are a C++ feature
3309/// (C++ [class.union]) and a C11 feature; anonymous structures
3310/// are a C11 feature and GNU C++ extension.
3311Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3312                                             AccessSpecifier AS,
3313                                             RecordDecl *Record) {
3314  DeclContext *Owner = Record->getDeclContext();
3315
3316  // Diagnose whether this anonymous struct/union is an extension.
3317  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3318    Diag(Record->getLocation(), diag::ext_anonymous_union);
3319  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3320    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3321  else if (!Record->isUnion() && !getLangOpts().C11)
3322    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3323
3324  // C and C++ require different kinds of checks for anonymous
3325  // structs/unions.
3326  bool Invalid = false;
3327  if (getLangOpts().CPlusPlus) {
3328    const char* PrevSpec = 0;
3329    unsigned DiagID;
3330    if (Record->isUnion()) {
3331      // C++ [class.union]p6:
3332      //   Anonymous unions declared in a named namespace or in the
3333      //   global namespace shall be declared static.
3334      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3335          (isa<TranslationUnitDecl>(Owner) ||
3336           (isa<NamespaceDecl>(Owner) &&
3337            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3338        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3339          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3340
3341        // Recover by adding 'static'.
3342        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3343                               PrevSpec, DiagID);
3344      }
3345      // C++ [class.union]p6:
3346      //   A storage class is not allowed in a declaration of an
3347      //   anonymous union in a class scope.
3348      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3349               isa<RecordDecl>(Owner)) {
3350        Diag(DS.getStorageClassSpecLoc(),
3351             diag::err_anonymous_union_with_storage_spec)
3352          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3353
3354        // Recover by removing the storage specifier.
3355        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3356                               SourceLocation(),
3357                               PrevSpec, DiagID);
3358      }
3359    }
3360
3361    // Ignore const/volatile/restrict qualifiers.
3362    if (DS.getTypeQualifiers()) {
3363      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3364        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3365          << Record->isUnion() << 0
3366          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3367      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3368        Diag(DS.getVolatileSpecLoc(),
3369             diag::ext_anonymous_struct_union_qualified)
3370          << Record->isUnion() << 1
3371          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3372      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3373        Diag(DS.getRestrictSpecLoc(),
3374             diag::ext_anonymous_struct_union_qualified)
3375          << Record->isUnion() << 2
3376          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3377
3378      DS.ClearTypeQualifiers();
3379    }
3380
3381    // C++ [class.union]p2:
3382    //   The member-specification of an anonymous union shall only
3383    //   define non-static data members. [Note: nested types and
3384    //   functions cannot be declared within an anonymous union. ]
3385    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3386                                 MemEnd = Record->decls_end();
3387         Mem != MemEnd; ++Mem) {
3388      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3389        // C++ [class.union]p3:
3390        //   An anonymous union shall not have private or protected
3391        //   members (clause 11).
3392        assert(FD->getAccess() != AS_none);
3393        if (FD->getAccess() != AS_public) {
3394          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3395            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3396          Invalid = true;
3397        }
3398
3399        // C++ [class.union]p1
3400        //   An object of a class with a non-trivial constructor, a non-trivial
3401        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3402        //   assignment operator cannot be a member of a union, nor can an
3403        //   array of such objects.
3404        if (CheckNontrivialField(FD))
3405          Invalid = true;
3406      } else if ((*Mem)->isImplicit()) {
3407        // Any implicit members are fine.
3408      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3409        // This is a type that showed up in an
3410        // elaborated-type-specifier inside the anonymous struct or
3411        // union, but which actually declares a type outside of the
3412        // anonymous struct or union. It's okay.
3413      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3414        if (!MemRecord->isAnonymousStructOrUnion() &&
3415            MemRecord->getDeclName()) {
3416          // Visual C++ allows type definition in anonymous struct or union.
3417          if (getLangOpts().MicrosoftExt)
3418            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3419              << (int)Record->isUnion();
3420          else {
3421            // This is a nested type declaration.
3422            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3423              << (int)Record->isUnion();
3424            Invalid = true;
3425          }
3426        } else {
3427          // This is an anonymous type definition within another anonymous type.
3428          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3429          // not part of standard C++.
3430          Diag(MemRecord->getLocation(),
3431               diag::ext_anonymous_record_with_anonymous_type)
3432            << (int)Record->isUnion();
3433        }
3434      } else if (isa<AccessSpecDecl>(*Mem)) {
3435        // Any access specifier is fine.
3436      } else {
3437        // We have something that isn't a non-static data
3438        // member. Complain about it.
3439        unsigned DK = diag::err_anonymous_record_bad_member;
3440        if (isa<TypeDecl>(*Mem))
3441          DK = diag::err_anonymous_record_with_type;
3442        else if (isa<FunctionDecl>(*Mem))
3443          DK = diag::err_anonymous_record_with_function;
3444        else if (isa<VarDecl>(*Mem))
3445          DK = diag::err_anonymous_record_with_static;
3446
3447        // Visual C++ allows type definition in anonymous struct or union.
3448        if (getLangOpts().MicrosoftExt &&
3449            DK == diag::err_anonymous_record_with_type)
3450          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3451            << (int)Record->isUnion();
3452        else {
3453          Diag((*Mem)->getLocation(), DK)
3454              << (int)Record->isUnion();
3455          Invalid = true;
3456        }
3457      }
3458    }
3459  }
3460
3461  if (!Record->isUnion() && !Owner->isRecord()) {
3462    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3463      << (int)getLangOpts().CPlusPlus;
3464    Invalid = true;
3465  }
3466
3467  // Mock up a declarator.
3468  Declarator Dc(DS, Declarator::MemberContext);
3469  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3470  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3471
3472  // Create a declaration for this anonymous struct/union.
3473  NamedDecl *Anon = 0;
3474  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3475    Anon = FieldDecl::Create(Context, OwningClass,
3476                             DS.getLocStart(),
3477                             Record->getLocation(),
3478                             /*IdentifierInfo=*/0,
3479                             Context.getTypeDeclType(Record),
3480                             TInfo,
3481                             /*BitWidth=*/0, /*Mutable=*/false,
3482                             /*InitStyle=*/ICIS_NoInit);
3483    Anon->setAccess(AS);
3484    if (getLangOpts().CPlusPlus)
3485      FieldCollector->Add(cast<FieldDecl>(Anon));
3486  } else {
3487    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3488    assert(SCSpec != DeclSpec::SCS_typedef &&
3489           "Parser allowed 'typedef' as storage class VarDecl.");
3490    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3491    if (SCSpec == DeclSpec::SCS_mutable) {
3492      // mutable can only appear on non-static class members, so it's always
3493      // an error here
3494      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3495      Invalid = true;
3496      SC = SC_None;
3497    }
3498    SCSpec = DS.getStorageClassSpecAsWritten();
3499    VarDecl::StorageClass SCAsWritten
3500      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3501
3502    Anon = VarDecl::Create(Context, Owner,
3503                           DS.getLocStart(),
3504                           Record->getLocation(), /*IdentifierInfo=*/0,
3505                           Context.getTypeDeclType(Record),
3506                           TInfo, SC, SCAsWritten);
3507
3508    // Default-initialize the implicit variable. This initialization will be
3509    // trivial in almost all cases, except if a union member has an in-class
3510    // initializer:
3511    //   union { int n = 0; };
3512    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3513  }
3514  Anon->setImplicit();
3515
3516  // Add the anonymous struct/union object to the current
3517  // context. We'll be referencing this object when we refer to one of
3518  // its members.
3519  Owner->addDecl(Anon);
3520
3521  // Inject the members of the anonymous struct/union into the owning
3522  // context and into the identifier resolver chain for name lookup
3523  // purposes.
3524  SmallVector<NamedDecl*, 2> Chain;
3525  Chain.push_back(Anon);
3526
3527  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3528                                          Chain, false))
3529    Invalid = true;
3530
3531  // Mark this as an anonymous struct/union type. Note that we do not
3532  // do this until after we have already checked and injected the
3533  // members of this anonymous struct/union type, because otherwise
3534  // the members could be injected twice: once by DeclContext when it
3535  // builds its lookup table, and once by
3536  // InjectAnonymousStructOrUnionMembers.
3537  Record->setAnonymousStructOrUnion(true);
3538
3539  if (Invalid)
3540    Anon->setInvalidDecl();
3541
3542  return Anon;
3543}
3544
3545/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3546/// Microsoft C anonymous structure.
3547/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3548/// Example:
3549///
3550/// struct A { int a; };
3551/// struct B { struct A; int b; };
3552///
3553/// void foo() {
3554///   B var;
3555///   var.a = 3;
3556/// }
3557///
3558Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3559                                           RecordDecl *Record) {
3560
3561  // If there is no Record, get the record via the typedef.
3562  if (!Record)
3563    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3564
3565  // Mock up a declarator.
3566  Declarator Dc(DS, Declarator::TypeNameContext);
3567  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3568  assert(TInfo && "couldn't build declarator info for anonymous struct");
3569
3570  // Create a declaration for this anonymous struct.
3571  NamedDecl* Anon = FieldDecl::Create(Context,
3572                             cast<RecordDecl>(CurContext),
3573                             DS.getLocStart(),
3574                             DS.getLocStart(),
3575                             /*IdentifierInfo=*/0,
3576                             Context.getTypeDeclType(Record),
3577                             TInfo,
3578                             /*BitWidth=*/0, /*Mutable=*/false,
3579                             /*InitStyle=*/ICIS_NoInit);
3580  Anon->setImplicit();
3581
3582  // Add the anonymous struct object to the current context.
3583  CurContext->addDecl(Anon);
3584
3585  // Inject the members of the anonymous struct into the current
3586  // context and into the identifier resolver chain for name lookup
3587  // purposes.
3588  SmallVector<NamedDecl*, 2> Chain;
3589  Chain.push_back(Anon);
3590
3591  RecordDecl *RecordDef = Record->getDefinition();
3592  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3593                                                        RecordDef, AS_none,
3594                                                        Chain, true))
3595    Anon->setInvalidDecl();
3596
3597  return Anon;
3598}
3599
3600/// GetNameForDeclarator - Determine the full declaration name for the
3601/// given Declarator.
3602DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3603  return GetNameFromUnqualifiedId(D.getName());
3604}
3605
3606/// \brief Retrieves the declaration name from a parsed unqualified-id.
3607DeclarationNameInfo
3608Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3609  DeclarationNameInfo NameInfo;
3610  NameInfo.setLoc(Name.StartLocation);
3611
3612  switch (Name.getKind()) {
3613
3614  case UnqualifiedId::IK_ImplicitSelfParam:
3615  case UnqualifiedId::IK_Identifier:
3616    NameInfo.setName(Name.Identifier);
3617    NameInfo.setLoc(Name.StartLocation);
3618    return NameInfo;
3619
3620  case UnqualifiedId::IK_OperatorFunctionId:
3621    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3622                                           Name.OperatorFunctionId.Operator));
3623    NameInfo.setLoc(Name.StartLocation);
3624    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3625      = Name.OperatorFunctionId.SymbolLocations[0];
3626    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3627      = Name.EndLocation.getRawEncoding();
3628    return NameInfo;
3629
3630  case UnqualifiedId::IK_LiteralOperatorId:
3631    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3632                                                           Name.Identifier));
3633    NameInfo.setLoc(Name.StartLocation);
3634    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3635    return NameInfo;
3636
3637  case UnqualifiedId::IK_ConversionFunctionId: {
3638    TypeSourceInfo *TInfo;
3639    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3640    if (Ty.isNull())
3641      return DeclarationNameInfo();
3642    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3643                                               Context.getCanonicalType(Ty)));
3644    NameInfo.setLoc(Name.StartLocation);
3645    NameInfo.setNamedTypeInfo(TInfo);
3646    return NameInfo;
3647  }
3648
3649  case UnqualifiedId::IK_ConstructorName: {
3650    TypeSourceInfo *TInfo;
3651    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3652    if (Ty.isNull())
3653      return DeclarationNameInfo();
3654    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3655                                              Context.getCanonicalType(Ty)));
3656    NameInfo.setLoc(Name.StartLocation);
3657    NameInfo.setNamedTypeInfo(TInfo);
3658    return NameInfo;
3659  }
3660
3661  case UnqualifiedId::IK_ConstructorTemplateId: {
3662    // In well-formed code, we can only have a constructor
3663    // template-id that refers to the current context, so go there
3664    // to find the actual type being constructed.
3665    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3666    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3667      return DeclarationNameInfo();
3668
3669    // Determine the type of the class being constructed.
3670    QualType CurClassType = Context.getTypeDeclType(CurClass);
3671
3672    // FIXME: Check two things: that the template-id names the same type as
3673    // CurClassType, and that the template-id does not occur when the name
3674    // was qualified.
3675
3676    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3677                                    Context.getCanonicalType(CurClassType)));
3678    NameInfo.setLoc(Name.StartLocation);
3679    // FIXME: should we retrieve TypeSourceInfo?
3680    NameInfo.setNamedTypeInfo(0);
3681    return NameInfo;
3682  }
3683
3684  case UnqualifiedId::IK_DestructorName: {
3685    TypeSourceInfo *TInfo;
3686    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3687    if (Ty.isNull())
3688      return DeclarationNameInfo();
3689    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3690                                              Context.getCanonicalType(Ty)));
3691    NameInfo.setLoc(Name.StartLocation);
3692    NameInfo.setNamedTypeInfo(TInfo);
3693    return NameInfo;
3694  }
3695
3696  case UnqualifiedId::IK_TemplateId: {
3697    TemplateName TName = Name.TemplateId->Template.get();
3698    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3699    return Context.getNameForTemplate(TName, TNameLoc);
3700  }
3701
3702  } // switch (Name.getKind())
3703
3704  llvm_unreachable("Unknown name kind");
3705}
3706
3707static QualType getCoreType(QualType Ty) {
3708  do {
3709    if (Ty->isPointerType() || Ty->isReferenceType())
3710      Ty = Ty->getPointeeType();
3711    else if (Ty->isArrayType())
3712      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3713    else
3714      return Ty.withoutLocalFastQualifiers();
3715  } while (true);
3716}
3717
3718/// hasSimilarParameters - Determine whether the C++ functions Declaration
3719/// and Definition have "nearly" matching parameters. This heuristic is
3720/// used to improve diagnostics in the case where an out-of-line function
3721/// definition doesn't match any declaration within the class or namespace.
3722/// Also sets Params to the list of indices to the parameters that differ
3723/// between the declaration and the definition. If hasSimilarParameters
3724/// returns true and Params is empty, then all of the parameters match.
3725static bool hasSimilarParameters(ASTContext &Context,
3726                                     FunctionDecl *Declaration,
3727                                     FunctionDecl *Definition,
3728                                     SmallVectorImpl<unsigned> &Params) {
3729  Params.clear();
3730  if (Declaration->param_size() != Definition->param_size())
3731    return false;
3732  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3733    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3734    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3735
3736    // The parameter types are identical
3737    if (Context.hasSameType(DefParamTy, DeclParamTy))
3738      continue;
3739
3740    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3741    QualType DefParamBaseTy = getCoreType(DefParamTy);
3742    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3743    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3744
3745    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3746        (DeclTyName && DeclTyName == DefTyName))
3747      Params.push_back(Idx);
3748    else  // The two parameters aren't even close
3749      return false;
3750  }
3751
3752  return true;
3753}
3754
3755/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3756/// declarator needs to be rebuilt in the current instantiation.
3757/// Any bits of declarator which appear before the name are valid for
3758/// consideration here.  That's specifically the type in the decl spec
3759/// and the base type in any member-pointer chunks.
3760static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3761                                                    DeclarationName Name) {
3762  // The types we specifically need to rebuild are:
3763  //   - typenames, typeofs, and decltypes
3764  //   - types which will become injected class names
3765  // Of course, we also need to rebuild any type referencing such a
3766  // type.  It's safest to just say "dependent", but we call out a
3767  // few cases here.
3768
3769  DeclSpec &DS = D.getMutableDeclSpec();
3770  switch (DS.getTypeSpecType()) {
3771  case DeclSpec::TST_typename:
3772  case DeclSpec::TST_typeofType:
3773  case DeclSpec::TST_underlyingType:
3774  case DeclSpec::TST_atomic: {
3775    // Grab the type from the parser.
3776    TypeSourceInfo *TSI = 0;
3777    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3778    if (T.isNull() || !T->isDependentType()) break;
3779
3780    // Make sure there's a type source info.  This isn't really much
3781    // of a waste; most dependent types should have type source info
3782    // attached already.
3783    if (!TSI)
3784      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3785
3786    // Rebuild the type in the current instantiation.
3787    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3788    if (!TSI) return true;
3789
3790    // Store the new type back in the decl spec.
3791    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3792    DS.UpdateTypeRep(LocType);
3793    break;
3794  }
3795
3796  case DeclSpec::TST_decltype:
3797  case DeclSpec::TST_typeofExpr: {
3798    Expr *E = DS.getRepAsExpr();
3799    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3800    if (Result.isInvalid()) return true;
3801    DS.UpdateExprRep(Result.get());
3802    break;
3803  }
3804
3805  default:
3806    // Nothing to do for these decl specs.
3807    break;
3808  }
3809
3810  // It doesn't matter what order we do this in.
3811  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3812    DeclaratorChunk &Chunk = D.getTypeObject(I);
3813
3814    // The only type information in the declarator which can come
3815    // before the declaration name is the base type of a member
3816    // pointer.
3817    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3818      continue;
3819
3820    // Rebuild the scope specifier in-place.
3821    CXXScopeSpec &SS = Chunk.Mem.Scope();
3822    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3823      return true;
3824  }
3825
3826  return false;
3827}
3828
3829Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3830  D.setFunctionDefinitionKind(FDK_Declaration);
3831  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3832
3833  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3834      Dcl && Dcl->getDeclContext()->isFileContext())
3835    Dcl->setTopLevelDeclInObjCContainer();
3836
3837  return Dcl;
3838}
3839
3840/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3841///   If T is the name of a class, then each of the following shall have a
3842///   name different from T:
3843///     - every static data member of class T;
3844///     - every member function of class T
3845///     - every member of class T that is itself a type;
3846/// \returns true if the declaration name violates these rules.
3847bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3848                                   DeclarationNameInfo NameInfo) {
3849  DeclarationName Name = NameInfo.getName();
3850
3851  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3852    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3853      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3854      return true;
3855    }
3856
3857  return false;
3858}
3859
3860/// \brief Diagnose a declaration whose declarator-id has the given
3861/// nested-name-specifier.
3862///
3863/// \param SS The nested-name-specifier of the declarator-id.
3864///
3865/// \param DC The declaration context to which the nested-name-specifier
3866/// resolves.
3867///
3868/// \param Name The name of the entity being declared.
3869///
3870/// \param Loc The location of the name of the entity being declared.
3871///
3872/// \returns true if we cannot safely recover from this error, false otherwise.
3873bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3874                                        DeclarationName Name,
3875                                      SourceLocation Loc) {
3876  DeclContext *Cur = CurContext;
3877  while (isa<LinkageSpecDecl>(Cur))
3878    Cur = Cur->getParent();
3879
3880  // C++ [dcl.meaning]p1:
3881  //   A declarator-id shall not be qualified except for the definition
3882  //   of a member function (9.3) or static data member (9.4) outside of
3883  //   its class, the definition or explicit instantiation of a function
3884  //   or variable member of a namespace outside of its namespace, or the
3885  //   definition of an explicit specialization outside of its namespace,
3886  //   or the declaration of a friend function that is a member of
3887  //   another class or namespace (11.3). [...]
3888
3889  // The user provided a superfluous scope specifier that refers back to the
3890  // class or namespaces in which the entity is already declared.
3891  //
3892  // class X {
3893  //   void X::f();
3894  // };
3895  if (Cur->Equals(DC)) {
3896    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3897                                   : diag::err_member_extra_qualification)
3898      << Name << FixItHint::CreateRemoval(SS.getRange());
3899    SS.clear();
3900    return false;
3901  }
3902
3903  // Check whether the qualifying scope encloses the scope of the original
3904  // declaration.
3905  if (!Cur->Encloses(DC)) {
3906    if (Cur->isRecord())
3907      Diag(Loc, diag::err_member_qualification)
3908        << Name << SS.getRange();
3909    else if (isa<TranslationUnitDecl>(DC))
3910      Diag(Loc, diag::err_invalid_declarator_global_scope)
3911        << Name << SS.getRange();
3912    else if (isa<FunctionDecl>(Cur))
3913      Diag(Loc, diag::err_invalid_declarator_in_function)
3914        << Name << SS.getRange();
3915    else
3916      Diag(Loc, diag::err_invalid_declarator_scope)
3917      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3918
3919    return true;
3920  }
3921
3922  if (Cur->isRecord()) {
3923    // Cannot qualify members within a class.
3924    Diag(Loc, diag::err_member_qualification)
3925      << Name << SS.getRange();
3926    SS.clear();
3927
3928    // C++ constructors and destructors with incorrect scopes can break
3929    // our AST invariants by having the wrong underlying types. If
3930    // that's the case, then drop this declaration entirely.
3931    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3932         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3933        !Context.hasSameType(Name.getCXXNameType(),
3934                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3935      return true;
3936
3937    return false;
3938  }
3939
3940  // C++11 [dcl.meaning]p1:
3941  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3942  //   not begin with a decltype-specifer"
3943  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3944  while (SpecLoc.getPrefix())
3945    SpecLoc = SpecLoc.getPrefix();
3946  if (dyn_cast_or_null<DecltypeType>(
3947        SpecLoc.getNestedNameSpecifier()->getAsType()))
3948    Diag(Loc, diag::err_decltype_in_declarator)
3949      << SpecLoc.getTypeLoc().getSourceRange();
3950
3951  return false;
3952}
3953
3954NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3955                                  MultiTemplateParamsArg TemplateParamLists) {
3956  // TODO: consider using NameInfo for diagnostic.
3957  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3958  DeclarationName Name = NameInfo.getName();
3959
3960  // All of these full declarators require an identifier.  If it doesn't have
3961  // one, the ParsedFreeStandingDeclSpec action should be used.
3962  if (!Name) {
3963    if (!D.isInvalidType())  // Reject this if we think it is valid.
3964      Diag(D.getDeclSpec().getLocStart(),
3965           diag::err_declarator_need_ident)
3966        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3967    return 0;
3968  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3969    return 0;
3970
3971  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3972  // we find one that is.
3973  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3974         (S->getFlags() & Scope::TemplateParamScope) != 0)
3975    S = S->getParent();
3976
3977  DeclContext *DC = CurContext;
3978  if (D.getCXXScopeSpec().isInvalid())
3979    D.setInvalidType();
3980  else if (D.getCXXScopeSpec().isSet()) {
3981    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3982                                        UPPC_DeclarationQualifier))
3983      return 0;
3984
3985    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3986    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3987    if (!DC) {
3988      // If we could not compute the declaration context, it's because the
3989      // declaration context is dependent but does not refer to a class,
3990      // class template, or class template partial specialization. Complain
3991      // and return early, to avoid the coming semantic disaster.
3992      Diag(D.getIdentifierLoc(),
3993           diag::err_template_qualified_declarator_no_match)
3994        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3995        << D.getCXXScopeSpec().getRange();
3996      return 0;
3997    }
3998    bool IsDependentContext = DC->isDependentContext();
3999
4000    if (!IsDependentContext &&
4001        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4002      return 0;
4003
4004    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4005      Diag(D.getIdentifierLoc(),
4006           diag::err_member_def_undefined_record)
4007        << Name << DC << D.getCXXScopeSpec().getRange();
4008      D.setInvalidType();
4009    } else if (!D.getDeclSpec().isFriendSpecified()) {
4010      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4011                                      Name, D.getIdentifierLoc())) {
4012        if (DC->isRecord())
4013          return 0;
4014
4015        D.setInvalidType();
4016      }
4017    }
4018
4019    // Check whether we need to rebuild the type of the given
4020    // declaration in the current instantiation.
4021    if (EnteringContext && IsDependentContext &&
4022        TemplateParamLists.size() != 0) {
4023      ContextRAII SavedContext(*this, DC);
4024      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4025        D.setInvalidType();
4026    }
4027  }
4028
4029  if (DiagnoseClassNameShadow(DC, NameInfo))
4030    // If this is a typedef, we'll end up spewing multiple diagnostics.
4031    // Just return early; it's safer.
4032    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4033      return 0;
4034
4035  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4036  QualType R = TInfo->getType();
4037
4038  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4039                                      UPPC_DeclarationType))
4040    D.setInvalidType();
4041
4042  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4043                        ForRedeclaration);
4044
4045  // See if this is a redefinition of a variable in the same scope.
4046  if (!D.getCXXScopeSpec().isSet()) {
4047    bool IsLinkageLookup = false;
4048
4049    // If the declaration we're planning to build will be a function
4050    // or object with linkage, then look for another declaration with
4051    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4052    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4053      /* Do nothing*/;
4054    else if (R->isFunctionType()) {
4055      if (CurContext->isFunctionOrMethod() ||
4056          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4057        IsLinkageLookup = true;
4058    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4059      IsLinkageLookup = true;
4060    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4061             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4062      IsLinkageLookup = true;
4063
4064    if (IsLinkageLookup)
4065      Previous.clear(LookupRedeclarationWithLinkage);
4066
4067    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4068  } else { // Something like "int foo::x;"
4069    LookupQualifiedName(Previous, DC);
4070
4071    // C++ [dcl.meaning]p1:
4072    //   When the declarator-id is qualified, the declaration shall refer to a
4073    //  previously declared member of the class or namespace to which the
4074    //  qualifier refers (or, in the case of a namespace, of an element of the
4075    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4076    //  thereof; [...]
4077    //
4078    // Note that we already checked the context above, and that we do not have
4079    // enough information to make sure that Previous contains the declaration
4080    // we want to match. For example, given:
4081    //
4082    //   class X {
4083    //     void f();
4084    //     void f(float);
4085    //   };
4086    //
4087    //   void X::f(int) { } // ill-formed
4088    //
4089    // In this case, Previous will point to the overload set
4090    // containing the two f's declared in X, but neither of them
4091    // matches.
4092
4093    // C++ [dcl.meaning]p1:
4094    //   [...] the member shall not merely have been introduced by a
4095    //   using-declaration in the scope of the class or namespace nominated by
4096    //   the nested-name-specifier of the declarator-id.
4097    RemoveUsingDecls(Previous);
4098  }
4099
4100  if (Previous.isSingleResult() &&
4101      Previous.getFoundDecl()->isTemplateParameter()) {
4102    // Maybe we will complain about the shadowed template parameter.
4103    if (!D.isInvalidType())
4104      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4105                                      Previous.getFoundDecl());
4106
4107    // Just pretend that we didn't see the previous declaration.
4108    Previous.clear();
4109  }
4110
4111  // In C++, the previous declaration we find might be a tag type
4112  // (class or enum). In this case, the new declaration will hide the
4113  // tag type. Note that this does does not apply if we're declaring a
4114  // typedef (C++ [dcl.typedef]p4).
4115  if (Previous.isSingleTagDecl() &&
4116      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4117    Previous.clear();
4118
4119  // Check that there are no default arguments other than in the parameters
4120  // of a function declaration (C++ only).
4121  if (getLangOpts().CPlusPlus)
4122    CheckExtraCXXDefaultArguments(D);
4123
4124  NamedDecl *New;
4125
4126  bool AddToScope = true;
4127  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4128    if (TemplateParamLists.size()) {
4129      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4130      return 0;
4131    }
4132
4133    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4134  } else if (R->isFunctionType()) {
4135    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4136                                  TemplateParamLists,
4137                                  AddToScope);
4138  } else {
4139    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4140                                  TemplateParamLists);
4141  }
4142
4143  if (New == 0)
4144    return 0;
4145
4146  // If this has an identifier and is not an invalid redeclaration or
4147  // function template specialization, add it to the scope stack.
4148  if (New->getDeclName() && AddToScope &&
4149       !(D.isRedeclaration() && New->isInvalidDecl()))
4150    PushOnScopeChains(New, S);
4151
4152  return New;
4153}
4154
4155/// Helper method to turn variable array types into constant array
4156/// types in certain situations which would otherwise be errors (for
4157/// GCC compatibility).
4158static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4159                                                    ASTContext &Context,
4160                                                    bool &SizeIsNegative,
4161                                                    llvm::APSInt &Oversized) {
4162  // This method tries to turn a variable array into a constant
4163  // array even when the size isn't an ICE.  This is necessary
4164  // for compatibility with code that depends on gcc's buggy
4165  // constant expression folding, like struct {char x[(int)(char*)2];}
4166  SizeIsNegative = false;
4167  Oversized = 0;
4168
4169  if (T->isDependentType())
4170    return QualType();
4171
4172  QualifierCollector Qs;
4173  const Type *Ty = Qs.strip(T);
4174
4175  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4176    QualType Pointee = PTy->getPointeeType();
4177    QualType FixedType =
4178        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4179                                            Oversized);
4180    if (FixedType.isNull()) return FixedType;
4181    FixedType = Context.getPointerType(FixedType);
4182    return Qs.apply(Context, FixedType);
4183  }
4184  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4185    QualType Inner = PTy->getInnerType();
4186    QualType FixedType =
4187        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4188                                            Oversized);
4189    if (FixedType.isNull()) return FixedType;
4190    FixedType = Context.getParenType(FixedType);
4191    return Qs.apply(Context, FixedType);
4192  }
4193
4194  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4195  if (!VLATy)
4196    return QualType();
4197  // FIXME: We should probably handle this case
4198  if (VLATy->getElementType()->isVariablyModifiedType())
4199    return QualType();
4200
4201  llvm::APSInt Res;
4202  if (!VLATy->getSizeExpr() ||
4203      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4204    return QualType();
4205
4206  // Check whether the array size is negative.
4207  if (Res.isSigned() && Res.isNegative()) {
4208    SizeIsNegative = true;
4209    return QualType();
4210  }
4211
4212  // Check whether the array is too large to be addressed.
4213  unsigned ActiveSizeBits
4214    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4215                                              Res);
4216  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4217    Oversized = Res;
4218    return QualType();
4219  }
4220
4221  return Context.getConstantArrayType(VLATy->getElementType(),
4222                                      Res, ArrayType::Normal, 0);
4223}
4224
4225static void
4226FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4227  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4228    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4229    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4230                                      DstPTL.getPointeeLoc());
4231    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4232    return;
4233  }
4234  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4235    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4236    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4237                                      DstPTL.getInnerLoc());
4238    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4239    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4240    return;
4241  }
4242  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4243  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4244  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4245  TypeLoc DstElemTL = DstATL.getElementLoc();
4246  DstElemTL.initializeFullCopy(SrcElemTL);
4247  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4248  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4249  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4250}
4251
4252/// Helper method to turn variable array types into constant array
4253/// types in certain situations which would otherwise be errors (for
4254/// GCC compatibility).
4255static TypeSourceInfo*
4256TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4257                                              ASTContext &Context,
4258                                              bool &SizeIsNegative,
4259                                              llvm::APSInt &Oversized) {
4260  QualType FixedTy
4261    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4262                                          SizeIsNegative, Oversized);
4263  if (FixedTy.isNull())
4264    return 0;
4265  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4266  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4267                                    FixedTInfo->getTypeLoc());
4268  return FixedTInfo;
4269}
4270
4271/// \brief Register the given locally-scoped extern "C" declaration so
4272/// that it can be found later for redeclarations
4273void
4274Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4275                                       const LookupResult &Previous,
4276                                       Scope *S) {
4277  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4278         "Decl is not a locally-scoped decl!");
4279  // Note that we have a locally-scoped external with this name.
4280  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4281
4282  if (!Previous.isSingleResult())
4283    return;
4284
4285  NamedDecl *PrevDecl = Previous.getFoundDecl();
4286
4287  // If there was a previous declaration of this entity, it may be in
4288  // our identifier chain. Update the identifier chain with the new
4289  // declaration.
4290  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4291    // The previous declaration was found on the identifer resolver
4292    // chain, so remove it from its scope.
4293
4294    if (S->isDeclScope(PrevDecl)) {
4295      // Special case for redeclarations in the SAME scope.
4296      // Because this declaration is going to be added to the identifier chain
4297      // later, we should temporarily take it OFF the chain.
4298      IdResolver.RemoveDecl(ND);
4299
4300    } else {
4301      // Find the scope for the original declaration.
4302      while (S && !S->isDeclScope(PrevDecl))
4303        S = S->getParent();
4304    }
4305
4306    if (S)
4307      S->RemoveDecl(PrevDecl);
4308  }
4309}
4310
4311llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4312Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4313  if (ExternalSource) {
4314    // Load locally-scoped external decls from the external source.
4315    SmallVector<NamedDecl *, 4> Decls;
4316    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4317    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4318      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4319        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4320      if (Pos == LocallyScopedExternCDecls.end())
4321        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4322    }
4323  }
4324
4325  return LocallyScopedExternCDecls.find(Name);
4326}
4327
4328/// \brief Diagnose function specifiers on a declaration of an identifier that
4329/// does not identify a function.
4330void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4331  // FIXME: We should probably indicate the identifier in question to avoid
4332  // confusion for constructs like "inline int a(), b;"
4333  if (D.getDeclSpec().isInlineSpecified())
4334    Diag(D.getDeclSpec().getInlineSpecLoc(),
4335         diag::err_inline_non_function);
4336
4337  if (D.getDeclSpec().isVirtualSpecified())
4338    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4339         diag::err_virtual_non_function);
4340
4341  if (D.getDeclSpec().isExplicitSpecified())
4342    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4343         diag::err_explicit_non_function);
4344
4345  if (D.getDeclSpec().isNoreturnSpecified())
4346    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4347         diag::err_noreturn_non_function);
4348}
4349
4350NamedDecl*
4351Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4352                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4353  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4354  if (D.getCXXScopeSpec().isSet()) {
4355    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4356      << D.getCXXScopeSpec().getRange();
4357    D.setInvalidType();
4358    // Pretend we didn't see the scope specifier.
4359    DC = CurContext;
4360    Previous.clear();
4361  }
4362
4363  DiagnoseFunctionSpecifiers(D);
4364
4365  if (D.getDeclSpec().isThreadSpecified())
4366    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4367  if (D.getDeclSpec().isConstexprSpecified())
4368    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4369      << 1;
4370
4371  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4372    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4373      << D.getName().getSourceRange();
4374    return 0;
4375  }
4376
4377  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4378  if (!NewTD) return 0;
4379
4380  // Handle attributes prior to checking for duplicates in MergeVarDecl
4381  ProcessDeclAttributes(S, NewTD, D);
4382
4383  CheckTypedefForVariablyModifiedType(S, NewTD);
4384
4385  bool Redeclaration = D.isRedeclaration();
4386  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4387  D.setRedeclaration(Redeclaration);
4388  return ND;
4389}
4390
4391void
4392Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4393  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4394  // then it shall have block scope.
4395  // Note that variably modified types must be fixed before merging the decl so
4396  // that redeclarations will match.
4397  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4398  QualType T = TInfo->getType();
4399  if (T->isVariablyModifiedType()) {
4400    getCurFunction()->setHasBranchProtectedScope();
4401
4402    if (S->getFnParent() == 0) {
4403      bool SizeIsNegative;
4404      llvm::APSInt Oversized;
4405      TypeSourceInfo *FixedTInfo =
4406        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4407                                                      SizeIsNegative,
4408                                                      Oversized);
4409      if (FixedTInfo) {
4410        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4411        NewTD->setTypeSourceInfo(FixedTInfo);
4412      } else {
4413        if (SizeIsNegative)
4414          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4415        else if (T->isVariableArrayType())
4416          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4417        else if (Oversized.getBoolValue())
4418          Diag(NewTD->getLocation(), diag::err_array_too_large)
4419            << Oversized.toString(10);
4420        else
4421          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4422        NewTD->setInvalidDecl();
4423      }
4424    }
4425  }
4426}
4427
4428
4429/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4430/// declares a typedef-name, either using the 'typedef' type specifier or via
4431/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4432NamedDecl*
4433Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4434                           LookupResult &Previous, bool &Redeclaration) {
4435  // Merge the decl with the existing one if appropriate. If the decl is
4436  // in an outer scope, it isn't the same thing.
4437  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4438                       /*ExplicitInstantiationOrSpecialization=*/false);
4439  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4440  if (!Previous.empty()) {
4441    Redeclaration = true;
4442    MergeTypedefNameDecl(NewTD, Previous);
4443  }
4444
4445  // If this is the C FILE type, notify the AST context.
4446  if (IdentifierInfo *II = NewTD->getIdentifier())
4447    if (!NewTD->isInvalidDecl() &&
4448        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4449      if (II->isStr("FILE"))
4450        Context.setFILEDecl(NewTD);
4451      else if (II->isStr("jmp_buf"))
4452        Context.setjmp_bufDecl(NewTD);
4453      else if (II->isStr("sigjmp_buf"))
4454        Context.setsigjmp_bufDecl(NewTD);
4455      else if (II->isStr("ucontext_t"))
4456        Context.setucontext_tDecl(NewTD);
4457    }
4458
4459  return NewTD;
4460}
4461
4462/// \brief Determines whether the given declaration is an out-of-scope
4463/// previous declaration.
4464///
4465/// This routine should be invoked when name lookup has found a
4466/// previous declaration (PrevDecl) that is not in the scope where a
4467/// new declaration by the same name is being introduced. If the new
4468/// declaration occurs in a local scope, previous declarations with
4469/// linkage may still be considered previous declarations (C99
4470/// 6.2.2p4-5, C++ [basic.link]p6).
4471///
4472/// \param PrevDecl the previous declaration found by name
4473/// lookup
4474///
4475/// \param DC the context in which the new declaration is being
4476/// declared.
4477///
4478/// \returns true if PrevDecl is an out-of-scope previous declaration
4479/// for a new delcaration with the same name.
4480static bool
4481isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4482                                ASTContext &Context) {
4483  if (!PrevDecl)
4484    return false;
4485
4486  if (!PrevDecl->hasLinkage())
4487    return false;
4488
4489  if (Context.getLangOpts().CPlusPlus) {
4490    // C++ [basic.link]p6:
4491    //   If there is a visible declaration of an entity with linkage
4492    //   having the same name and type, ignoring entities declared
4493    //   outside the innermost enclosing namespace scope, the block
4494    //   scope declaration declares that same entity and receives the
4495    //   linkage of the previous declaration.
4496    DeclContext *OuterContext = DC->getRedeclContext();
4497    if (!OuterContext->isFunctionOrMethod())
4498      // This rule only applies to block-scope declarations.
4499      return false;
4500
4501    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4502    if (PrevOuterContext->isRecord())
4503      // We found a member function: ignore it.
4504      return false;
4505
4506    // Find the innermost enclosing namespace for the new and
4507    // previous declarations.
4508    OuterContext = OuterContext->getEnclosingNamespaceContext();
4509    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4510
4511    // The previous declaration is in a different namespace, so it
4512    // isn't the same function.
4513    if (!OuterContext->Equals(PrevOuterContext))
4514      return false;
4515  }
4516
4517  return true;
4518}
4519
4520static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4521  CXXScopeSpec &SS = D.getCXXScopeSpec();
4522  if (!SS.isSet()) return;
4523  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4524}
4525
4526bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4527  QualType type = decl->getType();
4528  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4529  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4530    // Various kinds of declaration aren't allowed to be __autoreleasing.
4531    unsigned kind = -1U;
4532    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4533      if (var->hasAttr<BlocksAttr>())
4534        kind = 0; // __block
4535      else if (!var->hasLocalStorage())
4536        kind = 1; // global
4537    } else if (isa<ObjCIvarDecl>(decl)) {
4538      kind = 3; // ivar
4539    } else if (isa<FieldDecl>(decl)) {
4540      kind = 2; // field
4541    }
4542
4543    if (kind != -1U) {
4544      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4545        << kind;
4546    }
4547  } else if (lifetime == Qualifiers::OCL_None) {
4548    // Try to infer lifetime.
4549    if (!type->isObjCLifetimeType())
4550      return false;
4551
4552    lifetime = type->getObjCARCImplicitLifetime();
4553    type = Context.getLifetimeQualifiedType(type, lifetime);
4554    decl->setType(type);
4555  }
4556
4557  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4558    // Thread-local variables cannot have lifetime.
4559    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4560        var->isThreadSpecified()) {
4561      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4562        << var->getType();
4563      return true;
4564    }
4565  }
4566
4567  return false;
4568}
4569
4570static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4571  // 'weak' only applies to declarations with external linkage.
4572  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4573    if (ND.getLinkage() != ExternalLinkage) {
4574      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4575      ND.dropAttr<WeakAttr>();
4576    }
4577  }
4578  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4579    if (ND.hasExternalLinkage()) {
4580      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4581      ND.dropAttr<WeakRefAttr>();
4582    }
4583  }
4584}
4585
4586NamedDecl*
4587Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4588                              TypeSourceInfo *TInfo, LookupResult &Previous,
4589                              MultiTemplateParamsArg TemplateParamLists) {
4590  QualType R = TInfo->getType();
4591  DeclarationName Name = GetNameForDeclarator(D).getName();
4592
4593  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4594  assert(SCSpec != DeclSpec::SCS_typedef &&
4595         "Parser allowed 'typedef' as storage class VarDecl.");
4596  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4597
4598  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4599  {
4600    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4601    // half array type (unless the cl_khr_fp16 extension is enabled).
4602    if (Context.getBaseElementType(R)->isHalfType()) {
4603      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4604      D.setInvalidType();
4605    }
4606  }
4607
4608  if (SCSpec == DeclSpec::SCS_mutable) {
4609    // mutable can only appear on non-static class members, so it's always
4610    // an error here
4611    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4612    D.setInvalidType();
4613    SC = SC_None;
4614  }
4615  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4616  VarDecl::StorageClass SCAsWritten
4617    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4618
4619  IdentifierInfo *II = Name.getAsIdentifierInfo();
4620  if (!II) {
4621    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4622      << Name;
4623    return 0;
4624  }
4625
4626  DiagnoseFunctionSpecifiers(D);
4627
4628  if (!DC->isRecord() && S->getFnParent() == 0) {
4629    // C99 6.9p2: The storage-class specifiers auto and register shall not
4630    // appear in the declaration specifiers in an external declaration.
4631    if (SC == SC_Auto || SC == SC_Register) {
4632
4633      // If this is a register variable with an asm label specified, then this
4634      // is a GNU extension.
4635      if (SC == SC_Register && D.getAsmLabel())
4636        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4637      else
4638        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4639      D.setInvalidType();
4640    }
4641  }
4642
4643  if (getLangOpts().OpenCL) {
4644    // Set up the special work-group-local storage class for variables in the
4645    // OpenCL __local address space.
4646    if (R.getAddressSpace() == LangAS::opencl_local) {
4647      SC = SC_OpenCLWorkGroupLocal;
4648      SCAsWritten = SC_OpenCLWorkGroupLocal;
4649    }
4650
4651    // OpenCL v1.2 s6.9.b p4:
4652    // The sampler type cannot be used with the __local and __global address
4653    // space qualifiers.
4654    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4655      R.getAddressSpace() == LangAS::opencl_global)) {
4656      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4657    }
4658
4659    // OpenCL 1.2 spec, p6.9 r:
4660    // The event type cannot be used to declare a program scope variable.
4661    // The event type cannot be used with the __local, __constant and __global
4662    // address space qualifiers.
4663    if (R->isEventT()) {
4664      if (S->getParent() == 0) {
4665        Diag(D.getLocStart(), diag::err_event_t_global_var);
4666        D.setInvalidType();
4667      }
4668
4669      if (R.getAddressSpace()) {
4670        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4671        D.setInvalidType();
4672      }
4673    }
4674  }
4675
4676  bool isExplicitSpecialization = false;
4677  VarDecl *NewVD;
4678  if (!getLangOpts().CPlusPlus) {
4679    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4680                            D.getIdentifierLoc(), II,
4681                            R, TInfo, SC, SCAsWritten);
4682
4683    if (D.isInvalidType())
4684      NewVD->setInvalidDecl();
4685  } else {
4686    if (DC->isRecord() && !CurContext->isRecord()) {
4687      // This is an out-of-line definition of a static data member.
4688      if (SC == SC_Static) {
4689        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4690             diag::err_static_out_of_line)
4691          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4692      } else if (SC == SC_None)
4693        SC = SC_Static;
4694    }
4695    if (SC == SC_Static && CurContext->isRecord()) {
4696      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4697        if (RD->isLocalClass())
4698          Diag(D.getIdentifierLoc(),
4699               diag::err_static_data_member_not_allowed_in_local_class)
4700            << Name << RD->getDeclName();
4701
4702        // C++98 [class.union]p1: If a union contains a static data member,
4703        // the program is ill-formed. C++11 drops this restriction.
4704        if (RD->isUnion())
4705          Diag(D.getIdentifierLoc(),
4706               getLangOpts().CPlusPlus11
4707                 ? diag::warn_cxx98_compat_static_data_member_in_union
4708                 : diag::ext_static_data_member_in_union) << Name;
4709        // We conservatively disallow static data members in anonymous structs.
4710        else if (!RD->getDeclName())
4711          Diag(D.getIdentifierLoc(),
4712               diag::err_static_data_member_not_allowed_in_anon_struct)
4713            << Name << RD->isUnion();
4714      }
4715    }
4716
4717    // Match up the template parameter lists with the scope specifier, then
4718    // determine whether we have a template or a template specialization.
4719    isExplicitSpecialization = false;
4720    bool Invalid = false;
4721    if (TemplateParameterList *TemplateParams
4722        = MatchTemplateParametersToScopeSpecifier(
4723                                  D.getDeclSpec().getLocStart(),
4724                                                  D.getIdentifierLoc(),
4725                                                  D.getCXXScopeSpec(),
4726                                                  TemplateParamLists.data(),
4727                                                  TemplateParamLists.size(),
4728                                                  /*never a friend*/ false,
4729                                                  isExplicitSpecialization,
4730                                                  Invalid)) {
4731      if (TemplateParams->size() > 0) {
4732        // There is no such thing as a variable template.
4733        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4734          << II
4735          << SourceRange(TemplateParams->getTemplateLoc(),
4736                         TemplateParams->getRAngleLoc());
4737        return 0;
4738      } else {
4739        // There is an extraneous 'template<>' for this variable. Complain
4740        // about it, but allow the declaration of the variable.
4741        Diag(TemplateParams->getTemplateLoc(),
4742             diag::err_template_variable_noparams)
4743          << II
4744          << SourceRange(TemplateParams->getTemplateLoc(),
4745                         TemplateParams->getRAngleLoc());
4746      }
4747    }
4748
4749    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4750                            D.getIdentifierLoc(), II,
4751                            R, TInfo, SC, SCAsWritten);
4752
4753    // If this decl has an auto type in need of deduction, make a note of the
4754    // Decl so we can diagnose uses of it in its own initializer.
4755    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4756        R->getContainedAutoType())
4757      ParsingInitForAutoVars.insert(NewVD);
4758
4759    if (D.isInvalidType() || Invalid)
4760      NewVD->setInvalidDecl();
4761
4762    SetNestedNameSpecifier(NewVD, D);
4763
4764    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4765      NewVD->setTemplateParameterListsInfo(Context,
4766                                           TemplateParamLists.size(),
4767                                           TemplateParamLists.data());
4768    }
4769
4770    if (D.getDeclSpec().isConstexprSpecified())
4771      NewVD->setConstexpr(true);
4772  }
4773
4774  // Set the lexical context. If the declarator has a C++ scope specifier, the
4775  // lexical context will be different from the semantic context.
4776  NewVD->setLexicalDeclContext(CurContext);
4777
4778  if (D.getDeclSpec().isThreadSpecified()) {
4779    if (NewVD->hasLocalStorage())
4780      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4781    else if (!Context.getTargetInfo().isTLSSupported())
4782      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4783    else
4784      NewVD->setThreadSpecified(true);
4785  }
4786
4787  if (D.getDeclSpec().isModulePrivateSpecified()) {
4788    if (isExplicitSpecialization)
4789      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4790        << 2
4791        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4792    else if (NewVD->hasLocalStorage())
4793      Diag(NewVD->getLocation(), diag::err_module_private_local)
4794        << 0 << NewVD->getDeclName()
4795        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4796        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4797    else
4798      NewVD->setModulePrivate();
4799  }
4800
4801  // Handle attributes prior to checking for duplicates in MergeVarDecl
4802  ProcessDeclAttributes(S, NewVD, D);
4803
4804  if (NewVD->hasAttrs())
4805    CheckAlignasUnderalignment(NewVD);
4806
4807  if (getLangOpts().CUDA) {
4808    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4809    // storage [duration]."
4810    if (SC == SC_None && S->getFnParent() != 0 &&
4811        (NewVD->hasAttr<CUDASharedAttr>() ||
4812         NewVD->hasAttr<CUDAConstantAttr>())) {
4813      NewVD->setStorageClass(SC_Static);
4814      NewVD->setStorageClassAsWritten(SC_Static);
4815    }
4816  }
4817
4818  // In auto-retain/release, infer strong retension for variables of
4819  // retainable type.
4820  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4821    NewVD->setInvalidDecl();
4822
4823  // Handle GNU asm-label extension (encoded as an attribute).
4824  if (Expr *E = (Expr*)D.getAsmLabel()) {
4825    // The parser guarantees this is a string.
4826    StringLiteral *SE = cast<StringLiteral>(E);
4827    StringRef Label = SE->getString();
4828    if (S->getFnParent() != 0) {
4829      switch (SC) {
4830      case SC_None:
4831      case SC_Auto:
4832        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4833        break;
4834      case SC_Register:
4835        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4836          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4837        break;
4838      case SC_Static:
4839      case SC_Extern:
4840      case SC_PrivateExtern:
4841      case SC_OpenCLWorkGroupLocal:
4842        break;
4843      }
4844    }
4845
4846    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4847                                                Context, Label));
4848  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4849    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4850      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4851    if (I != ExtnameUndeclaredIdentifiers.end()) {
4852      NewVD->addAttr(I->second);
4853      ExtnameUndeclaredIdentifiers.erase(I);
4854    }
4855  }
4856
4857  // Diagnose shadowed variables before filtering for scope.
4858  if (!D.getCXXScopeSpec().isSet())
4859    CheckShadow(S, NewVD, Previous);
4860
4861  // Don't consider existing declarations that are in a different
4862  // scope and are out-of-semantic-context declarations (if the new
4863  // declaration has linkage).
4864  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4865                       isExplicitSpecialization);
4866
4867  if (!getLangOpts().CPlusPlus) {
4868    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4869  } else {
4870    // Merge the decl with the existing one if appropriate.
4871    if (!Previous.empty()) {
4872      if (Previous.isSingleResult() &&
4873          isa<FieldDecl>(Previous.getFoundDecl()) &&
4874          D.getCXXScopeSpec().isSet()) {
4875        // The user tried to define a non-static data member
4876        // out-of-line (C++ [dcl.meaning]p1).
4877        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4878          << D.getCXXScopeSpec().getRange();
4879        Previous.clear();
4880        NewVD->setInvalidDecl();
4881      }
4882    } else if (D.getCXXScopeSpec().isSet()) {
4883      // No previous declaration in the qualifying scope.
4884      Diag(D.getIdentifierLoc(), diag::err_no_member)
4885        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4886        << D.getCXXScopeSpec().getRange();
4887      NewVD->setInvalidDecl();
4888    }
4889
4890    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4891
4892    // This is an explicit specialization of a static data member. Check it.
4893    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4894        CheckMemberSpecialization(NewVD, Previous))
4895      NewVD->setInvalidDecl();
4896  }
4897
4898  ProcessPragmaWeak(S, NewVD);
4899  checkAttributesAfterMerging(*this, *NewVD);
4900
4901  // If this is a locally-scoped extern C variable, update the map of
4902  // such variables.
4903  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4904      !NewVD->isInvalidDecl())
4905    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4906
4907  return NewVD;
4908}
4909
4910/// \brief Diagnose variable or built-in function shadowing.  Implements
4911/// -Wshadow.
4912///
4913/// This method is called whenever a VarDecl is added to a "useful"
4914/// scope.
4915///
4916/// \param S the scope in which the shadowing name is being declared
4917/// \param R the lookup of the name
4918///
4919void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4920  // Return if warning is ignored.
4921  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4922        DiagnosticsEngine::Ignored)
4923    return;
4924
4925  // Don't diagnose declarations at file scope.
4926  if (D->hasGlobalStorage())
4927    return;
4928
4929  DeclContext *NewDC = D->getDeclContext();
4930
4931  // Only diagnose if we're shadowing an unambiguous field or variable.
4932  if (R.getResultKind() != LookupResult::Found)
4933    return;
4934
4935  NamedDecl* ShadowedDecl = R.getFoundDecl();
4936  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4937    return;
4938
4939  // Fields are not shadowed by variables in C++ static methods.
4940  if (isa<FieldDecl>(ShadowedDecl))
4941    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4942      if (MD->isStatic())
4943        return;
4944
4945  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4946    if (shadowedVar->isExternC()) {
4947      // For shadowing external vars, make sure that we point to the global
4948      // declaration, not a locally scoped extern declaration.
4949      for (VarDecl::redecl_iterator
4950             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4951           I != E; ++I)
4952        if (I->isFileVarDecl()) {
4953          ShadowedDecl = *I;
4954          break;
4955        }
4956    }
4957
4958  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4959
4960  // Only warn about certain kinds of shadowing for class members.
4961  if (NewDC && NewDC->isRecord()) {
4962    // In particular, don't warn about shadowing non-class members.
4963    if (!OldDC->isRecord())
4964      return;
4965
4966    // TODO: should we warn about static data members shadowing
4967    // static data members from base classes?
4968
4969    // TODO: don't diagnose for inaccessible shadowed members.
4970    // This is hard to do perfectly because we might friend the
4971    // shadowing context, but that's just a false negative.
4972  }
4973
4974  // Determine what kind of declaration we're shadowing.
4975  unsigned Kind;
4976  if (isa<RecordDecl>(OldDC)) {
4977    if (isa<FieldDecl>(ShadowedDecl))
4978      Kind = 3; // field
4979    else
4980      Kind = 2; // static data member
4981  } else if (OldDC->isFileContext())
4982    Kind = 1; // global
4983  else
4984    Kind = 0; // local
4985
4986  DeclarationName Name = R.getLookupName();
4987
4988  // Emit warning and note.
4989  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4990  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4991}
4992
4993/// \brief Check -Wshadow without the advantage of a previous lookup.
4994void Sema::CheckShadow(Scope *S, VarDecl *D) {
4995  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4996        DiagnosticsEngine::Ignored)
4997    return;
4998
4999  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5000                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5001  LookupName(R, S);
5002  CheckShadow(S, D, R);
5003}
5004
5005template<typename T>
5006static bool mayConflictWithNonVisibleExternC(const T *ND) {
5007  VarDecl::StorageClass SC = ND->getStorageClass();
5008  if (ND->isExternC() && (SC == SC_Extern || SC == SC_PrivateExtern))
5009    return true;
5010  return ND->getDeclContext()->isTranslationUnit();
5011}
5012
5013/// \brief Perform semantic checking on a newly-created variable
5014/// declaration.
5015///
5016/// This routine performs all of the type-checking required for a
5017/// variable declaration once it has been built. It is used both to
5018/// check variables after they have been parsed and their declarators
5019/// have been translated into a declaration, and to check variables
5020/// that have been instantiated from a template.
5021///
5022/// Sets NewVD->isInvalidDecl() if an error was encountered.
5023///
5024/// Returns true if the variable declaration is a redeclaration.
5025bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5026                                    LookupResult &Previous) {
5027  // If the decl is already known invalid, don't check it.
5028  if (NewVD->isInvalidDecl())
5029    return false;
5030
5031  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5032  QualType T = TInfo->getType();
5033
5034  if (T->isObjCObjectType()) {
5035    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5036      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5037    T = Context.getObjCObjectPointerType(T);
5038    NewVD->setType(T);
5039  }
5040
5041  // Emit an error if an address space was applied to decl with local storage.
5042  // This includes arrays of objects with address space qualifiers, but not
5043  // automatic variables that point to other address spaces.
5044  // ISO/IEC TR 18037 S5.1.2
5045  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5046    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5047    NewVD->setInvalidDecl();
5048    return false;
5049  }
5050
5051  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5052  // scope.
5053  if ((getLangOpts().OpenCLVersion >= 120)
5054      && NewVD->isStaticLocal()) {
5055    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5056    NewVD->setInvalidDecl();
5057    return false;
5058  }
5059
5060  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5061      && !NewVD->hasAttr<BlocksAttr>()) {
5062    if (getLangOpts().getGC() != LangOptions::NonGC)
5063      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5064    else {
5065      assert(!getLangOpts().ObjCAutoRefCount);
5066      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5067    }
5068  }
5069
5070  bool isVM = T->isVariablyModifiedType();
5071  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5072      NewVD->hasAttr<BlocksAttr>())
5073    getCurFunction()->setHasBranchProtectedScope();
5074
5075  if ((isVM && NewVD->hasLinkage()) ||
5076      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5077    bool SizeIsNegative;
5078    llvm::APSInt Oversized;
5079    TypeSourceInfo *FixedTInfo =
5080      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5081                                                    SizeIsNegative, Oversized);
5082    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5083      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5084      // FIXME: This won't give the correct result for
5085      // int a[10][n];
5086      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5087
5088      if (NewVD->isFileVarDecl())
5089        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5090        << SizeRange;
5091      else if (NewVD->getStorageClass() == SC_Static)
5092        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5093        << SizeRange;
5094      else
5095        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5096        << SizeRange;
5097      NewVD->setInvalidDecl();
5098      return false;
5099    }
5100
5101    if (FixedTInfo == 0) {
5102      if (NewVD->isFileVarDecl())
5103        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5104      else
5105        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5106      NewVD->setInvalidDecl();
5107      return false;
5108    }
5109
5110    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5111    NewVD->setType(FixedTInfo->getType());
5112    NewVD->setTypeSourceInfo(FixedTInfo);
5113  }
5114
5115  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5116    // Since we did not find anything by this name, look for a non-visible
5117    // extern "C" declaration with the same name.
5118    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5119      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5120    if (Pos != LocallyScopedExternCDecls.end())
5121      Previous.addDecl(Pos->second);
5122  }
5123
5124  // Filter out any non-conflicting previous declarations.
5125  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5126
5127  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5128    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5129      << T;
5130    NewVD->setInvalidDecl();
5131    return false;
5132  }
5133
5134  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5135    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5136    NewVD->setInvalidDecl();
5137    return false;
5138  }
5139
5140  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5141    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5142    NewVD->setInvalidDecl();
5143    return false;
5144  }
5145
5146  if (NewVD->isConstexpr() && !T->isDependentType() &&
5147      RequireLiteralType(NewVD->getLocation(), T,
5148                         diag::err_constexpr_var_non_literal)) {
5149    NewVD->setInvalidDecl();
5150    return false;
5151  }
5152
5153  if (!Previous.empty()) {
5154    MergeVarDecl(NewVD, Previous);
5155    return true;
5156  }
5157  return false;
5158}
5159
5160/// \brief Data used with FindOverriddenMethod
5161struct FindOverriddenMethodData {
5162  Sema *S;
5163  CXXMethodDecl *Method;
5164};
5165
5166/// \brief Member lookup function that determines whether a given C++
5167/// method overrides a method in a base class, to be used with
5168/// CXXRecordDecl::lookupInBases().
5169static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5170                                 CXXBasePath &Path,
5171                                 void *UserData) {
5172  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5173
5174  FindOverriddenMethodData *Data
5175    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5176
5177  DeclarationName Name = Data->Method->getDeclName();
5178
5179  // FIXME: Do we care about other names here too?
5180  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5181    // We really want to find the base class destructor here.
5182    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5183    CanQualType CT = Data->S->Context.getCanonicalType(T);
5184
5185    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5186  }
5187
5188  for (Path.Decls = BaseRecord->lookup(Name);
5189       !Path.Decls.empty();
5190       Path.Decls = Path.Decls.slice(1)) {
5191    NamedDecl *D = Path.Decls.front();
5192    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5193      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5194        return true;
5195    }
5196  }
5197
5198  return false;
5199}
5200
5201namespace {
5202  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5203}
5204/// \brief Report an error regarding overriding, along with any relevant
5205/// overriden methods.
5206///
5207/// \param DiagID the primary error to report.
5208/// \param MD the overriding method.
5209/// \param OEK which overrides to include as notes.
5210static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5211                            OverrideErrorKind OEK = OEK_All) {
5212  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5213  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5214                                      E = MD->end_overridden_methods();
5215       I != E; ++I) {
5216    // This check (& the OEK parameter) could be replaced by a predicate, but
5217    // without lambdas that would be overkill. This is still nicer than writing
5218    // out the diag loop 3 times.
5219    if ((OEK == OEK_All) ||
5220        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5221        (OEK == OEK_Deleted && (*I)->isDeleted()))
5222      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5223  }
5224}
5225
5226/// AddOverriddenMethods - See if a method overrides any in the base classes,
5227/// and if so, check that it's a valid override and remember it.
5228bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5229  // Look for virtual methods in base classes that this method might override.
5230  CXXBasePaths Paths;
5231  FindOverriddenMethodData Data;
5232  Data.Method = MD;
5233  Data.S = this;
5234  bool hasDeletedOverridenMethods = false;
5235  bool hasNonDeletedOverridenMethods = false;
5236  bool AddedAny = false;
5237  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5238    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5239         E = Paths.found_decls_end(); I != E; ++I) {
5240      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5241        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5242        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5243            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5244            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5245            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5246          hasDeletedOverridenMethods |= OldMD->isDeleted();
5247          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5248          AddedAny = true;
5249        }
5250      }
5251    }
5252  }
5253
5254  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5255    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5256  }
5257  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5258    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5259  }
5260
5261  return AddedAny;
5262}
5263
5264namespace {
5265  // Struct for holding all of the extra arguments needed by
5266  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5267  struct ActOnFDArgs {
5268    Scope *S;
5269    Declarator &D;
5270    MultiTemplateParamsArg TemplateParamLists;
5271    bool AddToScope;
5272  };
5273}
5274
5275namespace {
5276
5277// Callback to only accept typo corrections that have a non-zero edit distance.
5278// Also only accept corrections that have the same parent decl.
5279class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5280 public:
5281  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5282                            CXXRecordDecl *Parent)
5283      : Context(Context), OriginalFD(TypoFD),
5284        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5285
5286  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5287    if (candidate.getEditDistance() == 0)
5288      return false;
5289
5290    SmallVector<unsigned, 1> MismatchedParams;
5291    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5292                                          CDeclEnd = candidate.end();
5293         CDecl != CDeclEnd; ++CDecl) {
5294      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5295
5296      if (FD && !FD->hasBody() &&
5297          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5298        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5299          CXXRecordDecl *Parent = MD->getParent();
5300          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5301            return true;
5302        } else if (!ExpectedParent) {
5303          return true;
5304        }
5305      }
5306    }
5307
5308    return false;
5309  }
5310
5311 private:
5312  ASTContext &Context;
5313  FunctionDecl *OriginalFD;
5314  CXXRecordDecl *ExpectedParent;
5315};
5316
5317}
5318
5319/// \brief Generate diagnostics for an invalid function redeclaration.
5320///
5321/// This routine handles generating the diagnostic messages for an invalid
5322/// function redeclaration, including finding possible similar declarations
5323/// or performing typo correction if there are no previous declarations with
5324/// the same name.
5325///
5326/// Returns a NamedDecl iff typo correction was performed and substituting in
5327/// the new declaration name does not cause new errors.
5328static NamedDecl* DiagnoseInvalidRedeclaration(
5329    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5330    ActOnFDArgs &ExtraArgs) {
5331  NamedDecl *Result = NULL;
5332  DeclarationName Name = NewFD->getDeclName();
5333  DeclContext *NewDC = NewFD->getDeclContext();
5334  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5335                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5336  SmallVector<unsigned, 1> MismatchedParams;
5337  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5338  TypoCorrection Correction;
5339  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5340                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5341  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5342                                  : diag::err_member_def_does_not_match;
5343
5344  NewFD->setInvalidDecl();
5345  SemaRef.LookupQualifiedName(Prev, NewDC);
5346  assert(!Prev.isAmbiguous() &&
5347         "Cannot have an ambiguity in previous-declaration lookup");
5348  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5349  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5350                                      MD ? MD->getParent() : 0);
5351  if (!Prev.empty()) {
5352    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5353         Func != FuncEnd; ++Func) {
5354      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5355      if (FD &&
5356          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5357        // Add 1 to the index so that 0 can mean the mismatch didn't
5358        // involve a parameter
5359        unsigned ParamNum =
5360            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5361        NearMatches.push_back(std::make_pair(FD, ParamNum));
5362      }
5363    }
5364  // If the qualified name lookup yielded nothing, try typo correction
5365  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5366                                         Prev.getLookupKind(), 0, 0,
5367                                         Validator, NewDC))) {
5368    // Trap errors.
5369    Sema::SFINAETrap Trap(SemaRef);
5370
5371    // Set up everything for the call to ActOnFunctionDeclarator
5372    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5373                              ExtraArgs.D.getIdentifierLoc());
5374    Previous.clear();
5375    Previous.setLookupName(Correction.getCorrection());
5376    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5377                                    CDeclEnd = Correction.end();
5378         CDecl != CDeclEnd; ++CDecl) {
5379      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5380      if (FD && !FD->hasBody() &&
5381          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5382        Previous.addDecl(FD);
5383      }
5384    }
5385    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5386    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5387    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5388    // eliminate the need for the parameter pack ExtraArgs.
5389    Result = SemaRef.ActOnFunctionDeclarator(
5390        ExtraArgs.S, ExtraArgs.D,
5391        Correction.getCorrectionDecl()->getDeclContext(),
5392        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5393        ExtraArgs.AddToScope);
5394    if (Trap.hasErrorOccurred()) {
5395      // Pretend the typo correction never occurred
5396      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5397                                ExtraArgs.D.getIdentifierLoc());
5398      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5399      Previous.clear();
5400      Previous.setLookupName(Name);
5401      Result = NULL;
5402    } else {
5403      for (LookupResult::iterator Func = Previous.begin(),
5404                               FuncEnd = Previous.end();
5405           Func != FuncEnd; ++Func) {
5406        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5407          NearMatches.push_back(std::make_pair(FD, 0));
5408      }
5409    }
5410    if (NearMatches.empty()) {
5411      // Ignore the correction if it didn't yield any close FunctionDecl matches
5412      Correction = TypoCorrection();
5413    } else {
5414      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5415                             : diag::err_member_def_does_not_match_suggest;
5416    }
5417  }
5418
5419  if (Correction) {
5420    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5421    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5422    // turn causes the correction to fully qualify the name. If we fix
5423    // CorrectTypo to minimally qualify then this change should be good.
5424    SourceRange FixItLoc(NewFD->getLocation());
5425    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5426    if (Correction.getCorrectionSpecifier() && SS.isValid())
5427      FixItLoc.setBegin(SS.getBeginLoc());
5428    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5429        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5430        << FixItHint::CreateReplacement(
5431            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5432  } else {
5433    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5434        << Name << NewDC << NewFD->getLocation();
5435  }
5436
5437  bool NewFDisConst = false;
5438  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5439    NewFDisConst = NewMD->isConst();
5440
5441  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5442       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5443       NearMatch != NearMatchEnd; ++NearMatch) {
5444    FunctionDecl *FD = NearMatch->first;
5445    bool FDisConst = false;
5446    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5447      FDisConst = MD->isConst();
5448
5449    if (unsigned Idx = NearMatch->second) {
5450      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5451      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5452      if (Loc.isInvalid()) Loc = FD->getLocation();
5453      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5454          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5455    } else if (Correction) {
5456      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5457          << Correction.getQuoted(SemaRef.getLangOpts());
5458    } else if (FDisConst != NewFDisConst) {
5459      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5460          << NewFDisConst << FD->getSourceRange().getEnd();
5461    } else
5462      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5463  }
5464  return Result;
5465}
5466
5467static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5468                                                          Declarator &D) {
5469  switch (D.getDeclSpec().getStorageClassSpec()) {
5470  default: llvm_unreachable("Unknown storage class!");
5471  case DeclSpec::SCS_auto:
5472  case DeclSpec::SCS_register:
5473  case DeclSpec::SCS_mutable:
5474    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5475                 diag::err_typecheck_sclass_func);
5476    D.setInvalidType();
5477    break;
5478  case DeclSpec::SCS_unspecified: break;
5479  case DeclSpec::SCS_extern: return SC_Extern;
5480  case DeclSpec::SCS_static: {
5481    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5482      // C99 6.7.1p5:
5483      //   The declaration of an identifier for a function that has
5484      //   block scope shall have no explicit storage-class specifier
5485      //   other than extern
5486      // See also (C++ [dcl.stc]p4).
5487      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5488                   diag::err_static_block_func);
5489      break;
5490    } else
5491      return SC_Static;
5492  }
5493  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5494  }
5495
5496  // No explicit storage class has already been returned
5497  return SC_None;
5498}
5499
5500static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5501                                           DeclContext *DC, QualType &R,
5502                                           TypeSourceInfo *TInfo,
5503                                           FunctionDecl::StorageClass SC,
5504                                           bool &IsVirtualOkay) {
5505  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5506  DeclarationName Name = NameInfo.getName();
5507
5508  FunctionDecl *NewFD = 0;
5509  bool isInline = D.getDeclSpec().isInlineSpecified();
5510  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5511  FunctionDecl::StorageClass SCAsWritten
5512    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5513
5514  if (!SemaRef.getLangOpts().CPlusPlus) {
5515    // Determine whether the function was written with a
5516    // prototype. This true when:
5517    //   - there is a prototype in the declarator, or
5518    //   - the type R of the function is some kind of typedef or other reference
5519    //     to a type name (which eventually refers to a function type).
5520    bool HasPrototype =
5521      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5522      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5523
5524    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5525                                 D.getLocStart(), NameInfo, R,
5526                                 TInfo, SC, SCAsWritten, isInline,
5527                                 HasPrototype);
5528    if (D.isInvalidType())
5529      NewFD->setInvalidDecl();
5530
5531    // Set the lexical context.
5532    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5533
5534    return NewFD;
5535  }
5536
5537  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5538  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5539
5540  // Check that the return type is not an abstract class type.
5541  // For record types, this is done by the AbstractClassUsageDiagnoser once
5542  // the class has been completely parsed.
5543  if (!DC->isRecord() &&
5544      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5545                                     R->getAs<FunctionType>()->getResultType(),
5546                                     diag::err_abstract_type_in_decl,
5547                                     SemaRef.AbstractReturnType))
5548    D.setInvalidType();
5549
5550  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5551    // This is a C++ constructor declaration.
5552    assert(DC->isRecord() &&
5553           "Constructors can only be declared in a member context");
5554
5555    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5556    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5557                                      D.getLocStart(), NameInfo,
5558                                      R, TInfo, isExplicit, isInline,
5559                                      /*isImplicitlyDeclared=*/false,
5560                                      isConstexpr);
5561
5562  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5563    // This is a C++ destructor declaration.
5564    if (DC->isRecord()) {
5565      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5566      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5567      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5568                                        SemaRef.Context, Record,
5569                                        D.getLocStart(),
5570                                        NameInfo, R, TInfo, isInline,
5571                                        /*isImplicitlyDeclared=*/false);
5572
5573      // If the class is complete, then we now create the implicit exception
5574      // specification. If the class is incomplete or dependent, we can't do
5575      // it yet.
5576      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5577          Record->getDefinition() && !Record->isBeingDefined() &&
5578          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5579        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5580      }
5581
5582      IsVirtualOkay = true;
5583      return NewDD;
5584
5585    } else {
5586      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5587      D.setInvalidType();
5588
5589      // Create a FunctionDecl to satisfy the function definition parsing
5590      // code path.
5591      return FunctionDecl::Create(SemaRef.Context, DC,
5592                                  D.getLocStart(),
5593                                  D.getIdentifierLoc(), Name, R, TInfo,
5594                                  SC, SCAsWritten, isInline,
5595                                  /*hasPrototype=*/true, isConstexpr);
5596    }
5597
5598  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5599    if (!DC->isRecord()) {
5600      SemaRef.Diag(D.getIdentifierLoc(),
5601           diag::err_conv_function_not_member);
5602      return 0;
5603    }
5604
5605    SemaRef.CheckConversionDeclarator(D, R, SC);
5606    IsVirtualOkay = true;
5607    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5608                                     D.getLocStart(), NameInfo,
5609                                     R, TInfo, isInline, isExplicit,
5610                                     isConstexpr, SourceLocation());
5611
5612  } else if (DC->isRecord()) {
5613    // If the name of the function is the same as the name of the record,
5614    // then this must be an invalid constructor that has a return type.
5615    // (The parser checks for a return type and makes the declarator a
5616    // constructor if it has no return type).
5617    if (Name.getAsIdentifierInfo() &&
5618        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5619      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5620        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5621        << SourceRange(D.getIdentifierLoc());
5622      return 0;
5623    }
5624
5625    bool isStatic = SC == SC_Static;
5626
5627    // [class.free]p1:
5628    // Any allocation function for a class T is a static member
5629    // (even if not explicitly declared static).
5630    if (Name.getCXXOverloadedOperator() == OO_New ||
5631        Name.getCXXOverloadedOperator() == OO_Array_New)
5632      isStatic = true;
5633
5634    // [class.free]p6 Any deallocation function for a class X is a static member
5635    // (even if not explicitly declared static).
5636    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5637        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5638      isStatic = true;
5639
5640    IsVirtualOkay = !isStatic;
5641
5642    // This is a C++ method declaration.
5643    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5644                                 D.getLocStart(), NameInfo, R,
5645                                 TInfo, isStatic, SCAsWritten, isInline,
5646                                 isConstexpr, SourceLocation());
5647
5648  } else {
5649    // Determine whether the function was written with a
5650    // prototype. This true when:
5651    //   - we're in C++ (where every function has a prototype),
5652    return FunctionDecl::Create(SemaRef.Context, DC,
5653                                D.getLocStart(),
5654                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5655                                true/*HasPrototype*/, isConstexpr);
5656  }
5657}
5658
5659void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5660  // In C++, the empty parameter-type-list must be spelled "void"; a
5661  // typedef of void is not permitted.
5662  if (getLangOpts().CPlusPlus &&
5663      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5664    bool IsTypeAlias = false;
5665    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5666      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5667    else if (const TemplateSpecializationType *TST =
5668               Param->getType()->getAs<TemplateSpecializationType>())
5669      IsTypeAlias = TST->isTypeAlias();
5670    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5671      << IsTypeAlias;
5672  }
5673}
5674
5675NamedDecl*
5676Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5677                              TypeSourceInfo *TInfo, LookupResult &Previous,
5678                              MultiTemplateParamsArg TemplateParamLists,
5679                              bool &AddToScope) {
5680  QualType R = TInfo->getType();
5681
5682  assert(R.getTypePtr()->isFunctionType());
5683
5684  // TODO: consider using NameInfo for diagnostic.
5685  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5686  DeclarationName Name = NameInfo.getName();
5687  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5688
5689  if (D.getDeclSpec().isThreadSpecified())
5690    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5691
5692  // Do not allow returning a objc interface by-value.
5693  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5694    Diag(D.getIdentifierLoc(),
5695         diag::err_object_cannot_be_passed_returned_by_value) << 0
5696    << R->getAs<FunctionType>()->getResultType()
5697    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5698
5699    QualType T = R->getAs<FunctionType>()->getResultType();
5700    T = Context.getObjCObjectPointerType(T);
5701    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5702      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5703      R = Context.getFunctionType(T,
5704                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5705                                                     FPT->getNumArgs()),
5706                                  EPI);
5707    }
5708    else if (isa<FunctionNoProtoType>(R))
5709      R = Context.getFunctionNoProtoType(T);
5710  }
5711
5712  bool isFriend = false;
5713  FunctionTemplateDecl *FunctionTemplate = 0;
5714  bool isExplicitSpecialization = false;
5715  bool isFunctionTemplateSpecialization = false;
5716
5717  bool isDependentClassScopeExplicitSpecialization = false;
5718  bool HasExplicitTemplateArgs = false;
5719  TemplateArgumentListInfo TemplateArgs;
5720
5721  bool isVirtualOkay = false;
5722
5723  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5724                                              isVirtualOkay);
5725  if (!NewFD) return 0;
5726
5727  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5728    NewFD->setTopLevelDeclInObjCContainer();
5729
5730  if (getLangOpts().CPlusPlus) {
5731    bool isInline = D.getDeclSpec().isInlineSpecified();
5732    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5733    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5734    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5735    isFriend = D.getDeclSpec().isFriendSpecified();
5736    if (isFriend && !isInline && D.isFunctionDefinition()) {
5737      // C++ [class.friend]p5
5738      //   A function can be defined in a friend declaration of a
5739      //   class . . . . Such a function is implicitly inline.
5740      NewFD->setImplicitlyInline();
5741    }
5742
5743    // If this is a method defined in an __interface, and is not a constructor
5744    // or an overloaded operator, then set the pure flag (isVirtual will already
5745    // return true).
5746    if (const CXXRecordDecl *Parent =
5747          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5748      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5749        NewFD->setPure(true);
5750    }
5751
5752    SetNestedNameSpecifier(NewFD, D);
5753    isExplicitSpecialization = false;
5754    isFunctionTemplateSpecialization = false;
5755    if (D.isInvalidType())
5756      NewFD->setInvalidDecl();
5757
5758    // Set the lexical context. If the declarator has a C++
5759    // scope specifier, or is the object of a friend declaration, the
5760    // lexical context will be different from the semantic context.
5761    NewFD->setLexicalDeclContext(CurContext);
5762
5763    // Match up the template parameter lists with the scope specifier, then
5764    // determine whether we have a template or a template specialization.
5765    bool Invalid = false;
5766    if (TemplateParameterList *TemplateParams
5767          = MatchTemplateParametersToScopeSpecifier(
5768                                  D.getDeclSpec().getLocStart(),
5769                                  D.getIdentifierLoc(),
5770                                  D.getCXXScopeSpec(),
5771                                  TemplateParamLists.data(),
5772                                  TemplateParamLists.size(),
5773                                  isFriend,
5774                                  isExplicitSpecialization,
5775                                  Invalid)) {
5776      if (TemplateParams->size() > 0) {
5777        // This is a function template
5778
5779        // Check that we can declare a template here.
5780        if (CheckTemplateDeclScope(S, TemplateParams))
5781          return 0;
5782
5783        // A destructor cannot be a template.
5784        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5785          Diag(NewFD->getLocation(), diag::err_destructor_template);
5786          return 0;
5787        }
5788
5789        // If we're adding a template to a dependent context, we may need to
5790        // rebuilding some of the types used within the template parameter list,
5791        // now that we know what the current instantiation is.
5792        if (DC->isDependentContext()) {
5793          ContextRAII SavedContext(*this, DC);
5794          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5795            Invalid = true;
5796        }
5797
5798
5799        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5800                                                        NewFD->getLocation(),
5801                                                        Name, TemplateParams,
5802                                                        NewFD);
5803        FunctionTemplate->setLexicalDeclContext(CurContext);
5804        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5805
5806        // For source fidelity, store the other template param lists.
5807        if (TemplateParamLists.size() > 1) {
5808          NewFD->setTemplateParameterListsInfo(Context,
5809                                               TemplateParamLists.size() - 1,
5810                                               TemplateParamLists.data());
5811        }
5812      } else {
5813        // This is a function template specialization.
5814        isFunctionTemplateSpecialization = true;
5815        // For source fidelity, store all the template param lists.
5816        NewFD->setTemplateParameterListsInfo(Context,
5817                                             TemplateParamLists.size(),
5818                                             TemplateParamLists.data());
5819
5820        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5821        if (isFriend) {
5822          // We want to remove the "template<>", found here.
5823          SourceRange RemoveRange = TemplateParams->getSourceRange();
5824
5825          // If we remove the template<> and the name is not a
5826          // template-id, we're actually silently creating a problem:
5827          // the friend declaration will refer to an untemplated decl,
5828          // and clearly the user wants a template specialization.  So
5829          // we need to insert '<>' after the name.
5830          SourceLocation InsertLoc;
5831          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5832            InsertLoc = D.getName().getSourceRange().getEnd();
5833            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5834          }
5835
5836          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5837            << Name << RemoveRange
5838            << FixItHint::CreateRemoval(RemoveRange)
5839            << FixItHint::CreateInsertion(InsertLoc, "<>");
5840        }
5841      }
5842    }
5843    else {
5844      // All template param lists were matched against the scope specifier:
5845      // this is NOT (an explicit specialization of) a template.
5846      if (TemplateParamLists.size() > 0)
5847        // For source fidelity, store all the template param lists.
5848        NewFD->setTemplateParameterListsInfo(Context,
5849                                             TemplateParamLists.size(),
5850                                             TemplateParamLists.data());
5851    }
5852
5853    if (Invalid) {
5854      NewFD->setInvalidDecl();
5855      if (FunctionTemplate)
5856        FunctionTemplate->setInvalidDecl();
5857    }
5858
5859    // C++ [dcl.fct.spec]p5:
5860    //   The virtual specifier shall only be used in declarations of
5861    //   nonstatic class member functions that appear within a
5862    //   member-specification of a class declaration; see 10.3.
5863    //
5864    if (isVirtual && !NewFD->isInvalidDecl()) {
5865      if (!isVirtualOkay) {
5866        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5867             diag::err_virtual_non_function);
5868      } else if (!CurContext->isRecord()) {
5869        // 'virtual' was specified outside of the class.
5870        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5871             diag::err_virtual_out_of_class)
5872          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5873      } else if (NewFD->getDescribedFunctionTemplate()) {
5874        // C++ [temp.mem]p3:
5875        //  A member function template shall not be virtual.
5876        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5877             diag::err_virtual_member_function_template)
5878          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5879      } else {
5880        // Okay: Add virtual to the method.
5881        NewFD->setVirtualAsWritten(true);
5882      }
5883    }
5884
5885    // C++ [dcl.fct.spec]p3:
5886    //  The inline specifier shall not appear on a block scope function
5887    //  declaration.
5888    if (isInline && !NewFD->isInvalidDecl()) {
5889      if (CurContext->isFunctionOrMethod()) {
5890        // 'inline' is not allowed on block scope function declaration.
5891        Diag(D.getDeclSpec().getInlineSpecLoc(),
5892             diag::err_inline_declaration_block_scope) << Name
5893          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5894      }
5895    }
5896
5897    // C++ [dcl.fct.spec]p6:
5898    //  The explicit specifier shall be used only in the declaration of a
5899    //  constructor or conversion function within its class definition;
5900    //  see 12.3.1 and 12.3.2.
5901    if (isExplicit && !NewFD->isInvalidDecl()) {
5902      if (!CurContext->isRecord()) {
5903        // 'explicit' was specified outside of the class.
5904        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5905             diag::err_explicit_out_of_class)
5906          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5907      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5908                 !isa<CXXConversionDecl>(NewFD)) {
5909        // 'explicit' was specified on a function that wasn't a constructor
5910        // or conversion function.
5911        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5912             diag::err_explicit_non_ctor_or_conv_function)
5913          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5914      }
5915    }
5916
5917    if (isConstexpr) {
5918      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5919      // are implicitly inline.
5920      NewFD->setImplicitlyInline();
5921
5922      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5923      // be either constructors or to return a literal type. Therefore,
5924      // destructors cannot be declared constexpr.
5925      if (isa<CXXDestructorDecl>(NewFD))
5926        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5927    }
5928
5929    // If __module_private__ was specified, mark the function accordingly.
5930    if (D.getDeclSpec().isModulePrivateSpecified()) {
5931      if (isFunctionTemplateSpecialization) {
5932        SourceLocation ModulePrivateLoc
5933          = D.getDeclSpec().getModulePrivateSpecLoc();
5934        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5935          << 0
5936          << FixItHint::CreateRemoval(ModulePrivateLoc);
5937      } else {
5938        NewFD->setModulePrivate();
5939        if (FunctionTemplate)
5940          FunctionTemplate->setModulePrivate();
5941      }
5942    }
5943
5944    if (isFriend) {
5945      // For now, claim that the objects have no previous declaration.
5946      if (FunctionTemplate) {
5947        FunctionTemplate->setObjectOfFriendDecl(false);
5948        FunctionTemplate->setAccess(AS_public);
5949      }
5950      NewFD->setObjectOfFriendDecl(false);
5951      NewFD->setAccess(AS_public);
5952    }
5953
5954    // If a function is defined as defaulted or deleted, mark it as such now.
5955    switch (D.getFunctionDefinitionKind()) {
5956      case FDK_Declaration:
5957      case FDK_Definition:
5958        break;
5959
5960      case FDK_Defaulted:
5961        NewFD->setDefaulted();
5962        break;
5963
5964      case FDK_Deleted:
5965        NewFD->setDeletedAsWritten();
5966        break;
5967    }
5968
5969    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5970        D.isFunctionDefinition()) {
5971      // C++ [class.mfct]p2:
5972      //   A member function may be defined (8.4) in its class definition, in
5973      //   which case it is an inline member function (7.1.2)
5974      NewFD->setImplicitlyInline();
5975    }
5976
5977    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5978        !CurContext->isRecord()) {
5979      // C++ [class.static]p1:
5980      //   A data or function member of a class may be declared static
5981      //   in a class definition, in which case it is a static member of
5982      //   the class.
5983
5984      // Complain about the 'static' specifier if it's on an out-of-line
5985      // member function definition.
5986      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5987           diag::err_static_out_of_line)
5988        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5989    }
5990
5991    // C++11 [except.spec]p15:
5992    //   A deallocation function with no exception-specification is treated
5993    //   as if it were specified with noexcept(true).
5994    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5995    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5996         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5997        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5998      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5999      EPI.ExceptionSpecType = EST_BasicNoexcept;
6000      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6001                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6002                                                         FPT->getNumArgs()),
6003                                             EPI));
6004    }
6005  }
6006
6007  // Filter out previous declarations that don't match the scope.
6008  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
6009                       isExplicitSpecialization ||
6010                       isFunctionTemplateSpecialization);
6011
6012  // Handle GNU asm-label extension (encoded as an attribute).
6013  if (Expr *E = (Expr*) D.getAsmLabel()) {
6014    // The parser guarantees this is a string.
6015    StringLiteral *SE = cast<StringLiteral>(E);
6016    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6017                                                SE->getString()));
6018  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6019    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6020      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6021    if (I != ExtnameUndeclaredIdentifiers.end()) {
6022      NewFD->addAttr(I->second);
6023      ExtnameUndeclaredIdentifiers.erase(I);
6024    }
6025  }
6026
6027  // Copy the parameter declarations from the declarator D to the function
6028  // declaration NewFD, if they are available.  First scavenge them into Params.
6029  SmallVector<ParmVarDecl*, 16> Params;
6030  if (D.isFunctionDeclarator()) {
6031    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6032
6033    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6034    // function that takes no arguments, not a function that takes a
6035    // single void argument.
6036    // We let through "const void" here because Sema::GetTypeForDeclarator
6037    // already checks for that case.
6038    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6039        FTI.ArgInfo[0].Param &&
6040        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6041      // Empty arg list, don't push any params.
6042      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6043    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6044      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6045        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6046        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6047        Param->setDeclContext(NewFD);
6048        Params.push_back(Param);
6049
6050        if (Param->isInvalidDecl())
6051          NewFD->setInvalidDecl();
6052      }
6053    }
6054
6055  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6056    // When we're declaring a function with a typedef, typeof, etc as in the
6057    // following example, we'll need to synthesize (unnamed)
6058    // parameters for use in the declaration.
6059    //
6060    // @code
6061    // typedef void fn(int);
6062    // fn f;
6063    // @endcode
6064
6065    // Synthesize a parameter for each argument type.
6066    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6067         AE = FT->arg_type_end(); AI != AE; ++AI) {
6068      ParmVarDecl *Param =
6069        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6070      Param->setScopeInfo(0, Params.size());
6071      Params.push_back(Param);
6072    }
6073  } else {
6074    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6075           "Should not need args for typedef of non-prototype fn");
6076  }
6077
6078  // Finally, we know we have the right number of parameters, install them.
6079  NewFD->setParams(Params);
6080
6081  // Find all anonymous symbols defined during the declaration of this function
6082  // and add to NewFD. This lets us track decls such 'enum Y' in:
6083  //
6084  //   void f(enum Y {AA} x) {}
6085  //
6086  // which would otherwise incorrectly end up in the translation unit scope.
6087  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6088  DeclsInPrototypeScope.clear();
6089
6090  if (D.getDeclSpec().isNoreturnSpecified())
6091    NewFD->addAttr(
6092        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6093                                       Context));
6094
6095  // Process the non-inheritable attributes on this declaration.
6096  ProcessDeclAttributes(S, NewFD, D,
6097                        /*NonInheritable=*/true, /*Inheritable=*/false);
6098
6099  // Functions returning a variably modified type violate C99 6.7.5.2p2
6100  // because all functions have linkage.
6101  if (!NewFD->isInvalidDecl() &&
6102      NewFD->getResultType()->isVariablyModifiedType()) {
6103    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6104    NewFD->setInvalidDecl();
6105  }
6106
6107  // Handle attributes.
6108  ProcessDeclAttributes(S, NewFD, D,
6109                        /*NonInheritable=*/false, /*Inheritable=*/true);
6110
6111  QualType RetType = NewFD->getResultType();
6112  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6113      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6114  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6115      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6116    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6117    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6118      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6119                                                        Context));
6120    }
6121  }
6122
6123  if (!getLangOpts().CPlusPlus) {
6124    // Perform semantic checking on the function declaration.
6125    bool isExplicitSpecialization=false;
6126    if (!NewFD->isInvalidDecl()) {
6127      if (NewFD->isMain())
6128        CheckMain(NewFD, D.getDeclSpec());
6129      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6130                                                  isExplicitSpecialization));
6131    }
6132    // Make graceful recovery from an invalid redeclaration.
6133    else if (!Previous.empty())
6134           D.setRedeclaration(true);
6135    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6136            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6137           "previous declaration set still overloaded");
6138  } else {
6139    // If the declarator is a template-id, translate the parser's template
6140    // argument list into our AST format.
6141    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6142      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6143      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6144      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6145      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6146                                         TemplateId->NumArgs);
6147      translateTemplateArguments(TemplateArgsPtr,
6148                                 TemplateArgs);
6149
6150      HasExplicitTemplateArgs = true;
6151
6152      if (NewFD->isInvalidDecl()) {
6153        HasExplicitTemplateArgs = false;
6154      } else if (FunctionTemplate) {
6155        // Function template with explicit template arguments.
6156        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6157          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6158
6159        HasExplicitTemplateArgs = false;
6160      } else if (!isFunctionTemplateSpecialization &&
6161                 !D.getDeclSpec().isFriendSpecified()) {
6162        // We have encountered something that the user meant to be a
6163        // specialization (because it has explicitly-specified template
6164        // arguments) but that was not introduced with a "template<>" (or had
6165        // too few of them).
6166        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6167          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6168          << FixItHint::CreateInsertion(
6169                                    D.getDeclSpec().getLocStart(),
6170                                        "template<> ");
6171        isFunctionTemplateSpecialization = true;
6172      } else {
6173        // "friend void foo<>(int);" is an implicit specialization decl.
6174        isFunctionTemplateSpecialization = true;
6175      }
6176    } else if (isFriend && isFunctionTemplateSpecialization) {
6177      // This combination is only possible in a recovery case;  the user
6178      // wrote something like:
6179      //   template <> friend void foo(int);
6180      // which we're recovering from as if the user had written:
6181      //   friend void foo<>(int);
6182      // Go ahead and fake up a template id.
6183      HasExplicitTemplateArgs = true;
6184        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6185      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6186    }
6187
6188    // If it's a friend (and only if it's a friend), it's possible
6189    // that either the specialized function type or the specialized
6190    // template is dependent, and therefore matching will fail.  In
6191    // this case, don't check the specialization yet.
6192    bool InstantiationDependent = false;
6193    if (isFunctionTemplateSpecialization && isFriend &&
6194        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6195         TemplateSpecializationType::anyDependentTemplateArguments(
6196            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6197            InstantiationDependent))) {
6198      assert(HasExplicitTemplateArgs &&
6199             "friend function specialization without template args");
6200      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6201                                                       Previous))
6202        NewFD->setInvalidDecl();
6203    } else if (isFunctionTemplateSpecialization) {
6204      if (CurContext->isDependentContext() && CurContext->isRecord()
6205          && !isFriend) {
6206        isDependentClassScopeExplicitSpecialization = true;
6207        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6208          diag::ext_function_specialization_in_class :
6209          diag::err_function_specialization_in_class)
6210          << NewFD->getDeclName();
6211      } else if (CheckFunctionTemplateSpecialization(NewFD,
6212                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6213                                                     Previous))
6214        NewFD->setInvalidDecl();
6215
6216      // C++ [dcl.stc]p1:
6217      //   A storage-class-specifier shall not be specified in an explicit
6218      //   specialization (14.7.3)
6219      if (SC != SC_None) {
6220        if (SC != NewFD->getStorageClass())
6221          Diag(NewFD->getLocation(),
6222               diag::err_explicit_specialization_inconsistent_storage_class)
6223            << SC
6224            << FixItHint::CreateRemoval(
6225                                      D.getDeclSpec().getStorageClassSpecLoc());
6226
6227        else
6228          Diag(NewFD->getLocation(),
6229               diag::ext_explicit_specialization_storage_class)
6230            << FixItHint::CreateRemoval(
6231                                      D.getDeclSpec().getStorageClassSpecLoc());
6232      }
6233
6234    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6235      if (CheckMemberSpecialization(NewFD, Previous))
6236          NewFD->setInvalidDecl();
6237    }
6238
6239    // Perform semantic checking on the function declaration.
6240    if (!isDependentClassScopeExplicitSpecialization) {
6241      if (NewFD->isInvalidDecl()) {
6242        // If this is a class member, mark the class invalid immediately.
6243        // This avoids some consistency errors later.
6244        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6245          methodDecl->getParent()->setInvalidDecl();
6246      } else {
6247        if (NewFD->isMain())
6248          CheckMain(NewFD, D.getDeclSpec());
6249        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6250                                                    isExplicitSpecialization));
6251      }
6252    }
6253
6254    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6255            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6256           "previous declaration set still overloaded");
6257
6258    NamedDecl *PrincipalDecl = (FunctionTemplate
6259                                ? cast<NamedDecl>(FunctionTemplate)
6260                                : NewFD);
6261
6262    if (isFriend && D.isRedeclaration()) {
6263      AccessSpecifier Access = AS_public;
6264      if (!NewFD->isInvalidDecl())
6265        Access = NewFD->getPreviousDecl()->getAccess();
6266
6267      NewFD->setAccess(Access);
6268      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6269
6270      PrincipalDecl->setObjectOfFriendDecl(true);
6271    }
6272
6273    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6274        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6275      PrincipalDecl->setNonMemberOperator();
6276
6277    // If we have a function template, check the template parameter
6278    // list. This will check and merge default template arguments.
6279    if (FunctionTemplate) {
6280      FunctionTemplateDecl *PrevTemplate =
6281                                     FunctionTemplate->getPreviousDecl();
6282      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6283                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6284                            D.getDeclSpec().isFriendSpecified()
6285                              ? (D.isFunctionDefinition()
6286                                   ? TPC_FriendFunctionTemplateDefinition
6287                                   : TPC_FriendFunctionTemplate)
6288                              : (D.getCXXScopeSpec().isSet() &&
6289                                 DC && DC->isRecord() &&
6290                                 DC->isDependentContext())
6291                                  ? TPC_ClassTemplateMember
6292                                  : TPC_FunctionTemplate);
6293    }
6294
6295    if (NewFD->isInvalidDecl()) {
6296      // Ignore all the rest of this.
6297    } else if (!D.isRedeclaration()) {
6298      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6299                                       AddToScope };
6300      // Fake up an access specifier if it's supposed to be a class member.
6301      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6302        NewFD->setAccess(AS_public);
6303
6304      // Qualified decls generally require a previous declaration.
6305      if (D.getCXXScopeSpec().isSet()) {
6306        // ...with the major exception of templated-scope or
6307        // dependent-scope friend declarations.
6308
6309        // TODO: we currently also suppress this check in dependent
6310        // contexts because (1) the parameter depth will be off when
6311        // matching friend templates and (2) we might actually be
6312        // selecting a friend based on a dependent factor.  But there
6313        // are situations where these conditions don't apply and we
6314        // can actually do this check immediately.
6315        if (isFriend &&
6316            (TemplateParamLists.size() ||
6317             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6318             CurContext->isDependentContext())) {
6319          // ignore these
6320        } else {
6321          // The user tried to provide an out-of-line definition for a
6322          // function that is a member of a class or namespace, but there
6323          // was no such member function declared (C++ [class.mfct]p2,
6324          // C++ [namespace.memdef]p2). For example:
6325          //
6326          // class X {
6327          //   void f() const;
6328          // };
6329          //
6330          // void X::f() { } // ill-formed
6331          //
6332          // Complain about this problem, and attempt to suggest close
6333          // matches (e.g., those that differ only in cv-qualifiers and
6334          // whether the parameter types are references).
6335
6336          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6337                                                               NewFD,
6338                                                               ExtraArgs)) {
6339            AddToScope = ExtraArgs.AddToScope;
6340            return Result;
6341          }
6342        }
6343
6344        // Unqualified local friend declarations are required to resolve
6345        // to something.
6346      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6347        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6348                                                             NewFD,
6349                                                             ExtraArgs)) {
6350          AddToScope = ExtraArgs.AddToScope;
6351          return Result;
6352        }
6353      }
6354
6355    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6356               !isFriend && !isFunctionTemplateSpecialization &&
6357               !isExplicitSpecialization) {
6358      // An out-of-line member function declaration must also be a
6359      // definition (C++ [dcl.meaning]p1).
6360      // Note that this is not the case for explicit specializations of
6361      // function templates or member functions of class templates, per
6362      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6363      // extension for compatibility with old SWIG code which likes to
6364      // generate them.
6365      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6366        << D.getCXXScopeSpec().getRange();
6367    }
6368  }
6369
6370  ProcessPragmaWeak(S, NewFD);
6371  checkAttributesAfterMerging(*this, *NewFD);
6372
6373  AddKnownFunctionAttributes(NewFD);
6374
6375  if (NewFD->hasAttr<OverloadableAttr>() &&
6376      !NewFD->getType()->getAs<FunctionProtoType>()) {
6377    Diag(NewFD->getLocation(),
6378         diag::err_attribute_overloadable_no_prototype)
6379      << NewFD;
6380
6381    // Turn this into a variadic function with no parameters.
6382    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6383    FunctionProtoType::ExtProtoInfo EPI;
6384    EPI.Variadic = true;
6385    EPI.ExtInfo = FT->getExtInfo();
6386
6387    QualType R = Context.getFunctionType(FT->getResultType(),
6388                                         ArrayRef<QualType>(),
6389                                         EPI);
6390    NewFD->setType(R);
6391  }
6392
6393  // If there's a #pragma GCC visibility in scope, and this isn't a class
6394  // member, set the visibility of this function.
6395  if (NewFD->hasExternalLinkage() && !DC->isRecord())
6396    AddPushedVisibilityAttribute(NewFD);
6397
6398  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6399  // marking the function.
6400  AddCFAuditedAttribute(NewFD);
6401
6402  // If this is a locally-scoped extern C function, update the
6403  // map of such names.
6404  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6405      && !NewFD->isInvalidDecl())
6406    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6407
6408  // Set this FunctionDecl's range up to the right paren.
6409  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6410
6411  if (getLangOpts().CPlusPlus) {
6412    if (FunctionTemplate) {
6413      if (NewFD->isInvalidDecl())
6414        FunctionTemplate->setInvalidDecl();
6415      return FunctionTemplate;
6416    }
6417  }
6418
6419  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6420    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6421    if ((getLangOpts().OpenCLVersion >= 120)
6422        && (SC == SC_Static)) {
6423      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6424      D.setInvalidType();
6425    }
6426
6427    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6428    if (!NewFD->getResultType()->isVoidType()) {
6429      Diag(D.getIdentifierLoc(),
6430           diag::err_expected_kernel_void_return_type);
6431      D.setInvalidType();
6432    }
6433
6434    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6435         PE = NewFD->param_end(); PI != PE; ++PI) {
6436      ParmVarDecl *Param = *PI;
6437      QualType PT = Param->getType();
6438
6439      // OpenCL v1.2 s6.9.a:
6440      // A kernel function argument cannot be declared as a
6441      // pointer to a pointer type.
6442      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6443        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6444        D.setInvalidType();
6445      }
6446
6447      // OpenCL v1.2 s6.8 n:
6448      // A kernel function argument cannot be declared
6449      // of event_t type.
6450      if (PT->isEventT()) {
6451        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6452        D.setInvalidType();
6453      }
6454    }
6455  }
6456
6457  MarkUnusedFileScopedDecl(NewFD);
6458
6459  if (getLangOpts().CUDA)
6460    if (IdentifierInfo *II = NewFD->getIdentifier())
6461      if (!NewFD->isInvalidDecl() &&
6462          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6463        if (II->isStr("cudaConfigureCall")) {
6464          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6465            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6466
6467          Context.setcudaConfigureCallDecl(NewFD);
6468        }
6469      }
6470
6471  // Here we have an function template explicit specialization at class scope.
6472  // The actually specialization will be postponed to template instatiation
6473  // time via the ClassScopeFunctionSpecializationDecl node.
6474  if (isDependentClassScopeExplicitSpecialization) {
6475    ClassScopeFunctionSpecializationDecl *NewSpec =
6476                         ClassScopeFunctionSpecializationDecl::Create(
6477                                Context, CurContext, SourceLocation(),
6478                                cast<CXXMethodDecl>(NewFD),
6479                                HasExplicitTemplateArgs, TemplateArgs);
6480    CurContext->addDecl(NewSpec);
6481    AddToScope = false;
6482  }
6483
6484  return NewFD;
6485}
6486
6487/// \brief Perform semantic checking of a new function declaration.
6488///
6489/// Performs semantic analysis of the new function declaration
6490/// NewFD. This routine performs all semantic checking that does not
6491/// require the actual declarator involved in the declaration, and is
6492/// used both for the declaration of functions as they are parsed
6493/// (called via ActOnDeclarator) and for the declaration of functions
6494/// that have been instantiated via C++ template instantiation (called
6495/// via InstantiateDecl).
6496///
6497/// \param IsExplicitSpecialization whether this new function declaration is
6498/// an explicit specialization of the previous declaration.
6499///
6500/// This sets NewFD->isInvalidDecl() to true if there was an error.
6501///
6502/// \returns true if the function declaration is a redeclaration.
6503bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6504                                    LookupResult &Previous,
6505                                    bool IsExplicitSpecialization) {
6506  assert(!NewFD->getResultType()->isVariablyModifiedType()
6507         && "Variably modified return types are not handled here");
6508
6509  // Check for a previous declaration of this name.
6510  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6511    // Since we did not find anything by this name, look for a non-visible
6512    // extern "C" declaration with the same name.
6513    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6514      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6515    if (Pos != LocallyScopedExternCDecls.end())
6516      Previous.addDecl(Pos->second);
6517  }
6518
6519  // Filter out any non-conflicting previous declarations.
6520  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6521
6522  bool Redeclaration = false;
6523  NamedDecl *OldDecl = 0;
6524
6525  // Merge or overload the declaration with an existing declaration of
6526  // the same name, if appropriate.
6527  if (!Previous.empty()) {
6528    // Determine whether NewFD is an overload of PrevDecl or
6529    // a declaration that requires merging. If it's an overload,
6530    // there's no more work to do here; we'll just add the new
6531    // function to the scope.
6532    if (!AllowOverloadingOfFunction(Previous, Context)) {
6533      Redeclaration = true;
6534      OldDecl = Previous.getFoundDecl();
6535    } else {
6536      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6537                            /*NewIsUsingDecl*/ false)) {
6538      case Ovl_Match:
6539        Redeclaration = true;
6540        break;
6541
6542      case Ovl_NonFunction:
6543        Redeclaration = true;
6544        break;
6545
6546      case Ovl_Overload:
6547        Redeclaration = false;
6548        break;
6549      }
6550
6551      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6552        // If a function name is overloadable in C, then every function
6553        // with that name must be marked "overloadable".
6554        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6555          << Redeclaration << NewFD;
6556        NamedDecl *OverloadedDecl = 0;
6557        if (Redeclaration)
6558          OverloadedDecl = OldDecl;
6559        else if (!Previous.empty())
6560          OverloadedDecl = Previous.getRepresentativeDecl();
6561        if (OverloadedDecl)
6562          Diag(OverloadedDecl->getLocation(),
6563               diag::note_attribute_overloadable_prev_overload);
6564        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6565                                                        Context));
6566      }
6567    }
6568  }
6569
6570  // C++11 [dcl.constexpr]p8:
6571  //   A constexpr specifier for a non-static member function that is not
6572  //   a constructor declares that member function to be const.
6573  //
6574  // This needs to be delayed until we know whether this is an out-of-line
6575  // definition of a static member function.
6576  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6577  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6578      !isa<CXXConstructorDecl>(MD) &&
6579      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6580    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6581    if (FunctionTemplateDecl *OldTD =
6582          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6583      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6584    if (!OldMD || !OldMD->isStatic()) {
6585      const FunctionProtoType *FPT =
6586        MD->getType()->castAs<FunctionProtoType>();
6587      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6588      EPI.TypeQuals |= Qualifiers::Const;
6589      MD->setType(Context.getFunctionType(FPT->getResultType(),
6590                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6591                                                         FPT->getNumArgs()),
6592                                          EPI));
6593    }
6594  }
6595
6596  if (Redeclaration) {
6597    // NewFD and OldDecl represent declarations that need to be
6598    // merged.
6599    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6600      NewFD->setInvalidDecl();
6601      return Redeclaration;
6602    }
6603
6604    Previous.clear();
6605    Previous.addDecl(OldDecl);
6606
6607    if (FunctionTemplateDecl *OldTemplateDecl
6608                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6609      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6610      FunctionTemplateDecl *NewTemplateDecl
6611        = NewFD->getDescribedFunctionTemplate();
6612      assert(NewTemplateDecl && "Template/non-template mismatch");
6613      if (CXXMethodDecl *Method
6614            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6615        Method->setAccess(OldTemplateDecl->getAccess());
6616        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6617      }
6618
6619      // If this is an explicit specialization of a member that is a function
6620      // template, mark it as a member specialization.
6621      if (IsExplicitSpecialization &&
6622          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6623        NewTemplateDecl->setMemberSpecialization();
6624        assert(OldTemplateDecl->isMemberSpecialization());
6625      }
6626
6627    } else {
6628      // This needs to happen first so that 'inline' propagates.
6629      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6630
6631      if (isa<CXXMethodDecl>(NewFD)) {
6632        // A valid redeclaration of a C++ method must be out-of-line,
6633        // but (unfortunately) it's not necessarily a definition
6634        // because of templates, which means that the previous
6635        // declaration is not necessarily from the class definition.
6636
6637        // For just setting the access, that doesn't matter.
6638        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6639        NewFD->setAccess(oldMethod->getAccess());
6640
6641        // Update the key-function state if necessary for this ABI.
6642        if (NewFD->isInlined() &&
6643            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6644          // setNonKeyFunction needs to work with the original
6645          // declaration from the class definition, and isVirtual() is
6646          // just faster in that case, so map back to that now.
6647          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6648          if (oldMethod->isVirtual()) {
6649            Context.setNonKeyFunction(oldMethod);
6650          }
6651        }
6652      }
6653    }
6654  }
6655
6656  // Semantic checking for this function declaration (in isolation).
6657  if (getLangOpts().CPlusPlus) {
6658    // C++-specific checks.
6659    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6660      CheckConstructor(Constructor);
6661    } else if (CXXDestructorDecl *Destructor =
6662                dyn_cast<CXXDestructorDecl>(NewFD)) {
6663      CXXRecordDecl *Record = Destructor->getParent();
6664      QualType ClassType = Context.getTypeDeclType(Record);
6665
6666      // FIXME: Shouldn't we be able to perform this check even when the class
6667      // type is dependent? Both gcc and edg can handle that.
6668      if (!ClassType->isDependentType()) {
6669        DeclarationName Name
6670          = Context.DeclarationNames.getCXXDestructorName(
6671                                        Context.getCanonicalType(ClassType));
6672        if (NewFD->getDeclName() != Name) {
6673          Diag(NewFD->getLocation(), diag::err_destructor_name);
6674          NewFD->setInvalidDecl();
6675          return Redeclaration;
6676        }
6677      }
6678    } else if (CXXConversionDecl *Conversion
6679               = dyn_cast<CXXConversionDecl>(NewFD)) {
6680      ActOnConversionDeclarator(Conversion);
6681    }
6682
6683    // Find any virtual functions that this function overrides.
6684    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6685      if (!Method->isFunctionTemplateSpecialization() &&
6686          !Method->getDescribedFunctionTemplate() &&
6687          Method->isCanonicalDecl()) {
6688        if (AddOverriddenMethods(Method->getParent(), Method)) {
6689          // If the function was marked as "static", we have a problem.
6690          if (NewFD->getStorageClass() == SC_Static) {
6691            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6692          }
6693        }
6694      }
6695
6696      if (Method->isStatic())
6697        checkThisInStaticMemberFunctionType(Method);
6698    }
6699
6700    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6701    if (NewFD->isOverloadedOperator() &&
6702        CheckOverloadedOperatorDeclaration(NewFD)) {
6703      NewFD->setInvalidDecl();
6704      return Redeclaration;
6705    }
6706
6707    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6708    if (NewFD->getLiteralIdentifier() &&
6709        CheckLiteralOperatorDeclaration(NewFD)) {
6710      NewFD->setInvalidDecl();
6711      return Redeclaration;
6712    }
6713
6714    // In C++, check default arguments now that we have merged decls. Unless
6715    // the lexical context is the class, because in this case this is done
6716    // during delayed parsing anyway.
6717    if (!CurContext->isRecord())
6718      CheckCXXDefaultArguments(NewFD);
6719
6720    // If this function declares a builtin function, check the type of this
6721    // declaration against the expected type for the builtin.
6722    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6723      ASTContext::GetBuiltinTypeError Error;
6724      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6725      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6726      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6727        // The type of this function differs from the type of the builtin,
6728        // so forget about the builtin entirely.
6729        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6730      }
6731    }
6732
6733    // If this function is declared as being extern "C", then check to see if
6734    // the function returns a UDT (class, struct, or union type) that is not C
6735    // compatible, and if it does, warn the user.
6736    if (NewFD->isExternC()) {
6737      QualType R = NewFD->getResultType();
6738      if (R->isIncompleteType() && !R->isVoidType())
6739        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6740            << NewFD << R;
6741      else if (!R.isPODType(Context) && !R->isVoidType() &&
6742               !R->isObjCObjectPointerType())
6743        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6744    }
6745  }
6746  return Redeclaration;
6747}
6748
6749static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6750  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6751  if (!TSI)
6752    return SourceRange();
6753
6754  TypeLoc TL = TSI->getTypeLoc();
6755  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6756  if (!FunctionTL)
6757    return SourceRange();
6758
6759  TypeLoc ResultTL = FunctionTL.getResultLoc();
6760  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6761    return ResultTL.getSourceRange();
6762
6763  return SourceRange();
6764}
6765
6766void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6767  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6768  //   static or constexpr is ill-formed.
6769  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6770  //   appear in a declaration of main.
6771  // static main is not an error under C99, but we should warn about it.
6772  // We accept _Noreturn main as an extension.
6773  if (FD->getStorageClass() == SC_Static)
6774    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6775         ? diag::err_static_main : diag::warn_static_main)
6776      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6777  if (FD->isInlineSpecified())
6778    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6779      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6780  if (DS.isNoreturnSpecified()) {
6781    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6782    SourceRange NoreturnRange(NoreturnLoc,
6783                              PP.getLocForEndOfToken(NoreturnLoc));
6784    Diag(NoreturnLoc, diag::ext_noreturn_main);
6785    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6786      << FixItHint::CreateRemoval(NoreturnRange);
6787  }
6788  if (FD->isConstexpr()) {
6789    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6790      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6791    FD->setConstexpr(false);
6792  }
6793
6794  QualType T = FD->getType();
6795  assert(T->isFunctionType() && "function decl is not of function type");
6796  const FunctionType* FT = T->castAs<FunctionType>();
6797
6798  // All the standards say that main() should should return 'int'.
6799  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6800    // In C and C++, main magically returns 0 if you fall off the end;
6801    // set the flag which tells us that.
6802    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6803    FD->setHasImplicitReturnZero(true);
6804
6805  // In C with GNU extensions we allow main() to have non-integer return
6806  // type, but we should warn about the extension, and we disable the
6807  // implicit-return-zero rule.
6808  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6809    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6810
6811    SourceRange ResultRange = getResultSourceRange(FD);
6812    if (ResultRange.isValid())
6813      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6814          << FixItHint::CreateReplacement(ResultRange, "int");
6815
6816  // Otherwise, this is just a flat-out error.
6817  } else {
6818    SourceRange ResultRange = getResultSourceRange(FD);
6819    if (ResultRange.isValid())
6820      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6821          << FixItHint::CreateReplacement(ResultRange, "int");
6822    else
6823      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6824
6825    FD->setInvalidDecl(true);
6826  }
6827
6828  // Treat protoless main() as nullary.
6829  if (isa<FunctionNoProtoType>(FT)) return;
6830
6831  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6832  unsigned nparams = FTP->getNumArgs();
6833  assert(FD->getNumParams() == nparams);
6834
6835  bool HasExtraParameters = (nparams > 3);
6836
6837  // Darwin passes an undocumented fourth argument of type char**.  If
6838  // other platforms start sprouting these, the logic below will start
6839  // getting shifty.
6840  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6841    HasExtraParameters = false;
6842
6843  if (HasExtraParameters) {
6844    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6845    FD->setInvalidDecl(true);
6846    nparams = 3;
6847  }
6848
6849  // FIXME: a lot of the following diagnostics would be improved
6850  // if we had some location information about types.
6851
6852  QualType CharPP =
6853    Context.getPointerType(Context.getPointerType(Context.CharTy));
6854  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6855
6856  for (unsigned i = 0; i < nparams; ++i) {
6857    QualType AT = FTP->getArgType(i);
6858
6859    bool mismatch = true;
6860
6861    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6862      mismatch = false;
6863    else if (Expected[i] == CharPP) {
6864      // As an extension, the following forms are okay:
6865      //   char const **
6866      //   char const * const *
6867      //   char * const *
6868
6869      QualifierCollector qs;
6870      const PointerType* PT;
6871      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6872          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6873          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6874                              Context.CharTy)) {
6875        qs.removeConst();
6876        mismatch = !qs.empty();
6877      }
6878    }
6879
6880    if (mismatch) {
6881      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6882      // TODO: suggest replacing given type with expected type
6883      FD->setInvalidDecl(true);
6884    }
6885  }
6886
6887  if (nparams == 1 && !FD->isInvalidDecl()) {
6888    Diag(FD->getLocation(), diag::warn_main_one_arg);
6889  }
6890
6891  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6892    Diag(FD->getLocation(), diag::err_main_template_decl);
6893    FD->setInvalidDecl();
6894  }
6895}
6896
6897bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6898  // FIXME: Need strict checking.  In C89, we need to check for
6899  // any assignment, increment, decrement, function-calls, or
6900  // commas outside of a sizeof.  In C99, it's the same list,
6901  // except that the aforementioned are allowed in unevaluated
6902  // expressions.  Everything else falls under the
6903  // "may accept other forms of constant expressions" exception.
6904  // (We never end up here for C++, so the constant expression
6905  // rules there don't matter.)
6906  if (Init->isConstantInitializer(Context, false))
6907    return false;
6908  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6909    << Init->getSourceRange();
6910  return true;
6911}
6912
6913namespace {
6914  // Visits an initialization expression to see if OrigDecl is evaluated in
6915  // its own initialization and throws a warning if it does.
6916  class SelfReferenceChecker
6917      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6918    Sema &S;
6919    Decl *OrigDecl;
6920    bool isRecordType;
6921    bool isPODType;
6922    bool isReferenceType;
6923
6924  public:
6925    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6926
6927    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6928                                                    S(S), OrigDecl(OrigDecl) {
6929      isPODType = false;
6930      isRecordType = false;
6931      isReferenceType = false;
6932      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6933        isPODType = VD->getType().isPODType(S.Context);
6934        isRecordType = VD->getType()->isRecordType();
6935        isReferenceType = VD->getType()->isReferenceType();
6936      }
6937    }
6938
6939    // For most expressions, the cast is directly above the DeclRefExpr.
6940    // For conditional operators, the cast can be outside the conditional
6941    // operator if both expressions are DeclRefExpr's.
6942    void HandleValue(Expr *E) {
6943      if (isReferenceType)
6944        return;
6945      E = E->IgnoreParenImpCasts();
6946      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6947        HandleDeclRefExpr(DRE);
6948        return;
6949      }
6950
6951      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6952        HandleValue(CO->getTrueExpr());
6953        HandleValue(CO->getFalseExpr());
6954        return;
6955      }
6956
6957      if (isa<MemberExpr>(E)) {
6958        Expr *Base = E->IgnoreParenImpCasts();
6959        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6960          // Check for static member variables and don't warn on them.
6961          if (!isa<FieldDecl>(ME->getMemberDecl()))
6962            return;
6963          Base = ME->getBase()->IgnoreParenImpCasts();
6964        }
6965        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6966          HandleDeclRefExpr(DRE);
6967        return;
6968      }
6969    }
6970
6971    // Reference types are handled here since all uses of references are
6972    // bad, not just r-value uses.
6973    void VisitDeclRefExpr(DeclRefExpr *E) {
6974      if (isReferenceType)
6975        HandleDeclRefExpr(E);
6976    }
6977
6978    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6979      if (E->getCastKind() == CK_LValueToRValue ||
6980          (isRecordType && E->getCastKind() == CK_NoOp))
6981        HandleValue(E->getSubExpr());
6982
6983      Inherited::VisitImplicitCastExpr(E);
6984    }
6985
6986    void VisitMemberExpr(MemberExpr *E) {
6987      // Don't warn on arrays since they can be treated as pointers.
6988      if (E->getType()->canDecayToPointerType()) return;
6989
6990      // Warn when a non-static method call is followed by non-static member
6991      // field accesses, which is followed by a DeclRefExpr.
6992      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6993      bool Warn = (MD && !MD->isStatic());
6994      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6995      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6996        if (!isa<FieldDecl>(ME->getMemberDecl()))
6997          Warn = false;
6998        Base = ME->getBase()->IgnoreParenImpCasts();
6999      }
7000
7001      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7002        if (Warn)
7003          HandleDeclRefExpr(DRE);
7004        return;
7005      }
7006
7007      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7008      // Visit that expression.
7009      Visit(Base);
7010    }
7011
7012    void VisitUnaryOperator(UnaryOperator *E) {
7013      // For POD record types, addresses of its own members are well-defined.
7014      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7015          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7016        if (!isPODType)
7017          HandleValue(E->getSubExpr());
7018        return;
7019      }
7020      Inherited::VisitUnaryOperator(E);
7021    }
7022
7023    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7024
7025    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7026      Decl* ReferenceDecl = DRE->getDecl();
7027      if (OrigDecl != ReferenceDecl) return;
7028      unsigned diag;
7029      if (isReferenceType) {
7030        diag = diag::warn_uninit_self_reference_in_reference_init;
7031      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7032        diag = diag::warn_static_self_reference_in_init;
7033      } else {
7034        diag = diag::warn_uninit_self_reference_in_init;
7035      }
7036
7037      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7038                            S.PDiag(diag)
7039                              << DRE->getNameInfo().getName()
7040                              << OrigDecl->getLocation()
7041                              << DRE->getSourceRange());
7042    }
7043  };
7044
7045  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7046  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7047                                 bool DirectInit) {
7048    // Parameters arguments are occassionially constructed with itself,
7049    // for instance, in recursive functions.  Skip them.
7050    if (isa<ParmVarDecl>(OrigDecl))
7051      return;
7052
7053    E = E->IgnoreParens();
7054
7055    // Skip checking T a = a where T is not a record or reference type.
7056    // Doing so is a way to silence uninitialized warnings.
7057    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7058      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7059        if (ICE->getCastKind() == CK_LValueToRValue)
7060          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7061            if (DRE->getDecl() == OrigDecl)
7062              return;
7063
7064    SelfReferenceChecker(S, OrigDecl).Visit(E);
7065  }
7066}
7067
7068/// AddInitializerToDecl - Adds the initializer Init to the
7069/// declaration dcl. If DirectInit is true, this is C++ direct
7070/// initialization rather than copy initialization.
7071void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7072                                bool DirectInit, bool TypeMayContainAuto) {
7073  // If there is no declaration, there was an error parsing it.  Just ignore
7074  // the initializer.
7075  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7076    return;
7077
7078  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7079    // With declarators parsed the way they are, the parser cannot
7080    // distinguish between a normal initializer and a pure-specifier.
7081    // Thus this grotesque test.
7082    IntegerLiteral *IL;
7083    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7084        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7085      CheckPureMethod(Method, Init->getSourceRange());
7086    else {
7087      Diag(Method->getLocation(), diag::err_member_function_initialization)
7088        << Method->getDeclName() << Init->getSourceRange();
7089      Method->setInvalidDecl();
7090    }
7091    return;
7092  }
7093
7094  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7095  if (!VDecl) {
7096    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7097    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7098    RealDecl->setInvalidDecl();
7099    return;
7100  }
7101
7102  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7103
7104  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7105  AutoType *Auto = 0;
7106  if (TypeMayContainAuto &&
7107      (Auto = VDecl->getType()->getContainedAutoType()) &&
7108      !Auto->isDeduced()) {
7109    Expr *DeduceInit = Init;
7110    // Initializer could be a C++ direct-initializer. Deduction only works if it
7111    // contains exactly one expression.
7112    if (CXXDirectInit) {
7113      if (CXXDirectInit->getNumExprs() == 0) {
7114        // It isn't possible to write this directly, but it is possible to
7115        // end up in this situation with "auto x(some_pack...);"
7116        Diag(CXXDirectInit->getLocStart(),
7117             diag::err_auto_var_init_no_expression)
7118          << VDecl->getDeclName() << VDecl->getType()
7119          << VDecl->getSourceRange();
7120        RealDecl->setInvalidDecl();
7121        return;
7122      } else if (CXXDirectInit->getNumExprs() > 1) {
7123        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7124             diag::err_auto_var_init_multiple_expressions)
7125          << VDecl->getDeclName() << VDecl->getType()
7126          << VDecl->getSourceRange();
7127        RealDecl->setInvalidDecl();
7128        return;
7129      } else {
7130        DeduceInit = CXXDirectInit->getExpr(0);
7131      }
7132    }
7133
7134    // Expressions default to 'id' when we're in a debugger.
7135    bool DefaultedToAuto = false;
7136    if (getLangOpts().DebuggerCastResultToId &&
7137        Init->getType() == Context.UnknownAnyTy) {
7138      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7139      if (Result.isInvalid()) {
7140        VDecl->setInvalidDecl();
7141        return;
7142      }
7143      Init = Result.take();
7144      DefaultedToAuto = true;
7145    }
7146
7147    TypeSourceInfo *DeducedType = 0;
7148    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7149            DAR_Failed)
7150      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7151    if (!DeducedType) {
7152      RealDecl->setInvalidDecl();
7153      return;
7154    }
7155    VDecl->setTypeSourceInfo(DeducedType);
7156    VDecl->setType(DeducedType->getType());
7157    VDecl->ClearLinkageCache();
7158
7159    // In ARC, infer lifetime.
7160    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7161      VDecl->setInvalidDecl();
7162
7163    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7164    // 'id' instead of a specific object type prevents most of our usual checks.
7165    // We only want to warn outside of template instantiations, though:
7166    // inside a template, the 'id' could have come from a parameter.
7167    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7168        DeducedType->getType()->isObjCIdType()) {
7169      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7170      Diag(Loc, diag::warn_auto_var_is_id)
7171        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7172    }
7173
7174    // If this is a redeclaration, check that the type we just deduced matches
7175    // the previously declared type.
7176    if (VarDecl *Old = VDecl->getPreviousDecl())
7177      MergeVarDeclTypes(VDecl, Old);
7178  }
7179
7180  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7181    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7182    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7183    VDecl->setInvalidDecl();
7184    return;
7185  }
7186
7187  if (!VDecl->getType()->isDependentType()) {
7188    // A definition must end up with a complete type, which means it must be
7189    // complete with the restriction that an array type might be completed by
7190    // the initializer; note that later code assumes this restriction.
7191    QualType BaseDeclType = VDecl->getType();
7192    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7193      BaseDeclType = Array->getElementType();
7194    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7195                            diag::err_typecheck_decl_incomplete_type)) {
7196      RealDecl->setInvalidDecl();
7197      return;
7198    }
7199
7200    // The variable can not have an abstract class type.
7201    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7202                               diag::err_abstract_type_in_decl,
7203                               AbstractVariableType))
7204      VDecl->setInvalidDecl();
7205  }
7206
7207  const VarDecl *Def;
7208  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7209    Diag(VDecl->getLocation(), diag::err_redefinition)
7210      << VDecl->getDeclName();
7211    Diag(Def->getLocation(), diag::note_previous_definition);
7212    VDecl->setInvalidDecl();
7213    return;
7214  }
7215
7216  const VarDecl* PrevInit = 0;
7217  if (getLangOpts().CPlusPlus) {
7218    // C++ [class.static.data]p4
7219    //   If a static data member is of const integral or const
7220    //   enumeration type, its declaration in the class definition can
7221    //   specify a constant-initializer which shall be an integral
7222    //   constant expression (5.19). In that case, the member can appear
7223    //   in integral constant expressions. The member shall still be
7224    //   defined in a namespace scope if it is used in the program and the
7225    //   namespace scope definition shall not contain an initializer.
7226    //
7227    // We already performed a redefinition check above, but for static
7228    // data members we also need to check whether there was an in-class
7229    // declaration with an initializer.
7230    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7231      Diag(VDecl->getLocation(), diag::err_redefinition)
7232        << VDecl->getDeclName();
7233      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7234      return;
7235    }
7236
7237    if (VDecl->hasLocalStorage())
7238      getCurFunction()->setHasBranchProtectedScope();
7239
7240    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7241      VDecl->setInvalidDecl();
7242      return;
7243    }
7244  }
7245
7246  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7247  // a kernel function cannot be initialized."
7248  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7249    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7250    VDecl->setInvalidDecl();
7251    return;
7252  }
7253
7254  // Get the decls type and save a reference for later, since
7255  // CheckInitializerTypes may change it.
7256  QualType DclT = VDecl->getType(), SavT = DclT;
7257
7258  // Expressions default to 'id' when we're in a debugger
7259  // and we are assigning it to a variable of Objective-C pointer type.
7260  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7261      Init->getType() == Context.UnknownAnyTy) {
7262    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7263    if (Result.isInvalid()) {
7264      VDecl->setInvalidDecl();
7265      return;
7266    }
7267    Init = Result.take();
7268  }
7269
7270  // Perform the initialization.
7271  if (!VDecl->isInvalidDecl()) {
7272    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7273    InitializationKind Kind
7274      = DirectInit ?
7275          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7276                                                           Init->getLocStart(),
7277                                                           Init->getLocEnd())
7278                        : InitializationKind::CreateDirectList(
7279                                                          VDecl->getLocation())
7280                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7281                                                    Init->getLocStart());
7282
7283    Expr **Args = &Init;
7284    unsigned NumArgs = 1;
7285    if (CXXDirectInit) {
7286      Args = CXXDirectInit->getExprs();
7287      NumArgs = CXXDirectInit->getNumExprs();
7288    }
7289    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7290    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7291                                        MultiExprArg(Args, NumArgs), &DclT);
7292    if (Result.isInvalid()) {
7293      VDecl->setInvalidDecl();
7294      return;
7295    }
7296
7297    Init = Result.takeAs<Expr>();
7298  }
7299
7300  // Check for self-references within variable initializers.
7301  // Variables declared within a function/method body (except for references)
7302  // are handled by a dataflow analysis.
7303  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7304      VDecl->getType()->isReferenceType()) {
7305    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7306  }
7307
7308  // If the type changed, it means we had an incomplete type that was
7309  // completed by the initializer. For example:
7310  //   int ary[] = { 1, 3, 5 };
7311  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7312  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7313    VDecl->setType(DclT);
7314
7315  if (!VDecl->isInvalidDecl()) {
7316    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7317
7318    if (VDecl->hasAttr<BlocksAttr>())
7319      checkRetainCycles(VDecl, Init);
7320
7321    // It is safe to assign a weak reference into a strong variable.
7322    // Although this code can still have problems:
7323    //   id x = self.weakProp;
7324    //   id y = self.weakProp;
7325    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7326    // paths through the function. This should be revisited if
7327    // -Wrepeated-use-of-weak is made flow-sensitive.
7328    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7329      DiagnosticsEngine::Level Level =
7330        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7331                                 Init->getLocStart());
7332      if (Level != DiagnosticsEngine::Ignored)
7333        getCurFunction()->markSafeWeakUse(Init);
7334    }
7335  }
7336
7337  // The initialization is usually a full-expression.
7338  //
7339  // FIXME: If this is a braced initialization of an aggregate, it is not
7340  // an expression, and each individual field initializer is a separate
7341  // full-expression. For instance, in:
7342  //
7343  //   struct Temp { ~Temp(); };
7344  //   struct S { S(Temp); };
7345  //   struct T { S a, b; } t = { Temp(), Temp() }
7346  //
7347  // we should destroy the first Temp before constructing the second.
7348  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7349                                          false,
7350                                          VDecl->isConstexpr());
7351  if (Result.isInvalid()) {
7352    VDecl->setInvalidDecl();
7353    return;
7354  }
7355  Init = Result.take();
7356
7357  // Attach the initializer to the decl.
7358  VDecl->setInit(Init);
7359
7360  if (VDecl->isLocalVarDecl()) {
7361    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7362    // static storage duration shall be constant expressions or string literals.
7363    // C++ does not have this restriction.
7364    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7365        VDecl->getStorageClass() == SC_Static)
7366      CheckForConstantInitializer(Init, DclT);
7367  } else if (VDecl->isStaticDataMember() &&
7368             VDecl->getLexicalDeclContext()->isRecord()) {
7369    // This is an in-class initialization for a static data member, e.g.,
7370    //
7371    // struct S {
7372    //   static const int value = 17;
7373    // };
7374
7375    // C++ [class.mem]p4:
7376    //   A member-declarator can contain a constant-initializer only
7377    //   if it declares a static member (9.4) of const integral or
7378    //   const enumeration type, see 9.4.2.
7379    //
7380    // C++11 [class.static.data]p3:
7381    //   If a non-volatile const static data member is of integral or
7382    //   enumeration type, its declaration in the class definition can
7383    //   specify a brace-or-equal-initializer in which every initalizer-clause
7384    //   that is an assignment-expression is a constant expression. A static
7385    //   data member of literal type can be declared in the class definition
7386    //   with the constexpr specifier; if so, its declaration shall specify a
7387    //   brace-or-equal-initializer in which every initializer-clause that is
7388    //   an assignment-expression is a constant expression.
7389
7390    // Do nothing on dependent types.
7391    if (DclT->isDependentType()) {
7392
7393    // Allow any 'static constexpr' members, whether or not they are of literal
7394    // type. We separately check that every constexpr variable is of literal
7395    // type.
7396    } else if (VDecl->isConstexpr()) {
7397
7398    // Require constness.
7399    } else if (!DclT.isConstQualified()) {
7400      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7401        << Init->getSourceRange();
7402      VDecl->setInvalidDecl();
7403
7404    // We allow integer constant expressions in all cases.
7405    } else if (DclT->isIntegralOrEnumerationType()) {
7406      // Check whether the expression is a constant expression.
7407      SourceLocation Loc;
7408      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7409        // In C++11, a non-constexpr const static data member with an
7410        // in-class initializer cannot be volatile.
7411        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7412      else if (Init->isValueDependent())
7413        ; // Nothing to check.
7414      else if (Init->isIntegerConstantExpr(Context, &Loc))
7415        ; // Ok, it's an ICE!
7416      else if (Init->isEvaluatable(Context)) {
7417        // If we can constant fold the initializer through heroics, accept it,
7418        // but report this as a use of an extension for -pedantic.
7419        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7420          << Init->getSourceRange();
7421      } else {
7422        // Otherwise, this is some crazy unknown case.  Report the issue at the
7423        // location provided by the isIntegerConstantExpr failed check.
7424        Diag(Loc, diag::err_in_class_initializer_non_constant)
7425          << Init->getSourceRange();
7426        VDecl->setInvalidDecl();
7427      }
7428
7429    // We allow foldable floating-point constants as an extension.
7430    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7431      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7432      // it anyway and provide a fixit to add the 'constexpr'.
7433      if (getLangOpts().CPlusPlus11) {
7434        Diag(VDecl->getLocation(),
7435             diag::ext_in_class_initializer_float_type_cxx11)
7436            << DclT << Init->getSourceRange();
7437        Diag(VDecl->getLocStart(),
7438             diag::note_in_class_initializer_float_type_cxx11)
7439            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7440      } else {
7441        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7442          << DclT << Init->getSourceRange();
7443
7444        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7445          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7446            << Init->getSourceRange();
7447          VDecl->setInvalidDecl();
7448        }
7449      }
7450
7451    // Suggest adding 'constexpr' in C++11 for literal types.
7452    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7453      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7454        << DclT << Init->getSourceRange()
7455        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7456      VDecl->setConstexpr(true);
7457
7458    } else {
7459      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7460        << DclT << Init->getSourceRange();
7461      VDecl->setInvalidDecl();
7462    }
7463  } else if (VDecl->isFileVarDecl()) {
7464    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7465        (!getLangOpts().CPlusPlus ||
7466         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7467      Diag(VDecl->getLocation(), diag::warn_extern_init);
7468
7469    // C99 6.7.8p4. All file scoped initializers need to be constant.
7470    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7471      CheckForConstantInitializer(Init, DclT);
7472  }
7473
7474  // We will represent direct-initialization similarly to copy-initialization:
7475  //    int x(1);  -as-> int x = 1;
7476  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7477  //
7478  // Clients that want to distinguish between the two forms, can check for
7479  // direct initializer using VarDecl::getInitStyle().
7480  // A major benefit is that clients that don't particularly care about which
7481  // exactly form was it (like the CodeGen) can handle both cases without
7482  // special case code.
7483
7484  // C++ 8.5p11:
7485  // The form of initialization (using parentheses or '=') is generally
7486  // insignificant, but does matter when the entity being initialized has a
7487  // class type.
7488  if (CXXDirectInit) {
7489    assert(DirectInit && "Call-style initializer must be direct init.");
7490    VDecl->setInitStyle(VarDecl::CallInit);
7491  } else if (DirectInit) {
7492    // This must be list-initialization. No other way is direct-initialization.
7493    VDecl->setInitStyle(VarDecl::ListInit);
7494  }
7495
7496  CheckCompleteVariableDeclaration(VDecl);
7497}
7498
7499/// ActOnInitializerError - Given that there was an error parsing an
7500/// initializer for the given declaration, try to return to some form
7501/// of sanity.
7502void Sema::ActOnInitializerError(Decl *D) {
7503  // Our main concern here is re-establishing invariants like "a
7504  // variable's type is either dependent or complete".
7505  if (!D || D->isInvalidDecl()) return;
7506
7507  VarDecl *VD = dyn_cast<VarDecl>(D);
7508  if (!VD) return;
7509
7510  // Auto types are meaningless if we can't make sense of the initializer.
7511  if (ParsingInitForAutoVars.count(D)) {
7512    D->setInvalidDecl();
7513    return;
7514  }
7515
7516  QualType Ty = VD->getType();
7517  if (Ty->isDependentType()) return;
7518
7519  // Require a complete type.
7520  if (RequireCompleteType(VD->getLocation(),
7521                          Context.getBaseElementType(Ty),
7522                          diag::err_typecheck_decl_incomplete_type)) {
7523    VD->setInvalidDecl();
7524    return;
7525  }
7526
7527  // Require an abstract type.
7528  if (RequireNonAbstractType(VD->getLocation(), Ty,
7529                             diag::err_abstract_type_in_decl,
7530                             AbstractVariableType)) {
7531    VD->setInvalidDecl();
7532    return;
7533  }
7534
7535  // Don't bother complaining about constructors or destructors,
7536  // though.
7537}
7538
7539void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7540                                  bool TypeMayContainAuto) {
7541  // If there is no declaration, there was an error parsing it. Just ignore it.
7542  if (RealDecl == 0)
7543    return;
7544
7545  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7546    QualType Type = Var->getType();
7547
7548    // C++11 [dcl.spec.auto]p3
7549    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7550      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7551        << Var->getDeclName() << Type;
7552      Var->setInvalidDecl();
7553      return;
7554    }
7555
7556    // C++11 [class.static.data]p3: A static data member can be declared with
7557    // the constexpr specifier; if so, its declaration shall specify
7558    // a brace-or-equal-initializer.
7559    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7560    // the definition of a variable [...] or the declaration of a static data
7561    // member.
7562    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7563      if (Var->isStaticDataMember())
7564        Diag(Var->getLocation(),
7565             diag::err_constexpr_static_mem_var_requires_init)
7566          << Var->getDeclName();
7567      else
7568        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7569      Var->setInvalidDecl();
7570      return;
7571    }
7572
7573    switch (Var->isThisDeclarationADefinition()) {
7574    case VarDecl::Definition:
7575      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7576        break;
7577
7578      // We have an out-of-line definition of a static data member
7579      // that has an in-class initializer, so we type-check this like
7580      // a declaration.
7581      //
7582      // Fall through
7583
7584    case VarDecl::DeclarationOnly:
7585      // It's only a declaration.
7586
7587      // Block scope. C99 6.7p7: If an identifier for an object is
7588      // declared with no linkage (C99 6.2.2p6), the type for the
7589      // object shall be complete.
7590      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7591          !Var->getLinkage() && !Var->isInvalidDecl() &&
7592          RequireCompleteType(Var->getLocation(), Type,
7593                              diag::err_typecheck_decl_incomplete_type))
7594        Var->setInvalidDecl();
7595
7596      // Make sure that the type is not abstract.
7597      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7598          RequireNonAbstractType(Var->getLocation(), Type,
7599                                 diag::err_abstract_type_in_decl,
7600                                 AbstractVariableType))
7601        Var->setInvalidDecl();
7602      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7603          Var->getStorageClass() == SC_PrivateExtern) {
7604        Diag(Var->getLocation(), diag::warn_private_extern);
7605        Diag(Var->getLocation(), diag::note_private_extern);
7606      }
7607
7608      return;
7609
7610    case VarDecl::TentativeDefinition:
7611      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7612      // object that has file scope without an initializer, and without a
7613      // storage-class specifier or with the storage-class specifier "static",
7614      // constitutes a tentative definition. Note: A tentative definition with
7615      // external linkage is valid (C99 6.2.2p5).
7616      if (!Var->isInvalidDecl()) {
7617        if (const IncompleteArrayType *ArrayT
7618                                    = Context.getAsIncompleteArrayType(Type)) {
7619          if (RequireCompleteType(Var->getLocation(),
7620                                  ArrayT->getElementType(),
7621                                  diag::err_illegal_decl_array_incomplete_type))
7622            Var->setInvalidDecl();
7623        } else if (Var->getStorageClass() == SC_Static) {
7624          // C99 6.9.2p3: If the declaration of an identifier for an object is
7625          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7626          // declared type shall not be an incomplete type.
7627          // NOTE: code such as the following
7628          //     static struct s;
7629          //     struct s { int a; };
7630          // is accepted by gcc. Hence here we issue a warning instead of
7631          // an error and we do not invalidate the static declaration.
7632          // NOTE: to avoid multiple warnings, only check the first declaration.
7633          if (Var->getPreviousDecl() == 0)
7634            RequireCompleteType(Var->getLocation(), Type,
7635                                diag::ext_typecheck_decl_incomplete_type);
7636        }
7637      }
7638
7639      // Record the tentative definition; we're done.
7640      if (!Var->isInvalidDecl())
7641        TentativeDefinitions.push_back(Var);
7642      return;
7643    }
7644
7645    // Provide a specific diagnostic for uninitialized variable
7646    // definitions with incomplete array type.
7647    if (Type->isIncompleteArrayType()) {
7648      Diag(Var->getLocation(),
7649           diag::err_typecheck_incomplete_array_needs_initializer);
7650      Var->setInvalidDecl();
7651      return;
7652    }
7653
7654    // Provide a specific diagnostic for uninitialized variable
7655    // definitions with reference type.
7656    if (Type->isReferenceType()) {
7657      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7658        << Var->getDeclName()
7659        << SourceRange(Var->getLocation(), Var->getLocation());
7660      Var->setInvalidDecl();
7661      return;
7662    }
7663
7664    // Do not attempt to type-check the default initializer for a
7665    // variable with dependent type.
7666    if (Type->isDependentType())
7667      return;
7668
7669    if (Var->isInvalidDecl())
7670      return;
7671
7672    if (RequireCompleteType(Var->getLocation(),
7673                            Context.getBaseElementType(Type),
7674                            diag::err_typecheck_decl_incomplete_type)) {
7675      Var->setInvalidDecl();
7676      return;
7677    }
7678
7679    // The variable can not have an abstract class type.
7680    if (RequireNonAbstractType(Var->getLocation(), Type,
7681                               diag::err_abstract_type_in_decl,
7682                               AbstractVariableType)) {
7683      Var->setInvalidDecl();
7684      return;
7685    }
7686
7687    // Check for jumps past the implicit initializer.  C++0x
7688    // clarifies that this applies to a "variable with automatic
7689    // storage duration", not a "local variable".
7690    // C++11 [stmt.dcl]p3
7691    //   A program that jumps from a point where a variable with automatic
7692    //   storage duration is not in scope to a point where it is in scope is
7693    //   ill-formed unless the variable has scalar type, class type with a
7694    //   trivial default constructor and a trivial destructor, a cv-qualified
7695    //   version of one of these types, or an array of one of the preceding
7696    //   types and is declared without an initializer.
7697    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7698      if (const RecordType *Record
7699            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7700        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7701        // Mark the function for further checking even if the looser rules of
7702        // C++11 do not require such checks, so that we can diagnose
7703        // incompatibilities with C++98.
7704        if (!CXXRecord->isPOD())
7705          getCurFunction()->setHasBranchProtectedScope();
7706      }
7707    }
7708
7709    // C++03 [dcl.init]p9:
7710    //   If no initializer is specified for an object, and the
7711    //   object is of (possibly cv-qualified) non-POD class type (or
7712    //   array thereof), the object shall be default-initialized; if
7713    //   the object is of const-qualified type, the underlying class
7714    //   type shall have a user-declared default
7715    //   constructor. Otherwise, if no initializer is specified for
7716    //   a non- static object, the object and its subobjects, if
7717    //   any, have an indeterminate initial value); if the object
7718    //   or any of its subobjects are of const-qualified type, the
7719    //   program is ill-formed.
7720    // C++0x [dcl.init]p11:
7721    //   If no initializer is specified for an object, the object is
7722    //   default-initialized; [...].
7723    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7724    InitializationKind Kind
7725      = InitializationKind::CreateDefault(Var->getLocation());
7726
7727    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7728    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7729    if (Init.isInvalid())
7730      Var->setInvalidDecl();
7731    else if (Init.get()) {
7732      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7733      // This is important for template substitution.
7734      Var->setInitStyle(VarDecl::CallInit);
7735    }
7736
7737    CheckCompleteVariableDeclaration(Var);
7738  }
7739}
7740
7741void Sema::ActOnCXXForRangeDecl(Decl *D) {
7742  VarDecl *VD = dyn_cast<VarDecl>(D);
7743  if (!VD) {
7744    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7745    D->setInvalidDecl();
7746    return;
7747  }
7748
7749  VD->setCXXForRangeDecl(true);
7750
7751  // for-range-declaration cannot be given a storage class specifier.
7752  int Error = -1;
7753  switch (VD->getStorageClassAsWritten()) {
7754  case SC_None:
7755    break;
7756  case SC_Extern:
7757    Error = 0;
7758    break;
7759  case SC_Static:
7760    Error = 1;
7761    break;
7762  case SC_PrivateExtern:
7763    Error = 2;
7764    break;
7765  case SC_Auto:
7766    Error = 3;
7767    break;
7768  case SC_Register:
7769    Error = 4;
7770    break;
7771  case SC_OpenCLWorkGroupLocal:
7772    llvm_unreachable("Unexpected storage class");
7773  }
7774  if (VD->isConstexpr())
7775    Error = 5;
7776  if (Error != -1) {
7777    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7778      << VD->getDeclName() << Error;
7779    D->setInvalidDecl();
7780  }
7781}
7782
7783void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7784  if (var->isInvalidDecl()) return;
7785
7786  // In ARC, don't allow jumps past the implicit initialization of a
7787  // local retaining variable.
7788  if (getLangOpts().ObjCAutoRefCount &&
7789      var->hasLocalStorage()) {
7790    switch (var->getType().getObjCLifetime()) {
7791    case Qualifiers::OCL_None:
7792    case Qualifiers::OCL_ExplicitNone:
7793    case Qualifiers::OCL_Autoreleasing:
7794      break;
7795
7796    case Qualifiers::OCL_Weak:
7797    case Qualifiers::OCL_Strong:
7798      getCurFunction()->setHasBranchProtectedScope();
7799      break;
7800    }
7801  }
7802
7803  if (var->isThisDeclarationADefinition() &&
7804      var->hasExternalLinkage() &&
7805      getDiagnostics().getDiagnosticLevel(
7806                       diag::warn_missing_variable_declarations,
7807                       var->getLocation())) {
7808    // Find a previous declaration that's not a definition.
7809    VarDecl *prev = var->getPreviousDecl();
7810    while (prev && prev->isThisDeclarationADefinition())
7811      prev = prev->getPreviousDecl();
7812
7813    if (!prev)
7814      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7815  }
7816
7817  // All the following checks are C++ only.
7818  if (!getLangOpts().CPlusPlus) return;
7819
7820  QualType type = var->getType();
7821  if (type->isDependentType()) return;
7822
7823  // __block variables might require us to capture a copy-initializer.
7824  if (var->hasAttr<BlocksAttr>()) {
7825    // It's currently invalid to ever have a __block variable with an
7826    // array type; should we diagnose that here?
7827
7828    // Regardless, we don't want to ignore array nesting when
7829    // constructing this copy.
7830    if (type->isStructureOrClassType()) {
7831      SourceLocation poi = var->getLocation();
7832      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7833      ExprResult result
7834        = PerformMoveOrCopyInitialization(
7835            InitializedEntity::InitializeBlock(poi, type, false),
7836            var, var->getType(), varRef, /*AllowNRVO=*/true);
7837      if (!result.isInvalid()) {
7838        result = MaybeCreateExprWithCleanups(result);
7839        Expr *init = result.takeAs<Expr>();
7840        Context.setBlockVarCopyInits(var, init);
7841      }
7842    }
7843  }
7844
7845  Expr *Init = var->getInit();
7846  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7847  QualType baseType = Context.getBaseElementType(type);
7848
7849  if (!var->getDeclContext()->isDependentContext() &&
7850      Init && !Init->isValueDependent()) {
7851    if (IsGlobal && !var->isConstexpr() &&
7852        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7853                                            var->getLocation())
7854          != DiagnosticsEngine::Ignored &&
7855        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7856      Diag(var->getLocation(), diag::warn_global_constructor)
7857        << Init->getSourceRange();
7858
7859    if (var->isConstexpr()) {
7860      SmallVector<PartialDiagnosticAt, 8> Notes;
7861      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7862        SourceLocation DiagLoc = var->getLocation();
7863        // If the note doesn't add any useful information other than a source
7864        // location, fold it into the primary diagnostic.
7865        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7866              diag::note_invalid_subexpr_in_const_expr) {
7867          DiagLoc = Notes[0].first;
7868          Notes.clear();
7869        }
7870        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7871          << var << Init->getSourceRange();
7872        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7873          Diag(Notes[I].first, Notes[I].second);
7874      }
7875    } else if (var->isUsableInConstantExpressions(Context)) {
7876      // Check whether the initializer of a const variable of integral or
7877      // enumeration type is an ICE now, since we can't tell whether it was
7878      // initialized by a constant expression if we check later.
7879      var->checkInitIsICE();
7880    }
7881  }
7882
7883  // Require the destructor.
7884  if (const RecordType *recordType = baseType->getAs<RecordType>())
7885    FinalizeVarWithDestructor(var, recordType);
7886}
7887
7888/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7889/// any semantic actions necessary after any initializer has been attached.
7890void
7891Sema::FinalizeDeclaration(Decl *ThisDecl) {
7892  // Note that we are no longer parsing the initializer for this declaration.
7893  ParsingInitForAutoVars.erase(ThisDecl);
7894
7895  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7896  if (!VD)
7897    return;
7898
7899  const DeclContext *DC = VD->getDeclContext();
7900  // If there's a #pragma GCC visibility in scope, and this isn't a class
7901  // member, set the visibility of this variable.
7902  if (VD->hasExternalLinkage() && !DC->isRecord())
7903    AddPushedVisibilityAttribute(VD);
7904
7905  if (VD->isFileVarDecl())
7906    MarkUnusedFileScopedDecl(VD);
7907
7908  // Now we have parsed the initializer and can update the table of magic
7909  // tag values.
7910  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7911      !VD->getType()->isIntegralOrEnumerationType())
7912    return;
7913
7914  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7915         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7916         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7917       I != E; ++I) {
7918    const Expr *MagicValueExpr = VD->getInit();
7919    if (!MagicValueExpr) {
7920      continue;
7921    }
7922    llvm::APSInt MagicValueInt;
7923    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7924      Diag(I->getRange().getBegin(),
7925           diag::err_type_tag_for_datatype_not_ice)
7926        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7927      continue;
7928    }
7929    if (MagicValueInt.getActiveBits() > 64) {
7930      Diag(I->getRange().getBegin(),
7931           diag::err_type_tag_for_datatype_too_large)
7932        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7933      continue;
7934    }
7935    uint64_t MagicValue = MagicValueInt.getZExtValue();
7936    RegisterTypeTagForDatatype(I->getArgumentKind(),
7937                               MagicValue,
7938                               I->getMatchingCType(),
7939                               I->getLayoutCompatible(),
7940                               I->getMustBeNull());
7941  }
7942}
7943
7944Sema::DeclGroupPtrTy
7945Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7946                              Decl **Group, unsigned NumDecls) {
7947  SmallVector<Decl*, 8> Decls;
7948
7949  if (DS.isTypeSpecOwned())
7950    Decls.push_back(DS.getRepAsDecl());
7951
7952  for (unsigned i = 0; i != NumDecls; ++i)
7953    if (Decl *D = Group[i])
7954      Decls.push_back(D);
7955
7956  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7957    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7958      getASTContext().addUnnamedTag(Tag);
7959
7960  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7961                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7962}
7963
7964/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7965/// group, performing any necessary semantic checking.
7966Sema::DeclGroupPtrTy
7967Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7968                           bool TypeMayContainAuto) {
7969  // C++0x [dcl.spec.auto]p7:
7970  //   If the type deduced for the template parameter U is not the same in each
7971  //   deduction, the program is ill-formed.
7972  // FIXME: When initializer-list support is added, a distinction is needed
7973  // between the deduced type U and the deduced type which 'auto' stands for.
7974  //   auto a = 0, b = { 1, 2, 3 };
7975  // is legal because the deduced type U is 'int' in both cases.
7976  if (TypeMayContainAuto && NumDecls > 1) {
7977    QualType Deduced;
7978    CanQualType DeducedCanon;
7979    VarDecl *DeducedDecl = 0;
7980    for (unsigned i = 0; i != NumDecls; ++i) {
7981      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7982        AutoType *AT = D->getType()->getContainedAutoType();
7983        // Don't reissue diagnostics when instantiating a template.
7984        if (AT && D->isInvalidDecl())
7985          break;
7986        if (AT && AT->isDeduced()) {
7987          QualType U = AT->getDeducedType();
7988          CanQualType UCanon = Context.getCanonicalType(U);
7989          if (Deduced.isNull()) {
7990            Deduced = U;
7991            DeducedCanon = UCanon;
7992            DeducedDecl = D;
7993          } else if (DeducedCanon != UCanon) {
7994            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7995                 diag::err_auto_different_deductions)
7996              << Deduced << DeducedDecl->getDeclName()
7997              << U << D->getDeclName()
7998              << DeducedDecl->getInit()->getSourceRange()
7999              << D->getInit()->getSourceRange();
8000            D->setInvalidDecl();
8001            break;
8002          }
8003        }
8004      }
8005    }
8006  }
8007
8008  ActOnDocumentableDecls(Group, NumDecls);
8009
8010  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8011}
8012
8013void Sema::ActOnDocumentableDecl(Decl *D) {
8014  ActOnDocumentableDecls(&D, 1);
8015}
8016
8017void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8018  // Don't parse the comment if Doxygen diagnostics are ignored.
8019  if (NumDecls == 0 || !Group[0])
8020   return;
8021
8022  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8023                               Group[0]->getLocation())
8024        == DiagnosticsEngine::Ignored)
8025    return;
8026
8027  if (NumDecls >= 2) {
8028    // This is a decl group.  Normally it will contain only declarations
8029    // procuded from declarator list.  But in case we have any definitions or
8030    // additional declaration references:
8031    //   'typedef struct S {} S;'
8032    //   'typedef struct S *S;'
8033    //   'struct S *pS;'
8034    // FinalizeDeclaratorGroup adds these as separate declarations.
8035    Decl *MaybeTagDecl = Group[0];
8036    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8037      Group++;
8038      NumDecls--;
8039    }
8040  }
8041
8042  // See if there are any new comments that are not attached to a decl.
8043  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8044  if (!Comments.empty() &&
8045      !Comments.back()->isAttached()) {
8046    // There is at least one comment that not attached to a decl.
8047    // Maybe it should be attached to one of these decls?
8048    //
8049    // Note that this way we pick up not only comments that precede the
8050    // declaration, but also comments that *follow* the declaration -- thanks to
8051    // the lookahead in the lexer: we've consumed the semicolon and looked
8052    // ahead through comments.
8053    for (unsigned i = 0; i != NumDecls; ++i)
8054      Context.getCommentForDecl(Group[i], &PP);
8055  }
8056}
8057
8058/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8059/// to introduce parameters into function prototype scope.
8060Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8061  const DeclSpec &DS = D.getDeclSpec();
8062
8063  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8064  // C++03 [dcl.stc]p2 also permits 'auto'.
8065  VarDecl::StorageClass StorageClass = SC_None;
8066  VarDecl::StorageClass StorageClassAsWritten = SC_None;
8067  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8068    StorageClass = SC_Register;
8069    StorageClassAsWritten = SC_Register;
8070  } else if (getLangOpts().CPlusPlus &&
8071             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8072    StorageClass = SC_Auto;
8073    StorageClassAsWritten = SC_Auto;
8074  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8075    Diag(DS.getStorageClassSpecLoc(),
8076         diag::err_invalid_storage_class_in_func_decl);
8077    D.getMutableDeclSpec().ClearStorageClassSpecs();
8078  }
8079
8080  if (D.getDeclSpec().isThreadSpecified())
8081    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8082  if (D.getDeclSpec().isConstexprSpecified())
8083    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8084      << 0;
8085
8086  DiagnoseFunctionSpecifiers(D);
8087
8088  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8089  QualType parmDeclType = TInfo->getType();
8090
8091  if (getLangOpts().CPlusPlus) {
8092    // Check that there are no default arguments inside the type of this
8093    // parameter.
8094    CheckExtraCXXDefaultArguments(D);
8095
8096    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8097    if (D.getCXXScopeSpec().isSet()) {
8098      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8099        << D.getCXXScopeSpec().getRange();
8100      D.getCXXScopeSpec().clear();
8101    }
8102  }
8103
8104  // Ensure we have a valid name
8105  IdentifierInfo *II = 0;
8106  if (D.hasName()) {
8107    II = D.getIdentifier();
8108    if (!II) {
8109      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8110        << GetNameForDeclarator(D).getName().getAsString();
8111      D.setInvalidType(true);
8112    }
8113  }
8114
8115  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8116  if (II) {
8117    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8118                   ForRedeclaration);
8119    LookupName(R, S);
8120    if (R.isSingleResult()) {
8121      NamedDecl *PrevDecl = R.getFoundDecl();
8122      if (PrevDecl->isTemplateParameter()) {
8123        // Maybe we will complain about the shadowed template parameter.
8124        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8125        // Just pretend that we didn't see the previous declaration.
8126        PrevDecl = 0;
8127      } else if (S->isDeclScope(PrevDecl)) {
8128        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8129        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8130
8131        // Recover by removing the name
8132        II = 0;
8133        D.SetIdentifier(0, D.getIdentifierLoc());
8134        D.setInvalidType(true);
8135      }
8136    }
8137  }
8138
8139  // Temporarily put parameter variables in the translation unit, not
8140  // the enclosing context.  This prevents them from accidentally
8141  // looking like class members in C++.
8142  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8143                                    D.getLocStart(),
8144                                    D.getIdentifierLoc(), II,
8145                                    parmDeclType, TInfo,
8146                                    StorageClass, StorageClassAsWritten);
8147
8148  if (D.isInvalidType())
8149    New->setInvalidDecl();
8150
8151  assert(S->isFunctionPrototypeScope());
8152  assert(S->getFunctionPrototypeDepth() >= 1);
8153  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8154                    S->getNextFunctionPrototypeIndex());
8155
8156  // Add the parameter declaration into this scope.
8157  S->AddDecl(New);
8158  if (II)
8159    IdResolver.AddDecl(New);
8160
8161  ProcessDeclAttributes(S, New, D);
8162
8163  if (D.getDeclSpec().isModulePrivateSpecified())
8164    Diag(New->getLocation(), diag::err_module_private_local)
8165      << 1 << New->getDeclName()
8166      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8167      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8168
8169  if (New->hasAttr<BlocksAttr>()) {
8170    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8171  }
8172  return New;
8173}
8174
8175/// \brief Synthesizes a variable for a parameter arising from a
8176/// typedef.
8177ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8178                                              SourceLocation Loc,
8179                                              QualType T) {
8180  /* FIXME: setting StartLoc == Loc.
8181     Would it be worth to modify callers so as to provide proper source
8182     location for the unnamed parameters, embedding the parameter's type? */
8183  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8184                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8185                                           SC_None, SC_None, 0);
8186  Param->setImplicit();
8187  return Param;
8188}
8189
8190void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8191                                    ParmVarDecl * const *ParamEnd) {
8192  // Don't diagnose unused-parameter errors in template instantiations; we
8193  // will already have done so in the template itself.
8194  if (!ActiveTemplateInstantiations.empty())
8195    return;
8196
8197  for (; Param != ParamEnd; ++Param) {
8198    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8199        !(*Param)->hasAttr<UnusedAttr>()) {
8200      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8201        << (*Param)->getDeclName();
8202    }
8203  }
8204}
8205
8206void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8207                                                  ParmVarDecl * const *ParamEnd,
8208                                                  QualType ReturnTy,
8209                                                  NamedDecl *D) {
8210  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8211    return;
8212
8213  // Warn if the return value is pass-by-value and larger than the specified
8214  // threshold.
8215  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8216    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8217    if (Size > LangOpts.NumLargeByValueCopy)
8218      Diag(D->getLocation(), diag::warn_return_value_size)
8219          << D->getDeclName() << Size;
8220  }
8221
8222  // Warn if any parameter is pass-by-value and larger than the specified
8223  // threshold.
8224  for (; Param != ParamEnd; ++Param) {
8225    QualType T = (*Param)->getType();
8226    if (T->isDependentType() || !T.isPODType(Context))
8227      continue;
8228    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8229    if (Size > LangOpts.NumLargeByValueCopy)
8230      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8231          << (*Param)->getDeclName() << Size;
8232  }
8233}
8234
8235ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8236                                  SourceLocation NameLoc, IdentifierInfo *Name,
8237                                  QualType T, TypeSourceInfo *TSInfo,
8238                                  VarDecl::StorageClass StorageClass,
8239                                  VarDecl::StorageClass StorageClassAsWritten) {
8240  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8241  if (getLangOpts().ObjCAutoRefCount &&
8242      T.getObjCLifetime() == Qualifiers::OCL_None &&
8243      T->isObjCLifetimeType()) {
8244
8245    Qualifiers::ObjCLifetime lifetime;
8246
8247    // Special cases for arrays:
8248    //   - if it's const, use __unsafe_unretained
8249    //   - otherwise, it's an error
8250    if (T->isArrayType()) {
8251      if (!T.isConstQualified()) {
8252        DelayedDiagnostics.add(
8253            sema::DelayedDiagnostic::makeForbiddenType(
8254            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8255      }
8256      lifetime = Qualifiers::OCL_ExplicitNone;
8257    } else {
8258      lifetime = T->getObjCARCImplicitLifetime();
8259    }
8260    T = Context.getLifetimeQualifiedType(T, lifetime);
8261  }
8262
8263  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8264                                         Context.getAdjustedParameterType(T),
8265                                         TSInfo,
8266                                         StorageClass, StorageClassAsWritten,
8267                                         0);
8268
8269  // Parameters can not be abstract class types.
8270  // For record types, this is done by the AbstractClassUsageDiagnoser once
8271  // the class has been completely parsed.
8272  if (!CurContext->isRecord() &&
8273      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8274                             AbstractParamType))
8275    New->setInvalidDecl();
8276
8277  // Parameter declarators cannot be interface types. All ObjC objects are
8278  // passed by reference.
8279  if (T->isObjCObjectType()) {
8280    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8281    Diag(NameLoc,
8282         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8283      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8284    T = Context.getObjCObjectPointerType(T);
8285    New->setType(T);
8286  }
8287
8288  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8289  // duration shall not be qualified by an address-space qualifier."
8290  // Since all parameters have automatic store duration, they can not have
8291  // an address space.
8292  if (T.getAddressSpace() != 0) {
8293    Diag(NameLoc, diag::err_arg_with_address_space);
8294    New->setInvalidDecl();
8295  }
8296
8297  return New;
8298}
8299
8300void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8301                                           SourceLocation LocAfterDecls) {
8302  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8303
8304  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8305  // for a K&R function.
8306  if (!FTI.hasPrototype) {
8307    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8308      --i;
8309      if (FTI.ArgInfo[i].Param == 0) {
8310        SmallString<256> Code;
8311        llvm::raw_svector_ostream(Code) << "  int "
8312                                        << FTI.ArgInfo[i].Ident->getName()
8313                                        << ";\n";
8314        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8315          << FTI.ArgInfo[i].Ident
8316          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8317
8318        // Implicitly declare the argument as type 'int' for lack of a better
8319        // type.
8320        AttributeFactory attrs;
8321        DeclSpec DS(attrs);
8322        const char* PrevSpec; // unused
8323        unsigned DiagID; // unused
8324        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8325                           PrevSpec, DiagID);
8326        // Use the identifier location for the type source range.
8327        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8328        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8329        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8330        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8331        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8332      }
8333    }
8334  }
8335}
8336
8337Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8338  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8339  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8340  Scope *ParentScope = FnBodyScope->getParent();
8341
8342  D.setFunctionDefinitionKind(FDK_Definition);
8343  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8344  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8345}
8346
8347static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8348                             const FunctionDecl*& PossibleZeroParamPrototype) {
8349  // Don't warn about invalid declarations.
8350  if (FD->isInvalidDecl())
8351    return false;
8352
8353  // Or declarations that aren't global.
8354  if (!FD->isGlobal())
8355    return false;
8356
8357  // Don't warn about C++ member functions.
8358  if (isa<CXXMethodDecl>(FD))
8359    return false;
8360
8361  // Don't warn about 'main'.
8362  if (FD->isMain())
8363    return false;
8364
8365  // Don't warn about inline functions.
8366  if (FD->isInlined())
8367    return false;
8368
8369  // Don't warn about function templates.
8370  if (FD->getDescribedFunctionTemplate())
8371    return false;
8372
8373  // Don't warn about function template specializations.
8374  if (FD->isFunctionTemplateSpecialization())
8375    return false;
8376
8377  // Don't warn for OpenCL kernels.
8378  if (FD->hasAttr<OpenCLKernelAttr>())
8379    return false;
8380
8381  bool MissingPrototype = true;
8382  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8383       Prev; Prev = Prev->getPreviousDecl()) {
8384    // Ignore any declarations that occur in function or method
8385    // scope, because they aren't visible from the header.
8386    if (Prev->getDeclContext()->isFunctionOrMethod())
8387      continue;
8388
8389    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8390    if (FD->getNumParams() == 0)
8391      PossibleZeroParamPrototype = Prev;
8392    break;
8393  }
8394
8395  return MissingPrototype;
8396}
8397
8398void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8399  // Don't complain if we're in GNU89 mode and the previous definition
8400  // was an extern inline function.
8401  const FunctionDecl *Definition;
8402  if (FD->isDefined(Definition) &&
8403      !canRedefineFunction(Definition, getLangOpts())) {
8404    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8405        Definition->getStorageClass() == SC_Extern)
8406      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8407        << FD->getDeclName() << getLangOpts().CPlusPlus;
8408    else
8409      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8410    Diag(Definition->getLocation(), diag::note_previous_definition);
8411    FD->setInvalidDecl();
8412  }
8413}
8414
8415Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8416  // Clear the last template instantiation error context.
8417  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8418
8419  if (!D)
8420    return D;
8421  FunctionDecl *FD = 0;
8422
8423  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8424    FD = FunTmpl->getTemplatedDecl();
8425  else
8426    FD = cast<FunctionDecl>(D);
8427
8428  // Enter a new function scope
8429  PushFunctionScope();
8430
8431  // See if this is a redefinition.
8432  if (!FD->isLateTemplateParsed())
8433    CheckForFunctionRedefinition(FD);
8434
8435  // Builtin functions cannot be defined.
8436  if (unsigned BuiltinID = FD->getBuiltinID()) {
8437    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8438      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8439      FD->setInvalidDecl();
8440    }
8441  }
8442
8443  // The return type of a function definition must be complete
8444  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8445  QualType ResultType = FD->getResultType();
8446  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8447      !FD->isInvalidDecl() &&
8448      RequireCompleteType(FD->getLocation(), ResultType,
8449                          diag::err_func_def_incomplete_result))
8450    FD->setInvalidDecl();
8451
8452  // GNU warning -Wmissing-prototypes:
8453  //   Warn if a global function is defined without a previous
8454  //   prototype declaration. This warning is issued even if the
8455  //   definition itself provides a prototype. The aim is to detect
8456  //   global functions that fail to be declared in header files.
8457  const FunctionDecl *PossibleZeroParamPrototype = 0;
8458  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8459    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8460
8461    if (PossibleZeroParamPrototype) {
8462      // We found a declaration that is not a prototype,
8463      // but that could be a zero-parameter prototype
8464      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8465      TypeLoc TL = TI->getTypeLoc();
8466      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8467        Diag(PossibleZeroParamPrototype->getLocation(),
8468             diag::note_declaration_not_a_prototype)
8469          << PossibleZeroParamPrototype
8470          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8471    }
8472  }
8473
8474  if (FnBodyScope)
8475    PushDeclContext(FnBodyScope, FD);
8476
8477  // Check the validity of our function parameters
8478  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8479                           /*CheckParameterNames=*/true);
8480
8481  // Introduce our parameters into the function scope
8482  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8483    ParmVarDecl *Param = FD->getParamDecl(p);
8484    Param->setOwningFunction(FD);
8485
8486    // If this has an identifier, add it to the scope stack.
8487    if (Param->getIdentifier() && FnBodyScope) {
8488      CheckShadow(FnBodyScope, Param);
8489
8490      PushOnScopeChains(Param, FnBodyScope);
8491    }
8492  }
8493
8494  // If we had any tags defined in the function prototype,
8495  // introduce them into the function scope.
8496  if (FnBodyScope) {
8497    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8498           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8499      NamedDecl *D = *I;
8500
8501      // Some of these decls (like enums) may have been pinned to the translation unit
8502      // for lack of a real context earlier. If so, remove from the translation unit
8503      // and reattach to the current context.
8504      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8505        // Is the decl actually in the context?
8506        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8507               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8508          if (*DI == D) {
8509            Context.getTranslationUnitDecl()->removeDecl(D);
8510            break;
8511          }
8512        }
8513        // Either way, reassign the lexical decl context to our FunctionDecl.
8514        D->setLexicalDeclContext(CurContext);
8515      }
8516
8517      // If the decl has a non-null name, make accessible in the current scope.
8518      if (!D->getName().empty())
8519        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8520
8521      // Similarly, dive into enums and fish their constants out, making them
8522      // accessible in this scope.
8523      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8524        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8525               EE = ED->enumerator_end(); EI != EE; ++EI)
8526          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8527      }
8528    }
8529  }
8530
8531  // Ensure that the function's exception specification is instantiated.
8532  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8533    ResolveExceptionSpec(D->getLocation(), FPT);
8534
8535  // Checking attributes of current function definition
8536  // dllimport attribute.
8537  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8538  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8539    // dllimport attribute cannot be directly applied to definition.
8540    // Microsoft accepts dllimport for functions defined within class scope.
8541    if (!DA->isInherited() &&
8542        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8543      Diag(FD->getLocation(),
8544           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8545        << "dllimport";
8546      FD->setInvalidDecl();
8547      return D;
8548    }
8549
8550    // Visual C++ appears to not think this is an issue, so only issue
8551    // a warning when Microsoft extensions are disabled.
8552    if (!LangOpts.MicrosoftExt) {
8553      // If a symbol previously declared dllimport is later defined, the
8554      // attribute is ignored in subsequent references, and a warning is
8555      // emitted.
8556      Diag(FD->getLocation(),
8557           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8558        << FD->getName() << "dllimport";
8559    }
8560  }
8561  // We want to attach documentation to original Decl (which might be
8562  // a function template).
8563  ActOnDocumentableDecl(D);
8564  return D;
8565}
8566
8567/// \brief Given the set of return statements within a function body,
8568/// compute the variables that are subject to the named return value
8569/// optimization.
8570///
8571/// Each of the variables that is subject to the named return value
8572/// optimization will be marked as NRVO variables in the AST, and any
8573/// return statement that has a marked NRVO variable as its NRVO candidate can
8574/// use the named return value optimization.
8575///
8576/// This function applies a very simplistic algorithm for NRVO: if every return
8577/// statement in the function has the same NRVO candidate, that candidate is
8578/// the NRVO variable.
8579///
8580/// FIXME: Employ a smarter algorithm that accounts for multiple return
8581/// statements and the lifetimes of the NRVO candidates. We should be able to
8582/// find a maximal set of NRVO variables.
8583void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8584  ReturnStmt **Returns = Scope->Returns.data();
8585
8586  const VarDecl *NRVOCandidate = 0;
8587  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8588    if (!Returns[I]->getNRVOCandidate())
8589      return;
8590
8591    if (!NRVOCandidate)
8592      NRVOCandidate = Returns[I]->getNRVOCandidate();
8593    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8594      return;
8595  }
8596
8597  if (NRVOCandidate)
8598    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8599}
8600
8601bool Sema::canSkipFunctionBody(Decl *D) {
8602  if (!Consumer.shouldSkipFunctionBody(D))
8603    return false;
8604
8605  if (isa<ObjCMethodDecl>(D))
8606    return true;
8607
8608  FunctionDecl *FD = 0;
8609  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8610    FD = FTD->getTemplatedDecl();
8611  else
8612    FD = cast<FunctionDecl>(D);
8613
8614  // We cannot skip the body of a function (or function template) which is
8615  // constexpr, since we may need to evaluate its body in order to parse the
8616  // rest of the file.
8617  return !FD->isConstexpr();
8618}
8619
8620Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8621  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8622    FD->setHasSkippedBody();
8623  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8624    MD->setHasSkippedBody();
8625  return ActOnFinishFunctionBody(Decl, 0);
8626}
8627
8628Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8629  return ActOnFinishFunctionBody(D, BodyArg, false);
8630}
8631
8632Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8633                                    bool IsInstantiation) {
8634  FunctionDecl *FD = 0;
8635  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8636  if (FunTmpl)
8637    FD = FunTmpl->getTemplatedDecl();
8638  else
8639    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8640
8641  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8642  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8643
8644  if (FD) {
8645    FD->setBody(Body);
8646
8647    // The only way to be included in UndefinedButUsed is if there is an
8648    // ODR use before the definition. Avoid the expensive map lookup if this
8649    // is the first declaration.
8650    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8651      if (FD->getLinkage() != ExternalLinkage)
8652        UndefinedButUsed.erase(FD);
8653      else if (FD->isInlined() &&
8654               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8655               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8656        UndefinedButUsed.erase(FD);
8657    }
8658
8659    // If the function implicitly returns zero (like 'main') or is naked,
8660    // don't complain about missing return statements.
8661    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8662      WP.disableCheckFallThrough();
8663
8664    // MSVC permits the use of pure specifier (=0) on function definition,
8665    // defined at class scope, warn about this non standard construct.
8666    if (getLangOpts().MicrosoftExt && FD->isPure())
8667      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8668
8669    if (!FD->isInvalidDecl()) {
8670      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8671      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8672                                             FD->getResultType(), FD);
8673
8674      // If this is a constructor, we need a vtable.
8675      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8676        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8677
8678      // Try to apply the named return value optimization. We have to check
8679      // if we can do this here because lambdas keep return statements around
8680      // to deduce an implicit return type.
8681      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8682          !FD->isDependentContext())
8683        computeNRVO(Body, getCurFunction());
8684    }
8685
8686    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8687           "Function parsing confused");
8688  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8689    assert(MD == getCurMethodDecl() && "Method parsing confused");
8690    MD->setBody(Body);
8691    if (!MD->isInvalidDecl()) {
8692      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8693      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8694                                             MD->getResultType(), MD);
8695
8696      if (Body)
8697        computeNRVO(Body, getCurFunction());
8698    }
8699    if (getCurFunction()->ObjCShouldCallSuper) {
8700      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8701        << MD->getSelector().getAsString();
8702      getCurFunction()->ObjCShouldCallSuper = false;
8703    }
8704  } else {
8705    return 0;
8706  }
8707
8708  assert(!getCurFunction()->ObjCShouldCallSuper &&
8709         "This should only be set for ObjC methods, which should have been "
8710         "handled in the block above.");
8711
8712  // Verify and clean out per-function state.
8713  if (Body) {
8714    // C++ constructors that have function-try-blocks can't have return
8715    // statements in the handlers of that block. (C++ [except.handle]p14)
8716    // Verify this.
8717    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8718      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8719
8720    // Verify that gotos and switch cases don't jump into scopes illegally.
8721    if (getCurFunction()->NeedsScopeChecking() &&
8722        !dcl->isInvalidDecl() &&
8723        !hasAnyUnrecoverableErrorsInThisFunction() &&
8724        !PP.isCodeCompletionEnabled())
8725      DiagnoseInvalidJumps(Body);
8726
8727    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8728      if (!Destructor->getParent()->isDependentType())
8729        CheckDestructor(Destructor);
8730
8731      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8732                                             Destructor->getParent());
8733    }
8734
8735    // If any errors have occurred, clear out any temporaries that may have
8736    // been leftover. This ensures that these temporaries won't be picked up for
8737    // deletion in some later function.
8738    if (PP.getDiagnostics().hasErrorOccurred() ||
8739        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8740      DiscardCleanupsInEvaluationContext();
8741    }
8742    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8743        !isa<FunctionTemplateDecl>(dcl)) {
8744      // Since the body is valid, issue any analysis-based warnings that are
8745      // enabled.
8746      ActivePolicy = &WP;
8747    }
8748
8749    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8750        (!CheckConstexprFunctionDecl(FD) ||
8751         !CheckConstexprFunctionBody(FD, Body)))
8752      FD->setInvalidDecl();
8753
8754    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8755    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8756    assert(MaybeODRUseExprs.empty() &&
8757           "Leftover expressions for odr-use checking");
8758  }
8759
8760  if (!IsInstantiation)
8761    PopDeclContext();
8762
8763  PopFunctionScopeInfo(ActivePolicy, dcl);
8764
8765  // If any errors have occurred, clear out any temporaries that may have
8766  // been leftover. This ensures that these temporaries won't be picked up for
8767  // deletion in some later function.
8768  if (getDiagnostics().hasErrorOccurred()) {
8769    DiscardCleanupsInEvaluationContext();
8770  }
8771
8772  return dcl;
8773}
8774
8775
8776/// When we finish delayed parsing of an attribute, we must attach it to the
8777/// relevant Decl.
8778void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8779                                       ParsedAttributes &Attrs) {
8780  // Always attach attributes to the underlying decl.
8781  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8782    D = TD->getTemplatedDecl();
8783  ProcessDeclAttributeList(S, D, Attrs.getList());
8784
8785  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8786    if (Method->isStatic())
8787      checkThisInStaticMemberFunctionAttributes(Method);
8788}
8789
8790
8791/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8792/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8793NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8794                                          IdentifierInfo &II, Scope *S) {
8795  // Before we produce a declaration for an implicitly defined
8796  // function, see whether there was a locally-scoped declaration of
8797  // this name as a function or variable. If so, use that
8798  // (non-visible) declaration, and complain about it.
8799  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8800    = findLocallyScopedExternCDecl(&II);
8801  if (Pos != LocallyScopedExternCDecls.end()) {
8802    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8803    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8804    return Pos->second;
8805  }
8806
8807  // Extension in C99.  Legal in C90, but warn about it.
8808  unsigned diag_id;
8809  if (II.getName().startswith("__builtin_"))
8810    diag_id = diag::warn_builtin_unknown;
8811  else if (getLangOpts().C99)
8812    diag_id = diag::ext_implicit_function_decl;
8813  else
8814    diag_id = diag::warn_implicit_function_decl;
8815  Diag(Loc, diag_id) << &II;
8816
8817  // Because typo correction is expensive, only do it if the implicit
8818  // function declaration is going to be treated as an error.
8819  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8820    TypoCorrection Corrected;
8821    DeclFilterCCC<FunctionDecl> Validator;
8822    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8823                                      LookupOrdinaryName, S, 0, Validator))) {
8824      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8825      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8826      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8827
8828      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8829          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8830
8831      if (Func->getLocation().isValid()
8832          && !II.getName().startswith("__builtin_"))
8833        Diag(Func->getLocation(), diag::note_previous_decl)
8834            << CorrectedQuotedStr;
8835    }
8836  }
8837
8838  // Set a Declarator for the implicit definition: int foo();
8839  const char *Dummy;
8840  AttributeFactory attrFactory;
8841  DeclSpec DS(attrFactory);
8842  unsigned DiagID;
8843  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8844  (void)Error; // Silence warning.
8845  assert(!Error && "Error setting up implicit decl!");
8846  SourceLocation NoLoc;
8847  Declarator D(DS, Declarator::BlockContext);
8848  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8849                                             /*IsAmbiguous=*/false,
8850                                             /*RParenLoc=*/NoLoc,
8851                                             /*ArgInfo=*/0,
8852                                             /*NumArgs=*/0,
8853                                             /*EllipsisLoc=*/NoLoc,
8854                                             /*RParenLoc=*/NoLoc,
8855                                             /*TypeQuals=*/0,
8856                                             /*RefQualifierIsLvalueRef=*/true,
8857                                             /*RefQualifierLoc=*/NoLoc,
8858                                             /*ConstQualifierLoc=*/NoLoc,
8859                                             /*VolatileQualifierLoc=*/NoLoc,
8860                                             /*MutableLoc=*/NoLoc,
8861                                             EST_None,
8862                                             /*ESpecLoc=*/NoLoc,
8863                                             /*Exceptions=*/0,
8864                                             /*ExceptionRanges=*/0,
8865                                             /*NumExceptions=*/0,
8866                                             /*NoexceptExpr=*/0,
8867                                             Loc, Loc, D),
8868                DS.getAttributes(),
8869                SourceLocation());
8870  D.SetIdentifier(&II, Loc);
8871
8872  // Insert this function into translation-unit scope.
8873
8874  DeclContext *PrevDC = CurContext;
8875  CurContext = Context.getTranslationUnitDecl();
8876
8877  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8878  FD->setImplicit();
8879
8880  CurContext = PrevDC;
8881
8882  AddKnownFunctionAttributes(FD);
8883
8884  return FD;
8885}
8886
8887/// \brief Adds any function attributes that we know a priori based on
8888/// the declaration of this function.
8889///
8890/// These attributes can apply both to implicitly-declared builtins
8891/// (like __builtin___printf_chk) or to library-declared functions
8892/// like NSLog or printf.
8893///
8894/// We need to check for duplicate attributes both here and where user-written
8895/// attributes are applied to declarations.
8896void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8897  if (FD->isInvalidDecl())
8898    return;
8899
8900  // If this is a built-in function, map its builtin attributes to
8901  // actual attributes.
8902  if (unsigned BuiltinID = FD->getBuiltinID()) {
8903    // Handle printf-formatting attributes.
8904    unsigned FormatIdx;
8905    bool HasVAListArg;
8906    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8907      if (!FD->getAttr<FormatAttr>()) {
8908        const char *fmt = "printf";
8909        unsigned int NumParams = FD->getNumParams();
8910        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8911            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8912          fmt = "NSString";
8913        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8914                                               fmt, FormatIdx+1,
8915                                               HasVAListArg ? 0 : FormatIdx+2));
8916      }
8917    }
8918    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8919                                             HasVAListArg)) {
8920     if (!FD->getAttr<FormatAttr>())
8921       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8922                                              "scanf", FormatIdx+1,
8923                                              HasVAListArg ? 0 : FormatIdx+2));
8924    }
8925
8926    // Mark const if we don't care about errno and that is the only
8927    // thing preventing the function from being const. This allows
8928    // IRgen to use LLVM intrinsics for such functions.
8929    if (!getLangOpts().MathErrno &&
8930        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8931      if (!FD->getAttr<ConstAttr>())
8932        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8933    }
8934
8935    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8936        !FD->getAttr<ReturnsTwiceAttr>())
8937      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8938    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8939      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8940    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8941      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8942  }
8943
8944  IdentifierInfo *Name = FD->getIdentifier();
8945  if (!Name)
8946    return;
8947  if ((!getLangOpts().CPlusPlus &&
8948       FD->getDeclContext()->isTranslationUnit()) ||
8949      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8950       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8951       LinkageSpecDecl::lang_c)) {
8952    // Okay: this could be a libc/libm/Objective-C function we know
8953    // about.
8954  } else
8955    return;
8956
8957  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8958    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8959    // target-specific builtins, perhaps?
8960    if (!FD->getAttr<FormatAttr>())
8961      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8962                                             "printf", 2,
8963                                             Name->isStr("vasprintf") ? 0 : 3));
8964  }
8965
8966  if (Name->isStr("__CFStringMakeConstantString")) {
8967    // We already have a __builtin___CFStringMakeConstantString,
8968    // but builds that use -fno-constant-cfstrings don't go through that.
8969    if (!FD->getAttr<FormatArgAttr>())
8970      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8971  }
8972}
8973
8974TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8975                                    TypeSourceInfo *TInfo) {
8976  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8977  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8978
8979  if (!TInfo) {
8980    assert(D.isInvalidType() && "no declarator info for valid type");
8981    TInfo = Context.getTrivialTypeSourceInfo(T);
8982  }
8983
8984  // Scope manipulation handled by caller.
8985  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8986                                           D.getLocStart(),
8987                                           D.getIdentifierLoc(),
8988                                           D.getIdentifier(),
8989                                           TInfo);
8990
8991  // Bail out immediately if we have an invalid declaration.
8992  if (D.isInvalidType()) {
8993    NewTD->setInvalidDecl();
8994    return NewTD;
8995  }
8996
8997  if (D.getDeclSpec().isModulePrivateSpecified()) {
8998    if (CurContext->isFunctionOrMethod())
8999      Diag(NewTD->getLocation(), diag::err_module_private_local)
9000        << 2 << NewTD->getDeclName()
9001        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9002        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9003    else
9004      NewTD->setModulePrivate();
9005  }
9006
9007  // C++ [dcl.typedef]p8:
9008  //   If the typedef declaration defines an unnamed class (or
9009  //   enum), the first typedef-name declared by the declaration
9010  //   to be that class type (or enum type) is used to denote the
9011  //   class type (or enum type) for linkage purposes only.
9012  // We need to check whether the type was declared in the declaration.
9013  switch (D.getDeclSpec().getTypeSpecType()) {
9014  case TST_enum:
9015  case TST_struct:
9016  case TST_interface:
9017  case TST_union:
9018  case TST_class: {
9019    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9020
9021    // Do nothing if the tag is not anonymous or already has an
9022    // associated typedef (from an earlier typedef in this decl group).
9023    if (tagFromDeclSpec->getIdentifier()) break;
9024    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9025
9026    // A well-formed anonymous tag must always be a TUK_Definition.
9027    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9028
9029    // The type must match the tag exactly;  no qualifiers allowed.
9030    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9031      break;
9032
9033    // Otherwise, set this is the anon-decl typedef for the tag.
9034    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9035    break;
9036  }
9037
9038  default:
9039    break;
9040  }
9041
9042  return NewTD;
9043}
9044
9045
9046/// \brief Check that this is a valid underlying type for an enum declaration.
9047bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9048  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9049  QualType T = TI->getType();
9050
9051  if (T->isDependentType())
9052    return false;
9053
9054  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9055    if (BT->isInteger())
9056      return false;
9057
9058  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9059  return true;
9060}
9061
9062/// Check whether this is a valid redeclaration of a previous enumeration.
9063/// \return true if the redeclaration was invalid.
9064bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9065                                  QualType EnumUnderlyingTy,
9066                                  const EnumDecl *Prev) {
9067  bool IsFixed = !EnumUnderlyingTy.isNull();
9068
9069  if (IsScoped != Prev->isScoped()) {
9070    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9071      << Prev->isScoped();
9072    Diag(Prev->getLocation(), diag::note_previous_use);
9073    return true;
9074  }
9075
9076  if (IsFixed && Prev->isFixed()) {
9077    if (!EnumUnderlyingTy->isDependentType() &&
9078        !Prev->getIntegerType()->isDependentType() &&
9079        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9080                                        Prev->getIntegerType())) {
9081      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9082        << EnumUnderlyingTy << Prev->getIntegerType();
9083      Diag(Prev->getLocation(), diag::note_previous_use);
9084      return true;
9085    }
9086  } else if (IsFixed != Prev->isFixed()) {
9087    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9088      << Prev->isFixed();
9089    Diag(Prev->getLocation(), diag::note_previous_use);
9090    return true;
9091  }
9092
9093  return false;
9094}
9095
9096/// \brief Get diagnostic %select index for tag kind for
9097/// redeclaration diagnostic message.
9098/// WARNING: Indexes apply to particular diagnostics only!
9099///
9100/// \returns diagnostic %select index.
9101static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9102  switch (Tag) {
9103  case TTK_Struct: return 0;
9104  case TTK_Interface: return 1;
9105  case TTK_Class:  return 2;
9106  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9107  }
9108}
9109
9110/// \brief Determine if tag kind is a class-key compatible with
9111/// class for redeclaration (class, struct, or __interface).
9112///
9113/// \returns true iff the tag kind is compatible.
9114static bool isClassCompatTagKind(TagTypeKind Tag)
9115{
9116  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9117}
9118
9119/// \brief Determine whether a tag with a given kind is acceptable
9120/// as a redeclaration of the given tag declaration.
9121///
9122/// \returns true if the new tag kind is acceptable, false otherwise.
9123bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9124                                        TagTypeKind NewTag, bool isDefinition,
9125                                        SourceLocation NewTagLoc,
9126                                        const IdentifierInfo &Name) {
9127  // C++ [dcl.type.elab]p3:
9128  //   The class-key or enum keyword present in the
9129  //   elaborated-type-specifier shall agree in kind with the
9130  //   declaration to which the name in the elaborated-type-specifier
9131  //   refers. This rule also applies to the form of
9132  //   elaborated-type-specifier that declares a class-name or
9133  //   friend class since it can be construed as referring to the
9134  //   definition of the class. Thus, in any
9135  //   elaborated-type-specifier, the enum keyword shall be used to
9136  //   refer to an enumeration (7.2), the union class-key shall be
9137  //   used to refer to a union (clause 9), and either the class or
9138  //   struct class-key shall be used to refer to a class (clause 9)
9139  //   declared using the class or struct class-key.
9140  TagTypeKind OldTag = Previous->getTagKind();
9141  if (!isDefinition || !isClassCompatTagKind(NewTag))
9142    if (OldTag == NewTag)
9143      return true;
9144
9145  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9146    // Warn about the struct/class tag mismatch.
9147    bool isTemplate = false;
9148    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9149      isTemplate = Record->getDescribedClassTemplate();
9150
9151    if (!ActiveTemplateInstantiations.empty()) {
9152      // In a template instantiation, do not offer fix-its for tag mismatches
9153      // since they usually mess up the template instead of fixing the problem.
9154      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9155        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9156        << getRedeclDiagFromTagKind(OldTag);
9157      return true;
9158    }
9159
9160    if (isDefinition) {
9161      // On definitions, check previous tags and issue a fix-it for each
9162      // one that doesn't match the current tag.
9163      if (Previous->getDefinition()) {
9164        // Don't suggest fix-its for redefinitions.
9165        return true;
9166      }
9167
9168      bool previousMismatch = false;
9169      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9170           E(Previous->redecls_end()); I != E; ++I) {
9171        if (I->getTagKind() != NewTag) {
9172          if (!previousMismatch) {
9173            previousMismatch = true;
9174            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9175              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9176              << getRedeclDiagFromTagKind(I->getTagKind());
9177          }
9178          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9179            << getRedeclDiagFromTagKind(NewTag)
9180            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9181                 TypeWithKeyword::getTagTypeKindName(NewTag));
9182        }
9183      }
9184      return true;
9185    }
9186
9187    // Check for a previous definition.  If current tag and definition
9188    // are same type, do nothing.  If no definition, but disagree with
9189    // with previous tag type, give a warning, but no fix-it.
9190    const TagDecl *Redecl = Previous->getDefinition() ?
9191                            Previous->getDefinition() : Previous;
9192    if (Redecl->getTagKind() == NewTag) {
9193      return true;
9194    }
9195
9196    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9197      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9198      << getRedeclDiagFromTagKind(OldTag);
9199    Diag(Redecl->getLocation(), diag::note_previous_use);
9200
9201    // If there is a previous defintion, suggest a fix-it.
9202    if (Previous->getDefinition()) {
9203        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9204          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9205          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9206               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9207    }
9208
9209    return true;
9210  }
9211  return false;
9212}
9213
9214/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9215/// former case, Name will be non-null.  In the later case, Name will be null.
9216/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9217/// reference/declaration/definition of a tag.
9218Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9219                     SourceLocation KWLoc, CXXScopeSpec &SS,
9220                     IdentifierInfo *Name, SourceLocation NameLoc,
9221                     AttributeList *Attr, AccessSpecifier AS,
9222                     SourceLocation ModulePrivateLoc,
9223                     MultiTemplateParamsArg TemplateParameterLists,
9224                     bool &OwnedDecl, bool &IsDependent,
9225                     SourceLocation ScopedEnumKWLoc,
9226                     bool ScopedEnumUsesClassTag,
9227                     TypeResult UnderlyingType) {
9228  // If this is not a definition, it must have a name.
9229  IdentifierInfo *OrigName = Name;
9230  assert((Name != 0 || TUK == TUK_Definition) &&
9231         "Nameless record must be a definition!");
9232  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9233
9234  OwnedDecl = false;
9235  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9236  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9237
9238  // FIXME: Check explicit specializations more carefully.
9239  bool isExplicitSpecialization = false;
9240  bool Invalid = false;
9241
9242  // We only need to do this matching if we have template parameters
9243  // or a scope specifier, which also conveniently avoids this work
9244  // for non-C++ cases.
9245  if (TemplateParameterLists.size() > 0 ||
9246      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9247    if (TemplateParameterList *TemplateParams
9248          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9249                                                TemplateParameterLists.data(),
9250                                                TemplateParameterLists.size(),
9251                                                    TUK == TUK_Friend,
9252                                                    isExplicitSpecialization,
9253                                                    Invalid)) {
9254      if (TemplateParams->size() > 0) {
9255        // This is a declaration or definition of a class template (which may
9256        // be a member of another template).
9257
9258        if (Invalid)
9259          return 0;
9260
9261        OwnedDecl = false;
9262        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9263                                               SS, Name, NameLoc, Attr,
9264                                               TemplateParams, AS,
9265                                               ModulePrivateLoc,
9266                                               TemplateParameterLists.size()-1,
9267                                               TemplateParameterLists.data());
9268        return Result.get();
9269      } else {
9270        // The "template<>" header is extraneous.
9271        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9272          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9273        isExplicitSpecialization = true;
9274      }
9275    }
9276  }
9277
9278  // Figure out the underlying type if this a enum declaration. We need to do
9279  // this early, because it's needed to detect if this is an incompatible
9280  // redeclaration.
9281  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9282
9283  if (Kind == TTK_Enum) {
9284    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9285      // No underlying type explicitly specified, or we failed to parse the
9286      // type, default to int.
9287      EnumUnderlying = Context.IntTy.getTypePtr();
9288    else if (UnderlyingType.get()) {
9289      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9290      // integral type; any cv-qualification is ignored.
9291      TypeSourceInfo *TI = 0;
9292      GetTypeFromParser(UnderlyingType.get(), &TI);
9293      EnumUnderlying = TI;
9294
9295      if (CheckEnumUnderlyingType(TI))
9296        // Recover by falling back to int.
9297        EnumUnderlying = Context.IntTy.getTypePtr();
9298
9299      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9300                                          UPPC_FixedUnderlyingType))
9301        EnumUnderlying = Context.IntTy.getTypePtr();
9302
9303    } else if (getLangOpts().MicrosoftMode)
9304      // Microsoft enums are always of int type.
9305      EnumUnderlying = Context.IntTy.getTypePtr();
9306  }
9307
9308  DeclContext *SearchDC = CurContext;
9309  DeclContext *DC = CurContext;
9310  bool isStdBadAlloc = false;
9311
9312  RedeclarationKind Redecl = ForRedeclaration;
9313  if (TUK == TUK_Friend || TUK == TUK_Reference)
9314    Redecl = NotForRedeclaration;
9315
9316  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9317
9318  if (Name && SS.isNotEmpty()) {
9319    // We have a nested-name tag ('struct foo::bar').
9320
9321    // Check for invalid 'foo::'.
9322    if (SS.isInvalid()) {
9323      Name = 0;
9324      goto CreateNewDecl;
9325    }
9326
9327    // If this is a friend or a reference to a class in a dependent
9328    // context, don't try to make a decl for it.
9329    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9330      DC = computeDeclContext(SS, false);
9331      if (!DC) {
9332        IsDependent = true;
9333        return 0;
9334      }
9335    } else {
9336      DC = computeDeclContext(SS, true);
9337      if (!DC) {
9338        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9339          << SS.getRange();
9340        return 0;
9341      }
9342    }
9343
9344    if (RequireCompleteDeclContext(SS, DC))
9345      return 0;
9346
9347    SearchDC = DC;
9348    // Look-up name inside 'foo::'.
9349    LookupQualifiedName(Previous, DC);
9350
9351    if (Previous.isAmbiguous())
9352      return 0;
9353
9354    if (Previous.empty()) {
9355      // Name lookup did not find anything. However, if the
9356      // nested-name-specifier refers to the current instantiation,
9357      // and that current instantiation has any dependent base
9358      // classes, we might find something at instantiation time: treat
9359      // this as a dependent elaborated-type-specifier.
9360      // But this only makes any sense for reference-like lookups.
9361      if (Previous.wasNotFoundInCurrentInstantiation() &&
9362          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9363        IsDependent = true;
9364        return 0;
9365      }
9366
9367      // A tag 'foo::bar' must already exist.
9368      Diag(NameLoc, diag::err_not_tag_in_scope)
9369        << Kind << Name << DC << SS.getRange();
9370      Name = 0;
9371      Invalid = true;
9372      goto CreateNewDecl;
9373    }
9374  } else if (Name) {
9375    // If this is a named struct, check to see if there was a previous forward
9376    // declaration or definition.
9377    // FIXME: We're looking into outer scopes here, even when we
9378    // shouldn't be. Doing so can result in ambiguities that we
9379    // shouldn't be diagnosing.
9380    LookupName(Previous, S);
9381
9382    if (Previous.isAmbiguous() &&
9383        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9384      LookupResult::Filter F = Previous.makeFilter();
9385      while (F.hasNext()) {
9386        NamedDecl *ND = F.next();
9387        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9388          F.erase();
9389      }
9390      F.done();
9391    }
9392
9393    // Note:  there used to be some attempt at recovery here.
9394    if (Previous.isAmbiguous())
9395      return 0;
9396
9397    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9398      // FIXME: This makes sure that we ignore the contexts associated
9399      // with C structs, unions, and enums when looking for a matching
9400      // tag declaration or definition. See the similar lookup tweak
9401      // in Sema::LookupName; is there a better way to deal with this?
9402      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9403        SearchDC = SearchDC->getParent();
9404    }
9405  } else if (S->isFunctionPrototypeScope()) {
9406    // If this is an enum declaration in function prototype scope, set its
9407    // initial context to the translation unit.
9408    // FIXME: [citation needed]
9409    SearchDC = Context.getTranslationUnitDecl();
9410  }
9411
9412  if (Previous.isSingleResult() &&
9413      Previous.getFoundDecl()->isTemplateParameter()) {
9414    // Maybe we will complain about the shadowed template parameter.
9415    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9416    // Just pretend that we didn't see the previous declaration.
9417    Previous.clear();
9418  }
9419
9420  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9421      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9422    // This is a declaration of or a reference to "std::bad_alloc".
9423    isStdBadAlloc = true;
9424
9425    if (Previous.empty() && StdBadAlloc) {
9426      // std::bad_alloc has been implicitly declared (but made invisible to
9427      // name lookup). Fill in this implicit declaration as the previous
9428      // declaration, so that the declarations get chained appropriately.
9429      Previous.addDecl(getStdBadAlloc());
9430    }
9431  }
9432
9433  // If we didn't find a previous declaration, and this is a reference
9434  // (or friend reference), move to the correct scope.  In C++, we
9435  // also need to do a redeclaration lookup there, just in case
9436  // there's a shadow friend decl.
9437  if (Name && Previous.empty() &&
9438      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9439    if (Invalid) goto CreateNewDecl;
9440    assert(SS.isEmpty());
9441
9442    if (TUK == TUK_Reference) {
9443      // C++ [basic.scope.pdecl]p5:
9444      //   -- for an elaborated-type-specifier of the form
9445      //
9446      //          class-key identifier
9447      //
9448      //      if the elaborated-type-specifier is used in the
9449      //      decl-specifier-seq or parameter-declaration-clause of a
9450      //      function defined in namespace scope, the identifier is
9451      //      declared as a class-name in the namespace that contains
9452      //      the declaration; otherwise, except as a friend
9453      //      declaration, the identifier is declared in the smallest
9454      //      non-class, non-function-prototype scope that contains the
9455      //      declaration.
9456      //
9457      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9458      // C structs and unions.
9459      //
9460      // It is an error in C++ to declare (rather than define) an enum
9461      // type, including via an elaborated type specifier.  We'll
9462      // diagnose that later; for now, declare the enum in the same
9463      // scope as we would have picked for any other tag type.
9464      //
9465      // GNU C also supports this behavior as part of its incomplete
9466      // enum types extension, while GNU C++ does not.
9467      //
9468      // Find the context where we'll be declaring the tag.
9469      // FIXME: We would like to maintain the current DeclContext as the
9470      // lexical context,
9471      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9472        SearchDC = SearchDC->getParent();
9473
9474      // Find the scope where we'll be declaring the tag.
9475      while (S->isClassScope() ||
9476             (getLangOpts().CPlusPlus &&
9477              S->isFunctionPrototypeScope()) ||
9478             ((S->getFlags() & Scope::DeclScope) == 0) ||
9479             (S->getEntity() &&
9480              ((DeclContext *)S->getEntity())->isTransparentContext()))
9481        S = S->getParent();
9482    } else {
9483      assert(TUK == TUK_Friend);
9484      // C++ [namespace.memdef]p3:
9485      //   If a friend declaration in a non-local class first declares a
9486      //   class or function, the friend class or function is a member of
9487      //   the innermost enclosing namespace.
9488      SearchDC = SearchDC->getEnclosingNamespaceContext();
9489    }
9490
9491    // In C++, we need to do a redeclaration lookup to properly
9492    // diagnose some problems.
9493    if (getLangOpts().CPlusPlus) {
9494      Previous.setRedeclarationKind(ForRedeclaration);
9495      LookupQualifiedName(Previous, SearchDC);
9496    }
9497  }
9498
9499  if (!Previous.empty()) {
9500    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9501
9502    // It's okay to have a tag decl in the same scope as a typedef
9503    // which hides a tag decl in the same scope.  Finding this
9504    // insanity with a redeclaration lookup can only actually happen
9505    // in C++.
9506    //
9507    // This is also okay for elaborated-type-specifiers, which is
9508    // technically forbidden by the current standard but which is
9509    // okay according to the likely resolution of an open issue;
9510    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9511    if (getLangOpts().CPlusPlus) {
9512      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9513        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9514          TagDecl *Tag = TT->getDecl();
9515          if (Tag->getDeclName() == Name &&
9516              Tag->getDeclContext()->getRedeclContext()
9517                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9518            PrevDecl = Tag;
9519            Previous.clear();
9520            Previous.addDecl(Tag);
9521            Previous.resolveKind();
9522          }
9523        }
9524      }
9525    }
9526
9527    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9528      // If this is a use of a previous tag, or if the tag is already declared
9529      // in the same scope (so that the definition/declaration completes or
9530      // rementions the tag), reuse the decl.
9531      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9532          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9533        // Make sure that this wasn't declared as an enum and now used as a
9534        // struct or something similar.
9535        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9536                                          TUK == TUK_Definition, KWLoc,
9537                                          *Name)) {
9538          bool SafeToContinue
9539            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9540               Kind != TTK_Enum);
9541          if (SafeToContinue)
9542            Diag(KWLoc, diag::err_use_with_wrong_tag)
9543              << Name
9544              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9545                                              PrevTagDecl->getKindName());
9546          else
9547            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9548          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9549
9550          if (SafeToContinue)
9551            Kind = PrevTagDecl->getTagKind();
9552          else {
9553            // Recover by making this an anonymous redefinition.
9554            Name = 0;
9555            Previous.clear();
9556            Invalid = true;
9557          }
9558        }
9559
9560        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9561          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9562
9563          // If this is an elaborated-type-specifier for a scoped enumeration,
9564          // the 'class' keyword is not necessary and not permitted.
9565          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9566            if (ScopedEnum)
9567              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9568                << PrevEnum->isScoped()
9569                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9570            return PrevTagDecl;
9571          }
9572
9573          QualType EnumUnderlyingTy;
9574          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9575            EnumUnderlyingTy = TI->getType();
9576          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9577            EnumUnderlyingTy = QualType(T, 0);
9578
9579          // All conflicts with previous declarations are recovered by
9580          // returning the previous declaration, unless this is a definition,
9581          // in which case we want the caller to bail out.
9582          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9583                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9584            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9585        }
9586
9587        if (!Invalid) {
9588          // If this is a use, just return the declaration we found.
9589
9590          // FIXME: In the future, return a variant or some other clue
9591          // for the consumer of this Decl to know it doesn't own it.
9592          // For our current ASTs this shouldn't be a problem, but will
9593          // need to be changed with DeclGroups.
9594          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9595               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9596            return PrevTagDecl;
9597
9598          // Diagnose attempts to redefine a tag.
9599          if (TUK == TUK_Definition) {
9600            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9601              // If we're defining a specialization and the previous definition
9602              // is from an implicit instantiation, don't emit an error
9603              // here; we'll catch this in the general case below.
9604              bool IsExplicitSpecializationAfterInstantiation = false;
9605              if (isExplicitSpecialization) {
9606                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9607                  IsExplicitSpecializationAfterInstantiation =
9608                    RD->getTemplateSpecializationKind() !=
9609                    TSK_ExplicitSpecialization;
9610                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9611                  IsExplicitSpecializationAfterInstantiation =
9612                    ED->getTemplateSpecializationKind() !=
9613                    TSK_ExplicitSpecialization;
9614              }
9615
9616              if (!IsExplicitSpecializationAfterInstantiation) {
9617                // A redeclaration in function prototype scope in C isn't
9618                // visible elsewhere, so merely issue a warning.
9619                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9620                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9621                else
9622                  Diag(NameLoc, diag::err_redefinition) << Name;
9623                Diag(Def->getLocation(), diag::note_previous_definition);
9624                // If this is a redefinition, recover by making this
9625                // struct be anonymous, which will make any later
9626                // references get the previous definition.
9627                Name = 0;
9628                Previous.clear();
9629                Invalid = true;
9630              }
9631            } else {
9632              // If the type is currently being defined, complain
9633              // about a nested redefinition.
9634              const TagType *Tag
9635                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9636              if (Tag->isBeingDefined()) {
9637                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9638                Diag(PrevTagDecl->getLocation(),
9639                     diag::note_previous_definition);
9640                Name = 0;
9641                Previous.clear();
9642                Invalid = true;
9643              }
9644            }
9645
9646            // Okay, this is definition of a previously declared or referenced
9647            // tag PrevDecl. We're going to create a new Decl for it.
9648          }
9649        }
9650        // If we get here we have (another) forward declaration or we
9651        // have a definition.  Just create a new decl.
9652
9653      } else {
9654        // If we get here, this is a definition of a new tag type in a nested
9655        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9656        // new decl/type.  We set PrevDecl to NULL so that the entities
9657        // have distinct types.
9658        Previous.clear();
9659      }
9660      // If we get here, we're going to create a new Decl. If PrevDecl
9661      // is non-NULL, it's a definition of the tag declared by
9662      // PrevDecl. If it's NULL, we have a new definition.
9663
9664
9665    // Otherwise, PrevDecl is not a tag, but was found with tag
9666    // lookup.  This is only actually possible in C++, where a few
9667    // things like templates still live in the tag namespace.
9668    } else {
9669      // Use a better diagnostic if an elaborated-type-specifier
9670      // found the wrong kind of type on the first
9671      // (non-redeclaration) lookup.
9672      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9673          !Previous.isForRedeclaration()) {
9674        unsigned Kind = 0;
9675        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9676        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9677        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9678        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9679        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9680        Invalid = true;
9681
9682      // Otherwise, only diagnose if the declaration is in scope.
9683      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9684                                isExplicitSpecialization)) {
9685        // do nothing
9686
9687      // Diagnose implicit declarations introduced by elaborated types.
9688      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9689        unsigned Kind = 0;
9690        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9691        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9692        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9693        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9694        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9695        Invalid = true;
9696
9697      // Otherwise it's a declaration.  Call out a particularly common
9698      // case here.
9699      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9700        unsigned Kind = 0;
9701        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9702        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9703          << Name << Kind << TND->getUnderlyingType();
9704        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9705        Invalid = true;
9706
9707      // Otherwise, diagnose.
9708      } else {
9709        // The tag name clashes with something else in the target scope,
9710        // issue an error and recover by making this tag be anonymous.
9711        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9712        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9713        Name = 0;
9714        Invalid = true;
9715      }
9716
9717      // The existing declaration isn't relevant to us; we're in a
9718      // new scope, so clear out the previous declaration.
9719      Previous.clear();
9720    }
9721  }
9722
9723CreateNewDecl:
9724
9725  TagDecl *PrevDecl = 0;
9726  if (Previous.isSingleResult())
9727    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9728
9729  // If there is an identifier, use the location of the identifier as the
9730  // location of the decl, otherwise use the location of the struct/union
9731  // keyword.
9732  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9733
9734  // Otherwise, create a new declaration. If there is a previous
9735  // declaration of the same entity, the two will be linked via
9736  // PrevDecl.
9737  TagDecl *New;
9738
9739  bool IsForwardReference = false;
9740  if (Kind == TTK_Enum) {
9741    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9742    // enum X { A, B, C } D;    D should chain to X.
9743    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9744                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9745                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9746    // If this is an undefined enum, warn.
9747    if (TUK != TUK_Definition && !Invalid) {
9748      TagDecl *Def;
9749      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9750        // C++0x: 7.2p2: opaque-enum-declaration.
9751        // Conflicts are diagnosed above. Do nothing.
9752      }
9753      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9754        Diag(Loc, diag::ext_forward_ref_enum_def)
9755          << New;
9756        Diag(Def->getLocation(), diag::note_previous_definition);
9757      } else {
9758        unsigned DiagID = diag::ext_forward_ref_enum;
9759        if (getLangOpts().MicrosoftMode)
9760          DiagID = diag::ext_ms_forward_ref_enum;
9761        else if (getLangOpts().CPlusPlus)
9762          DiagID = diag::err_forward_ref_enum;
9763        Diag(Loc, DiagID);
9764
9765        // If this is a forward-declared reference to an enumeration, make a
9766        // note of it; we won't actually be introducing the declaration into
9767        // the declaration context.
9768        if (TUK == TUK_Reference)
9769          IsForwardReference = true;
9770      }
9771    }
9772
9773    if (EnumUnderlying) {
9774      EnumDecl *ED = cast<EnumDecl>(New);
9775      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9776        ED->setIntegerTypeSourceInfo(TI);
9777      else
9778        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9779      ED->setPromotionType(ED->getIntegerType());
9780    }
9781
9782  } else {
9783    // struct/union/class
9784
9785    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9786    // struct X { int A; } D;    D should chain to X.
9787    if (getLangOpts().CPlusPlus) {
9788      // FIXME: Look for a way to use RecordDecl for simple structs.
9789      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9790                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9791
9792      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9793        StdBadAlloc = cast<CXXRecordDecl>(New);
9794    } else
9795      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9796                               cast_or_null<RecordDecl>(PrevDecl));
9797  }
9798
9799  // Maybe add qualifier info.
9800  if (SS.isNotEmpty()) {
9801    if (SS.isSet()) {
9802      // If this is either a declaration or a definition, check the
9803      // nested-name-specifier against the current context. We don't do this
9804      // for explicit specializations, because they have similar checking
9805      // (with more specific diagnostics) in the call to
9806      // CheckMemberSpecialization, below.
9807      if (!isExplicitSpecialization &&
9808          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9809          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9810        Invalid = true;
9811
9812      New->setQualifierInfo(SS.getWithLocInContext(Context));
9813      if (TemplateParameterLists.size() > 0) {
9814        New->setTemplateParameterListsInfo(Context,
9815                                           TemplateParameterLists.size(),
9816                                           TemplateParameterLists.data());
9817      }
9818    }
9819    else
9820      Invalid = true;
9821  }
9822
9823  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9824    // Add alignment attributes if necessary; these attributes are checked when
9825    // the ASTContext lays out the structure.
9826    //
9827    // It is important for implementing the correct semantics that this
9828    // happen here (in act on tag decl). The #pragma pack stack is
9829    // maintained as a result of parser callbacks which can occur at
9830    // many points during the parsing of a struct declaration (because
9831    // the #pragma tokens are effectively skipped over during the
9832    // parsing of the struct).
9833    if (TUK == TUK_Definition) {
9834      AddAlignmentAttributesForRecord(RD);
9835      AddMsStructLayoutForRecord(RD);
9836    }
9837  }
9838
9839  if (ModulePrivateLoc.isValid()) {
9840    if (isExplicitSpecialization)
9841      Diag(New->getLocation(), diag::err_module_private_specialization)
9842        << 2
9843        << FixItHint::CreateRemoval(ModulePrivateLoc);
9844    // __module_private__ does not apply to local classes. However, we only
9845    // diagnose this as an error when the declaration specifiers are
9846    // freestanding. Here, we just ignore the __module_private__.
9847    else if (!SearchDC->isFunctionOrMethod())
9848      New->setModulePrivate();
9849  }
9850
9851  // If this is a specialization of a member class (of a class template),
9852  // check the specialization.
9853  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9854    Invalid = true;
9855
9856  if (Invalid)
9857    New->setInvalidDecl();
9858
9859  if (Attr)
9860    ProcessDeclAttributeList(S, New, Attr);
9861
9862  // If we're declaring or defining a tag in function prototype scope
9863  // in C, note that this type can only be used within the function.
9864  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9865    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9866
9867  // Set the lexical context. If the tag has a C++ scope specifier, the
9868  // lexical context will be different from the semantic context.
9869  New->setLexicalDeclContext(CurContext);
9870
9871  // Mark this as a friend decl if applicable.
9872  // In Microsoft mode, a friend declaration also acts as a forward
9873  // declaration so we always pass true to setObjectOfFriendDecl to make
9874  // the tag name visible.
9875  if (TUK == TUK_Friend)
9876    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9877                               getLangOpts().MicrosoftExt);
9878
9879  // Set the access specifier.
9880  if (!Invalid && SearchDC->isRecord())
9881    SetMemberAccessSpecifier(New, PrevDecl, AS);
9882
9883  if (TUK == TUK_Definition)
9884    New->startDefinition();
9885
9886  // If this has an identifier, add it to the scope stack.
9887  if (TUK == TUK_Friend) {
9888    // We might be replacing an existing declaration in the lookup tables;
9889    // if so, borrow its access specifier.
9890    if (PrevDecl)
9891      New->setAccess(PrevDecl->getAccess());
9892
9893    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9894    DC->makeDeclVisibleInContext(New);
9895    if (Name) // can be null along some error paths
9896      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9897        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9898  } else if (Name) {
9899    S = getNonFieldDeclScope(S);
9900    PushOnScopeChains(New, S, !IsForwardReference);
9901    if (IsForwardReference)
9902      SearchDC->makeDeclVisibleInContext(New);
9903
9904  } else {
9905    CurContext->addDecl(New);
9906  }
9907
9908  // If this is the C FILE type, notify the AST context.
9909  if (IdentifierInfo *II = New->getIdentifier())
9910    if (!New->isInvalidDecl() &&
9911        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9912        II->isStr("FILE"))
9913      Context.setFILEDecl(New);
9914
9915  // If we were in function prototype scope (and not in C++ mode), add this
9916  // tag to the list of decls to inject into the function definition scope.
9917  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9918      InFunctionDeclarator && Name)
9919    DeclsInPrototypeScope.push_back(New);
9920
9921  if (PrevDecl)
9922    mergeDeclAttributes(New, PrevDecl);
9923
9924  // If there's a #pragma GCC visibility in scope, set the visibility of this
9925  // record.
9926  AddPushedVisibilityAttribute(New);
9927
9928  OwnedDecl = true;
9929  // In C++, don't return an invalid declaration. We can't recover well from
9930  // the cases where we make the type anonymous.
9931  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9932}
9933
9934void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9935  AdjustDeclIfTemplate(TagD);
9936  TagDecl *Tag = cast<TagDecl>(TagD);
9937
9938  // Enter the tag context.
9939  PushDeclContext(S, Tag);
9940
9941  ActOnDocumentableDecl(TagD);
9942
9943  // If there's a #pragma GCC visibility in scope, set the visibility of this
9944  // record.
9945  AddPushedVisibilityAttribute(Tag);
9946}
9947
9948Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9949  assert(isa<ObjCContainerDecl>(IDecl) &&
9950         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9951  DeclContext *OCD = cast<DeclContext>(IDecl);
9952  assert(getContainingDC(OCD) == CurContext &&
9953      "The next DeclContext should be lexically contained in the current one.");
9954  CurContext = OCD;
9955  return IDecl;
9956}
9957
9958void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9959                                           SourceLocation FinalLoc,
9960                                           SourceLocation LBraceLoc) {
9961  AdjustDeclIfTemplate(TagD);
9962  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9963
9964  FieldCollector->StartClass();
9965
9966  if (!Record->getIdentifier())
9967    return;
9968
9969  if (FinalLoc.isValid())
9970    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9971
9972  // C++ [class]p2:
9973  //   [...] The class-name is also inserted into the scope of the
9974  //   class itself; this is known as the injected-class-name. For
9975  //   purposes of access checking, the injected-class-name is treated
9976  //   as if it were a public member name.
9977  CXXRecordDecl *InjectedClassName
9978    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9979                            Record->getLocStart(), Record->getLocation(),
9980                            Record->getIdentifier(),
9981                            /*PrevDecl=*/0,
9982                            /*DelayTypeCreation=*/true);
9983  Context.getTypeDeclType(InjectedClassName, Record);
9984  InjectedClassName->setImplicit();
9985  InjectedClassName->setAccess(AS_public);
9986  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9987      InjectedClassName->setDescribedClassTemplate(Template);
9988  PushOnScopeChains(InjectedClassName, S);
9989  assert(InjectedClassName->isInjectedClassName() &&
9990         "Broken injected-class-name");
9991}
9992
9993void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9994                                    SourceLocation RBraceLoc) {
9995  AdjustDeclIfTemplate(TagD);
9996  TagDecl *Tag = cast<TagDecl>(TagD);
9997  Tag->setRBraceLoc(RBraceLoc);
9998
9999  // Make sure we "complete" the definition even it is invalid.
10000  if (Tag->isBeingDefined()) {
10001    assert(Tag->isInvalidDecl() && "We should already have completed it");
10002    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10003      RD->completeDefinition();
10004  }
10005
10006  if (isa<CXXRecordDecl>(Tag))
10007    FieldCollector->FinishClass();
10008
10009  // Exit this scope of this tag's definition.
10010  PopDeclContext();
10011
10012  if (getCurLexicalContext()->isObjCContainer() &&
10013      Tag->getDeclContext()->isFileContext())
10014    Tag->setTopLevelDeclInObjCContainer();
10015
10016  // Notify the consumer that we've defined a tag.
10017  Consumer.HandleTagDeclDefinition(Tag);
10018}
10019
10020void Sema::ActOnObjCContainerFinishDefinition() {
10021  // Exit this scope of this interface definition.
10022  PopDeclContext();
10023}
10024
10025void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10026  assert(DC == CurContext && "Mismatch of container contexts");
10027  OriginalLexicalContext = DC;
10028  ActOnObjCContainerFinishDefinition();
10029}
10030
10031void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10032  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10033  OriginalLexicalContext = 0;
10034}
10035
10036void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10037  AdjustDeclIfTemplate(TagD);
10038  TagDecl *Tag = cast<TagDecl>(TagD);
10039  Tag->setInvalidDecl();
10040
10041  // Make sure we "complete" the definition even it is invalid.
10042  if (Tag->isBeingDefined()) {
10043    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10044      RD->completeDefinition();
10045  }
10046
10047  // We're undoing ActOnTagStartDefinition here, not
10048  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10049  // the FieldCollector.
10050
10051  PopDeclContext();
10052}
10053
10054// Note that FieldName may be null for anonymous bitfields.
10055ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10056                                IdentifierInfo *FieldName,
10057                                QualType FieldTy, Expr *BitWidth,
10058                                bool *ZeroWidth) {
10059  // Default to true; that shouldn't confuse checks for emptiness
10060  if (ZeroWidth)
10061    *ZeroWidth = true;
10062
10063  // C99 6.7.2.1p4 - verify the field type.
10064  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10065  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10066    // Handle incomplete types with specific error.
10067    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10068      return ExprError();
10069    if (FieldName)
10070      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10071        << FieldName << FieldTy << BitWidth->getSourceRange();
10072    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10073      << FieldTy << BitWidth->getSourceRange();
10074  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10075                                             UPPC_BitFieldWidth))
10076    return ExprError();
10077
10078  // If the bit-width is type- or value-dependent, don't try to check
10079  // it now.
10080  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10081    return Owned(BitWidth);
10082
10083  llvm::APSInt Value;
10084  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10085  if (ICE.isInvalid())
10086    return ICE;
10087  BitWidth = ICE.take();
10088
10089  if (Value != 0 && ZeroWidth)
10090    *ZeroWidth = false;
10091
10092  // Zero-width bitfield is ok for anonymous field.
10093  if (Value == 0 && FieldName)
10094    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10095
10096  if (Value.isSigned() && Value.isNegative()) {
10097    if (FieldName)
10098      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10099               << FieldName << Value.toString(10);
10100    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10101      << Value.toString(10);
10102  }
10103
10104  if (!FieldTy->isDependentType()) {
10105    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10106    if (Value.getZExtValue() > TypeSize) {
10107      if (!getLangOpts().CPlusPlus) {
10108        if (FieldName)
10109          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10110            << FieldName << (unsigned)Value.getZExtValue()
10111            << (unsigned)TypeSize;
10112
10113        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10114          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10115      }
10116
10117      if (FieldName)
10118        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10119          << FieldName << (unsigned)Value.getZExtValue()
10120          << (unsigned)TypeSize;
10121      else
10122        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10123          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10124    }
10125  }
10126
10127  return Owned(BitWidth);
10128}
10129
10130/// ActOnField - Each field of a C struct/union is passed into this in order
10131/// to create a FieldDecl object for it.
10132Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10133                       Declarator &D, Expr *BitfieldWidth) {
10134  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10135                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10136                               /*InitStyle=*/ICIS_NoInit, AS_public);
10137  return Res;
10138}
10139
10140/// HandleField - Analyze a field of a C struct or a C++ data member.
10141///
10142FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10143                             SourceLocation DeclStart,
10144                             Declarator &D, Expr *BitWidth,
10145                             InClassInitStyle InitStyle,
10146                             AccessSpecifier AS) {
10147  IdentifierInfo *II = D.getIdentifier();
10148  SourceLocation Loc = DeclStart;
10149  if (II) Loc = D.getIdentifierLoc();
10150
10151  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10152  QualType T = TInfo->getType();
10153  if (getLangOpts().CPlusPlus) {
10154    CheckExtraCXXDefaultArguments(D);
10155
10156    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10157                                        UPPC_DataMemberType)) {
10158      D.setInvalidType();
10159      T = Context.IntTy;
10160      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10161    }
10162  }
10163
10164  // TR 18037 does not allow fields to be declared with address spaces.
10165  if (T.getQualifiers().hasAddressSpace()) {
10166    Diag(Loc, diag::err_field_with_address_space);
10167    D.setInvalidType();
10168  }
10169
10170  // OpenCL 1.2 spec, s6.9 r:
10171  // The event type cannot be used to declare a structure or union field.
10172  if (LangOpts.OpenCL && T->isEventT()) {
10173    Diag(Loc, diag::err_event_t_struct_field);
10174    D.setInvalidType();
10175  }
10176
10177  DiagnoseFunctionSpecifiers(D);
10178
10179  if (D.getDeclSpec().isThreadSpecified())
10180    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10181
10182  // Check to see if this name was declared as a member previously
10183  NamedDecl *PrevDecl = 0;
10184  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10185  LookupName(Previous, S);
10186  switch (Previous.getResultKind()) {
10187    case LookupResult::Found:
10188    case LookupResult::FoundUnresolvedValue:
10189      PrevDecl = Previous.getAsSingle<NamedDecl>();
10190      break;
10191
10192    case LookupResult::FoundOverloaded:
10193      PrevDecl = Previous.getRepresentativeDecl();
10194      break;
10195
10196    case LookupResult::NotFound:
10197    case LookupResult::NotFoundInCurrentInstantiation:
10198    case LookupResult::Ambiguous:
10199      break;
10200  }
10201  Previous.suppressDiagnostics();
10202
10203  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10204    // Maybe we will complain about the shadowed template parameter.
10205    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10206    // Just pretend that we didn't see the previous declaration.
10207    PrevDecl = 0;
10208  }
10209
10210  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10211    PrevDecl = 0;
10212
10213  bool Mutable
10214    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10215  SourceLocation TSSL = D.getLocStart();
10216  FieldDecl *NewFD
10217    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10218                     TSSL, AS, PrevDecl, &D);
10219
10220  if (NewFD->isInvalidDecl())
10221    Record->setInvalidDecl();
10222
10223  if (D.getDeclSpec().isModulePrivateSpecified())
10224    NewFD->setModulePrivate();
10225
10226  if (NewFD->isInvalidDecl() && PrevDecl) {
10227    // Don't introduce NewFD into scope; there's already something
10228    // with the same name in the same scope.
10229  } else if (II) {
10230    PushOnScopeChains(NewFD, S);
10231  } else
10232    Record->addDecl(NewFD);
10233
10234  return NewFD;
10235}
10236
10237/// \brief Build a new FieldDecl and check its well-formedness.
10238///
10239/// This routine builds a new FieldDecl given the fields name, type,
10240/// record, etc. \p PrevDecl should refer to any previous declaration
10241/// with the same name and in the same scope as the field to be
10242/// created.
10243///
10244/// \returns a new FieldDecl.
10245///
10246/// \todo The Declarator argument is a hack. It will be removed once
10247FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10248                                TypeSourceInfo *TInfo,
10249                                RecordDecl *Record, SourceLocation Loc,
10250                                bool Mutable, Expr *BitWidth,
10251                                InClassInitStyle InitStyle,
10252                                SourceLocation TSSL,
10253                                AccessSpecifier AS, NamedDecl *PrevDecl,
10254                                Declarator *D) {
10255  IdentifierInfo *II = Name.getAsIdentifierInfo();
10256  bool InvalidDecl = false;
10257  if (D) InvalidDecl = D->isInvalidType();
10258
10259  // If we receive a broken type, recover by assuming 'int' and
10260  // marking this declaration as invalid.
10261  if (T.isNull()) {
10262    InvalidDecl = true;
10263    T = Context.IntTy;
10264  }
10265
10266  QualType EltTy = Context.getBaseElementType(T);
10267  if (!EltTy->isDependentType()) {
10268    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10269      // Fields of incomplete type force their record to be invalid.
10270      Record->setInvalidDecl();
10271      InvalidDecl = true;
10272    } else {
10273      NamedDecl *Def;
10274      EltTy->isIncompleteType(&Def);
10275      if (Def && Def->isInvalidDecl()) {
10276        Record->setInvalidDecl();
10277        InvalidDecl = true;
10278      }
10279    }
10280  }
10281
10282  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10283  if (BitWidth && getLangOpts().OpenCL) {
10284    Diag(Loc, diag::err_opencl_bitfields);
10285    InvalidDecl = true;
10286  }
10287
10288  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10289  // than a variably modified type.
10290  if (!InvalidDecl && T->isVariablyModifiedType()) {
10291    bool SizeIsNegative;
10292    llvm::APSInt Oversized;
10293
10294    TypeSourceInfo *FixedTInfo =
10295      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10296                                                    SizeIsNegative,
10297                                                    Oversized);
10298    if (FixedTInfo) {
10299      Diag(Loc, diag::warn_illegal_constant_array_size);
10300      TInfo = FixedTInfo;
10301      T = FixedTInfo->getType();
10302    } else {
10303      if (SizeIsNegative)
10304        Diag(Loc, diag::err_typecheck_negative_array_size);
10305      else if (Oversized.getBoolValue())
10306        Diag(Loc, diag::err_array_too_large)
10307          << Oversized.toString(10);
10308      else
10309        Diag(Loc, diag::err_typecheck_field_variable_size);
10310      InvalidDecl = true;
10311    }
10312  }
10313
10314  // Fields can not have abstract class types
10315  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10316                                             diag::err_abstract_type_in_decl,
10317                                             AbstractFieldType))
10318    InvalidDecl = true;
10319
10320  bool ZeroWidth = false;
10321  // If this is declared as a bit-field, check the bit-field.
10322  if (!InvalidDecl && BitWidth) {
10323    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10324    if (!BitWidth) {
10325      InvalidDecl = true;
10326      BitWidth = 0;
10327      ZeroWidth = false;
10328    }
10329  }
10330
10331  // Check that 'mutable' is consistent with the type of the declaration.
10332  if (!InvalidDecl && Mutable) {
10333    unsigned DiagID = 0;
10334    if (T->isReferenceType())
10335      DiagID = diag::err_mutable_reference;
10336    else if (T.isConstQualified())
10337      DiagID = diag::err_mutable_const;
10338
10339    if (DiagID) {
10340      SourceLocation ErrLoc = Loc;
10341      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10342        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10343      Diag(ErrLoc, DiagID);
10344      Mutable = false;
10345      InvalidDecl = true;
10346    }
10347  }
10348
10349  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10350                                       BitWidth, Mutable, InitStyle);
10351  if (InvalidDecl)
10352    NewFD->setInvalidDecl();
10353
10354  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10355    Diag(Loc, diag::err_duplicate_member) << II;
10356    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10357    NewFD->setInvalidDecl();
10358  }
10359
10360  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10361    if (Record->isUnion()) {
10362      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10363        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10364        if (RDecl->getDefinition()) {
10365          // C++ [class.union]p1: An object of a class with a non-trivial
10366          // constructor, a non-trivial copy constructor, a non-trivial
10367          // destructor, or a non-trivial copy assignment operator
10368          // cannot be a member of a union, nor can an array of such
10369          // objects.
10370          if (CheckNontrivialField(NewFD))
10371            NewFD->setInvalidDecl();
10372        }
10373      }
10374
10375      // C++ [class.union]p1: If a union contains a member of reference type,
10376      // the program is ill-formed.
10377      if (EltTy->isReferenceType()) {
10378        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10379          << NewFD->getDeclName() << EltTy;
10380        NewFD->setInvalidDecl();
10381      }
10382    }
10383  }
10384
10385  // FIXME: We need to pass in the attributes given an AST
10386  // representation, not a parser representation.
10387  if (D) {
10388    // FIXME: What to pass instead of TUScope?
10389    ProcessDeclAttributes(TUScope, NewFD, *D);
10390
10391    if (NewFD->hasAttrs())
10392      CheckAlignasUnderalignment(NewFD);
10393  }
10394
10395  // In auto-retain/release, infer strong retension for fields of
10396  // retainable type.
10397  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10398    NewFD->setInvalidDecl();
10399
10400  if (T.isObjCGCWeak())
10401    Diag(Loc, diag::warn_attribute_weak_on_field);
10402
10403  NewFD->setAccess(AS);
10404  return NewFD;
10405}
10406
10407bool Sema::CheckNontrivialField(FieldDecl *FD) {
10408  assert(FD);
10409  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10410
10411  if (FD->isInvalidDecl())
10412    return true;
10413
10414  QualType EltTy = Context.getBaseElementType(FD->getType());
10415  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10416    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10417    if (RDecl->getDefinition()) {
10418      // We check for copy constructors before constructors
10419      // because otherwise we'll never get complaints about
10420      // copy constructors.
10421
10422      CXXSpecialMember member = CXXInvalid;
10423      // We're required to check for any non-trivial constructors. Since the
10424      // implicit default constructor is suppressed if there are any
10425      // user-declared constructors, we just need to check that there is a
10426      // trivial default constructor and a trivial copy constructor. (We don't
10427      // worry about move constructors here, since this is a C++98 check.)
10428      if (RDecl->hasNonTrivialCopyConstructor())
10429        member = CXXCopyConstructor;
10430      else if (!RDecl->hasTrivialDefaultConstructor())
10431        member = CXXDefaultConstructor;
10432      else if (RDecl->hasNonTrivialCopyAssignment())
10433        member = CXXCopyAssignment;
10434      else if (RDecl->hasNonTrivialDestructor())
10435        member = CXXDestructor;
10436
10437      if (member != CXXInvalid) {
10438        if (!getLangOpts().CPlusPlus11 &&
10439            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10440          // Objective-C++ ARC: it is an error to have a non-trivial field of
10441          // a union. However, system headers in Objective-C programs
10442          // occasionally have Objective-C lifetime objects within unions,
10443          // and rather than cause the program to fail, we make those
10444          // members unavailable.
10445          SourceLocation Loc = FD->getLocation();
10446          if (getSourceManager().isInSystemHeader(Loc)) {
10447            if (!FD->hasAttr<UnavailableAttr>())
10448              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10449                                  "this system field has retaining ownership"));
10450            return false;
10451          }
10452        }
10453
10454        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10455               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10456               diag::err_illegal_union_or_anon_struct_member)
10457          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10458        DiagnoseNontrivial(RDecl, member);
10459        return !getLangOpts().CPlusPlus11;
10460      }
10461    }
10462  }
10463
10464  return false;
10465}
10466
10467/// TranslateIvarVisibility - Translate visibility from a token ID to an
10468///  AST enum value.
10469static ObjCIvarDecl::AccessControl
10470TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10471  switch (ivarVisibility) {
10472  default: llvm_unreachable("Unknown visitibility kind");
10473  case tok::objc_private: return ObjCIvarDecl::Private;
10474  case tok::objc_public: return ObjCIvarDecl::Public;
10475  case tok::objc_protected: return ObjCIvarDecl::Protected;
10476  case tok::objc_package: return ObjCIvarDecl::Package;
10477  }
10478}
10479
10480/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10481/// in order to create an IvarDecl object for it.
10482Decl *Sema::ActOnIvar(Scope *S,
10483                                SourceLocation DeclStart,
10484                                Declarator &D, Expr *BitfieldWidth,
10485                                tok::ObjCKeywordKind Visibility) {
10486
10487  IdentifierInfo *II = D.getIdentifier();
10488  Expr *BitWidth = (Expr*)BitfieldWidth;
10489  SourceLocation Loc = DeclStart;
10490  if (II) Loc = D.getIdentifierLoc();
10491
10492  // FIXME: Unnamed fields can be handled in various different ways, for
10493  // example, unnamed unions inject all members into the struct namespace!
10494
10495  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10496  QualType T = TInfo->getType();
10497
10498  if (BitWidth) {
10499    // 6.7.2.1p3, 6.7.2.1p4
10500    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10501    if (!BitWidth)
10502      D.setInvalidType();
10503  } else {
10504    // Not a bitfield.
10505
10506    // validate II.
10507
10508  }
10509  if (T->isReferenceType()) {
10510    Diag(Loc, diag::err_ivar_reference_type);
10511    D.setInvalidType();
10512  }
10513  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10514  // than a variably modified type.
10515  else if (T->isVariablyModifiedType()) {
10516    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10517    D.setInvalidType();
10518  }
10519
10520  // Get the visibility (access control) for this ivar.
10521  ObjCIvarDecl::AccessControl ac =
10522    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10523                                        : ObjCIvarDecl::None;
10524  // Must set ivar's DeclContext to its enclosing interface.
10525  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10526  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10527    return 0;
10528  ObjCContainerDecl *EnclosingContext;
10529  if (ObjCImplementationDecl *IMPDecl =
10530      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10531    if (LangOpts.ObjCRuntime.isFragile()) {
10532    // Case of ivar declared in an implementation. Context is that of its class.
10533      EnclosingContext = IMPDecl->getClassInterface();
10534      assert(EnclosingContext && "Implementation has no class interface!");
10535    }
10536    else
10537      EnclosingContext = EnclosingDecl;
10538  } else {
10539    if (ObjCCategoryDecl *CDecl =
10540        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10541      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10542        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10543        return 0;
10544      }
10545    }
10546    EnclosingContext = EnclosingDecl;
10547  }
10548
10549  // Construct the decl.
10550  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10551                                             DeclStart, Loc, II, T,
10552                                             TInfo, ac, (Expr *)BitfieldWidth);
10553
10554  if (II) {
10555    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10556                                           ForRedeclaration);
10557    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10558        && !isa<TagDecl>(PrevDecl)) {
10559      Diag(Loc, diag::err_duplicate_member) << II;
10560      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10561      NewID->setInvalidDecl();
10562    }
10563  }
10564
10565  // Process attributes attached to the ivar.
10566  ProcessDeclAttributes(S, NewID, D);
10567
10568  if (D.isInvalidType())
10569    NewID->setInvalidDecl();
10570
10571  // In ARC, infer 'retaining' for ivars of retainable type.
10572  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10573    NewID->setInvalidDecl();
10574
10575  if (D.getDeclSpec().isModulePrivateSpecified())
10576    NewID->setModulePrivate();
10577
10578  if (II) {
10579    // FIXME: When interfaces are DeclContexts, we'll need to add
10580    // these to the interface.
10581    S->AddDecl(NewID);
10582    IdResolver.AddDecl(NewID);
10583  }
10584
10585  if (LangOpts.ObjCRuntime.isNonFragile() &&
10586      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10587    Diag(Loc, diag::warn_ivars_in_interface);
10588
10589  return NewID;
10590}
10591
10592/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10593/// class and class extensions. For every class @interface and class
10594/// extension @interface, if the last ivar is a bitfield of any type,
10595/// then add an implicit `char :0` ivar to the end of that interface.
10596void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10597                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10598  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10599    return;
10600
10601  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10602  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10603
10604  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10605    return;
10606  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10607  if (!ID) {
10608    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10609      if (!CD->IsClassExtension())
10610        return;
10611    }
10612    // No need to add this to end of @implementation.
10613    else
10614      return;
10615  }
10616  // All conditions are met. Add a new bitfield to the tail end of ivars.
10617  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10618  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10619
10620  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10621                              DeclLoc, DeclLoc, 0,
10622                              Context.CharTy,
10623                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10624                                                               DeclLoc),
10625                              ObjCIvarDecl::Private, BW,
10626                              true);
10627  AllIvarDecls.push_back(Ivar);
10628}
10629
10630void Sema::ActOnFields(Scope* S,
10631                       SourceLocation RecLoc, Decl *EnclosingDecl,
10632                       llvm::ArrayRef<Decl *> Fields,
10633                       SourceLocation LBrac, SourceLocation RBrac,
10634                       AttributeList *Attr) {
10635  assert(EnclosingDecl && "missing record or interface decl");
10636
10637  // If this is an Objective-C @implementation or category and we have
10638  // new fields here we should reset the layout of the interface since
10639  // it will now change.
10640  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10641    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10642    switch (DC->getKind()) {
10643    default: break;
10644    case Decl::ObjCCategory:
10645      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10646      break;
10647    case Decl::ObjCImplementation:
10648      Context.
10649        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10650      break;
10651    }
10652  }
10653
10654  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10655
10656  // Start counting up the number of named members; make sure to include
10657  // members of anonymous structs and unions in the total.
10658  unsigned NumNamedMembers = 0;
10659  if (Record) {
10660    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10661                                   e = Record->decls_end(); i != e; i++) {
10662      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10663        if (IFD->getDeclName())
10664          ++NumNamedMembers;
10665    }
10666  }
10667
10668  // Verify that all the fields are okay.
10669  SmallVector<FieldDecl*, 32> RecFields;
10670
10671  bool ARCErrReported = false;
10672  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10673       i != end; ++i) {
10674    FieldDecl *FD = cast<FieldDecl>(*i);
10675
10676    // Get the type for the field.
10677    const Type *FDTy = FD->getType().getTypePtr();
10678
10679    if (!FD->isAnonymousStructOrUnion()) {
10680      // Remember all fields written by the user.
10681      RecFields.push_back(FD);
10682    }
10683
10684    // If the field is already invalid for some reason, don't emit more
10685    // diagnostics about it.
10686    if (FD->isInvalidDecl()) {
10687      EnclosingDecl->setInvalidDecl();
10688      continue;
10689    }
10690
10691    // C99 6.7.2.1p2:
10692    //   A structure or union shall not contain a member with
10693    //   incomplete or function type (hence, a structure shall not
10694    //   contain an instance of itself, but may contain a pointer to
10695    //   an instance of itself), except that the last member of a
10696    //   structure with more than one named member may have incomplete
10697    //   array type; such a structure (and any union containing,
10698    //   possibly recursively, a member that is such a structure)
10699    //   shall not be a member of a structure or an element of an
10700    //   array.
10701    if (FDTy->isFunctionType()) {
10702      // Field declared as a function.
10703      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10704        << FD->getDeclName();
10705      FD->setInvalidDecl();
10706      EnclosingDecl->setInvalidDecl();
10707      continue;
10708    } else if (FDTy->isIncompleteArrayType() && Record &&
10709               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10710                ((getLangOpts().MicrosoftExt ||
10711                  getLangOpts().CPlusPlus) &&
10712                 (i + 1 == Fields.end() || Record->isUnion())))) {
10713      // Flexible array member.
10714      // Microsoft and g++ is more permissive regarding flexible array.
10715      // It will accept flexible array in union and also
10716      // as the sole element of a struct/class.
10717      if (getLangOpts().MicrosoftExt) {
10718        if (Record->isUnion())
10719          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10720            << FD->getDeclName();
10721        else if (Fields.size() == 1)
10722          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10723            << FD->getDeclName() << Record->getTagKind();
10724      } else if (getLangOpts().CPlusPlus) {
10725        if (Record->isUnion())
10726          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10727            << FD->getDeclName();
10728        else if (Fields.size() == 1)
10729          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10730            << FD->getDeclName() << Record->getTagKind();
10731      } else if (!getLangOpts().C99) {
10732      if (Record->isUnion())
10733        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10734          << FD->getDeclName();
10735      else
10736        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10737          << FD->getDeclName() << Record->getTagKind();
10738      } else if (NumNamedMembers < 1) {
10739        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10740          << FD->getDeclName();
10741        FD->setInvalidDecl();
10742        EnclosingDecl->setInvalidDecl();
10743        continue;
10744      }
10745      if (!FD->getType()->isDependentType() &&
10746          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10747        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10748          << FD->getDeclName() << FD->getType();
10749        FD->setInvalidDecl();
10750        EnclosingDecl->setInvalidDecl();
10751        continue;
10752      }
10753      // Okay, we have a legal flexible array member at the end of the struct.
10754      if (Record)
10755        Record->setHasFlexibleArrayMember(true);
10756    } else if (!FDTy->isDependentType() &&
10757               RequireCompleteType(FD->getLocation(), FD->getType(),
10758                                   diag::err_field_incomplete)) {
10759      // Incomplete type
10760      FD->setInvalidDecl();
10761      EnclosingDecl->setInvalidDecl();
10762      continue;
10763    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10764      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10765        // If this is a member of a union, then entire union becomes "flexible".
10766        if (Record && Record->isUnion()) {
10767          Record->setHasFlexibleArrayMember(true);
10768        } else {
10769          // If this is a struct/class and this is not the last element, reject
10770          // it.  Note that GCC supports variable sized arrays in the middle of
10771          // structures.
10772          if (i + 1 != Fields.end())
10773            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10774              << FD->getDeclName() << FD->getType();
10775          else {
10776            // We support flexible arrays at the end of structs in
10777            // other structs as an extension.
10778            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10779              << FD->getDeclName();
10780            if (Record)
10781              Record->setHasFlexibleArrayMember(true);
10782          }
10783        }
10784      }
10785      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10786          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10787                                 diag::err_abstract_type_in_decl,
10788                                 AbstractIvarType)) {
10789        // Ivars can not have abstract class types
10790        FD->setInvalidDecl();
10791      }
10792      if (Record && FDTTy->getDecl()->hasObjectMember())
10793        Record->setHasObjectMember(true);
10794      if (Record && FDTTy->getDecl()->hasVolatileMember())
10795        Record->setHasVolatileMember(true);
10796    } else if (FDTy->isObjCObjectType()) {
10797      /// A field cannot be an Objective-c object
10798      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10799        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10800      QualType T = Context.getObjCObjectPointerType(FD->getType());
10801      FD->setType(T);
10802    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10803               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10804      // It's an error in ARC if a field has lifetime.
10805      // We don't want to report this in a system header, though,
10806      // so we just make the field unavailable.
10807      // FIXME: that's really not sufficient; we need to make the type
10808      // itself invalid to, say, initialize or copy.
10809      QualType T = FD->getType();
10810      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10811      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10812        SourceLocation loc = FD->getLocation();
10813        if (getSourceManager().isInSystemHeader(loc)) {
10814          if (!FD->hasAttr<UnavailableAttr>()) {
10815            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10816                              "this system field has retaining ownership"));
10817          }
10818        } else {
10819          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10820            << T->isBlockPointerType() << Record->getTagKind();
10821        }
10822        ARCErrReported = true;
10823      }
10824    } else if (getLangOpts().ObjC1 &&
10825               getLangOpts().getGC() != LangOptions::NonGC &&
10826               Record && !Record->hasObjectMember()) {
10827      if (FD->getType()->isObjCObjectPointerType() ||
10828          FD->getType().isObjCGCStrong())
10829        Record->setHasObjectMember(true);
10830      else if (Context.getAsArrayType(FD->getType())) {
10831        QualType BaseType = Context.getBaseElementType(FD->getType());
10832        if (BaseType->isRecordType() &&
10833            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10834          Record->setHasObjectMember(true);
10835        else if (BaseType->isObjCObjectPointerType() ||
10836                 BaseType.isObjCGCStrong())
10837               Record->setHasObjectMember(true);
10838      }
10839    }
10840    if (Record && FD->getType().isVolatileQualified())
10841      Record->setHasVolatileMember(true);
10842    // Keep track of the number of named members.
10843    if (FD->getIdentifier())
10844      ++NumNamedMembers;
10845  }
10846
10847  // Okay, we successfully defined 'Record'.
10848  if (Record) {
10849    bool Completed = false;
10850    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10851      if (!CXXRecord->isInvalidDecl()) {
10852        // Set access bits correctly on the directly-declared conversions.
10853        for (CXXRecordDecl::conversion_iterator
10854               I = CXXRecord->conversion_begin(),
10855               E = CXXRecord->conversion_end(); I != E; ++I)
10856          I.setAccess((*I)->getAccess());
10857
10858        if (!CXXRecord->isDependentType()) {
10859          // Adjust user-defined destructor exception spec.
10860          if (getLangOpts().CPlusPlus11 &&
10861              CXXRecord->hasUserDeclaredDestructor())
10862            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10863
10864          // Add any implicitly-declared members to this class.
10865          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10866
10867          // If we have virtual base classes, we may end up finding multiple
10868          // final overriders for a given virtual function. Check for this
10869          // problem now.
10870          if (CXXRecord->getNumVBases()) {
10871            CXXFinalOverriderMap FinalOverriders;
10872            CXXRecord->getFinalOverriders(FinalOverriders);
10873
10874            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10875                                             MEnd = FinalOverriders.end();
10876                 M != MEnd; ++M) {
10877              for (OverridingMethods::iterator SO = M->second.begin(),
10878                                            SOEnd = M->second.end();
10879                   SO != SOEnd; ++SO) {
10880                assert(SO->second.size() > 0 &&
10881                       "Virtual function without overridding functions?");
10882                if (SO->second.size() == 1)
10883                  continue;
10884
10885                // C++ [class.virtual]p2:
10886                //   In a derived class, if a virtual member function of a base
10887                //   class subobject has more than one final overrider the
10888                //   program is ill-formed.
10889                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10890                  << (const NamedDecl *)M->first << Record;
10891                Diag(M->first->getLocation(),
10892                     diag::note_overridden_virtual_function);
10893                for (OverridingMethods::overriding_iterator
10894                          OM = SO->second.begin(),
10895                       OMEnd = SO->second.end();
10896                     OM != OMEnd; ++OM)
10897                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10898                    << (const NamedDecl *)M->first << OM->Method->getParent();
10899
10900                Record->setInvalidDecl();
10901              }
10902            }
10903            CXXRecord->completeDefinition(&FinalOverriders);
10904            Completed = true;
10905          }
10906        }
10907      }
10908    }
10909
10910    if (!Completed)
10911      Record->completeDefinition();
10912
10913    if (Record->hasAttrs())
10914      CheckAlignasUnderalignment(Record);
10915  } else {
10916    ObjCIvarDecl **ClsFields =
10917      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10918    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10919      ID->setEndOfDefinitionLoc(RBrac);
10920      // Add ivar's to class's DeclContext.
10921      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10922        ClsFields[i]->setLexicalDeclContext(ID);
10923        ID->addDecl(ClsFields[i]);
10924      }
10925      // Must enforce the rule that ivars in the base classes may not be
10926      // duplicates.
10927      if (ID->getSuperClass())
10928        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10929    } else if (ObjCImplementationDecl *IMPDecl =
10930                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10931      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10932      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10933        // Ivar declared in @implementation never belongs to the implementation.
10934        // Only it is in implementation's lexical context.
10935        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10936      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10937      IMPDecl->setIvarLBraceLoc(LBrac);
10938      IMPDecl->setIvarRBraceLoc(RBrac);
10939    } else if (ObjCCategoryDecl *CDecl =
10940                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10941      // case of ivars in class extension; all other cases have been
10942      // reported as errors elsewhere.
10943      // FIXME. Class extension does not have a LocEnd field.
10944      // CDecl->setLocEnd(RBrac);
10945      // Add ivar's to class extension's DeclContext.
10946      // Diagnose redeclaration of private ivars.
10947      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10948      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10949        if (IDecl) {
10950          if (const ObjCIvarDecl *ClsIvar =
10951              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10952            Diag(ClsFields[i]->getLocation(),
10953                 diag::err_duplicate_ivar_declaration);
10954            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10955            continue;
10956          }
10957          for (ObjCInterfaceDecl::known_extensions_iterator
10958                 Ext = IDecl->known_extensions_begin(),
10959                 ExtEnd = IDecl->known_extensions_end();
10960               Ext != ExtEnd; ++Ext) {
10961            if (const ObjCIvarDecl *ClsExtIvar
10962                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
10963              Diag(ClsFields[i]->getLocation(),
10964                   diag::err_duplicate_ivar_declaration);
10965              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10966              continue;
10967            }
10968          }
10969        }
10970        ClsFields[i]->setLexicalDeclContext(CDecl);
10971        CDecl->addDecl(ClsFields[i]);
10972      }
10973      CDecl->setIvarLBraceLoc(LBrac);
10974      CDecl->setIvarRBraceLoc(RBrac);
10975    }
10976  }
10977
10978  if (Attr)
10979    ProcessDeclAttributeList(S, Record, Attr);
10980}
10981
10982/// \brief Determine whether the given integral value is representable within
10983/// the given type T.
10984static bool isRepresentableIntegerValue(ASTContext &Context,
10985                                        llvm::APSInt &Value,
10986                                        QualType T) {
10987  assert(T->isIntegralType(Context) && "Integral type required!");
10988  unsigned BitWidth = Context.getIntWidth(T);
10989
10990  if (Value.isUnsigned() || Value.isNonNegative()) {
10991    if (T->isSignedIntegerOrEnumerationType())
10992      --BitWidth;
10993    return Value.getActiveBits() <= BitWidth;
10994  }
10995  return Value.getMinSignedBits() <= BitWidth;
10996}
10997
10998// \brief Given an integral type, return the next larger integral type
10999// (or a NULL type of no such type exists).
11000static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11001  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11002  // enum checking below.
11003  assert(T->isIntegralType(Context) && "Integral type required!");
11004  const unsigned NumTypes = 4;
11005  QualType SignedIntegralTypes[NumTypes] = {
11006    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11007  };
11008  QualType UnsignedIntegralTypes[NumTypes] = {
11009    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11010    Context.UnsignedLongLongTy
11011  };
11012
11013  unsigned BitWidth = Context.getTypeSize(T);
11014  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11015                                                        : UnsignedIntegralTypes;
11016  for (unsigned I = 0; I != NumTypes; ++I)
11017    if (Context.getTypeSize(Types[I]) > BitWidth)
11018      return Types[I];
11019
11020  return QualType();
11021}
11022
11023EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11024                                          EnumConstantDecl *LastEnumConst,
11025                                          SourceLocation IdLoc,
11026                                          IdentifierInfo *Id,
11027                                          Expr *Val) {
11028  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11029  llvm::APSInt EnumVal(IntWidth);
11030  QualType EltTy;
11031
11032  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11033    Val = 0;
11034
11035  if (Val)
11036    Val = DefaultLvalueConversion(Val).take();
11037
11038  if (Val) {
11039    if (Enum->isDependentType() || Val->isTypeDependent())
11040      EltTy = Context.DependentTy;
11041    else {
11042      SourceLocation ExpLoc;
11043      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11044          !getLangOpts().MicrosoftMode) {
11045        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11046        // constant-expression in the enumerator-definition shall be a converted
11047        // constant expression of the underlying type.
11048        EltTy = Enum->getIntegerType();
11049        ExprResult Converted =
11050          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11051                                           CCEK_Enumerator);
11052        if (Converted.isInvalid())
11053          Val = 0;
11054        else
11055          Val = Converted.take();
11056      } else if (!Val->isValueDependent() &&
11057                 !(Val = VerifyIntegerConstantExpression(Val,
11058                                                         &EnumVal).take())) {
11059        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11060      } else {
11061        if (Enum->isFixed()) {
11062          EltTy = Enum->getIntegerType();
11063
11064          // In Obj-C and Microsoft mode, require the enumeration value to be
11065          // representable in the underlying type of the enumeration. In C++11,
11066          // we perform a non-narrowing conversion as part of converted constant
11067          // expression checking.
11068          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11069            if (getLangOpts().MicrosoftMode) {
11070              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11071              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11072            } else
11073              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11074          } else
11075            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11076        } else if (getLangOpts().CPlusPlus) {
11077          // C++11 [dcl.enum]p5:
11078          //   If the underlying type is not fixed, the type of each enumerator
11079          //   is the type of its initializing value:
11080          //     - If an initializer is specified for an enumerator, the
11081          //       initializing value has the same type as the expression.
11082          EltTy = Val->getType();
11083        } else {
11084          // C99 6.7.2.2p2:
11085          //   The expression that defines the value of an enumeration constant
11086          //   shall be an integer constant expression that has a value
11087          //   representable as an int.
11088
11089          // Complain if the value is not representable in an int.
11090          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11091            Diag(IdLoc, diag::ext_enum_value_not_int)
11092              << EnumVal.toString(10) << Val->getSourceRange()
11093              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11094          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11095            // Force the type of the expression to 'int'.
11096            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11097          }
11098          EltTy = Val->getType();
11099        }
11100      }
11101    }
11102  }
11103
11104  if (!Val) {
11105    if (Enum->isDependentType())
11106      EltTy = Context.DependentTy;
11107    else if (!LastEnumConst) {
11108      // C++0x [dcl.enum]p5:
11109      //   If the underlying type is not fixed, the type of each enumerator
11110      //   is the type of its initializing value:
11111      //     - If no initializer is specified for the first enumerator, the
11112      //       initializing value has an unspecified integral type.
11113      //
11114      // GCC uses 'int' for its unspecified integral type, as does
11115      // C99 6.7.2.2p3.
11116      if (Enum->isFixed()) {
11117        EltTy = Enum->getIntegerType();
11118      }
11119      else {
11120        EltTy = Context.IntTy;
11121      }
11122    } else {
11123      // Assign the last value + 1.
11124      EnumVal = LastEnumConst->getInitVal();
11125      ++EnumVal;
11126      EltTy = LastEnumConst->getType();
11127
11128      // Check for overflow on increment.
11129      if (EnumVal < LastEnumConst->getInitVal()) {
11130        // C++0x [dcl.enum]p5:
11131        //   If the underlying type is not fixed, the type of each enumerator
11132        //   is the type of its initializing value:
11133        //
11134        //     - Otherwise the type of the initializing value is the same as
11135        //       the type of the initializing value of the preceding enumerator
11136        //       unless the incremented value is not representable in that type,
11137        //       in which case the type is an unspecified integral type
11138        //       sufficient to contain the incremented value. If no such type
11139        //       exists, the program is ill-formed.
11140        QualType T = getNextLargerIntegralType(Context, EltTy);
11141        if (T.isNull() || Enum->isFixed()) {
11142          // There is no integral type larger enough to represent this
11143          // value. Complain, then allow the value to wrap around.
11144          EnumVal = LastEnumConst->getInitVal();
11145          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11146          ++EnumVal;
11147          if (Enum->isFixed())
11148            // When the underlying type is fixed, this is ill-formed.
11149            Diag(IdLoc, diag::err_enumerator_wrapped)
11150              << EnumVal.toString(10)
11151              << EltTy;
11152          else
11153            Diag(IdLoc, diag::warn_enumerator_too_large)
11154              << EnumVal.toString(10);
11155        } else {
11156          EltTy = T;
11157        }
11158
11159        // Retrieve the last enumerator's value, extent that type to the
11160        // type that is supposed to be large enough to represent the incremented
11161        // value, then increment.
11162        EnumVal = LastEnumConst->getInitVal();
11163        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11164        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11165        ++EnumVal;
11166
11167        // If we're not in C++, diagnose the overflow of enumerator values,
11168        // which in C99 means that the enumerator value is not representable in
11169        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11170        // permits enumerator values that are representable in some larger
11171        // integral type.
11172        if (!getLangOpts().CPlusPlus && !T.isNull())
11173          Diag(IdLoc, diag::warn_enum_value_overflow);
11174      } else if (!getLangOpts().CPlusPlus &&
11175                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11176        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11177        Diag(IdLoc, diag::ext_enum_value_not_int)
11178          << EnumVal.toString(10) << 1;
11179      }
11180    }
11181  }
11182
11183  if (!EltTy->isDependentType()) {
11184    // Make the enumerator value match the signedness and size of the
11185    // enumerator's type.
11186    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11187    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11188  }
11189
11190  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11191                                  Val, EnumVal);
11192}
11193
11194
11195Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11196                              SourceLocation IdLoc, IdentifierInfo *Id,
11197                              AttributeList *Attr,
11198                              SourceLocation EqualLoc, Expr *Val) {
11199  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11200  EnumConstantDecl *LastEnumConst =
11201    cast_or_null<EnumConstantDecl>(lastEnumConst);
11202
11203  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11204  // we find one that is.
11205  S = getNonFieldDeclScope(S);
11206
11207  // Verify that there isn't already something declared with this name in this
11208  // scope.
11209  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11210                                         ForRedeclaration);
11211  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11212    // Maybe we will complain about the shadowed template parameter.
11213    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11214    // Just pretend that we didn't see the previous declaration.
11215    PrevDecl = 0;
11216  }
11217
11218  if (PrevDecl) {
11219    // When in C++, we may get a TagDecl with the same name; in this case the
11220    // enum constant will 'hide' the tag.
11221    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11222           "Received TagDecl when not in C++!");
11223    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11224      if (isa<EnumConstantDecl>(PrevDecl))
11225        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11226      else
11227        Diag(IdLoc, diag::err_redefinition) << Id;
11228      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11229      return 0;
11230    }
11231  }
11232
11233  // C++ [class.mem]p15:
11234  // If T is the name of a class, then each of the following shall have a name
11235  // different from T:
11236  // - every enumerator of every member of class T that is an unscoped
11237  // enumerated type
11238  if (CXXRecordDecl *Record
11239                      = dyn_cast<CXXRecordDecl>(
11240                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11241    if (!TheEnumDecl->isScoped() &&
11242        Record->getIdentifier() && Record->getIdentifier() == Id)
11243      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11244
11245  EnumConstantDecl *New =
11246    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11247
11248  if (New) {
11249    // Process attributes.
11250    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11251
11252    // Register this decl in the current scope stack.
11253    New->setAccess(TheEnumDecl->getAccess());
11254    PushOnScopeChains(New, S);
11255  }
11256
11257  ActOnDocumentableDecl(New);
11258
11259  return New;
11260}
11261
11262// Returns true when the enum initial expression does not trigger the
11263// duplicate enum warning.  A few common cases are exempted as follows:
11264// Element2 = Element1
11265// Element2 = Element1 + 1
11266// Element2 = Element1 - 1
11267// Where Element2 and Element1 are from the same enum.
11268static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11269  Expr *InitExpr = ECD->getInitExpr();
11270  if (!InitExpr)
11271    return true;
11272  InitExpr = InitExpr->IgnoreImpCasts();
11273
11274  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11275    if (!BO->isAdditiveOp())
11276      return true;
11277    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11278    if (!IL)
11279      return true;
11280    if (IL->getValue() != 1)
11281      return true;
11282
11283    InitExpr = BO->getLHS();
11284  }
11285
11286  // This checks if the elements are from the same enum.
11287  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11288  if (!DRE)
11289    return true;
11290
11291  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11292  if (!EnumConstant)
11293    return true;
11294
11295  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11296      Enum)
11297    return true;
11298
11299  return false;
11300}
11301
11302struct DupKey {
11303  int64_t val;
11304  bool isTombstoneOrEmptyKey;
11305  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11306    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11307};
11308
11309static DupKey GetDupKey(const llvm::APSInt& Val) {
11310  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11311                false);
11312}
11313
11314struct DenseMapInfoDupKey {
11315  static DupKey getEmptyKey() { return DupKey(0, true); }
11316  static DupKey getTombstoneKey() { return DupKey(1, true); }
11317  static unsigned getHashValue(const DupKey Key) {
11318    return (unsigned)(Key.val * 37);
11319  }
11320  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11321    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11322           LHS.val == RHS.val;
11323  }
11324};
11325
11326// Emits a warning when an element is implicitly set a value that
11327// a previous element has already been set to.
11328static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11329                                        unsigned NumElements, EnumDecl *Enum,
11330                                        QualType EnumType) {
11331  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11332                                 Enum->getLocation()) ==
11333      DiagnosticsEngine::Ignored)
11334    return;
11335  // Avoid anonymous enums
11336  if (!Enum->getIdentifier())
11337    return;
11338
11339  // Only check for small enums.
11340  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11341    return;
11342
11343  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11344  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11345
11346  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11347  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11348          ValueToVectorMap;
11349
11350  DuplicatesVector DupVector;
11351  ValueToVectorMap EnumMap;
11352
11353  // Populate the EnumMap with all values represented by enum constants without
11354  // an initialier.
11355  for (unsigned i = 0; i < NumElements; ++i) {
11356    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11357
11358    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11359    // this constant.  Skip this enum since it may be ill-formed.
11360    if (!ECD) {
11361      return;
11362    }
11363
11364    if (ECD->getInitExpr())
11365      continue;
11366
11367    DupKey Key = GetDupKey(ECD->getInitVal());
11368    DeclOrVector &Entry = EnumMap[Key];
11369
11370    // First time encountering this value.
11371    if (Entry.isNull())
11372      Entry = ECD;
11373  }
11374
11375  // Create vectors for any values that has duplicates.
11376  for (unsigned i = 0; i < NumElements; ++i) {
11377    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11378    if (!ValidDuplicateEnum(ECD, Enum))
11379      continue;
11380
11381    DupKey Key = GetDupKey(ECD->getInitVal());
11382
11383    DeclOrVector& Entry = EnumMap[Key];
11384    if (Entry.isNull())
11385      continue;
11386
11387    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11388      // Ensure constants are different.
11389      if (D == ECD)
11390        continue;
11391
11392      // Create new vector and push values onto it.
11393      ECDVector *Vec = new ECDVector();
11394      Vec->push_back(D);
11395      Vec->push_back(ECD);
11396
11397      // Update entry to point to the duplicates vector.
11398      Entry = Vec;
11399
11400      // Store the vector somewhere we can consult later for quick emission of
11401      // diagnostics.
11402      DupVector.push_back(Vec);
11403      continue;
11404    }
11405
11406    ECDVector *Vec = Entry.get<ECDVector*>();
11407    // Make sure constants are not added more than once.
11408    if (*Vec->begin() == ECD)
11409      continue;
11410
11411    Vec->push_back(ECD);
11412  }
11413
11414  // Emit diagnostics.
11415  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11416                                  DupVectorEnd = DupVector.end();
11417       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11418    ECDVector *Vec = *DupVectorIter;
11419    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11420
11421    // Emit warning for one enum constant.
11422    ECDVector::iterator I = Vec->begin();
11423    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11424      << (*I)->getName() << (*I)->getInitVal().toString(10)
11425      << (*I)->getSourceRange();
11426    ++I;
11427
11428    // Emit one note for each of the remaining enum constants with
11429    // the same value.
11430    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11431      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11432        << (*I)->getName() << (*I)->getInitVal().toString(10)
11433        << (*I)->getSourceRange();
11434    delete Vec;
11435  }
11436}
11437
11438void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11439                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11440                         Decl **Elements, unsigned NumElements,
11441                         Scope *S, AttributeList *Attr) {
11442  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11443  QualType EnumType = Context.getTypeDeclType(Enum);
11444
11445  if (Attr)
11446    ProcessDeclAttributeList(S, Enum, Attr);
11447
11448  if (Enum->isDependentType()) {
11449    for (unsigned i = 0; i != NumElements; ++i) {
11450      EnumConstantDecl *ECD =
11451        cast_or_null<EnumConstantDecl>(Elements[i]);
11452      if (!ECD) continue;
11453
11454      ECD->setType(EnumType);
11455    }
11456
11457    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11458    return;
11459  }
11460
11461  // TODO: If the result value doesn't fit in an int, it must be a long or long
11462  // long value.  ISO C does not support this, but GCC does as an extension,
11463  // emit a warning.
11464  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11465  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11466  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11467
11468  // Verify that all the values are okay, compute the size of the values, and
11469  // reverse the list.
11470  unsigned NumNegativeBits = 0;
11471  unsigned NumPositiveBits = 0;
11472
11473  // Keep track of whether all elements have type int.
11474  bool AllElementsInt = true;
11475
11476  for (unsigned i = 0; i != NumElements; ++i) {
11477    EnumConstantDecl *ECD =
11478      cast_or_null<EnumConstantDecl>(Elements[i]);
11479    if (!ECD) continue;  // Already issued a diagnostic.
11480
11481    const llvm::APSInt &InitVal = ECD->getInitVal();
11482
11483    // Keep track of the size of positive and negative values.
11484    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11485      NumPositiveBits = std::max(NumPositiveBits,
11486                                 (unsigned)InitVal.getActiveBits());
11487    else
11488      NumNegativeBits = std::max(NumNegativeBits,
11489                                 (unsigned)InitVal.getMinSignedBits());
11490
11491    // Keep track of whether every enum element has type int (very commmon).
11492    if (AllElementsInt)
11493      AllElementsInt = ECD->getType() == Context.IntTy;
11494  }
11495
11496  // Figure out the type that should be used for this enum.
11497  QualType BestType;
11498  unsigned BestWidth;
11499
11500  // C++0x N3000 [conv.prom]p3:
11501  //   An rvalue of an unscoped enumeration type whose underlying
11502  //   type is not fixed can be converted to an rvalue of the first
11503  //   of the following types that can represent all the values of
11504  //   the enumeration: int, unsigned int, long int, unsigned long
11505  //   int, long long int, or unsigned long long int.
11506  // C99 6.4.4.3p2:
11507  //   An identifier declared as an enumeration constant has type int.
11508  // The C99 rule is modified by a gcc extension
11509  QualType BestPromotionType;
11510
11511  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11512  // -fshort-enums is the equivalent to specifying the packed attribute on all
11513  // enum definitions.
11514  if (LangOpts.ShortEnums)
11515    Packed = true;
11516
11517  if (Enum->isFixed()) {
11518    BestType = Enum->getIntegerType();
11519    if (BestType->isPromotableIntegerType())
11520      BestPromotionType = Context.getPromotedIntegerType(BestType);
11521    else
11522      BestPromotionType = BestType;
11523    // We don't need to set BestWidth, because BestType is going to be the type
11524    // of the enumerators, but we do anyway because otherwise some compilers
11525    // warn that it might be used uninitialized.
11526    BestWidth = CharWidth;
11527  }
11528  else if (NumNegativeBits) {
11529    // If there is a negative value, figure out the smallest integer type (of
11530    // int/long/longlong) that fits.
11531    // If it's packed, check also if it fits a char or a short.
11532    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11533      BestType = Context.SignedCharTy;
11534      BestWidth = CharWidth;
11535    } else if (Packed && NumNegativeBits <= ShortWidth &&
11536               NumPositiveBits < ShortWidth) {
11537      BestType = Context.ShortTy;
11538      BestWidth = ShortWidth;
11539    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11540      BestType = Context.IntTy;
11541      BestWidth = IntWidth;
11542    } else {
11543      BestWidth = Context.getTargetInfo().getLongWidth();
11544
11545      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11546        BestType = Context.LongTy;
11547      } else {
11548        BestWidth = Context.getTargetInfo().getLongLongWidth();
11549
11550        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11551          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11552        BestType = Context.LongLongTy;
11553      }
11554    }
11555    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11556  } else {
11557    // If there is no negative value, figure out the smallest type that fits
11558    // all of the enumerator values.
11559    // If it's packed, check also if it fits a char or a short.
11560    if (Packed && NumPositiveBits <= CharWidth) {
11561      BestType = Context.UnsignedCharTy;
11562      BestPromotionType = Context.IntTy;
11563      BestWidth = CharWidth;
11564    } else if (Packed && NumPositiveBits <= ShortWidth) {
11565      BestType = Context.UnsignedShortTy;
11566      BestPromotionType = Context.IntTy;
11567      BestWidth = ShortWidth;
11568    } else if (NumPositiveBits <= IntWidth) {
11569      BestType = Context.UnsignedIntTy;
11570      BestWidth = IntWidth;
11571      BestPromotionType
11572        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11573                           ? Context.UnsignedIntTy : Context.IntTy;
11574    } else if (NumPositiveBits <=
11575               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11576      BestType = Context.UnsignedLongTy;
11577      BestPromotionType
11578        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11579                           ? Context.UnsignedLongTy : Context.LongTy;
11580    } else {
11581      BestWidth = Context.getTargetInfo().getLongLongWidth();
11582      assert(NumPositiveBits <= BestWidth &&
11583             "How could an initializer get larger than ULL?");
11584      BestType = Context.UnsignedLongLongTy;
11585      BestPromotionType
11586        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11587                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11588    }
11589  }
11590
11591  // Loop over all of the enumerator constants, changing their types to match
11592  // the type of the enum if needed.
11593  for (unsigned i = 0; i != NumElements; ++i) {
11594    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11595    if (!ECD) continue;  // Already issued a diagnostic.
11596
11597    // Standard C says the enumerators have int type, but we allow, as an
11598    // extension, the enumerators to be larger than int size.  If each
11599    // enumerator value fits in an int, type it as an int, otherwise type it the
11600    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11601    // that X has type 'int', not 'unsigned'.
11602
11603    // Determine whether the value fits into an int.
11604    llvm::APSInt InitVal = ECD->getInitVal();
11605
11606    // If it fits into an integer type, force it.  Otherwise force it to match
11607    // the enum decl type.
11608    QualType NewTy;
11609    unsigned NewWidth;
11610    bool NewSign;
11611    if (!getLangOpts().CPlusPlus &&
11612        !Enum->isFixed() &&
11613        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11614      NewTy = Context.IntTy;
11615      NewWidth = IntWidth;
11616      NewSign = true;
11617    } else if (ECD->getType() == BestType) {
11618      // Already the right type!
11619      if (getLangOpts().CPlusPlus)
11620        // C++ [dcl.enum]p4: Following the closing brace of an
11621        // enum-specifier, each enumerator has the type of its
11622        // enumeration.
11623        ECD->setType(EnumType);
11624      continue;
11625    } else {
11626      NewTy = BestType;
11627      NewWidth = BestWidth;
11628      NewSign = BestType->isSignedIntegerOrEnumerationType();
11629    }
11630
11631    // Adjust the APSInt value.
11632    InitVal = InitVal.extOrTrunc(NewWidth);
11633    InitVal.setIsSigned(NewSign);
11634    ECD->setInitVal(InitVal);
11635
11636    // Adjust the Expr initializer and type.
11637    if (ECD->getInitExpr() &&
11638        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11639      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11640                                                CK_IntegralCast,
11641                                                ECD->getInitExpr(),
11642                                                /*base paths*/ 0,
11643                                                VK_RValue));
11644    if (getLangOpts().CPlusPlus)
11645      // C++ [dcl.enum]p4: Following the closing brace of an
11646      // enum-specifier, each enumerator has the type of its
11647      // enumeration.
11648      ECD->setType(EnumType);
11649    else
11650      ECD->setType(NewTy);
11651  }
11652
11653  Enum->completeDefinition(BestType, BestPromotionType,
11654                           NumPositiveBits, NumNegativeBits);
11655
11656  // If we're declaring a function, ensure this decl isn't forgotten about -
11657  // it needs to go into the function scope.
11658  if (InFunctionDeclarator)
11659    DeclsInPrototypeScope.push_back(Enum);
11660
11661  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11662
11663  // Now that the enum type is defined, ensure it's not been underaligned.
11664  if (Enum->hasAttrs())
11665    CheckAlignasUnderalignment(Enum);
11666}
11667
11668Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11669                                  SourceLocation StartLoc,
11670                                  SourceLocation EndLoc) {
11671  StringLiteral *AsmString = cast<StringLiteral>(expr);
11672
11673  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11674                                                   AsmString, StartLoc,
11675                                                   EndLoc);
11676  CurContext->addDecl(New);
11677  return New;
11678}
11679
11680DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11681                                   SourceLocation ImportLoc,
11682                                   ModuleIdPath Path) {
11683  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11684                                                Module::AllVisible,
11685                                                /*IsIncludeDirective=*/false);
11686  if (!Mod)
11687    return true;
11688
11689  SmallVector<SourceLocation, 2> IdentifierLocs;
11690  Module *ModCheck = Mod;
11691  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11692    // If we've run out of module parents, just drop the remaining identifiers.
11693    // We need the length to be consistent.
11694    if (!ModCheck)
11695      break;
11696    ModCheck = ModCheck->Parent;
11697
11698    IdentifierLocs.push_back(Path[I].second);
11699  }
11700
11701  ImportDecl *Import = ImportDecl::Create(Context,
11702                                          Context.getTranslationUnitDecl(),
11703                                          AtLoc.isValid()? AtLoc : ImportLoc,
11704                                          Mod, IdentifierLocs);
11705  Context.getTranslationUnitDecl()->addDecl(Import);
11706  return Import;
11707}
11708
11709void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11710  // Create the implicit import declaration.
11711  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11712  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11713                                                   Loc, Mod, Loc);
11714  TU->addDecl(ImportD);
11715  Consumer.HandleImplicitImportDecl(ImportD);
11716
11717  // Make the module visible.
11718  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
11719}
11720
11721void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11722                                      IdentifierInfo* AliasName,
11723                                      SourceLocation PragmaLoc,
11724                                      SourceLocation NameLoc,
11725                                      SourceLocation AliasNameLoc) {
11726  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11727                                    LookupOrdinaryName);
11728  AsmLabelAttr *Attr =
11729     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11730
11731  if (PrevDecl)
11732    PrevDecl->addAttr(Attr);
11733  else
11734    (void)ExtnameUndeclaredIdentifiers.insert(
11735      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11736}
11737
11738void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11739                             SourceLocation PragmaLoc,
11740                             SourceLocation NameLoc) {
11741  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11742
11743  if (PrevDecl) {
11744    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11745  } else {
11746    (void)WeakUndeclaredIdentifiers.insert(
11747      std::pair<IdentifierInfo*,WeakInfo>
11748        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11749  }
11750}
11751
11752void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11753                                IdentifierInfo* AliasName,
11754                                SourceLocation PragmaLoc,
11755                                SourceLocation NameLoc,
11756                                SourceLocation AliasNameLoc) {
11757  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11758                                    LookupOrdinaryName);
11759  WeakInfo W = WeakInfo(Name, NameLoc);
11760
11761  if (PrevDecl) {
11762    if (!PrevDecl->hasAttr<AliasAttr>())
11763      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11764        DeclApplyPragmaWeak(TUScope, ND, W);
11765  } else {
11766    (void)WeakUndeclaredIdentifiers.insert(
11767      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11768  }
11769}
11770
11771Decl *Sema::getObjCDeclContext() const {
11772  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11773}
11774
11775AvailabilityResult Sema::getCurContextAvailability() const {
11776  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11777  return D->getAvailability();
11778}
11779