SemaDecl.cpp revision befc20e1dc869edb0e7b560e69f32d5c71f867ab
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  // C++ [temp.res]p3:
56  //   A qualified-id that refers to a type and in which the
57  //   nested-name-specifier depends on a template-parameter (14.6.2)
58  //   shall be prefixed by the keyword typename to indicate that the
59  //   qualified-id denotes a type, forming an
60  //   elaborated-type-specifier (7.1.5.3).
61  //
62  // We therefore do not perform any name lookup up SS is a dependent
63  // scope name. FIXME: we will need to perform a special kind of
64  // lookup if the scope specifier names a member of the current
65  // instantiation.
66  if (SS && isDependentScopeSpecifier(*SS))
67    return 0;
68
69  NamedDecl *IIDecl = 0;
70  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
71                                         false, false);
72  switch (Result.getKind()) {
73  case LookupResult::NotFound:
74  case LookupResult::FoundOverloaded:
75    return 0;
76
77  case LookupResult::AmbiguousBaseSubobjectTypes:
78  case LookupResult::AmbiguousBaseSubobjects:
79  case LookupResult::AmbiguousReference:
80    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
81    return 0;
82
83  case LookupResult::Found:
84    IIDecl = Result.getAsDecl();
85    break;
86  }
87
88  if (IIDecl) {
89    QualType T;
90
91    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
92      // Check whether we can use this type
93      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
94
95      T = Context.getTypeDeclType(TD);
96    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
97      // Check whether we can use this interface.
98      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
99
100      T = Context.getObjCInterfaceType(IDecl);
101    } else
102      return 0;
103
104    if (SS)
105      T = getQualifiedNameType(*SS, T);
106
107    return T.getAsOpaquePtr();
108  }
109
110  return 0;
111}
112
113DeclContext *Sema::getContainingDC(DeclContext *DC) {
114  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
115    // A C++ out-of-line method will return to the file declaration context.
116    if (MD->isOutOfLineDefinition())
117      return MD->getLexicalDeclContext();
118
119    // A C++ inline method is parsed *after* the topmost class it was declared
120    // in is fully parsed (it's "complete").
121    // The parsing of a C++ inline method happens at the declaration context of
122    // the topmost (non-nested) class it is lexically declared in.
123    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
124    DC = MD->getParent();
125    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
126      DC = RD;
127
128    // Return the declaration context of the topmost class the inline method is
129    // declared in.
130    return DC;
131  }
132
133  if (isa<ObjCMethodDecl>(DC))
134    return Context.getTranslationUnitDecl();
135
136  return DC->getLexicalParent();
137}
138
139void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
140  assert(getContainingDC(DC) == CurContext &&
141      "The next DeclContext should be lexically contained in the current one.");
142  CurContext = DC;
143  S->setEntity(DC);
144}
145
146void Sema::PopDeclContext() {
147  assert(CurContext && "DeclContext imbalance!");
148
149  CurContext = getContainingDC(CurContext);
150}
151
152/// \brief Determine whether we allow overloading of the function
153/// PrevDecl with another declaration.
154///
155/// This routine determines whether overloading is possible, not
156/// whether some new function is actually an overload. It will return
157/// true in C++ (where we can always provide overloads) or, as an
158/// extension, in C when the previous function is already an
159/// overloaded function declaration or has the "overloadable"
160/// attribute.
161static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
162  if (Context.getLangOptions().CPlusPlus)
163    return true;
164
165  if (isa<OverloadedFunctionDecl>(PrevDecl))
166    return true;
167
168  return PrevDecl->getAttr<OverloadableAttr>() != 0;
169}
170
171/// Add this decl to the scope shadowed decl chains.
172void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
173  // Move up the scope chain until we find the nearest enclosing
174  // non-transparent context. The declaration will be introduced into this
175  // scope.
176  while (S->getEntity() &&
177         ((DeclContext *)S->getEntity())->isTransparentContext())
178    S = S->getParent();
179
180  S->AddDecl(D);
181
182  // Add scoped declarations into their context, so that they can be
183  // found later. Declarations without a context won't be inserted
184  // into any context.
185  CurContext->addDecl(D);
186
187  // C++ [basic.scope]p4:
188  //   -- exactly one declaration shall declare a class name or
189  //   enumeration name that is not a typedef name and the other
190  //   declarations shall all refer to the same object or
191  //   enumerator, or all refer to functions and function templates;
192  //   in this case the class name or enumeration name is hidden.
193  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
194    // We are pushing the name of a tag (enum or class).
195    if (CurContext->getLookupContext()
196          == TD->getDeclContext()->getLookupContext()) {
197      // We're pushing the tag into the current context, which might
198      // require some reshuffling in the identifier resolver.
199      IdentifierResolver::iterator
200        I = IdResolver.begin(TD->getDeclName()),
201        IEnd = IdResolver.end();
202      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
203        NamedDecl *PrevDecl = *I;
204        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
205             PrevDecl = *I, ++I) {
206          if (TD->declarationReplaces(*I)) {
207            // This is a redeclaration. Remove it from the chain and
208            // break out, so that we'll add in the shadowed
209            // declaration.
210            S->RemoveDecl(*I);
211            if (PrevDecl == *I) {
212              IdResolver.RemoveDecl(*I);
213              IdResolver.AddDecl(TD);
214              return;
215            } else {
216              IdResolver.RemoveDecl(*I);
217              break;
218            }
219          }
220        }
221
222        // There is already a declaration with the same name in the same
223        // scope, which is not a tag declaration. It must be found
224        // before we find the new declaration, so insert the new
225        // declaration at the end of the chain.
226        IdResolver.AddShadowedDecl(TD, PrevDecl);
227
228        return;
229      }
230    }
231  } else if (isa<FunctionDecl>(D) &&
232             AllowOverloadingOfFunction(D, Context)) {
233    // We are pushing the name of a function, which might be an
234    // overloaded name.
235    FunctionDecl *FD = cast<FunctionDecl>(D);
236    IdentifierResolver::iterator Redecl
237      = std::find_if(IdResolver.begin(FD->getDeclName()),
238                     IdResolver.end(),
239                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
240                                  FD));
241    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
242      // There is already a declaration of a function on our
243      // IdResolver chain. Replace it with this declaration.
244      S->RemoveDecl(*Redecl);
245      IdResolver.RemoveDecl(*Redecl);
246    }
247  }
248
249  IdResolver.AddDecl(D);
250}
251
252void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
253  if (S->decl_empty()) return;
254  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
255	 "Scope shouldn't contain decls!");
256
257  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
258       I != E; ++I) {
259    Decl *TmpD = static_cast<Decl*>(*I);
260    assert(TmpD && "This decl didn't get pushed??");
261
262    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
263    NamedDecl *D = cast<NamedDecl>(TmpD);
264
265    if (!D->getDeclName()) continue;
266
267    // Remove this name from our lexical scope.
268    IdResolver.RemoveDecl(D);
269  }
270}
271
272/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
273/// return 0 if one not found.
274ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
275  // The third "scope" argument is 0 since we aren't enabling lazy built-in
276  // creation from this context.
277  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
278
279  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
280}
281
282/// getNonFieldDeclScope - Retrieves the innermost scope, starting
283/// from S, where a non-field would be declared. This routine copes
284/// with the difference between C and C++ scoping rules in structs and
285/// unions. For example, the following code is well-formed in C but
286/// ill-formed in C++:
287/// @code
288/// struct S6 {
289///   enum { BAR } e;
290/// };
291///
292/// void test_S6() {
293///   struct S6 a;
294///   a.e = BAR;
295/// }
296/// @endcode
297/// For the declaration of BAR, this routine will return a different
298/// scope. The scope S will be the scope of the unnamed enumeration
299/// within S6. In C++, this routine will return the scope associated
300/// with S6, because the enumeration's scope is a transparent
301/// context but structures can contain non-field names. In C, this
302/// routine will return the translation unit scope, since the
303/// enumeration's scope is a transparent context and structures cannot
304/// contain non-field names.
305Scope *Sema::getNonFieldDeclScope(Scope *S) {
306  while (((S->getFlags() & Scope::DeclScope) == 0) ||
307         (S->getEntity() &&
308          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
309         (S->isClassScope() && !getLangOptions().CPlusPlus))
310    S = S->getParent();
311  return S;
312}
313
314void Sema::InitBuiltinVaListType() {
315  if (!Context.getBuiltinVaListType().isNull())
316    return;
317
318  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
319  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
320  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
321  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
322}
323
324/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
325/// file scope.  lazily create a decl for it. ForRedeclaration is true
326/// if we're creating this built-in in anticipation of redeclaring the
327/// built-in.
328NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
329                                     Scope *S, bool ForRedeclaration,
330                                     SourceLocation Loc) {
331  Builtin::ID BID = (Builtin::ID)bid;
332
333  if (Context.BuiltinInfo.hasVAListUse(BID))
334    InitBuiltinVaListType();
335
336  Builtin::Context::GetBuiltinTypeError Error;
337  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
338  switch (Error) {
339  case Builtin::Context::GE_None:
340    // Okay
341    break;
342
343  case Builtin::Context::GE_Missing_FILE:
344    if (ForRedeclaration)
345      Diag(Loc, diag::err_implicit_decl_requires_stdio)
346        << Context.BuiltinInfo.GetName(BID);
347    return 0;
348  }
349
350  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
351    Diag(Loc, diag::ext_implicit_lib_function_decl)
352      << Context.BuiltinInfo.GetName(BID)
353      << R;
354    if (Context.BuiltinInfo.getHeaderName(BID) &&
355        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
356          != diag::MAP_IGNORE)
357      Diag(Loc, diag::note_please_include_header)
358        << Context.BuiltinInfo.getHeaderName(BID)
359        << Context.BuiltinInfo.GetName(BID);
360  }
361
362  FunctionDecl *New = FunctionDecl::Create(Context,
363                                           Context.getTranslationUnitDecl(),
364                                           Loc, II, R,
365                                           FunctionDecl::Extern, false,
366                                           /*hasPrototype=*/true);
367  New->setImplicit();
368
369  // Create Decl objects for each parameter, adding them to the
370  // FunctionDecl.
371  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
372    llvm::SmallVector<ParmVarDecl*, 16> Params;
373    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
374      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
375                                           FT->getArgType(i), VarDecl::None, 0));
376    New->setParams(Context, &Params[0], Params.size());
377  }
378
379  AddKnownFunctionAttributes(New);
380
381  // TUScope is the translation-unit scope to insert this function into.
382  // FIXME: This is hideous. We need to teach PushOnScopeChains to
383  // relate Scopes to DeclContexts, and probably eliminate CurContext
384  // entirely, but we're not there yet.
385  DeclContext *SavedContext = CurContext;
386  CurContext = Context.getTranslationUnitDecl();
387  PushOnScopeChains(New, TUScope);
388  CurContext = SavedContext;
389  return New;
390}
391
392/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
393/// everything from the standard library is defined.
394NamespaceDecl *Sema::GetStdNamespace() {
395  if (!StdNamespace) {
396    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
397    DeclContext *Global = Context.getTranslationUnitDecl();
398    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
399    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
400  }
401  return StdNamespace;
402}
403
404/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
405/// same name and scope as a previous declaration 'Old'.  Figure out
406/// how to resolve this situation, merging decls or emitting
407/// diagnostics as appropriate. Returns true if there was an error,
408/// false otherwise.
409///
410bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
411  bool objc_types = false;
412  // Allow multiple definitions for ObjC built-in typedefs.
413  // FIXME: Verify the underlying types are equivalent!
414  if (getLangOptions().ObjC1) {
415    const IdentifierInfo *TypeID = New->getIdentifier();
416    switch (TypeID->getLength()) {
417    default: break;
418    case 2:
419      if (!TypeID->isStr("id"))
420        break;
421      Context.setObjCIdType(New);
422      objc_types = true;
423      break;
424    case 5:
425      if (!TypeID->isStr("Class"))
426        break;
427      Context.setObjCClassType(New);
428      objc_types = true;
429      return false;
430    case 3:
431      if (!TypeID->isStr("SEL"))
432        break;
433      Context.setObjCSelType(New);
434      objc_types = true;
435      return false;
436    case 8:
437      if (!TypeID->isStr("Protocol"))
438        break;
439      Context.setObjCProtoType(New->getUnderlyingType());
440      objc_types = true;
441      return false;
442    }
443    // Fall through - the typedef name was not a builtin type.
444  }
445  // Verify the old decl was also a type.
446  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
447  if (!Old) {
448    Diag(New->getLocation(), diag::err_redefinition_different_kind)
449      << New->getDeclName();
450    if (!objc_types)
451      Diag(OldD->getLocation(), diag::note_previous_definition);
452    return true;
453  }
454
455  // Determine the "old" type we'll use for checking and diagnostics.
456  QualType OldType;
457  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
458    OldType = OldTypedef->getUnderlyingType();
459  else
460    OldType = Context.getTypeDeclType(Old);
461
462  // If the typedef types are not identical, reject them in all languages and
463  // with any extensions enabled.
464
465  if (OldType != New->getUnderlyingType() &&
466      Context.getCanonicalType(OldType) !=
467      Context.getCanonicalType(New->getUnderlyingType())) {
468    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
469      << New->getUnderlyingType() << OldType;
470    if (!objc_types)
471      Diag(Old->getLocation(), diag::note_previous_definition);
472    return true;
473  }
474  if (objc_types) return false;
475  if (getLangOptions().Microsoft) return false;
476
477  // C++ [dcl.typedef]p2:
478  //   In a given non-class scope, a typedef specifier can be used to
479  //   redefine the name of any type declared in that scope to refer
480  //   to the type to which it already refers.
481  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
482    return false;
483
484  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
485  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
486  // *either* declaration is in a system header. The code below implements
487  // this adhoc compatibility rule. FIXME: The following code will not
488  // work properly when compiling ".i" files (containing preprocessed output).
489  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
490    SourceManager &SrcMgr = Context.getSourceManager();
491    if (SrcMgr.isInSystemHeader(Old->getLocation()))
492      return false;
493    if (SrcMgr.isInSystemHeader(New->getLocation()))
494      return false;
495  }
496
497  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
498  Diag(Old->getLocation(), diag::note_previous_definition);
499  return true;
500}
501
502/// DeclhasAttr - returns true if decl Declaration already has the target
503/// attribute.
504static bool DeclHasAttr(const Decl *decl, const Attr *target) {
505  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
506    if (attr->getKind() == target->getKind())
507      return true;
508
509  return false;
510}
511
512/// MergeAttributes - append attributes from the Old decl to the New one.
513static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
514  Attr *attr = const_cast<Attr*>(Old->getAttrs());
515
516  while (attr) {
517    Attr *tmp = attr;
518    attr = attr->getNext();
519
520    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
521      tmp->setInherited(true);
522      New->addAttr(tmp);
523    } else {
524      tmp->setNext(0);
525      tmp->Destroy(C);
526    }
527  }
528
529  Old->invalidateAttrs();
530}
531
532/// Used in MergeFunctionDecl to keep track of function parameters in
533/// C.
534struct GNUCompatibleParamWarning {
535  ParmVarDecl *OldParm;
536  ParmVarDecl *NewParm;
537  QualType PromotedType;
538};
539
540/// MergeFunctionDecl - We just parsed a function 'New' from
541/// declarator D which has the same name and scope as a previous
542/// declaration 'Old'.  Figure out how to resolve this situation,
543/// merging decls or emitting diagnostics as appropriate.
544///
545/// In C++, New and Old must be declarations that are not
546/// overloaded. Use IsOverload to determine whether New and Old are
547/// overloaded, and to select the Old declaration that New should be
548/// merged with.
549///
550/// Returns true if there was an error, false otherwise.
551bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
552  assert(!isa<OverloadedFunctionDecl>(OldD) &&
553         "Cannot merge with an overloaded function declaration");
554
555  // Verify the old decl was also a function.
556  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
557  if (!Old) {
558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
559      << New->getDeclName();
560    Diag(OldD->getLocation(), diag::note_previous_definition);
561    return true;
562  }
563
564  // Determine whether the previous declaration was a definition,
565  // implicit declaration, or a declaration.
566  diag::kind PrevDiag;
567  if (Old->isThisDeclarationADefinition())
568    PrevDiag = diag::note_previous_definition;
569  else if (Old->isImplicit())
570    PrevDiag = diag::note_previous_implicit_declaration;
571  else
572    PrevDiag = diag::note_previous_declaration;
573
574  QualType OldQType = Context.getCanonicalType(Old->getType());
575  QualType NewQType = Context.getCanonicalType(New->getType());
576
577  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
578      New->getStorageClass() == FunctionDecl::Static &&
579      Old->getStorageClass() != FunctionDecl::Static) {
580    Diag(New->getLocation(), diag::err_static_non_static)
581      << New;
582    Diag(Old->getLocation(), PrevDiag);
583    return true;
584  }
585
586  if (getLangOptions().CPlusPlus) {
587    // (C++98 13.1p2):
588    //   Certain function declarations cannot be overloaded:
589    //     -- Function declarations that differ only in the return type
590    //        cannot be overloaded.
591    QualType OldReturnType
592      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
593    QualType NewReturnType
594      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
595    if (OldReturnType != NewReturnType) {
596      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
597      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
598      return true;
599    }
600
601    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
602    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
603    if (OldMethod && NewMethod &&
604        OldMethod->getLexicalDeclContext() ==
605          NewMethod->getLexicalDeclContext()) {
606      //    -- Member function declarations with the same name and the
607      //       same parameter types cannot be overloaded if any of them
608      //       is a static member function declaration.
609      if (OldMethod->isStatic() || NewMethod->isStatic()) {
610        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
611        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
612        return true;
613      }
614
615      // C++ [class.mem]p1:
616      //   [...] A member shall not be declared twice in the
617      //   member-specification, except that a nested class or member
618      //   class template can be declared and then later defined.
619      unsigned NewDiag;
620      if (isa<CXXConstructorDecl>(OldMethod))
621        NewDiag = diag::err_constructor_redeclared;
622      else if (isa<CXXDestructorDecl>(NewMethod))
623        NewDiag = diag::err_destructor_redeclared;
624      else if (isa<CXXConversionDecl>(NewMethod))
625        NewDiag = diag::err_conv_function_redeclared;
626      else
627        NewDiag = diag::err_member_redeclared;
628
629      Diag(New->getLocation(), NewDiag);
630      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
631    }
632
633    // (C++98 8.3.5p3):
634    //   All declarations for a function shall agree exactly in both the
635    //   return type and the parameter-type-list.
636    if (OldQType == NewQType)
637      return MergeCompatibleFunctionDecls(New, Old);
638
639    // Fall through for conflicting redeclarations and redefinitions.
640  }
641
642  // C: Function types need to be compatible, not identical. This handles
643  // duplicate function decls like "void f(int); void f(enum X);" properly.
644  if (!getLangOptions().CPlusPlus &&
645      Context.typesAreCompatible(OldQType, NewQType)) {
646    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
647    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
648    const FunctionProtoType *OldProto = 0;
649    if (isa<FunctionNoProtoType>(NewFuncType) &&
650        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
651      // The old declaration provided a function prototype, but the
652      // new declaration does not. Merge in the prototype.
653      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
654                                                 OldProto->arg_type_end());
655      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
656                                         &ParamTypes[0], ParamTypes.size(),
657                                         OldProto->isVariadic(),
658                                         OldProto->getTypeQuals());
659      New->setType(NewQType);
660      New->setInheritedPrototype();
661
662      // Synthesize a parameter for each argument type.
663      llvm::SmallVector<ParmVarDecl*, 16> Params;
664      for (FunctionProtoType::arg_type_iterator
665             ParamType = OldProto->arg_type_begin(),
666             ParamEnd = OldProto->arg_type_end();
667           ParamType != ParamEnd; ++ParamType) {
668        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
669                                                 SourceLocation(), 0,
670                                                 *ParamType, VarDecl::None,
671                                                 0);
672        Param->setImplicit();
673        Params.push_back(Param);
674      }
675
676      New->setParams(Context, &Params[0], Params.size());
677    }
678
679    return MergeCompatibleFunctionDecls(New, Old);
680  }
681
682  // GNU C permits a K&R definition to follow a prototype declaration
683  // if the declared types of the parameters in the K&R definition
684  // match the types in the prototype declaration, even when the
685  // promoted types of the parameters from the K&R definition differ
686  // from the types in the prototype. GCC then keeps the types from
687  // the prototype.
688  if (!getLangOptions().CPlusPlus &&
689      !getLangOptions().NoExtensions &&
690      Old->hasPrototype() && !New->hasPrototype() &&
691      New->getType()->getAsFunctionProtoType() &&
692      Old->getNumParams() == New->getNumParams()) {
693    llvm::SmallVector<QualType, 16> ArgTypes;
694    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
695    const FunctionProtoType *OldProto
696      = Old->getType()->getAsFunctionProtoType();
697    const FunctionProtoType *NewProto
698      = New->getType()->getAsFunctionProtoType();
699
700    // Determine whether this is the GNU C extension.
701    bool GNUCompatible =
702      Context.typesAreCompatible(OldProto->getResultType(),
703                                 NewProto->getResultType()) &&
704      (OldProto->isVariadic() == NewProto->isVariadic());
705    for (unsigned Idx = 0, End = Old->getNumParams();
706         GNUCompatible && Idx != End; ++Idx) {
707      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
708      ParmVarDecl *NewParm = New->getParamDecl(Idx);
709      if (Context.typesAreCompatible(OldParm->getType(),
710                                     NewProto->getArgType(Idx))) {
711        ArgTypes.push_back(NewParm->getType());
712      } else if (Context.typesAreCompatible(OldParm->getType(),
713                                            NewParm->getType())) {
714        GNUCompatibleParamWarning Warn
715          = { OldParm, NewParm, NewProto->getArgType(Idx) };
716        Warnings.push_back(Warn);
717        ArgTypes.push_back(NewParm->getType());
718      } else
719        GNUCompatible = false;
720    }
721
722    if (GNUCompatible) {
723      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
724        Diag(Warnings[Warn].NewParm->getLocation(),
725             diag::ext_param_promoted_not_compatible_with_prototype)
726          << Warnings[Warn].PromotedType
727          << Warnings[Warn].OldParm->getType();
728        Diag(Warnings[Warn].OldParm->getLocation(),
729             diag::note_previous_declaration);
730      }
731
732      New->setType(Context.getFunctionType(NewProto->getResultType(),
733                                           &ArgTypes[0], ArgTypes.size(),
734                                           NewProto->isVariadic(),
735                                           NewProto->getTypeQuals()));
736      return MergeCompatibleFunctionDecls(New, Old);
737    }
738
739    // Fall through to diagnose conflicting types.
740  }
741
742  // A function that has already been declared has been redeclared or defined
743  // with a different type- show appropriate diagnostic
744  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
745    // The user has declared a builtin function with an incompatible
746    // signature.
747    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
748      // The function the user is redeclaring is a library-defined
749      // function like 'malloc' or 'printf'. Warn about the
750      // redeclaration, then pretend that we don't know about this
751      // library built-in.
752      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
753      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
754        << Old << Old->getType();
755      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
756      Old->setInvalidDecl();
757      return false;
758    }
759
760    PrevDiag = diag::note_previous_builtin_declaration;
761  }
762
763  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
764  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
765  return true;
766}
767
768/// \brief Completes the merge of two function declarations that are
769/// known to be compatible.
770///
771/// This routine handles the merging of attributes and other
772/// properties of function declarations form the old declaration to
773/// the new declaration, once we know that New is in fact a
774/// redeclaration of Old.
775///
776/// \returns false
777bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
778  // Merge the attributes
779  MergeAttributes(New, Old, Context);
780
781  // Merge the storage class.
782  New->setStorageClass(Old->getStorageClass());
783
784  // FIXME: need to implement inline semantics
785
786  // Merge "pure" flag.
787  if (Old->isPure())
788    New->setPure();
789
790  // Merge the "deleted" flag.
791  if (Old->isDeleted())
792    New->setDeleted();
793
794  if (getLangOptions().CPlusPlus)
795    return MergeCXXFunctionDecl(New, Old);
796
797  return false;
798}
799
800/// MergeVarDecl - We just parsed a variable 'New' which has the same name
801/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
802/// situation, merging decls or emitting diagnostics as appropriate.
803///
804/// Tentative definition rules (C99 6.9.2p2) are checked by
805/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
806/// definitions here, since the initializer hasn't been attached.
807///
808bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
809  // Verify the old decl was also a variable.
810  VarDecl *Old = dyn_cast<VarDecl>(OldD);
811  if (!Old) {
812    Diag(New->getLocation(), diag::err_redefinition_different_kind)
813      << New->getDeclName();
814    Diag(OldD->getLocation(), diag::note_previous_definition);
815    return true;
816  }
817
818  MergeAttributes(New, Old, Context);
819
820  // Merge the types
821  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
822  if (MergedT.isNull()) {
823    Diag(New->getLocation(), diag::err_redefinition_different_type)
824      << New->getDeclName();
825    Diag(Old->getLocation(), diag::note_previous_definition);
826    return true;
827  }
828  New->setType(MergedT);
829
830  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
831  if (New->getStorageClass() == VarDecl::Static &&
832      (Old->getStorageClass() == VarDecl::None ||
833       Old->getStorageClass() == VarDecl::Extern)) {
834    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
835    Diag(Old->getLocation(), diag::note_previous_definition);
836    return true;
837  }
838  // C99 6.2.2p4:
839  //   For an identifier declared with the storage-class specifier
840  //   extern in a scope in which a prior declaration of that
841  //   identifier is visible,23) if the prior declaration specifies
842  //   internal or external linkage, the linkage of the identifier at
843  //   the later declaration is the same as the linkage specified at
844  //   the prior declaration. If no prior declaration is visible, or
845  //   if the prior declaration specifies no linkage, then the
846  //   identifier has external linkage.
847  if (New->hasExternalStorage() && Old->hasLinkage())
848    /* Okay */;
849  else if (New->getStorageClass() != VarDecl::Static &&
850           Old->getStorageClass() == VarDecl::Static) {
851    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
852    Diag(Old->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
856  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
857      // Don't complain about out-of-line definitions of static members.
858      !(Old->getLexicalDeclContext()->isRecord() &&
859        !New->getLexicalDeclContext()->isRecord())) {
860    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
861    Diag(Old->getLocation(), diag::note_previous_definition);
862    return true;
863  }
864
865  // Keep a chain of previous declarations.
866  New->setPreviousDeclaration(Old);
867
868  return false;
869}
870
871/// CheckParmsForFunctionDef - Check that the parameters of the given
872/// function are appropriate for the definition of a function. This
873/// takes care of any checks that cannot be performed on the
874/// declaration itself, e.g., that the types of each of the function
875/// parameters are complete.
876bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
877  bool HasInvalidParm = false;
878  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
879    ParmVarDecl *Param = FD->getParamDecl(p);
880
881    // C99 6.7.5.3p4: the parameters in a parameter type list in a
882    // function declarator that is part of a function definition of
883    // that function shall not have incomplete type.
884    //
885    // This is also C++ [dcl.fct]p6.
886    if (!Param->isInvalidDecl() &&
887        RequireCompleteType(Param->getLocation(), Param->getType(),
888                               diag::err_typecheck_decl_incomplete_type)) {
889      Param->setInvalidDecl();
890      HasInvalidParm = true;
891    }
892
893    // C99 6.9.1p5: If the declarator includes a parameter type list, the
894    // declaration of each parameter shall include an identifier.
895    if (Param->getIdentifier() == 0 &&
896        !Param->isImplicit() &&
897        !getLangOptions().CPlusPlus)
898      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
899  }
900
901  return HasInvalidParm;
902}
903
904/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
905/// no declarator (e.g. "struct foo;") is parsed.
906Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
907  TagDecl *Tag = 0;
908  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
909      DS.getTypeSpecType() == DeclSpec::TST_struct ||
910      DS.getTypeSpecType() == DeclSpec::TST_union ||
911      DS.getTypeSpecType() == DeclSpec::TST_enum)
912    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
913
914  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
915    if (!Record->getDeclName() && Record->isDefinition() &&
916        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
917      if (getLangOptions().CPlusPlus ||
918          Record->getDeclContext()->isRecord())
919        return BuildAnonymousStructOrUnion(S, DS, Record);
920
921      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
922        << DS.getSourceRange();
923    }
924
925    // Microsoft allows unnamed struct/union fields. Don't complain
926    // about them.
927    // FIXME: Should we support Microsoft's extensions in this area?
928    if (Record->getDeclName() && getLangOptions().Microsoft)
929      return Tag;
930  }
931
932  if (!DS.isMissingDeclaratorOk() &&
933      DS.getTypeSpecType() != DeclSpec::TST_error) {
934    // Warn about typedefs of enums without names, since this is an
935    // extension in both Microsoft an GNU.
936    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
937        Tag && isa<EnumDecl>(Tag)) {
938      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
939        << DS.getSourceRange();
940      return Tag;
941    }
942
943    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
944      << DS.getSourceRange();
945    return 0;
946  }
947
948  return Tag;
949}
950
951/// InjectAnonymousStructOrUnionMembers - Inject the members of the
952/// anonymous struct or union AnonRecord into the owning context Owner
953/// and scope S. This routine will be invoked just after we realize
954/// that an unnamed union or struct is actually an anonymous union or
955/// struct, e.g.,
956///
957/// @code
958/// union {
959///   int i;
960///   float f;
961/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
962///    // f into the surrounding scope.x
963/// @endcode
964///
965/// This routine is recursive, injecting the names of nested anonymous
966/// structs/unions into the owning context and scope as well.
967bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
968                                               RecordDecl *AnonRecord) {
969  bool Invalid = false;
970  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
971                               FEnd = AnonRecord->field_end();
972       F != FEnd; ++F) {
973    if ((*F)->getDeclName()) {
974      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
975                                                LookupOrdinaryName, true);
976      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
977        // C++ [class.union]p2:
978        //   The names of the members of an anonymous union shall be
979        //   distinct from the names of any other entity in the
980        //   scope in which the anonymous union is declared.
981        unsigned diagKind
982          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
983                                 : diag::err_anonymous_struct_member_redecl;
984        Diag((*F)->getLocation(), diagKind)
985          << (*F)->getDeclName();
986        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
987        Invalid = true;
988      } else {
989        // C++ [class.union]p2:
990        //   For the purpose of name lookup, after the anonymous union
991        //   definition, the members of the anonymous union are
992        //   considered to have been defined in the scope in which the
993        //   anonymous union is declared.
994        Owner->makeDeclVisibleInContext(*F);
995        S->AddDecl(*F);
996        IdResolver.AddDecl(*F);
997      }
998    } else if (const RecordType *InnerRecordType
999                 = (*F)->getType()->getAsRecordType()) {
1000      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1001      if (InnerRecord->isAnonymousStructOrUnion())
1002        Invalid = Invalid ||
1003          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1004    }
1005  }
1006
1007  return Invalid;
1008}
1009
1010/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1011/// anonymous structure or union. Anonymous unions are a C++ feature
1012/// (C++ [class.union]) and a GNU C extension; anonymous structures
1013/// are a GNU C and GNU C++ extension.
1014Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1015                                                RecordDecl *Record) {
1016  DeclContext *Owner = Record->getDeclContext();
1017
1018  // Diagnose whether this anonymous struct/union is an extension.
1019  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1020    Diag(Record->getLocation(), diag::ext_anonymous_union);
1021  else if (!Record->isUnion())
1022    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1023
1024  // C and C++ require different kinds of checks for anonymous
1025  // structs/unions.
1026  bool Invalid = false;
1027  if (getLangOptions().CPlusPlus) {
1028    const char* PrevSpec = 0;
1029    // C++ [class.union]p3:
1030    //   Anonymous unions declared in a named namespace or in the
1031    //   global namespace shall be declared static.
1032    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1033        (isa<TranslationUnitDecl>(Owner) ||
1034         (isa<NamespaceDecl>(Owner) &&
1035          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1036      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1037      Invalid = true;
1038
1039      // Recover by adding 'static'.
1040      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1041    }
1042    // C++ [class.union]p3:
1043    //   A storage class is not allowed in a declaration of an
1044    //   anonymous union in a class scope.
1045    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1046             isa<RecordDecl>(Owner)) {
1047      Diag(DS.getStorageClassSpecLoc(),
1048           diag::err_anonymous_union_with_storage_spec);
1049      Invalid = true;
1050
1051      // Recover by removing the storage specifier.
1052      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1053                             PrevSpec);
1054    }
1055
1056    // C++ [class.union]p2:
1057    //   The member-specification of an anonymous union shall only
1058    //   define non-static data members. [Note: nested types and
1059    //   functions cannot be declared within an anonymous union. ]
1060    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1061                                 MemEnd = Record->decls_end();
1062         Mem != MemEnd; ++Mem) {
1063      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1064        // C++ [class.union]p3:
1065        //   An anonymous union shall not have private or protected
1066        //   members (clause 11).
1067        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1068          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1069            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1070          Invalid = true;
1071        }
1072      } else if ((*Mem)->isImplicit()) {
1073        // Any implicit members are fine.
1074      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1075        // This is a type that showed up in an
1076        // elaborated-type-specifier inside the anonymous struct or
1077        // union, but which actually declares a type outside of the
1078        // anonymous struct or union. It's okay.
1079      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1080        if (!MemRecord->isAnonymousStructOrUnion() &&
1081            MemRecord->getDeclName()) {
1082          // This is a nested type declaration.
1083          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1084            << (int)Record->isUnion();
1085          Invalid = true;
1086        }
1087      } else {
1088        // We have something that isn't a non-static data
1089        // member. Complain about it.
1090        unsigned DK = diag::err_anonymous_record_bad_member;
1091        if (isa<TypeDecl>(*Mem))
1092          DK = diag::err_anonymous_record_with_type;
1093        else if (isa<FunctionDecl>(*Mem))
1094          DK = diag::err_anonymous_record_with_function;
1095        else if (isa<VarDecl>(*Mem))
1096          DK = diag::err_anonymous_record_with_static;
1097        Diag((*Mem)->getLocation(), DK)
1098            << (int)Record->isUnion();
1099          Invalid = true;
1100      }
1101    }
1102  }
1103
1104  if (!Record->isUnion() && !Owner->isRecord()) {
1105    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1106      << (int)getLangOptions().CPlusPlus;
1107    Invalid = true;
1108  }
1109
1110  // Create a declaration for this anonymous struct/union.
1111  NamedDecl *Anon = 0;
1112  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1113    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1114                             /*IdentifierInfo=*/0,
1115                             Context.getTypeDeclType(Record),
1116                             /*BitWidth=*/0, /*Mutable=*/false);
1117    Anon->setAccess(AS_public);
1118    if (getLangOptions().CPlusPlus)
1119      FieldCollector->Add(cast<FieldDecl>(Anon));
1120  } else {
1121    VarDecl::StorageClass SC;
1122    switch (DS.getStorageClassSpec()) {
1123    default: assert(0 && "Unknown storage class!");
1124    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1125    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1126    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1127    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1128    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1129    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1130    case DeclSpec::SCS_mutable:
1131      // mutable can only appear on non-static class members, so it's always
1132      // an error here
1133      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1134      Invalid = true;
1135      SC = VarDecl::None;
1136      break;
1137    }
1138
1139    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1140                           /*IdentifierInfo=*/0,
1141                           Context.getTypeDeclType(Record),
1142                           SC, DS.getSourceRange().getBegin());
1143  }
1144  Anon->setImplicit();
1145
1146  // Add the anonymous struct/union object to the current
1147  // context. We'll be referencing this object when we refer to one of
1148  // its members.
1149  Owner->addDecl(Anon);
1150
1151  // Inject the members of the anonymous struct/union into the owning
1152  // context and into the identifier resolver chain for name lookup
1153  // purposes.
1154  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1155    Invalid = true;
1156
1157  // Mark this as an anonymous struct/union type. Note that we do not
1158  // do this until after we have already checked and injected the
1159  // members of this anonymous struct/union type, because otherwise
1160  // the members could be injected twice: once by DeclContext when it
1161  // builds its lookup table, and once by
1162  // InjectAnonymousStructOrUnionMembers.
1163  Record->setAnonymousStructOrUnion(true);
1164
1165  if (Invalid)
1166    Anon->setInvalidDecl();
1167
1168  return Anon;
1169}
1170
1171
1172/// GetNameForDeclarator - Determine the full declaration name for the
1173/// given Declarator.
1174DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1175  switch (D.getKind()) {
1176  case Declarator::DK_Abstract:
1177    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1178    return DeclarationName();
1179
1180  case Declarator::DK_Normal:
1181    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1182    return DeclarationName(D.getIdentifier());
1183
1184  case Declarator::DK_Constructor: {
1185    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1186    Ty = Context.getCanonicalType(Ty);
1187    return Context.DeclarationNames.getCXXConstructorName(Ty);
1188  }
1189
1190  case Declarator::DK_Destructor: {
1191    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1192    Ty = Context.getCanonicalType(Ty);
1193    return Context.DeclarationNames.getCXXDestructorName(Ty);
1194  }
1195
1196  case Declarator::DK_Conversion: {
1197    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1198    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1199    Ty = Context.getCanonicalType(Ty);
1200    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1201  }
1202
1203  case Declarator::DK_Operator:
1204    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1205    return Context.DeclarationNames.getCXXOperatorName(
1206                                                D.getOverloadedOperator());
1207  }
1208
1209  assert(false && "Unknown name kind");
1210  return DeclarationName();
1211}
1212
1213/// isNearlyMatchingFunction - Determine whether the C++ functions
1214/// Declaration and Definition are "nearly" matching. This heuristic
1215/// is used to improve diagnostics in the case where an out-of-line
1216/// function definition doesn't match any declaration within
1217/// the class or namespace.
1218static bool isNearlyMatchingFunction(ASTContext &Context,
1219                                     FunctionDecl *Declaration,
1220                                     FunctionDecl *Definition) {
1221  if (Declaration->param_size() != Definition->param_size())
1222    return false;
1223  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1224    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1225    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1226
1227    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1228    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1229    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1230      return false;
1231  }
1232
1233  return true;
1234}
1235
1236Sema::DeclTy *
1237Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1238                      bool IsFunctionDefinition) {
1239  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1240  DeclarationName Name = GetNameForDeclarator(D);
1241
1242  // All of these full declarators require an identifier.  If it doesn't have
1243  // one, the ParsedFreeStandingDeclSpec action should be used.
1244  if (!Name) {
1245    if (!D.getInvalidType())  // Reject this if we think it is valid.
1246      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1247           diag::err_declarator_need_ident)
1248        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1249    return 0;
1250  }
1251
1252  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1253  // we find one that is.
1254  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1255         (S->getFlags() & Scope::TemplateParamScope) != 0)
1256    S = S->getParent();
1257
1258  DeclContext *DC;
1259  NamedDecl *PrevDecl;
1260  NamedDecl *New;
1261  bool InvalidDecl = false;
1262
1263  QualType R = GetTypeForDeclarator(D, S);
1264  if (R.isNull()) {
1265    InvalidDecl = true;
1266    R = Context.IntTy;
1267  }
1268
1269  // See if this is a redefinition of a variable in the same scope.
1270  if (D.getCXXScopeSpec().isInvalid()) {
1271    DC = CurContext;
1272    PrevDecl = 0;
1273    InvalidDecl = true;
1274  } else if (!D.getCXXScopeSpec().isSet()) {
1275    LookupNameKind NameKind = LookupOrdinaryName;
1276
1277    // If the declaration we're planning to build will be a function
1278    // or object with linkage, then look for another declaration with
1279    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1280    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1281      /* Do nothing*/;
1282    else if (R->isFunctionType()) {
1283      if (CurContext->isFunctionOrMethod())
1284        NameKind = LookupRedeclarationWithLinkage;
1285    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1286      NameKind = LookupRedeclarationWithLinkage;
1287
1288    DC = CurContext;
1289    PrevDecl = LookupName(S, Name, NameKind, true,
1290                          D.getDeclSpec().getStorageClassSpec() !=
1291                            DeclSpec::SCS_static,
1292                          D.getIdentifierLoc());
1293  } else { // Something like "int foo::x;"
1294    DC = computeDeclContext(D.getCXXScopeSpec());
1295    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1296    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1297
1298    // C++ 7.3.1.2p2:
1299    // Members (including explicit specializations of templates) of a named
1300    // namespace can also be defined outside that namespace by explicit
1301    // qualification of the name being defined, provided that the entity being
1302    // defined was already declared in the namespace and the definition appears
1303    // after the point of declaration in a namespace that encloses the
1304    // declarations namespace.
1305    //
1306    // Note that we only check the context at this point. We don't yet
1307    // have enough information to make sure that PrevDecl is actually
1308    // the declaration we want to match. For example, given:
1309    //
1310    //   class X {
1311    //     void f();
1312    //     void f(float);
1313    //   };
1314    //
1315    //   void X::f(int) { } // ill-formed
1316    //
1317    // In this case, PrevDecl will point to the overload set
1318    // containing the two f's declared in X, but neither of them
1319    // matches.
1320
1321    // First check whether we named the global scope.
1322    if (isa<TranslationUnitDecl>(DC)) {
1323      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1324        << Name << D.getCXXScopeSpec().getRange();
1325    } else if (!CurContext->Encloses(DC)) {
1326      // The qualifying scope doesn't enclose the original declaration.
1327      // Emit diagnostic based on current scope.
1328      SourceLocation L = D.getIdentifierLoc();
1329      SourceRange R = D.getCXXScopeSpec().getRange();
1330      if (isa<FunctionDecl>(CurContext))
1331        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1332      else
1333        Diag(L, diag::err_invalid_declarator_scope)
1334          << Name << cast<NamedDecl>(DC) << R;
1335      InvalidDecl = true;
1336    }
1337  }
1338
1339  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1340    // Maybe we will complain about the shadowed template parameter.
1341    InvalidDecl = InvalidDecl
1342      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1343    // Just pretend that we didn't see the previous declaration.
1344    PrevDecl = 0;
1345  }
1346
1347  // In C++, the previous declaration we find might be a tag type
1348  // (class or enum). In this case, the new declaration will hide the
1349  // tag type. Note that this does does not apply if we're declaring a
1350  // typedef (C++ [dcl.typedef]p4).
1351  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1352      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1353    PrevDecl = 0;
1354
1355  bool Redeclaration = false;
1356  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1357    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1358                                 InvalidDecl, Redeclaration);
1359  } else if (R->isFunctionType()) {
1360    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1361                                  IsFunctionDefinition, InvalidDecl,
1362                                  Redeclaration);
1363  } else {
1364    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1365                                  InvalidDecl, Redeclaration);
1366  }
1367
1368  if (New == 0)
1369    return 0;
1370
1371  // If this has an identifier and is not an invalid redeclaration,
1372  // add it to the scope stack.
1373  if (Name && !(Redeclaration && InvalidDecl))
1374    PushOnScopeChains(New, S);
1375  // If any semantic error occurred, mark the decl as invalid.
1376  if (D.getInvalidType() || InvalidDecl)
1377    New->setInvalidDecl();
1378
1379  return New;
1380}
1381
1382/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1383/// types into constant array types in certain situations which would otherwise
1384/// be errors (for GCC compatibility).
1385static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1386                                                    ASTContext &Context,
1387                                                    bool &SizeIsNegative) {
1388  // This method tries to turn a variable array into a constant
1389  // array even when the size isn't an ICE.  This is necessary
1390  // for compatibility with code that depends on gcc's buggy
1391  // constant expression folding, like struct {char x[(int)(char*)2];}
1392  SizeIsNegative = false;
1393
1394  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1395    QualType Pointee = PTy->getPointeeType();
1396    QualType FixedType =
1397        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1398    if (FixedType.isNull()) return FixedType;
1399    FixedType = Context.getPointerType(FixedType);
1400    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1401    return FixedType;
1402  }
1403
1404  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1405  if (!VLATy)
1406    return QualType();
1407  // FIXME: We should probably handle this case
1408  if (VLATy->getElementType()->isVariablyModifiedType())
1409    return QualType();
1410
1411  Expr::EvalResult EvalResult;
1412  if (!VLATy->getSizeExpr() ||
1413      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1414      !EvalResult.Val.isInt())
1415    return QualType();
1416
1417  llvm::APSInt &Res = EvalResult.Val.getInt();
1418  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1419    return Context.getConstantArrayType(VLATy->getElementType(),
1420                                        Res, ArrayType::Normal, 0);
1421
1422  SizeIsNegative = true;
1423  return QualType();
1424}
1425
1426/// \brief Register the given locally-scoped external C declaration so
1427/// that it can be found later for redeclarations
1428void
1429Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1430                                       Scope *S) {
1431  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1432         "Decl is not a locally-scoped decl!");
1433  // Note that we have a locally-scoped external with this name.
1434  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1435
1436  if (!PrevDecl)
1437    return;
1438
1439  // If there was a previous declaration of this variable, it may be
1440  // in our identifier chain. Update the identifier chain with the new
1441  // declaration.
1442  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1443    // The previous declaration was found on the identifer resolver
1444    // chain, so remove it from its scope.
1445    while (S && !S->isDeclScope(PrevDecl))
1446      S = S->getParent();
1447
1448    if (S)
1449      S->RemoveDecl(PrevDecl);
1450  }
1451}
1452
1453NamedDecl*
1454Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1455                             QualType R, Decl* LastDeclarator,
1456                             Decl* PrevDecl, bool& InvalidDecl,
1457                             bool &Redeclaration) {
1458  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1459  if (D.getCXXScopeSpec().isSet()) {
1460    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1461      << D.getCXXScopeSpec().getRange();
1462    InvalidDecl = true;
1463    // Pretend we didn't see the scope specifier.
1464    DC = 0;
1465  }
1466
1467  if (getLangOptions().CPlusPlus) {
1468    // Check that there are no default arguments (C++ only).
1469    CheckExtraCXXDefaultArguments(D);
1470
1471    if (D.getDeclSpec().isVirtualSpecified())
1472      Diag(D.getDeclSpec().getVirtualSpecLoc(),
1473           diag::err_virtual_non_function);
1474  }
1475
1476  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1477  if (!NewTD) return 0;
1478
1479  // Handle attributes prior to checking for duplicates in MergeVarDecl
1480  ProcessDeclAttributes(NewTD, D);
1481  // Merge the decl with the existing one if appropriate. If the decl is
1482  // in an outer scope, it isn't the same thing.
1483  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1484    Redeclaration = true;
1485    if (MergeTypeDefDecl(NewTD, PrevDecl))
1486      InvalidDecl = true;
1487  }
1488
1489  if (S->getFnParent() == 0) {
1490    QualType T = NewTD->getUnderlyingType();
1491    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1492    // then it shall have block scope.
1493    if (T->isVariablyModifiedType()) {
1494      bool SizeIsNegative;
1495      QualType FixedTy =
1496          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1497      if (!FixedTy.isNull()) {
1498        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1499        NewTD->setUnderlyingType(FixedTy);
1500      } else {
1501        if (SizeIsNegative)
1502          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1503        else if (T->isVariableArrayType())
1504          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1505        else
1506          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1507        InvalidDecl = true;
1508      }
1509    }
1510  }
1511  return NewTD;
1512}
1513
1514/// \brief Determines whether the given declaration is an out-of-scope
1515/// previous declaration.
1516///
1517/// This routine should be invoked when name lookup has found a
1518/// previous declaration (PrevDecl) that is not in the scope where a
1519/// new declaration by the same name is being introduced. If the new
1520/// declaration occurs in a local scope, previous declarations with
1521/// linkage may still be considered previous declarations (C99
1522/// 6.2.2p4-5, C++ [basic.link]p6).
1523///
1524/// \param PrevDecl the previous declaration found by name
1525/// lookup
1526///
1527/// \param DC the context in which the new declaration is being
1528/// declared.
1529///
1530/// \returns true if PrevDecl is an out-of-scope previous declaration
1531/// for a new delcaration with the same name.
1532static bool
1533isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1534                                ASTContext &Context) {
1535  if (!PrevDecl)
1536    return 0;
1537
1538  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1539  // case we need to check each of the overloaded functions.
1540  if (!PrevDecl->hasLinkage())
1541    return false;
1542
1543  if (Context.getLangOptions().CPlusPlus) {
1544    // C++ [basic.link]p6:
1545    //   If there is a visible declaration of an entity with linkage
1546    //   having the same name and type, ignoring entities declared
1547    //   outside the innermost enclosing namespace scope, the block
1548    //   scope declaration declares that same entity and receives the
1549    //   linkage of the previous declaration.
1550    DeclContext *OuterContext = DC->getLookupContext();
1551    if (!OuterContext->isFunctionOrMethod())
1552      // This rule only applies to block-scope declarations.
1553      return false;
1554    else {
1555      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1556      if (PrevOuterContext->isRecord())
1557        // We found a member function: ignore it.
1558        return false;
1559      else {
1560        // Find the innermost enclosing namespace for the new and
1561        // previous declarations.
1562        while (!OuterContext->isFileContext())
1563          OuterContext = OuterContext->getParent();
1564        while (!PrevOuterContext->isFileContext())
1565          PrevOuterContext = PrevOuterContext->getParent();
1566
1567        // The previous declaration is in a different namespace, so it
1568        // isn't the same function.
1569        if (OuterContext->getPrimaryContext() !=
1570            PrevOuterContext->getPrimaryContext())
1571          return false;
1572      }
1573    }
1574  }
1575
1576  return true;
1577}
1578
1579NamedDecl*
1580Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1581                              QualType R, Decl* LastDeclarator,
1582                              NamedDecl* PrevDecl, bool& InvalidDecl,
1583                              bool &Redeclaration) {
1584  DeclarationName Name = GetNameForDeclarator(D);
1585
1586  // Check that there are no default arguments (C++ only).
1587  if (getLangOptions().CPlusPlus)
1588    CheckExtraCXXDefaultArguments(D);
1589
1590  VarDecl *NewVD;
1591  VarDecl::StorageClass SC;
1592  switch (D.getDeclSpec().getStorageClassSpec()) {
1593  default: assert(0 && "Unknown storage class!");
1594  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1595  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1596  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1597  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1598  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1599  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1600  case DeclSpec::SCS_mutable:
1601    // mutable can only appear on non-static class members, so it's always
1602    // an error here
1603    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1604    InvalidDecl = true;
1605    SC = VarDecl::None;
1606    break;
1607  }
1608
1609  IdentifierInfo *II = Name.getAsIdentifierInfo();
1610  if (!II) {
1611    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1612      << Name.getAsString();
1613    return 0;
1614  }
1615
1616  if (D.getDeclSpec().isVirtualSpecified())
1617    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1618         diag::err_virtual_non_function);
1619
1620  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1621  if (!DC->isRecord() && S->getFnParent() == 0) {
1622    // C99 6.9p2: The storage-class specifiers auto and register shall not
1623    // appear in the declaration specifiers in an external declaration.
1624    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1625      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1626      InvalidDecl = true;
1627    }
1628  }
1629  if (DC->isRecord() && !CurContext->isRecord()) {
1630    // This is an out-of-line definition of a static data member.
1631    if (SC == VarDecl::Static) {
1632      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1633           diag::err_static_out_of_line)
1634        << CodeModificationHint::CreateRemoval(
1635                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1636    } else if (SC == VarDecl::None)
1637      SC = VarDecl::Static;
1638  }
1639
1640  // The variable can not
1641  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1642                          II, R, SC,
1643                          // FIXME: Move to DeclGroup...
1644                          D.getDeclSpec().getSourceRange().getBegin());
1645  NewVD->setThreadSpecified(ThreadSpecified);
1646  NewVD->setNextDeclarator(LastDeclarator);
1647
1648  // Set the lexical context. If the declarator has a C++ scope specifier, the
1649  // lexical context will be different from the semantic context.
1650  NewVD->setLexicalDeclContext(CurContext);
1651
1652  // Handle attributes prior to checking for duplicates in MergeVarDecl
1653  ProcessDeclAttributes(NewVD, D);
1654
1655  // Handle GNU asm-label extension (encoded as an attribute).
1656  if (Expr *E = (Expr*) D.getAsmLabel()) {
1657    // The parser guarantees this is a string.
1658    StringLiteral *SE = cast<StringLiteral>(E);
1659    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1660                                                        SE->getByteLength())));
1661  }
1662
1663  // If name lookup finds a previous declaration that is not in the
1664  // same scope as the new declaration, this may still be an
1665  // acceptable redeclaration.
1666  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1667      !(NewVD->hasLinkage() &&
1668        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1669    PrevDecl = 0;
1670
1671  // Merge the decl with the existing one if appropriate.
1672  if (PrevDecl) {
1673    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1674      // The user tried to define a non-static data member
1675      // out-of-line (C++ [dcl.meaning]p1).
1676      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1677        << D.getCXXScopeSpec().getRange();
1678      PrevDecl = 0;
1679      InvalidDecl = true;
1680    }
1681  } else if (D.getCXXScopeSpec().isSet()) {
1682    // No previous declaration in the qualifying scope.
1683    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1684      << Name << D.getCXXScopeSpec().getRange();
1685    InvalidDecl = true;
1686  }
1687
1688  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1689    InvalidDecl = true;
1690
1691  // If this is a locally-scoped extern C variable, update the map of
1692  // such variables.
1693  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1694      !InvalidDecl)
1695    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1696
1697  return NewVD;
1698}
1699
1700/// \brief Perform semantic checking on a newly-created variable
1701/// declaration.
1702///
1703/// This routine performs all of the type-checking required for a
1704/// variable declaration once it has been build. It is used both to
1705/// check variables after they have been parsed and their declarators
1706/// have been translated into a declaration, and to check
1707///
1708/// \returns true if an error was encountered, false otherwise.
1709bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1710                                    bool &Redeclaration) {
1711  bool Invalid = false;
1712
1713  QualType T = NewVD->getType();
1714
1715  if (T->isObjCInterfaceType()) {
1716    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1717    Invalid = true;
1718  }
1719
1720  // The variable can not have an abstract class type.
1721  if (RequireNonAbstractType(NewVD->getLocation(), T,
1722                             diag::err_abstract_type_in_decl,
1723                             AbstractVariableType))
1724    Invalid = true;
1725
1726  // Emit an error if an address space was applied to decl with local storage.
1727  // This includes arrays of objects with address space qualifiers, but not
1728  // automatic variables that point to other address spaces.
1729  // ISO/IEC TR 18037 S5.1.2
1730  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1731    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1732    Invalid = true;
1733  }
1734
1735  if (NewVD->hasLocalStorage() && T.isObjCGCWeak())
1736    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1737
1738  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1739  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1740  if (isIllegalVLA || isIllegalVM) {
1741    bool SizeIsNegative;
1742    QualType FixedTy =
1743        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1744    if (!FixedTy.isNull()) {
1745      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1746      NewVD->setType(FixedTy);
1747    } else if (T->isVariableArrayType()) {
1748      Invalid = true;
1749
1750      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1751      // FIXME: This won't give the correct result for
1752      // int a[10][n];
1753      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1754
1755      if (NewVD->isFileVarDecl())
1756        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1757          << SizeRange;
1758      else if (NewVD->getStorageClass() == VarDecl::Static)
1759        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1760          << SizeRange;
1761      else
1762        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1763            << SizeRange;
1764    } else {
1765      Invalid = true;
1766
1767      if (NewVD->isFileVarDecl())
1768        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1769      else
1770        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1771    }
1772  }
1773
1774  if (!PrevDecl && NewVD->isExternC(Context)) {
1775    // Since we did not find anything by this name and we're declaring
1776    // an extern "C" variable, look for a non-visible extern "C"
1777    // declaration with the same name.
1778    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1779      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1780    if (Pos != LocallyScopedExternalDecls.end())
1781      PrevDecl = Pos->second;
1782  }
1783
1784  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1785    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1786      << T;
1787    Invalid = true;
1788  }
1789
1790  if (PrevDecl) {
1791    Redeclaration = true;
1792    if (MergeVarDecl(NewVD, PrevDecl))
1793      Invalid = true;
1794  }
1795
1796  return NewVD->isInvalidDecl() || Invalid;
1797}
1798
1799NamedDecl*
1800Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1801                              QualType R, Decl *LastDeclarator,
1802                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1803                              bool& InvalidDecl, bool &Redeclaration) {
1804  assert(R.getTypePtr()->isFunctionType());
1805
1806  DeclarationName Name = GetNameForDeclarator(D);
1807  FunctionDecl::StorageClass SC = FunctionDecl::None;
1808  switch (D.getDeclSpec().getStorageClassSpec()) {
1809  default: assert(0 && "Unknown storage class!");
1810  case DeclSpec::SCS_auto:
1811  case DeclSpec::SCS_register:
1812  case DeclSpec::SCS_mutable:
1813    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1814         diag::err_typecheck_sclass_func);
1815    InvalidDecl = true;
1816    break;
1817  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1818  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1819  case DeclSpec::SCS_static: {
1820    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1821      // C99 6.7.1p5:
1822      //   The declaration of an identifier for a function that has
1823      //   block scope shall have no explicit storage-class specifier
1824      //   other than extern
1825      // See also (C++ [dcl.stc]p4).
1826      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1827           diag::err_static_block_func);
1828      SC = FunctionDecl::None;
1829    } else
1830      SC = FunctionDecl::Static;
1831    break;
1832  }
1833  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1834  }
1835
1836  bool isInline = D.getDeclSpec().isInlineSpecified();
1837  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1838  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1839
1840  // Check that the return type is not an abstract class type.
1841  // For record types, this is done by the AbstractClassUsageDiagnoser once
1842  // the class has been completely parsed.
1843  if (!DC->isRecord() &&
1844      RequireNonAbstractType(D.getIdentifierLoc(),
1845                             R->getAsFunctionType()->getResultType(),
1846                             diag::err_abstract_type_in_decl,
1847                             AbstractReturnType))
1848        InvalidDecl = true;
1849
1850  bool isVirtualOkay = false;
1851  FunctionDecl *NewFD;
1852  if (D.getKind() == Declarator::DK_Constructor) {
1853    // This is a C++ constructor declaration.
1854    assert(DC->isRecord() &&
1855           "Constructors can only be declared in a member context");
1856
1857    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1858
1859    // Create the new declaration
1860    NewFD = CXXConstructorDecl::Create(Context,
1861                                       cast<CXXRecordDecl>(DC),
1862                                       D.getIdentifierLoc(), Name, R,
1863                                       isExplicit, isInline,
1864                                       /*isImplicitlyDeclared=*/false);
1865
1866    if (InvalidDecl)
1867      NewFD->setInvalidDecl();
1868  } else if (D.getKind() == Declarator::DK_Destructor) {
1869    // This is a C++ destructor declaration.
1870    if (DC->isRecord()) {
1871      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1872
1873      NewFD = CXXDestructorDecl::Create(Context,
1874                                        cast<CXXRecordDecl>(DC),
1875                                        D.getIdentifierLoc(), Name, R,
1876                                        isInline,
1877                                        /*isImplicitlyDeclared=*/false);
1878
1879      if (InvalidDecl)
1880        NewFD->setInvalidDecl();
1881
1882      isVirtualOkay = true;
1883    } else {
1884      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1885
1886      // Create a FunctionDecl to satisfy the function definition parsing
1887      // code path.
1888      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1889                                   Name, R, SC, isInline,
1890                                   /*hasPrototype=*/true,
1891                                   // FIXME: Move to DeclGroup...
1892                                   D.getDeclSpec().getSourceRange().getBegin());
1893      InvalidDecl = true;
1894      NewFD->setInvalidDecl();
1895    }
1896  } else if (D.getKind() == Declarator::DK_Conversion) {
1897    if (!DC->isRecord()) {
1898      Diag(D.getIdentifierLoc(),
1899           diag::err_conv_function_not_member);
1900      return 0;
1901    } else {
1902      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1903
1904      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1905                                        D.getIdentifierLoc(), Name, R,
1906                                        isInline, isExplicit);
1907
1908      if (InvalidDecl)
1909        NewFD->setInvalidDecl();
1910
1911      isVirtualOkay = true;
1912    }
1913  } else if (DC->isRecord()) {
1914    // This is a C++ method declaration.
1915    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1916                                  D.getIdentifierLoc(), Name, R,
1917                                  (SC == FunctionDecl::Static), isInline);
1918
1919    isVirtualOkay = (SC != FunctionDecl::Static);
1920  } else {
1921    // Determine whether the function was written with a
1922    // prototype. This true when:
1923    //   - we're in C++ (where every function has a prototype),
1924    //   - there is a prototype in the declarator, or
1925    //   - the type R of the function is some kind of typedef or other reference
1926    //     to a type name (which eventually refers to a function type).
1927    bool HasPrototype =
1928       getLangOptions().CPlusPlus ||
1929       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1930       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1931
1932    NewFD = FunctionDecl::Create(Context, DC,
1933                                 D.getIdentifierLoc(),
1934                                 Name, R, SC, isInline, HasPrototype,
1935                                 // FIXME: Move to DeclGroup...
1936                                 D.getDeclSpec().getSourceRange().getBegin());
1937  }
1938  NewFD->setNextDeclarator(LastDeclarator);
1939
1940  // Set the lexical context. If the declarator has a C++
1941  // scope specifier, the lexical context will be different
1942  // from the semantic context.
1943  NewFD->setLexicalDeclContext(CurContext);
1944
1945  // C++ [dcl.fct.spec]p5:
1946  //   The virtual specifier shall only be used in declarations of
1947  //   nonstatic class member functions that appear within a
1948  //   member-specification of a class declaration; see 10.3.
1949  //
1950  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1951  // function is also virtual if it overrides an already virtual
1952  // function. This is important to do here because it's part of the
1953  // declaration.
1954  if (isVirtual && !InvalidDecl) {
1955    if (!isVirtualOkay) {
1956       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1957           diag::err_virtual_non_function);
1958    } else if (!CurContext->isRecord()) {
1959      // 'virtual' was specified outside of the class.
1960      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1961        << CodeModificationHint::CreateRemoval(
1962                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
1963    } else {
1964      // Okay: Add virtual to the method.
1965      cast<CXXMethodDecl>(NewFD)->setVirtual();
1966      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
1967      CurClass->setAggregate(false);
1968      CurClass->setPOD(false);
1969      CurClass->setPolymorphic(true);
1970    }
1971  }
1972
1973  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
1974      !CurContext->isRecord()) {
1975    // C++ [class.static]p1:
1976    //   A data or function member of a class may be declared static
1977    //   in a class definition, in which case it is a static member of
1978    //   the class.
1979
1980    // Complain about the 'static' specifier if it's on an out-of-line
1981    // member function definition.
1982    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1983         diag::err_static_out_of_line)
1984      << CodeModificationHint::CreateRemoval(
1985                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1986  }
1987
1988  // Handle GNU asm-label extension (encoded as an attribute).
1989  if (Expr *E = (Expr*) D.getAsmLabel()) {
1990    // The parser guarantees this is a string.
1991    StringLiteral *SE = cast<StringLiteral>(E);
1992    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1993                                                        SE->getByteLength())));
1994  }
1995
1996  // Copy the parameter declarations from the declarator D to
1997  // the function declaration NewFD, if they are available.
1998  if (D.getNumTypeObjects() > 0) {
1999    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2000
2001    // Create Decl objects for each parameter, adding them to the
2002    // FunctionDecl.
2003    llvm::SmallVector<ParmVarDecl*, 16> Params;
2004
2005    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2006    // function that takes no arguments, not a function that takes a
2007    // single void argument.
2008    // We let through "const void" here because Sema::GetTypeForDeclarator
2009    // already checks for that case.
2010    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2011        FTI.ArgInfo[0].Param &&
2012        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
2013      // empty arg list, don't push any params.
2014      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
2015
2016      // In C++, the empty parameter-type-list must be spelled "void"; a
2017      // typedef of void is not permitted.
2018      if (getLangOptions().CPlusPlus &&
2019          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2020        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
2021      }
2022    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2023      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2024        ParmVarDecl *PVD = (ParmVarDecl *)FTI.ArgInfo[i].Param;
2025        Params.push_back(PVD);
2026      }
2027    }
2028
2029    NewFD->setParams(Context, &Params[0], Params.size());
2030  } else if (R->getAsTypedefType()) {
2031    // When we're declaring a function with a typedef, as in the
2032    // following example, we'll need to synthesize (unnamed)
2033    // parameters for use in the declaration.
2034    //
2035    // @code
2036    // typedef void fn(int);
2037    // fn f;
2038    // @endcode
2039    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2040    if (!FT) {
2041      // This is a typedef of a function with no prototype, so we
2042      // don't need to do anything.
2043    } else if ((FT->getNumArgs() == 0) ||
2044               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2045                FT->getArgType(0)->isVoidType())) {
2046      // This is a zero-argument function. We don't need to do anything.
2047    } else {
2048      // Synthesize a parameter for each argument type.
2049      llvm::SmallVector<ParmVarDecl*, 16> Params;
2050      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2051           ArgType != FT->arg_type_end(); ++ArgType) {
2052        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2053                                                 SourceLocation(), 0,
2054                                                 *ArgType, VarDecl::None,
2055                                                 0);
2056        Param->setImplicit();
2057        Params.push_back(Param);
2058      }
2059
2060      NewFD->setParams(Context, &Params[0], Params.size());
2061    }
2062  }
2063
2064  // If name lookup finds a previous declaration that is not in the
2065  // same scope as the new declaration, this may still be an
2066  // acceptable redeclaration.
2067  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2068      !(NewFD->hasLinkage() &&
2069        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2070    PrevDecl = 0;
2071
2072  // Perform semantic checking on the function declaration.
2073  bool OverloadableAttrRequired = false; // FIXME: HACK!
2074  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2075                               /*FIXME:*/OverloadableAttrRequired))
2076    InvalidDecl = true;
2077
2078  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2079    // An out-of-line member function declaration must also be a
2080    // definition (C++ [dcl.meaning]p1).
2081    if (!IsFunctionDefinition) {
2082      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2083        << D.getCXXScopeSpec().getRange();
2084      InvalidDecl = true;
2085    } else if (!Redeclaration) {
2086      // The user tried to provide an out-of-line definition for a
2087      // function that is a member of a class or namespace, but there
2088      // was no such member function declared (C++ [class.mfct]p2,
2089      // C++ [namespace.memdef]p2). For example:
2090      //
2091      // class X {
2092      //   void f() const;
2093      // };
2094      //
2095      // void X::f() { } // ill-formed
2096      //
2097      // Complain about this problem, and attempt to suggest close
2098      // matches (e.g., those that differ only in cv-qualifiers and
2099      // whether the parameter types are references).
2100      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2101        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2102      InvalidDecl = true;
2103
2104      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2105                                              true);
2106      assert(!Prev.isAmbiguous() &&
2107             "Cannot have an ambiguity in previous-declaration lookup");
2108      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2109           Func != FuncEnd; ++Func) {
2110        if (isa<FunctionDecl>(*Func) &&
2111            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2112          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2113      }
2114
2115      PrevDecl = 0;
2116    }
2117  }
2118
2119  // Handle attributes. We need to have merged decls when handling attributes
2120  // (for example to check for conflicts, etc).
2121  // FIXME: This needs to happen before we merge declarations. Then,
2122  // let attribute merging cope with attribute conflicts.
2123  ProcessDeclAttributes(NewFD, D);
2124  AddKnownFunctionAttributes(NewFD);
2125
2126  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2127    // If a function name is overloadable in C, then every function
2128    // with that name must be marked "overloadable".
2129    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2130      << Redeclaration << NewFD;
2131    if (PrevDecl)
2132      Diag(PrevDecl->getLocation(),
2133           diag::note_attribute_overloadable_prev_overload);
2134    NewFD->addAttr(::new (Context) OverloadableAttr());
2135  }
2136
2137  // If this is a locally-scoped extern C function, update the
2138  // map of such names.
2139  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2140      && !InvalidDecl)
2141    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2142
2143  return NewFD;
2144}
2145
2146/// \brief Perform semantic checking of a new function declaration.
2147///
2148/// Performs semantic analysis of the new function declaration
2149/// NewFD. This routine performs all semantic checking that does not
2150/// require the actual declarator involved in the declaration, and is
2151/// used both for the declaration of functions as they are parsed
2152/// (called via ActOnDeclarator) and for the declaration of functions
2153/// that have been instantiated via C++ template instantiation (called
2154/// via InstantiateDecl).
2155///
2156/// \returns true if there was an error, false otherwise.
2157bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2158                                    bool &Redeclaration,
2159                                    bool &OverloadableAttrRequired) {
2160  bool InvalidDecl = false;
2161
2162  // Semantic checking for this function declaration (in isolation).
2163  if (getLangOptions().CPlusPlus) {
2164    // C++-specific checks.
2165    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2166      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2167    else if (isa<CXXDestructorDecl>(NewFD)) {
2168      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2169      Record->setUserDeclaredDestructor(true);
2170      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2171      // user-defined destructor.
2172      Record->setPOD(false);
2173    } else if (CXXConversionDecl *Conversion
2174               = dyn_cast<CXXConversionDecl>(NewFD))
2175      ActOnConversionDeclarator(Conversion);
2176
2177    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2178    if (NewFD->isOverloadedOperator() &&
2179        CheckOverloadedOperatorDeclaration(NewFD))
2180      InvalidDecl = true;
2181  }
2182
2183  // Check for a previous declaration of this name.
2184  if (!PrevDecl && NewFD->isExternC(Context)) {
2185    // Since we did not find anything by this name and we're declaring
2186    // an extern "C" function, look for a non-visible extern "C"
2187    // declaration with the same name.
2188    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2189      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2190    if (Pos != LocallyScopedExternalDecls.end())
2191      PrevDecl = Pos->second;
2192  }
2193
2194  // Merge or overload the declaration with an existing declaration of
2195  // the same name, if appropriate.
2196  if (PrevDecl) {
2197    // Determine whether NewFD is an overload of PrevDecl or
2198    // a declaration that requires merging. If it's an overload,
2199    // there's no more work to do here; we'll just add the new
2200    // function to the scope.
2201    OverloadedFunctionDecl::function_iterator MatchedDecl;
2202
2203    if (!getLangOptions().CPlusPlus &&
2204        AllowOverloadingOfFunction(PrevDecl, Context)) {
2205      OverloadableAttrRequired = true;
2206
2207      // Functions marked "overloadable" must have a prototype (that
2208      // we can't get through declaration merging).
2209      if (!NewFD->getType()->getAsFunctionProtoType()) {
2210        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2211          << NewFD;
2212        InvalidDecl = true;
2213        Redeclaration = true;
2214
2215        // Turn this into a variadic function with no parameters.
2216        QualType R = Context.getFunctionType(
2217                       NewFD->getType()->getAsFunctionType()->getResultType(),
2218                       0, 0, true, 0);
2219        NewFD->setType(R);
2220      }
2221    }
2222
2223    if (PrevDecl &&
2224        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2225         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2226      Redeclaration = true;
2227      Decl *OldDecl = PrevDecl;
2228
2229      // If PrevDecl was an overloaded function, extract the
2230      // FunctionDecl that matched.
2231      if (isa<OverloadedFunctionDecl>(PrevDecl))
2232        OldDecl = *MatchedDecl;
2233
2234      // NewFD and OldDecl represent declarations that need to be
2235      // merged.
2236      if (MergeFunctionDecl(NewFD, OldDecl))
2237        InvalidDecl = true;
2238
2239      if (!InvalidDecl)
2240        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2241    }
2242  }
2243
2244  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2245    // In C++, check default arguments now that we have merged decls. Unless
2246    // the lexical context is the class, because in this case this is done
2247    // during delayed parsing anyway.
2248    CheckCXXDefaultArguments(NewFD);
2249  }
2250
2251  return InvalidDecl || NewFD->isInvalidDecl();
2252}
2253
2254bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2255  // FIXME: Need strict checking.  In C89, we need to check for
2256  // any assignment, increment, decrement, function-calls, or
2257  // commas outside of a sizeof.  In C99, it's the same list,
2258  // except that the aforementioned are allowed in unevaluated
2259  // expressions.  Everything else falls under the
2260  // "may accept other forms of constant expressions" exception.
2261  // (We never end up here for C++, so the constant expression
2262  // rules there don't matter.)
2263  if (Init->isConstantInitializer(Context))
2264    return false;
2265  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2266    << Init->getSourceRange();
2267  return true;
2268}
2269
2270void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2271  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2272}
2273
2274/// AddInitializerToDecl - Adds the initializer Init to the
2275/// declaration dcl. If DirectInit is true, this is C++ direct
2276/// initialization rather than copy initialization.
2277void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2278  Decl *RealDecl = static_cast<Decl *>(dcl);
2279  // If there is no declaration, there was an error parsing it.  Just ignore
2280  // the initializer.
2281  if (RealDecl == 0)
2282    return;
2283
2284  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2285    // With declarators parsed the way they are, the parser cannot
2286    // distinguish between a normal initializer and a pure-specifier.
2287    // Thus this grotesque test.
2288    IntegerLiteral *IL;
2289    Expr *Init = static_cast<Expr *>(init.get());
2290    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2291        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2292      if (Method->isVirtual()) {
2293        Method->setPure();
2294
2295        // A class is abstract if at least one function is pure virtual.
2296        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2297      } else {
2298        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2299          << Method->getDeclName() << Init->getSourceRange();
2300        Method->setInvalidDecl();
2301      }
2302    } else {
2303      Diag(Method->getLocation(), diag::err_member_function_initialization)
2304        << Method->getDeclName() << Init->getSourceRange();
2305      Method->setInvalidDecl();
2306    }
2307    return;
2308  }
2309
2310  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2311  if (!VDecl) {
2312    if (getLangOptions().CPlusPlus &&
2313        RealDecl->getLexicalDeclContext()->isRecord() &&
2314        isa<NamedDecl>(RealDecl))
2315      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2316        << cast<NamedDecl>(RealDecl)->getDeclName();
2317    else
2318      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2319    RealDecl->setInvalidDecl();
2320    return;
2321  }
2322
2323  const VarDecl *Def = 0;
2324  if (VDecl->getDefinition(Def)) {
2325    Diag(VDecl->getLocation(), diag::err_redefinition)
2326      << VDecl->getDeclName();
2327    Diag(Def->getLocation(), diag::note_previous_definition);
2328    VDecl->setInvalidDecl();
2329    return;
2330  }
2331
2332  // Take ownership of the expression, now that we're sure we have somewhere
2333  // to put it.
2334  Expr *Init = static_cast<Expr *>(init.release());
2335  assert(Init && "missing initializer");
2336
2337  // Get the decls type and save a reference for later, since
2338  // CheckInitializerTypes may change it.
2339  QualType DclT = VDecl->getType(), SavT = DclT;
2340  if (VDecl->isBlockVarDecl()) {
2341    VarDecl::StorageClass SC = VDecl->getStorageClass();
2342    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2343      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2344      VDecl->setInvalidDecl();
2345    } else if (!VDecl->isInvalidDecl()) {
2346      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2347                                VDecl->getDeclName(), DirectInit))
2348        VDecl->setInvalidDecl();
2349
2350      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2351      // Don't check invalid declarations to avoid emitting useless diagnostics.
2352      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2353        if (SC == VarDecl::Static) // C99 6.7.8p4.
2354          CheckForConstantInitializer(Init, DclT);
2355      }
2356    }
2357  } else if (VDecl->isStaticDataMember() &&
2358             VDecl->getLexicalDeclContext()->isRecord()) {
2359    // This is an in-class initialization for a static data member, e.g.,
2360    //
2361    // struct S {
2362    //   static const int value = 17;
2363    // };
2364
2365    // Attach the initializer
2366    VDecl->setInit(Init);
2367
2368    // C++ [class.mem]p4:
2369    //   A member-declarator can contain a constant-initializer only
2370    //   if it declares a static member (9.4) of const integral or
2371    //   const enumeration type, see 9.4.2.
2372    QualType T = VDecl->getType();
2373    if (!T->isDependentType() &&
2374        (!Context.getCanonicalType(T).isConstQualified() ||
2375         !T->isIntegralType())) {
2376      Diag(VDecl->getLocation(), diag::err_member_initialization)
2377        << VDecl->getDeclName() << Init->getSourceRange();
2378      VDecl->setInvalidDecl();
2379    } else {
2380      // C++ [class.static.data]p4:
2381      //   If a static data member is of const integral or const
2382      //   enumeration type, its declaration in the class definition
2383      //   can specify a constant-initializer which shall be an
2384      //   integral constant expression (5.19).
2385      if (!Init->isTypeDependent() &&
2386          !Init->getType()->isIntegralType()) {
2387        // We have a non-dependent, non-integral or enumeration type.
2388        Diag(Init->getSourceRange().getBegin(),
2389             diag::err_in_class_initializer_non_integral_type)
2390          << Init->getType() << Init->getSourceRange();
2391        VDecl->setInvalidDecl();
2392      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2393        // Check whether the expression is a constant expression.
2394        llvm::APSInt Value;
2395        SourceLocation Loc;
2396        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2397          Diag(Loc, diag::err_in_class_initializer_non_constant)
2398            << Init->getSourceRange();
2399          VDecl->setInvalidDecl();
2400        } else if (!VDecl->getType()->isDependentType())
2401          ImpCastExprToType(Init, VDecl->getType());
2402      }
2403    }
2404  } else if (VDecl->isFileVarDecl()) {
2405    if (VDecl->getStorageClass() == VarDecl::Extern)
2406      Diag(VDecl->getLocation(), diag::warn_extern_init);
2407    if (!VDecl->isInvalidDecl())
2408      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2409                                VDecl->getDeclName(), DirectInit))
2410        VDecl->setInvalidDecl();
2411
2412    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2413    // Don't check invalid declarations to avoid emitting useless diagnostics.
2414    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2415      // C99 6.7.8p4. All file scoped initializers need to be constant.
2416      CheckForConstantInitializer(Init, DclT);
2417    }
2418  }
2419  // If the type changed, it means we had an incomplete type that was
2420  // completed by the initializer. For example:
2421  //   int ary[] = { 1, 3, 5 };
2422  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2423  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2424    VDecl->setType(DclT);
2425    Init->setType(DclT);
2426  }
2427
2428  // Attach the initializer to the decl.
2429  VDecl->setInit(Init);
2430  return;
2431}
2432
2433void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2434  Decl *RealDecl = static_cast<Decl *>(dcl);
2435
2436  // If there is no declaration, there was an error parsing it. Just ignore it.
2437  if (RealDecl == 0)
2438    return;
2439
2440  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2441    QualType Type = Var->getType();
2442    // C++ [dcl.init.ref]p3:
2443    //   The initializer can be omitted for a reference only in a
2444    //   parameter declaration (8.3.5), in the declaration of a
2445    //   function return type, in the declaration of a class member
2446    //   within its class declaration (9.2), and where the extern
2447    //   specifier is explicitly used.
2448    if (Type->isReferenceType() &&
2449        Var->getStorageClass() != VarDecl::Extern &&
2450        Var->getStorageClass() != VarDecl::PrivateExtern) {
2451      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2452        << Var->getDeclName()
2453        << SourceRange(Var->getLocation(), Var->getLocation());
2454      Var->setInvalidDecl();
2455      return;
2456    }
2457
2458    // C++ [dcl.init]p9:
2459    //
2460    //   If no initializer is specified for an object, and the object
2461    //   is of (possibly cv-qualified) non-POD class type (or array
2462    //   thereof), the object shall be default-initialized; if the
2463    //   object is of const-qualified type, the underlying class type
2464    //   shall have a user-declared default constructor.
2465    if (getLangOptions().CPlusPlus) {
2466      QualType InitType = Type;
2467      if (const ArrayType *Array = Context.getAsArrayType(Type))
2468        InitType = Array->getElementType();
2469      if (Var->getStorageClass() != VarDecl::Extern &&
2470          Var->getStorageClass() != VarDecl::PrivateExtern &&
2471          InitType->isRecordType()) {
2472        const CXXConstructorDecl *Constructor = 0;
2473        if (!RequireCompleteType(Var->getLocation(), InitType,
2474                                    diag::err_invalid_incomplete_type_use))
2475          Constructor
2476            = PerformInitializationByConstructor(InitType, 0, 0,
2477                                                 Var->getLocation(),
2478                                               SourceRange(Var->getLocation(),
2479                                                           Var->getLocation()),
2480                                                 Var->getDeclName(),
2481                                                 IK_Default);
2482        if (!Constructor)
2483          Var->setInvalidDecl();
2484      }
2485    }
2486
2487#if 0
2488    // FIXME: Temporarily disabled because we are not properly parsing
2489    // linkage specifications on declarations, e.g.,
2490    //
2491    //   extern "C" const CGPoint CGPointerZero;
2492    //
2493    // C++ [dcl.init]p9:
2494    //
2495    //     If no initializer is specified for an object, and the
2496    //     object is of (possibly cv-qualified) non-POD class type (or
2497    //     array thereof), the object shall be default-initialized; if
2498    //     the object is of const-qualified type, the underlying class
2499    //     type shall have a user-declared default
2500    //     constructor. Otherwise, if no initializer is specified for
2501    //     an object, the object and its subobjects, if any, have an
2502    //     indeterminate initial value; if the object or any of its
2503    //     subobjects are of const-qualified type, the program is
2504    //     ill-formed.
2505    //
2506    // This isn't technically an error in C, so we don't diagnose it.
2507    //
2508    // FIXME: Actually perform the POD/user-defined default
2509    // constructor check.
2510    if (getLangOptions().CPlusPlus &&
2511        Context.getCanonicalType(Type).isConstQualified() &&
2512        Var->getStorageClass() != VarDecl::Extern)
2513      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2514        << Var->getName()
2515        << SourceRange(Var->getLocation(), Var->getLocation());
2516#endif
2517  }
2518}
2519
2520/// The declarators are chained together backwards, reverse the list.
2521Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2522  // Often we have single declarators, handle them quickly.
2523  Decl *Group = static_cast<Decl*>(group);
2524  if (Group == 0)
2525    return 0;
2526
2527  Decl *NewGroup = 0;
2528  if (Group->getNextDeclarator() == 0)
2529    NewGroup = Group;
2530  else { // reverse the list.
2531    while (Group) {
2532      Decl *Next = Group->getNextDeclarator();
2533      Group->setNextDeclarator(NewGroup);
2534      NewGroup = Group;
2535      Group = Next;
2536    }
2537  }
2538  // Perform semantic analysis that depends on having fully processed both
2539  // the declarator and initializer.
2540  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2541    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2542    if (!IDecl)
2543      continue;
2544    QualType T = IDecl->getType();
2545
2546    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2547    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2548    if (IDecl->isBlockVarDecl() &&
2549        IDecl->getStorageClass() != VarDecl::Extern) {
2550      if (!IDecl->isInvalidDecl() &&
2551          RequireCompleteType(IDecl->getLocation(), T,
2552                                 diag::err_typecheck_decl_incomplete_type))
2553        IDecl->setInvalidDecl();
2554    }
2555    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2556    // object that has file scope without an initializer, and without a
2557    // storage-class specifier or with the storage-class specifier "static",
2558    // constitutes a tentative definition. Note: A tentative definition with
2559    // external linkage is valid (C99 6.2.2p5).
2560    if (IDecl->isTentativeDefinition(Context)) {
2561      QualType CheckType = T;
2562      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2563
2564      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2565      if (ArrayT) {
2566        CheckType = ArrayT->getElementType();
2567        DiagID = diag::err_illegal_decl_array_incomplete_type;
2568      }
2569
2570      if (IDecl->isInvalidDecl()) {
2571        // Do nothing with invalid declarations
2572      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2573                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2574        // C99 6.9.2p3: If the declaration of an identifier for an object is
2575        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2576        // declared type shall not be an incomplete type.
2577        IDecl->setInvalidDecl();
2578      }
2579    }
2580  }
2581  return NewGroup;
2582}
2583
2584/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2585/// to introduce parameters into function prototype scope.
2586Sema::DeclTy *
2587Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2588  const DeclSpec &DS = D.getDeclSpec();
2589
2590  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2591  VarDecl::StorageClass StorageClass = VarDecl::None;
2592  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2593    StorageClass = VarDecl::Register;
2594  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2595    Diag(DS.getStorageClassSpecLoc(),
2596         diag::err_invalid_storage_class_in_func_decl);
2597    D.getMutableDeclSpec().ClearStorageClassSpecs();
2598  }
2599  if (DS.isThreadSpecified()) {
2600    Diag(DS.getThreadSpecLoc(),
2601         diag::err_invalid_storage_class_in_func_decl);
2602    D.getMutableDeclSpec().ClearStorageClassSpecs();
2603  }
2604
2605  // Check that there are no default arguments inside the type of this
2606  // parameter (C++ only).
2607  if (getLangOptions().CPlusPlus)
2608    CheckExtraCXXDefaultArguments(D);
2609
2610  // In this context, we *do not* check D.getInvalidType(). If the declarator
2611  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2612  // though it will not reflect the user specified type.
2613  QualType parmDeclType = GetTypeForDeclarator(D, S);
2614
2615  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2616
2617  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2618  // Can this happen for params?  We already checked that they don't conflict
2619  // among each other.  Here they can only shadow globals, which is ok.
2620  IdentifierInfo *II = D.getIdentifier();
2621  if (II) {
2622    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2623      if (PrevDecl->isTemplateParameter()) {
2624        // Maybe we will complain about the shadowed template parameter.
2625        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2626        // Just pretend that we didn't see the previous declaration.
2627        PrevDecl = 0;
2628      } else if (S->isDeclScope(PrevDecl)) {
2629        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2630
2631        // Recover by removing the name
2632        II = 0;
2633        D.SetIdentifier(0, D.getIdentifierLoc());
2634      }
2635    }
2636  }
2637
2638  // Parameters can not be abstract class types.
2639  // For record types, this is done by the AbstractClassUsageDiagnoser once
2640  // the class has been completely parsed.
2641  if (!CurContext->isRecord() &&
2642      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2643                             diag::err_abstract_type_in_decl,
2644                             AbstractParamType))
2645    D.setInvalidType(true);
2646
2647  QualType T = adjustParameterType(parmDeclType);
2648
2649  ParmVarDecl *New;
2650  if (T == parmDeclType) // parameter type did not need adjustment
2651    New = ParmVarDecl::Create(Context, CurContext,
2652                              D.getIdentifierLoc(), II,
2653                              parmDeclType, StorageClass,
2654                              0);
2655  else // keep track of both the adjusted and unadjusted types
2656    New = OriginalParmVarDecl::Create(Context, CurContext,
2657                                      D.getIdentifierLoc(), II, T,
2658                                      parmDeclType, StorageClass, 0);
2659
2660  if (D.getInvalidType())
2661    New->setInvalidDecl();
2662
2663  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2664  if (D.getCXXScopeSpec().isSet()) {
2665    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2666      << D.getCXXScopeSpec().getRange();
2667    New->setInvalidDecl();
2668  }
2669  // Parameter declarators cannot be interface types. All ObjC objects are
2670  // passed by reference.
2671  if (T->isObjCInterfaceType()) {
2672    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2673         << "passed";
2674    New->setInvalidDecl();
2675  }
2676
2677  // Add the parameter declaration into this scope.
2678  S->AddDecl(New);
2679  if (II)
2680    IdResolver.AddDecl(New);
2681
2682  ProcessDeclAttributes(New, D);
2683  return New;
2684
2685}
2686
2687void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2688  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2689         "Not a function declarator!");
2690  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2691
2692  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2693  // for a K&R function.
2694  if (!FTI.hasPrototype) {
2695    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2696      if (FTI.ArgInfo[i].Param == 0) {
2697        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2698          << FTI.ArgInfo[i].Ident;
2699        // Implicitly declare the argument as type 'int' for lack of a better
2700        // type.
2701        DeclSpec DS;
2702        const char* PrevSpec; // unused
2703        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2704                           PrevSpec);
2705        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2706        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2707        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2708      }
2709    }
2710  }
2711}
2712
2713Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2714  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2715  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2716         "Not a function declarator!");
2717  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2718
2719  if (FTI.hasPrototype) {
2720    // FIXME: Diagnose arguments without names in C.
2721  }
2722
2723  Scope *ParentScope = FnBodyScope->getParent();
2724
2725  return ActOnStartOfFunctionDef(FnBodyScope,
2726                                 ActOnDeclarator(ParentScope, D, 0,
2727                                                 /*IsFunctionDefinition=*/true));
2728}
2729
2730Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2731  Decl *decl = static_cast<Decl*>(D);
2732  FunctionDecl *FD = cast<FunctionDecl>(decl);
2733
2734  // See if this is a redefinition.
2735  const FunctionDecl *Definition;
2736  if (FD->getBody(Definition)) {
2737    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2738    Diag(Definition->getLocation(), diag::note_previous_definition);
2739  }
2740
2741  // Builtin functions cannot be defined.
2742  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2743    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2744      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2745      FD->setInvalidDecl();
2746    }
2747  }
2748
2749  // The return type of a function definition must be complete
2750  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2751  QualType ResultType = FD->getResultType();
2752  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2753      RequireCompleteType(FD->getLocation(), ResultType,
2754                          diag::err_func_def_incomplete_result))
2755    FD->setInvalidDecl();
2756
2757  PushDeclContext(FnBodyScope, FD);
2758
2759  // Check the validity of our function parameters
2760  CheckParmsForFunctionDef(FD);
2761
2762  // Introduce our parameters into the function scope
2763  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2764    ParmVarDecl *Param = FD->getParamDecl(p);
2765    Param->setOwningFunction(FD);
2766
2767    // If this has an identifier, add it to the scope stack.
2768    if (Param->getIdentifier())
2769      PushOnScopeChains(Param, FnBodyScope);
2770  }
2771
2772  // Checking attributes of current function definition
2773  // dllimport attribute.
2774  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2775    // dllimport attribute cannot be applied to definition.
2776    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2777      Diag(FD->getLocation(),
2778           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2779        << "dllimport";
2780      FD->setInvalidDecl();
2781      return FD;
2782    } else {
2783      // If a symbol previously declared dllimport is later defined, the
2784      // attribute is ignored in subsequent references, and a warning is
2785      // emitted.
2786      Diag(FD->getLocation(),
2787           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2788        << FD->getNameAsCString() << "dllimport";
2789    }
2790  }
2791  return FD;
2792}
2793
2794static bool StatementCreatesScope(Stmt* S) {
2795  bool result = false;
2796  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2797    for (DeclStmt::decl_iterator i = DS->decl_begin();
2798         i != DS->decl_end(); ++i) {
2799      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2800        result |= D->getType()->isVariablyModifiedType();
2801        result |= !!D->getAttr<CleanupAttr>();
2802      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2803        result |= D->getUnderlyingType()->isVariablyModifiedType();
2804      }
2805    }
2806  }
2807
2808  return result;
2809}
2810
2811void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2812                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2813                                    std::vector<void*>& ScopeStack,
2814                                    Stmt* CurStmt,
2815                                    Stmt* ParentCompoundStmt) {
2816  for (Stmt::child_iterator i = CurStmt->child_begin();
2817       i != CurStmt->child_end(); ++i) {
2818    if (!*i) continue;
2819    if (StatementCreatesScope(*i))  {
2820      ScopeStack.push_back(*i);
2821      PopScopeMap[*i] = ParentCompoundStmt;
2822    } else if (isa<LabelStmt>(CurStmt)) {
2823      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2824    }
2825    if (isa<DeclStmt>(*i)) continue;
2826    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2827    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2828                             *i, CurCompound);
2829  }
2830
2831  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2832    ScopeStack.pop_back();
2833  }
2834}
2835
2836void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2837                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2838                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2839                                   std::vector<void*>& ScopeStack,
2840                                   Stmt* CurStmt) {
2841  for (Stmt::child_iterator i = CurStmt->child_begin();
2842       i != CurStmt->child_end(); ++i) {
2843    if (!*i) continue;
2844    if (StatementCreatesScope(*i))  {
2845      ScopeStack.push_back(*i);
2846    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2847      void* LScope = LabelScopeMap[GS->getLabel()];
2848      if (LScope) {
2849        bool foundScopeInStack = false;
2850        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2851          if (LScope == ScopeStack[i-1]) {
2852            foundScopeInStack = true;
2853            break;
2854          }
2855        }
2856        if (!foundScopeInStack) {
2857          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2858        }
2859      }
2860    }
2861    if (isa<DeclStmt>(*i)) continue;
2862    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2863                            ScopeStack, *i);
2864  }
2865
2866  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2867    ScopeStack.pop_back();
2868  }
2869}
2870
2871Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2872  Decl *dcl = static_cast<Decl *>(D);
2873  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2874  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2875    FD->setBody(cast<CompoundStmt>(Body));
2876    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2877  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2878    assert(MD == getCurMethodDecl() && "Method parsing confused");
2879    MD->setBody(cast<CompoundStmt>(Body));
2880  } else {
2881    Body->Destroy(Context);
2882    return 0;
2883  }
2884  PopDeclContext();
2885  // Verify and clean out per-function state.
2886
2887  bool HaveLabels = !LabelMap.empty();
2888  // Check goto/label use.
2889  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2890       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2891    // Verify that we have no forward references left.  If so, there was a goto
2892    // or address of a label taken, but no definition of it.  Label fwd
2893    // definitions are indicated with a null substmt.
2894    if (I->second->getSubStmt() == 0) {
2895      LabelStmt *L = I->second;
2896      // Emit error.
2897      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2898
2899      // At this point, we have gotos that use the bogus label.  Stitch it into
2900      // the function body so that they aren't leaked and that the AST is well
2901      // formed.
2902      if (Body) {
2903#if 0
2904        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2905        // and the AST is malformed anyway.  We should just blow away 'L'.
2906        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2907        cast<CompoundStmt>(Body)->push_back(L);
2908#else
2909        L->Destroy(Context);
2910#endif
2911      } else {
2912        // The whole function wasn't parsed correctly, just delete this.
2913        L->Destroy(Context);
2914      }
2915    }
2916  }
2917  LabelMap.clear();
2918
2919  if (!Body) return D;
2920
2921  if (HaveLabels) {
2922    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2923    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2924    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2925    std::vector<void*> ScopeStack;
2926    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2927    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2928  }
2929
2930  return D;
2931}
2932
2933/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2934/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2935NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2936                                          IdentifierInfo &II, Scope *S) {
2937  // Before we produce a declaration for an implicitly defined
2938  // function, see whether there was a locally-scoped declaration of
2939  // this name as a function or variable. If so, use that
2940  // (non-visible) declaration, and complain about it.
2941  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2942    = LocallyScopedExternalDecls.find(&II);
2943  if (Pos != LocallyScopedExternalDecls.end()) {
2944    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2945    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2946    return Pos->second;
2947  }
2948
2949  // Extension in C99.  Legal in C90, but warn about it.
2950  if (getLangOptions().C99)
2951    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2952  else
2953    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2954
2955  // FIXME: handle stuff like:
2956  // void foo() { extern float X(); }
2957  // void bar() { X(); }  <-- implicit decl for X in another scope.
2958
2959  // Set a Declarator for the implicit definition: int foo();
2960  const char *Dummy;
2961  DeclSpec DS;
2962  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2963  Error = Error; // Silence warning.
2964  assert(!Error && "Error setting up implicit decl!");
2965  Declarator D(DS, Declarator::BlockContext);
2966  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2967                                             0, 0, 0, Loc, D),
2968                SourceLocation());
2969  D.SetIdentifier(&II, Loc);
2970
2971  // Insert this function into translation-unit scope.
2972
2973  DeclContext *PrevDC = CurContext;
2974  CurContext = Context.getTranslationUnitDecl();
2975
2976  FunctionDecl *FD =
2977    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2978  FD->setImplicit();
2979
2980  CurContext = PrevDC;
2981
2982  AddKnownFunctionAttributes(FD);
2983
2984  return FD;
2985}
2986
2987/// \brief Adds any function attributes that we know a priori based on
2988/// the declaration of this function.
2989///
2990/// These attributes can apply both to implicitly-declared builtins
2991/// (like __builtin___printf_chk) or to library-declared functions
2992/// like NSLog or printf.
2993void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2994  if (FD->isInvalidDecl())
2995    return;
2996
2997  // If this is a built-in function, map its builtin attributes to
2998  // actual attributes.
2999  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3000    // Handle printf-formatting attributes.
3001    unsigned FormatIdx;
3002    bool HasVAListArg;
3003    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3004      if (!FD->getAttr<FormatAttr>())
3005        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3006                                               FormatIdx + 2));
3007    }
3008
3009    // Mark const if we don't care about errno and that is the only
3010    // thing preventing the function from being const. This allows
3011    // IRgen to use LLVM intrinsics for such functions.
3012    if (!getLangOptions().MathErrno &&
3013        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3014      if (!FD->getAttr<ConstAttr>())
3015        FD->addAttr(::new (Context) ConstAttr());
3016    }
3017  }
3018
3019  IdentifierInfo *Name = FD->getIdentifier();
3020  if (!Name)
3021    return;
3022  if ((!getLangOptions().CPlusPlus &&
3023       FD->getDeclContext()->isTranslationUnit()) ||
3024      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3025       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3026       LinkageSpecDecl::lang_c)) {
3027    // Okay: this could be a libc/libm/Objective-C function we know
3028    // about.
3029  } else
3030    return;
3031
3032  unsigned KnownID;
3033  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3034    if (KnownFunctionIDs[KnownID] == Name)
3035      break;
3036
3037  switch (KnownID) {
3038  case id_NSLog:
3039  case id_NSLogv:
3040    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3041      // FIXME: We known better than our headers.
3042      const_cast<FormatAttr *>(Format)->setType("printf");
3043    } else
3044      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3045    break;
3046
3047  case id_asprintf:
3048  case id_vasprintf:
3049    if (!FD->getAttr<FormatAttr>())
3050      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3051    break;
3052
3053  default:
3054    // Unknown function or known function without any attributes to
3055    // add. Do nothing.
3056    break;
3057  }
3058}
3059
3060TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3061                                    Decl *LastDeclarator) {
3062  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3063  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3064
3065  // Scope manipulation handled by caller.
3066  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3067                                           D.getIdentifierLoc(),
3068                                           D.getIdentifier(),
3069                                           T);
3070
3071  if (TagType *TT = dyn_cast<TagType>(T)) {
3072    TagDecl *TD = TT->getDecl();
3073
3074    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3075    // keep track of the TypedefDecl.
3076    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3077      TD->setTypedefForAnonDecl(NewTD);
3078  }
3079
3080  NewTD->setNextDeclarator(LastDeclarator);
3081  if (D.getInvalidType())
3082    NewTD->setInvalidDecl();
3083  return NewTD;
3084}
3085
3086/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3087/// former case, Name will be non-null.  In the later case, Name will be null.
3088/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3089/// reference/declaration/definition of a tag.
3090Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3091                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3092                             IdentifierInfo *Name, SourceLocation NameLoc,
3093                             AttributeList *Attr, AccessSpecifier AS) {
3094  // If this is not a definition, it must have a name.
3095  assert((Name != 0 || TK == TK_Definition) &&
3096         "Nameless record must be a definition!");
3097
3098  TagDecl::TagKind Kind;
3099  switch (TagSpec) {
3100  default: assert(0 && "Unknown tag type!");
3101  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3102  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3103  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3104  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3105  }
3106
3107  DeclContext *SearchDC = CurContext;
3108  DeclContext *DC = CurContext;
3109  NamedDecl *PrevDecl = 0;
3110
3111  bool Invalid = false;
3112
3113  if (Name && SS.isNotEmpty()) {
3114    // We have a nested-name tag ('struct foo::bar').
3115
3116    // Check for invalid 'foo::'.
3117    if (SS.isInvalid()) {
3118      Name = 0;
3119      goto CreateNewDecl;
3120    }
3121
3122    // FIXME: RequireCompleteDeclContext(SS)?
3123    DC = computeDeclContext(SS);
3124    SearchDC = DC;
3125    // Look-up name inside 'foo::'.
3126    PrevDecl = dyn_cast_or_null<TagDecl>(
3127                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3128
3129    // A tag 'foo::bar' must already exist.
3130    if (PrevDecl == 0) {
3131      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3132      Name = 0;
3133      goto CreateNewDecl;
3134    }
3135  } else if (Name) {
3136    // If this is a named struct, check to see if there was a previous forward
3137    // declaration or definition.
3138    // FIXME: We're looking into outer scopes here, even when we
3139    // shouldn't be. Doing so can result in ambiguities that we
3140    // shouldn't be diagnosing.
3141    LookupResult R = LookupName(S, Name, LookupTagName,
3142                                /*RedeclarationOnly=*/(TK != TK_Reference));
3143    if (R.isAmbiguous()) {
3144      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3145      // FIXME: This is not best way to recover from case like:
3146      //
3147      // struct S s;
3148      //
3149      // causes needless err_ovl_no_viable_function_in_init latter.
3150      Name = 0;
3151      PrevDecl = 0;
3152      Invalid = true;
3153    }
3154    else
3155      PrevDecl = R;
3156
3157    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3158      // FIXME: This makes sure that we ignore the contexts associated
3159      // with C structs, unions, and enums when looking for a matching
3160      // tag declaration or definition. See the similar lookup tweak
3161      // in Sema::LookupName; is there a better way to deal with this?
3162      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3163        SearchDC = SearchDC->getParent();
3164    }
3165  }
3166
3167  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3168    // Maybe we will complain about the shadowed template parameter.
3169    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3170    // Just pretend that we didn't see the previous declaration.
3171    PrevDecl = 0;
3172  }
3173
3174  if (PrevDecl) {
3175    // Check whether the previous declaration is usable.
3176    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3177
3178    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3179      // If this is a use of a previous tag, or if the tag is already declared
3180      // in the same scope (so that the definition/declaration completes or
3181      // rementions the tag), reuse the decl.
3182      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3183        // Make sure that this wasn't declared as an enum and now used as a
3184        // struct or something similar.
3185        if (PrevTagDecl->getTagKind() != Kind) {
3186          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3187          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3188          // Recover by making this an anonymous redefinition.
3189          Name = 0;
3190          PrevDecl = 0;
3191          Invalid = true;
3192        } else {
3193          // If this is a use, just return the declaration we found.
3194
3195          // FIXME: In the future, return a variant or some other clue
3196          // for the consumer of this Decl to know it doesn't own it.
3197          // For our current ASTs this shouldn't be a problem, but will
3198          // need to be changed with DeclGroups.
3199          if (TK == TK_Reference)
3200            return PrevDecl;
3201
3202          // Diagnose attempts to redefine a tag.
3203          if (TK == TK_Definition) {
3204            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3205              Diag(NameLoc, diag::err_redefinition) << Name;
3206              Diag(Def->getLocation(), diag::note_previous_definition);
3207              // If this is a redefinition, recover by making this
3208              // struct be anonymous, which will make any later
3209              // references get the previous definition.
3210              Name = 0;
3211              PrevDecl = 0;
3212              Invalid = true;
3213            } else {
3214              // If the type is currently being defined, complain
3215              // about a nested redefinition.
3216              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3217              if (Tag->isBeingDefined()) {
3218                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3219                Diag(PrevTagDecl->getLocation(),
3220                     diag::note_previous_definition);
3221                Name = 0;
3222                PrevDecl = 0;
3223                Invalid = true;
3224              }
3225            }
3226
3227            // Okay, this is definition of a previously declared or referenced
3228            // tag PrevDecl. We're going to create a new Decl for it.
3229          }
3230        }
3231        // If we get here we have (another) forward declaration or we
3232        // have a definition.  Just create a new decl.
3233      } else {
3234        // If we get here, this is a definition of a new tag type in a nested
3235        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3236        // new decl/type.  We set PrevDecl to NULL so that the entities
3237        // have distinct types.
3238        PrevDecl = 0;
3239      }
3240      // If we get here, we're going to create a new Decl. If PrevDecl
3241      // is non-NULL, it's a definition of the tag declared by
3242      // PrevDecl. If it's NULL, we have a new definition.
3243    } else {
3244      // PrevDecl is a namespace, template, or anything else
3245      // that lives in the IDNS_Tag identifier namespace.
3246      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3247        // The tag name clashes with a namespace name, issue an error and
3248        // recover by making this tag be anonymous.
3249        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3250        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3251        Name = 0;
3252        PrevDecl = 0;
3253        Invalid = true;
3254      } else {
3255        // The existing declaration isn't relevant to us; we're in a
3256        // new scope, so clear out the previous declaration.
3257        PrevDecl = 0;
3258      }
3259    }
3260  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3261             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3262    // C.scope.pdecl]p5:
3263    //   -- for an elaborated-type-specifier of the form
3264    //
3265    //          class-key identifier
3266    //
3267    //      if the elaborated-type-specifier is used in the
3268    //      decl-specifier-seq or parameter-declaration-clause of a
3269    //      function defined in namespace scope, the identifier is
3270    //      declared as a class-name in the namespace that contains
3271    //      the declaration; otherwise, except as a friend
3272    //      declaration, the identifier is declared in the smallest
3273    //      non-class, non-function-prototype scope that contains the
3274    //      declaration.
3275    //
3276    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3277    // C structs and unions.
3278    //
3279    // GNU C also supports this behavior as part of its incomplete
3280    // enum types extension, while GNU C++ does not.
3281    //
3282    // Find the context where we'll be declaring the tag.
3283    // FIXME: We would like to maintain the current DeclContext as the
3284    // lexical context,
3285    while (SearchDC->isRecord())
3286      SearchDC = SearchDC->getParent();
3287
3288    // Find the scope where we'll be declaring the tag.
3289    while (S->isClassScope() ||
3290           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3291           ((S->getFlags() & Scope::DeclScope) == 0) ||
3292           (S->getEntity() &&
3293            ((DeclContext *)S->getEntity())->isTransparentContext()))
3294      S = S->getParent();
3295  }
3296
3297CreateNewDecl:
3298
3299  // If there is an identifier, use the location of the identifier as the
3300  // location of the decl, otherwise use the location of the struct/union
3301  // keyword.
3302  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3303
3304  // Otherwise, create a new declaration. If there is a previous
3305  // declaration of the same entity, the two will be linked via
3306  // PrevDecl.
3307  TagDecl *New;
3308
3309  if (Kind == TagDecl::TK_enum) {
3310    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3311    // enum X { A, B, C } D;    D should chain to X.
3312    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3313                           cast_or_null<EnumDecl>(PrevDecl));
3314    // If this is an undefined enum, warn.
3315    if (TK != TK_Definition && !Invalid)  {
3316      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3317                                              : diag::ext_forward_ref_enum;
3318      Diag(Loc, DK);
3319    }
3320  } else {
3321    // struct/union/class
3322
3323    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3324    // struct X { int A; } D;    D should chain to X.
3325    if (getLangOptions().CPlusPlus)
3326      // FIXME: Look for a way to use RecordDecl for simple structs.
3327      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3328                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3329    else
3330      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3331                               cast_or_null<RecordDecl>(PrevDecl));
3332  }
3333
3334  if (Kind != TagDecl::TK_enum) {
3335    // Handle #pragma pack: if the #pragma pack stack has non-default
3336    // alignment, make up a packed attribute for this decl. These
3337    // attributes are checked when the ASTContext lays out the
3338    // structure.
3339    //
3340    // It is important for implementing the correct semantics that this
3341    // happen here (in act on tag decl). The #pragma pack stack is
3342    // maintained as a result of parser callbacks which can occur at
3343    // many points during the parsing of a struct declaration (because
3344    // the #pragma tokens are effectively skipped over during the
3345    // parsing of the struct).
3346    if (unsigned Alignment = getPragmaPackAlignment())
3347      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3348  }
3349
3350  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3351    // C++ [dcl.typedef]p3:
3352    //   [...] Similarly, in a given scope, a class or enumeration
3353    //   shall not be declared with the same name as a typedef-name
3354    //   that is declared in that scope and refers to a type other
3355    //   than the class or enumeration itself.
3356    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3357    TypedefDecl *PrevTypedef = 0;
3358    if (Lookup.getKind() == LookupResult::Found)
3359      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3360
3361    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3362        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3363          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3364      Diag(Loc, diag::err_tag_definition_of_typedef)
3365        << Context.getTypeDeclType(New)
3366        << PrevTypedef->getUnderlyingType();
3367      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3368      Invalid = true;
3369    }
3370  }
3371
3372  if (Invalid)
3373    New->setInvalidDecl();
3374
3375  if (Attr)
3376    ProcessDeclAttributeList(New, Attr);
3377
3378  // If we're declaring or defining a tag in function prototype scope
3379  // in C, note that this type can only be used within the function.
3380  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3381    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3382
3383  // Set the lexical context. If the tag has a C++ scope specifier, the
3384  // lexical context will be different from the semantic context.
3385  New->setLexicalDeclContext(CurContext);
3386
3387  if (PrevDecl)
3388    New->setAccess(PrevDecl->getAccess());
3389  else
3390    New->setAccess(AS);
3391
3392  if (TK == TK_Definition)
3393    New->startDefinition();
3394
3395  // If this has an identifier, add it to the scope stack.
3396  if (Name) {
3397    S = getNonFieldDeclScope(S);
3398    PushOnScopeChains(New, S);
3399  } else {
3400    CurContext->addDecl(New);
3401  }
3402
3403  return New;
3404}
3405
3406void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3407  AdjustDeclIfTemplate(TagD);
3408  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3409
3410  // Enter the tag context.
3411  PushDeclContext(S, Tag);
3412
3413  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3414    FieldCollector->StartClass();
3415
3416    if (Record->getIdentifier()) {
3417      // C++ [class]p2:
3418      //   [...] The class-name is also inserted into the scope of the
3419      //   class itself; this is known as the injected-class-name. For
3420      //   purposes of access checking, the injected-class-name is treated
3421      //   as if it were a public member name.
3422      CXXRecordDecl *InjectedClassName
3423        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3424                                CurContext, Record->getLocation(),
3425                                Record->getIdentifier(), Record);
3426      InjectedClassName->setImplicit();
3427      InjectedClassName->setAccess(AS_public);
3428      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3429        InjectedClassName->setDescribedClassTemplate(Template);
3430      PushOnScopeChains(InjectedClassName, S);
3431      assert(InjectedClassName->isInjectedClassName() &&
3432             "Broken injected-class-name");
3433    }
3434  }
3435}
3436
3437void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3438  AdjustDeclIfTemplate(TagD);
3439  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3440
3441  if (isa<CXXRecordDecl>(Tag))
3442    FieldCollector->FinishClass();
3443
3444  // Exit this scope of this tag's definition.
3445  PopDeclContext();
3446
3447  // Notify the consumer that we've defined a tag.
3448  Consumer.HandleTagDeclDefinition(Tag);
3449}
3450
3451bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3452                          QualType FieldTy, const Expr *BitWidth) {
3453  // C99 6.7.2.1p4 - verify the field type.
3454  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3455  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3456    // Handle incomplete types with specific error.
3457    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3458      return true;
3459    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3460      << FieldName << FieldTy << BitWidth->getSourceRange();
3461  }
3462
3463  // If the bit-width is type- or value-dependent, don't try to check
3464  // it now.
3465  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3466    return false;
3467
3468  llvm::APSInt Value;
3469  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3470    return true;
3471
3472  // Zero-width bitfield is ok for anonymous field.
3473  if (Value == 0 && FieldName)
3474    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3475
3476  if (Value.isSigned() && Value.isNegative())
3477    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3478             << FieldName << Value.toString(10);
3479
3480  if (!FieldTy->isDependentType()) {
3481    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3482    // FIXME: We won't need the 0 size once we check that the field type is valid.
3483    if (TypeSize && Value.getZExtValue() > TypeSize)
3484      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3485        << FieldName << (unsigned)TypeSize;
3486  }
3487
3488  return false;
3489}
3490
3491/// ActOnField - Each field of a struct/union/class is passed into this in order
3492/// to create a FieldDecl object for it.
3493Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3494                               SourceLocation DeclStart,
3495                               Declarator &D, ExprTy *BitfieldWidth) {
3496
3497  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3498                     static_cast<Expr*>(BitfieldWidth),
3499                     AS_public);
3500}
3501
3502/// HandleField - Analyze a field of a C struct or a C++ data member.
3503///
3504FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3505                             SourceLocation DeclStart,
3506                             Declarator &D, Expr *BitWidth,
3507                             AccessSpecifier AS) {
3508  IdentifierInfo *II = D.getIdentifier();
3509  SourceLocation Loc = DeclStart;
3510  if (II) Loc = D.getIdentifierLoc();
3511
3512  QualType T = GetTypeForDeclarator(D, S);
3513
3514  if (getLangOptions().CPlusPlus) {
3515    CheckExtraCXXDefaultArguments(D);
3516
3517    if (D.getDeclSpec().isVirtualSpecified())
3518      Diag(D.getDeclSpec().getVirtualSpecLoc(),
3519           diag::err_virtual_non_function);
3520  }
3521
3522  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3523  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3524    PrevDecl = 0;
3525
3526  FieldDecl *NewFD
3527    = CheckFieldDecl(II, T, Record, Loc,
3528               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3529                     BitWidth, AS, PrevDecl, &D);
3530  if (NewFD->isInvalidDecl() && PrevDecl) {
3531    // Don't introduce NewFD into scope; there's already something
3532    // with the same name in the same scope.
3533  } else if (II) {
3534    PushOnScopeChains(NewFD, S);
3535  } else
3536    Record->addDecl(NewFD);
3537
3538  return NewFD;
3539}
3540
3541/// \brief Build a new FieldDecl and check its well-formedness.
3542///
3543/// This routine builds a new FieldDecl given the fields name, type,
3544/// record, etc. \p PrevDecl should refer to any previous declaration
3545/// with the same name and in the same scope as the field to be
3546/// created.
3547///
3548/// \returns a new FieldDecl.
3549///
3550/// \todo The Declarator argument is a hack. It will be removed once
3551FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3552                                RecordDecl *Record, SourceLocation Loc,
3553                                bool Mutable, Expr *BitWidth,
3554                                AccessSpecifier AS, NamedDecl *PrevDecl,
3555                                Declarator *D) {
3556  IdentifierInfo *II = Name.getAsIdentifierInfo();
3557  bool InvalidDecl = false;
3558
3559  // If we receive a broken type, recover by assuming 'int' and
3560  // marking this declaration as invalid.
3561  if (T.isNull()) {
3562    InvalidDecl = true;
3563    T = Context.IntTy;
3564  }
3565
3566  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3567  // than a variably modified type.
3568  if (T->isVariablyModifiedType()) {
3569    bool SizeIsNegative;
3570    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3571                                                           SizeIsNegative);
3572    if (!FixedTy.isNull()) {
3573      Diag(Loc, diag::warn_illegal_constant_array_size);
3574      T = FixedTy;
3575    } else {
3576      if (SizeIsNegative)
3577        Diag(Loc, diag::err_typecheck_negative_array_size);
3578      else
3579        Diag(Loc, diag::err_typecheck_field_variable_size);
3580      T = Context.IntTy;
3581      InvalidDecl = true;
3582    }
3583  }
3584
3585  // Fields can not have abstract class types
3586  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3587                             AbstractFieldType))
3588    InvalidDecl = true;
3589
3590  // If this is declared as a bit-field, check the bit-field.
3591  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3592    InvalidDecl = true;
3593    DeleteExpr(BitWidth);
3594    BitWidth = 0;
3595  }
3596
3597  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3598                                       Mutable);
3599
3600  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3601    Diag(Loc, diag::err_duplicate_member) << II;
3602    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3603    NewFD->setInvalidDecl();
3604    Record->setInvalidDecl();
3605  }
3606
3607  if (getLangOptions().CPlusPlus && !T->isPODType())
3608    cast<CXXRecordDecl>(Record)->setPOD(false);
3609
3610  // FIXME: We need to pass in the attributes given an AST
3611  // representation, not a parser representation.
3612  if (D)
3613    ProcessDeclAttributes(NewFD, *D);
3614
3615  if (T.isObjCGCWeak())
3616    Diag(Loc, diag::warn_attribute_weak_on_field);
3617
3618  if (InvalidDecl)
3619    NewFD->setInvalidDecl();
3620
3621  NewFD->setAccess(AS);
3622
3623  // C++ [dcl.init.aggr]p1:
3624  //   An aggregate is an array or a class (clause 9) with [...] no
3625  //   private or protected non-static data members (clause 11).
3626  // A POD must be an aggregate.
3627  if (getLangOptions().CPlusPlus &&
3628      (AS == AS_private || AS == AS_protected)) {
3629    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3630    CXXRecord->setAggregate(false);
3631    CXXRecord->setPOD(false);
3632  }
3633
3634  return NewFD;
3635}
3636
3637/// TranslateIvarVisibility - Translate visibility from a token ID to an
3638///  AST enum value.
3639static ObjCIvarDecl::AccessControl
3640TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3641  switch (ivarVisibility) {
3642  default: assert(0 && "Unknown visitibility kind");
3643  case tok::objc_private: return ObjCIvarDecl::Private;
3644  case tok::objc_public: return ObjCIvarDecl::Public;
3645  case tok::objc_protected: return ObjCIvarDecl::Protected;
3646  case tok::objc_package: return ObjCIvarDecl::Package;
3647  }
3648}
3649
3650/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3651/// in order to create an IvarDecl object for it.
3652Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3653                              SourceLocation DeclStart,
3654                              Declarator &D, ExprTy *BitfieldWidth,
3655                              tok::ObjCKeywordKind Visibility) {
3656
3657  IdentifierInfo *II = D.getIdentifier();
3658  Expr *BitWidth = (Expr*)BitfieldWidth;
3659  SourceLocation Loc = DeclStart;
3660  if (II) Loc = D.getIdentifierLoc();
3661
3662  // FIXME: Unnamed fields can be handled in various different ways, for
3663  // example, unnamed unions inject all members into the struct namespace!
3664
3665  QualType T = GetTypeForDeclarator(D, S);
3666  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3667  bool InvalidDecl = false;
3668
3669  if (BitWidth) {
3670    // 6.7.2.1p3, 6.7.2.1p4
3671    if (VerifyBitField(Loc, II, T, BitWidth)) {
3672      InvalidDecl = true;
3673      DeleteExpr(BitWidth);
3674      BitWidth = 0;
3675    }
3676  } else {
3677    // Not a bitfield.
3678
3679    // validate II.
3680
3681  }
3682
3683  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3684  // than a variably modified type.
3685  if (T->isVariablyModifiedType()) {
3686    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3687    InvalidDecl = true;
3688  }
3689
3690  // Get the visibility (access control) for this ivar.
3691  ObjCIvarDecl::AccessControl ac =
3692    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3693                                        : ObjCIvarDecl::None;
3694
3695  // Construct the decl.
3696  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3697                                             (Expr *)BitfieldWidth);
3698
3699  if (II) {
3700    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3701    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3702        && !isa<TagDecl>(PrevDecl)) {
3703      Diag(Loc, diag::err_duplicate_member) << II;
3704      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3705      NewID->setInvalidDecl();
3706    }
3707  }
3708
3709  // Process attributes attached to the ivar.
3710  ProcessDeclAttributes(NewID, D);
3711
3712  if (D.getInvalidType() || InvalidDecl)
3713    NewID->setInvalidDecl();
3714
3715  if (II) {
3716    // FIXME: When interfaces are DeclContexts, we'll need to add
3717    // these to the interface.
3718    S->AddDecl(NewID);
3719    IdResolver.AddDecl(NewID);
3720  }
3721
3722  return NewID;
3723}
3724
3725void Sema::ActOnFields(Scope* S,
3726                       SourceLocation RecLoc, DeclTy *RecDecl,
3727                       DeclTy **Fields, unsigned NumFields,
3728                       SourceLocation LBrac, SourceLocation RBrac,
3729                       AttributeList *Attr) {
3730  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3731  assert(EnclosingDecl && "missing record or interface decl");
3732
3733  // If the decl this is being inserted into is invalid, then it may be a
3734  // redeclaration or some other bogus case.  Don't try to add fields to it.
3735  if (EnclosingDecl->isInvalidDecl()) {
3736    // FIXME: Deallocate fields?
3737    return;
3738  }
3739
3740
3741  // Verify that all the fields are okay.
3742  unsigned NumNamedMembers = 0;
3743  llvm::SmallVector<FieldDecl*, 32> RecFields;
3744
3745  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3746  for (unsigned i = 0; i != NumFields; ++i) {
3747    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3748    assert(FD && "missing field decl");
3749
3750    // Get the type for the field.
3751    Type *FDTy = FD->getType().getTypePtr();
3752
3753    if (!FD->isAnonymousStructOrUnion()) {
3754      // Remember all fields written by the user.
3755      RecFields.push_back(FD);
3756    }
3757
3758    // If the field is already invalid for some reason, don't emit more
3759    // diagnostics about it.
3760    if (FD->isInvalidDecl())
3761      continue;
3762
3763    // C99 6.7.2.1p2:
3764    //   A structure or union shall not contain a member with
3765    //   incomplete or function type (hence, a structure shall not
3766    //   contain an instance of itself, but may contain a pointer to
3767    //   an instance of itself), except that the last member of a
3768    //   structure with more than one named member may have incomplete
3769    //   array type; such a structure (and any union containing,
3770    //   possibly recursively, a member that is such a structure)
3771    //   shall not be a member of a structure or an element of an
3772    //   array.
3773    if (FDTy->isFunctionType()) {
3774      // Field declared as a function.
3775      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3776        << FD->getDeclName();
3777      FD->setInvalidDecl();
3778      EnclosingDecl->setInvalidDecl();
3779      continue;
3780    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3781               Record && Record->isStruct()) {
3782      // Flexible array member.
3783      if (NumNamedMembers < 1) {
3784        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3785          << FD->getDeclName();
3786        FD->setInvalidDecl();
3787        EnclosingDecl->setInvalidDecl();
3788        continue;
3789      }
3790      // Okay, we have a legal flexible array member at the end of the struct.
3791      if (Record)
3792        Record->setHasFlexibleArrayMember(true);
3793    } else if (!FDTy->isDependentType() &&
3794               RequireCompleteType(FD->getLocation(), FD->getType(),
3795                                   diag::err_field_incomplete)) {
3796      // Incomplete type
3797      FD->setInvalidDecl();
3798      EnclosingDecl->setInvalidDecl();
3799      continue;
3800    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3801      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3802        // If this is a member of a union, then entire union becomes "flexible".
3803        if (Record && Record->isUnion()) {
3804          Record->setHasFlexibleArrayMember(true);
3805        } else {
3806          // If this is a struct/class and this is not the last element, reject
3807          // it.  Note that GCC supports variable sized arrays in the middle of
3808          // structures.
3809          if (i != NumFields-1)
3810            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3811              << FD->getDeclName();
3812          else {
3813            // We support flexible arrays at the end of structs in
3814            // other structs as an extension.
3815            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3816              << FD->getDeclName();
3817            if (Record)
3818              Record->setHasFlexibleArrayMember(true);
3819          }
3820        }
3821      }
3822    } else if (FDTy->isObjCInterfaceType()) {
3823      /// A field cannot be an Objective-c object
3824      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3825      FD->setInvalidDecl();
3826      EnclosingDecl->setInvalidDecl();
3827      continue;
3828    }
3829    // Keep track of the number of named members.
3830    if (FD->getIdentifier())
3831      ++NumNamedMembers;
3832  }
3833
3834  // Okay, we successfully defined 'Record'.
3835  if (Record) {
3836    Record->completeDefinition(Context);
3837  } else {
3838    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3839    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3840      ID->setIVarList(ClsFields, RecFields.size(), Context);
3841      ID->setLocEnd(RBrac);
3842
3843      // Must enforce the rule that ivars in the base classes may not be
3844      // duplicates.
3845      if (ID->getSuperClass()) {
3846        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3847             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3848          ObjCIvarDecl* Ivar = (*IVI);
3849          IdentifierInfo *II = Ivar->getIdentifier();
3850          ObjCIvarDecl* prevIvar =
3851            ID->getSuperClass()->lookupInstanceVariable(II);
3852          if (prevIvar) {
3853            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3854            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3855          }
3856        }
3857      }
3858    } else if (ObjCImplementationDecl *IMPDecl =
3859                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3860      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3861      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3862      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3863    }
3864  }
3865
3866  if (Attr)
3867    ProcessDeclAttributeList(Record, Attr);
3868}
3869
3870EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3871                                          EnumConstantDecl *LastEnumConst,
3872                                          SourceLocation IdLoc,
3873                                          IdentifierInfo *Id,
3874                                          ExprArg val) {
3875  Expr *Val = (Expr *)val.get();
3876
3877  llvm::APSInt EnumVal(32);
3878  QualType EltTy;
3879  if (Val && !Val->isTypeDependent()) {
3880    // Make sure to promote the operand type to int.
3881    UsualUnaryConversions(Val);
3882    if (Val != val.get()) {
3883      val.release();
3884      val = Val;
3885    }
3886
3887    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3888    SourceLocation ExpLoc;
3889    if (!Val->isValueDependent() &&
3890        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3891      Val = 0;
3892    } else {
3893      EltTy = Val->getType();
3894    }
3895  }
3896
3897  if (!Val) {
3898    if (LastEnumConst) {
3899      // Assign the last value + 1.
3900      EnumVal = LastEnumConst->getInitVal();
3901      ++EnumVal;
3902
3903      // Check for overflow on increment.
3904      if (EnumVal < LastEnumConst->getInitVal())
3905        Diag(IdLoc, diag::warn_enum_value_overflow);
3906
3907      EltTy = LastEnumConst->getType();
3908    } else {
3909      // First value, set to zero.
3910      EltTy = Context.IntTy;
3911      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3912    }
3913  }
3914
3915  val.release();
3916  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3917                                  Val, EnumVal);
3918}
3919
3920
3921Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3922                                      DeclTy *lastEnumConst,
3923                                      SourceLocation IdLoc, IdentifierInfo *Id,
3924                                      SourceLocation EqualLoc, ExprTy *val) {
3925  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3926  EnumConstantDecl *LastEnumConst =
3927    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3928  Expr *Val = static_cast<Expr*>(val);
3929
3930  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3931  // we find one that is.
3932  S = getNonFieldDeclScope(S);
3933
3934  // Verify that there isn't already something declared with this name in this
3935  // scope.
3936  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3937  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3938    // Maybe we will complain about the shadowed template parameter.
3939    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3940    // Just pretend that we didn't see the previous declaration.
3941    PrevDecl = 0;
3942  }
3943
3944  if (PrevDecl) {
3945    // When in C++, we may get a TagDecl with the same name; in this case the
3946    // enum constant will 'hide' the tag.
3947    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3948           "Received TagDecl when not in C++!");
3949    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3950      if (isa<EnumConstantDecl>(PrevDecl))
3951        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3952      else
3953        Diag(IdLoc, diag::err_redefinition) << Id;
3954      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3955      if (Val) Val->Destroy(Context);
3956      return 0;
3957    }
3958  }
3959
3960  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
3961                                            IdLoc, Id, Owned(Val));
3962
3963  // Register this decl in the current scope stack.
3964  if (New)
3965    PushOnScopeChains(New, S);
3966
3967  return New;
3968}
3969
3970// FIXME: For consistency with ActOnFields(), we should have the parser
3971// pass in the source location for the left/right braces.
3972void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3973                         DeclTy **Elements, unsigned NumElements) {
3974  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3975  QualType EnumType = Context.getTypeDeclType(Enum);
3976
3977  // TODO: If the result value doesn't fit in an int, it must be a long or long
3978  // long value.  ISO C does not support this, but GCC does as an extension,
3979  // emit a warning.
3980  unsigned IntWidth = Context.Target.getIntWidth();
3981
3982  // Verify that all the values are okay, compute the size of the values, and
3983  // reverse the list.
3984  unsigned NumNegativeBits = 0;
3985  unsigned NumPositiveBits = 0;
3986
3987  // Keep track of whether all elements have type int.
3988  bool AllElementsInt = true;
3989
3990  for (unsigned i = 0; i != NumElements; ++i) {
3991    EnumConstantDecl *ECD =
3992      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3993    if (!ECD) continue;  // Already issued a diagnostic.
3994
3995    // If the enum value doesn't fit in an int, emit an extension warning.
3996    const llvm::APSInt &InitVal = ECD->getInitVal();
3997    assert(InitVal.getBitWidth() >= IntWidth &&
3998           "Should have promoted value to int");
3999    if (InitVal.getBitWidth() > IntWidth) {
4000      llvm::APSInt V(InitVal);
4001      V.trunc(IntWidth);
4002      V.extend(InitVal.getBitWidth());
4003      if (V != InitVal)
4004        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4005          << InitVal.toString(10);
4006    }
4007
4008    // Keep track of the size of positive and negative values.
4009    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4010      NumPositiveBits = std::max(NumPositiveBits,
4011                                 (unsigned)InitVal.getActiveBits());
4012    else
4013      NumNegativeBits = std::max(NumNegativeBits,
4014                                 (unsigned)InitVal.getMinSignedBits());
4015
4016    // Keep track of whether every enum element has type int (very commmon).
4017    if (AllElementsInt)
4018      AllElementsInt = ECD->getType() == Context.IntTy;
4019  }
4020
4021  // Figure out the type that should be used for this enum.
4022  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4023  QualType BestType;
4024  unsigned BestWidth;
4025
4026  if (NumNegativeBits) {
4027    // If there is a negative value, figure out the smallest integer type (of
4028    // int/long/longlong) that fits.
4029    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4030      BestType = Context.IntTy;
4031      BestWidth = IntWidth;
4032    } else {
4033      BestWidth = Context.Target.getLongWidth();
4034
4035      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4036        BestType = Context.LongTy;
4037      else {
4038        BestWidth = Context.Target.getLongLongWidth();
4039
4040        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4041          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4042        BestType = Context.LongLongTy;
4043      }
4044    }
4045  } else {
4046    // If there is no negative value, figure out which of uint, ulong, ulonglong
4047    // fits.
4048    if (NumPositiveBits <= IntWidth) {
4049      BestType = Context.UnsignedIntTy;
4050      BestWidth = IntWidth;
4051    } else if (NumPositiveBits <=
4052               (BestWidth = Context.Target.getLongWidth())) {
4053      BestType = Context.UnsignedLongTy;
4054    } else {
4055      BestWidth = Context.Target.getLongLongWidth();
4056      assert(NumPositiveBits <= BestWidth &&
4057             "How could an initializer get larger than ULL?");
4058      BestType = Context.UnsignedLongLongTy;
4059    }
4060  }
4061
4062  // Loop over all of the enumerator constants, changing their types to match
4063  // the type of the enum if needed.
4064  for (unsigned i = 0; i != NumElements; ++i) {
4065    EnumConstantDecl *ECD =
4066      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4067    if (!ECD) continue;  // Already issued a diagnostic.
4068
4069    // Standard C says the enumerators have int type, but we allow, as an
4070    // extension, the enumerators to be larger than int size.  If each
4071    // enumerator value fits in an int, type it as an int, otherwise type it the
4072    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4073    // that X has type 'int', not 'unsigned'.
4074    if (ECD->getType() == Context.IntTy) {
4075      // Make sure the init value is signed.
4076      llvm::APSInt IV = ECD->getInitVal();
4077      IV.setIsSigned(true);
4078      ECD->setInitVal(IV);
4079
4080      if (getLangOptions().CPlusPlus)
4081        // C++ [dcl.enum]p4: Following the closing brace of an
4082        // enum-specifier, each enumerator has the type of its
4083        // enumeration.
4084        ECD->setType(EnumType);
4085      continue;  // Already int type.
4086    }
4087
4088    // Determine whether the value fits into an int.
4089    llvm::APSInt InitVal = ECD->getInitVal();
4090    bool FitsInInt;
4091    if (InitVal.isUnsigned() || !InitVal.isNegative())
4092      FitsInInt = InitVal.getActiveBits() < IntWidth;
4093    else
4094      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4095
4096    // If it fits into an integer type, force it.  Otherwise force it to match
4097    // the enum decl type.
4098    QualType NewTy;
4099    unsigned NewWidth;
4100    bool NewSign;
4101    if (FitsInInt) {
4102      NewTy = Context.IntTy;
4103      NewWidth = IntWidth;
4104      NewSign = true;
4105    } else if (ECD->getType() == BestType) {
4106      // Already the right type!
4107      if (getLangOptions().CPlusPlus)
4108        // C++ [dcl.enum]p4: Following the closing brace of an
4109        // enum-specifier, each enumerator has the type of its
4110        // enumeration.
4111        ECD->setType(EnumType);
4112      continue;
4113    } else {
4114      NewTy = BestType;
4115      NewWidth = BestWidth;
4116      NewSign = BestType->isSignedIntegerType();
4117    }
4118
4119    // Adjust the APSInt value.
4120    InitVal.extOrTrunc(NewWidth);
4121    InitVal.setIsSigned(NewSign);
4122    ECD->setInitVal(InitVal);
4123
4124    // Adjust the Expr initializer and type.
4125    if (ECD->getInitExpr())
4126      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4127                                                      /*isLvalue=*/false));
4128    if (getLangOptions().CPlusPlus)
4129      // C++ [dcl.enum]p4: Following the closing brace of an
4130      // enum-specifier, each enumerator has the type of its
4131      // enumeration.
4132      ECD->setType(EnumType);
4133    else
4134      ECD->setType(NewTy);
4135  }
4136
4137  Enum->completeDefinition(Context, BestType);
4138}
4139
4140Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4141                                          ExprArg expr) {
4142  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4143
4144  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4145}
4146
4147