SemaDecl.cpp revision befd3eac9dd217a76f139bddc714f35e26688467
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    // C++ [temp.local]p2:
192    //   Within the scope of a class template specialization or
193    //   partial specialization, when the injected-class-name is
194    //   not followed by a <, it is equivalent to the
195    //   injected-class-name followed by the template-argument s
196    //   of the class template specialization or partial
197    //   specialization enclosed in <>.
198    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
199      if (RD->isInjectedClassName())
200        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
201          T = Template->getInjectedClassNameType(Context);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS)
207      T = getQualifiedNameType(*SS, T);
208
209  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
210    T = Context.getObjCInterfaceType(IDecl);
211  } else if (UnresolvedUsingTypenameDecl *UUDecl =
212               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
213    // FIXME: preserve source structure information.
214    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
215  } else {
216    // If it's not plausibly a type, suppress diagnostics.
217    Result.suppressDiagnostics();
218    return 0;
219  }
220
221  return T.getAsOpaquePtr();
222}
223
224/// isTagName() - This method is called *for error recovery purposes only*
225/// to determine if the specified name is a valid tag name ("struct foo").  If
226/// so, this returns the TST for the tag corresponding to it (TST_enum,
227/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
228/// where the user forgot to specify the tag.
229DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
230  // Do a tag name lookup in this scope.
231  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
232  LookupName(R, S, false);
233  R.suppressDiagnostics();
234  if (R.getResultKind() == LookupResult::Found)
235    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
236      switch (TD->getTagKind()) {
237      case TagDecl::TK_struct: return DeclSpec::TST_struct;
238      case TagDecl::TK_union:  return DeclSpec::TST_union;
239      case TagDecl::TK_class:  return DeclSpec::TST_class;
240      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
241      }
242    }
243
244  return DeclSpec::TST_unspecified;
245}
246
247bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
248                                   SourceLocation IILoc,
249                                   Scope *S,
250                                   const CXXScopeSpec *SS,
251                                   TypeTy *&SuggestedType) {
252  // We don't have anything to suggest (yet).
253  SuggestedType = 0;
254
255  // There may have been a typo in the name of the type. Look up typo
256  // results, in case we have something that we can suggest.
257  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
258                      NotForRedeclaration);
259
260  // FIXME: It would be nice if we could correct for typos in built-in
261  // names, such as "itn" for "int".
262
263  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
264    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
265    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
266        !Result->isInvalidDecl()) {
267      // We found a similarly-named type or interface; suggest that.
268      if (!SS || !SS->isSet())
269        Diag(IILoc, diag::err_unknown_typename_suggest)
270          << &II << Lookup.getLookupName()
271          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
272                                                     Result->getNameAsString());
273      else if (DeclContext *DC = computeDeclContext(*SS, false))
274        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
275          << &II << DC << Lookup.getLookupName() << SS->getRange()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else
279        llvm_unreachable("could not have corrected a typo here");
280
281      Diag(Result->getLocation(), diag::note_previous_decl)
282        << Result->getDeclName();
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line definitions shouldn't be pushed into scope in C++.
440  // Out-of-line variable and function definitions shouldn't even in C.
441  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
442      D->isOutOfLine())
443    return;
444
445  // Template instantiations should also not be pushed into scope.
446  if (isa<FunctionDecl>(D) &&
447      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
448    return;
449
450  // If this replaces anything in the current scope,
451  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
452                               IEnd = IdResolver.end();
453  for (; I != IEnd; ++I) {
454    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
455      S->RemoveDecl(DeclPtrTy::make(*I));
456      IdResolver.RemoveDecl(*I);
457
458      // Should only need to replace one decl.
459      break;
460    }
461  }
462
463  S->AddDecl(DeclPtrTy::make(D));
464  IdResolver.AddDecl(D);
465}
466
467bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
468  return IdResolver.isDeclInScope(D, Ctx, Context, S);
469}
470
471static bool isOutOfScopePreviousDeclaration(NamedDecl *,
472                                            DeclContext*,
473                                            ASTContext&);
474
475/// Filters out lookup results that don't fall within the given scope
476/// as determined by isDeclInScope.
477static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
478                                 DeclContext *Ctx, Scope *S,
479                                 bool ConsiderLinkage) {
480  LookupResult::Filter F = R.makeFilter();
481  while (F.hasNext()) {
482    NamedDecl *D = F.next();
483
484    if (SemaRef.isDeclInScope(D, Ctx, S))
485      continue;
486
487    if (ConsiderLinkage &&
488        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
489      continue;
490
491    F.erase();
492  }
493
494  F.done();
495}
496
497static bool isUsingDecl(NamedDecl *D) {
498  return isa<UsingShadowDecl>(D) ||
499         isa<UnresolvedUsingTypenameDecl>(D) ||
500         isa<UnresolvedUsingValueDecl>(D);
501}
502
503/// Removes using shadow declarations from the lookup results.
504static void RemoveUsingDecls(LookupResult &R) {
505  LookupResult::Filter F = R.makeFilter();
506  while (F.hasNext())
507    if (isUsingDecl(F.next()))
508      F.erase();
509
510  F.done();
511}
512
513static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
514  if (D->isInvalidDecl())
515    return false;
516
517  if (D->isUsed() || D->hasAttr<UnusedAttr>())
518    return false;
519
520  // White-list anything that isn't a local variable.
521  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
522      !D->getDeclContext()->isFunctionOrMethod())
523    return false;
524
525  // Types of valid local variables should be complete, so this should succeed.
526  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
527    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
528      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
529        if (!RD->hasTrivialConstructor())
530          return false;
531        if (!RD->hasTrivialDestructor())
532          return false;
533      }
534    }
535  }
536
537  return true;
538}
539
540void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
541  if (S->decl_empty()) return;
542  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
543         "Scope shouldn't contain decls!");
544
545  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
546       I != E; ++I) {
547    Decl *TmpD = (*I).getAs<Decl>();
548    assert(TmpD && "This decl didn't get pushed??");
549
550    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
551    NamedDecl *D = cast<NamedDecl>(TmpD);
552
553    if (!D->getDeclName()) continue;
554
555    // Diagnose unused variables in this scope.
556    if (ShouldDiagnoseUnusedDecl(D) &&
557        S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
558      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
559
560    // Remove this name from our lexical scope.
561    IdResolver.RemoveDecl(D);
562  }
563}
564
565/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
566/// return 0 if one not found.
567///
568/// \param Id the name of the Objective-C class we're looking for. If
569/// typo-correction fixes this name, the Id will be updated
570/// to the fixed name.
571///
572/// \param RecoverLoc if provided, this routine will attempt to
573/// recover from a typo in the name of an existing Objective-C class
574/// and, if successful, will return the lookup that results from
575/// typo-correction.
576ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
577                                              SourceLocation RecoverLoc) {
578  // The third "scope" argument is 0 since we aren't enabling lazy built-in
579  // creation from this context.
580  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
581
582  if (!IDecl && !RecoverLoc.isInvalid()) {
583    // Perform typo correction at the given location, but only if we
584    // find an Objective-C class name.
585    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
586    if (CorrectTypo(R, TUScope, 0) &&
587        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
588      Diag(RecoverLoc, diag::err_undef_interface_suggest)
589        << Id << IDecl->getDeclName()
590        << CodeModificationHint::CreateReplacement(RecoverLoc,
591                                                   IDecl->getNameAsString());
592      Diag(IDecl->getLocation(), diag::note_previous_decl)
593        << IDecl->getDeclName();
594
595      Id = IDecl->getIdentifier();
596    }
597  }
598
599  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
600}
601
602/// getNonFieldDeclScope - Retrieves the innermost scope, starting
603/// from S, where a non-field would be declared. This routine copes
604/// with the difference between C and C++ scoping rules in structs and
605/// unions. For example, the following code is well-formed in C but
606/// ill-formed in C++:
607/// @code
608/// struct S6 {
609///   enum { BAR } e;
610/// };
611///
612/// void test_S6() {
613///   struct S6 a;
614///   a.e = BAR;
615/// }
616/// @endcode
617/// For the declaration of BAR, this routine will return a different
618/// scope. The scope S will be the scope of the unnamed enumeration
619/// within S6. In C++, this routine will return the scope associated
620/// with S6, because the enumeration's scope is a transparent
621/// context but structures can contain non-field names. In C, this
622/// routine will return the translation unit scope, since the
623/// enumeration's scope is a transparent context and structures cannot
624/// contain non-field names.
625Scope *Sema::getNonFieldDeclScope(Scope *S) {
626  while (((S->getFlags() & Scope::DeclScope) == 0) ||
627         (S->getEntity() &&
628          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
629         (S->isClassScope() && !getLangOptions().CPlusPlus))
630    S = S->getParent();
631  return S;
632}
633
634void Sema::InitBuiltinVaListType() {
635  if (!Context.getBuiltinVaListType().isNull())
636    return;
637
638  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
639  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
640  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
641  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
642}
643
644/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
645/// file scope.  lazily create a decl for it. ForRedeclaration is true
646/// if we're creating this built-in in anticipation of redeclaring the
647/// built-in.
648NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
649                                     Scope *S, bool ForRedeclaration,
650                                     SourceLocation Loc) {
651  Builtin::ID BID = (Builtin::ID)bid;
652
653  if (Context.BuiltinInfo.hasVAListUse(BID))
654    InitBuiltinVaListType();
655
656  ASTContext::GetBuiltinTypeError Error;
657  QualType R = Context.GetBuiltinType(BID, Error);
658  switch (Error) {
659  case ASTContext::GE_None:
660    // Okay
661    break;
662
663  case ASTContext::GE_Missing_stdio:
664    if (ForRedeclaration)
665      Diag(Loc, diag::err_implicit_decl_requires_stdio)
666        << Context.BuiltinInfo.GetName(BID);
667    return 0;
668
669  case ASTContext::GE_Missing_setjmp:
670    if (ForRedeclaration)
671      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
672        << Context.BuiltinInfo.GetName(BID);
673    return 0;
674  }
675
676  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
677    Diag(Loc, diag::ext_implicit_lib_function_decl)
678      << Context.BuiltinInfo.GetName(BID)
679      << R;
680    if (Context.BuiltinInfo.getHeaderName(BID) &&
681        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
682          != Diagnostic::Ignored)
683      Diag(Loc, diag::note_please_include_header)
684        << Context.BuiltinInfo.getHeaderName(BID)
685        << Context.BuiltinInfo.GetName(BID);
686  }
687
688  FunctionDecl *New = FunctionDecl::Create(Context,
689                                           Context.getTranslationUnitDecl(),
690                                           Loc, II, R, /*TInfo=*/0,
691                                           FunctionDecl::Extern, false,
692                                           /*hasPrototype=*/true);
693  New->setImplicit();
694
695  // Create Decl objects for each parameter, adding them to the
696  // FunctionDecl.
697  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
698    llvm::SmallVector<ParmVarDecl*, 16> Params;
699    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
700      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
701                                           FT->getArgType(i), /*TInfo=*/0,
702                                           VarDecl::None, 0));
703    New->setParams(Params.data(), Params.size());
704  }
705
706  AddKnownFunctionAttributes(New);
707
708  // TUScope is the translation-unit scope to insert this function into.
709  // FIXME: This is hideous. We need to teach PushOnScopeChains to
710  // relate Scopes to DeclContexts, and probably eliminate CurContext
711  // entirely, but we're not there yet.
712  DeclContext *SavedContext = CurContext;
713  CurContext = Context.getTranslationUnitDecl();
714  PushOnScopeChains(New, TUScope);
715  CurContext = SavedContext;
716  return New;
717}
718
719/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
720/// same name and scope as a previous declaration 'Old'.  Figure out
721/// how to resolve this situation, merging decls or emitting
722/// diagnostics as appropriate. If there was an error, set New to be invalid.
723///
724void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
725  // If the new decl is known invalid already, don't bother doing any
726  // merging checks.
727  if (New->isInvalidDecl()) return;
728
729  // Allow multiple definitions for ObjC built-in typedefs.
730  // FIXME: Verify the underlying types are equivalent!
731  if (getLangOptions().ObjC1) {
732    const IdentifierInfo *TypeID = New->getIdentifier();
733    switch (TypeID->getLength()) {
734    default: break;
735    case 2:
736      if (!TypeID->isStr("id"))
737        break;
738      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
739      // Install the built-in type for 'id', ignoring the current definition.
740      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
741      return;
742    case 5:
743      if (!TypeID->isStr("Class"))
744        break;
745      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
746      // Install the built-in type for 'Class', ignoring the current definition.
747      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
748      return;
749    case 3:
750      if (!TypeID->isStr("SEL"))
751        break;
752      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
753      // Install the built-in type for 'SEL', ignoring the current definition.
754      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
755      return;
756    case 8:
757      if (!TypeID->isStr("Protocol"))
758        break;
759      Context.setObjCProtoType(New->getUnderlyingType());
760      return;
761    }
762    // Fall through - the typedef name was not a builtin type.
763  }
764
765  // Verify the old decl was also a type.
766  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
767  if (!Old) {
768    Diag(New->getLocation(), diag::err_redefinition_different_kind)
769      << New->getDeclName();
770
771    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
772    if (OldD->getLocation().isValid())
773      Diag(OldD->getLocation(), diag::note_previous_definition);
774
775    return New->setInvalidDecl();
776  }
777
778  // If the old declaration is invalid, just give up here.
779  if (Old->isInvalidDecl())
780    return New->setInvalidDecl();
781
782  // Determine the "old" type we'll use for checking and diagnostics.
783  QualType OldType;
784  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
785    OldType = OldTypedef->getUnderlyingType();
786  else
787    OldType = Context.getTypeDeclType(Old);
788
789  // If the typedef types are not identical, reject them in all languages and
790  // with any extensions enabled.
791
792  if (OldType != New->getUnderlyingType() &&
793      Context.getCanonicalType(OldType) !=
794      Context.getCanonicalType(New->getUnderlyingType())) {
795    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
796      << New->getUnderlyingType() << OldType;
797    if (Old->getLocation().isValid())
798      Diag(Old->getLocation(), diag::note_previous_definition);
799    return New->setInvalidDecl();
800  }
801
802  // The types match.  Link up the redeclaration chain if the old
803  // declaration was a typedef.
804  // FIXME: this is a potential source of wierdness if the type
805  // spellings don't match exactly.
806  if (isa<TypedefDecl>(Old))
807    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
808
809  if (getLangOptions().Microsoft)
810    return;
811
812  if (getLangOptions().CPlusPlus) {
813    // C++ [dcl.typedef]p2:
814    //   In a given non-class scope, a typedef specifier can be used to
815    //   redefine the name of any type declared in that scope to refer
816    //   to the type to which it already refers.
817    if (!isa<CXXRecordDecl>(CurContext))
818      return;
819
820    // C++0x [dcl.typedef]p4:
821    //   In a given class scope, a typedef specifier can be used to redefine
822    //   any class-name declared in that scope that is not also a typedef-name
823    //   to refer to the type to which it already refers.
824    //
825    // This wording came in via DR424, which was a correction to the
826    // wording in DR56, which accidentally banned code like:
827    //
828    //   struct S {
829    //     typedef struct A { } A;
830    //   };
831    //
832    // in the C++03 standard. We implement the C++0x semantics, which
833    // allow the above but disallow
834    //
835    //   struct S {
836    //     typedef int I;
837    //     typedef int I;
838    //   };
839    //
840    // since that was the intent of DR56.
841    if (!isa<TypedefDecl >(Old))
842      return;
843
844    Diag(New->getLocation(), diag::err_redefinition)
845      << New->getDeclName();
846    Diag(Old->getLocation(), diag::note_previous_definition);
847    return New->setInvalidDecl();
848  }
849
850  // If we have a redefinition of a typedef in C, emit a warning.  This warning
851  // is normally mapped to an error, but can be controlled with
852  // -Wtypedef-redefinition.  If either the original or the redefinition is
853  // in a system header, don't emit this for compatibility with GCC.
854  if (getDiagnostics().getSuppressSystemWarnings() &&
855      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
856       Context.getSourceManager().isInSystemHeader(New->getLocation())))
857    return;
858
859  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
860    << New->getDeclName();
861  Diag(Old->getLocation(), diag::note_previous_definition);
862  return;
863}
864
865/// DeclhasAttr - returns true if decl Declaration already has the target
866/// attribute.
867static bool
868DeclHasAttr(const Decl *decl, const Attr *target) {
869  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
870    if (attr->getKind() == target->getKind())
871      return true;
872
873  return false;
874}
875
876/// MergeAttributes - append attributes from the Old decl to the New one.
877static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
878  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
879    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
880      Attr *NewAttr = attr->clone(C);
881      NewAttr->setInherited(true);
882      New->addAttr(NewAttr);
883    }
884  }
885}
886
887/// Used in MergeFunctionDecl to keep track of function parameters in
888/// C.
889struct GNUCompatibleParamWarning {
890  ParmVarDecl *OldParm;
891  ParmVarDecl *NewParm;
892  QualType PromotedType;
893};
894
895
896/// getSpecialMember - get the special member enum for a method.
897static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
898                                               const CXXMethodDecl *MD) {
899  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
900    if (Ctor->isDefaultConstructor())
901      return Sema::CXXDefaultConstructor;
902    if (Ctor->isCopyConstructor())
903      return Sema::CXXCopyConstructor;
904  }
905
906  if (isa<CXXDestructorDecl>(MD))
907    return Sema::CXXDestructor;
908
909  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
910  return Sema::CXXCopyAssignment;
911}
912
913/// canREdefineFunction - checks if a function can be redefined. Currently,
914/// only extern inline functions can be redefined, and even then only in
915/// GNU89 mode.
916static bool canRedefineFunction(const FunctionDecl *FD,
917                                const LangOptions& LangOpts) {
918  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
919          FD->isInlineSpecified() &&
920          FD->getStorageClass() == FunctionDecl::Extern);
921}
922
923/// MergeFunctionDecl - We just parsed a function 'New' from
924/// declarator D which has the same name and scope as a previous
925/// declaration 'Old'.  Figure out how to resolve this situation,
926/// merging decls or emitting diagnostics as appropriate.
927///
928/// In C++, New and Old must be declarations that are not
929/// overloaded. Use IsOverload to determine whether New and Old are
930/// overloaded, and to select the Old declaration that New should be
931/// merged with.
932///
933/// Returns true if there was an error, false otherwise.
934bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
935  // Verify the old decl was also a function.
936  FunctionDecl *Old = 0;
937  if (FunctionTemplateDecl *OldFunctionTemplate
938        = dyn_cast<FunctionTemplateDecl>(OldD))
939    Old = OldFunctionTemplate->getTemplatedDecl();
940  else
941    Old = dyn_cast<FunctionDecl>(OldD);
942  if (!Old) {
943    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
944      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
945      Diag(Shadow->getTargetDecl()->getLocation(),
946           diag::note_using_decl_target);
947      Diag(Shadow->getUsingDecl()->getLocation(),
948           diag::note_using_decl) << 0;
949      return true;
950    }
951
952    Diag(New->getLocation(), diag::err_redefinition_different_kind)
953      << New->getDeclName();
954    Diag(OldD->getLocation(), diag::note_previous_definition);
955    return true;
956  }
957
958  // Determine whether the previous declaration was a definition,
959  // implicit declaration, or a declaration.
960  diag::kind PrevDiag;
961  if (Old->isThisDeclarationADefinition())
962    PrevDiag = diag::note_previous_definition;
963  else if (Old->isImplicit())
964    PrevDiag = diag::note_previous_implicit_declaration;
965  else
966    PrevDiag = diag::note_previous_declaration;
967
968  QualType OldQType = Context.getCanonicalType(Old->getType());
969  QualType NewQType = Context.getCanonicalType(New->getType());
970
971  // Don't complain about this if we're in GNU89 mode and the old function
972  // is an extern inline function.
973  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
974      New->getStorageClass() == FunctionDecl::Static &&
975      Old->getStorageClass() != FunctionDecl::Static &&
976      !canRedefineFunction(Old, getLangOptions())) {
977    Diag(New->getLocation(), diag::err_static_non_static)
978      << New;
979    Diag(Old->getLocation(), PrevDiag);
980    return true;
981  }
982
983  // If a function is first declared with a calling convention, but is
984  // later declared or defined without one, the second decl assumes the
985  // calling convention of the first.
986  //
987  // For the new decl, we have to look at the NON-canonical type to tell the
988  // difference between a function that really doesn't have a calling
989  // convention and one that is declared cdecl. That's because in
990  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
991  // because it is the default calling convention.
992  //
993  // Note also that we DO NOT return at this point, because we still have
994  // other tests to run.
995  const FunctionType *OldType = OldQType->getAs<FunctionType>();
996  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
997  if (OldType->getCallConv() != CC_Default &&
998      NewType->getCallConv() == CC_Default) {
999    NewQType = Context.getCallConvType(NewQType, OldType->getCallConv());
1000    New->setType(NewQType);
1001    NewQType = Context.getCanonicalType(NewQType);
1002  } else if (!Context.isSameCallConv(OldType->getCallConv(),
1003                                     NewType->getCallConv())) {
1004    // Calling conventions really aren't compatible, so complain.
1005    Diag(New->getLocation(), diag::err_cconv_change)
1006      << FunctionType::getNameForCallConv(NewType->getCallConv())
1007      << (OldType->getCallConv() == CC_Default)
1008      << (OldType->getCallConv() == CC_Default ? "" :
1009          FunctionType::getNameForCallConv(OldType->getCallConv()));
1010    Diag(Old->getLocation(), diag::note_previous_declaration);
1011    return true;
1012  }
1013
1014  // FIXME: diagnose the other way around?
1015  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1016    NewQType = Context.getNoReturnType(NewQType);
1017    New->setType(NewQType);
1018    assert(NewQType.isCanonical());
1019  }
1020
1021  if (getLangOptions().CPlusPlus) {
1022    // (C++98 13.1p2):
1023    //   Certain function declarations cannot be overloaded:
1024    //     -- Function declarations that differ only in the return type
1025    //        cannot be overloaded.
1026    QualType OldReturnType
1027      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1028    QualType NewReturnType
1029      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1030    if (OldReturnType != NewReturnType) {
1031      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1032      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1033      return true;
1034    }
1035
1036    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1037    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1038    if (OldMethod && NewMethod) {
1039      if (!NewMethod->getFriendObjectKind() &&
1040          NewMethod->getLexicalDeclContext()->isRecord()) {
1041        //    -- Member function declarations with the same name and the
1042        //       same parameter types cannot be overloaded if any of them
1043        //       is a static member function declaration.
1044        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1045          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1046          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1047          return true;
1048        }
1049
1050        // C++ [class.mem]p1:
1051        //   [...] A member shall not be declared twice in the
1052        //   member-specification, except that a nested class or member
1053        //   class template can be declared and then later defined.
1054        unsigned NewDiag;
1055        if (isa<CXXConstructorDecl>(OldMethod))
1056          NewDiag = diag::err_constructor_redeclared;
1057        else if (isa<CXXDestructorDecl>(NewMethod))
1058          NewDiag = diag::err_destructor_redeclared;
1059        else if (isa<CXXConversionDecl>(NewMethod))
1060          NewDiag = diag::err_conv_function_redeclared;
1061        else
1062          NewDiag = diag::err_member_redeclared;
1063
1064        Diag(New->getLocation(), NewDiag);
1065        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1066      } else {
1067        if (OldMethod->isImplicit()) {
1068          Diag(NewMethod->getLocation(),
1069               diag::err_definition_of_implicitly_declared_member)
1070          << New << getSpecialMember(Context, OldMethod);
1071
1072          Diag(OldMethod->getLocation(),
1073               diag::note_previous_implicit_declaration);
1074          return true;
1075        }
1076      }
1077    }
1078
1079    // (C++98 8.3.5p3):
1080    //   All declarations for a function shall agree exactly in both the
1081    //   return type and the parameter-type-list.
1082    // attributes should be ignored when comparing.
1083    if (Context.getNoReturnType(OldQType, false) ==
1084        Context.getNoReturnType(NewQType, false))
1085      return MergeCompatibleFunctionDecls(New, Old);
1086
1087    // Fall through for conflicting redeclarations and redefinitions.
1088  }
1089
1090  // C: Function types need to be compatible, not identical. This handles
1091  // duplicate function decls like "void f(int); void f(enum X);" properly.
1092  if (!getLangOptions().CPlusPlus &&
1093      Context.typesAreCompatible(OldQType, NewQType)) {
1094    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1095    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1096    const FunctionProtoType *OldProto = 0;
1097    if (isa<FunctionNoProtoType>(NewFuncType) &&
1098        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1099      // The old declaration provided a function prototype, but the
1100      // new declaration does not. Merge in the prototype.
1101      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1102      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1103                                                 OldProto->arg_type_end());
1104      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1105                                         ParamTypes.data(), ParamTypes.size(),
1106                                         OldProto->isVariadic(),
1107                                         OldProto->getTypeQuals(),
1108                                         false, false, 0, 0,
1109                                         OldProto->getNoReturnAttr(),
1110                                         OldProto->getCallConv());
1111      New->setType(NewQType);
1112      New->setHasInheritedPrototype();
1113
1114      // Synthesize a parameter for each argument type.
1115      llvm::SmallVector<ParmVarDecl*, 16> Params;
1116      for (FunctionProtoType::arg_type_iterator
1117             ParamType = OldProto->arg_type_begin(),
1118             ParamEnd = OldProto->arg_type_end();
1119           ParamType != ParamEnd; ++ParamType) {
1120        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1121                                                 SourceLocation(), 0,
1122                                                 *ParamType, /*TInfo=*/0,
1123                                                 VarDecl::None, 0);
1124        Param->setImplicit();
1125        Params.push_back(Param);
1126      }
1127
1128      New->setParams(Params.data(), Params.size());
1129    }
1130
1131    return MergeCompatibleFunctionDecls(New, Old);
1132  }
1133
1134  // GNU C permits a K&R definition to follow a prototype declaration
1135  // if the declared types of the parameters in the K&R definition
1136  // match the types in the prototype declaration, even when the
1137  // promoted types of the parameters from the K&R definition differ
1138  // from the types in the prototype. GCC then keeps the types from
1139  // the prototype.
1140  //
1141  // If a variadic prototype is followed by a non-variadic K&R definition,
1142  // the K&R definition becomes variadic.  This is sort of an edge case, but
1143  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1144  // C99 6.9.1p8.
1145  if (!getLangOptions().CPlusPlus &&
1146      Old->hasPrototype() && !New->hasPrototype() &&
1147      New->getType()->getAs<FunctionProtoType>() &&
1148      Old->getNumParams() == New->getNumParams()) {
1149    llvm::SmallVector<QualType, 16> ArgTypes;
1150    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1151    const FunctionProtoType *OldProto
1152      = Old->getType()->getAs<FunctionProtoType>();
1153    const FunctionProtoType *NewProto
1154      = New->getType()->getAs<FunctionProtoType>();
1155
1156    // Determine whether this is the GNU C extension.
1157    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1158                                               NewProto->getResultType());
1159    bool LooseCompatible = !MergedReturn.isNull();
1160    for (unsigned Idx = 0, End = Old->getNumParams();
1161         LooseCompatible && Idx != End; ++Idx) {
1162      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1163      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1164      if (Context.typesAreCompatible(OldParm->getType(),
1165                                     NewProto->getArgType(Idx))) {
1166        ArgTypes.push_back(NewParm->getType());
1167      } else if (Context.typesAreCompatible(OldParm->getType(),
1168                                            NewParm->getType())) {
1169        GNUCompatibleParamWarning Warn
1170          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1171        Warnings.push_back(Warn);
1172        ArgTypes.push_back(NewParm->getType());
1173      } else
1174        LooseCompatible = false;
1175    }
1176
1177    if (LooseCompatible) {
1178      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1179        Diag(Warnings[Warn].NewParm->getLocation(),
1180             diag::ext_param_promoted_not_compatible_with_prototype)
1181          << Warnings[Warn].PromotedType
1182          << Warnings[Warn].OldParm->getType();
1183        Diag(Warnings[Warn].OldParm->getLocation(),
1184             diag::note_previous_declaration);
1185      }
1186
1187      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1188                                           ArgTypes.size(),
1189                                           OldProto->isVariadic(), 0,
1190                                           false, false, 0, 0,
1191                                           OldProto->getNoReturnAttr(),
1192                                           OldProto->getCallConv()));
1193      return MergeCompatibleFunctionDecls(New, Old);
1194    }
1195
1196    // Fall through to diagnose conflicting types.
1197  }
1198
1199  // A function that has already been declared has been redeclared or defined
1200  // with a different type- show appropriate diagnostic
1201  if (unsigned BuiltinID = Old->getBuiltinID()) {
1202    // The user has declared a builtin function with an incompatible
1203    // signature.
1204    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1205      // The function the user is redeclaring is a library-defined
1206      // function like 'malloc' or 'printf'. Warn about the
1207      // redeclaration, then pretend that we don't know about this
1208      // library built-in.
1209      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1210      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1211        << Old << Old->getType();
1212      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1213      Old->setInvalidDecl();
1214      return false;
1215    }
1216
1217    PrevDiag = diag::note_previous_builtin_declaration;
1218  }
1219
1220  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1221  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1222  return true;
1223}
1224
1225/// \brief Completes the merge of two function declarations that are
1226/// known to be compatible.
1227///
1228/// This routine handles the merging of attributes and other
1229/// properties of function declarations form the old declaration to
1230/// the new declaration, once we know that New is in fact a
1231/// redeclaration of Old.
1232///
1233/// \returns false
1234bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1235  // Merge the attributes
1236  MergeAttributes(New, Old, Context);
1237
1238  // Merge the storage class.
1239  if (Old->getStorageClass() != FunctionDecl::Extern &&
1240      Old->getStorageClass() != FunctionDecl::None)
1241    New->setStorageClass(Old->getStorageClass());
1242
1243  // Merge "pure" flag.
1244  if (Old->isPure())
1245    New->setPure();
1246
1247  // Merge the "deleted" flag.
1248  if (Old->isDeleted())
1249    New->setDeleted();
1250
1251  if (getLangOptions().CPlusPlus)
1252    return MergeCXXFunctionDecl(New, Old);
1253
1254  return false;
1255}
1256
1257/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1258/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1259/// situation, merging decls or emitting diagnostics as appropriate.
1260///
1261/// Tentative definition rules (C99 6.9.2p2) are checked by
1262/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1263/// definitions here, since the initializer hasn't been attached.
1264///
1265void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1266  // If the new decl is already invalid, don't do any other checking.
1267  if (New->isInvalidDecl())
1268    return;
1269
1270  // Verify the old decl was also a variable.
1271  VarDecl *Old = 0;
1272  if (!Previous.isSingleResult() ||
1273      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1274    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1275      << New->getDeclName();
1276    Diag(Previous.getRepresentativeDecl()->getLocation(),
1277         diag::note_previous_definition);
1278    return New->setInvalidDecl();
1279  }
1280
1281  MergeAttributes(New, Old, Context);
1282
1283  // Merge the types
1284  QualType MergedT;
1285  if (getLangOptions().CPlusPlus) {
1286    if (Context.hasSameType(New->getType(), Old->getType()))
1287      MergedT = New->getType();
1288    // C++ [basic.link]p10:
1289    //   [...] the types specified by all declarations referring to a given
1290    //   object or function shall be identical, except that declarations for an
1291    //   array object can specify array types that differ by the presence or
1292    //   absence of a major array bound (8.3.4).
1293    else if (Old->getType()->isIncompleteArrayType() &&
1294             New->getType()->isArrayType()) {
1295      CanQual<ArrayType> OldArray
1296        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1297      CanQual<ArrayType> NewArray
1298        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1299      if (OldArray->getElementType() == NewArray->getElementType())
1300        MergedT = New->getType();
1301    } else if (Old->getType()->isArrayType() &&
1302             New->getType()->isIncompleteArrayType()) {
1303      CanQual<ArrayType> OldArray
1304        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1305      CanQual<ArrayType> NewArray
1306        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1307      if (OldArray->getElementType() == NewArray->getElementType())
1308        MergedT = Old->getType();
1309    }
1310  } else {
1311    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1312  }
1313  if (MergedT.isNull()) {
1314    Diag(New->getLocation(), diag::err_redefinition_different_type)
1315      << New->getDeclName();
1316    Diag(Old->getLocation(), diag::note_previous_definition);
1317    return New->setInvalidDecl();
1318  }
1319  New->setType(MergedT);
1320
1321  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1322  if (New->getStorageClass() == VarDecl::Static &&
1323      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1324    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1325    Diag(Old->getLocation(), diag::note_previous_definition);
1326    return New->setInvalidDecl();
1327  }
1328  // C99 6.2.2p4:
1329  //   For an identifier declared with the storage-class specifier
1330  //   extern in a scope in which a prior declaration of that
1331  //   identifier is visible,23) if the prior declaration specifies
1332  //   internal or external linkage, the linkage of the identifier at
1333  //   the later declaration is the same as the linkage specified at
1334  //   the prior declaration. If no prior declaration is visible, or
1335  //   if the prior declaration specifies no linkage, then the
1336  //   identifier has external linkage.
1337  if (New->hasExternalStorage() && Old->hasLinkage())
1338    /* Okay */;
1339  else if (New->getStorageClass() != VarDecl::Static &&
1340           Old->getStorageClass() == VarDecl::Static) {
1341    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1342    Diag(Old->getLocation(), diag::note_previous_definition);
1343    return New->setInvalidDecl();
1344  }
1345
1346  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1347
1348  // FIXME: The test for external storage here seems wrong? We still
1349  // need to check for mismatches.
1350  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1351      // Don't complain about out-of-line definitions of static members.
1352      !(Old->getLexicalDeclContext()->isRecord() &&
1353        !New->getLexicalDeclContext()->isRecord())) {
1354    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1355    Diag(Old->getLocation(), diag::note_previous_definition);
1356    return New->setInvalidDecl();
1357  }
1358
1359  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1360    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1361    Diag(Old->getLocation(), diag::note_previous_definition);
1362  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1363    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1364    Diag(Old->getLocation(), diag::note_previous_definition);
1365  }
1366
1367  // C++ doesn't have tentative definitions, so go right ahead and check here.
1368  const VarDecl *Def;
1369  if (getLangOptions().CPlusPlus &&
1370      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1371      (Def = Old->getDefinition())) {
1372    Diag(New->getLocation(), diag::err_redefinition)
1373      << New->getDeclName();
1374    Diag(Def->getLocation(), diag::note_previous_definition);
1375    New->setInvalidDecl();
1376    return;
1377  }
1378
1379  // Keep a chain of previous declarations.
1380  New->setPreviousDeclaration(Old);
1381
1382  // Inherit access appropriately.
1383  New->setAccess(Old->getAccess());
1384}
1385
1386/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1387/// no declarator (e.g. "struct foo;") is parsed.
1388Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1389  // FIXME: Error on auto/register at file scope
1390  // FIXME: Error on inline/virtual/explicit
1391  // FIXME: Warn on useless __thread
1392  // FIXME: Warn on useless const/volatile
1393  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1394  // FIXME: Warn on useless attributes
1395  Decl *TagD = 0;
1396  TagDecl *Tag = 0;
1397  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1398      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1399      DS.getTypeSpecType() == DeclSpec::TST_union ||
1400      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1401    TagD = static_cast<Decl *>(DS.getTypeRep());
1402
1403    if (!TagD) // We probably had an error
1404      return DeclPtrTy();
1405
1406    // Note that the above type specs guarantee that the
1407    // type rep is a Decl, whereas in many of the others
1408    // it's a Type.
1409    Tag = dyn_cast<TagDecl>(TagD);
1410  }
1411
1412  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1413    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1414    // or incomplete types shall not be restrict-qualified."
1415    if (TypeQuals & DeclSpec::TQ_restrict)
1416      Diag(DS.getRestrictSpecLoc(),
1417           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1418           << DS.getSourceRange();
1419  }
1420
1421  if (DS.isFriendSpecified()) {
1422    // If we're dealing with a class template decl, assume that the
1423    // template routines are handling it.
1424    if (TagD && isa<ClassTemplateDecl>(TagD))
1425      return DeclPtrTy();
1426    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1427  }
1428
1429  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1430    // If there are attributes in the DeclSpec, apply them to the record.
1431    if (const AttributeList *AL = DS.getAttributes())
1432      ProcessDeclAttributeList(S, Record, AL);
1433
1434    if (!Record->getDeclName() && Record->isDefinition() &&
1435        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1436      if (getLangOptions().CPlusPlus ||
1437          Record->getDeclContext()->isRecord())
1438        return BuildAnonymousStructOrUnion(S, DS, Record);
1439
1440      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1441        << DS.getSourceRange();
1442    }
1443
1444    // Microsoft allows unnamed struct/union fields. Don't complain
1445    // about them.
1446    // FIXME: Should we support Microsoft's extensions in this area?
1447    if (Record->getDeclName() && getLangOptions().Microsoft)
1448      return DeclPtrTy::make(Tag);
1449  }
1450
1451  if (!DS.isMissingDeclaratorOk() &&
1452      DS.getTypeSpecType() != DeclSpec::TST_error) {
1453    // Warn about typedefs of enums without names, since this is an
1454    // extension in both Microsoft an GNU.
1455    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1456        Tag && isa<EnumDecl>(Tag)) {
1457      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1458        << DS.getSourceRange();
1459      return DeclPtrTy::make(Tag);
1460    }
1461
1462    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1463      << DS.getSourceRange();
1464    return DeclPtrTy();
1465  }
1466
1467  return DeclPtrTy::make(Tag);
1468}
1469
1470/// We are trying to inject an anonymous member into the given scope;
1471/// check if there's an existing declaration that can't be overloaded.
1472///
1473/// \return true if this is a forbidden redeclaration
1474static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1475                                         Scope *S,
1476                                         DeclContext *Owner,
1477                                         DeclarationName Name,
1478                                         SourceLocation NameLoc,
1479                                         unsigned diagnostic) {
1480  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1481                 Sema::ForRedeclaration);
1482  if (!SemaRef.LookupName(R, S)) return false;
1483
1484  if (R.getAsSingle<TagDecl>())
1485    return false;
1486
1487  // Pick a representative declaration.
1488  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1489  if (PrevDecl && Owner->isRecord()) {
1490    RecordDecl *Record = cast<RecordDecl>(Owner);
1491    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1492      return false;
1493  }
1494
1495  SemaRef.Diag(NameLoc, diagnostic) << Name;
1496  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1497
1498  return true;
1499}
1500
1501/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1502/// anonymous struct or union AnonRecord into the owning context Owner
1503/// and scope S. This routine will be invoked just after we realize
1504/// that an unnamed union or struct is actually an anonymous union or
1505/// struct, e.g.,
1506///
1507/// @code
1508/// union {
1509///   int i;
1510///   float f;
1511/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1512///    // f into the surrounding scope.x
1513/// @endcode
1514///
1515/// This routine is recursive, injecting the names of nested anonymous
1516/// structs/unions into the owning context and scope as well.
1517bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1518                                               RecordDecl *AnonRecord) {
1519  unsigned diagKind
1520    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1521                            : diag::err_anonymous_struct_member_redecl;
1522
1523  bool Invalid = false;
1524  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1525                               FEnd = AnonRecord->field_end();
1526       F != FEnd; ++F) {
1527    if ((*F)->getDeclName()) {
1528      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1529                                       (*F)->getLocation(), diagKind)) {
1530        // C++ [class.union]p2:
1531        //   The names of the members of an anonymous union shall be
1532        //   distinct from the names of any other entity in the
1533        //   scope in which the anonymous union is declared.
1534        Invalid = true;
1535      } else {
1536        // C++ [class.union]p2:
1537        //   For the purpose of name lookup, after the anonymous union
1538        //   definition, the members of the anonymous union are
1539        //   considered to have been defined in the scope in which the
1540        //   anonymous union is declared.
1541        Owner->makeDeclVisibleInContext(*F);
1542        S->AddDecl(DeclPtrTy::make(*F));
1543        IdResolver.AddDecl(*F);
1544      }
1545    } else if (const RecordType *InnerRecordType
1546                 = (*F)->getType()->getAs<RecordType>()) {
1547      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1548      if (InnerRecord->isAnonymousStructOrUnion())
1549        Invalid = Invalid ||
1550          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1551    }
1552  }
1553
1554  return Invalid;
1555}
1556
1557/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1558/// anonymous structure or union. Anonymous unions are a C++ feature
1559/// (C++ [class.union]) and a GNU C extension; anonymous structures
1560/// are a GNU C and GNU C++ extension.
1561Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1562                                                  RecordDecl *Record) {
1563  DeclContext *Owner = Record->getDeclContext();
1564
1565  // Diagnose whether this anonymous struct/union is an extension.
1566  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1567    Diag(Record->getLocation(), diag::ext_anonymous_union);
1568  else if (!Record->isUnion())
1569    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1570
1571  // C and C++ require different kinds of checks for anonymous
1572  // structs/unions.
1573  bool Invalid = false;
1574  if (getLangOptions().CPlusPlus) {
1575    const char* PrevSpec = 0;
1576    unsigned DiagID;
1577    // C++ [class.union]p3:
1578    //   Anonymous unions declared in a named namespace or in the
1579    //   global namespace shall be declared static.
1580    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1581        (isa<TranslationUnitDecl>(Owner) ||
1582         (isa<NamespaceDecl>(Owner) &&
1583          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1584      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1585      Invalid = true;
1586
1587      // Recover by adding 'static'.
1588      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1589                             PrevSpec, DiagID);
1590    }
1591    // C++ [class.union]p3:
1592    //   A storage class is not allowed in a declaration of an
1593    //   anonymous union in a class scope.
1594    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1595             isa<RecordDecl>(Owner)) {
1596      Diag(DS.getStorageClassSpecLoc(),
1597           diag::err_anonymous_union_with_storage_spec);
1598      Invalid = true;
1599
1600      // Recover by removing the storage specifier.
1601      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1602                             PrevSpec, DiagID);
1603    }
1604
1605    // C++ [class.union]p2:
1606    //   The member-specification of an anonymous union shall only
1607    //   define non-static data members. [Note: nested types and
1608    //   functions cannot be declared within an anonymous union. ]
1609    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1610                                 MemEnd = Record->decls_end();
1611         Mem != MemEnd; ++Mem) {
1612      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1613        // C++ [class.union]p3:
1614        //   An anonymous union shall not have private or protected
1615        //   members (clause 11).
1616        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1617          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1618            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1619          Invalid = true;
1620        }
1621      } else if ((*Mem)->isImplicit()) {
1622        // Any implicit members are fine.
1623      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1624        // This is a type that showed up in an
1625        // elaborated-type-specifier inside the anonymous struct or
1626        // union, but which actually declares a type outside of the
1627        // anonymous struct or union. It's okay.
1628      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1629        if (!MemRecord->isAnonymousStructOrUnion() &&
1630            MemRecord->getDeclName()) {
1631          // This is a nested type declaration.
1632          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1633            << (int)Record->isUnion();
1634          Invalid = true;
1635        }
1636      } else {
1637        // We have something that isn't a non-static data
1638        // member. Complain about it.
1639        unsigned DK = diag::err_anonymous_record_bad_member;
1640        if (isa<TypeDecl>(*Mem))
1641          DK = diag::err_anonymous_record_with_type;
1642        else if (isa<FunctionDecl>(*Mem))
1643          DK = diag::err_anonymous_record_with_function;
1644        else if (isa<VarDecl>(*Mem))
1645          DK = diag::err_anonymous_record_with_static;
1646        Diag((*Mem)->getLocation(), DK)
1647            << (int)Record->isUnion();
1648          Invalid = true;
1649      }
1650    }
1651  }
1652
1653  if (!Record->isUnion() && !Owner->isRecord()) {
1654    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1655      << (int)getLangOptions().CPlusPlus;
1656    Invalid = true;
1657  }
1658
1659  // Mock up a declarator.
1660  Declarator Dc(DS, Declarator::TypeNameContext);
1661  TypeSourceInfo *TInfo = 0;
1662  GetTypeForDeclarator(Dc, S, &TInfo);
1663  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1664
1665  // Create a declaration for this anonymous struct/union.
1666  NamedDecl *Anon = 0;
1667  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1668    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1669                             /*IdentifierInfo=*/0,
1670                             Context.getTypeDeclType(Record),
1671                             TInfo,
1672                             /*BitWidth=*/0, /*Mutable=*/false);
1673    Anon->setAccess(AS_public);
1674    if (getLangOptions().CPlusPlus)
1675      FieldCollector->Add(cast<FieldDecl>(Anon));
1676  } else {
1677    VarDecl::StorageClass SC;
1678    switch (DS.getStorageClassSpec()) {
1679    default: assert(0 && "Unknown storage class!");
1680    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1681    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1682    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1683    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1684    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1685    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1686    case DeclSpec::SCS_mutable:
1687      // mutable can only appear on non-static class members, so it's always
1688      // an error here
1689      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1690      Invalid = true;
1691      SC = VarDecl::None;
1692      break;
1693    }
1694
1695    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1696                           /*IdentifierInfo=*/0,
1697                           Context.getTypeDeclType(Record),
1698                           TInfo,
1699                           SC);
1700  }
1701  Anon->setImplicit();
1702
1703  // Add the anonymous struct/union object to the current
1704  // context. We'll be referencing this object when we refer to one of
1705  // its members.
1706  Owner->addDecl(Anon);
1707
1708  // Inject the members of the anonymous struct/union into the owning
1709  // context and into the identifier resolver chain for name lookup
1710  // purposes.
1711  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1712    Invalid = true;
1713
1714  // Mark this as an anonymous struct/union type. Note that we do not
1715  // do this until after we have already checked and injected the
1716  // members of this anonymous struct/union type, because otherwise
1717  // the members could be injected twice: once by DeclContext when it
1718  // builds its lookup table, and once by
1719  // InjectAnonymousStructOrUnionMembers.
1720  Record->setAnonymousStructOrUnion(true);
1721
1722  if (Invalid)
1723    Anon->setInvalidDecl();
1724
1725  return DeclPtrTy::make(Anon);
1726}
1727
1728
1729/// GetNameForDeclarator - Determine the full declaration name for the
1730/// given Declarator.
1731DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1732  return GetNameFromUnqualifiedId(D.getName());
1733}
1734
1735/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1736DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1737  switch (Name.getKind()) {
1738    case UnqualifiedId::IK_Identifier:
1739      return DeclarationName(Name.Identifier);
1740
1741    case UnqualifiedId::IK_OperatorFunctionId:
1742      return Context.DeclarationNames.getCXXOperatorName(
1743                                              Name.OperatorFunctionId.Operator);
1744
1745    case UnqualifiedId::IK_LiteralOperatorId:
1746      return Context.DeclarationNames.getCXXLiteralOperatorName(
1747                                                               Name.Identifier);
1748
1749    case UnqualifiedId::IK_ConversionFunctionId: {
1750      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1751      if (Ty.isNull())
1752        return DeclarationName();
1753
1754      return Context.DeclarationNames.getCXXConversionFunctionName(
1755                                                  Context.getCanonicalType(Ty));
1756    }
1757
1758    case UnqualifiedId::IK_ConstructorName: {
1759      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1760      if (Ty.isNull())
1761        return DeclarationName();
1762
1763      return Context.DeclarationNames.getCXXConstructorName(
1764                                                  Context.getCanonicalType(Ty));
1765    }
1766
1767    case UnqualifiedId::IK_ConstructorTemplateId: {
1768      // In well-formed code, we can only have a constructor
1769      // template-id that refers to the current context, so go there
1770      // to find the actual type being constructed.
1771      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1772      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1773        return DeclarationName();
1774
1775      // Determine the type of the class being constructed.
1776      QualType CurClassType;
1777      if (ClassTemplateDecl *ClassTemplate
1778            = CurClass->getDescribedClassTemplate())
1779        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1780      else
1781        CurClassType = Context.getTypeDeclType(CurClass);
1782
1783      // FIXME: Check two things: that the template-id names the same type as
1784      // CurClassType, and that the template-id does not occur when the name
1785      // was qualified.
1786
1787      return Context.DeclarationNames.getCXXConstructorName(
1788                                       Context.getCanonicalType(CurClassType));
1789    }
1790
1791    case UnqualifiedId::IK_DestructorName: {
1792      QualType Ty = GetTypeFromParser(Name.DestructorName);
1793      if (Ty.isNull())
1794        return DeclarationName();
1795
1796      return Context.DeclarationNames.getCXXDestructorName(
1797                                                           Context.getCanonicalType(Ty));
1798    }
1799
1800    case UnqualifiedId::IK_TemplateId: {
1801      TemplateName TName
1802        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1803      return Context.getNameForTemplate(TName);
1804    }
1805  }
1806
1807  assert(false && "Unknown name kind");
1808  return DeclarationName();
1809}
1810
1811/// isNearlyMatchingFunction - Determine whether the C++ functions
1812/// Declaration and Definition are "nearly" matching. This heuristic
1813/// is used to improve diagnostics in the case where an out-of-line
1814/// function definition doesn't match any declaration within
1815/// the class or namespace.
1816static bool isNearlyMatchingFunction(ASTContext &Context,
1817                                     FunctionDecl *Declaration,
1818                                     FunctionDecl *Definition) {
1819  if (Declaration->param_size() != Definition->param_size())
1820    return false;
1821  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1822    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1823    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1824
1825    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1826                                        DefParamTy.getNonReferenceType()))
1827      return false;
1828  }
1829
1830  return true;
1831}
1832
1833Sema::DeclPtrTy
1834Sema::HandleDeclarator(Scope *S, Declarator &D,
1835                       MultiTemplateParamsArg TemplateParamLists,
1836                       bool IsFunctionDefinition) {
1837  DeclarationName Name = GetNameForDeclarator(D);
1838
1839  // All of these full declarators require an identifier.  If it doesn't have
1840  // one, the ParsedFreeStandingDeclSpec action should be used.
1841  if (!Name) {
1842    if (!D.isInvalidType())  // Reject this if we think it is valid.
1843      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1844           diag::err_declarator_need_ident)
1845        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1846    return DeclPtrTy();
1847  }
1848
1849  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1850  // we find one that is.
1851  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1852         (S->getFlags() & Scope::TemplateParamScope) != 0)
1853    S = S->getParent();
1854
1855  // If this is an out-of-line definition of a member of a class template
1856  // or class template partial specialization, we may need to rebuild the
1857  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1858  // for more information.
1859  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1860  // handle expressions properly.
1861  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1862  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1863      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1864      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1865       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1866       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1867       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1868    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1869      // FIXME: Preserve type source info.
1870      QualType T = GetTypeFromParser(DS.getTypeRep());
1871
1872      DeclContext *SavedContext = CurContext;
1873      CurContext = DC;
1874      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1875      CurContext = SavedContext;
1876
1877      if (T.isNull())
1878        return DeclPtrTy();
1879      DS.UpdateTypeRep(T.getAsOpaquePtr());
1880    }
1881  }
1882
1883  DeclContext *DC;
1884  NamedDecl *New;
1885
1886  TypeSourceInfo *TInfo = 0;
1887  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1888
1889  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1890                        ForRedeclaration);
1891
1892  // See if this is a redefinition of a variable in the same scope.
1893  if (D.getCXXScopeSpec().isInvalid()) {
1894    DC = CurContext;
1895    D.setInvalidType();
1896  } else if (!D.getCXXScopeSpec().isSet()) {
1897    bool IsLinkageLookup = false;
1898
1899    // If the declaration we're planning to build will be a function
1900    // or object with linkage, then look for another declaration with
1901    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1902    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1903      /* Do nothing*/;
1904    else if (R->isFunctionType()) {
1905      if (CurContext->isFunctionOrMethod() ||
1906          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1907        IsLinkageLookup = true;
1908    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1909      IsLinkageLookup = true;
1910    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1911             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1912      IsLinkageLookup = true;
1913
1914    if (IsLinkageLookup)
1915      Previous.clear(LookupRedeclarationWithLinkage);
1916
1917    DC = CurContext;
1918    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1919  } else { // Something like "int foo::x;"
1920    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1921
1922    if (!DC) {
1923      // If we could not compute the declaration context, it's because the
1924      // declaration context is dependent but does not refer to a class,
1925      // class template, or class template partial specialization. Complain
1926      // and return early, to avoid the coming semantic disaster.
1927      Diag(D.getIdentifierLoc(),
1928           diag::err_template_qualified_declarator_no_match)
1929        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1930        << D.getCXXScopeSpec().getRange();
1931      return DeclPtrTy();
1932    }
1933
1934    if (!DC->isDependentContext() &&
1935        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1936      return DeclPtrTy();
1937
1938    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
1939      Diag(D.getIdentifierLoc(),
1940           diag::err_member_def_undefined_record)
1941        << Name << DC << D.getCXXScopeSpec().getRange();
1942      D.setInvalidType();
1943    }
1944
1945    LookupQualifiedName(Previous, DC);
1946
1947    // Don't consider using declarations as previous declarations for
1948    // out-of-line members.
1949    RemoveUsingDecls(Previous);
1950
1951    // C++ 7.3.1.2p2:
1952    // Members (including explicit specializations of templates) of a named
1953    // namespace can also be defined outside that namespace by explicit
1954    // qualification of the name being defined, provided that the entity being
1955    // defined was already declared in the namespace and the definition appears
1956    // after the point of declaration in a namespace that encloses the
1957    // declarations namespace.
1958    //
1959    // Note that we only check the context at this point. We don't yet
1960    // have enough information to make sure that PrevDecl is actually
1961    // the declaration we want to match. For example, given:
1962    //
1963    //   class X {
1964    //     void f();
1965    //     void f(float);
1966    //   };
1967    //
1968    //   void X::f(int) { } // ill-formed
1969    //
1970    // In this case, PrevDecl will point to the overload set
1971    // containing the two f's declared in X, but neither of them
1972    // matches.
1973
1974    // First check whether we named the global scope.
1975    if (isa<TranslationUnitDecl>(DC)) {
1976      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1977        << Name << D.getCXXScopeSpec().getRange();
1978    } else {
1979      DeclContext *Cur = CurContext;
1980      while (isa<LinkageSpecDecl>(Cur))
1981        Cur = Cur->getParent();
1982      if (!Cur->Encloses(DC)) {
1983        // The qualifying scope doesn't enclose the original declaration.
1984        // Emit diagnostic based on current scope.
1985        SourceLocation L = D.getIdentifierLoc();
1986        SourceRange R = D.getCXXScopeSpec().getRange();
1987        if (isa<FunctionDecl>(Cur))
1988          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1989        else
1990          Diag(L, diag::err_invalid_declarator_scope)
1991            << Name << cast<NamedDecl>(DC) << R;
1992        D.setInvalidType();
1993      }
1994    }
1995  }
1996
1997  if (Previous.isSingleResult() &&
1998      Previous.getFoundDecl()->isTemplateParameter()) {
1999    // Maybe we will complain about the shadowed template parameter.
2000    if (!D.isInvalidType())
2001      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2002                                          Previous.getFoundDecl()))
2003        D.setInvalidType();
2004
2005    // Just pretend that we didn't see the previous declaration.
2006    Previous.clear();
2007  }
2008
2009  // In C++, the previous declaration we find might be a tag type
2010  // (class or enum). In this case, the new declaration will hide the
2011  // tag type. Note that this does does not apply if we're declaring a
2012  // typedef (C++ [dcl.typedef]p4).
2013  if (Previous.isSingleTagDecl() &&
2014      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2015    Previous.clear();
2016
2017  bool Redeclaration = false;
2018  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2019    if (TemplateParamLists.size()) {
2020      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2021      return DeclPtrTy();
2022    }
2023
2024    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2025  } else if (R->isFunctionType()) {
2026    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2027                                  move(TemplateParamLists),
2028                                  IsFunctionDefinition, Redeclaration);
2029  } else {
2030    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2031                                  move(TemplateParamLists),
2032                                  Redeclaration);
2033  }
2034
2035  if (New == 0)
2036    return DeclPtrTy();
2037
2038  // If this has an identifier and is not an invalid redeclaration or
2039  // function template specialization, add it to the scope stack.
2040  if (Name && !(Redeclaration && New->isInvalidDecl()))
2041    PushOnScopeChains(New, S);
2042
2043  return DeclPtrTy::make(New);
2044}
2045
2046/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2047/// types into constant array types in certain situations which would otherwise
2048/// be errors (for GCC compatibility).
2049static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2050                                                    ASTContext &Context,
2051                                                    bool &SizeIsNegative) {
2052  // This method tries to turn a variable array into a constant
2053  // array even when the size isn't an ICE.  This is necessary
2054  // for compatibility with code that depends on gcc's buggy
2055  // constant expression folding, like struct {char x[(int)(char*)2];}
2056  SizeIsNegative = false;
2057
2058  QualifierCollector Qs;
2059  const Type *Ty = Qs.strip(T);
2060
2061  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2062    QualType Pointee = PTy->getPointeeType();
2063    QualType FixedType =
2064        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2065    if (FixedType.isNull()) return FixedType;
2066    FixedType = Context.getPointerType(FixedType);
2067    return Qs.apply(FixedType);
2068  }
2069
2070  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2071  if (!VLATy)
2072    return QualType();
2073  // FIXME: We should probably handle this case
2074  if (VLATy->getElementType()->isVariablyModifiedType())
2075    return QualType();
2076
2077  Expr::EvalResult EvalResult;
2078  if (!VLATy->getSizeExpr() ||
2079      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2080      !EvalResult.Val.isInt())
2081    return QualType();
2082
2083  llvm::APSInt &Res = EvalResult.Val.getInt();
2084  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2085    // TODO: preserve the size expression in declarator info
2086    return Context.getConstantArrayType(VLATy->getElementType(),
2087                                        Res, ArrayType::Normal, 0);
2088  }
2089
2090  SizeIsNegative = true;
2091  return QualType();
2092}
2093
2094/// \brief Register the given locally-scoped external C declaration so
2095/// that it can be found later for redeclarations
2096void
2097Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2098                                       const LookupResult &Previous,
2099                                       Scope *S) {
2100  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2101         "Decl is not a locally-scoped decl!");
2102  // Note that we have a locally-scoped external with this name.
2103  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2104
2105  if (!Previous.isSingleResult())
2106    return;
2107
2108  NamedDecl *PrevDecl = Previous.getFoundDecl();
2109
2110  // If there was a previous declaration of this variable, it may be
2111  // in our identifier chain. Update the identifier chain with the new
2112  // declaration.
2113  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2114    // The previous declaration was found on the identifer resolver
2115    // chain, so remove it from its scope.
2116    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2117      S = S->getParent();
2118
2119    if (S)
2120      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2121  }
2122}
2123
2124/// \brief Diagnose function specifiers on a declaration of an identifier that
2125/// does not identify a function.
2126void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2127  // FIXME: We should probably indicate the identifier in question to avoid
2128  // confusion for constructs like "inline int a(), b;"
2129  if (D.getDeclSpec().isInlineSpecified())
2130    Diag(D.getDeclSpec().getInlineSpecLoc(),
2131         diag::err_inline_non_function);
2132
2133  if (D.getDeclSpec().isVirtualSpecified())
2134    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2135         diag::err_virtual_non_function);
2136
2137  if (D.getDeclSpec().isExplicitSpecified())
2138    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2139         diag::err_explicit_non_function);
2140}
2141
2142NamedDecl*
2143Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2144                             QualType R,  TypeSourceInfo *TInfo,
2145                             LookupResult &Previous, bool &Redeclaration) {
2146  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2147  if (D.getCXXScopeSpec().isSet()) {
2148    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2149      << D.getCXXScopeSpec().getRange();
2150    D.setInvalidType();
2151    // Pretend we didn't see the scope specifier.
2152    DC = 0;
2153  }
2154
2155  if (getLangOptions().CPlusPlus) {
2156    // Check that there are no default arguments (C++ only).
2157    CheckExtraCXXDefaultArguments(D);
2158  }
2159
2160  DiagnoseFunctionSpecifiers(D);
2161
2162  if (D.getDeclSpec().isThreadSpecified())
2163    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2164
2165  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2166  if (!NewTD) return 0;
2167
2168  // Handle attributes prior to checking for duplicates in MergeVarDecl
2169  ProcessDeclAttributes(S, NewTD, D);
2170
2171  // Merge the decl with the existing one if appropriate. If the decl is
2172  // in an outer scope, it isn't the same thing.
2173  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2174  if (!Previous.empty()) {
2175    Redeclaration = true;
2176    MergeTypeDefDecl(NewTD, Previous);
2177  }
2178
2179  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2180  // then it shall have block scope.
2181  QualType T = NewTD->getUnderlyingType();
2182  if (T->isVariablyModifiedType()) {
2183    FunctionNeedsScopeChecking() = true;
2184
2185    if (S->getFnParent() == 0) {
2186      bool SizeIsNegative;
2187      QualType FixedTy =
2188          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2189      if (!FixedTy.isNull()) {
2190        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2191        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2192      } else {
2193        if (SizeIsNegative)
2194          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2195        else if (T->isVariableArrayType())
2196          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2197        else
2198          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2199        NewTD->setInvalidDecl();
2200      }
2201    }
2202  }
2203
2204  // If this is the C FILE type, notify the AST context.
2205  if (IdentifierInfo *II = NewTD->getIdentifier())
2206    if (!NewTD->isInvalidDecl() &&
2207        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2208      if (II->isStr("FILE"))
2209        Context.setFILEDecl(NewTD);
2210      else if (II->isStr("jmp_buf"))
2211        Context.setjmp_bufDecl(NewTD);
2212      else if (II->isStr("sigjmp_buf"))
2213        Context.setsigjmp_bufDecl(NewTD);
2214    }
2215
2216  return NewTD;
2217}
2218
2219/// \brief Determines whether the given declaration is an out-of-scope
2220/// previous declaration.
2221///
2222/// This routine should be invoked when name lookup has found a
2223/// previous declaration (PrevDecl) that is not in the scope where a
2224/// new declaration by the same name is being introduced. If the new
2225/// declaration occurs in a local scope, previous declarations with
2226/// linkage may still be considered previous declarations (C99
2227/// 6.2.2p4-5, C++ [basic.link]p6).
2228///
2229/// \param PrevDecl the previous declaration found by name
2230/// lookup
2231///
2232/// \param DC the context in which the new declaration is being
2233/// declared.
2234///
2235/// \returns true if PrevDecl is an out-of-scope previous declaration
2236/// for a new delcaration with the same name.
2237static bool
2238isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2239                                ASTContext &Context) {
2240  if (!PrevDecl)
2241    return 0;
2242
2243  if (!PrevDecl->hasLinkage())
2244    return false;
2245
2246  if (Context.getLangOptions().CPlusPlus) {
2247    // C++ [basic.link]p6:
2248    //   If there is a visible declaration of an entity with linkage
2249    //   having the same name and type, ignoring entities declared
2250    //   outside the innermost enclosing namespace scope, the block
2251    //   scope declaration declares that same entity and receives the
2252    //   linkage of the previous declaration.
2253    DeclContext *OuterContext = DC->getLookupContext();
2254    if (!OuterContext->isFunctionOrMethod())
2255      // This rule only applies to block-scope declarations.
2256      return false;
2257    else {
2258      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2259      if (PrevOuterContext->isRecord())
2260        // We found a member function: ignore it.
2261        return false;
2262      else {
2263        // Find the innermost enclosing namespace for the new and
2264        // previous declarations.
2265        while (!OuterContext->isFileContext())
2266          OuterContext = OuterContext->getParent();
2267        while (!PrevOuterContext->isFileContext())
2268          PrevOuterContext = PrevOuterContext->getParent();
2269
2270        // The previous declaration is in a different namespace, so it
2271        // isn't the same function.
2272        if (OuterContext->getPrimaryContext() !=
2273            PrevOuterContext->getPrimaryContext())
2274          return false;
2275      }
2276    }
2277  }
2278
2279  return true;
2280}
2281
2282NamedDecl*
2283Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2284                              QualType R, TypeSourceInfo *TInfo,
2285                              LookupResult &Previous,
2286                              MultiTemplateParamsArg TemplateParamLists,
2287                              bool &Redeclaration) {
2288  DeclarationName Name = GetNameForDeclarator(D);
2289
2290  // Check that there are no default arguments (C++ only).
2291  if (getLangOptions().CPlusPlus)
2292    CheckExtraCXXDefaultArguments(D);
2293
2294  VarDecl *NewVD;
2295  VarDecl::StorageClass SC;
2296  switch (D.getDeclSpec().getStorageClassSpec()) {
2297  default: assert(0 && "Unknown storage class!");
2298  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2299  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2300  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2301  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2302  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2303  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2304  case DeclSpec::SCS_mutable:
2305    // mutable can only appear on non-static class members, so it's always
2306    // an error here
2307    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2308    D.setInvalidType();
2309    SC = VarDecl::None;
2310    break;
2311  }
2312
2313  IdentifierInfo *II = Name.getAsIdentifierInfo();
2314  if (!II) {
2315    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2316      << Name.getAsString();
2317    return 0;
2318  }
2319
2320  DiagnoseFunctionSpecifiers(D);
2321
2322  if (!DC->isRecord() && S->getFnParent() == 0) {
2323    // C99 6.9p2: The storage-class specifiers auto and register shall not
2324    // appear in the declaration specifiers in an external declaration.
2325    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2326
2327      // If this is a register variable with an asm label specified, then this
2328      // is a GNU extension.
2329      if (SC == VarDecl::Register && D.getAsmLabel())
2330        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2331      else
2332        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2333      D.setInvalidType();
2334    }
2335  }
2336  if (DC->isRecord() && !CurContext->isRecord()) {
2337    // This is an out-of-line definition of a static data member.
2338    if (SC == VarDecl::Static) {
2339      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2340           diag::err_static_out_of_line)
2341        << CodeModificationHint::CreateRemoval(
2342                                      D.getDeclSpec().getStorageClassSpecLoc());
2343    } else if (SC == VarDecl::None)
2344      SC = VarDecl::Static;
2345  }
2346  if (SC == VarDecl::Static) {
2347    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2348      if (RD->isLocalClass())
2349        Diag(D.getIdentifierLoc(),
2350             diag::err_static_data_member_not_allowed_in_local_class)
2351          << Name << RD->getDeclName();
2352    }
2353  }
2354
2355  // Match up the template parameter lists with the scope specifier, then
2356  // determine whether we have a template or a template specialization.
2357  bool isExplicitSpecialization = false;
2358  if (TemplateParameterList *TemplateParams
2359        = MatchTemplateParametersToScopeSpecifier(
2360                                  D.getDeclSpec().getSourceRange().getBegin(),
2361                                                  D.getCXXScopeSpec(),
2362                        (TemplateParameterList**)TemplateParamLists.get(),
2363                                                   TemplateParamLists.size(),
2364                                                  isExplicitSpecialization)) {
2365    if (TemplateParams->size() > 0) {
2366      // There is no such thing as a variable template.
2367      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2368        << II
2369        << SourceRange(TemplateParams->getTemplateLoc(),
2370                       TemplateParams->getRAngleLoc());
2371      return 0;
2372    } else {
2373      // There is an extraneous 'template<>' for this variable. Complain
2374      // about it, but allow the declaration of the variable.
2375      Diag(TemplateParams->getTemplateLoc(),
2376           diag::err_template_variable_noparams)
2377        << II
2378        << SourceRange(TemplateParams->getTemplateLoc(),
2379                       TemplateParams->getRAngleLoc());
2380
2381      isExplicitSpecialization = true;
2382    }
2383  }
2384
2385  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2386                          II, R, TInfo, SC);
2387
2388  if (D.isInvalidType())
2389    NewVD->setInvalidDecl();
2390
2391  if (D.getDeclSpec().isThreadSpecified()) {
2392    if (NewVD->hasLocalStorage())
2393      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2394    else if (!Context.Target.isTLSSupported())
2395      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2396    else
2397      NewVD->setThreadSpecified(true);
2398  }
2399
2400  // Set the lexical context. If the declarator has a C++ scope specifier, the
2401  // lexical context will be different from the semantic context.
2402  NewVD->setLexicalDeclContext(CurContext);
2403
2404  // Handle attributes prior to checking for duplicates in MergeVarDecl
2405  ProcessDeclAttributes(S, NewVD, D);
2406
2407  // Handle GNU asm-label extension (encoded as an attribute).
2408  if (Expr *E = (Expr*) D.getAsmLabel()) {
2409    // The parser guarantees this is a string.
2410    StringLiteral *SE = cast<StringLiteral>(E);
2411    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2412  }
2413
2414  // Don't consider existing declarations that are in a different
2415  // scope and are out-of-semantic-context declarations (if the new
2416  // declaration has linkage).
2417  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2418
2419  // Merge the decl with the existing one if appropriate.
2420  if (!Previous.empty()) {
2421    if (Previous.isSingleResult() &&
2422        isa<FieldDecl>(Previous.getFoundDecl()) &&
2423        D.getCXXScopeSpec().isSet()) {
2424      // The user tried to define a non-static data member
2425      // out-of-line (C++ [dcl.meaning]p1).
2426      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2427        << D.getCXXScopeSpec().getRange();
2428      Previous.clear();
2429      NewVD->setInvalidDecl();
2430    }
2431  } else if (D.getCXXScopeSpec().isSet()) {
2432    // No previous declaration in the qualifying scope.
2433    Diag(D.getIdentifierLoc(), diag::err_no_member)
2434      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2435      << D.getCXXScopeSpec().getRange();
2436    NewVD->setInvalidDecl();
2437  }
2438
2439  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2440
2441  // This is an explicit specialization of a static data member. Check it.
2442  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2443      CheckMemberSpecialization(NewVD, Previous))
2444    NewVD->setInvalidDecl();
2445
2446  // attributes declared post-definition are currently ignored
2447  if (Previous.isSingleResult()) {
2448    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2449    if (Def && (Def = Def->getDefinition()) &&
2450        Def != NewVD && D.hasAttributes()) {
2451      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2452      Diag(Def->getLocation(), diag::note_previous_definition);
2453    }
2454  }
2455
2456  // If this is a locally-scoped extern C variable, update the map of
2457  // such variables.
2458  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2459      !NewVD->isInvalidDecl())
2460    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2461
2462  return NewVD;
2463}
2464
2465/// \brief Perform semantic checking on a newly-created variable
2466/// declaration.
2467///
2468/// This routine performs all of the type-checking required for a
2469/// variable declaration once it has been built. It is used both to
2470/// check variables after they have been parsed and their declarators
2471/// have been translated into a declaration, and to check variables
2472/// that have been instantiated from a template.
2473///
2474/// Sets NewVD->isInvalidDecl() if an error was encountered.
2475void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2476                                    LookupResult &Previous,
2477                                    bool &Redeclaration) {
2478  // If the decl is already known invalid, don't check it.
2479  if (NewVD->isInvalidDecl())
2480    return;
2481
2482  QualType T = NewVD->getType();
2483
2484  if (T->isObjCInterfaceType()) {
2485    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2486    return NewVD->setInvalidDecl();
2487  }
2488
2489  // Emit an error if an address space was applied to decl with local storage.
2490  // This includes arrays of objects with address space qualifiers, but not
2491  // automatic variables that point to other address spaces.
2492  // ISO/IEC TR 18037 S5.1.2
2493  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2494    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2495    return NewVD->setInvalidDecl();
2496  }
2497
2498  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2499      && !NewVD->hasAttr<BlocksAttr>())
2500    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2501
2502  bool isVM = T->isVariablyModifiedType();
2503  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2504      NewVD->hasAttr<BlocksAttr>() ||
2505      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2506      // However, this turns on the scope checker for everything with a variable
2507      // which may impact compile time.  See if we can find a better solution
2508      // to this, perhaps only checking functions that contain gotos in C++?
2509      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2510    FunctionNeedsScopeChecking() = true;
2511
2512  if ((isVM && NewVD->hasLinkage()) ||
2513      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2514    bool SizeIsNegative;
2515    QualType FixedTy =
2516        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2517
2518    if (FixedTy.isNull() && T->isVariableArrayType()) {
2519      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2520      // FIXME: This won't give the correct result for
2521      // int a[10][n];
2522      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2523
2524      if (NewVD->isFileVarDecl())
2525        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2526        << SizeRange;
2527      else if (NewVD->getStorageClass() == VarDecl::Static)
2528        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2529        << SizeRange;
2530      else
2531        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2532        << SizeRange;
2533      return NewVD->setInvalidDecl();
2534    }
2535
2536    if (FixedTy.isNull()) {
2537      if (NewVD->isFileVarDecl())
2538        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2539      else
2540        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2541      return NewVD->setInvalidDecl();
2542    }
2543
2544    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2545    NewVD->setType(FixedTy);
2546  }
2547
2548  if (Previous.empty() && NewVD->isExternC()) {
2549    // Since we did not find anything by this name and we're declaring
2550    // an extern "C" variable, look for a non-visible extern "C"
2551    // declaration with the same name.
2552    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2553      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2554    if (Pos != LocallyScopedExternalDecls.end())
2555      Previous.addDecl(Pos->second);
2556  }
2557
2558  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2559    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2560      << T;
2561    return NewVD->setInvalidDecl();
2562  }
2563
2564  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2565    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2566    return NewVD->setInvalidDecl();
2567  }
2568
2569  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2570    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2571    return NewVD->setInvalidDecl();
2572  }
2573
2574  if (!Previous.empty()) {
2575    Redeclaration = true;
2576    MergeVarDecl(NewVD, Previous);
2577  }
2578}
2579
2580/// \brief Data used with FindOverriddenMethod
2581struct FindOverriddenMethodData {
2582  Sema *S;
2583  CXXMethodDecl *Method;
2584};
2585
2586/// \brief Member lookup function that determines whether a given C++
2587/// method overrides a method in a base class, to be used with
2588/// CXXRecordDecl::lookupInBases().
2589static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2590                                 CXXBasePath &Path,
2591                                 void *UserData) {
2592  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2593
2594  FindOverriddenMethodData *Data
2595    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2596
2597  DeclarationName Name = Data->Method->getDeclName();
2598
2599  // FIXME: Do we care about other names here too?
2600  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2601    // We really want to find the base class constructor here.
2602    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2603    CanQualType CT = Data->S->Context.getCanonicalType(T);
2604
2605    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2606  }
2607
2608  for (Path.Decls = BaseRecord->lookup(Name);
2609       Path.Decls.first != Path.Decls.second;
2610       ++Path.Decls.first) {
2611    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2612      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2613        return true;
2614    }
2615  }
2616
2617  return false;
2618}
2619
2620/// AddOverriddenMethods - See if a method overrides any in the base classes,
2621/// and if so, check that it's a valid override and remember it.
2622void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2623  // Look for virtual methods in base classes that this method might override.
2624  CXXBasePaths Paths;
2625  FindOverriddenMethodData Data;
2626  Data.Method = MD;
2627  Data.S = this;
2628  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2629    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2630         E = Paths.found_decls_end(); I != E; ++I) {
2631      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2632        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2633            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2634            !CheckOverridingFunctionAttributes(MD, OldMD))
2635          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2636      }
2637    }
2638  }
2639}
2640
2641NamedDecl*
2642Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2643                              QualType R, TypeSourceInfo *TInfo,
2644                              LookupResult &Previous,
2645                              MultiTemplateParamsArg TemplateParamLists,
2646                              bool IsFunctionDefinition, bool &Redeclaration) {
2647  assert(R.getTypePtr()->isFunctionType());
2648
2649  DeclarationName Name = GetNameForDeclarator(D);
2650  FunctionDecl::StorageClass SC = FunctionDecl::None;
2651  switch (D.getDeclSpec().getStorageClassSpec()) {
2652  default: assert(0 && "Unknown storage class!");
2653  case DeclSpec::SCS_auto:
2654  case DeclSpec::SCS_register:
2655  case DeclSpec::SCS_mutable:
2656    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2657         diag::err_typecheck_sclass_func);
2658    D.setInvalidType();
2659    break;
2660  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2661  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2662  case DeclSpec::SCS_static: {
2663    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2664      // C99 6.7.1p5:
2665      //   The declaration of an identifier for a function that has
2666      //   block scope shall have no explicit storage-class specifier
2667      //   other than extern
2668      // See also (C++ [dcl.stc]p4).
2669      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2670           diag::err_static_block_func);
2671      SC = FunctionDecl::None;
2672    } else
2673      SC = FunctionDecl::Static;
2674    break;
2675  }
2676  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2677  }
2678
2679  if (D.getDeclSpec().isThreadSpecified())
2680    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2681
2682  bool isFriend = D.getDeclSpec().isFriendSpecified();
2683  bool isInline = D.getDeclSpec().isInlineSpecified();
2684  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2685  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2686
2687  // Check that the return type is not an abstract class type.
2688  // For record types, this is done by the AbstractClassUsageDiagnoser once
2689  // the class has been completely parsed.
2690  if (!DC->isRecord() &&
2691      RequireNonAbstractType(D.getIdentifierLoc(),
2692                             R->getAs<FunctionType>()->getResultType(),
2693                             diag::err_abstract_type_in_decl,
2694                             AbstractReturnType))
2695    D.setInvalidType();
2696
2697  // Do not allow returning a objc interface by-value.
2698  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2699    Diag(D.getIdentifierLoc(),
2700         diag::err_object_cannot_be_passed_returned_by_value) << 0
2701      << R->getAs<FunctionType>()->getResultType();
2702    D.setInvalidType();
2703  }
2704
2705  bool isVirtualOkay = false;
2706  FunctionDecl *NewFD;
2707
2708  if (isFriend) {
2709    // C++ [class.friend]p5
2710    //   A function can be defined in a friend declaration of a
2711    //   class . . . . Such a function is implicitly inline.
2712    isInline |= IsFunctionDefinition;
2713  }
2714
2715  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2716    // This is a C++ constructor declaration.
2717    assert(DC->isRecord() &&
2718           "Constructors can only be declared in a member context");
2719
2720    R = CheckConstructorDeclarator(D, R, SC);
2721
2722    // Create the new declaration
2723    NewFD = CXXConstructorDecl::Create(Context,
2724                                       cast<CXXRecordDecl>(DC),
2725                                       D.getIdentifierLoc(), Name, R, TInfo,
2726                                       isExplicit, isInline,
2727                                       /*isImplicitlyDeclared=*/false);
2728  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2729    // This is a C++ destructor declaration.
2730    if (DC->isRecord()) {
2731      R = CheckDestructorDeclarator(D, SC);
2732
2733      NewFD = CXXDestructorDecl::Create(Context,
2734                                        cast<CXXRecordDecl>(DC),
2735                                        D.getIdentifierLoc(), Name, R,
2736                                        isInline,
2737                                        /*isImplicitlyDeclared=*/false);
2738
2739      isVirtualOkay = true;
2740    } else {
2741      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2742
2743      // Create a FunctionDecl to satisfy the function definition parsing
2744      // code path.
2745      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2746                                   Name, R, TInfo, SC, isInline,
2747                                   /*hasPrototype=*/true);
2748      D.setInvalidType();
2749    }
2750  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2751    if (!DC->isRecord()) {
2752      Diag(D.getIdentifierLoc(),
2753           diag::err_conv_function_not_member);
2754      return 0;
2755    }
2756
2757    CheckConversionDeclarator(D, R, SC);
2758    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2759                                      D.getIdentifierLoc(), Name, R, TInfo,
2760                                      isInline, isExplicit);
2761
2762    isVirtualOkay = true;
2763  } else if (DC->isRecord()) {
2764    // If the of the function is the same as the name of the record, then this
2765    // must be an invalid constructor that has a return type.
2766    // (The parser checks for a return type and makes the declarator a
2767    // constructor if it has no return type).
2768    // must have an invalid constructor that has a return type
2769    if (Name.getAsIdentifierInfo() &&
2770        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2771      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2772        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2773        << SourceRange(D.getIdentifierLoc());
2774      return 0;
2775    }
2776
2777    bool isStatic = SC == FunctionDecl::Static;
2778
2779    // [class.free]p1:
2780    // Any allocation function for a class T is a static member
2781    // (even if not explicitly declared static).
2782    if (Name.getCXXOverloadedOperator() == OO_New ||
2783        Name.getCXXOverloadedOperator() == OO_Array_New)
2784      isStatic = true;
2785
2786    // [class.free]p6 Any deallocation function for a class X is a static member
2787    // (even if not explicitly declared static).
2788    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2789        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2790      isStatic = true;
2791
2792    // This is a C++ method declaration.
2793    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2794                                  D.getIdentifierLoc(), Name, R, TInfo,
2795                                  isStatic, isInline);
2796
2797    isVirtualOkay = !isStatic;
2798  } else {
2799    // Determine whether the function was written with a
2800    // prototype. This true when:
2801    //   - we're in C++ (where every function has a prototype),
2802    //   - there is a prototype in the declarator, or
2803    //   - the type R of the function is some kind of typedef or other reference
2804    //     to a type name (which eventually refers to a function type).
2805    bool HasPrototype =
2806       getLangOptions().CPlusPlus ||
2807       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2808       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2809
2810    NewFD = FunctionDecl::Create(Context, DC,
2811                                 D.getIdentifierLoc(),
2812                                 Name, R, TInfo, SC, isInline, HasPrototype);
2813  }
2814
2815  if (D.isInvalidType())
2816    NewFD->setInvalidDecl();
2817
2818  // Set the lexical context. If the declarator has a C++
2819  // scope specifier, or is the object of a friend declaration, the
2820  // lexical context will be different from the semantic context.
2821  NewFD->setLexicalDeclContext(CurContext);
2822
2823  // Match up the template parameter lists with the scope specifier, then
2824  // determine whether we have a template or a template specialization.
2825  FunctionTemplateDecl *FunctionTemplate = 0;
2826  bool isExplicitSpecialization = false;
2827  bool isFunctionTemplateSpecialization = false;
2828  if (TemplateParameterList *TemplateParams
2829        = MatchTemplateParametersToScopeSpecifier(
2830                                  D.getDeclSpec().getSourceRange().getBegin(),
2831                                  D.getCXXScopeSpec(),
2832                           (TemplateParameterList**)TemplateParamLists.get(),
2833                                                  TemplateParamLists.size(),
2834                                                  isExplicitSpecialization)) {
2835    if (TemplateParams->size() > 0) {
2836      // This is a function template
2837
2838      // Check that we can declare a template here.
2839      if (CheckTemplateDeclScope(S, TemplateParams))
2840        return 0;
2841
2842      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2843                                                      NewFD->getLocation(),
2844                                                      Name, TemplateParams,
2845                                                      NewFD);
2846      FunctionTemplate->setLexicalDeclContext(CurContext);
2847      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2848    } else {
2849      // This is a function template specialization.
2850      isFunctionTemplateSpecialization = true;
2851    }
2852
2853    // FIXME: Free this memory properly.
2854    TemplateParamLists.release();
2855  }
2856
2857  // C++ [dcl.fct.spec]p5:
2858  //   The virtual specifier shall only be used in declarations of
2859  //   nonstatic class member functions that appear within a
2860  //   member-specification of a class declaration; see 10.3.
2861  //
2862  if (isVirtual && !NewFD->isInvalidDecl()) {
2863    if (!isVirtualOkay) {
2864       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2865           diag::err_virtual_non_function);
2866    } else if (!CurContext->isRecord()) {
2867      // 'virtual' was specified outside of the class.
2868      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2869        << CodeModificationHint::CreateRemoval(
2870                                           D.getDeclSpec().getVirtualSpecLoc());
2871    } else {
2872      // Okay: Add virtual to the method.
2873      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2874      CurClass->setMethodAsVirtual(NewFD);
2875    }
2876  }
2877
2878  // C++ [dcl.fct.spec]p6:
2879  //  The explicit specifier shall be used only in the declaration of a
2880  //  constructor or conversion function within its class definition; see 12.3.1
2881  //  and 12.3.2.
2882  if (isExplicit && !NewFD->isInvalidDecl()) {
2883    if (!CurContext->isRecord()) {
2884      // 'explicit' was specified outside of the class.
2885      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2886           diag::err_explicit_out_of_class)
2887        << CodeModificationHint::CreateRemoval(
2888                                          D.getDeclSpec().getExplicitSpecLoc());
2889    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2890               !isa<CXXConversionDecl>(NewFD)) {
2891      // 'explicit' was specified on a function that wasn't a constructor
2892      // or conversion function.
2893      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2894           diag::err_explicit_non_ctor_or_conv_function)
2895        << CodeModificationHint::CreateRemoval(
2896                                          D.getDeclSpec().getExplicitSpecLoc());
2897    }
2898  }
2899
2900  // Filter out previous declarations that don't match the scope.
2901  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2902
2903  if (isFriend) {
2904    // DC is the namespace in which the function is being declared.
2905    assert((DC->isFileContext() || !Previous.empty()) &&
2906           "previously-undeclared friend function being created "
2907           "in a non-namespace context");
2908
2909    if (FunctionTemplate) {
2910      FunctionTemplate->setObjectOfFriendDecl(
2911                                   /* PreviouslyDeclared= */ !Previous.empty());
2912      FunctionTemplate->setAccess(AS_public);
2913    }
2914    else
2915      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2916
2917    NewFD->setAccess(AS_public);
2918  }
2919
2920  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2921      !CurContext->isRecord()) {
2922    // C++ [class.static]p1:
2923    //   A data or function member of a class may be declared static
2924    //   in a class definition, in which case it is a static member of
2925    //   the class.
2926
2927    // Complain about the 'static' specifier if it's on an out-of-line
2928    // member function definition.
2929    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2930         diag::err_static_out_of_line)
2931      << CodeModificationHint::CreateRemoval(
2932                                      D.getDeclSpec().getStorageClassSpecLoc());
2933  }
2934
2935  // Handle GNU asm-label extension (encoded as an attribute).
2936  if (Expr *E = (Expr*) D.getAsmLabel()) {
2937    // The parser guarantees this is a string.
2938    StringLiteral *SE = cast<StringLiteral>(E);
2939    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2940  }
2941
2942  // Copy the parameter declarations from the declarator D to the function
2943  // declaration NewFD, if they are available.  First scavenge them into Params.
2944  llvm::SmallVector<ParmVarDecl*, 16> Params;
2945  if (D.getNumTypeObjects() > 0) {
2946    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2947
2948    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2949    // function that takes no arguments, not a function that takes a
2950    // single void argument.
2951    // We let through "const void" here because Sema::GetTypeForDeclarator
2952    // already checks for that case.
2953    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2954        FTI.ArgInfo[0].Param &&
2955        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2956      // Empty arg list, don't push any params.
2957      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2958
2959      // In C++, the empty parameter-type-list must be spelled "void"; a
2960      // typedef of void is not permitted.
2961      if (getLangOptions().CPlusPlus &&
2962          Param->getType().getUnqualifiedType() != Context.VoidTy)
2963        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2964      // FIXME: Leaks decl?
2965    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2966      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2967        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2968        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2969        Param->setDeclContext(NewFD);
2970        Params.push_back(Param);
2971      }
2972    }
2973
2974  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2975    // When we're declaring a function with a typedef, typeof, etc as in the
2976    // following example, we'll need to synthesize (unnamed)
2977    // parameters for use in the declaration.
2978    //
2979    // @code
2980    // typedef void fn(int);
2981    // fn f;
2982    // @endcode
2983
2984    // Synthesize a parameter for each argument type.
2985    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2986         AE = FT->arg_type_end(); AI != AE; ++AI) {
2987      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
2988                                               SourceLocation(), 0,
2989                                               *AI, /*TInfo=*/0,
2990                                               VarDecl::None, 0);
2991      Param->setImplicit();
2992      Params.push_back(Param);
2993    }
2994  } else {
2995    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2996           "Should not need args for typedef of non-prototype fn");
2997  }
2998  // Finally, we know we have the right number of parameters, install them.
2999  NewFD->setParams(Params.data(), Params.size());
3000
3001  // If the declarator is a template-id, translate the parser's template
3002  // argument list into our AST format.
3003  bool HasExplicitTemplateArgs = false;
3004  TemplateArgumentListInfo TemplateArgs;
3005  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3006    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3007    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3008    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3009    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3010                                       TemplateId->getTemplateArgs(),
3011                                       TemplateId->NumArgs);
3012    translateTemplateArguments(TemplateArgsPtr,
3013                               TemplateArgs);
3014    TemplateArgsPtr.release();
3015
3016    HasExplicitTemplateArgs = true;
3017
3018    if (FunctionTemplate) {
3019      // FIXME: Diagnose function template with explicit template
3020      // arguments.
3021      HasExplicitTemplateArgs = false;
3022    } else if (!isFunctionTemplateSpecialization &&
3023               !D.getDeclSpec().isFriendSpecified()) {
3024      // We have encountered something that the user meant to be a
3025      // specialization (because it has explicitly-specified template
3026      // arguments) but that was not introduced with a "template<>" (or had
3027      // too few of them).
3028      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3029        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3030        << CodeModificationHint::CreateInsertion(
3031                                   D.getDeclSpec().getSourceRange().getBegin(),
3032                                                 "template<> ");
3033      isFunctionTemplateSpecialization = true;
3034    }
3035  }
3036
3037  if (isFunctionTemplateSpecialization) {
3038      if (CheckFunctionTemplateSpecialization(NewFD,
3039                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3040                                              Previous))
3041        NewFD->setInvalidDecl();
3042  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3043             CheckMemberSpecialization(NewFD, Previous))
3044    NewFD->setInvalidDecl();
3045
3046  // Perform semantic checking on the function declaration.
3047  bool OverloadableAttrRequired = false; // FIXME: HACK!
3048  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3049                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3050
3051  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3052          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3053         "previous declaration set still overloaded");
3054
3055  // If we have a function template, check the template parameter
3056  // list. This will check and merge default template arguments.
3057  if (FunctionTemplate) {
3058    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3059    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3060                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3061             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3062                                                : TPC_FunctionTemplate);
3063  }
3064
3065  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3066    // Fake up an access specifier if it's supposed to be a class member.
3067    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3068      NewFD->setAccess(AS_public);
3069
3070    // An out-of-line member function declaration must also be a
3071    // definition (C++ [dcl.meaning]p1).
3072    // Note that this is not the case for explicit specializations of
3073    // function templates or member functions of class templates, per
3074    // C++ [temp.expl.spec]p2.
3075    if (!IsFunctionDefinition && !isFriend &&
3076        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3077      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3078        << D.getCXXScopeSpec().getRange();
3079      NewFD->setInvalidDecl();
3080    } else if (!Redeclaration &&
3081               !(isFriend && CurContext->isDependentContext())) {
3082      // The user tried to provide an out-of-line definition for a
3083      // function that is a member of a class or namespace, but there
3084      // was no such member function declared (C++ [class.mfct]p2,
3085      // C++ [namespace.memdef]p2). For example:
3086      //
3087      // class X {
3088      //   void f() const;
3089      // };
3090      //
3091      // void X::f() { } // ill-formed
3092      //
3093      // Complain about this problem, and attempt to suggest close
3094      // matches (e.g., those that differ only in cv-qualifiers and
3095      // whether the parameter types are references).
3096      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3097        << Name << DC << D.getCXXScopeSpec().getRange();
3098      NewFD->setInvalidDecl();
3099
3100      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3101                        ForRedeclaration);
3102      LookupQualifiedName(Prev, DC);
3103      assert(!Prev.isAmbiguous() &&
3104             "Cannot have an ambiguity in previous-declaration lookup");
3105      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3106           Func != FuncEnd; ++Func) {
3107        if (isa<FunctionDecl>(*Func) &&
3108            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3109          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3110      }
3111    }
3112  }
3113
3114  // Handle attributes. We need to have merged decls when handling attributes
3115  // (for example to check for conflicts, etc).
3116  // FIXME: This needs to happen before we merge declarations. Then,
3117  // let attribute merging cope with attribute conflicts.
3118  ProcessDeclAttributes(S, NewFD, D);
3119
3120  // attributes declared post-definition are currently ignored
3121  if (Redeclaration && Previous.isSingleResult()) {
3122    const FunctionDecl *Def;
3123    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3124    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3125      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3126      Diag(Def->getLocation(), diag::note_previous_definition);
3127    }
3128  }
3129
3130  AddKnownFunctionAttributes(NewFD);
3131
3132  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3133    // If a function name is overloadable in C, then every function
3134    // with that name must be marked "overloadable".
3135    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3136      << Redeclaration << NewFD;
3137    if (!Previous.empty())
3138      Diag(Previous.getRepresentativeDecl()->getLocation(),
3139           diag::note_attribute_overloadable_prev_overload);
3140    NewFD->addAttr(::new (Context) OverloadableAttr());
3141  }
3142
3143  // If this is a locally-scoped extern C function, update the
3144  // map of such names.
3145  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3146      && !NewFD->isInvalidDecl())
3147    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3148
3149  // Set this FunctionDecl's range up to the right paren.
3150  NewFD->setLocEnd(D.getSourceRange().getEnd());
3151
3152  if (FunctionTemplate && NewFD->isInvalidDecl())
3153    FunctionTemplate->setInvalidDecl();
3154
3155  if (FunctionTemplate)
3156    return FunctionTemplate;
3157
3158
3159  // Keep track of static, non-inlined function definitions that
3160  // have not been used. We will warn later.
3161  // FIXME: Also include static functions declared but not defined.
3162  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3163      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3164      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>())
3165    UnusedStaticFuncs.push_back(NewFD);
3166
3167  return NewFD;
3168}
3169
3170/// \brief Perform semantic checking of a new function declaration.
3171///
3172/// Performs semantic analysis of the new function declaration
3173/// NewFD. This routine performs all semantic checking that does not
3174/// require the actual declarator involved in the declaration, and is
3175/// used both for the declaration of functions as they are parsed
3176/// (called via ActOnDeclarator) and for the declaration of functions
3177/// that have been instantiated via C++ template instantiation (called
3178/// via InstantiateDecl).
3179///
3180/// \param IsExplicitSpecialiation whether this new function declaration is
3181/// an explicit specialization of the previous declaration.
3182///
3183/// This sets NewFD->isInvalidDecl() to true if there was an error.
3184void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3185                                    LookupResult &Previous,
3186                                    bool IsExplicitSpecialization,
3187                                    bool &Redeclaration,
3188                                    bool &OverloadableAttrRequired) {
3189  // If NewFD is already known erroneous, don't do any of this checking.
3190  if (NewFD->isInvalidDecl())
3191    return;
3192
3193  if (NewFD->getResultType()->isVariablyModifiedType()) {
3194    // Functions returning a variably modified type violate C99 6.7.5.2p2
3195    // because all functions have linkage.
3196    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3197    return NewFD->setInvalidDecl();
3198  }
3199
3200  if (NewFD->isMain())
3201    CheckMain(NewFD);
3202
3203  // Check for a previous declaration of this name.
3204  if (Previous.empty() && NewFD->isExternC()) {
3205    // Since we did not find anything by this name and we're declaring
3206    // an extern "C" function, look for a non-visible extern "C"
3207    // declaration with the same name.
3208    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3209      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3210    if (Pos != LocallyScopedExternalDecls.end())
3211      Previous.addDecl(Pos->second);
3212  }
3213
3214  // Merge or overload the declaration with an existing declaration of
3215  // the same name, if appropriate.
3216  if (!Previous.empty()) {
3217    // Determine whether NewFD is an overload of PrevDecl or
3218    // a declaration that requires merging. If it's an overload,
3219    // there's no more work to do here; we'll just add the new
3220    // function to the scope.
3221
3222    NamedDecl *OldDecl = 0;
3223    if (!AllowOverloadingOfFunction(Previous, Context)) {
3224      Redeclaration = true;
3225      OldDecl = Previous.getFoundDecl();
3226    } else {
3227      if (!getLangOptions().CPlusPlus) {
3228        OverloadableAttrRequired = true;
3229
3230        // Functions marked "overloadable" must have a prototype (that
3231        // we can't get through declaration merging).
3232        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3233          Diag(NewFD->getLocation(),
3234               diag::err_attribute_overloadable_no_prototype)
3235            << NewFD;
3236          Redeclaration = true;
3237
3238          // Turn this into a variadic function with no parameters.
3239          QualType R = Context.getFunctionType(
3240                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3241                     0, 0, true, 0, false, false, 0, 0, false, CC_Default);
3242          NewFD->setType(R);
3243          return NewFD->setInvalidDecl();
3244        }
3245      }
3246
3247      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3248      case Ovl_Match:
3249        Redeclaration = true;
3250        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3251          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3252          Redeclaration = false;
3253        }
3254        break;
3255
3256      case Ovl_NonFunction:
3257        Redeclaration = true;
3258        break;
3259
3260      case Ovl_Overload:
3261        Redeclaration = false;
3262        break;
3263      }
3264    }
3265
3266    if (Redeclaration) {
3267      // NewFD and OldDecl represent declarations that need to be
3268      // merged.
3269      if (MergeFunctionDecl(NewFD, OldDecl))
3270        return NewFD->setInvalidDecl();
3271
3272      Previous.clear();
3273      Previous.addDecl(OldDecl);
3274
3275      if (FunctionTemplateDecl *OldTemplateDecl
3276                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3277        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3278        FunctionTemplateDecl *NewTemplateDecl
3279          = NewFD->getDescribedFunctionTemplate();
3280        assert(NewTemplateDecl && "Template/non-template mismatch");
3281        if (CXXMethodDecl *Method
3282              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3283          Method->setAccess(OldTemplateDecl->getAccess());
3284          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3285        }
3286
3287        // If this is an explicit specialization of a member that is a function
3288        // template, mark it as a member specialization.
3289        if (IsExplicitSpecialization &&
3290            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3291          NewTemplateDecl->setMemberSpecialization();
3292          assert(OldTemplateDecl->isMemberSpecialization());
3293        }
3294      } else {
3295        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3296          NewFD->setAccess(OldDecl->getAccess());
3297        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3298      }
3299    }
3300  }
3301
3302  // Semantic checking for this function declaration (in isolation).
3303  if (getLangOptions().CPlusPlus) {
3304    // C++-specific checks.
3305    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3306      CheckConstructor(Constructor);
3307    } else if (CXXDestructorDecl *Destructor =
3308                dyn_cast<CXXDestructorDecl>(NewFD)) {
3309      CXXRecordDecl *Record = Destructor->getParent();
3310      QualType ClassType = Context.getTypeDeclType(Record);
3311
3312      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3313      // type is dependent? Both gcc and edg can handle that.
3314      if (!ClassType->isDependentType()) {
3315        DeclarationName Name
3316          = Context.DeclarationNames.getCXXDestructorName(
3317                                        Context.getCanonicalType(ClassType));
3318        if (NewFD->getDeclName() != Name) {
3319          Diag(NewFD->getLocation(), diag::err_destructor_name);
3320          return NewFD->setInvalidDecl();
3321        }
3322      }
3323
3324      Record->setUserDeclaredDestructor(true);
3325      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3326      // user-defined destructor.
3327      Record->setPOD(false);
3328
3329      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3330      // declared destructor.
3331      // FIXME: C++0x: don't do this for "= default" destructors
3332      Record->setHasTrivialDestructor(false);
3333    } else if (CXXConversionDecl *Conversion
3334               = dyn_cast<CXXConversionDecl>(NewFD)) {
3335      ActOnConversionDeclarator(Conversion);
3336    }
3337
3338    // Find any virtual functions that this function overrides.
3339    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3340      if (!Method->isFunctionTemplateSpecialization() &&
3341          !Method->getDescribedFunctionTemplate())
3342        AddOverriddenMethods(Method->getParent(), Method);
3343    }
3344
3345    // Additional checks for the destructor; make sure we do this after we
3346    // figure out whether the destructor is virtual.
3347    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3348      if (!Destructor->getParent()->isDependentType())
3349        CheckDestructor(Destructor);
3350
3351    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3352    if (NewFD->isOverloadedOperator() &&
3353        CheckOverloadedOperatorDeclaration(NewFD))
3354      return NewFD->setInvalidDecl();
3355
3356    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3357    if (NewFD->getLiteralIdentifier() &&
3358        CheckLiteralOperatorDeclaration(NewFD))
3359      return NewFD->setInvalidDecl();
3360
3361    // In C++, check default arguments now that we have merged decls. Unless
3362    // the lexical context is the class, because in this case this is done
3363    // during delayed parsing anyway.
3364    if (!CurContext->isRecord())
3365      CheckCXXDefaultArguments(NewFD);
3366  }
3367}
3368
3369void Sema::CheckMain(FunctionDecl* FD) {
3370  // C++ [basic.start.main]p3:  A program that declares main to be inline
3371  //   or static is ill-formed.
3372  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3373  //   shall not appear in a declaration of main.
3374  // static main is not an error under C99, but we should warn about it.
3375  bool isInline = FD->isInlineSpecified();
3376  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3377  if (isInline || isStatic) {
3378    unsigned diagID = diag::warn_unusual_main_decl;
3379    if (isInline || getLangOptions().CPlusPlus)
3380      diagID = diag::err_unusual_main_decl;
3381
3382    int which = isStatic + (isInline << 1) - 1;
3383    Diag(FD->getLocation(), diagID) << which;
3384  }
3385
3386  QualType T = FD->getType();
3387  assert(T->isFunctionType() && "function decl is not of function type");
3388  const FunctionType* FT = T->getAs<FunctionType>();
3389
3390  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3391    // TODO: add a replacement fixit to turn the return type into 'int'.
3392    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3393    FD->setInvalidDecl(true);
3394  }
3395
3396  // Treat protoless main() as nullary.
3397  if (isa<FunctionNoProtoType>(FT)) return;
3398
3399  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3400  unsigned nparams = FTP->getNumArgs();
3401  assert(FD->getNumParams() == nparams);
3402
3403  bool HasExtraParameters = (nparams > 3);
3404
3405  // Darwin passes an undocumented fourth argument of type char**.  If
3406  // other platforms start sprouting these, the logic below will start
3407  // getting shifty.
3408  if (nparams == 4 &&
3409      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3410    HasExtraParameters = false;
3411
3412  if (HasExtraParameters) {
3413    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3414    FD->setInvalidDecl(true);
3415    nparams = 3;
3416  }
3417
3418  // FIXME: a lot of the following diagnostics would be improved
3419  // if we had some location information about types.
3420
3421  QualType CharPP =
3422    Context.getPointerType(Context.getPointerType(Context.CharTy));
3423  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3424
3425  for (unsigned i = 0; i < nparams; ++i) {
3426    QualType AT = FTP->getArgType(i);
3427
3428    bool mismatch = true;
3429
3430    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3431      mismatch = false;
3432    else if (Expected[i] == CharPP) {
3433      // As an extension, the following forms are okay:
3434      //   char const **
3435      //   char const * const *
3436      //   char * const *
3437
3438      QualifierCollector qs;
3439      const PointerType* PT;
3440      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3441          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3442          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3443        qs.removeConst();
3444        mismatch = !qs.empty();
3445      }
3446    }
3447
3448    if (mismatch) {
3449      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3450      // TODO: suggest replacing given type with expected type
3451      FD->setInvalidDecl(true);
3452    }
3453  }
3454
3455  if (nparams == 1 && !FD->isInvalidDecl()) {
3456    Diag(FD->getLocation(), diag::warn_main_one_arg);
3457  }
3458}
3459
3460bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3461  // FIXME: Need strict checking.  In C89, we need to check for
3462  // any assignment, increment, decrement, function-calls, or
3463  // commas outside of a sizeof.  In C99, it's the same list,
3464  // except that the aforementioned are allowed in unevaluated
3465  // expressions.  Everything else falls under the
3466  // "may accept other forms of constant expressions" exception.
3467  // (We never end up here for C++, so the constant expression
3468  // rules there don't matter.)
3469  if (Init->isConstantInitializer(Context))
3470    return false;
3471  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3472    << Init->getSourceRange();
3473  return true;
3474}
3475
3476void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3477  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3478}
3479
3480/// AddInitializerToDecl - Adds the initializer Init to the
3481/// declaration dcl. If DirectInit is true, this is C++ direct
3482/// initialization rather than copy initialization.
3483void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3484  Decl *RealDecl = dcl.getAs<Decl>();
3485  // If there is no declaration, there was an error parsing it.  Just ignore
3486  // the initializer.
3487  if (RealDecl == 0)
3488    return;
3489
3490  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3491    // With declarators parsed the way they are, the parser cannot
3492    // distinguish between a normal initializer and a pure-specifier.
3493    // Thus this grotesque test.
3494    IntegerLiteral *IL;
3495    Expr *Init = static_cast<Expr *>(init.get());
3496    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3497        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3498      CheckPureMethod(Method, Init->getSourceRange());
3499    else {
3500      Diag(Method->getLocation(), diag::err_member_function_initialization)
3501        << Method->getDeclName() << Init->getSourceRange();
3502      Method->setInvalidDecl();
3503    }
3504    return;
3505  }
3506
3507  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3508  if (!VDecl) {
3509    if (getLangOptions().CPlusPlus &&
3510        RealDecl->getLexicalDeclContext()->isRecord() &&
3511        isa<NamedDecl>(RealDecl))
3512      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3513        << cast<NamedDecl>(RealDecl)->getDeclName();
3514    else
3515      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3516    RealDecl->setInvalidDecl();
3517    return;
3518  }
3519
3520  // A definition must end up with a complete type, which means it must be
3521  // complete with the restriction that an array type might be completed by the
3522  // initializer; note that later code assumes this restriction.
3523  QualType BaseDeclType = VDecl->getType();
3524  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3525    BaseDeclType = Array->getElementType();
3526  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3527                          diag::err_typecheck_decl_incomplete_type)) {
3528    RealDecl->setInvalidDecl();
3529    return;
3530  }
3531
3532  // The variable can not have an abstract class type.
3533  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3534                             diag::err_abstract_type_in_decl,
3535                             AbstractVariableType))
3536    VDecl->setInvalidDecl();
3537
3538  const VarDecl *Def;
3539  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3540    Diag(VDecl->getLocation(), diag::err_redefinition)
3541      << VDecl->getDeclName();
3542    Diag(Def->getLocation(), diag::note_previous_definition);
3543    VDecl->setInvalidDecl();
3544    return;
3545  }
3546
3547  // Take ownership of the expression, now that we're sure we have somewhere
3548  // to put it.
3549  Expr *Init = init.takeAs<Expr>();
3550  assert(Init && "missing initializer");
3551
3552  // Capture the variable that is being initialized and the style of
3553  // initialization.
3554  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3555
3556  // FIXME: Poor source location information.
3557  InitializationKind Kind
3558    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3559                                                   Init->getLocStart(),
3560                                                   Init->getLocEnd())
3561                : InitializationKind::CreateCopy(VDecl->getLocation(),
3562                                                 Init->getLocStart());
3563
3564  // Get the decls type and save a reference for later, since
3565  // CheckInitializerTypes may change it.
3566  QualType DclT = VDecl->getType(), SavT = DclT;
3567  if (VDecl->isBlockVarDecl()) {
3568    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3569      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3570      VDecl->setInvalidDecl();
3571    } else if (!VDecl->isInvalidDecl()) {
3572      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3573      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3574                                          MultiExprArg(*this, (void**)&Init, 1),
3575                                                &DclT);
3576      if (Result.isInvalid()) {
3577        VDecl->setInvalidDecl();
3578        return;
3579      }
3580
3581      Init = Result.takeAs<Expr>();
3582
3583      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3584      // Don't check invalid declarations to avoid emitting useless diagnostics.
3585      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3586        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3587          CheckForConstantInitializer(Init, DclT);
3588      }
3589    }
3590  } else if (VDecl->isStaticDataMember() &&
3591             VDecl->getLexicalDeclContext()->isRecord()) {
3592    // This is an in-class initialization for a static data member, e.g.,
3593    //
3594    // struct S {
3595    //   static const int value = 17;
3596    // };
3597
3598    // Attach the initializer
3599    VDecl->setInit(Init);
3600
3601    // C++ [class.mem]p4:
3602    //   A member-declarator can contain a constant-initializer only
3603    //   if it declares a static member (9.4) of const integral or
3604    //   const enumeration type, see 9.4.2.
3605    QualType T = VDecl->getType();
3606    if (!T->isDependentType() &&
3607        (!Context.getCanonicalType(T).isConstQualified() ||
3608         !T->isIntegralType())) {
3609      Diag(VDecl->getLocation(), diag::err_member_initialization)
3610        << VDecl->getDeclName() << Init->getSourceRange();
3611      VDecl->setInvalidDecl();
3612    } else {
3613      // C++ [class.static.data]p4:
3614      //   If a static data member is of const integral or const
3615      //   enumeration type, its declaration in the class definition
3616      //   can specify a constant-initializer which shall be an
3617      //   integral constant expression (5.19).
3618      if (!Init->isTypeDependent() &&
3619          !Init->getType()->isIntegralType()) {
3620        // We have a non-dependent, non-integral or enumeration type.
3621        Diag(Init->getSourceRange().getBegin(),
3622             diag::err_in_class_initializer_non_integral_type)
3623          << Init->getType() << Init->getSourceRange();
3624        VDecl->setInvalidDecl();
3625      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3626        // Check whether the expression is a constant expression.
3627        llvm::APSInt Value;
3628        SourceLocation Loc;
3629        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3630          Diag(Loc, diag::err_in_class_initializer_non_constant)
3631            << Init->getSourceRange();
3632          VDecl->setInvalidDecl();
3633        } else if (!VDecl->getType()->isDependentType())
3634          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3635      }
3636    }
3637  } else if (VDecl->isFileVarDecl()) {
3638    if (VDecl->getStorageClass() == VarDecl::Extern)
3639      Diag(VDecl->getLocation(), diag::warn_extern_init);
3640    if (!VDecl->isInvalidDecl()) {
3641      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3642      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3643                                          MultiExprArg(*this, (void**)&Init, 1),
3644                                                &DclT);
3645      if (Result.isInvalid()) {
3646        VDecl->setInvalidDecl();
3647        return;
3648      }
3649
3650      Init = Result.takeAs<Expr>();
3651    }
3652
3653    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3654    // Don't check invalid declarations to avoid emitting useless diagnostics.
3655    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3656      // C99 6.7.8p4. All file scoped initializers need to be constant.
3657      CheckForConstantInitializer(Init, DclT);
3658    }
3659  }
3660  // If the type changed, it means we had an incomplete type that was
3661  // completed by the initializer. For example:
3662  //   int ary[] = { 1, 3, 5 };
3663  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3664  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3665    VDecl->setType(DclT);
3666    Init->setType(DclT);
3667  }
3668
3669  Init = MaybeCreateCXXExprWithTemporaries(Init);
3670  // Attach the initializer to the decl.
3671  VDecl->setInit(Init);
3672
3673  if (getLangOptions().CPlusPlus) {
3674    // Make sure we mark the destructor as used if necessary.
3675    QualType InitType = VDecl->getType();
3676    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3677      InitType = Context.getBaseElementType(Array);
3678    if (const RecordType *Record = InitType->getAs<RecordType>())
3679      FinalizeVarWithDestructor(VDecl, Record);
3680  }
3681
3682  return;
3683}
3684
3685void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3686                                  bool TypeContainsUndeducedAuto) {
3687  Decl *RealDecl = dcl.getAs<Decl>();
3688
3689  // If there is no declaration, there was an error parsing it. Just ignore it.
3690  if (RealDecl == 0)
3691    return;
3692
3693  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3694    QualType Type = Var->getType();
3695
3696    // C++0x [dcl.spec.auto]p3
3697    if (TypeContainsUndeducedAuto) {
3698      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3699        << Var->getDeclName() << Type;
3700      Var->setInvalidDecl();
3701      return;
3702    }
3703
3704    switch (Var->isThisDeclarationADefinition()) {
3705    case VarDecl::Definition:
3706      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
3707        break;
3708
3709      // We have an out-of-line definition of a static data member
3710      // that has an in-class initializer, so we type-check this like
3711      // a declaration.
3712      //
3713      // Fall through
3714
3715    case VarDecl::DeclarationOnly:
3716      // It's only a declaration.
3717
3718      // Block scope. C99 6.7p7: If an identifier for an object is
3719      // declared with no linkage (C99 6.2.2p6), the type for the
3720      // object shall be complete.
3721      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
3722          !Var->getLinkage() && !Var->isInvalidDecl() &&
3723          RequireCompleteType(Var->getLocation(), Type,
3724                              diag::err_typecheck_decl_incomplete_type))
3725        Var->setInvalidDecl();
3726
3727      // Make sure that the type is not abstract.
3728      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
3729          RequireNonAbstractType(Var->getLocation(), Type,
3730                                 diag::err_abstract_type_in_decl,
3731                                 AbstractVariableType))
3732        Var->setInvalidDecl();
3733      return;
3734
3735    case VarDecl::TentativeDefinition:
3736      // File scope. C99 6.9.2p2: A declaration of an identifier for an
3737      // object that has file scope without an initializer, and without a
3738      // storage-class specifier or with the storage-class specifier "static",
3739      // constitutes a tentative definition. Note: A tentative definition with
3740      // external linkage is valid (C99 6.2.2p5).
3741      if (!Var->isInvalidDecl()) {
3742        if (const IncompleteArrayType *ArrayT
3743                                    = Context.getAsIncompleteArrayType(Type)) {
3744          if (RequireCompleteType(Var->getLocation(),
3745                                  ArrayT->getElementType(),
3746                                  diag::err_illegal_decl_array_incomplete_type))
3747            Var->setInvalidDecl();
3748        } else if (Var->getStorageClass() == VarDecl::Static) {
3749          // C99 6.9.2p3: If the declaration of an identifier for an object is
3750          // a tentative definition and has internal linkage (C99 6.2.2p3), the
3751          // declared type shall not be an incomplete type.
3752          // NOTE: code such as the following
3753          //     static struct s;
3754          //     struct s { int a; };
3755          // is accepted by gcc. Hence here we issue a warning instead of
3756          // an error and we do not invalidate the static declaration.
3757          // NOTE: to avoid multiple warnings, only check the first declaration.
3758          if (Var->getPreviousDeclaration() == 0)
3759            RequireCompleteType(Var->getLocation(), Type,
3760                                diag::ext_typecheck_decl_incomplete_type);
3761        }
3762      }
3763
3764      // Record the tentative definition; we're done.
3765      if (!Var->isInvalidDecl())
3766        TentativeDefinitions.push_back(Var);
3767      return;
3768    }
3769
3770    // Provide a specific diagnostic for uninitialized variable
3771    // definitions with incomplete array type.
3772    if (Type->isIncompleteArrayType()) {
3773      Diag(Var->getLocation(),
3774           diag::err_typecheck_incomplete_array_needs_initializer);
3775      Var->setInvalidDecl();
3776      return;
3777    }
3778
3779   // Provide a specific diagnostic for uninitialized variable
3780   // definitions with reference type.
3781   if (Type->isReferenceType()) {
3782     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3783       << Var->getDeclName()
3784       << SourceRange(Var->getLocation(), Var->getLocation());
3785     Var->setInvalidDecl();
3786     return;
3787   }
3788
3789    // Do not attempt to type-check the default initializer for a
3790    // variable with dependent type.
3791    if (Type->isDependentType())
3792      return;
3793
3794    if (Var->isInvalidDecl())
3795      return;
3796
3797    if (RequireCompleteType(Var->getLocation(),
3798                            Context.getBaseElementType(Type),
3799                            diag::err_typecheck_decl_incomplete_type)) {
3800      Var->setInvalidDecl();
3801      return;
3802    }
3803
3804    // The variable can not have an abstract class type.
3805    if (RequireNonAbstractType(Var->getLocation(), Type,
3806                               diag::err_abstract_type_in_decl,
3807                               AbstractVariableType)) {
3808      Var->setInvalidDecl();
3809      return;
3810    }
3811
3812    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
3813    InitializationKind Kind
3814      = InitializationKind::CreateDefault(Var->getLocation());
3815
3816    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3817    OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3818                                            MultiExprArg(*this, 0, 0));
3819    if (Init.isInvalid())
3820      Var->setInvalidDecl();
3821    else {
3822      if (Init.get())
3823        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3824
3825      if (getLangOptions().CPlusPlus)
3826        if (const RecordType *Record
3827                        = Context.getBaseElementType(Type)->getAs<RecordType>())
3828          FinalizeVarWithDestructor(Var, Record);
3829    }
3830  }
3831}
3832
3833Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3834                                                   DeclPtrTy *Group,
3835                                                   unsigned NumDecls) {
3836  llvm::SmallVector<Decl*, 8> Decls;
3837
3838  if (DS.isTypeSpecOwned())
3839    Decls.push_back((Decl*)DS.getTypeRep());
3840
3841  for (unsigned i = 0; i != NumDecls; ++i)
3842    if (Decl *D = Group[i].getAs<Decl>())
3843      Decls.push_back(D);
3844
3845  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3846                                                   Decls.data(), Decls.size()));
3847}
3848
3849
3850/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3851/// to introduce parameters into function prototype scope.
3852Sema::DeclPtrTy
3853Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3854  const DeclSpec &DS = D.getDeclSpec();
3855
3856  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3857  VarDecl::StorageClass StorageClass = VarDecl::None;
3858  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3859    StorageClass = VarDecl::Register;
3860  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3861    Diag(DS.getStorageClassSpecLoc(),
3862         diag::err_invalid_storage_class_in_func_decl);
3863    D.getMutableDeclSpec().ClearStorageClassSpecs();
3864  }
3865
3866  if (D.getDeclSpec().isThreadSpecified())
3867    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3868
3869  DiagnoseFunctionSpecifiers(D);
3870
3871  // Check that there are no default arguments inside the type of this
3872  // parameter (C++ only).
3873  if (getLangOptions().CPlusPlus)
3874    CheckExtraCXXDefaultArguments(D);
3875
3876  TypeSourceInfo *TInfo = 0;
3877  TagDecl *OwnedDecl = 0;
3878  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3879
3880  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3881    // C++ [dcl.fct]p6:
3882    //   Types shall not be defined in return or parameter types.
3883    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3884      << Context.getTypeDeclType(OwnedDecl);
3885  }
3886
3887  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
3888  IdentifierInfo *II = D.getIdentifier();
3889  if (II) {
3890    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3891      if (PrevDecl->isTemplateParameter()) {
3892        // Maybe we will complain about the shadowed template parameter.
3893        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3894        // Just pretend that we didn't see the previous declaration.
3895        PrevDecl = 0;
3896      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3897        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3898        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3899
3900        // Recover by removing the name
3901        II = 0;
3902        D.SetIdentifier(0, D.getIdentifierLoc());
3903        D.setInvalidType(true);
3904      }
3905    }
3906  }
3907
3908  // Parameters can not be abstract class types.
3909  // For record types, this is done by the AbstractClassUsageDiagnoser once
3910  // the class has been completely parsed.
3911  if (!CurContext->isRecord() &&
3912      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3913                             diag::err_abstract_type_in_decl,
3914                             AbstractParamType))
3915    D.setInvalidType(true);
3916
3917  QualType T = adjustParameterType(parmDeclType);
3918
3919  // Temporarily put parameter variables in the translation unit, not
3920  // the enclosing context.  This prevents them from accidentally
3921  // looking like class members in C++.
3922  DeclContext *DC = Context.getTranslationUnitDecl();
3923
3924  ParmVarDecl *New
3925    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
3926                          T, TInfo, StorageClass, 0);
3927
3928  if (D.isInvalidType())
3929    New->setInvalidDecl();
3930
3931  // Parameter declarators cannot be interface types. All ObjC objects are
3932  // passed by reference.
3933  if (T->isObjCInterfaceType()) {
3934    Diag(D.getIdentifierLoc(),
3935         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3936    New->setInvalidDecl();
3937  }
3938
3939  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3940  if (D.getCXXScopeSpec().isSet()) {
3941    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3942      << D.getCXXScopeSpec().getRange();
3943    New->setInvalidDecl();
3944  }
3945
3946  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3947  // duration shall not be qualified by an address-space qualifier."
3948  // Since all parameters have automatic store duration, they can not have
3949  // an address space.
3950  if (T.getAddressSpace() != 0) {
3951    Diag(D.getIdentifierLoc(),
3952         diag::err_arg_with_address_space);
3953    New->setInvalidDecl();
3954  }
3955
3956
3957  // Add the parameter declaration into this scope.
3958  S->AddDecl(DeclPtrTy::make(New));
3959  if (II)
3960    IdResolver.AddDecl(New);
3961
3962  ProcessDeclAttributes(S, New, D);
3963
3964  if (New->hasAttr<BlocksAttr>()) {
3965    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3966  }
3967  return DeclPtrTy::make(New);
3968}
3969
3970void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
3971  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
3972  Param->setDeclContext(CurContext);
3973}
3974
3975void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3976                                           SourceLocation LocAfterDecls) {
3977  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3978         "Not a function declarator!");
3979  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3980
3981  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3982  // for a K&R function.
3983  if (!FTI.hasPrototype) {
3984    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3985      --i;
3986      if (FTI.ArgInfo[i].Param == 0) {
3987        llvm::SmallString<256> Code;
3988        llvm::raw_svector_ostream(Code) << "  int "
3989                                        << FTI.ArgInfo[i].Ident->getName()
3990                                        << ";\n";
3991        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3992          << FTI.ArgInfo[i].Ident
3993          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3994
3995        // Implicitly declare the argument as type 'int' for lack of a better
3996        // type.
3997        DeclSpec DS;
3998        const char* PrevSpec; // unused
3999        unsigned DiagID; // unused
4000        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4001                           PrevSpec, DiagID);
4002        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4003        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4004        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4005      }
4006    }
4007  }
4008}
4009
4010Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4011                                              Declarator &D) {
4012  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4013  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4014         "Not a function declarator!");
4015  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4016
4017  if (FTI.hasPrototype) {
4018    // FIXME: Diagnose arguments without names in C.
4019  }
4020
4021  Scope *ParentScope = FnBodyScope->getParent();
4022
4023  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4024                                  MultiTemplateParamsArg(*this),
4025                                  /*IsFunctionDefinition=*/true);
4026  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4027}
4028
4029static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4030  // Don't warn about invalid declarations.
4031  if (FD->isInvalidDecl())
4032    return false;
4033
4034  // Or declarations that aren't global.
4035  if (!FD->isGlobal())
4036    return false;
4037
4038  // Don't warn about C++ member functions.
4039  if (isa<CXXMethodDecl>(FD))
4040    return false;
4041
4042  // Don't warn about 'main'.
4043  if (FD->isMain())
4044    return false;
4045
4046  // Don't warn about inline functions.
4047  if (FD->isInlineSpecified())
4048    return false;
4049
4050  // Don't warn about function templates.
4051  if (FD->getDescribedFunctionTemplate())
4052    return false;
4053
4054  // Don't warn about function template specializations.
4055  if (FD->isFunctionTemplateSpecialization())
4056    return false;
4057
4058  bool MissingPrototype = true;
4059  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4060       Prev; Prev = Prev->getPreviousDeclaration()) {
4061    // Ignore any declarations that occur in function or method
4062    // scope, because they aren't visible from the header.
4063    if (Prev->getDeclContext()->isFunctionOrMethod())
4064      continue;
4065
4066    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4067    break;
4068  }
4069
4070  return MissingPrototype;
4071}
4072
4073Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4074  // Clear the last template instantiation error context.
4075  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4076
4077  if (!D)
4078    return D;
4079  FunctionDecl *FD = 0;
4080
4081  if (FunctionTemplateDecl *FunTmpl
4082        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4083    FD = FunTmpl->getTemplatedDecl();
4084  else
4085    FD = cast<FunctionDecl>(D.getAs<Decl>());
4086
4087  // Enter a new function scope
4088  PushFunctionScope();
4089
4090  // See if this is a redefinition.
4091  // But don't complain if we're in GNU89 mode and the previous definition
4092  // was an extern inline function.
4093  const FunctionDecl *Definition;
4094  if (FD->getBody(Definition) &&
4095      !canRedefineFunction(Definition, getLangOptions())) {
4096    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4097    Diag(Definition->getLocation(), diag::note_previous_definition);
4098  }
4099
4100  // Builtin functions cannot be defined.
4101  if (unsigned BuiltinID = FD->getBuiltinID()) {
4102    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4103      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4104      FD->setInvalidDecl();
4105    }
4106  }
4107
4108  // The return type of a function definition must be complete
4109  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4110  QualType ResultType = FD->getResultType();
4111  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4112      !FD->isInvalidDecl() &&
4113      RequireCompleteType(FD->getLocation(), ResultType,
4114                          diag::err_func_def_incomplete_result))
4115    FD->setInvalidDecl();
4116
4117  // GNU warning -Wmissing-prototypes:
4118  //   Warn if a global function is defined without a previous
4119  //   prototype declaration. This warning is issued even if the
4120  //   definition itself provides a prototype. The aim is to detect
4121  //   global functions that fail to be declared in header files.
4122  if (ShouldWarnAboutMissingPrototype(FD))
4123    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4124
4125  if (FnBodyScope)
4126    PushDeclContext(FnBodyScope, FD);
4127
4128  // Check the validity of our function parameters
4129  CheckParmsForFunctionDef(FD);
4130
4131  // Introduce our parameters into the function scope
4132  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4133    ParmVarDecl *Param = FD->getParamDecl(p);
4134    Param->setOwningFunction(FD);
4135
4136    // If this has an identifier, add it to the scope stack.
4137    if (Param->getIdentifier() && FnBodyScope)
4138      PushOnScopeChains(Param, FnBodyScope);
4139  }
4140
4141  // Checking attributes of current function definition
4142  // dllimport attribute.
4143  if (FD->getAttr<DLLImportAttr>() &&
4144      (!FD->getAttr<DLLExportAttr>())) {
4145    // dllimport attribute cannot be applied to definition.
4146    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4147      Diag(FD->getLocation(),
4148           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4149        << "dllimport";
4150      FD->setInvalidDecl();
4151      return DeclPtrTy::make(FD);
4152    }
4153
4154    // Visual C++ appears to not think this is an issue, so only issue
4155    // a warning when Microsoft extensions are disabled.
4156    if (!LangOpts.Microsoft) {
4157      // If a symbol previously declared dllimport is later defined, the
4158      // attribute is ignored in subsequent references, and a warning is
4159      // emitted.
4160      Diag(FD->getLocation(),
4161           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4162        << FD->getNameAsCString() << "dllimport";
4163    }
4164  }
4165  return DeclPtrTy::make(FD);
4166}
4167
4168Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4169  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4170}
4171
4172Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4173                                              bool IsInstantiation) {
4174  Decl *dcl = D.getAs<Decl>();
4175  Stmt *Body = BodyArg.takeAs<Stmt>();
4176
4177  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
4178  // explosion for destrutors that can result and the compile time hit.
4179  AnalysisContext AC(dcl, false);
4180  FunctionDecl *FD = 0;
4181  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4182  if (FunTmpl)
4183    FD = FunTmpl->getTemplatedDecl();
4184  else
4185    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4186
4187  if (FD) {
4188    FD->setBody(Body);
4189    if (FD->isMain())
4190      // C and C++ allow for main to automagically return 0.
4191      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4192      FD->setHasImplicitReturnZero(true);
4193    else
4194      CheckFallThroughForFunctionDef(FD, Body, AC);
4195
4196    if (!FD->isInvalidDecl())
4197      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4198
4199    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4200      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4201
4202    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4203  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4204    assert(MD == getCurMethodDecl() && "Method parsing confused");
4205    MD->setBody(Body);
4206    CheckFallThroughForFunctionDef(MD, Body, AC);
4207    MD->setEndLoc(Body->getLocEnd());
4208
4209    if (!MD->isInvalidDecl())
4210      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4211  } else {
4212    Body->Destroy(Context);
4213    return DeclPtrTy();
4214  }
4215  if (!IsInstantiation)
4216    PopDeclContext();
4217
4218  // Verify and clean out per-function state.
4219
4220  // Check goto/label use.
4221  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4222       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4223    LabelStmt *L = I->second;
4224
4225    // Verify that we have no forward references left.  If so, there was a goto
4226    // or address of a label taken, but no definition of it.  Label fwd
4227    // definitions are indicated with a null substmt.
4228    if (L->getSubStmt() != 0)
4229      continue;
4230
4231    // Emit error.
4232    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4233
4234    // At this point, we have gotos that use the bogus label.  Stitch it into
4235    // the function body so that they aren't leaked and that the AST is well
4236    // formed.
4237    if (Body == 0) {
4238      // The whole function wasn't parsed correctly, just delete this.
4239      L->Destroy(Context);
4240      continue;
4241    }
4242
4243    // Otherwise, the body is valid: we want to stitch the label decl into the
4244    // function somewhere so that it is properly owned and so that the goto
4245    // has a valid target.  Do this by creating a new compound stmt with the
4246    // label in it.
4247
4248    // Give the label a sub-statement.
4249    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4250
4251    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4252                               cast<CXXTryStmt>(Body)->getTryBlock() :
4253                               cast<CompoundStmt>(Body);
4254    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4255    Elements.push_back(L);
4256    Compound->setStmts(Context, &Elements[0], Elements.size());
4257  }
4258
4259  if (Body) {
4260    CheckUnreachable(AC);
4261
4262    // C++ constructors that have function-try-blocks can't have return
4263    // statements in the handlers of that block. (C++ [except.handle]p14)
4264    // Verify this.
4265    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4266      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4267
4268  // Verify that that gotos and switch cases don't jump into scopes illegally.
4269  // Verify that that gotos and switch cases don't jump into scopes illegally.
4270    if (FunctionNeedsScopeChecking() && !hasAnyErrorsInThisFunction())
4271      DiagnoseInvalidJumps(Body);
4272
4273    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4274      MarkBaseAndMemberDestructorsReferenced(Destructor);
4275
4276    // If any errors have occurred, clear out any temporaries that may have
4277    // been leftover. This ensures that these temporaries won't be picked up for
4278    // deletion in some later function.
4279    if (PP.getDiagnostics().hasErrorOccurred())
4280      ExprTemporaries.clear();
4281
4282    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4283  }
4284
4285  PopFunctionOrBlockScope();
4286
4287  // If any errors have occurred, clear out any temporaries that may have
4288  // been leftover. This ensures that these temporaries won't be picked up for
4289  // deletion in some later function.
4290  if (getDiagnostics().hasErrorOccurred())
4291    ExprTemporaries.clear();
4292
4293  return D;
4294}
4295
4296/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4297/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4298NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4299                                          IdentifierInfo &II, Scope *S) {
4300  // Before we produce a declaration for an implicitly defined
4301  // function, see whether there was a locally-scoped declaration of
4302  // this name as a function or variable. If so, use that
4303  // (non-visible) declaration, and complain about it.
4304  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4305    = LocallyScopedExternalDecls.find(&II);
4306  if (Pos != LocallyScopedExternalDecls.end()) {
4307    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4308    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4309    return Pos->second;
4310  }
4311
4312  // Extension in C99.  Legal in C90, but warn about it.
4313  if (II.getName().startswith("__builtin_"))
4314    Diag(Loc, diag::warn_builtin_unknown) << &II;
4315  else if (getLangOptions().C99)
4316    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4317  else
4318    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4319
4320  // Set a Declarator for the implicit definition: int foo();
4321  const char *Dummy;
4322  DeclSpec DS;
4323  unsigned DiagID;
4324  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4325  Error = Error; // Silence warning.
4326  assert(!Error && "Error setting up implicit decl!");
4327  Declarator D(DS, Declarator::BlockContext);
4328  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4329                                             0, 0, false, SourceLocation(),
4330                                             false, 0,0,0, Loc, Loc, D),
4331                SourceLocation());
4332  D.SetIdentifier(&II, Loc);
4333
4334  // Insert this function into translation-unit scope.
4335
4336  DeclContext *PrevDC = CurContext;
4337  CurContext = Context.getTranslationUnitDecl();
4338
4339  FunctionDecl *FD =
4340 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4341  FD->setImplicit();
4342
4343  CurContext = PrevDC;
4344
4345  AddKnownFunctionAttributes(FD);
4346
4347  return FD;
4348}
4349
4350/// \brief Adds any function attributes that we know a priori based on
4351/// the declaration of this function.
4352///
4353/// These attributes can apply both to implicitly-declared builtins
4354/// (like __builtin___printf_chk) or to library-declared functions
4355/// like NSLog or printf.
4356void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4357  if (FD->isInvalidDecl())
4358    return;
4359
4360  // If this is a built-in function, map its builtin attributes to
4361  // actual attributes.
4362  if (unsigned BuiltinID = FD->getBuiltinID()) {
4363    // Handle printf-formatting attributes.
4364    unsigned FormatIdx;
4365    bool HasVAListArg;
4366    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4367      if (!FD->getAttr<FormatAttr>())
4368        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4369                                               HasVAListArg ? 0 : FormatIdx+2));
4370    }
4371
4372    // Mark const if we don't care about errno and that is the only
4373    // thing preventing the function from being const. This allows
4374    // IRgen to use LLVM intrinsics for such functions.
4375    if (!getLangOptions().MathErrno &&
4376        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4377      if (!FD->getAttr<ConstAttr>())
4378        FD->addAttr(::new (Context) ConstAttr());
4379    }
4380
4381    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4382      FD->setType(Context.getNoReturnType(FD->getType()));
4383    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4384      FD->addAttr(::new (Context) NoThrowAttr());
4385    if (Context.BuiltinInfo.isConst(BuiltinID))
4386      FD->addAttr(::new (Context) ConstAttr());
4387  }
4388
4389  IdentifierInfo *Name = FD->getIdentifier();
4390  if (!Name)
4391    return;
4392  if ((!getLangOptions().CPlusPlus &&
4393       FD->getDeclContext()->isTranslationUnit()) ||
4394      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4395       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4396       LinkageSpecDecl::lang_c)) {
4397    // Okay: this could be a libc/libm/Objective-C function we know
4398    // about.
4399  } else
4400    return;
4401
4402  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4403    // FIXME: NSLog and NSLogv should be target specific
4404    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4405      // FIXME: We known better than our headers.
4406      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4407    } else
4408      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4409                                             Name->isStr("NSLogv") ? 0 : 2));
4410  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4411    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4412    // target-specific builtins, perhaps?
4413    if (!FD->getAttr<FormatAttr>())
4414      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4415                                             Name->isStr("vasprintf") ? 0 : 3));
4416  }
4417}
4418
4419TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4420                                    TypeSourceInfo *TInfo) {
4421  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4422  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4423
4424  if (!TInfo) {
4425    assert(D.isInvalidType() && "no declarator info for valid type");
4426    TInfo = Context.getTrivialTypeSourceInfo(T);
4427  }
4428
4429  // Scope manipulation handled by caller.
4430  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4431                                           D.getIdentifierLoc(),
4432                                           D.getIdentifier(),
4433                                           TInfo);
4434
4435  if (const TagType *TT = T->getAs<TagType>()) {
4436    TagDecl *TD = TT->getDecl();
4437
4438    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4439    // keep track of the TypedefDecl.
4440    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4441      TD->setTypedefForAnonDecl(NewTD);
4442  }
4443
4444  if (D.isInvalidType())
4445    NewTD->setInvalidDecl();
4446  return NewTD;
4447}
4448
4449
4450/// \brief Determine whether a tag with a given kind is acceptable
4451/// as a redeclaration of the given tag declaration.
4452///
4453/// \returns true if the new tag kind is acceptable, false otherwise.
4454bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4455                                        TagDecl::TagKind NewTag,
4456                                        SourceLocation NewTagLoc,
4457                                        const IdentifierInfo &Name) {
4458  // C++ [dcl.type.elab]p3:
4459  //   The class-key or enum keyword present in the
4460  //   elaborated-type-specifier shall agree in kind with the
4461  //   declaration to which the name in theelaborated-type-specifier
4462  //   refers. This rule also applies to the form of
4463  //   elaborated-type-specifier that declares a class-name or
4464  //   friend class since it can be construed as referring to the
4465  //   definition of the class. Thus, in any
4466  //   elaborated-type-specifier, the enum keyword shall be used to
4467  //   refer to an enumeration (7.2), the union class-keyshall be
4468  //   used to refer to a union (clause 9), and either the class or
4469  //   struct class-key shall be used to refer to a class (clause 9)
4470  //   declared using the class or struct class-key.
4471  TagDecl::TagKind OldTag = Previous->getTagKind();
4472  if (OldTag == NewTag)
4473    return true;
4474
4475  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4476      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4477    // Warn about the struct/class tag mismatch.
4478    bool isTemplate = false;
4479    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4480      isTemplate = Record->getDescribedClassTemplate();
4481
4482    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4483      << (NewTag == TagDecl::TK_class)
4484      << isTemplate << &Name
4485      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4486                              OldTag == TagDecl::TK_class? "class" : "struct");
4487    Diag(Previous->getLocation(), diag::note_previous_use);
4488    return true;
4489  }
4490  return false;
4491}
4492
4493/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4494/// former case, Name will be non-null.  In the later case, Name will be null.
4495/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4496/// reference/declaration/definition of a tag.
4497Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4498                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4499                               IdentifierInfo *Name, SourceLocation NameLoc,
4500                               AttributeList *Attr, AccessSpecifier AS,
4501                               MultiTemplateParamsArg TemplateParameterLists,
4502                               bool &OwnedDecl, bool &IsDependent) {
4503  // If this is not a definition, it must have a name.
4504  assert((Name != 0 || TUK == TUK_Definition) &&
4505         "Nameless record must be a definition!");
4506
4507  OwnedDecl = false;
4508  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4509
4510  // FIXME: Check explicit specializations more carefully.
4511  bool isExplicitSpecialization = false;
4512  if (TUK != TUK_Reference) {
4513    if (TemplateParameterList *TemplateParams
4514          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4515                        (TemplateParameterList**)TemplateParameterLists.get(),
4516                                              TemplateParameterLists.size(),
4517                                                    isExplicitSpecialization)) {
4518      if (TemplateParams->size() > 0) {
4519        // This is a declaration or definition of a class template (which may
4520        // be a member of another template).
4521        OwnedDecl = false;
4522        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4523                                               SS, Name, NameLoc, Attr,
4524                                               TemplateParams,
4525                                               AS);
4526        TemplateParameterLists.release();
4527        return Result.get();
4528      } else {
4529        // The "template<>" header is extraneous.
4530        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4531          << ElaboratedType::getNameForTagKind(Kind) << Name;
4532        isExplicitSpecialization = true;
4533      }
4534    }
4535
4536    TemplateParameterLists.release();
4537  }
4538
4539  DeclContext *SearchDC = CurContext;
4540  DeclContext *DC = CurContext;
4541  bool isStdBadAlloc = false;
4542  bool Invalid = false;
4543
4544  RedeclarationKind Redecl = ForRedeclaration;
4545  if (TUK == TUK_Friend || TUK == TUK_Reference)
4546    Redecl = NotForRedeclaration;
4547
4548  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4549
4550  if (Name && SS.isNotEmpty()) {
4551    // We have a nested-name tag ('struct foo::bar').
4552
4553    // Check for invalid 'foo::'.
4554    if (SS.isInvalid()) {
4555      Name = 0;
4556      goto CreateNewDecl;
4557    }
4558
4559    // If this is a friend or a reference to a class in a dependent
4560    // context, don't try to make a decl for it.
4561    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4562      DC = computeDeclContext(SS, false);
4563      if (!DC) {
4564        IsDependent = true;
4565        return DeclPtrTy();
4566      }
4567    }
4568
4569    if (RequireCompleteDeclContext(SS))
4570      return DeclPtrTy::make((Decl *)0);
4571
4572    DC = computeDeclContext(SS, true);
4573    SearchDC = DC;
4574    // Look-up name inside 'foo::'.
4575    LookupQualifiedName(Previous, DC);
4576
4577    if (Previous.isAmbiguous())
4578      return DeclPtrTy();
4579
4580    if (Previous.empty()) {
4581      // Name lookup did not find anything. However, if the
4582      // nested-name-specifier refers to the current instantiation,
4583      // and that current instantiation has any dependent base
4584      // classes, we might find something at instantiation time: treat
4585      // this as a dependent elaborated-type-specifier.
4586      if (Previous.wasNotFoundInCurrentInstantiation()) {
4587        IsDependent = true;
4588        return DeclPtrTy();
4589      }
4590
4591      // A tag 'foo::bar' must already exist.
4592      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4593      Name = 0;
4594      Invalid = true;
4595      goto CreateNewDecl;
4596    }
4597  } else if (Name) {
4598    // If this is a named struct, check to see if there was a previous forward
4599    // declaration or definition.
4600    // FIXME: We're looking into outer scopes here, even when we
4601    // shouldn't be. Doing so can result in ambiguities that we
4602    // shouldn't be diagnosing.
4603    LookupName(Previous, S);
4604
4605    // Note:  there used to be some attempt at recovery here.
4606    if (Previous.isAmbiguous())
4607      return DeclPtrTy();
4608
4609    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4610      // FIXME: This makes sure that we ignore the contexts associated
4611      // with C structs, unions, and enums when looking for a matching
4612      // tag declaration or definition. See the similar lookup tweak
4613      // in Sema::LookupName; is there a better way to deal with this?
4614      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4615        SearchDC = SearchDC->getParent();
4616    }
4617  }
4618
4619  if (Previous.isSingleResult() &&
4620      Previous.getFoundDecl()->isTemplateParameter()) {
4621    // Maybe we will complain about the shadowed template parameter.
4622    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4623    // Just pretend that we didn't see the previous declaration.
4624    Previous.clear();
4625  }
4626
4627  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4628      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4629    // This is a declaration of or a reference to "std::bad_alloc".
4630    isStdBadAlloc = true;
4631
4632    if (Previous.empty() && StdBadAlloc) {
4633      // std::bad_alloc has been implicitly declared (but made invisible to
4634      // name lookup). Fill in this implicit declaration as the previous
4635      // declaration, so that the declarations get chained appropriately.
4636      Previous.addDecl(StdBadAlloc);
4637    }
4638  }
4639
4640  if (!Previous.empty()) {
4641    assert(Previous.isSingleResult());
4642    NamedDecl *PrevDecl = Previous.getFoundDecl();
4643    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4644      // If this is a use of a previous tag, or if the tag is already declared
4645      // in the same scope (so that the definition/declaration completes or
4646      // rementions the tag), reuse the decl.
4647      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4648          isDeclInScope(PrevDecl, SearchDC, S)) {
4649        // Make sure that this wasn't declared as an enum and now used as a
4650        // struct or something similar.
4651        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4652          bool SafeToContinue
4653            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4654               Kind != TagDecl::TK_enum);
4655          if (SafeToContinue)
4656            Diag(KWLoc, diag::err_use_with_wrong_tag)
4657              << Name
4658              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4659                                                  PrevTagDecl->getKindName());
4660          else
4661            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4662          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4663
4664          if (SafeToContinue)
4665            Kind = PrevTagDecl->getTagKind();
4666          else {
4667            // Recover by making this an anonymous redefinition.
4668            Name = 0;
4669            Previous.clear();
4670            Invalid = true;
4671          }
4672        }
4673
4674        if (!Invalid) {
4675          // If this is a use, just return the declaration we found.
4676
4677          // FIXME: In the future, return a variant or some other clue
4678          // for the consumer of this Decl to know it doesn't own it.
4679          // For our current ASTs this shouldn't be a problem, but will
4680          // need to be changed with DeclGroups.
4681          if (TUK == TUK_Reference || TUK == TUK_Friend)
4682            return DeclPtrTy::make(PrevTagDecl);
4683
4684          // Diagnose attempts to redefine a tag.
4685          if (TUK == TUK_Definition) {
4686            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
4687              // If we're defining a specialization and the previous definition
4688              // is from an implicit instantiation, don't emit an error
4689              // here; we'll catch this in the general case below.
4690              if (!isExplicitSpecialization ||
4691                  !isa<CXXRecordDecl>(Def) ||
4692                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4693                                               == TSK_ExplicitSpecialization) {
4694                Diag(NameLoc, diag::err_redefinition) << Name;
4695                Diag(Def->getLocation(), diag::note_previous_definition);
4696                // If this is a redefinition, recover by making this
4697                // struct be anonymous, which will make any later
4698                // references get the previous definition.
4699                Name = 0;
4700                Previous.clear();
4701                Invalid = true;
4702              }
4703            } else {
4704              // If the type is currently being defined, complain
4705              // about a nested redefinition.
4706              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4707              if (Tag->isBeingDefined()) {
4708                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4709                Diag(PrevTagDecl->getLocation(),
4710                     diag::note_previous_definition);
4711                Name = 0;
4712                Previous.clear();
4713                Invalid = true;
4714              }
4715            }
4716
4717            // Okay, this is definition of a previously declared or referenced
4718            // tag PrevDecl. We're going to create a new Decl for it.
4719          }
4720        }
4721        // If we get here we have (another) forward declaration or we
4722        // have a definition.  Just create a new decl.
4723
4724      } else {
4725        // If we get here, this is a definition of a new tag type in a nested
4726        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4727        // new decl/type.  We set PrevDecl to NULL so that the entities
4728        // have distinct types.
4729        Previous.clear();
4730      }
4731      // If we get here, we're going to create a new Decl. If PrevDecl
4732      // is non-NULL, it's a definition of the tag declared by
4733      // PrevDecl. If it's NULL, we have a new definition.
4734    } else {
4735      // PrevDecl is a namespace, template, or anything else
4736      // that lives in the IDNS_Tag identifier namespace.
4737      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4738        // The tag name clashes with a namespace name, issue an error and
4739        // recover by making this tag be anonymous.
4740        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4741        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4742        Name = 0;
4743        Previous.clear();
4744        Invalid = true;
4745      } else {
4746        // The existing declaration isn't relevant to us; we're in a
4747        // new scope, so clear out the previous declaration.
4748        Previous.clear();
4749      }
4750    }
4751  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4752    // C++ [basic.scope.pdecl]p5:
4753    //   -- for an elaborated-type-specifier of the form
4754    //
4755    //          class-key identifier
4756    //
4757    //      if the elaborated-type-specifier is used in the
4758    //      decl-specifier-seq or parameter-declaration-clause of a
4759    //      function defined in namespace scope, the identifier is
4760    //      declared as a class-name in the namespace that contains
4761    //      the declaration; otherwise, except as a friend
4762    //      declaration, the identifier is declared in the smallest
4763    //      non-class, non-function-prototype scope that contains the
4764    //      declaration.
4765    //
4766    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4767    // C structs and unions.
4768    //
4769    // It is an error in C++ to declare (rather than define) an enum
4770    // type, including via an elaborated type specifier.  We'll
4771    // diagnose that later; for now, declare the enum in the same
4772    // scope as we would have picked for any other tag type.
4773    //
4774    // GNU C also supports this behavior as part of its incomplete
4775    // enum types extension, while GNU C++ does not.
4776    //
4777    // Find the context where we'll be declaring the tag.
4778    // FIXME: We would like to maintain the current DeclContext as the
4779    // lexical context,
4780    while (SearchDC->isRecord())
4781      SearchDC = SearchDC->getParent();
4782
4783    // Find the scope where we'll be declaring the tag.
4784    while (S->isClassScope() ||
4785           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4786           ((S->getFlags() & Scope::DeclScope) == 0) ||
4787           (S->getEntity() &&
4788            ((DeclContext *)S->getEntity())->isTransparentContext()))
4789      S = S->getParent();
4790
4791  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4792    // C++ [namespace.memdef]p3:
4793    //   If a friend declaration in a non-local class first declares a
4794    //   class or function, the friend class or function is a member of
4795    //   the innermost enclosing namespace.
4796    SearchDC = SearchDC->getEnclosingNamespaceContext();
4797
4798    // Look up through our scopes until we find one with an entity which
4799    // matches our declaration context.
4800    while (S->getEntity() &&
4801           ((DeclContext *)S->getEntity())->getPrimaryContext() != SearchDC) {
4802      S = S->getParent();
4803      assert(S && "No enclosing scope matching the enclosing namespace.");
4804    }
4805  }
4806
4807CreateNewDecl:
4808
4809  TagDecl *PrevDecl = 0;
4810  if (Previous.isSingleResult())
4811    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4812
4813  // If there is an identifier, use the location of the identifier as the
4814  // location of the decl, otherwise use the location of the struct/union
4815  // keyword.
4816  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4817
4818  // Otherwise, create a new declaration. If there is a previous
4819  // declaration of the same entity, the two will be linked via
4820  // PrevDecl.
4821  TagDecl *New;
4822
4823  if (Kind == TagDecl::TK_enum) {
4824    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4825    // enum X { A, B, C } D;    D should chain to X.
4826    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4827                           cast_or_null<EnumDecl>(PrevDecl));
4828    // If this is an undefined enum, warn.
4829    if (TUK != TUK_Definition && !Invalid)  {
4830      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4831                                              : diag::ext_forward_ref_enum;
4832      Diag(Loc, DK);
4833    }
4834  } else {
4835    // struct/union/class
4836
4837    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4838    // struct X { int A; } D;    D should chain to X.
4839    if (getLangOptions().CPlusPlus) {
4840      // FIXME: Look for a way to use RecordDecl for simple structs.
4841      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4842                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4843
4844      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4845        StdBadAlloc = cast<CXXRecordDecl>(New);
4846    } else
4847      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4848                               cast_or_null<RecordDecl>(PrevDecl));
4849  }
4850
4851  if (Kind != TagDecl::TK_enum) {
4852    // Handle #pragma pack: if the #pragma pack stack has non-default
4853    // alignment, make up a packed attribute for this decl. These
4854    // attributes are checked when the ASTContext lays out the
4855    // structure.
4856    //
4857    // It is important for implementing the correct semantics that this
4858    // happen here (in act on tag decl). The #pragma pack stack is
4859    // maintained as a result of parser callbacks which can occur at
4860    // many points during the parsing of a struct declaration (because
4861    // the #pragma tokens are effectively skipped over during the
4862    // parsing of the struct).
4863    if (unsigned Alignment = getPragmaPackAlignment())
4864      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4865  }
4866
4867  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4868    // C++ [dcl.typedef]p3:
4869    //   [...] Similarly, in a given scope, a class or enumeration
4870    //   shall not be declared with the same name as a typedef-name
4871    //   that is declared in that scope and refers to a type other
4872    //   than the class or enumeration itself.
4873    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4874                        ForRedeclaration);
4875    LookupName(Lookup, S);
4876    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4877    NamedDecl *PrevTypedefNamed = PrevTypedef;
4878    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4879        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4880          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4881      Diag(Loc, diag::err_tag_definition_of_typedef)
4882        << Context.getTypeDeclType(New)
4883        << PrevTypedef->getUnderlyingType();
4884      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4885      Invalid = true;
4886    }
4887  }
4888
4889  // If this is a specialization of a member class (of a class template),
4890  // check the specialization.
4891  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4892    Invalid = true;
4893
4894  if (Invalid)
4895    New->setInvalidDecl();
4896
4897  if (Attr)
4898    ProcessDeclAttributeList(S, New, Attr);
4899
4900  // If we're declaring or defining a tag in function prototype scope
4901  // in C, note that this type can only be used within the function.
4902  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4903    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4904
4905  // Set the lexical context. If the tag has a C++ scope specifier, the
4906  // lexical context will be different from the semantic context.
4907  New->setLexicalDeclContext(CurContext);
4908
4909  // Mark this as a friend decl if applicable.
4910  if (TUK == TUK_Friend)
4911    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4912
4913  // Set the access specifier.
4914  if (!Invalid && TUK != TUK_Friend)
4915    SetMemberAccessSpecifier(New, PrevDecl, AS);
4916
4917  if (TUK == TUK_Definition)
4918    New->startDefinition();
4919
4920  // If this has an identifier, add it to the scope stack.
4921  if (TUK == TUK_Friend) {
4922    // We might be replacing an existing declaration in the lookup tables;
4923    // if so, borrow its access specifier.
4924    if (PrevDecl)
4925      New->setAccess(PrevDecl->getAccess());
4926
4927    // Friend tag decls are visible in fairly strange ways.
4928    if (!CurContext->isDependentContext()) {
4929      DeclContext *DC = New->getDeclContext()->getLookupContext();
4930      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4931      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4932        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4933    }
4934  } else if (Name) {
4935    S = getNonFieldDeclScope(S);
4936    PushOnScopeChains(New, S);
4937  } else {
4938    CurContext->addDecl(New);
4939  }
4940
4941  // If this is the C FILE type, notify the AST context.
4942  if (IdentifierInfo *II = New->getIdentifier())
4943    if (!New->isInvalidDecl() &&
4944        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4945        II->isStr("FILE"))
4946      Context.setFILEDecl(New);
4947
4948  OwnedDecl = true;
4949  return DeclPtrTy::make(New);
4950}
4951
4952void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4953  AdjustDeclIfTemplate(TagD);
4954  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4955
4956  // Enter the tag context.
4957  PushDeclContext(S, Tag);
4958}
4959
4960void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4961                                           SourceLocation LBraceLoc) {
4962  AdjustDeclIfTemplate(TagD);
4963  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4964
4965  FieldCollector->StartClass();
4966
4967  if (!Record->getIdentifier())
4968    return;
4969
4970  // C++ [class]p2:
4971  //   [...] The class-name is also inserted into the scope of the
4972  //   class itself; this is known as the injected-class-name. For
4973  //   purposes of access checking, the injected-class-name is treated
4974  //   as if it were a public member name.
4975  CXXRecordDecl *InjectedClassName
4976    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4977                            CurContext, Record->getLocation(),
4978                            Record->getIdentifier(),
4979                            Record->getTagKeywordLoc(),
4980                            Record);
4981  InjectedClassName->setImplicit();
4982  InjectedClassName->setAccess(AS_public);
4983  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4984      InjectedClassName->setDescribedClassTemplate(Template);
4985  PushOnScopeChains(InjectedClassName, S);
4986  assert(InjectedClassName->isInjectedClassName() &&
4987         "Broken injected-class-name");
4988}
4989
4990// Traverses the class and any nested classes, making a note of any
4991// dynamic classes that have no key function so that we can mark all of
4992// their virtual member functions as "used" at the end of the translation
4993// unit. This ensures that all functions needed by the vtable will get
4994// instantiated/synthesized.
4995static void
4996RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4997                                      SourceLocation Loc) {
4998  // We don't look at dependent or undefined classes.
4999  if (Record->isDependentContext() || !Record->isDefinition())
5000    return;
5001
5002  if (Record->isDynamicClass()) {
5003    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
5004
5005    if (!KeyFunction)
5006      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5007                                                                   Loc));
5008
5009    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
5010        && Record->getLinkage() == ExternalLinkage)
5011      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
5012  }
5013  for (DeclContext::decl_iterator D = Record->decls_begin(),
5014                               DEnd = Record->decls_end();
5015       D != DEnd; ++D) {
5016    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5017      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5018  }
5019}
5020
5021void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5022                                    SourceLocation RBraceLoc) {
5023  AdjustDeclIfTemplate(TagD);
5024  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5025  Tag->setRBraceLoc(RBraceLoc);
5026
5027  if (isa<CXXRecordDecl>(Tag))
5028    FieldCollector->FinishClass();
5029
5030  // Exit this scope of this tag's definition.
5031  PopDeclContext();
5032
5033  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
5034    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5035                                          RBraceLoc);
5036
5037  // Notify the consumer that we've defined a tag.
5038  Consumer.HandleTagDeclDefinition(Tag);
5039}
5040
5041// Note that FieldName may be null for anonymous bitfields.
5042bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5043                          QualType FieldTy, const Expr *BitWidth,
5044                          bool *ZeroWidth) {
5045  // Default to true; that shouldn't confuse checks for emptiness
5046  if (ZeroWidth)
5047    *ZeroWidth = true;
5048
5049  // C99 6.7.2.1p4 - verify the field type.
5050  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5051  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5052    // Handle incomplete types with specific error.
5053    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5054      return true;
5055    if (FieldName)
5056      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5057        << FieldName << FieldTy << BitWidth->getSourceRange();
5058    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5059      << FieldTy << BitWidth->getSourceRange();
5060  }
5061
5062  // If the bit-width is type- or value-dependent, don't try to check
5063  // it now.
5064  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5065    return false;
5066
5067  llvm::APSInt Value;
5068  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5069    return true;
5070
5071  if (Value != 0 && ZeroWidth)
5072    *ZeroWidth = false;
5073
5074  // Zero-width bitfield is ok for anonymous field.
5075  if (Value == 0 && FieldName)
5076    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5077
5078  if (Value.isSigned() && Value.isNegative()) {
5079    if (FieldName)
5080      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5081               << FieldName << Value.toString(10);
5082    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5083      << Value.toString(10);
5084  }
5085
5086  if (!FieldTy->isDependentType()) {
5087    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5088    if (Value.getZExtValue() > TypeSize) {
5089      if (FieldName)
5090        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5091          << FieldName << (unsigned)TypeSize;
5092      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5093        << (unsigned)TypeSize;
5094    }
5095  }
5096
5097  return false;
5098}
5099
5100/// ActOnField - Each field of a struct/union/class is passed into this in order
5101/// to create a FieldDecl object for it.
5102Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5103                                 SourceLocation DeclStart,
5104                                 Declarator &D, ExprTy *BitfieldWidth) {
5105  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5106                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5107                               AS_public);
5108  return DeclPtrTy::make(Res);
5109}
5110
5111/// HandleField - Analyze a field of a C struct or a C++ data member.
5112///
5113FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5114                             SourceLocation DeclStart,
5115                             Declarator &D, Expr *BitWidth,
5116                             AccessSpecifier AS) {
5117  IdentifierInfo *II = D.getIdentifier();
5118  SourceLocation Loc = DeclStart;
5119  if (II) Loc = D.getIdentifierLoc();
5120
5121  TypeSourceInfo *TInfo = 0;
5122  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5123  if (getLangOptions().CPlusPlus)
5124    CheckExtraCXXDefaultArguments(D);
5125
5126  DiagnoseFunctionSpecifiers(D);
5127
5128  if (D.getDeclSpec().isThreadSpecified())
5129    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5130
5131  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5132                                         ForRedeclaration);
5133
5134  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5135    // Maybe we will complain about the shadowed template parameter.
5136    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5137    // Just pretend that we didn't see the previous declaration.
5138    PrevDecl = 0;
5139  }
5140
5141  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5142    PrevDecl = 0;
5143
5144  bool Mutable
5145    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5146  SourceLocation TSSL = D.getSourceRange().getBegin();
5147  FieldDecl *NewFD
5148    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5149                     AS, PrevDecl, &D);
5150  if (NewFD->isInvalidDecl() && PrevDecl) {
5151    // Don't introduce NewFD into scope; there's already something
5152    // with the same name in the same scope.
5153  } else if (II) {
5154    PushOnScopeChains(NewFD, S);
5155  } else
5156    Record->addDecl(NewFD);
5157
5158  return NewFD;
5159}
5160
5161/// \brief Build a new FieldDecl and check its well-formedness.
5162///
5163/// This routine builds a new FieldDecl given the fields name, type,
5164/// record, etc. \p PrevDecl should refer to any previous declaration
5165/// with the same name and in the same scope as the field to be
5166/// created.
5167///
5168/// \returns a new FieldDecl.
5169///
5170/// \todo The Declarator argument is a hack. It will be removed once
5171FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5172                                TypeSourceInfo *TInfo,
5173                                RecordDecl *Record, SourceLocation Loc,
5174                                bool Mutable, Expr *BitWidth,
5175                                SourceLocation TSSL,
5176                                AccessSpecifier AS, NamedDecl *PrevDecl,
5177                                Declarator *D) {
5178  IdentifierInfo *II = Name.getAsIdentifierInfo();
5179  bool InvalidDecl = false;
5180  if (D) InvalidDecl = D->isInvalidType();
5181
5182  // If we receive a broken type, recover by assuming 'int' and
5183  // marking this declaration as invalid.
5184  if (T.isNull()) {
5185    InvalidDecl = true;
5186    T = Context.IntTy;
5187  }
5188
5189  QualType EltTy = Context.getBaseElementType(T);
5190  if (!EltTy->isDependentType() &&
5191      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5192    InvalidDecl = true;
5193
5194  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5195  // than a variably modified type.
5196  if (!InvalidDecl && T->isVariablyModifiedType()) {
5197    bool SizeIsNegative;
5198    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5199                                                           SizeIsNegative);
5200    if (!FixedTy.isNull()) {
5201      Diag(Loc, diag::warn_illegal_constant_array_size);
5202      T = FixedTy;
5203    } else {
5204      if (SizeIsNegative)
5205        Diag(Loc, diag::err_typecheck_negative_array_size);
5206      else
5207        Diag(Loc, diag::err_typecheck_field_variable_size);
5208      InvalidDecl = true;
5209    }
5210  }
5211
5212  // Fields can not have abstract class types
5213  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5214                                             diag::err_abstract_type_in_decl,
5215                                             AbstractFieldType))
5216    InvalidDecl = true;
5217
5218  bool ZeroWidth = false;
5219  // If this is declared as a bit-field, check the bit-field.
5220  if (!InvalidDecl && BitWidth &&
5221      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5222    InvalidDecl = true;
5223    DeleteExpr(BitWidth);
5224    BitWidth = 0;
5225    ZeroWidth = false;
5226  }
5227
5228  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5229                                       BitWidth, Mutable);
5230  if (InvalidDecl)
5231    NewFD->setInvalidDecl();
5232
5233  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5234    Diag(Loc, diag::err_duplicate_member) << II;
5235    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5236    NewFD->setInvalidDecl();
5237  }
5238
5239  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5240    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5241
5242    if (!T->isPODType())
5243      CXXRecord->setPOD(false);
5244    if (!ZeroWidth)
5245      CXXRecord->setEmpty(false);
5246
5247    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5248      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5249
5250      if (!RDecl->hasTrivialConstructor())
5251        CXXRecord->setHasTrivialConstructor(false);
5252      if (!RDecl->hasTrivialCopyConstructor())
5253        CXXRecord->setHasTrivialCopyConstructor(false);
5254      if (!RDecl->hasTrivialCopyAssignment())
5255        CXXRecord->setHasTrivialCopyAssignment(false);
5256      if (!RDecl->hasTrivialDestructor())
5257        CXXRecord->setHasTrivialDestructor(false);
5258
5259      // C++ 9.5p1: An object of a class with a non-trivial
5260      // constructor, a non-trivial copy constructor, a non-trivial
5261      // destructor, or a non-trivial copy assignment operator
5262      // cannot be a member of a union, nor can an array of such
5263      // objects.
5264      // TODO: C++0x alters this restriction significantly.
5265      if (Record->isUnion()) {
5266        // We check for copy constructors before constructors
5267        // because otherwise we'll never get complaints about
5268        // copy constructors.
5269
5270        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5271
5272        CXXSpecialMember member;
5273        if (!RDecl->hasTrivialCopyConstructor())
5274          member = CXXCopyConstructor;
5275        else if (!RDecl->hasTrivialConstructor())
5276          member = CXXDefaultConstructor;
5277        else if (!RDecl->hasTrivialCopyAssignment())
5278          member = CXXCopyAssignment;
5279        else if (!RDecl->hasTrivialDestructor())
5280          member = CXXDestructor;
5281        else
5282          member = invalid;
5283
5284        if (member != invalid) {
5285          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5286          DiagnoseNontrivial(RT, member);
5287          NewFD->setInvalidDecl();
5288        }
5289      }
5290    }
5291  }
5292
5293  // FIXME: We need to pass in the attributes given an AST
5294  // representation, not a parser representation.
5295  if (D)
5296    // FIXME: What to pass instead of TUScope?
5297    ProcessDeclAttributes(TUScope, NewFD, *D);
5298
5299  if (T.isObjCGCWeak())
5300    Diag(Loc, diag::warn_attribute_weak_on_field);
5301
5302  NewFD->setAccess(AS);
5303
5304  // C++ [dcl.init.aggr]p1:
5305  //   An aggregate is an array or a class (clause 9) with [...] no
5306  //   private or protected non-static data members (clause 11).
5307  // A POD must be an aggregate.
5308  if (getLangOptions().CPlusPlus &&
5309      (AS == AS_private || AS == AS_protected)) {
5310    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5311    CXXRecord->setAggregate(false);
5312    CXXRecord->setPOD(false);
5313  }
5314
5315  return NewFD;
5316}
5317
5318/// DiagnoseNontrivial - Given that a class has a non-trivial
5319/// special member, figure out why.
5320void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5321  QualType QT(T, 0U);
5322  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5323
5324  // Check whether the member was user-declared.
5325  switch (member) {
5326  case CXXDefaultConstructor:
5327    if (RD->hasUserDeclaredConstructor()) {
5328      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5329      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5330        const FunctionDecl *body = 0;
5331        ci->getBody(body);
5332        if (!body ||
5333            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5334          SourceLocation CtorLoc = ci->getLocation();
5335          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5336          return;
5337        }
5338      }
5339
5340      assert(0 && "found no user-declared constructors");
5341      return;
5342    }
5343    break;
5344
5345  case CXXCopyConstructor:
5346    if (RD->hasUserDeclaredCopyConstructor()) {
5347      SourceLocation CtorLoc =
5348        RD->getCopyConstructor(Context, 0)->getLocation();
5349      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5350      return;
5351    }
5352    break;
5353
5354  case CXXCopyAssignment:
5355    if (RD->hasUserDeclaredCopyAssignment()) {
5356      // FIXME: this should use the location of the copy
5357      // assignment, not the type.
5358      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5359      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5360      return;
5361    }
5362    break;
5363
5364  case CXXDestructor:
5365    if (RD->hasUserDeclaredDestructor()) {
5366      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5367      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5368      return;
5369    }
5370    break;
5371  }
5372
5373  typedef CXXRecordDecl::base_class_iterator base_iter;
5374
5375  // Virtual bases and members inhibit trivial copying/construction,
5376  // but not trivial destruction.
5377  if (member != CXXDestructor) {
5378    // Check for virtual bases.  vbases includes indirect virtual bases,
5379    // so we just iterate through the direct bases.
5380    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5381      if (bi->isVirtual()) {
5382        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5383        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5384        return;
5385      }
5386
5387    // Check for virtual methods.
5388    typedef CXXRecordDecl::method_iterator meth_iter;
5389    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5390         ++mi) {
5391      if (mi->isVirtual()) {
5392        SourceLocation MLoc = mi->getSourceRange().getBegin();
5393        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5394        return;
5395      }
5396    }
5397  }
5398
5399  bool (CXXRecordDecl::*hasTrivial)() const;
5400  switch (member) {
5401  case CXXDefaultConstructor:
5402    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5403  case CXXCopyConstructor:
5404    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5405  case CXXCopyAssignment:
5406    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5407  case CXXDestructor:
5408    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5409  default:
5410    assert(0 && "unexpected special member"); return;
5411  }
5412
5413  // Check for nontrivial bases (and recurse).
5414  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5415    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5416    assert(BaseRT && "Don't know how to handle dependent bases");
5417    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5418    if (!(BaseRecTy->*hasTrivial)()) {
5419      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5420      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5421      DiagnoseNontrivial(BaseRT, member);
5422      return;
5423    }
5424  }
5425
5426  // Check for nontrivial members (and recurse).
5427  typedef RecordDecl::field_iterator field_iter;
5428  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5429       ++fi) {
5430    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5431    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5432      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5433
5434      if (!(EltRD->*hasTrivial)()) {
5435        SourceLocation FLoc = (*fi)->getLocation();
5436        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5437        DiagnoseNontrivial(EltRT, member);
5438        return;
5439      }
5440    }
5441  }
5442
5443  assert(0 && "found no explanation for non-trivial member");
5444}
5445
5446/// TranslateIvarVisibility - Translate visibility from a token ID to an
5447///  AST enum value.
5448static ObjCIvarDecl::AccessControl
5449TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5450  switch (ivarVisibility) {
5451  default: assert(0 && "Unknown visitibility kind");
5452  case tok::objc_private: return ObjCIvarDecl::Private;
5453  case tok::objc_public: return ObjCIvarDecl::Public;
5454  case tok::objc_protected: return ObjCIvarDecl::Protected;
5455  case tok::objc_package: return ObjCIvarDecl::Package;
5456  }
5457}
5458
5459/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5460/// in order to create an IvarDecl object for it.
5461Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5462                                SourceLocation DeclStart,
5463                                DeclPtrTy IntfDecl,
5464                                Declarator &D, ExprTy *BitfieldWidth,
5465                                tok::ObjCKeywordKind Visibility) {
5466
5467  IdentifierInfo *II = D.getIdentifier();
5468  Expr *BitWidth = (Expr*)BitfieldWidth;
5469  SourceLocation Loc = DeclStart;
5470  if (II) Loc = D.getIdentifierLoc();
5471
5472  // FIXME: Unnamed fields can be handled in various different ways, for
5473  // example, unnamed unions inject all members into the struct namespace!
5474
5475  TypeSourceInfo *TInfo = 0;
5476  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5477
5478  if (BitWidth) {
5479    // 6.7.2.1p3, 6.7.2.1p4
5480    if (VerifyBitField(Loc, II, T, BitWidth)) {
5481      D.setInvalidType();
5482      DeleteExpr(BitWidth);
5483      BitWidth = 0;
5484    }
5485  } else {
5486    // Not a bitfield.
5487
5488    // validate II.
5489
5490  }
5491
5492  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5493  // than a variably modified type.
5494  if (T->isVariablyModifiedType()) {
5495    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5496    D.setInvalidType();
5497  }
5498
5499  // Get the visibility (access control) for this ivar.
5500  ObjCIvarDecl::AccessControl ac =
5501    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5502                                        : ObjCIvarDecl::None;
5503  // Must set ivar's DeclContext to its enclosing interface.
5504  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5505  DeclContext *EnclosingContext;
5506  if (ObjCImplementationDecl *IMPDecl =
5507      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5508    // Case of ivar declared in an implementation. Context is that of its class.
5509    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5510    assert(IDecl && "No class- ActOnIvar");
5511    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5512  } else
5513    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5514  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5515
5516  // Construct the decl.
5517  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5518                                             EnclosingContext, Loc, II, T,
5519                                             TInfo, ac, (Expr *)BitfieldWidth);
5520
5521  if (II) {
5522    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5523                                           ForRedeclaration);
5524    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5525        && !isa<TagDecl>(PrevDecl)) {
5526      Diag(Loc, diag::err_duplicate_member) << II;
5527      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5528      NewID->setInvalidDecl();
5529    }
5530  }
5531
5532  // Process attributes attached to the ivar.
5533  ProcessDeclAttributes(S, NewID, D);
5534
5535  if (D.isInvalidType())
5536    NewID->setInvalidDecl();
5537
5538  if (II) {
5539    // FIXME: When interfaces are DeclContexts, we'll need to add
5540    // these to the interface.
5541    S->AddDecl(DeclPtrTy::make(NewID));
5542    IdResolver.AddDecl(NewID);
5543  }
5544
5545  return DeclPtrTy::make(NewID);
5546}
5547
5548void Sema::ActOnFields(Scope* S,
5549                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5550                       DeclPtrTy *Fields, unsigned NumFields,
5551                       SourceLocation LBrac, SourceLocation RBrac,
5552                       AttributeList *Attr) {
5553  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5554  assert(EnclosingDecl && "missing record or interface decl");
5555
5556  // If the decl this is being inserted into is invalid, then it may be a
5557  // redeclaration or some other bogus case.  Don't try to add fields to it.
5558  if (EnclosingDecl->isInvalidDecl()) {
5559    // FIXME: Deallocate fields?
5560    return;
5561  }
5562
5563
5564  // Verify that all the fields are okay.
5565  unsigned NumNamedMembers = 0;
5566  llvm::SmallVector<FieldDecl*, 32> RecFields;
5567
5568  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5569  for (unsigned i = 0; i != NumFields; ++i) {
5570    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5571
5572    // Get the type for the field.
5573    Type *FDTy = FD->getType().getTypePtr();
5574
5575    if (!FD->isAnonymousStructOrUnion()) {
5576      // Remember all fields written by the user.
5577      RecFields.push_back(FD);
5578    }
5579
5580    // If the field is already invalid for some reason, don't emit more
5581    // diagnostics about it.
5582    if (FD->isInvalidDecl()) {
5583      EnclosingDecl->setInvalidDecl();
5584      continue;
5585    }
5586
5587    // C99 6.7.2.1p2:
5588    //   A structure or union shall not contain a member with
5589    //   incomplete or function type (hence, a structure shall not
5590    //   contain an instance of itself, but may contain a pointer to
5591    //   an instance of itself), except that the last member of a
5592    //   structure with more than one named member may have incomplete
5593    //   array type; such a structure (and any union containing,
5594    //   possibly recursively, a member that is such a structure)
5595    //   shall not be a member of a structure or an element of an
5596    //   array.
5597    if (FDTy->isFunctionType()) {
5598      // Field declared as a function.
5599      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5600        << FD->getDeclName();
5601      FD->setInvalidDecl();
5602      EnclosingDecl->setInvalidDecl();
5603      continue;
5604    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5605               Record && Record->isStruct()) {
5606      // Flexible array member.
5607      if (NumNamedMembers < 1) {
5608        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5609          << FD->getDeclName();
5610        FD->setInvalidDecl();
5611        EnclosingDecl->setInvalidDecl();
5612        continue;
5613      }
5614      // Okay, we have a legal flexible array member at the end of the struct.
5615      if (Record)
5616        Record->setHasFlexibleArrayMember(true);
5617    } else if (!FDTy->isDependentType() &&
5618               RequireCompleteType(FD->getLocation(), FD->getType(),
5619                                   diag::err_field_incomplete)) {
5620      // Incomplete type
5621      FD->setInvalidDecl();
5622      EnclosingDecl->setInvalidDecl();
5623      continue;
5624    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5625      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5626        // If this is a member of a union, then entire union becomes "flexible".
5627        if (Record && Record->isUnion()) {
5628          Record->setHasFlexibleArrayMember(true);
5629        } else {
5630          // If this is a struct/class and this is not the last element, reject
5631          // it.  Note that GCC supports variable sized arrays in the middle of
5632          // structures.
5633          if (i != NumFields-1)
5634            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5635              << FD->getDeclName() << FD->getType();
5636          else {
5637            // We support flexible arrays at the end of structs in
5638            // other structs as an extension.
5639            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5640              << FD->getDeclName();
5641            if (Record)
5642              Record->setHasFlexibleArrayMember(true);
5643          }
5644        }
5645      }
5646      if (Record && FDTTy->getDecl()->hasObjectMember())
5647        Record->setHasObjectMember(true);
5648    } else if (FDTy->isObjCInterfaceType()) {
5649      /// A field cannot be an Objective-c object
5650      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5651      FD->setInvalidDecl();
5652      EnclosingDecl->setInvalidDecl();
5653      continue;
5654    } else if (getLangOptions().ObjC1 &&
5655               getLangOptions().getGCMode() != LangOptions::NonGC &&
5656               Record &&
5657               (FD->getType()->isObjCObjectPointerType() ||
5658                FD->getType().isObjCGCStrong()))
5659      Record->setHasObjectMember(true);
5660    // Keep track of the number of named members.
5661    if (FD->getIdentifier())
5662      ++NumNamedMembers;
5663  }
5664
5665  // Okay, we successfully defined 'Record'.
5666  if (Record) {
5667    Record->completeDefinition();
5668  } else {
5669    ObjCIvarDecl **ClsFields =
5670      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5671    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5672      ID->setLocEnd(RBrac);
5673      // Add ivar's to class's DeclContext.
5674      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5675        ClsFields[i]->setLexicalDeclContext(ID);
5676        ID->addDecl(ClsFields[i]);
5677      }
5678      // Must enforce the rule that ivars in the base classes may not be
5679      // duplicates.
5680      if (ID->getSuperClass())
5681        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
5682    } else if (ObjCImplementationDecl *IMPDecl =
5683                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5684      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5685      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5686        // Ivar declared in @implementation never belongs to the implementation.
5687        // Only it is in implementation's lexical context.
5688        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5689      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5690    } else if (ObjCCategoryDecl *CDecl =
5691                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
5692      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension())
5693        Diag(LBrac, diag::err_misplaced_ivar);
5694      else {
5695        // FIXME. Class extension does not have a LocEnd field.
5696        // CDecl->setLocEnd(RBrac);
5697        // Add ivar's to class extension's DeclContext.
5698        for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5699          ClsFields[i]->setLexicalDeclContext(CDecl);
5700          CDecl->addDecl(ClsFields[i]);
5701        }
5702      }
5703    }
5704  }
5705
5706  if (Attr)
5707    ProcessDeclAttributeList(S, Record, Attr);
5708}
5709
5710/// \brief Determine whether the given integral value is representable within
5711/// the given type T.
5712static bool isRepresentableIntegerValue(ASTContext &Context,
5713                                        llvm::APSInt &Value,
5714                                        QualType T) {
5715  assert(T->isIntegralType() && "Integral type required!");
5716  unsigned BitWidth = Context.getTypeSize(T);
5717
5718  if (Value.isUnsigned() || Value.isNonNegative())
5719    return Value.getActiveBits() < BitWidth;
5720
5721  return Value.getMinSignedBits() <= BitWidth;
5722}
5723
5724// \brief Given an integral type, return the next larger integral type
5725// (or a NULL type of no such type exists).
5726static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
5727  // FIXME: Int128/UInt128 support, which also needs to be introduced into
5728  // enum checking below.
5729  assert(T->isIntegralType() && "Integral type required!");
5730  const unsigned NumTypes = 4;
5731  QualType SignedIntegralTypes[NumTypes] = {
5732    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
5733  };
5734  QualType UnsignedIntegralTypes[NumTypes] = {
5735    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
5736    Context.UnsignedLongLongTy
5737  };
5738
5739  unsigned BitWidth = Context.getTypeSize(T);
5740  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
5741                                            : UnsignedIntegralTypes;
5742  for (unsigned I = 0; I != NumTypes; ++I)
5743    if (Context.getTypeSize(Types[I]) > BitWidth)
5744      return Types[I];
5745
5746  return QualType();
5747}
5748
5749EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5750                                          EnumConstantDecl *LastEnumConst,
5751                                          SourceLocation IdLoc,
5752                                          IdentifierInfo *Id,
5753                                          ExprArg val) {
5754  Expr *Val = (Expr *)val.get();
5755
5756  unsigned IntWidth = Context.Target.getIntWidth();
5757  llvm::APSInt EnumVal(IntWidth);
5758  QualType EltTy;
5759  if (Val) {
5760    if (Enum->isDependentType() || Val->isTypeDependent())
5761      EltTy = Context.DependentTy;
5762    else {
5763      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5764      SourceLocation ExpLoc;
5765      if (!Val->isValueDependent() &&
5766          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5767        Val = 0;
5768      } else {
5769        if (!getLangOptions().CPlusPlus) {
5770          // C99 6.7.2.2p2:
5771          //   The expression that defines the value of an enumeration constant
5772          //   shall be an integer constant expression that has a value
5773          //   representable as an int.
5774
5775          // Complain if the value is not representable in an int.
5776          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
5777            Diag(IdLoc, diag::ext_enum_value_not_int)
5778              << EnumVal.toString(10) << Val->getSourceRange()
5779              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
5780          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
5781            // Force the type of the expression to 'int'.
5782            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
5783
5784            if (Val != val.get()) {
5785              val.release();
5786              val = Val;
5787            }
5788          }
5789        }
5790
5791        // C++0x [dcl.enum]p5:
5792        //   If the underlying type is not fixed, the type of each enumerator
5793        //   is the type of its initializing value:
5794        //     - If an initializer is specified for an enumerator, the
5795        //       initializing value has the same type as the expression.
5796        EltTy = Val->getType();
5797      }
5798    }
5799  }
5800
5801  if (!Val) {
5802    if (Enum->isDependentType())
5803      EltTy = Context.DependentTy;
5804    else if (!LastEnumConst) {
5805      // C++0x [dcl.enum]p5:
5806      //   If the underlying type is not fixed, the type of each enumerator
5807      //   is the type of its initializing value:
5808      //     - If no initializer is specified for the first enumerator, the
5809      //       initializing value has an unspecified integral type.
5810      //
5811      // GCC uses 'int' for its unspecified integral type, as does
5812      // C99 6.7.2.2p3.
5813      EltTy = Context.IntTy;
5814    } else {
5815      // Assign the last value + 1.
5816      EnumVal = LastEnumConst->getInitVal();
5817      ++EnumVal;
5818      EltTy = LastEnumConst->getType();
5819
5820      // Check for overflow on increment.
5821      if (EnumVal < LastEnumConst->getInitVal()) {
5822        // C++0x [dcl.enum]p5:
5823        //   If the underlying type is not fixed, the type of each enumerator
5824        //   is the type of its initializing value:
5825        //
5826        //     - Otherwise the type of the initializing value is the same as
5827        //       the type of the initializing value of the preceding enumerator
5828        //       unless the incremented value is not representable in that type,
5829        //       in which case the type is an unspecified integral type
5830        //       sufficient to contain the incremented value. If no such type
5831        //       exists, the program is ill-formed.
5832        QualType T = getNextLargerIntegralType(Context, EltTy);
5833        if (T.isNull()) {
5834          // There is no integral type larger enough to represent this
5835          // value. Complain, then allow the value to wrap around.
5836          EnumVal = LastEnumConst->getInitVal();
5837          EnumVal.zext(EnumVal.getBitWidth() * 2);
5838          Diag(IdLoc, diag::warn_enumerator_too_large)
5839            << EnumVal.toString(10);
5840        } else {
5841          EltTy = T;
5842        }
5843
5844        // Retrieve the last enumerator's value, extent that type to the
5845        // type that is supposed to be large enough to represent the incremented
5846        // value, then increment.
5847        EnumVal = LastEnumConst->getInitVal();
5848        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5849        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5850        ++EnumVal;
5851
5852        // If we're not in C++, diagnose the overflow of enumerator values,
5853        // which in C99 means that the enumerator value is not representable in
5854        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
5855        // permits enumerator values that are representable in some larger
5856        // integral type.
5857        if (!getLangOptions().CPlusPlus && !T.isNull())
5858          Diag(IdLoc, diag::warn_enum_value_overflow);
5859      } else if (!getLangOptions().CPlusPlus &&
5860                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
5861        // Enforce C99 6.7.2.2p2 even when we compute the next value.
5862        Diag(IdLoc, diag::ext_enum_value_not_int)
5863          << EnumVal.toString(10) << 1;
5864      }
5865    }
5866  }
5867
5868  if (!EltTy->isDependentType()) {
5869    // Make the enumerator value match the signedness and size of the
5870    // enumerator's type.
5871    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
5872    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
5873  }
5874
5875  val.release();
5876  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5877                                  Val, EnumVal);
5878}
5879
5880
5881Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5882                                        DeclPtrTy lastEnumConst,
5883                                        SourceLocation IdLoc,
5884                                        IdentifierInfo *Id,
5885                                        SourceLocation EqualLoc, ExprTy *val) {
5886  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5887  EnumConstantDecl *LastEnumConst =
5888    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5889  Expr *Val = static_cast<Expr*>(val);
5890
5891  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5892  // we find one that is.
5893  S = getNonFieldDeclScope(S);
5894
5895  // Verify that there isn't already something declared with this name in this
5896  // scope.
5897  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5898                                         ForRedeclaration);
5899  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5900    // Maybe we will complain about the shadowed template parameter.
5901    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5902    // Just pretend that we didn't see the previous declaration.
5903    PrevDecl = 0;
5904  }
5905
5906  if (PrevDecl) {
5907    // When in C++, we may get a TagDecl with the same name; in this case the
5908    // enum constant will 'hide' the tag.
5909    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5910           "Received TagDecl when not in C++!");
5911    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5912      if (isa<EnumConstantDecl>(PrevDecl))
5913        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5914      else
5915        Diag(IdLoc, diag::err_redefinition) << Id;
5916      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5917      if (Val) Val->Destroy(Context);
5918      return DeclPtrTy();
5919    }
5920  }
5921
5922  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5923                                            IdLoc, Id, Owned(Val));
5924
5925  // Register this decl in the current scope stack.
5926  if (New) {
5927    New->setAccess(TheEnumDecl->getAccess());
5928    PushOnScopeChains(New, S);
5929  }
5930
5931  return DeclPtrTy::make(New);
5932}
5933
5934void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5935                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5936                         DeclPtrTy *Elements, unsigned NumElements,
5937                         Scope *S, AttributeList *Attr) {
5938  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5939  QualType EnumType = Context.getTypeDeclType(Enum);
5940
5941  if (Attr)
5942    ProcessDeclAttributeList(S, Enum, Attr);
5943
5944  if (Enum->isDependentType()) {
5945    for (unsigned i = 0; i != NumElements; ++i) {
5946      EnumConstantDecl *ECD =
5947        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5948      if (!ECD) continue;
5949
5950      ECD->setType(EnumType);
5951    }
5952
5953    Enum->completeDefinition(Context.DependentTy, Context.DependentTy);
5954    return;
5955  }
5956
5957  // TODO: If the result value doesn't fit in an int, it must be a long or long
5958  // long value.  ISO C does not support this, but GCC does as an extension,
5959  // emit a warning.
5960  unsigned IntWidth = Context.Target.getIntWidth();
5961  unsigned CharWidth = Context.Target.getCharWidth();
5962  unsigned ShortWidth = Context.Target.getShortWidth();
5963
5964  // Verify that all the values are okay, compute the size of the values, and
5965  // reverse the list.
5966  unsigned NumNegativeBits = 0;
5967  unsigned NumPositiveBits = 0;
5968
5969  // Keep track of whether all elements have type int.
5970  bool AllElementsInt = true;
5971
5972  for (unsigned i = 0; i != NumElements; ++i) {
5973    EnumConstantDecl *ECD =
5974      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5975    if (!ECD) continue;  // Already issued a diagnostic.
5976
5977    const llvm::APSInt &InitVal = ECD->getInitVal();
5978
5979    // Keep track of the size of positive and negative values.
5980    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5981      NumPositiveBits = std::max(NumPositiveBits,
5982                                 (unsigned)InitVal.getActiveBits());
5983    else
5984      NumNegativeBits = std::max(NumNegativeBits,
5985                                 (unsigned)InitVal.getMinSignedBits());
5986
5987    // Keep track of whether every enum element has type int (very commmon).
5988    if (AllElementsInt)
5989      AllElementsInt = ECD->getType() == Context.IntTy;
5990  }
5991
5992  // Figure out the type that should be used for this enum.
5993  // FIXME: Support -fshort-enums.
5994  QualType BestType;
5995  unsigned BestWidth;
5996
5997  // C++0x N3000 [conv.prom]p3:
5998  //   An rvalue of an unscoped enumeration type whose underlying
5999  //   type is not fixed can be converted to an rvalue of the first
6000  //   of the following types that can represent all the values of
6001  //   the enumeration: int, unsigned int, long int, unsigned long
6002  //   int, long long int, or unsigned long long int.
6003  // C99 6.4.4.3p2:
6004  //   An identifier declared as an enumeration constant has type int.
6005  // The C99 rule is modified by a gcc extension
6006  QualType BestPromotionType;
6007
6008  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6009
6010  if (NumNegativeBits) {
6011    // If there is a negative value, figure out the smallest integer type (of
6012    // int/long/longlong) that fits.
6013    // If it's packed, check also if it fits a char or a short.
6014    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6015      BestType = Context.SignedCharTy;
6016      BestWidth = CharWidth;
6017    } else if (Packed && NumNegativeBits <= ShortWidth &&
6018               NumPositiveBits < ShortWidth) {
6019      BestType = Context.ShortTy;
6020      BestWidth = ShortWidth;
6021    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6022      BestType = Context.IntTy;
6023      BestWidth = IntWidth;
6024    } else {
6025      BestWidth = Context.Target.getLongWidth();
6026
6027      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6028        BestType = Context.LongTy;
6029      } else {
6030        BestWidth = Context.Target.getLongLongWidth();
6031
6032        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6033          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6034        BestType = Context.LongLongTy;
6035      }
6036    }
6037    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6038  } else {
6039    // If there is no negative value, figure out the smallest type that fits
6040    // all of the enumerator values.
6041    // If it's packed, check also if it fits a char or a short.
6042    if (Packed && NumPositiveBits <= CharWidth) {
6043      BestType = Context.UnsignedCharTy;
6044      BestPromotionType = Context.IntTy;
6045      BestWidth = CharWidth;
6046    } else if (Packed && NumPositiveBits <= ShortWidth) {
6047      BestType = Context.UnsignedShortTy;
6048      BestPromotionType = Context.IntTy;
6049      BestWidth = ShortWidth;
6050    } else if (NumPositiveBits <= IntWidth) {
6051      BestType = Context.UnsignedIntTy;
6052      BestWidth = IntWidth;
6053      BestPromotionType
6054        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6055                           ? Context.UnsignedIntTy : Context.IntTy;
6056    } else if (NumPositiveBits <=
6057               (BestWidth = Context.Target.getLongWidth())) {
6058      BestType = Context.UnsignedLongTy;
6059      BestPromotionType
6060        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6061                           ? Context.UnsignedLongTy : Context.LongTy;
6062    } else {
6063      BestWidth = Context.Target.getLongLongWidth();
6064      assert(NumPositiveBits <= BestWidth &&
6065             "How could an initializer get larger than ULL?");
6066      BestType = Context.UnsignedLongLongTy;
6067      BestPromotionType
6068        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6069                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6070    }
6071  }
6072
6073  // Loop over all of the enumerator constants, changing their types to match
6074  // the type of the enum if needed.
6075  for (unsigned i = 0; i != NumElements; ++i) {
6076    EnumConstantDecl *ECD =
6077      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6078    if (!ECD) continue;  // Already issued a diagnostic.
6079
6080    // Standard C says the enumerators have int type, but we allow, as an
6081    // extension, the enumerators to be larger than int size.  If each
6082    // enumerator value fits in an int, type it as an int, otherwise type it the
6083    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6084    // that X has type 'int', not 'unsigned'.
6085
6086    // Determine whether the value fits into an int.
6087    llvm::APSInt InitVal = ECD->getInitVal();
6088
6089    // If it fits into an integer type, force it.  Otherwise force it to match
6090    // the enum decl type.
6091    QualType NewTy;
6092    unsigned NewWidth;
6093    bool NewSign;
6094    if (!getLangOptions().CPlusPlus &&
6095        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6096      NewTy = Context.IntTy;
6097      NewWidth = IntWidth;
6098      NewSign = true;
6099    } else if (ECD->getType() == BestType) {
6100      // Already the right type!
6101      if (getLangOptions().CPlusPlus)
6102        // C++ [dcl.enum]p4: Following the closing brace of an
6103        // enum-specifier, each enumerator has the type of its
6104        // enumeration.
6105        ECD->setType(EnumType);
6106      continue;
6107    } else {
6108      NewTy = BestType;
6109      NewWidth = BestWidth;
6110      NewSign = BestType->isSignedIntegerType();
6111    }
6112
6113    // Adjust the APSInt value.
6114    InitVal.extOrTrunc(NewWidth);
6115    InitVal.setIsSigned(NewSign);
6116    ECD->setInitVal(InitVal);
6117
6118    // Adjust the Expr initializer and type.
6119    if (ECD->getInitExpr())
6120      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6121                                                      CastExpr::CK_IntegralCast,
6122                                                      ECD->getInitExpr(),
6123                                                      /*isLvalue=*/false));
6124    if (getLangOptions().CPlusPlus)
6125      // C++ [dcl.enum]p4: Following the closing brace of an
6126      // enum-specifier, each enumerator has the type of its
6127      // enumeration.
6128      ECD->setType(EnumType);
6129    else
6130      ECD->setType(NewTy);
6131  }
6132
6133  Enum->completeDefinition(BestType, BestPromotionType);
6134}
6135
6136Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6137                                            ExprArg expr) {
6138  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6139
6140  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6141                                                   Loc, AsmString);
6142  CurContext->addDecl(New);
6143  return DeclPtrTy::make(New);
6144}
6145
6146void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6147                             SourceLocation PragmaLoc,
6148                             SourceLocation NameLoc) {
6149  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6150
6151  if (PrevDecl) {
6152    PrevDecl->addAttr(::new (Context) WeakAttr());
6153  } else {
6154    (void)WeakUndeclaredIdentifiers.insert(
6155      std::pair<IdentifierInfo*,WeakInfo>
6156        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6157  }
6158}
6159
6160void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6161                                IdentifierInfo* AliasName,
6162                                SourceLocation PragmaLoc,
6163                                SourceLocation NameLoc,
6164                                SourceLocation AliasNameLoc) {
6165  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6166  WeakInfo W = WeakInfo(Name, NameLoc);
6167
6168  if (PrevDecl) {
6169    if (!PrevDecl->hasAttr<AliasAttr>())
6170      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6171        DeclApplyPragmaWeak(TUScope, ND, W);
6172  } else {
6173    (void)WeakUndeclaredIdentifiers.insert(
6174      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6175  }
6176}
6177