SemaDecl.cpp revision bf6c4651811d95cc7f58e6daf16a8f7b1705d706
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
563    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
564      return false;
565
566    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
567      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
568        return false;
569    } else {
570      // 'static inline' functions are used in headers; don't warn.
571      if (FD->getStorageClass() == SC_Static &&
572          FD->isInlineSpecified())
573        return false;
574    }
575
576    if (FD->isThisDeclarationADefinition() &&
577        Context.DeclMustBeEmitted(FD))
578      return false;
579
580  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
581    if (!VD->isFileVarDecl() ||
582        VD->getType().isConstant(Context) ||
583        Context.DeclMustBeEmitted(VD))
584      return false;
585
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590  } else {
591    return false;
592  }
593
594  // Only warn for unused decls internal to the translation unit.
595  if (D->getLinkage() == ExternalLinkage)
596    return false;
597
598  return true;
599}
600
601void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
602  if (!D)
603    return;
604
605  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
606    const FunctionDecl *First = FD->getFirstDeclaration();
607    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
608      return; // First should already be in the vector.
609  }
610
611  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
612    const VarDecl *First = VD->getFirstDeclaration();
613    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
614      return; // First should already be in the vector.
615  }
616
617   if (ShouldWarnIfUnusedFileScopedDecl(D))
618     UnusedFileScopedDecls.push_back(D);
619 }
620
621static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
622  if (D->isInvalidDecl())
623    return false;
624
625  if (D->isUsed() || D->hasAttr<UnusedAttr>())
626    return false;
627
628  // White-list anything that isn't a local variable.
629  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
630      !D->getDeclContext()->isFunctionOrMethod())
631    return false;
632
633  // Types of valid local variables should be complete, so this should succeed.
634  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
635
636    // White-list anything with an __attribute__((unused)) type.
637    QualType Ty = VD->getType();
638
639    // Only look at the outermost level of typedef.
640    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
641      if (TT->getDecl()->hasAttr<UnusedAttr>())
642        return false;
643    }
644
645    // If we failed to complete the type for some reason, or if the type is
646    // dependent, don't diagnose the variable.
647    if (Ty->isIncompleteType() || Ty->isDependentType())
648      return false;
649
650    if (const TagType *TT = Ty->getAs<TagType>()) {
651      const TagDecl *Tag = TT->getDecl();
652      if (Tag->hasAttr<UnusedAttr>())
653        return false;
654
655      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
656        // FIXME: Checking for the presence of a user-declared constructor
657        // isn't completely accurate; we'd prefer to check that the initializer
658        // has no side effects.
659        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
660          return false;
661      }
662    }
663
664    // TODO: __attribute__((unused)) templates?
665  }
666
667  return true;
668}
669
670void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
671  if (!ShouldDiagnoseUnusedDecl(D))
672    return;
673
674  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
675    Diag(D->getLocation(), diag::warn_unused_exception_param)
676    << D->getDeclName();
677  else
678    Diag(D->getLocation(), diag::warn_unused_variable)
679    << D->getDeclName();
680}
681
682void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
683  if (S->decl_empty()) return;
684  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
685         "Scope shouldn't contain decls!");
686
687  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
688       I != E; ++I) {
689    Decl *TmpD = (*I);
690    assert(TmpD && "This decl didn't get pushed??");
691
692    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
693    NamedDecl *D = cast<NamedDecl>(TmpD);
694
695    if (!D->getDeclName()) continue;
696
697    // Diagnose unused variables in this scope.
698    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
699      DiagnoseUnusedDecl(D);
700
701    // Remove this name from our lexical scope.
702    IdResolver.RemoveDecl(D);
703  }
704}
705
706/// \brief Look for an Objective-C class in the translation unit.
707///
708/// \param Id The name of the Objective-C class we're looking for. If
709/// typo-correction fixes this name, the Id will be updated
710/// to the fixed name.
711///
712/// \param IdLoc The location of the name in the translation unit.
713///
714/// \param TypoCorrection If true, this routine will attempt typo correction
715/// if there is no class with the given name.
716///
717/// \returns The declaration of the named Objective-C class, or NULL if the
718/// class could not be found.
719ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
720                                              SourceLocation IdLoc,
721                                              bool TypoCorrection) {
722  // The third "scope" argument is 0 since we aren't enabling lazy built-in
723  // creation from this context.
724  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
725
726  if (!IDecl && TypoCorrection) {
727    // Perform typo correction at the given location, but only if we
728    // find an Objective-C class name.
729    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
730    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
731        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
732      Diag(IdLoc, diag::err_undef_interface_suggest)
733        << Id << IDecl->getDeclName()
734        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
735      Diag(IDecl->getLocation(), diag::note_previous_decl)
736        << IDecl->getDeclName();
737
738      Id = IDecl->getIdentifier();
739    }
740  }
741
742  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
743}
744
745/// getNonFieldDeclScope - Retrieves the innermost scope, starting
746/// from S, where a non-field would be declared. This routine copes
747/// with the difference between C and C++ scoping rules in structs and
748/// unions. For example, the following code is well-formed in C but
749/// ill-formed in C++:
750/// @code
751/// struct S6 {
752///   enum { BAR } e;
753/// };
754///
755/// void test_S6() {
756///   struct S6 a;
757///   a.e = BAR;
758/// }
759/// @endcode
760/// For the declaration of BAR, this routine will return a different
761/// scope. The scope S will be the scope of the unnamed enumeration
762/// within S6. In C++, this routine will return the scope associated
763/// with S6, because the enumeration's scope is a transparent
764/// context but structures can contain non-field names. In C, this
765/// routine will return the translation unit scope, since the
766/// enumeration's scope is a transparent context and structures cannot
767/// contain non-field names.
768Scope *Sema::getNonFieldDeclScope(Scope *S) {
769  while (((S->getFlags() & Scope::DeclScope) == 0) ||
770         (S->getEntity() &&
771          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
772         (S->isClassScope() && !getLangOptions().CPlusPlus))
773    S = S->getParent();
774  return S;
775}
776
777/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
778/// file scope.  lazily create a decl for it. ForRedeclaration is true
779/// if we're creating this built-in in anticipation of redeclaring the
780/// built-in.
781NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
782                                     Scope *S, bool ForRedeclaration,
783                                     SourceLocation Loc) {
784  Builtin::ID BID = (Builtin::ID)bid;
785
786  ASTContext::GetBuiltinTypeError Error;
787  QualType R = Context.GetBuiltinType(BID, Error);
788  switch (Error) {
789  case ASTContext::GE_None:
790    // Okay
791    break;
792
793  case ASTContext::GE_Missing_stdio:
794    if (ForRedeclaration)
795      Diag(Loc, diag::err_implicit_decl_requires_stdio)
796        << Context.BuiltinInfo.GetName(BID);
797    return 0;
798
799  case ASTContext::GE_Missing_setjmp:
800    if (ForRedeclaration)
801      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
802        << Context.BuiltinInfo.GetName(BID);
803    return 0;
804  }
805
806  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
807    Diag(Loc, diag::ext_implicit_lib_function_decl)
808      << Context.BuiltinInfo.GetName(BID)
809      << R;
810    if (Context.BuiltinInfo.getHeaderName(BID) &&
811        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
812          != Diagnostic::Ignored)
813      Diag(Loc, diag::note_please_include_header)
814        << Context.BuiltinInfo.getHeaderName(BID)
815        << Context.BuiltinInfo.GetName(BID);
816  }
817
818  FunctionDecl *New = FunctionDecl::Create(Context,
819                                           Context.getTranslationUnitDecl(),
820                                           Loc, II, R, /*TInfo=*/0,
821                                           SC_Extern,
822                                           SC_None, false,
823                                           /*hasPrototype=*/true);
824  New->setImplicit();
825
826  // Create Decl objects for each parameter, adding them to the
827  // FunctionDecl.
828  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
829    llvm::SmallVector<ParmVarDecl*, 16> Params;
830    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
831      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
832                                           FT->getArgType(i), /*TInfo=*/0,
833                                           SC_None, SC_None, 0));
834    New->setParams(Params.data(), Params.size());
835  }
836
837  AddKnownFunctionAttributes(New);
838
839  // TUScope is the translation-unit scope to insert this function into.
840  // FIXME: This is hideous. We need to teach PushOnScopeChains to
841  // relate Scopes to DeclContexts, and probably eliminate CurContext
842  // entirely, but we're not there yet.
843  DeclContext *SavedContext = CurContext;
844  CurContext = Context.getTranslationUnitDecl();
845  PushOnScopeChains(New, TUScope);
846  CurContext = SavedContext;
847  return New;
848}
849
850/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
851/// same name and scope as a previous declaration 'Old'.  Figure out
852/// how to resolve this situation, merging decls or emitting
853/// diagnostics as appropriate. If there was an error, set New to be invalid.
854///
855void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
856  // If the new decl is known invalid already, don't bother doing any
857  // merging checks.
858  if (New->isInvalidDecl()) return;
859
860  // Allow multiple definitions for ObjC built-in typedefs.
861  // FIXME: Verify the underlying types are equivalent!
862  if (getLangOptions().ObjC1) {
863    const IdentifierInfo *TypeID = New->getIdentifier();
864    switch (TypeID->getLength()) {
865    default: break;
866    case 2:
867      if (!TypeID->isStr("id"))
868        break;
869      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
870      // Install the built-in type for 'id', ignoring the current definition.
871      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
872      return;
873    case 5:
874      if (!TypeID->isStr("Class"))
875        break;
876      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
877      // Install the built-in type for 'Class', ignoring the current definition.
878      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
879      return;
880    case 3:
881      if (!TypeID->isStr("SEL"))
882        break;
883      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
884      // Install the built-in type for 'SEL', ignoring the current definition.
885      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
886      return;
887    case 8:
888      if (!TypeID->isStr("Protocol"))
889        break;
890      Context.setObjCProtoType(New->getUnderlyingType());
891      return;
892    }
893    // Fall through - the typedef name was not a builtin type.
894  }
895
896  // Verify the old decl was also a type.
897  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
898  if (!Old) {
899    Diag(New->getLocation(), diag::err_redefinition_different_kind)
900      << New->getDeclName();
901
902    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
903    if (OldD->getLocation().isValid())
904      Diag(OldD->getLocation(), diag::note_previous_definition);
905
906    return New->setInvalidDecl();
907  }
908
909  // If the old declaration is invalid, just give up here.
910  if (Old->isInvalidDecl())
911    return New->setInvalidDecl();
912
913  // Determine the "old" type we'll use for checking and diagnostics.
914  QualType OldType;
915  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
916    OldType = OldTypedef->getUnderlyingType();
917  else
918    OldType = Context.getTypeDeclType(Old);
919
920  // If the typedef types are not identical, reject them in all languages and
921  // with any extensions enabled.
922
923  if (OldType != New->getUnderlyingType() &&
924      Context.getCanonicalType(OldType) !=
925      Context.getCanonicalType(New->getUnderlyingType())) {
926    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
927      << New->getUnderlyingType() << OldType;
928    if (Old->getLocation().isValid())
929      Diag(Old->getLocation(), diag::note_previous_definition);
930    return New->setInvalidDecl();
931  }
932
933  // The types match.  Link up the redeclaration chain if the old
934  // declaration was a typedef.
935  // FIXME: this is a potential source of wierdness if the type
936  // spellings don't match exactly.
937  if (isa<TypedefDecl>(Old))
938    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
939
940  if (getLangOptions().Microsoft)
941    return;
942
943  if (getLangOptions().CPlusPlus) {
944    // C++ [dcl.typedef]p2:
945    //   In a given non-class scope, a typedef specifier can be used to
946    //   redefine the name of any type declared in that scope to refer
947    //   to the type to which it already refers.
948    if (!isa<CXXRecordDecl>(CurContext))
949      return;
950
951    // C++0x [dcl.typedef]p4:
952    //   In a given class scope, a typedef specifier can be used to redefine
953    //   any class-name declared in that scope that is not also a typedef-name
954    //   to refer to the type to which it already refers.
955    //
956    // This wording came in via DR424, which was a correction to the
957    // wording in DR56, which accidentally banned code like:
958    //
959    //   struct S {
960    //     typedef struct A { } A;
961    //   };
962    //
963    // in the C++03 standard. We implement the C++0x semantics, which
964    // allow the above but disallow
965    //
966    //   struct S {
967    //     typedef int I;
968    //     typedef int I;
969    //   };
970    //
971    // since that was the intent of DR56.
972    if (!isa<TypedefDecl >(Old))
973      return;
974
975    Diag(New->getLocation(), diag::err_redefinition)
976      << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980
981  // If we have a redefinition of a typedef in C, emit a warning.  This warning
982  // is normally mapped to an error, but can be controlled with
983  // -Wtypedef-redefinition.  If either the original or the redefinition is
984  // in a system header, don't emit this for compatibility with GCC.
985  if (getDiagnostics().getSuppressSystemWarnings() &&
986      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
987       Context.getSourceManager().isInSystemHeader(New->getLocation())))
988    return;
989
990  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
991    << New->getDeclName();
992  Diag(Old->getLocation(), diag::note_previous_definition);
993  return;
994}
995
996/// DeclhasAttr - returns true if decl Declaration already has the target
997/// attribute.
998static bool
999DeclHasAttr(const Decl *D, const Attr *A) {
1000  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1001  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1002    if ((*i)->getKind() == A->getKind()) {
1003      // FIXME: Don't hardcode this check
1004      if (OA && isa<OwnershipAttr>(*i))
1005        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1006      return true;
1007    }
1008
1009  return false;
1010}
1011
1012/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1013static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1014  if (!Old->hasAttrs())
1015    return;
1016  // Ensure that any moving of objects within the allocated map is done before
1017  // we process them.
1018  if (!New->hasAttrs())
1019    New->setAttrs(AttrVec());
1020  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1021       ++i) {
1022    // FIXME: Make this more general than just checking for Overloadable.
1023    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1024      Attr *NewAttr = (*i)->clone(C);
1025      NewAttr->setInherited(true);
1026      New->addAttr(NewAttr);
1027    }
1028  }
1029}
1030
1031namespace {
1032
1033/// Used in MergeFunctionDecl to keep track of function parameters in
1034/// C.
1035struct GNUCompatibleParamWarning {
1036  ParmVarDecl *OldParm;
1037  ParmVarDecl *NewParm;
1038  QualType PromotedType;
1039};
1040
1041}
1042
1043/// getSpecialMember - get the special member enum for a method.
1044Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1045  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1046    if (Ctor->isCopyConstructor())
1047      return Sema::CXXCopyConstructor;
1048
1049    return Sema::CXXConstructor;
1050  }
1051
1052  if (isa<CXXDestructorDecl>(MD))
1053    return Sema::CXXDestructor;
1054
1055  assert(MD->isCopyAssignmentOperator() &&
1056         "Must have copy assignment operator");
1057  return Sema::CXXCopyAssignment;
1058}
1059
1060/// canRedefineFunction - checks if a function can be redefined. Currently,
1061/// only extern inline functions can be redefined, and even then only in
1062/// GNU89 mode.
1063static bool canRedefineFunction(const FunctionDecl *FD,
1064                                const LangOptions& LangOpts) {
1065  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1066          FD->isInlineSpecified() &&
1067          FD->getStorageClass() == SC_Extern);
1068}
1069
1070/// MergeFunctionDecl - We just parsed a function 'New' from
1071/// declarator D which has the same name and scope as a previous
1072/// declaration 'Old'.  Figure out how to resolve this situation,
1073/// merging decls or emitting diagnostics as appropriate.
1074///
1075/// In C++, New and Old must be declarations that are not
1076/// overloaded. Use IsOverload to determine whether New and Old are
1077/// overloaded, and to select the Old declaration that New should be
1078/// merged with.
1079///
1080/// Returns true if there was an error, false otherwise.
1081bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1082  // Verify the old decl was also a function.
1083  FunctionDecl *Old = 0;
1084  if (FunctionTemplateDecl *OldFunctionTemplate
1085        = dyn_cast<FunctionTemplateDecl>(OldD))
1086    Old = OldFunctionTemplate->getTemplatedDecl();
1087  else
1088    Old = dyn_cast<FunctionDecl>(OldD);
1089  if (!Old) {
1090    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1091      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1092      Diag(Shadow->getTargetDecl()->getLocation(),
1093           diag::note_using_decl_target);
1094      Diag(Shadow->getUsingDecl()->getLocation(),
1095           diag::note_using_decl) << 0;
1096      return true;
1097    }
1098
1099    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1100      << New->getDeclName();
1101    Diag(OldD->getLocation(), diag::note_previous_definition);
1102    return true;
1103  }
1104
1105  // Determine whether the previous declaration was a definition,
1106  // implicit declaration, or a declaration.
1107  diag::kind PrevDiag;
1108  if (Old->isThisDeclarationADefinition())
1109    PrevDiag = diag::note_previous_definition;
1110  else if (Old->isImplicit())
1111    PrevDiag = diag::note_previous_implicit_declaration;
1112  else
1113    PrevDiag = diag::note_previous_declaration;
1114
1115  QualType OldQType = Context.getCanonicalType(Old->getType());
1116  QualType NewQType = Context.getCanonicalType(New->getType());
1117
1118  // Don't complain about this if we're in GNU89 mode and the old function
1119  // is an extern inline function.
1120  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1121      New->getStorageClass() == SC_Static &&
1122      Old->getStorageClass() != SC_Static &&
1123      !canRedefineFunction(Old, getLangOptions())) {
1124    Diag(New->getLocation(), diag::err_static_non_static)
1125      << New;
1126    Diag(Old->getLocation(), PrevDiag);
1127    return true;
1128  }
1129
1130  // If a function is first declared with a calling convention, but is
1131  // later declared or defined without one, the second decl assumes the
1132  // calling convention of the first.
1133  //
1134  // For the new decl, we have to look at the NON-canonical type to tell the
1135  // difference between a function that really doesn't have a calling
1136  // convention and one that is declared cdecl. That's because in
1137  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1138  // because it is the default calling convention.
1139  //
1140  // Note also that we DO NOT return at this point, because we still have
1141  // other tests to run.
1142  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1143  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1144  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1145  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1146  if (OldTypeInfo.getCC() != CC_Default &&
1147      NewTypeInfo.getCC() == CC_Default) {
1148    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1149    New->setType(NewQType);
1150    NewQType = Context.getCanonicalType(NewQType);
1151  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1152                                     NewTypeInfo.getCC())) {
1153    // Calling conventions really aren't compatible, so complain.
1154    Diag(New->getLocation(), diag::err_cconv_change)
1155      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1156      << (OldTypeInfo.getCC() == CC_Default)
1157      << (OldTypeInfo.getCC() == CC_Default ? "" :
1158          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1159    Diag(Old->getLocation(), diag::note_previous_declaration);
1160    return true;
1161  }
1162
1163  // FIXME: diagnose the other way around?
1164  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1165    NewQType = Context.getNoReturnType(NewQType);
1166    New->setType(NewQType);
1167    assert(NewQType.isCanonical());
1168  }
1169
1170  // Merge regparm attribute.
1171  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1172    if (NewType->getRegParmType()) {
1173      Diag(New->getLocation(), diag::err_regparm_mismatch)
1174        << NewType->getRegParmType()
1175        << OldType->getRegParmType();
1176      Diag(Old->getLocation(), diag::note_previous_declaration);
1177      return true;
1178    }
1179
1180    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1181    New->setType(NewQType);
1182    assert(NewQType.isCanonical());
1183  }
1184
1185  if (getLangOptions().CPlusPlus) {
1186    // (C++98 13.1p2):
1187    //   Certain function declarations cannot be overloaded:
1188    //     -- Function declarations that differ only in the return type
1189    //        cannot be overloaded.
1190    QualType OldReturnType
1191      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1192    QualType NewReturnType
1193      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1194    QualType ResQT;
1195    if (OldReturnType != NewReturnType) {
1196      if (NewReturnType->isObjCObjectPointerType()
1197          && OldReturnType->isObjCObjectPointerType())
1198        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1199      if (ResQT.isNull()) {
1200        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1201        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1202        return true;
1203      }
1204      else
1205        NewQType = ResQT;
1206    }
1207
1208    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1209    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1210    if (OldMethod && NewMethod) {
1211      // Preserve triviality.
1212      NewMethod->setTrivial(OldMethod->isTrivial());
1213
1214      bool isFriend = NewMethod->getFriendObjectKind();
1215
1216      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1217        //    -- Member function declarations with the same name and the
1218        //       same parameter types cannot be overloaded if any of them
1219        //       is a static member function declaration.
1220        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1221          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1222          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1223          return true;
1224        }
1225
1226        // C++ [class.mem]p1:
1227        //   [...] A member shall not be declared twice in the
1228        //   member-specification, except that a nested class or member
1229        //   class template can be declared and then later defined.
1230        unsigned NewDiag;
1231        if (isa<CXXConstructorDecl>(OldMethod))
1232          NewDiag = diag::err_constructor_redeclared;
1233        else if (isa<CXXDestructorDecl>(NewMethod))
1234          NewDiag = diag::err_destructor_redeclared;
1235        else if (isa<CXXConversionDecl>(NewMethod))
1236          NewDiag = diag::err_conv_function_redeclared;
1237        else
1238          NewDiag = diag::err_member_redeclared;
1239
1240        Diag(New->getLocation(), NewDiag);
1241        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1242
1243      // Complain if this is an explicit declaration of a special
1244      // member that was initially declared implicitly.
1245      //
1246      // As an exception, it's okay to befriend such methods in order
1247      // to permit the implicit constructor/destructor/operator calls.
1248      } else if (OldMethod->isImplicit()) {
1249        if (isFriend) {
1250          NewMethod->setImplicit();
1251        } else {
1252          Diag(NewMethod->getLocation(),
1253               diag::err_definition_of_implicitly_declared_member)
1254            << New << getSpecialMember(OldMethod);
1255          return true;
1256        }
1257      }
1258    }
1259
1260    // (C++98 8.3.5p3):
1261    //   All declarations for a function shall agree exactly in both the
1262    //   return type and the parameter-type-list.
1263    // attributes should be ignored when comparing.
1264    if (Context.getNoReturnType(OldQType, false) ==
1265        Context.getNoReturnType(NewQType, false))
1266      return MergeCompatibleFunctionDecls(New, Old);
1267
1268    // Fall through for conflicting redeclarations and redefinitions.
1269  }
1270
1271  // C: Function types need to be compatible, not identical. This handles
1272  // duplicate function decls like "void f(int); void f(enum X);" properly.
1273  if (!getLangOptions().CPlusPlus &&
1274      Context.typesAreCompatible(OldQType, NewQType)) {
1275    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1276    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1277    const FunctionProtoType *OldProto = 0;
1278    if (isa<FunctionNoProtoType>(NewFuncType) &&
1279        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1280      // The old declaration provided a function prototype, but the
1281      // new declaration does not. Merge in the prototype.
1282      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1283      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1284                                                 OldProto->arg_type_end());
1285      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1286                                         ParamTypes.data(), ParamTypes.size(),
1287                                         OldProto->isVariadic(),
1288                                         OldProto->getTypeQuals(),
1289                                         false, false, 0, 0,
1290                                         OldProto->getExtInfo());
1291      New->setType(NewQType);
1292      New->setHasInheritedPrototype();
1293
1294      // Synthesize a parameter for each argument type.
1295      llvm::SmallVector<ParmVarDecl*, 16> Params;
1296      for (FunctionProtoType::arg_type_iterator
1297             ParamType = OldProto->arg_type_begin(),
1298             ParamEnd = OldProto->arg_type_end();
1299           ParamType != ParamEnd; ++ParamType) {
1300        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1301                                                 SourceLocation(), 0,
1302                                                 *ParamType, /*TInfo=*/0,
1303                                                 SC_None, SC_None,
1304                                                 0);
1305        Param->setImplicit();
1306        Params.push_back(Param);
1307      }
1308
1309      New->setParams(Params.data(), Params.size());
1310    }
1311
1312    return MergeCompatibleFunctionDecls(New, Old);
1313  }
1314
1315  // GNU C permits a K&R definition to follow a prototype declaration
1316  // if the declared types of the parameters in the K&R definition
1317  // match the types in the prototype declaration, even when the
1318  // promoted types of the parameters from the K&R definition differ
1319  // from the types in the prototype. GCC then keeps the types from
1320  // the prototype.
1321  //
1322  // If a variadic prototype is followed by a non-variadic K&R definition,
1323  // the K&R definition becomes variadic.  This is sort of an edge case, but
1324  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1325  // C99 6.9.1p8.
1326  if (!getLangOptions().CPlusPlus &&
1327      Old->hasPrototype() && !New->hasPrototype() &&
1328      New->getType()->getAs<FunctionProtoType>() &&
1329      Old->getNumParams() == New->getNumParams()) {
1330    llvm::SmallVector<QualType, 16> ArgTypes;
1331    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1332    const FunctionProtoType *OldProto
1333      = Old->getType()->getAs<FunctionProtoType>();
1334    const FunctionProtoType *NewProto
1335      = New->getType()->getAs<FunctionProtoType>();
1336
1337    // Determine whether this is the GNU C extension.
1338    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1339                                               NewProto->getResultType());
1340    bool LooseCompatible = !MergedReturn.isNull();
1341    for (unsigned Idx = 0, End = Old->getNumParams();
1342         LooseCompatible && Idx != End; ++Idx) {
1343      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1344      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1345      if (Context.typesAreCompatible(OldParm->getType(),
1346                                     NewProto->getArgType(Idx))) {
1347        ArgTypes.push_back(NewParm->getType());
1348      } else if (Context.typesAreCompatible(OldParm->getType(),
1349                                            NewParm->getType(),
1350                                            /*CompareUnqualified=*/true)) {
1351        GNUCompatibleParamWarning Warn
1352          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1353        Warnings.push_back(Warn);
1354        ArgTypes.push_back(NewParm->getType());
1355      } else
1356        LooseCompatible = false;
1357    }
1358
1359    if (LooseCompatible) {
1360      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1361        Diag(Warnings[Warn].NewParm->getLocation(),
1362             diag::ext_param_promoted_not_compatible_with_prototype)
1363          << Warnings[Warn].PromotedType
1364          << Warnings[Warn].OldParm->getType();
1365        if (Warnings[Warn].OldParm->getLocation().isValid())
1366          Diag(Warnings[Warn].OldParm->getLocation(),
1367               diag::note_previous_declaration);
1368      }
1369
1370      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1371                                           ArgTypes.size(),
1372                                           OldProto->isVariadic(), 0,
1373                                           false, false, 0, 0,
1374                                           OldProto->getExtInfo()));
1375      return MergeCompatibleFunctionDecls(New, Old);
1376    }
1377
1378    // Fall through to diagnose conflicting types.
1379  }
1380
1381  // A function that has already been declared has been redeclared or defined
1382  // with a different type- show appropriate diagnostic
1383  if (unsigned BuiltinID = Old->getBuiltinID()) {
1384    // The user has declared a builtin function with an incompatible
1385    // signature.
1386    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1387      // The function the user is redeclaring is a library-defined
1388      // function like 'malloc' or 'printf'. Warn about the
1389      // redeclaration, then pretend that we don't know about this
1390      // library built-in.
1391      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1392      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1393        << Old << Old->getType();
1394      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1395      Old->setInvalidDecl();
1396      return false;
1397    }
1398
1399    PrevDiag = diag::note_previous_builtin_declaration;
1400  }
1401
1402  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1403  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1404  return true;
1405}
1406
1407/// \brief Completes the merge of two function declarations that are
1408/// known to be compatible.
1409///
1410/// This routine handles the merging of attributes and other
1411/// properties of function declarations form the old declaration to
1412/// the new declaration, once we know that New is in fact a
1413/// redeclaration of Old.
1414///
1415/// \returns false
1416bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1417  // Merge the attributes
1418  MergeDeclAttributes(New, Old, Context);
1419
1420  // Merge the storage class.
1421  if (Old->getStorageClass() != SC_Extern &&
1422      Old->getStorageClass() != SC_None)
1423    New->setStorageClass(Old->getStorageClass());
1424
1425  // Merge "pure" flag.
1426  if (Old->isPure())
1427    New->setPure();
1428
1429  // Merge the "deleted" flag.
1430  if (Old->isDeleted())
1431    New->setDeleted();
1432
1433  if (getLangOptions().CPlusPlus)
1434    return MergeCXXFunctionDecl(New, Old);
1435
1436  return false;
1437}
1438
1439/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1440/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1441/// situation, merging decls or emitting diagnostics as appropriate.
1442///
1443/// Tentative definition rules (C99 6.9.2p2) are checked by
1444/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1445/// definitions here, since the initializer hasn't been attached.
1446///
1447void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1448  // If the new decl is already invalid, don't do any other checking.
1449  if (New->isInvalidDecl())
1450    return;
1451
1452  // Verify the old decl was also a variable.
1453  VarDecl *Old = 0;
1454  if (!Previous.isSingleResult() ||
1455      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1456    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1457      << New->getDeclName();
1458    Diag(Previous.getRepresentativeDecl()->getLocation(),
1459         diag::note_previous_definition);
1460    return New->setInvalidDecl();
1461  }
1462
1463  // C++ [class.mem]p1:
1464  //   A member shall not be declared twice in the member-specification [...]
1465  //
1466  // Here, we need only consider static data members.
1467  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1468    Diag(New->getLocation(), diag::err_duplicate_member)
1469      << New->getIdentifier();
1470    Diag(Old->getLocation(), diag::note_previous_declaration);
1471    New->setInvalidDecl();
1472  }
1473
1474  MergeDeclAttributes(New, Old, Context);
1475
1476  // Merge the types
1477  QualType MergedT;
1478  if (getLangOptions().CPlusPlus) {
1479    if (Context.hasSameType(New->getType(), Old->getType()))
1480      MergedT = New->getType();
1481    // C++ [basic.link]p10:
1482    //   [...] the types specified by all declarations referring to a given
1483    //   object or function shall be identical, except that declarations for an
1484    //   array object can specify array types that differ by the presence or
1485    //   absence of a major array bound (8.3.4).
1486    else if (Old->getType()->isIncompleteArrayType() &&
1487             New->getType()->isArrayType()) {
1488      CanQual<ArrayType> OldArray
1489        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1490      CanQual<ArrayType> NewArray
1491        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1492      if (OldArray->getElementType() == NewArray->getElementType())
1493        MergedT = New->getType();
1494    } else if (Old->getType()->isArrayType() &&
1495             New->getType()->isIncompleteArrayType()) {
1496      CanQual<ArrayType> OldArray
1497        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1498      CanQual<ArrayType> NewArray
1499        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1500      if (OldArray->getElementType() == NewArray->getElementType())
1501        MergedT = Old->getType();
1502    } else if (New->getType()->isObjCObjectPointerType()
1503               && Old->getType()->isObjCObjectPointerType()) {
1504        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1505    }
1506  } else {
1507    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1508  }
1509  if (MergedT.isNull()) {
1510    Diag(New->getLocation(), diag::err_redefinition_different_type)
1511      << New->getDeclName();
1512    Diag(Old->getLocation(), diag::note_previous_definition);
1513    return New->setInvalidDecl();
1514  }
1515  New->setType(MergedT);
1516
1517  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1518  if (New->getStorageClass() == SC_Static &&
1519      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1520    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1521    Diag(Old->getLocation(), diag::note_previous_definition);
1522    return New->setInvalidDecl();
1523  }
1524  // C99 6.2.2p4:
1525  //   For an identifier declared with the storage-class specifier
1526  //   extern in a scope in which a prior declaration of that
1527  //   identifier is visible,23) if the prior declaration specifies
1528  //   internal or external linkage, the linkage of the identifier at
1529  //   the later declaration is the same as the linkage specified at
1530  //   the prior declaration. If no prior declaration is visible, or
1531  //   if the prior declaration specifies no linkage, then the
1532  //   identifier has external linkage.
1533  if (New->hasExternalStorage() && Old->hasLinkage())
1534    /* Okay */;
1535  else if (New->getStorageClass() != SC_Static &&
1536           Old->getStorageClass() == SC_Static) {
1537    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1538    Diag(Old->getLocation(), diag::note_previous_definition);
1539    return New->setInvalidDecl();
1540  }
1541
1542  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1543
1544  // FIXME: The test for external storage here seems wrong? We still
1545  // need to check for mismatches.
1546  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1547      // Don't complain about out-of-line definitions of static members.
1548      !(Old->getLexicalDeclContext()->isRecord() &&
1549        !New->getLexicalDeclContext()->isRecord())) {
1550    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1551    Diag(Old->getLocation(), diag::note_previous_definition);
1552    return New->setInvalidDecl();
1553  }
1554
1555  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1559    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1560    Diag(Old->getLocation(), diag::note_previous_definition);
1561  }
1562
1563  // C++ doesn't have tentative definitions, so go right ahead and check here.
1564  const VarDecl *Def;
1565  if (getLangOptions().CPlusPlus &&
1566      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1567      (Def = Old->getDefinition())) {
1568    Diag(New->getLocation(), diag::err_redefinition)
1569      << New->getDeclName();
1570    Diag(Def->getLocation(), diag::note_previous_definition);
1571    New->setInvalidDecl();
1572    return;
1573  }
1574  // c99 6.2.2 P4.
1575  // For an identifier declared with the storage-class specifier extern in a
1576  // scope in which a prior declaration of that identifier is visible, if
1577  // the prior declaration specifies internal or external linkage, the linkage
1578  // of the identifier at the later declaration is the same as the linkage
1579  // specified at the prior declaration.
1580  // FIXME. revisit this code.
1581  if (New->hasExternalStorage() &&
1582      Old->getLinkage() == InternalLinkage &&
1583      New->getDeclContext() == Old->getDeclContext())
1584    New->setStorageClass(Old->getStorageClass());
1585
1586  // Keep a chain of previous declarations.
1587  New->setPreviousDeclaration(Old);
1588
1589  // Inherit access appropriately.
1590  New->setAccess(Old->getAccess());
1591}
1592
1593/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1594/// no declarator (e.g. "struct foo;") is parsed.
1595Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1596                                            DeclSpec &DS) {
1597  // FIXME: Error on inline/virtual/explicit
1598  // FIXME: Warn on useless __thread
1599  // FIXME: Warn on useless const/volatile
1600  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1601  // FIXME: Warn on useless attributes
1602  Decl *TagD = 0;
1603  TagDecl *Tag = 0;
1604  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1605      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1606      DS.getTypeSpecType() == DeclSpec::TST_union ||
1607      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1608    TagD = DS.getRepAsDecl();
1609
1610    if (!TagD) // We probably had an error
1611      return 0;
1612
1613    // Note that the above type specs guarantee that the
1614    // type rep is a Decl, whereas in many of the others
1615    // it's a Type.
1616    Tag = dyn_cast<TagDecl>(TagD);
1617  }
1618
1619  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1620    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1621    // or incomplete types shall not be restrict-qualified."
1622    if (TypeQuals & DeclSpec::TQ_restrict)
1623      Diag(DS.getRestrictSpecLoc(),
1624           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1625           << DS.getSourceRange();
1626  }
1627
1628  if (DS.isFriendSpecified()) {
1629    // If we're dealing with a decl but not a TagDecl, assume that
1630    // whatever routines created it handled the friendship aspect.
1631    if (TagD && !Tag)
1632      return 0;
1633    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1634  }
1635
1636  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1637    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1638
1639    if (!Record->getDeclName() && Record->isDefinition() &&
1640        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1641      if (getLangOptions().CPlusPlus ||
1642          Record->getDeclContext()->isRecord())
1643        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1644
1645      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1646        << DS.getSourceRange();
1647    }
1648
1649    // Microsoft allows unnamed struct/union fields. Don't complain
1650    // about them.
1651    // FIXME: Should we support Microsoft's extensions in this area?
1652    if (Record->getDeclName() && getLangOptions().Microsoft)
1653      return Tag;
1654  }
1655
1656  if (getLangOptions().CPlusPlus &&
1657      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1658    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1659      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1660          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1661        Diag(Enum->getLocation(), diag::ext_no_declarators)
1662          << DS.getSourceRange();
1663
1664  if (!DS.isMissingDeclaratorOk() &&
1665      DS.getTypeSpecType() != DeclSpec::TST_error) {
1666    // Warn about typedefs of enums without names, since this is an
1667    // extension in both Microsoft and GNU.
1668    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1669        Tag && isa<EnumDecl>(Tag)) {
1670      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1671        << DS.getSourceRange();
1672      return Tag;
1673    }
1674
1675    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1676      << DS.getSourceRange();
1677  }
1678
1679  return TagD;
1680}
1681
1682/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1683/// builds a statement for it and returns it so it is evaluated.
1684StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1685  StmtResult R;
1686  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1687    Expr *Exp = DS.getRepAsExpr();
1688    QualType Ty = Exp->getType();
1689    if (Ty->isPointerType()) {
1690      do
1691        Ty = Ty->getAs<PointerType>()->getPointeeType();
1692      while (Ty->isPointerType());
1693    }
1694    if (Ty->isVariableArrayType()) {
1695      R = ActOnExprStmt(MakeFullExpr(Exp));
1696    }
1697  }
1698  return R;
1699}
1700
1701/// We are trying to inject an anonymous member into the given scope;
1702/// check if there's an existing declaration that can't be overloaded.
1703///
1704/// \return true if this is a forbidden redeclaration
1705static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1706                                         Scope *S,
1707                                         DeclContext *Owner,
1708                                         DeclarationName Name,
1709                                         SourceLocation NameLoc,
1710                                         unsigned diagnostic) {
1711  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1712                 Sema::ForRedeclaration);
1713  if (!SemaRef.LookupName(R, S)) return false;
1714
1715  if (R.getAsSingle<TagDecl>())
1716    return false;
1717
1718  // Pick a representative declaration.
1719  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1720  assert(PrevDecl && "Expected a non-null Decl");
1721
1722  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1723    return false;
1724
1725  SemaRef.Diag(NameLoc, diagnostic) << Name;
1726  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1727
1728  return true;
1729}
1730
1731/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1732/// anonymous struct or union AnonRecord into the owning context Owner
1733/// and scope S. This routine will be invoked just after we realize
1734/// that an unnamed union or struct is actually an anonymous union or
1735/// struct, e.g.,
1736///
1737/// @code
1738/// union {
1739///   int i;
1740///   float f;
1741/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1742///    // f into the surrounding scope.x
1743/// @endcode
1744///
1745/// This routine is recursive, injecting the names of nested anonymous
1746/// structs/unions into the owning context and scope as well.
1747static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1748                                                DeclContext *Owner,
1749                                                RecordDecl *AnonRecord,
1750                                                AccessSpecifier AS) {
1751  unsigned diagKind
1752    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1753                            : diag::err_anonymous_struct_member_redecl;
1754
1755  bool Invalid = false;
1756  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1757                               FEnd = AnonRecord->field_end();
1758       F != FEnd; ++F) {
1759    if ((*F)->getDeclName()) {
1760      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1761                                       (*F)->getLocation(), diagKind)) {
1762        // C++ [class.union]p2:
1763        //   The names of the members of an anonymous union shall be
1764        //   distinct from the names of any other entity in the
1765        //   scope in which the anonymous union is declared.
1766        Invalid = true;
1767      } else {
1768        // C++ [class.union]p2:
1769        //   For the purpose of name lookup, after the anonymous union
1770        //   definition, the members of the anonymous union are
1771        //   considered to have been defined in the scope in which the
1772        //   anonymous union is declared.
1773        Owner->makeDeclVisibleInContext(*F);
1774        S->AddDecl(*F);
1775        SemaRef.IdResolver.AddDecl(*F);
1776
1777        // That includes picking up the appropriate access specifier.
1778        if (AS != AS_none) (*F)->setAccess(AS);
1779      }
1780    } else if (const RecordType *InnerRecordType
1781                 = (*F)->getType()->getAs<RecordType>()) {
1782      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1783      if (InnerRecord->isAnonymousStructOrUnion())
1784        Invalid = Invalid ||
1785          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1786                                              InnerRecord, AS);
1787    }
1788  }
1789
1790  return Invalid;
1791}
1792
1793/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1794/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1795/// illegal input values are mapped to SC_None.
1796static StorageClass
1797StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1798  switch (StorageClassSpec) {
1799  case DeclSpec::SCS_unspecified:    return SC_None;
1800  case DeclSpec::SCS_extern:         return SC_Extern;
1801  case DeclSpec::SCS_static:         return SC_Static;
1802  case DeclSpec::SCS_auto:           return SC_Auto;
1803  case DeclSpec::SCS_register:       return SC_Register;
1804  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1805    // Illegal SCSs map to None: error reporting is up to the caller.
1806  case DeclSpec::SCS_mutable:        // Fall through.
1807  case DeclSpec::SCS_typedef:        return SC_None;
1808  }
1809  llvm_unreachable("unknown storage class specifier");
1810}
1811
1812/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1813/// a StorageClass. Any error reporting is up to the caller:
1814/// illegal input values are mapped to SC_None.
1815static StorageClass
1816StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1817  switch (StorageClassSpec) {
1818  case DeclSpec::SCS_unspecified:    return SC_None;
1819  case DeclSpec::SCS_extern:         return SC_Extern;
1820  case DeclSpec::SCS_static:         return SC_Static;
1821  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1822    // Illegal SCSs map to None: error reporting is up to the caller.
1823  case DeclSpec::SCS_auto:           // Fall through.
1824  case DeclSpec::SCS_mutable:        // Fall through.
1825  case DeclSpec::SCS_register:       // Fall through.
1826  case DeclSpec::SCS_typedef:        return SC_None;
1827  }
1828  llvm_unreachable("unknown storage class specifier");
1829}
1830
1831/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1832/// anonymous structure or union. Anonymous unions are a C++ feature
1833/// (C++ [class.union]) and a GNU C extension; anonymous structures
1834/// are a GNU C and GNU C++ extension.
1835Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1836                                             AccessSpecifier AS,
1837                                             RecordDecl *Record) {
1838  DeclContext *Owner = Record->getDeclContext();
1839
1840  // Diagnose whether this anonymous struct/union is an extension.
1841  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1842    Diag(Record->getLocation(), diag::ext_anonymous_union);
1843  else if (!Record->isUnion())
1844    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1845
1846  // C and C++ require different kinds of checks for anonymous
1847  // structs/unions.
1848  bool Invalid = false;
1849  if (getLangOptions().CPlusPlus) {
1850    const char* PrevSpec = 0;
1851    unsigned DiagID;
1852    // C++ [class.union]p3:
1853    //   Anonymous unions declared in a named namespace or in the
1854    //   global namespace shall be declared static.
1855    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1856        (isa<TranslationUnitDecl>(Owner) ||
1857         (isa<NamespaceDecl>(Owner) &&
1858          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1859      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1860      Invalid = true;
1861
1862      // Recover by adding 'static'.
1863      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1864                             PrevSpec, DiagID);
1865    }
1866    // C++ [class.union]p3:
1867    //   A storage class is not allowed in a declaration of an
1868    //   anonymous union in a class scope.
1869    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1870             isa<RecordDecl>(Owner)) {
1871      Diag(DS.getStorageClassSpecLoc(),
1872           diag::err_anonymous_union_with_storage_spec);
1873      Invalid = true;
1874
1875      // Recover by removing the storage specifier.
1876      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1877                             PrevSpec, DiagID);
1878    }
1879
1880    // C++ [class.union]p2:
1881    //   The member-specification of an anonymous union shall only
1882    //   define non-static data members. [Note: nested types and
1883    //   functions cannot be declared within an anonymous union. ]
1884    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1885                                 MemEnd = Record->decls_end();
1886         Mem != MemEnd; ++Mem) {
1887      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1888        // C++ [class.union]p3:
1889        //   An anonymous union shall not have private or protected
1890        //   members (clause 11).
1891        assert(FD->getAccess() != AS_none);
1892        if (FD->getAccess() != AS_public) {
1893          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1894            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1895          Invalid = true;
1896        }
1897
1898        if (CheckNontrivialField(FD))
1899          Invalid = true;
1900      } else if ((*Mem)->isImplicit()) {
1901        // Any implicit members are fine.
1902      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1903        // This is a type that showed up in an
1904        // elaborated-type-specifier inside the anonymous struct or
1905        // union, but which actually declares a type outside of the
1906        // anonymous struct or union. It's okay.
1907      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1908        if (!MemRecord->isAnonymousStructOrUnion() &&
1909            MemRecord->getDeclName()) {
1910          // Visual C++ allows type definition in anonymous struct or union.
1911          if (getLangOptions().Microsoft)
1912            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1913              << (int)Record->isUnion();
1914          else {
1915            // This is a nested type declaration.
1916            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1917              << (int)Record->isUnion();
1918            Invalid = true;
1919          }
1920        }
1921      } else if (isa<AccessSpecDecl>(*Mem)) {
1922        // Any access specifier is fine.
1923      } else {
1924        // We have something that isn't a non-static data
1925        // member. Complain about it.
1926        unsigned DK = diag::err_anonymous_record_bad_member;
1927        if (isa<TypeDecl>(*Mem))
1928          DK = diag::err_anonymous_record_with_type;
1929        else if (isa<FunctionDecl>(*Mem))
1930          DK = diag::err_anonymous_record_with_function;
1931        else if (isa<VarDecl>(*Mem))
1932          DK = diag::err_anonymous_record_with_static;
1933
1934        // Visual C++ allows type definition in anonymous struct or union.
1935        if (getLangOptions().Microsoft &&
1936            DK == diag::err_anonymous_record_with_type)
1937          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1938            << (int)Record->isUnion();
1939        else {
1940          Diag((*Mem)->getLocation(), DK)
1941              << (int)Record->isUnion();
1942          Invalid = true;
1943        }
1944      }
1945    }
1946  }
1947
1948  if (!Record->isUnion() && !Owner->isRecord()) {
1949    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1950      << (int)getLangOptions().CPlusPlus;
1951    Invalid = true;
1952  }
1953
1954  // Mock up a declarator.
1955  Declarator Dc(DS, Declarator::TypeNameContext);
1956  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1957  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1958
1959  // Create a declaration for this anonymous struct/union.
1960  NamedDecl *Anon = 0;
1961  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1962    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1963                             /*IdentifierInfo=*/0,
1964                             Context.getTypeDeclType(Record),
1965                             TInfo,
1966                             /*BitWidth=*/0, /*Mutable=*/false);
1967    Anon->setAccess(AS);
1968    if (getLangOptions().CPlusPlus)
1969      FieldCollector->Add(cast<FieldDecl>(Anon));
1970  } else {
1971    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1972    assert(SCSpec != DeclSpec::SCS_typedef &&
1973           "Parser allowed 'typedef' as storage class VarDecl.");
1974    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1975    if (SCSpec == DeclSpec::SCS_mutable) {
1976      // mutable can only appear on non-static class members, so it's always
1977      // an error here
1978      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1979      Invalid = true;
1980      SC = SC_None;
1981    }
1982    SCSpec = DS.getStorageClassSpecAsWritten();
1983    VarDecl::StorageClass SCAsWritten
1984      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1985
1986    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1987                           /*IdentifierInfo=*/0,
1988                           Context.getTypeDeclType(Record),
1989                           TInfo, SC, SCAsWritten);
1990  }
1991  Anon->setImplicit();
1992
1993  // Add the anonymous struct/union object to the current
1994  // context. We'll be referencing this object when we refer to one of
1995  // its members.
1996  Owner->addDecl(Anon);
1997
1998  // Inject the members of the anonymous struct/union into the owning
1999  // context and into the identifier resolver chain for name lookup
2000  // purposes.
2001  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
2002    Invalid = true;
2003
2004  // Mark this as an anonymous struct/union type. Note that we do not
2005  // do this until after we have already checked and injected the
2006  // members of this anonymous struct/union type, because otherwise
2007  // the members could be injected twice: once by DeclContext when it
2008  // builds its lookup table, and once by
2009  // InjectAnonymousStructOrUnionMembers.
2010  Record->setAnonymousStructOrUnion(true);
2011
2012  if (Invalid)
2013    Anon->setInvalidDecl();
2014
2015  return Anon;
2016}
2017
2018
2019/// GetNameForDeclarator - Determine the full declaration name for the
2020/// given Declarator.
2021DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2022  return GetNameFromUnqualifiedId(D.getName());
2023}
2024
2025/// \brief Retrieves the declaration name from a parsed unqualified-id.
2026DeclarationNameInfo
2027Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2028  DeclarationNameInfo NameInfo;
2029  NameInfo.setLoc(Name.StartLocation);
2030
2031  switch (Name.getKind()) {
2032
2033  case UnqualifiedId::IK_Identifier:
2034    NameInfo.setName(Name.Identifier);
2035    NameInfo.setLoc(Name.StartLocation);
2036    return NameInfo;
2037
2038  case UnqualifiedId::IK_OperatorFunctionId:
2039    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2040                                           Name.OperatorFunctionId.Operator));
2041    NameInfo.setLoc(Name.StartLocation);
2042    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2043      = Name.OperatorFunctionId.SymbolLocations[0];
2044    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2045      = Name.EndLocation.getRawEncoding();
2046    return NameInfo;
2047
2048  case UnqualifiedId::IK_LiteralOperatorId:
2049    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2050                                                           Name.Identifier));
2051    NameInfo.setLoc(Name.StartLocation);
2052    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2053    return NameInfo;
2054
2055  case UnqualifiedId::IK_ConversionFunctionId: {
2056    TypeSourceInfo *TInfo;
2057    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2058    if (Ty.isNull())
2059      return DeclarationNameInfo();
2060    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2061                                               Context.getCanonicalType(Ty)));
2062    NameInfo.setLoc(Name.StartLocation);
2063    NameInfo.setNamedTypeInfo(TInfo);
2064    return NameInfo;
2065  }
2066
2067  case UnqualifiedId::IK_ConstructorName: {
2068    TypeSourceInfo *TInfo;
2069    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2070    if (Ty.isNull())
2071      return DeclarationNameInfo();
2072    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2073                                              Context.getCanonicalType(Ty)));
2074    NameInfo.setLoc(Name.StartLocation);
2075    NameInfo.setNamedTypeInfo(TInfo);
2076    return NameInfo;
2077  }
2078
2079  case UnqualifiedId::IK_ConstructorTemplateId: {
2080    // In well-formed code, we can only have a constructor
2081    // template-id that refers to the current context, so go there
2082    // to find the actual type being constructed.
2083    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2084    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2085      return DeclarationNameInfo();
2086
2087    // Determine the type of the class being constructed.
2088    QualType CurClassType = Context.getTypeDeclType(CurClass);
2089
2090    // FIXME: Check two things: that the template-id names the same type as
2091    // CurClassType, and that the template-id does not occur when the name
2092    // was qualified.
2093
2094    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2095                                    Context.getCanonicalType(CurClassType)));
2096    NameInfo.setLoc(Name.StartLocation);
2097    // FIXME: should we retrieve TypeSourceInfo?
2098    NameInfo.setNamedTypeInfo(0);
2099    return NameInfo;
2100  }
2101
2102  case UnqualifiedId::IK_DestructorName: {
2103    TypeSourceInfo *TInfo;
2104    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2105    if (Ty.isNull())
2106      return DeclarationNameInfo();
2107    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2108                                              Context.getCanonicalType(Ty)));
2109    NameInfo.setLoc(Name.StartLocation);
2110    NameInfo.setNamedTypeInfo(TInfo);
2111    return NameInfo;
2112  }
2113
2114  case UnqualifiedId::IK_TemplateId: {
2115    TemplateName TName = Name.TemplateId->Template.get();
2116    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2117    return Context.getNameForTemplate(TName, TNameLoc);
2118  }
2119
2120  } // switch (Name.getKind())
2121
2122  assert(false && "Unknown name kind");
2123  return DeclarationNameInfo();
2124}
2125
2126/// isNearlyMatchingFunction - Determine whether the C++ functions
2127/// Declaration and Definition are "nearly" matching. This heuristic
2128/// is used to improve diagnostics in the case where an out-of-line
2129/// function definition doesn't match any declaration within
2130/// the class or namespace.
2131static bool isNearlyMatchingFunction(ASTContext &Context,
2132                                     FunctionDecl *Declaration,
2133                                     FunctionDecl *Definition) {
2134  if (Declaration->param_size() != Definition->param_size())
2135    return false;
2136  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2137    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2138    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2139
2140    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2141                                        DefParamTy.getNonReferenceType()))
2142      return false;
2143  }
2144
2145  return true;
2146}
2147
2148/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2149/// declarator needs to be rebuilt in the current instantiation.
2150/// Any bits of declarator which appear before the name are valid for
2151/// consideration here.  That's specifically the type in the decl spec
2152/// and the base type in any member-pointer chunks.
2153static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2154                                                    DeclarationName Name) {
2155  // The types we specifically need to rebuild are:
2156  //   - typenames, typeofs, and decltypes
2157  //   - types which will become injected class names
2158  // Of course, we also need to rebuild any type referencing such a
2159  // type.  It's safest to just say "dependent", but we call out a
2160  // few cases here.
2161
2162  DeclSpec &DS = D.getMutableDeclSpec();
2163  switch (DS.getTypeSpecType()) {
2164  case DeclSpec::TST_typename:
2165  case DeclSpec::TST_typeofType:
2166  case DeclSpec::TST_decltype: {
2167    // Grab the type from the parser.
2168    TypeSourceInfo *TSI = 0;
2169    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2170    if (T.isNull() || !T->isDependentType()) break;
2171
2172    // Make sure there's a type source info.  This isn't really much
2173    // of a waste; most dependent types should have type source info
2174    // attached already.
2175    if (!TSI)
2176      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2177
2178    // Rebuild the type in the current instantiation.
2179    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2180    if (!TSI) return true;
2181
2182    // Store the new type back in the decl spec.
2183    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2184    DS.UpdateTypeRep(LocType);
2185    break;
2186  }
2187
2188  case DeclSpec::TST_typeofExpr: {
2189    Expr *E = DS.getRepAsExpr();
2190    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2191    if (Result.isInvalid()) return true;
2192    DS.UpdateExprRep(Result.get());
2193    break;
2194  }
2195
2196  default:
2197    // Nothing to do for these decl specs.
2198    break;
2199  }
2200
2201  // It doesn't matter what order we do this in.
2202  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2203    DeclaratorChunk &Chunk = D.getTypeObject(I);
2204
2205    // The only type information in the declarator which can come
2206    // before the declaration name is the base type of a member
2207    // pointer.
2208    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2209      continue;
2210
2211    // Rebuild the scope specifier in-place.
2212    CXXScopeSpec &SS = Chunk.Mem.Scope();
2213    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2214      return true;
2215  }
2216
2217  return false;
2218}
2219
2220Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2221  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2222}
2223
2224Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2225                             MultiTemplateParamsArg TemplateParamLists,
2226                             bool IsFunctionDefinition) {
2227  // TODO: consider using NameInfo for diagnostic.
2228  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2229  DeclarationName Name = NameInfo.getName();
2230
2231  // All of these full declarators require an identifier.  If it doesn't have
2232  // one, the ParsedFreeStandingDeclSpec action should be used.
2233  if (!Name) {
2234    if (!D.isInvalidType())  // Reject this if we think it is valid.
2235      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2236           diag::err_declarator_need_ident)
2237        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2238    return 0;
2239  }
2240
2241  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2242  // we find one that is.
2243  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2244         (S->getFlags() & Scope::TemplateParamScope) != 0)
2245    S = S->getParent();
2246
2247  DeclContext *DC = CurContext;
2248  if (D.getCXXScopeSpec().isInvalid())
2249    D.setInvalidType();
2250  else if (D.getCXXScopeSpec().isSet()) {
2251    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2252    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2253    if (!DC) {
2254      // If we could not compute the declaration context, it's because the
2255      // declaration context is dependent but does not refer to a class,
2256      // class template, or class template partial specialization. Complain
2257      // and return early, to avoid the coming semantic disaster.
2258      Diag(D.getIdentifierLoc(),
2259           diag::err_template_qualified_declarator_no_match)
2260        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2261        << D.getCXXScopeSpec().getRange();
2262      return 0;
2263    }
2264
2265    bool IsDependentContext = DC->isDependentContext();
2266
2267    if (!IsDependentContext &&
2268        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2269      return 0;
2270
2271    if (isa<CXXRecordDecl>(DC)) {
2272      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2273        Diag(D.getIdentifierLoc(),
2274             diag::err_member_def_undefined_record)
2275          << Name << DC << D.getCXXScopeSpec().getRange();
2276        D.setInvalidType();
2277      } else if (isa<CXXRecordDecl>(CurContext) &&
2278                 !D.getDeclSpec().isFriendSpecified()) {
2279        // The user provided a superfluous scope specifier inside a class
2280        // definition:
2281        //
2282        // class X {
2283        //   void X::f();
2284        // };
2285        if (CurContext->Equals(DC))
2286          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2287            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2288        else
2289          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2290            << Name << D.getCXXScopeSpec().getRange();
2291
2292        // Pretend that this qualifier was not here.
2293        D.getCXXScopeSpec().clear();
2294      }
2295    }
2296
2297    // Check whether we need to rebuild the type of the given
2298    // declaration in the current instantiation.
2299    if (EnteringContext && IsDependentContext &&
2300        TemplateParamLists.size() != 0) {
2301      ContextRAII SavedContext(*this, DC);
2302      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2303        D.setInvalidType();
2304    }
2305  }
2306
2307  // C++ [class.mem]p13:
2308  //   If T is the name of a class, then each of the following shall have a
2309  //   name different from T:
2310  //     - every static data member of class T;
2311  //     - every member function of class T
2312  //     - every member of class T that is itself a type;
2313  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2314    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2315      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2316        << Name;
2317
2318      // If this is a typedef, we'll end up spewing multiple diagnostics.
2319      // Just return early; it's safer.
2320      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2321        return 0;
2322    }
2323
2324  NamedDecl *New;
2325
2326  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2327  QualType R = TInfo->getType();
2328
2329  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2330                        ForRedeclaration);
2331
2332  // See if this is a redefinition of a variable in the same scope.
2333  if (!D.getCXXScopeSpec().isSet()) {
2334    bool IsLinkageLookup = false;
2335
2336    // If the declaration we're planning to build will be a function
2337    // or object with linkage, then look for another declaration with
2338    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2339    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2340      /* Do nothing*/;
2341    else if (R->isFunctionType()) {
2342      if (CurContext->isFunctionOrMethod() ||
2343          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2344        IsLinkageLookup = true;
2345    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2346      IsLinkageLookup = true;
2347    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2348             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2349      IsLinkageLookup = true;
2350
2351    if (IsLinkageLookup)
2352      Previous.clear(LookupRedeclarationWithLinkage);
2353
2354    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2355  } else { // Something like "int foo::x;"
2356    LookupQualifiedName(Previous, DC);
2357
2358    // Don't consider using declarations as previous declarations for
2359    // out-of-line members.
2360    RemoveUsingDecls(Previous);
2361
2362    // C++ 7.3.1.2p2:
2363    // Members (including explicit specializations of templates) of a named
2364    // namespace can also be defined outside that namespace by explicit
2365    // qualification of the name being defined, provided that the entity being
2366    // defined was already declared in the namespace and the definition appears
2367    // after the point of declaration in a namespace that encloses the
2368    // declarations namespace.
2369    //
2370    // Note that we only check the context at this point. We don't yet
2371    // have enough information to make sure that PrevDecl is actually
2372    // the declaration we want to match. For example, given:
2373    //
2374    //   class X {
2375    //     void f();
2376    //     void f(float);
2377    //   };
2378    //
2379    //   void X::f(int) { } // ill-formed
2380    //
2381    // In this case, PrevDecl will point to the overload set
2382    // containing the two f's declared in X, but neither of them
2383    // matches.
2384
2385    // First check whether we named the global scope.
2386    if (isa<TranslationUnitDecl>(DC)) {
2387      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2388        << Name << D.getCXXScopeSpec().getRange();
2389    } else {
2390      DeclContext *Cur = CurContext;
2391      while (isa<LinkageSpecDecl>(Cur))
2392        Cur = Cur->getParent();
2393      if (!Cur->Encloses(DC)) {
2394        // The qualifying scope doesn't enclose the original declaration.
2395        // Emit diagnostic based on current scope.
2396        SourceLocation L = D.getIdentifierLoc();
2397        SourceRange R = D.getCXXScopeSpec().getRange();
2398        if (isa<FunctionDecl>(Cur))
2399          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2400        else
2401          Diag(L, diag::err_invalid_declarator_scope)
2402            << Name << cast<NamedDecl>(DC) << R;
2403        D.setInvalidType();
2404      }
2405    }
2406  }
2407
2408  if (Previous.isSingleResult() &&
2409      Previous.getFoundDecl()->isTemplateParameter()) {
2410    // Maybe we will complain about the shadowed template parameter.
2411    if (!D.isInvalidType())
2412      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2413                                          Previous.getFoundDecl()))
2414        D.setInvalidType();
2415
2416    // Just pretend that we didn't see the previous declaration.
2417    Previous.clear();
2418  }
2419
2420  // In C++, the previous declaration we find might be a tag type
2421  // (class or enum). In this case, the new declaration will hide the
2422  // tag type. Note that this does does not apply if we're declaring a
2423  // typedef (C++ [dcl.typedef]p4).
2424  if (Previous.isSingleTagDecl() &&
2425      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2426    Previous.clear();
2427
2428  bool Redeclaration = false;
2429  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2430    if (TemplateParamLists.size()) {
2431      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2432      return 0;
2433    }
2434
2435    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2436  } else if (R->isFunctionType()) {
2437    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2438                                  move(TemplateParamLists),
2439                                  IsFunctionDefinition, Redeclaration);
2440  } else {
2441    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2442                                  move(TemplateParamLists),
2443                                  Redeclaration);
2444  }
2445
2446  if (New == 0)
2447    return 0;
2448
2449  // If this has an identifier and is not an invalid redeclaration or
2450  // function template specialization, add it to the scope stack.
2451  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2452    PushOnScopeChains(New, S);
2453
2454  return New;
2455}
2456
2457/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2458/// types into constant array types in certain situations which would otherwise
2459/// be errors (for GCC compatibility).
2460static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2461                                                    ASTContext &Context,
2462                                                    bool &SizeIsNegative,
2463                                                    llvm::APSInt &Oversized) {
2464  // This method tries to turn a variable array into a constant
2465  // array even when the size isn't an ICE.  This is necessary
2466  // for compatibility with code that depends on gcc's buggy
2467  // constant expression folding, like struct {char x[(int)(char*)2];}
2468  SizeIsNegative = false;
2469  Oversized = 0;
2470
2471  if (T->isDependentType())
2472    return QualType();
2473
2474  QualifierCollector Qs;
2475  const Type *Ty = Qs.strip(T);
2476
2477  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2478    QualType Pointee = PTy->getPointeeType();
2479    QualType FixedType =
2480        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2481                                            Oversized);
2482    if (FixedType.isNull()) return FixedType;
2483    FixedType = Context.getPointerType(FixedType);
2484    return Qs.apply(FixedType);
2485  }
2486
2487  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2488  if (!VLATy)
2489    return QualType();
2490  // FIXME: We should probably handle this case
2491  if (VLATy->getElementType()->isVariablyModifiedType())
2492    return QualType();
2493
2494  Expr::EvalResult EvalResult;
2495  if (!VLATy->getSizeExpr() ||
2496      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2497      !EvalResult.Val.isInt())
2498    return QualType();
2499
2500  // Check whether the array size is negative.
2501  llvm::APSInt &Res = EvalResult.Val.getInt();
2502  if (Res.isSigned() && Res.isNegative()) {
2503    SizeIsNegative = true;
2504    return QualType();
2505  }
2506
2507  // Check whether the array is too large to be addressed.
2508  unsigned ActiveSizeBits
2509    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2510                                              Res);
2511  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2512    Oversized = Res;
2513    return QualType();
2514  }
2515
2516  return Context.getConstantArrayType(VLATy->getElementType(),
2517                                      Res, ArrayType::Normal, 0);
2518}
2519
2520/// \brief Register the given locally-scoped external C declaration so
2521/// that it can be found later for redeclarations
2522void
2523Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2524                                       const LookupResult &Previous,
2525                                       Scope *S) {
2526  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2527         "Decl is not a locally-scoped decl!");
2528  // Note that we have a locally-scoped external with this name.
2529  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2530
2531  if (!Previous.isSingleResult())
2532    return;
2533
2534  NamedDecl *PrevDecl = Previous.getFoundDecl();
2535
2536  // If there was a previous declaration of this variable, it may be
2537  // in our identifier chain. Update the identifier chain with the new
2538  // declaration.
2539  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2540    // The previous declaration was found on the identifer resolver
2541    // chain, so remove it from its scope.
2542    while (S && !S->isDeclScope(PrevDecl))
2543      S = S->getParent();
2544
2545    if (S)
2546      S->RemoveDecl(PrevDecl);
2547  }
2548}
2549
2550/// \brief Diagnose function specifiers on a declaration of an identifier that
2551/// does not identify a function.
2552void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2553  // FIXME: We should probably indicate the identifier in question to avoid
2554  // confusion for constructs like "inline int a(), b;"
2555  if (D.getDeclSpec().isInlineSpecified())
2556    Diag(D.getDeclSpec().getInlineSpecLoc(),
2557         diag::err_inline_non_function);
2558
2559  if (D.getDeclSpec().isVirtualSpecified())
2560    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2561         diag::err_virtual_non_function);
2562
2563  if (D.getDeclSpec().isExplicitSpecified())
2564    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2565         diag::err_explicit_non_function);
2566}
2567
2568NamedDecl*
2569Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2570                             QualType R,  TypeSourceInfo *TInfo,
2571                             LookupResult &Previous, bool &Redeclaration) {
2572  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2573  if (D.getCXXScopeSpec().isSet()) {
2574    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2575      << D.getCXXScopeSpec().getRange();
2576    D.setInvalidType();
2577    // Pretend we didn't see the scope specifier.
2578    DC = CurContext;
2579    Previous.clear();
2580  }
2581
2582  if (getLangOptions().CPlusPlus) {
2583    // Check that there are no default arguments (C++ only).
2584    CheckExtraCXXDefaultArguments(D);
2585  }
2586
2587  DiagnoseFunctionSpecifiers(D);
2588
2589  if (D.getDeclSpec().isThreadSpecified())
2590    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2591
2592  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2593    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2594      << D.getName().getSourceRange();
2595    return 0;
2596  }
2597
2598  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2599  if (!NewTD) return 0;
2600
2601  // Handle attributes prior to checking for duplicates in MergeVarDecl
2602  ProcessDeclAttributes(S, NewTD, D);
2603
2604  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2605  // then it shall have block scope.
2606  // Note that variably modified types must be fixed before merging the decl so
2607  // that redeclarations will match.
2608  QualType T = NewTD->getUnderlyingType();
2609  if (T->isVariablyModifiedType()) {
2610    getCurFunction()->setHasBranchProtectedScope();
2611
2612    if (S->getFnParent() == 0) {
2613      bool SizeIsNegative;
2614      llvm::APSInt Oversized;
2615      QualType FixedTy =
2616          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2617                                              Oversized);
2618      if (!FixedTy.isNull()) {
2619        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2620        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2621      } else {
2622        if (SizeIsNegative)
2623          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2624        else if (T->isVariableArrayType())
2625          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2626        else if (Oversized.getBoolValue())
2627          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2628            << Oversized.toString(10);
2629        else
2630          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2631        NewTD->setInvalidDecl();
2632      }
2633    }
2634  }
2635
2636  // Merge the decl with the existing one if appropriate. If the decl is
2637  // in an outer scope, it isn't the same thing.
2638  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2639  if (!Previous.empty()) {
2640    Redeclaration = true;
2641    MergeTypeDefDecl(NewTD, Previous);
2642  }
2643
2644  // If this is the C FILE type, notify the AST context.
2645  if (IdentifierInfo *II = NewTD->getIdentifier())
2646    if (!NewTD->isInvalidDecl() &&
2647        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2648      if (II->isStr("FILE"))
2649        Context.setFILEDecl(NewTD);
2650      else if (II->isStr("jmp_buf"))
2651        Context.setjmp_bufDecl(NewTD);
2652      else if (II->isStr("sigjmp_buf"))
2653        Context.setsigjmp_bufDecl(NewTD);
2654      else if (II->isStr("__builtin_va_list"))
2655        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2656    }
2657
2658  return NewTD;
2659}
2660
2661/// \brief Determines whether the given declaration is an out-of-scope
2662/// previous declaration.
2663///
2664/// This routine should be invoked when name lookup has found a
2665/// previous declaration (PrevDecl) that is not in the scope where a
2666/// new declaration by the same name is being introduced. If the new
2667/// declaration occurs in a local scope, previous declarations with
2668/// linkage may still be considered previous declarations (C99
2669/// 6.2.2p4-5, C++ [basic.link]p6).
2670///
2671/// \param PrevDecl the previous declaration found by name
2672/// lookup
2673///
2674/// \param DC the context in which the new declaration is being
2675/// declared.
2676///
2677/// \returns true if PrevDecl is an out-of-scope previous declaration
2678/// for a new delcaration with the same name.
2679static bool
2680isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2681                                ASTContext &Context) {
2682  if (!PrevDecl)
2683    return false;
2684
2685  if (!PrevDecl->hasLinkage())
2686    return false;
2687
2688  if (Context.getLangOptions().CPlusPlus) {
2689    // C++ [basic.link]p6:
2690    //   If there is a visible declaration of an entity with linkage
2691    //   having the same name and type, ignoring entities declared
2692    //   outside the innermost enclosing namespace scope, the block
2693    //   scope declaration declares that same entity and receives the
2694    //   linkage of the previous declaration.
2695    DeclContext *OuterContext = DC->getRedeclContext();
2696    if (!OuterContext->isFunctionOrMethod())
2697      // This rule only applies to block-scope declarations.
2698      return false;
2699
2700    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2701    if (PrevOuterContext->isRecord())
2702      // We found a member function: ignore it.
2703      return false;
2704
2705    // Find the innermost enclosing namespace for the new and
2706    // previous declarations.
2707    OuterContext = OuterContext->getEnclosingNamespaceContext();
2708    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2709
2710    // The previous declaration is in a different namespace, so it
2711    // isn't the same function.
2712    if (!OuterContext->Equals(PrevOuterContext))
2713      return false;
2714  }
2715
2716  return true;
2717}
2718
2719static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2720  CXXScopeSpec &SS = D.getCXXScopeSpec();
2721  if (!SS.isSet()) return;
2722  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2723                       SS.getRange());
2724}
2725
2726NamedDecl*
2727Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2728                              QualType R, TypeSourceInfo *TInfo,
2729                              LookupResult &Previous,
2730                              MultiTemplateParamsArg TemplateParamLists,
2731                              bool &Redeclaration) {
2732  DeclarationName Name = GetNameForDeclarator(D).getName();
2733
2734  // Check that there are no default arguments (C++ only).
2735  if (getLangOptions().CPlusPlus)
2736    CheckExtraCXXDefaultArguments(D);
2737
2738  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2739  assert(SCSpec != DeclSpec::SCS_typedef &&
2740         "Parser allowed 'typedef' as storage class VarDecl.");
2741  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2742  if (SCSpec == DeclSpec::SCS_mutable) {
2743    // mutable can only appear on non-static class members, so it's always
2744    // an error here
2745    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2746    D.setInvalidType();
2747    SC = SC_None;
2748  }
2749  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2750  VarDecl::StorageClass SCAsWritten
2751    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2752
2753  IdentifierInfo *II = Name.getAsIdentifierInfo();
2754  if (!II) {
2755    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2756      << Name.getAsString();
2757    return 0;
2758  }
2759
2760  DiagnoseFunctionSpecifiers(D);
2761
2762  if (!DC->isRecord() && S->getFnParent() == 0) {
2763    // C99 6.9p2: The storage-class specifiers auto and register shall not
2764    // appear in the declaration specifiers in an external declaration.
2765    if (SC == SC_Auto || SC == SC_Register) {
2766
2767      // If this is a register variable with an asm label specified, then this
2768      // is a GNU extension.
2769      if (SC == SC_Register && D.getAsmLabel())
2770        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2771      else
2772        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2773      D.setInvalidType();
2774    }
2775  }
2776  if (DC->isRecord() && !CurContext->isRecord()) {
2777    // This is an out-of-line definition of a static data member.
2778    if (SC == SC_Static) {
2779      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2780           diag::err_static_out_of_line)
2781        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2782    } else if (SC == SC_None)
2783      SC = SC_Static;
2784  }
2785  if (SC == SC_Static) {
2786    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2787      if (RD->isLocalClass())
2788        Diag(D.getIdentifierLoc(),
2789             diag::err_static_data_member_not_allowed_in_local_class)
2790          << Name << RD->getDeclName();
2791    }
2792  }
2793
2794  // Match up the template parameter lists with the scope specifier, then
2795  // determine whether we have a template or a template specialization.
2796  bool isExplicitSpecialization = false;
2797  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2798  bool Invalid = false;
2799  if (TemplateParameterList *TemplateParams
2800        = MatchTemplateParametersToScopeSpecifier(
2801                                  D.getDeclSpec().getSourceRange().getBegin(),
2802                                                  D.getCXXScopeSpec(),
2803                                                  TemplateParamLists.get(),
2804                                                  TemplateParamLists.size(),
2805                                                  /*never a friend*/ false,
2806                                                  isExplicitSpecialization,
2807                                                  Invalid)) {
2808    // All but one template parameter lists have been matching.
2809    --NumMatchedTemplateParamLists;
2810
2811    if (TemplateParams->size() > 0) {
2812      // There is no such thing as a variable template.
2813      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2814        << II
2815        << SourceRange(TemplateParams->getTemplateLoc(),
2816                       TemplateParams->getRAngleLoc());
2817      return 0;
2818    } else {
2819      // There is an extraneous 'template<>' for this variable. Complain
2820      // about it, but allow the declaration of the variable.
2821      Diag(TemplateParams->getTemplateLoc(),
2822           diag::err_template_variable_noparams)
2823        << II
2824        << SourceRange(TemplateParams->getTemplateLoc(),
2825                       TemplateParams->getRAngleLoc());
2826
2827      isExplicitSpecialization = true;
2828    }
2829  }
2830
2831  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2832                                   II, R, TInfo, SC, SCAsWritten);
2833
2834  if (D.isInvalidType() || Invalid)
2835    NewVD->setInvalidDecl();
2836
2837  SetNestedNameSpecifier(NewVD, D);
2838
2839  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2840    NewVD->setTemplateParameterListsInfo(Context,
2841                                         NumMatchedTemplateParamLists,
2842                                         TemplateParamLists.release());
2843  }
2844
2845  if (D.getDeclSpec().isThreadSpecified()) {
2846    if (NewVD->hasLocalStorage())
2847      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2848    else if (!Context.Target.isTLSSupported())
2849      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2850    else
2851      NewVD->setThreadSpecified(true);
2852  }
2853
2854  // Set the lexical context. If the declarator has a C++ scope specifier, the
2855  // lexical context will be different from the semantic context.
2856  NewVD->setLexicalDeclContext(CurContext);
2857
2858  // Handle attributes prior to checking for duplicates in MergeVarDecl
2859  ProcessDeclAttributes(S, NewVD, D);
2860
2861  // Handle GNU asm-label extension (encoded as an attribute).
2862  if (Expr *E = (Expr*)D.getAsmLabel()) {
2863    // The parser guarantees this is a string.
2864    StringLiteral *SE = cast<StringLiteral>(E);
2865    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2866                                                Context, SE->getString()));
2867  }
2868
2869  // Diagnose shadowed variables before filtering for scope.
2870  if (!D.getCXXScopeSpec().isSet())
2871    CheckShadow(S, NewVD, Previous);
2872
2873  // Don't consider existing declarations that are in a different
2874  // scope and are out-of-semantic-context declarations (if the new
2875  // declaration has linkage).
2876  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2877
2878  // Merge the decl with the existing one if appropriate.
2879  if (!Previous.empty()) {
2880    if (Previous.isSingleResult() &&
2881        isa<FieldDecl>(Previous.getFoundDecl()) &&
2882        D.getCXXScopeSpec().isSet()) {
2883      // The user tried to define a non-static data member
2884      // out-of-line (C++ [dcl.meaning]p1).
2885      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2886        << D.getCXXScopeSpec().getRange();
2887      Previous.clear();
2888      NewVD->setInvalidDecl();
2889    }
2890  } else if (D.getCXXScopeSpec().isSet()) {
2891    // No previous declaration in the qualifying scope.
2892    Diag(D.getIdentifierLoc(), diag::err_no_member)
2893      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2894      << D.getCXXScopeSpec().getRange();
2895    NewVD->setInvalidDecl();
2896  }
2897
2898  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2899
2900  // This is an explicit specialization of a static data member. Check it.
2901  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2902      CheckMemberSpecialization(NewVD, Previous))
2903    NewVD->setInvalidDecl();
2904
2905  // attributes declared post-definition are currently ignored
2906  // FIXME: This should be handled in attribute merging, not
2907  // here.
2908  if (Previous.isSingleResult()) {
2909    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2910    if (Def && (Def = Def->getDefinition()) &&
2911        Def != NewVD && D.hasAttributes()) {
2912      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2913      Diag(Def->getLocation(), diag::note_previous_definition);
2914    }
2915  }
2916
2917  // If this is a locally-scoped extern C variable, update the map of
2918  // such variables.
2919  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2920      !NewVD->isInvalidDecl())
2921    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2922
2923  // If there's a #pragma GCC visibility in scope, and this isn't a class
2924  // member, set the visibility of this variable.
2925  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2926    AddPushedVisibilityAttribute(NewVD);
2927
2928  MarkUnusedFileScopedDecl(NewVD);
2929
2930  return NewVD;
2931}
2932
2933/// \brief Diagnose variable or built-in function shadowing.  Implements
2934/// -Wshadow.
2935///
2936/// This method is called whenever a VarDecl is added to a "useful"
2937/// scope.
2938///
2939/// \param S the scope in which the shadowing name is being declared
2940/// \param R the lookup of the name
2941///
2942void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2943  // Return if warning is ignored.
2944  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2945    return;
2946
2947  // Don't diagnose declarations at file scope.  The scope might not
2948  // have a DeclContext if (e.g.) we're parsing a function prototype.
2949  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2950  if (NewDC && NewDC->isFileContext())
2951    return;
2952
2953  // Only diagnose if we're shadowing an unambiguous field or variable.
2954  if (R.getResultKind() != LookupResult::Found)
2955    return;
2956
2957  NamedDecl* ShadowedDecl = R.getFoundDecl();
2958  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2959    return;
2960
2961  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2962
2963  // Only warn about certain kinds of shadowing for class members.
2964  if (NewDC && NewDC->isRecord()) {
2965    // In particular, don't warn about shadowing non-class members.
2966    if (!OldDC->isRecord())
2967      return;
2968
2969    // TODO: should we warn about static data members shadowing
2970    // static data members from base classes?
2971
2972    // TODO: don't diagnose for inaccessible shadowed members.
2973    // This is hard to do perfectly because we might friend the
2974    // shadowing context, but that's just a false negative.
2975  }
2976
2977  // Determine what kind of declaration we're shadowing.
2978  unsigned Kind;
2979  if (isa<RecordDecl>(OldDC)) {
2980    if (isa<FieldDecl>(ShadowedDecl))
2981      Kind = 3; // field
2982    else
2983      Kind = 2; // static data member
2984  } else if (OldDC->isFileContext())
2985    Kind = 1; // global
2986  else
2987    Kind = 0; // local
2988
2989  DeclarationName Name = R.getLookupName();
2990
2991  // Emit warning and note.
2992  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2993  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2994}
2995
2996/// \brief Check -Wshadow without the advantage of a previous lookup.
2997void Sema::CheckShadow(Scope *S, VarDecl *D) {
2998  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2999                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3000  LookupName(R, S);
3001  CheckShadow(S, D, R);
3002}
3003
3004/// \brief Perform semantic checking on a newly-created variable
3005/// declaration.
3006///
3007/// This routine performs all of the type-checking required for a
3008/// variable declaration once it has been built. It is used both to
3009/// check variables after they have been parsed and their declarators
3010/// have been translated into a declaration, and to check variables
3011/// that have been instantiated from a template.
3012///
3013/// Sets NewVD->isInvalidDecl() if an error was encountered.
3014void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3015                                    LookupResult &Previous,
3016                                    bool &Redeclaration) {
3017  // If the decl is already known invalid, don't check it.
3018  if (NewVD->isInvalidDecl())
3019    return;
3020
3021  QualType T = NewVD->getType();
3022
3023  if (T->isObjCObjectType()) {
3024    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3025    return NewVD->setInvalidDecl();
3026  }
3027
3028  // Emit an error if an address space was applied to decl with local storage.
3029  // This includes arrays of objects with address space qualifiers, but not
3030  // automatic variables that point to other address spaces.
3031  // ISO/IEC TR 18037 S5.1.2
3032  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3033    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3034    return NewVD->setInvalidDecl();
3035  }
3036
3037  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3038      && !NewVD->hasAttr<BlocksAttr>())
3039    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3040
3041  bool isVM = T->isVariablyModifiedType();
3042  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3043      NewVD->hasAttr<BlocksAttr>())
3044    getCurFunction()->setHasBranchProtectedScope();
3045
3046  if ((isVM && NewVD->hasLinkage()) ||
3047      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3048    bool SizeIsNegative;
3049    llvm::APSInt Oversized;
3050    QualType FixedTy =
3051        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3052                                            Oversized);
3053
3054    if (FixedTy.isNull() && T->isVariableArrayType()) {
3055      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3056      // FIXME: This won't give the correct result for
3057      // int a[10][n];
3058      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3059
3060      if (NewVD->isFileVarDecl())
3061        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3062        << SizeRange;
3063      else if (NewVD->getStorageClass() == SC_Static)
3064        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3065        << SizeRange;
3066      else
3067        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3068        << SizeRange;
3069      return NewVD->setInvalidDecl();
3070    }
3071
3072    if (FixedTy.isNull()) {
3073      if (NewVD->isFileVarDecl())
3074        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3075      else
3076        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3077      return NewVD->setInvalidDecl();
3078    }
3079
3080    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3081    NewVD->setType(FixedTy);
3082  }
3083
3084  if (Previous.empty() && NewVD->isExternC()) {
3085    // Since we did not find anything by this name and we're declaring
3086    // an extern "C" variable, look for a non-visible extern "C"
3087    // declaration with the same name.
3088    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3089      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3090    if (Pos != LocallyScopedExternalDecls.end())
3091      Previous.addDecl(Pos->second);
3092  }
3093
3094  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3095    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3096      << T;
3097    return NewVD->setInvalidDecl();
3098  }
3099
3100  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3101    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3102    return NewVD->setInvalidDecl();
3103  }
3104
3105  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3106    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3107    return NewVD->setInvalidDecl();
3108  }
3109
3110  // Function pointers and references cannot have qualified function type, only
3111  // function pointer-to-members can do that.
3112  QualType Pointee;
3113  unsigned PtrOrRef = 0;
3114  if (const PointerType *Ptr = T->getAs<PointerType>())
3115    Pointee = Ptr->getPointeeType();
3116  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3117    Pointee = Ref->getPointeeType();
3118    PtrOrRef = 1;
3119  }
3120  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3121      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3122    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3123        << PtrOrRef;
3124    return NewVD->setInvalidDecl();
3125  }
3126
3127  if (!Previous.empty()) {
3128    Redeclaration = true;
3129    MergeVarDecl(NewVD, Previous);
3130  }
3131}
3132
3133/// \brief Data used with FindOverriddenMethod
3134struct FindOverriddenMethodData {
3135  Sema *S;
3136  CXXMethodDecl *Method;
3137};
3138
3139/// \brief Member lookup function that determines whether a given C++
3140/// method overrides a method in a base class, to be used with
3141/// CXXRecordDecl::lookupInBases().
3142static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3143                                 CXXBasePath &Path,
3144                                 void *UserData) {
3145  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3146
3147  FindOverriddenMethodData *Data
3148    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3149
3150  DeclarationName Name = Data->Method->getDeclName();
3151
3152  // FIXME: Do we care about other names here too?
3153  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3154    // We really want to find the base class destructor here.
3155    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3156    CanQualType CT = Data->S->Context.getCanonicalType(T);
3157
3158    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3159  }
3160
3161  for (Path.Decls = BaseRecord->lookup(Name);
3162       Path.Decls.first != Path.Decls.second;
3163       ++Path.Decls.first) {
3164    NamedDecl *D = *Path.Decls.first;
3165    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3166      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3167        return true;
3168    }
3169  }
3170
3171  return false;
3172}
3173
3174/// AddOverriddenMethods - See if a method overrides any in the base classes,
3175/// and if so, check that it's a valid override and remember it.
3176bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3177  // Look for virtual methods in base classes that this method might override.
3178  CXXBasePaths Paths;
3179  FindOverriddenMethodData Data;
3180  Data.Method = MD;
3181  Data.S = this;
3182  bool AddedAny = false;
3183  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3184    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3185         E = Paths.found_decls_end(); I != E; ++I) {
3186      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3187        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3188            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3189            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3190          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3191          AddedAny = true;
3192        }
3193      }
3194    }
3195  }
3196
3197  return AddedAny;
3198}
3199
3200static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3201  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3202                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3203  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3204  assert(!Prev.isAmbiguous() &&
3205         "Cannot have an ambiguity in previous-declaration lookup");
3206  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3207       Func != FuncEnd; ++Func) {
3208    if (isa<FunctionDecl>(*Func) &&
3209        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3210      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3211  }
3212}
3213
3214/// CheckClassMemberNameAttributes - Check for class member name checking
3215/// attributes according to [dcl.attr.override]
3216static void
3217CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3218  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3219  if (!MD || !MD->isVirtual())
3220    return;
3221
3222  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3223  bool HasOverriddenMethods =
3224    MD->begin_overridden_methods() != MD->end_overridden_methods();
3225
3226  /// C++ [dcl.attr.override]p2:
3227  ///   If a virtual member function f is marked override and does not override
3228  ///   a member function of a base class the program is ill-formed.
3229  if (HasOverrideAttr && !HasOverriddenMethods) {
3230    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3231      << MD->getDeclName();
3232    return;
3233  }
3234
3235  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3236    return;
3237
3238  /// C++ [dcl.attr.override]p6:
3239  ///   In a class definition marked base_check, if a virtual member function
3240  ///    that is neither implicitly-declared nor a destructor overrides a
3241  ///    member function of a base class and it is not marked override, the
3242  ///    program is ill-formed.
3243  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3244      !isa<CXXDestructorDecl>(MD)) {
3245    llvm::SmallVector<const CXXMethodDecl*, 4>
3246      OverriddenMethods(MD->begin_overridden_methods(),
3247                        MD->end_overridden_methods());
3248
3249    SemaRef.Diag(MD->getLocation(),
3250                 diag::err_function_overriding_without_override)
3251      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3252
3253    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3254      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3255                   diag::note_overridden_virtual_function);
3256  }
3257}
3258
3259NamedDecl*
3260Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3261                              QualType R, TypeSourceInfo *TInfo,
3262                              LookupResult &Previous,
3263                              MultiTemplateParamsArg TemplateParamLists,
3264                              bool IsFunctionDefinition, bool &Redeclaration) {
3265  assert(R.getTypePtr()->isFunctionType());
3266
3267  // TODO: consider using NameInfo for diagnostic.
3268  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3269  DeclarationName Name = NameInfo.getName();
3270  FunctionDecl::StorageClass SC = SC_None;
3271  switch (D.getDeclSpec().getStorageClassSpec()) {
3272  default: assert(0 && "Unknown storage class!");
3273  case DeclSpec::SCS_auto:
3274  case DeclSpec::SCS_register:
3275  case DeclSpec::SCS_mutable:
3276    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3277         diag::err_typecheck_sclass_func);
3278    D.setInvalidType();
3279    break;
3280  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3281  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3282  case DeclSpec::SCS_static: {
3283    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3284      // C99 6.7.1p5:
3285      //   The declaration of an identifier for a function that has
3286      //   block scope shall have no explicit storage-class specifier
3287      //   other than extern
3288      // See also (C++ [dcl.stc]p4).
3289      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3290           diag::err_static_block_func);
3291      SC = SC_None;
3292    } else
3293      SC = SC_Static;
3294    break;
3295  }
3296  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3297  }
3298
3299  if (D.getDeclSpec().isThreadSpecified())
3300    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3301
3302  bool isFriend = D.getDeclSpec().isFriendSpecified();
3303  bool isInline = D.getDeclSpec().isInlineSpecified();
3304  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3305  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3306
3307  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3308  FunctionDecl::StorageClass SCAsWritten
3309    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3310
3311  // Check that the return type is not an abstract class type.
3312  // For record types, this is done by the AbstractClassUsageDiagnoser once
3313  // the class has been completely parsed.
3314  if (!DC->isRecord() &&
3315      RequireNonAbstractType(D.getIdentifierLoc(),
3316                             R->getAs<FunctionType>()->getResultType(),
3317                             diag::err_abstract_type_in_decl,
3318                             AbstractReturnType))
3319    D.setInvalidType();
3320
3321  // Do not allow returning a objc interface by-value.
3322  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3323    Diag(D.getIdentifierLoc(),
3324         diag::err_object_cannot_be_passed_returned_by_value) << 0
3325      << R->getAs<FunctionType>()->getResultType();
3326    D.setInvalidType();
3327  }
3328
3329  bool isVirtualOkay = false;
3330  FunctionDecl *NewFD;
3331
3332  if (isFriend) {
3333    // C++ [class.friend]p5
3334    //   A function can be defined in a friend declaration of a
3335    //   class . . . . Such a function is implicitly inline.
3336    isInline |= IsFunctionDefinition;
3337  }
3338
3339  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3340    // This is a C++ constructor declaration.
3341    assert(DC->isRecord() &&
3342           "Constructors can only be declared in a member context");
3343
3344    R = CheckConstructorDeclarator(D, R, SC);
3345
3346    // Create the new declaration
3347    NewFD = CXXConstructorDecl::Create(Context,
3348                                       cast<CXXRecordDecl>(DC),
3349                                       NameInfo, R, TInfo,
3350                                       isExplicit, isInline,
3351                                       /*isImplicitlyDeclared=*/false);
3352  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3353    // This is a C++ destructor declaration.
3354    if (DC->isRecord()) {
3355      R = CheckDestructorDeclarator(D, R, SC);
3356
3357      NewFD = CXXDestructorDecl::Create(Context,
3358                                        cast<CXXRecordDecl>(DC),
3359                                        NameInfo, R, TInfo,
3360                                        isInline,
3361                                        /*isImplicitlyDeclared=*/false);
3362      isVirtualOkay = true;
3363    } else {
3364      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3365
3366      // Create a FunctionDecl to satisfy the function definition parsing
3367      // code path.
3368      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3369                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3370                                   /*hasPrototype=*/true);
3371      D.setInvalidType();
3372    }
3373  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3374    if (!DC->isRecord()) {
3375      Diag(D.getIdentifierLoc(),
3376           diag::err_conv_function_not_member);
3377      return 0;
3378    }
3379
3380    CheckConversionDeclarator(D, R, SC);
3381    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3382                                      NameInfo, R, TInfo,
3383                                      isInline, isExplicit);
3384
3385    isVirtualOkay = true;
3386  } else if (DC->isRecord()) {
3387    // If the of the function is the same as the name of the record, then this
3388    // must be an invalid constructor that has a return type.
3389    // (The parser checks for a return type and makes the declarator a
3390    // constructor if it has no return type).
3391    // must have an invalid constructor that has a return type
3392    if (Name.getAsIdentifierInfo() &&
3393        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3394      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3395        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3396        << SourceRange(D.getIdentifierLoc());
3397      return 0;
3398    }
3399
3400    bool isStatic = SC == SC_Static;
3401
3402    // [class.free]p1:
3403    // Any allocation function for a class T is a static member
3404    // (even if not explicitly declared static).
3405    if (Name.getCXXOverloadedOperator() == OO_New ||
3406        Name.getCXXOverloadedOperator() == OO_Array_New)
3407      isStatic = true;
3408
3409    // [class.free]p6 Any deallocation function for a class X is a static member
3410    // (even if not explicitly declared static).
3411    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3412        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3413      isStatic = true;
3414
3415    // This is a C++ method declaration.
3416    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3417                                  NameInfo, R, TInfo,
3418                                  isStatic, SCAsWritten, isInline);
3419
3420    isVirtualOkay = !isStatic;
3421  } else {
3422    // Determine whether the function was written with a
3423    // prototype. This true when:
3424    //   - we're in C++ (where every function has a prototype),
3425    //   - there is a prototype in the declarator, or
3426    //   - the type R of the function is some kind of typedef or other reference
3427    //     to a type name (which eventually refers to a function type).
3428    bool HasPrototype =
3429       getLangOptions().CPlusPlus ||
3430       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3431       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3432
3433    NewFD = FunctionDecl::Create(Context, DC,
3434                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3435                                 HasPrototype);
3436  }
3437
3438  if (D.isInvalidType())
3439    NewFD->setInvalidDecl();
3440
3441  SetNestedNameSpecifier(NewFD, D);
3442
3443  // Set the lexical context. If the declarator has a C++
3444  // scope specifier, or is the object of a friend declaration, the
3445  // lexical context will be different from the semantic context.
3446  NewFD->setLexicalDeclContext(CurContext);
3447
3448  // Match up the template parameter lists with the scope specifier, then
3449  // determine whether we have a template or a template specialization.
3450  FunctionTemplateDecl *FunctionTemplate = 0;
3451  bool isExplicitSpecialization = false;
3452  bool isFunctionTemplateSpecialization = false;
3453  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3454  bool Invalid = false;
3455  if (TemplateParameterList *TemplateParams
3456        = MatchTemplateParametersToScopeSpecifier(
3457                                  D.getDeclSpec().getSourceRange().getBegin(),
3458                                  D.getCXXScopeSpec(),
3459                                  TemplateParamLists.get(),
3460                                  TemplateParamLists.size(),
3461                                  isFriend,
3462                                  isExplicitSpecialization,
3463                                  Invalid)) {
3464    // All but one template parameter lists have been matching.
3465    --NumMatchedTemplateParamLists;
3466
3467    if (TemplateParams->size() > 0) {
3468      // This is a function template
3469
3470      // Check that we can declare a template here.
3471      if (CheckTemplateDeclScope(S, TemplateParams))
3472        return 0;
3473
3474      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3475                                                      NewFD->getLocation(),
3476                                                      Name, TemplateParams,
3477                                                      NewFD);
3478      FunctionTemplate->setLexicalDeclContext(CurContext);
3479      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3480    } else {
3481      // This is a function template specialization.
3482      isFunctionTemplateSpecialization = true;
3483
3484      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3485      if (isFriend && isFunctionTemplateSpecialization) {
3486        // We want to remove the "template<>", found here.
3487        SourceRange RemoveRange = TemplateParams->getSourceRange();
3488
3489        // If we remove the template<> and the name is not a
3490        // template-id, we're actually silently creating a problem:
3491        // the friend declaration will refer to an untemplated decl,
3492        // and clearly the user wants a template specialization.  So
3493        // we need to insert '<>' after the name.
3494        SourceLocation InsertLoc;
3495        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3496          InsertLoc = D.getName().getSourceRange().getEnd();
3497          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3498        }
3499
3500        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3501          << Name << RemoveRange
3502          << FixItHint::CreateRemoval(RemoveRange)
3503          << FixItHint::CreateInsertion(InsertLoc, "<>");
3504      }
3505    }
3506  }
3507
3508  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3509    NewFD->setTemplateParameterListsInfo(Context,
3510                                         NumMatchedTemplateParamLists,
3511                                         TemplateParamLists.release());
3512  }
3513
3514  if (Invalid) {
3515    NewFD->setInvalidDecl();
3516    if (FunctionTemplate)
3517      FunctionTemplate->setInvalidDecl();
3518  }
3519
3520  // C++ [dcl.fct.spec]p5:
3521  //   The virtual specifier shall only be used in declarations of
3522  //   nonstatic class member functions that appear within a
3523  //   member-specification of a class declaration; see 10.3.
3524  //
3525  if (isVirtual && !NewFD->isInvalidDecl()) {
3526    if (!isVirtualOkay) {
3527       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3528           diag::err_virtual_non_function);
3529    } else if (!CurContext->isRecord()) {
3530      // 'virtual' was specified outside of the class.
3531      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3532        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3533    } else {
3534      // Okay: Add virtual to the method.
3535      NewFD->setVirtualAsWritten(true);
3536    }
3537  }
3538
3539  // C++ [dcl.fct.spec]p3:
3540  //  The inline specifier shall not appear on a block scope function declaration.
3541  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3542    if (CurContext->isFunctionOrMethod()) {
3543      // 'inline' is not allowed on block scope function declaration.
3544      Diag(D.getDeclSpec().getInlineSpecLoc(),
3545           diag::err_inline_declaration_block_scope) << Name
3546        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3547    }
3548  }
3549
3550  // C++ [dcl.fct.spec]p6:
3551  //  The explicit specifier shall be used only in the declaration of a
3552  //  constructor or conversion function within its class definition; see 12.3.1
3553  //  and 12.3.2.
3554  if (isExplicit && !NewFD->isInvalidDecl()) {
3555    if (!CurContext->isRecord()) {
3556      // 'explicit' was specified outside of the class.
3557      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3558           diag::err_explicit_out_of_class)
3559        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3560    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3561               !isa<CXXConversionDecl>(NewFD)) {
3562      // 'explicit' was specified on a function that wasn't a constructor
3563      // or conversion function.
3564      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3565           diag::err_explicit_non_ctor_or_conv_function)
3566        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3567    }
3568  }
3569
3570  // Filter out previous declarations that don't match the scope.
3571  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3572
3573  if (isFriend) {
3574    // For now, claim that the objects have no previous declaration.
3575    if (FunctionTemplate) {
3576      FunctionTemplate->setObjectOfFriendDecl(false);
3577      FunctionTemplate->setAccess(AS_public);
3578    }
3579    NewFD->setObjectOfFriendDecl(false);
3580    NewFD->setAccess(AS_public);
3581  }
3582
3583  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3584      !CurContext->isRecord()) {
3585    // C++ [class.static]p1:
3586    //   A data or function member of a class may be declared static
3587    //   in a class definition, in which case it is a static member of
3588    //   the class.
3589
3590    // Complain about the 'static' specifier if it's on an out-of-line
3591    // member function definition.
3592    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3593         diag::err_static_out_of_line)
3594      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3595  }
3596
3597  // Handle GNU asm-label extension (encoded as an attribute).
3598  if (Expr *E = (Expr*) D.getAsmLabel()) {
3599    // The parser guarantees this is a string.
3600    StringLiteral *SE = cast<StringLiteral>(E);
3601    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3602                                                SE->getString()));
3603  }
3604
3605  // Copy the parameter declarations from the declarator D to the function
3606  // declaration NewFD, if they are available.  First scavenge them into Params.
3607  llvm::SmallVector<ParmVarDecl*, 16> Params;
3608  if (D.getNumTypeObjects() > 0) {
3609    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3610
3611    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3612    // function that takes no arguments, not a function that takes a
3613    // single void argument.
3614    // We let through "const void" here because Sema::GetTypeForDeclarator
3615    // already checks for that case.
3616    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3617        FTI.ArgInfo[0].Param &&
3618        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3619      // Empty arg list, don't push any params.
3620      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3621
3622      // In C++, the empty parameter-type-list must be spelled "void"; a
3623      // typedef of void is not permitted.
3624      if (getLangOptions().CPlusPlus &&
3625          Param->getType().getUnqualifiedType() != Context.VoidTy)
3626        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3627      // FIXME: Leaks decl?
3628    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3629      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3630        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3631        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3632        Param->setDeclContext(NewFD);
3633        Params.push_back(Param);
3634
3635        if (Param->isInvalidDecl())
3636          NewFD->setInvalidDecl();
3637      }
3638    }
3639
3640  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3641    // When we're declaring a function with a typedef, typeof, etc as in the
3642    // following example, we'll need to synthesize (unnamed)
3643    // parameters for use in the declaration.
3644    //
3645    // @code
3646    // typedef void fn(int);
3647    // fn f;
3648    // @endcode
3649
3650    // Synthesize a parameter for each argument type.
3651    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3652         AE = FT->arg_type_end(); AI != AE; ++AI) {
3653      ParmVarDecl *Param =
3654        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3655      Params.push_back(Param);
3656    }
3657  } else {
3658    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3659           "Should not need args for typedef of non-prototype fn");
3660  }
3661  // Finally, we know we have the right number of parameters, install them.
3662  NewFD->setParams(Params.data(), Params.size());
3663
3664  // If the declarator is a template-id, translate the parser's template
3665  // argument list into our AST format.
3666  bool HasExplicitTemplateArgs = false;
3667  TemplateArgumentListInfo TemplateArgs;
3668  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3669    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3670    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3671    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3672    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3673                                       TemplateId->getTemplateArgs(),
3674                                       TemplateId->NumArgs);
3675    translateTemplateArguments(TemplateArgsPtr,
3676                               TemplateArgs);
3677    TemplateArgsPtr.release();
3678
3679    HasExplicitTemplateArgs = true;
3680
3681    if (FunctionTemplate) {
3682      // FIXME: Diagnose function template with explicit template
3683      // arguments.
3684      HasExplicitTemplateArgs = false;
3685    } else if (!isFunctionTemplateSpecialization &&
3686               !D.getDeclSpec().isFriendSpecified()) {
3687      // We have encountered something that the user meant to be a
3688      // specialization (because it has explicitly-specified template
3689      // arguments) but that was not introduced with a "template<>" (or had
3690      // too few of them).
3691      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3692        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3693        << FixItHint::CreateInsertion(
3694                                   D.getDeclSpec().getSourceRange().getBegin(),
3695                                                 "template<> ");
3696      isFunctionTemplateSpecialization = true;
3697    } else {
3698      // "friend void foo<>(int);" is an implicit specialization decl.
3699      isFunctionTemplateSpecialization = true;
3700    }
3701  } else if (isFriend && isFunctionTemplateSpecialization) {
3702    // This combination is only possible in a recovery case;  the user
3703    // wrote something like:
3704    //   template <> friend void foo(int);
3705    // which we're recovering from as if the user had written:
3706    //   friend void foo<>(int);
3707    // Go ahead and fake up a template id.
3708    HasExplicitTemplateArgs = true;
3709    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3710    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3711  }
3712
3713  // If it's a friend (and only if it's a friend), it's possible
3714  // that either the specialized function type or the specialized
3715  // template is dependent, and therefore matching will fail.  In
3716  // this case, don't check the specialization yet.
3717  if (isFunctionTemplateSpecialization && isFriend &&
3718      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3719    assert(HasExplicitTemplateArgs &&
3720           "friend function specialization without template args");
3721    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3722                                                     Previous))
3723      NewFD->setInvalidDecl();
3724  } else if (isFunctionTemplateSpecialization) {
3725    if (CheckFunctionTemplateSpecialization(NewFD,
3726                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3727                                            Previous))
3728      NewFD->setInvalidDecl();
3729  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3730    if (CheckMemberSpecialization(NewFD, Previous))
3731      NewFD->setInvalidDecl();
3732  }
3733
3734  // Perform semantic checking on the function declaration.
3735  bool OverloadableAttrRequired = false; // FIXME: HACK!
3736  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3737                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3738
3739  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3740          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3741         "previous declaration set still overloaded");
3742
3743  NamedDecl *PrincipalDecl = (FunctionTemplate
3744                              ? cast<NamedDecl>(FunctionTemplate)
3745                              : NewFD);
3746
3747  if (isFriend && Redeclaration) {
3748    AccessSpecifier Access = AS_public;
3749    if (!NewFD->isInvalidDecl())
3750      Access = NewFD->getPreviousDeclaration()->getAccess();
3751
3752    NewFD->setAccess(Access);
3753    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3754
3755    PrincipalDecl->setObjectOfFriendDecl(true);
3756  }
3757
3758  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3759      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3760    PrincipalDecl->setNonMemberOperator();
3761
3762  // If we have a function template, check the template parameter
3763  // list. This will check and merge default template arguments.
3764  if (FunctionTemplate) {
3765    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3766    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3767                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3768             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3769                                                : TPC_FunctionTemplate);
3770  }
3771
3772  if (NewFD->isInvalidDecl()) {
3773    // Ignore all the rest of this.
3774  } else if (!Redeclaration) {
3775    // Fake up an access specifier if it's supposed to be a class member.
3776    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3777      NewFD->setAccess(AS_public);
3778
3779    // Qualified decls generally require a previous declaration.
3780    if (D.getCXXScopeSpec().isSet()) {
3781      // ...with the major exception of templated-scope or
3782      // dependent-scope friend declarations.
3783
3784      // TODO: we currently also suppress this check in dependent
3785      // contexts because (1) the parameter depth will be off when
3786      // matching friend templates and (2) we might actually be
3787      // selecting a friend based on a dependent factor.  But there
3788      // are situations where these conditions don't apply and we
3789      // can actually do this check immediately.
3790      if (isFriend &&
3791          (NumMatchedTemplateParamLists ||
3792           D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3793           CurContext->isDependentContext())) {
3794        // ignore these
3795      } else {
3796        // The user tried to provide an out-of-line definition for a
3797        // function that is a member of a class or namespace, but there
3798        // was no such member function declared (C++ [class.mfct]p2,
3799        // C++ [namespace.memdef]p2). For example:
3800        //
3801        // class X {
3802        //   void f() const;
3803        // };
3804        //
3805        // void X::f() { } // ill-formed
3806        //
3807        // Complain about this problem, and attempt to suggest close
3808        // matches (e.g., those that differ only in cv-qualifiers and
3809        // whether the parameter types are references).
3810        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3811          << Name << DC << D.getCXXScopeSpec().getRange();
3812        NewFD->setInvalidDecl();
3813
3814        DiagnoseInvalidRedeclaration(*this, NewFD);
3815      }
3816
3817    // Unqualified local friend declarations are required to resolve
3818    // to something.
3819    } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3820      Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3821      NewFD->setInvalidDecl();
3822      DiagnoseInvalidRedeclaration(*this, NewFD);
3823    }
3824
3825  } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3826             !isFriend && !isFunctionTemplateSpecialization &&
3827             !isExplicitSpecialization) {
3828    // An out-of-line member function declaration must also be a
3829    // definition (C++ [dcl.meaning]p1).
3830    // Note that this is not the case for explicit specializations of
3831    // function templates or member functions of class templates, per
3832    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3833    // for compatibility with old SWIG code which likes to generate them.
3834    Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3835      << D.getCXXScopeSpec().getRange();
3836  }
3837
3838  // Handle attributes. We need to have merged decls when handling attributes
3839  // (for example to check for conflicts, etc).
3840  // FIXME: This needs to happen before we merge declarations. Then,
3841  // let attribute merging cope with attribute conflicts.
3842  ProcessDeclAttributes(S, NewFD, D);
3843
3844  // attributes declared post-definition are currently ignored
3845  // FIXME: This should happen during attribute merging
3846  if (Redeclaration && Previous.isSingleResult()) {
3847    const FunctionDecl *Def;
3848    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3849    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3850      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3851      Diag(Def->getLocation(), diag::note_previous_definition);
3852    }
3853  }
3854
3855  AddKnownFunctionAttributes(NewFD);
3856
3857  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3858    // If a function name is overloadable in C, then every function
3859    // with that name must be marked "overloadable".
3860    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3861      << Redeclaration << NewFD;
3862    if (!Previous.empty())
3863      Diag(Previous.getRepresentativeDecl()->getLocation(),
3864           diag::note_attribute_overloadable_prev_overload);
3865    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3866  }
3867
3868  if (NewFD->hasAttr<OverloadableAttr>() &&
3869      !NewFD->getType()->getAs<FunctionProtoType>()) {
3870    Diag(NewFD->getLocation(),
3871         diag::err_attribute_overloadable_no_prototype)
3872      << NewFD;
3873
3874    // Turn this into a variadic function with no parameters.
3875    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3876    QualType R = Context.getFunctionType(FT->getResultType(),
3877                                         0, 0, true, 0, false, false, 0, 0,
3878                                         FT->getExtInfo());
3879    NewFD->setType(R);
3880  }
3881
3882  // If there's a #pragma GCC visibility in scope, and this isn't a class
3883  // member, set the visibility of this function.
3884  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3885    AddPushedVisibilityAttribute(NewFD);
3886
3887  // If this is a locally-scoped extern C function, update the
3888  // map of such names.
3889  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3890      && !NewFD->isInvalidDecl())
3891    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3892
3893  // Set this FunctionDecl's range up to the right paren.
3894  NewFD->setLocEnd(D.getSourceRange().getEnd());
3895
3896  if (FunctionTemplate && NewFD->isInvalidDecl())
3897    FunctionTemplate->setInvalidDecl();
3898
3899  if (FunctionTemplate)
3900    return FunctionTemplate;
3901
3902  MarkUnusedFileScopedDecl(NewFD);
3903
3904  CheckClassMemberNameAttributes(*this, NewFD);
3905
3906  return NewFD;
3907}
3908
3909/// \brief Perform semantic checking of a new function declaration.
3910///
3911/// Performs semantic analysis of the new function declaration
3912/// NewFD. This routine performs all semantic checking that does not
3913/// require the actual declarator involved in the declaration, and is
3914/// used both for the declaration of functions as they are parsed
3915/// (called via ActOnDeclarator) and for the declaration of functions
3916/// that have been instantiated via C++ template instantiation (called
3917/// via InstantiateDecl).
3918///
3919/// \param IsExplicitSpecialiation whether this new function declaration is
3920/// an explicit specialization of the previous declaration.
3921///
3922/// This sets NewFD->isInvalidDecl() to true if there was an error.
3923void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3924                                    LookupResult &Previous,
3925                                    bool IsExplicitSpecialization,
3926                                    bool &Redeclaration,
3927                                    bool &OverloadableAttrRequired) {
3928  // If NewFD is already known erroneous, don't do any of this checking.
3929  if (NewFD->isInvalidDecl()) {
3930    // If this is a class member, mark the class invalid immediately.
3931    // This avoids some consistency errors later.
3932    if (isa<CXXMethodDecl>(NewFD))
3933      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3934
3935    return;
3936  }
3937
3938  if (NewFD->getResultType()->isVariablyModifiedType()) {
3939    // Functions returning a variably modified type violate C99 6.7.5.2p2
3940    // because all functions have linkage.
3941    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3942    return NewFD->setInvalidDecl();
3943  }
3944
3945  if (NewFD->isMain())
3946    CheckMain(NewFD);
3947
3948  // Check for a previous declaration of this name.
3949  if (Previous.empty() && NewFD->isExternC()) {
3950    // Since we did not find anything by this name and we're declaring
3951    // an extern "C" function, look for a non-visible extern "C"
3952    // declaration with the same name.
3953    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3954      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3955    if (Pos != LocallyScopedExternalDecls.end())
3956      Previous.addDecl(Pos->second);
3957  }
3958
3959  // Merge or overload the declaration with an existing declaration of
3960  // the same name, if appropriate.
3961  if (!Previous.empty()) {
3962    // Determine whether NewFD is an overload of PrevDecl or
3963    // a declaration that requires merging. If it's an overload,
3964    // there's no more work to do here; we'll just add the new
3965    // function to the scope.
3966
3967    NamedDecl *OldDecl = 0;
3968    if (!AllowOverloadingOfFunction(Previous, Context)) {
3969      Redeclaration = true;
3970      OldDecl = Previous.getFoundDecl();
3971    } else {
3972      if (!getLangOptions().CPlusPlus)
3973        OverloadableAttrRequired = true;
3974
3975      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3976                            /*NewIsUsingDecl*/ false)) {
3977      case Ovl_Match:
3978        Redeclaration = true;
3979        break;
3980
3981      case Ovl_NonFunction:
3982        Redeclaration = true;
3983        break;
3984
3985      case Ovl_Overload:
3986        Redeclaration = false;
3987        break;
3988      }
3989    }
3990
3991    if (Redeclaration) {
3992      // NewFD and OldDecl represent declarations that need to be
3993      // merged.
3994      if (MergeFunctionDecl(NewFD, OldDecl))
3995        return NewFD->setInvalidDecl();
3996
3997      Previous.clear();
3998      Previous.addDecl(OldDecl);
3999
4000      if (FunctionTemplateDecl *OldTemplateDecl
4001                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4002        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4003        FunctionTemplateDecl *NewTemplateDecl
4004          = NewFD->getDescribedFunctionTemplate();
4005        assert(NewTemplateDecl && "Template/non-template mismatch");
4006        if (CXXMethodDecl *Method
4007              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4008          Method->setAccess(OldTemplateDecl->getAccess());
4009          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4010        }
4011
4012        // If this is an explicit specialization of a member that is a function
4013        // template, mark it as a member specialization.
4014        if (IsExplicitSpecialization &&
4015            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4016          NewTemplateDecl->setMemberSpecialization();
4017          assert(OldTemplateDecl->isMemberSpecialization());
4018        }
4019      } else {
4020        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4021          NewFD->setAccess(OldDecl->getAccess());
4022        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4023      }
4024    }
4025  }
4026
4027  // Semantic checking for this function declaration (in isolation).
4028  if (getLangOptions().CPlusPlus) {
4029    // C++-specific checks.
4030    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4031      CheckConstructor(Constructor);
4032    } else if (CXXDestructorDecl *Destructor =
4033                dyn_cast<CXXDestructorDecl>(NewFD)) {
4034      CXXRecordDecl *Record = Destructor->getParent();
4035      QualType ClassType = Context.getTypeDeclType(Record);
4036
4037      // FIXME: Shouldn't we be able to perform this check even when the class
4038      // type is dependent? Both gcc and edg can handle that.
4039      if (!ClassType->isDependentType()) {
4040        DeclarationName Name
4041          = Context.DeclarationNames.getCXXDestructorName(
4042                                        Context.getCanonicalType(ClassType));
4043        if (NewFD->getDeclName() != Name) {
4044          Diag(NewFD->getLocation(), diag::err_destructor_name);
4045          return NewFD->setInvalidDecl();
4046        }
4047      }
4048    } else if (CXXConversionDecl *Conversion
4049               = dyn_cast<CXXConversionDecl>(NewFD)) {
4050      ActOnConversionDeclarator(Conversion);
4051    }
4052
4053    // Find any virtual functions that this function overrides.
4054    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4055      if (!Method->isFunctionTemplateSpecialization() &&
4056          !Method->getDescribedFunctionTemplate()) {
4057        if (AddOverriddenMethods(Method->getParent(), Method)) {
4058          // If the function was marked as "static", we have a problem.
4059          if (NewFD->getStorageClass() == SC_Static) {
4060            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4061              << NewFD->getDeclName();
4062            for (CXXMethodDecl::method_iterator
4063                      Overridden = Method->begin_overridden_methods(),
4064                   OverriddenEnd = Method->end_overridden_methods();
4065                 Overridden != OverriddenEnd;
4066                 ++Overridden) {
4067              Diag((*Overridden)->getLocation(),
4068                   diag::note_overridden_virtual_function);
4069            }
4070          }
4071        }
4072      }
4073    }
4074
4075    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4076    if (NewFD->isOverloadedOperator() &&
4077        CheckOverloadedOperatorDeclaration(NewFD))
4078      return NewFD->setInvalidDecl();
4079
4080    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4081    if (NewFD->getLiteralIdentifier() &&
4082        CheckLiteralOperatorDeclaration(NewFD))
4083      return NewFD->setInvalidDecl();
4084
4085    // In C++, check default arguments now that we have merged decls. Unless
4086    // the lexical context is the class, because in this case this is done
4087    // during delayed parsing anyway.
4088    if (!CurContext->isRecord())
4089      CheckCXXDefaultArguments(NewFD);
4090  }
4091}
4092
4093void Sema::CheckMain(FunctionDecl* FD) {
4094  // C++ [basic.start.main]p3:  A program that declares main to be inline
4095  //   or static is ill-formed.
4096  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4097  //   shall not appear in a declaration of main.
4098  // static main is not an error under C99, but we should warn about it.
4099  bool isInline = FD->isInlineSpecified();
4100  bool isStatic = FD->getStorageClass() == SC_Static;
4101  if (isInline || isStatic) {
4102    unsigned diagID = diag::warn_unusual_main_decl;
4103    if (isInline || getLangOptions().CPlusPlus)
4104      diagID = diag::err_unusual_main_decl;
4105
4106    int which = isStatic + (isInline << 1) - 1;
4107    Diag(FD->getLocation(), diagID) << which;
4108  }
4109
4110  QualType T = FD->getType();
4111  assert(T->isFunctionType() && "function decl is not of function type");
4112  const FunctionType* FT = T->getAs<FunctionType>();
4113
4114  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4115    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4116    TypeLoc TL = TSI->getTypeLoc();
4117    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4118                                          diag::err_main_returns_nonint);
4119    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4120      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4121                                        "int");
4122    }
4123    FD->setInvalidDecl(true);
4124  }
4125
4126  // Treat protoless main() as nullary.
4127  if (isa<FunctionNoProtoType>(FT)) return;
4128
4129  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4130  unsigned nparams = FTP->getNumArgs();
4131  assert(FD->getNumParams() == nparams);
4132
4133  bool HasExtraParameters = (nparams > 3);
4134
4135  // Darwin passes an undocumented fourth argument of type char**.  If
4136  // other platforms start sprouting these, the logic below will start
4137  // getting shifty.
4138  if (nparams == 4 &&
4139      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4140    HasExtraParameters = false;
4141
4142  if (HasExtraParameters) {
4143    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4144    FD->setInvalidDecl(true);
4145    nparams = 3;
4146  }
4147
4148  // FIXME: a lot of the following diagnostics would be improved
4149  // if we had some location information about types.
4150
4151  QualType CharPP =
4152    Context.getPointerType(Context.getPointerType(Context.CharTy));
4153  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4154
4155  for (unsigned i = 0; i < nparams; ++i) {
4156    QualType AT = FTP->getArgType(i);
4157
4158    bool mismatch = true;
4159
4160    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4161      mismatch = false;
4162    else if (Expected[i] == CharPP) {
4163      // As an extension, the following forms are okay:
4164      //   char const **
4165      //   char const * const *
4166      //   char * const *
4167
4168      QualifierCollector qs;
4169      const PointerType* PT;
4170      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4171          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4172          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4173        qs.removeConst();
4174        mismatch = !qs.empty();
4175      }
4176    }
4177
4178    if (mismatch) {
4179      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4180      // TODO: suggest replacing given type with expected type
4181      FD->setInvalidDecl(true);
4182    }
4183  }
4184
4185  if (nparams == 1 && !FD->isInvalidDecl()) {
4186    Diag(FD->getLocation(), diag::warn_main_one_arg);
4187  }
4188
4189  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4190    Diag(FD->getLocation(), diag::err_main_template_decl);
4191    FD->setInvalidDecl();
4192  }
4193}
4194
4195bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4196  // FIXME: Need strict checking.  In C89, we need to check for
4197  // any assignment, increment, decrement, function-calls, or
4198  // commas outside of a sizeof.  In C99, it's the same list,
4199  // except that the aforementioned are allowed in unevaluated
4200  // expressions.  Everything else falls under the
4201  // "may accept other forms of constant expressions" exception.
4202  // (We never end up here for C++, so the constant expression
4203  // rules there don't matter.)
4204  if (Init->isConstantInitializer(Context, false))
4205    return false;
4206  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4207    << Init->getSourceRange();
4208  return true;
4209}
4210
4211void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4212  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4213}
4214
4215/// AddInitializerToDecl - Adds the initializer Init to the
4216/// declaration dcl. If DirectInit is true, this is C++ direct
4217/// initialization rather than copy initialization.
4218void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4219  // If there is no declaration, there was an error parsing it.  Just ignore
4220  // the initializer.
4221  if (RealDecl == 0)
4222    return;
4223
4224  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4225    // With declarators parsed the way they are, the parser cannot
4226    // distinguish between a normal initializer and a pure-specifier.
4227    // Thus this grotesque test.
4228    IntegerLiteral *IL;
4229    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4230        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4231      CheckPureMethod(Method, Init->getSourceRange());
4232    else {
4233      Diag(Method->getLocation(), diag::err_member_function_initialization)
4234        << Method->getDeclName() << Init->getSourceRange();
4235      Method->setInvalidDecl();
4236    }
4237    return;
4238  }
4239
4240  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4241  if (!VDecl) {
4242    if (getLangOptions().CPlusPlus &&
4243        RealDecl->getLexicalDeclContext()->isRecord() &&
4244        isa<NamedDecl>(RealDecl))
4245      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4246    else
4247      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4248    RealDecl->setInvalidDecl();
4249    return;
4250  }
4251
4252
4253
4254  // A definition must end up with a complete type, which means it must be
4255  // complete with the restriction that an array type might be completed by the
4256  // initializer; note that later code assumes this restriction.
4257  QualType BaseDeclType = VDecl->getType();
4258  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4259    BaseDeclType = Array->getElementType();
4260  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4261                          diag::err_typecheck_decl_incomplete_type)) {
4262    RealDecl->setInvalidDecl();
4263    return;
4264  }
4265
4266  // The variable can not have an abstract class type.
4267  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4268                             diag::err_abstract_type_in_decl,
4269                             AbstractVariableType))
4270    VDecl->setInvalidDecl();
4271
4272  const VarDecl *Def;
4273  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4274    Diag(VDecl->getLocation(), diag::err_redefinition)
4275      << VDecl->getDeclName();
4276    Diag(Def->getLocation(), diag::note_previous_definition);
4277    VDecl->setInvalidDecl();
4278    return;
4279  }
4280
4281  // C++ [class.static.data]p4
4282  //   If a static data member is of const integral or const
4283  //   enumeration type, its declaration in the class definition can
4284  //   specify a constant-initializer which shall be an integral
4285  //   constant expression (5.19). In that case, the member can appear
4286  //   in integral constant expressions. The member shall still be
4287  //   defined in a namespace scope if it is used in the program and the
4288  //   namespace scope definition shall not contain an initializer.
4289  //
4290  // We already performed a redefinition check above, but for static
4291  // data members we also need to check whether there was an in-class
4292  // declaration with an initializer.
4293  const VarDecl* PrevInit = 0;
4294  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4295    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4296    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4297    return;
4298  }
4299
4300  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4301    getCurFunction()->setHasBranchProtectedScope();
4302
4303  // Capture the variable that is being initialized and the style of
4304  // initialization.
4305  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4306
4307  // FIXME: Poor source location information.
4308  InitializationKind Kind
4309    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4310                                                   Init->getLocStart(),
4311                                                   Init->getLocEnd())
4312                : InitializationKind::CreateCopy(VDecl->getLocation(),
4313                                                 Init->getLocStart());
4314
4315  // Get the decls type and save a reference for later, since
4316  // CheckInitializerTypes may change it.
4317  QualType DclT = VDecl->getType(), SavT = DclT;
4318  if (VDecl->isLocalVarDecl()) {
4319    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4320      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4321      VDecl->setInvalidDecl();
4322    } else if (!VDecl->isInvalidDecl()) {
4323      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4324      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4325                                                MultiExprArg(*this, &Init, 1),
4326                                                &DclT);
4327      if (Result.isInvalid()) {
4328        VDecl->setInvalidDecl();
4329        return;
4330      }
4331
4332      Init = Result.takeAs<Expr>();
4333
4334      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4335      // Don't check invalid declarations to avoid emitting useless diagnostics.
4336      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4337        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4338          CheckForConstantInitializer(Init, DclT);
4339      }
4340    }
4341  } else if (VDecl->isStaticDataMember() &&
4342             VDecl->getLexicalDeclContext()->isRecord()) {
4343    // This is an in-class initialization for a static data member, e.g.,
4344    //
4345    // struct S {
4346    //   static const int value = 17;
4347    // };
4348
4349    // Try to perform the initialization regardless.
4350    if (!VDecl->isInvalidDecl()) {
4351      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4352      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4353                                          MultiExprArg(*this, &Init, 1),
4354                                          &DclT);
4355      if (Result.isInvalid()) {
4356        VDecl->setInvalidDecl();
4357        return;
4358      }
4359
4360      Init = Result.takeAs<Expr>();
4361    }
4362
4363    // C++ [class.mem]p4:
4364    //   A member-declarator can contain a constant-initializer only
4365    //   if it declares a static member (9.4) of const integral or
4366    //   const enumeration type, see 9.4.2.
4367    QualType T = VDecl->getType();
4368
4369    // Do nothing on dependent types.
4370    if (T->isDependentType()) {
4371
4372    // Require constness.
4373    } else if (!T.isConstQualified()) {
4374      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4375        << Init->getSourceRange();
4376      VDecl->setInvalidDecl();
4377
4378    // We allow integer constant expressions in all cases.
4379    } else if (T->isIntegralOrEnumerationType()) {
4380      if (!Init->isValueDependent()) {
4381        // Check whether the expression is a constant expression.
4382        llvm::APSInt Value;
4383        SourceLocation Loc;
4384        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4385          Diag(Loc, diag::err_in_class_initializer_non_constant)
4386            << Init->getSourceRange();
4387          VDecl->setInvalidDecl();
4388        }
4389      }
4390
4391    // We allow floating-point constants as an extension in C++03, and
4392    // C++0x has far more complicated rules that we don't really
4393    // implement fully.
4394    } else {
4395      bool Allowed = false;
4396      if (getLangOptions().CPlusPlus0x) {
4397        Allowed = T->isLiteralType();
4398      } else if (T->isFloatingType()) { // also permits complex, which is ok
4399        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4400          << T << Init->getSourceRange();
4401        Allowed = true;
4402      }
4403
4404      if (!Allowed) {
4405        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4406          << T << Init->getSourceRange();
4407        VDecl->setInvalidDecl();
4408
4409      // TODO: there are probably expressions that pass here that shouldn't.
4410      } else if (!Init->isValueDependent() &&
4411                 !Init->isConstantInitializer(Context, false)) {
4412        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4413          << Init->getSourceRange();
4414        VDecl->setInvalidDecl();
4415      }
4416    }
4417  } else if (VDecl->isFileVarDecl()) {
4418    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4419        (!getLangOptions().CPlusPlus ||
4420         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4421      Diag(VDecl->getLocation(), diag::warn_extern_init);
4422    if (!VDecl->isInvalidDecl()) {
4423      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4424      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4425                                                MultiExprArg(*this, &Init, 1),
4426                                                &DclT);
4427      if (Result.isInvalid()) {
4428        VDecl->setInvalidDecl();
4429        return;
4430      }
4431
4432      Init = Result.takeAs<Expr>();
4433    }
4434
4435    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4436    // Don't check invalid declarations to avoid emitting useless diagnostics.
4437    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4438      // C99 6.7.8p4. All file scoped initializers need to be constant.
4439      CheckForConstantInitializer(Init, DclT);
4440    }
4441  }
4442  // If the type changed, it means we had an incomplete type that was
4443  // completed by the initializer. For example:
4444  //   int ary[] = { 1, 3, 5 };
4445  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4446  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4447    VDecl->setType(DclT);
4448    Init->setType(DclT);
4449  }
4450
4451
4452  // If this variable is a local declaration with record type, make sure it
4453  // doesn't have a flexible member initialization.  We only support this as a
4454  // global/static definition.
4455  if (VDecl->hasLocalStorage())
4456    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4457      if (RT->getDecl()->hasFlexibleArrayMember()) {
4458        // Check whether the initializer tries to initialize the flexible
4459        // array member itself to anything other than an empty initializer list.
4460        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4461          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4462                                         RT->getDecl()->field_end()) - 1;
4463          if (Index < ILE->getNumInits() &&
4464              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4465                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4466            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4467            VDecl->setInvalidDecl();
4468          }
4469        }
4470      }
4471
4472  // Check any implicit conversions within the expression.
4473  CheckImplicitConversions(Init, VDecl->getLocation());
4474
4475  Init = MaybeCreateCXXExprWithTemporaries(Init);
4476  // Attach the initializer to the decl.
4477  VDecl->setInit(Init);
4478
4479  if (getLangOptions().CPlusPlus) {
4480    if (!VDecl->isInvalidDecl() &&
4481        !VDecl->getDeclContext()->isDependentContext() &&
4482        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4483        !Init->isConstantInitializer(Context,
4484                                     VDecl->getType()->isReferenceType()))
4485      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4486        << Init->getSourceRange();
4487
4488    // Make sure we mark the destructor as used if necessary.
4489    QualType InitType = VDecl->getType();
4490    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4491      InitType = Context.getBaseElementType(Array);
4492    if (const RecordType *Record = InitType->getAs<RecordType>())
4493      FinalizeVarWithDestructor(VDecl, Record);
4494  }
4495
4496  return;
4497}
4498
4499/// ActOnInitializerError - Given that there was an error parsing an
4500/// initializer for the given declaration, try to return to some form
4501/// of sanity.
4502void Sema::ActOnInitializerError(Decl *D) {
4503  // Our main concern here is re-establishing invariants like "a
4504  // variable's type is either dependent or complete".
4505  if (!D || D->isInvalidDecl()) return;
4506
4507  VarDecl *VD = dyn_cast<VarDecl>(D);
4508  if (!VD) return;
4509
4510  QualType Ty = VD->getType();
4511  if (Ty->isDependentType()) return;
4512
4513  // Require a complete type.
4514  if (RequireCompleteType(VD->getLocation(),
4515                          Context.getBaseElementType(Ty),
4516                          diag::err_typecheck_decl_incomplete_type)) {
4517    VD->setInvalidDecl();
4518    return;
4519  }
4520
4521  // Require an abstract type.
4522  if (RequireNonAbstractType(VD->getLocation(), Ty,
4523                             diag::err_abstract_type_in_decl,
4524                             AbstractVariableType)) {
4525    VD->setInvalidDecl();
4526    return;
4527  }
4528
4529  // Don't bother complaining about constructors or destructors,
4530  // though.
4531}
4532
4533void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4534                                  bool TypeContainsUndeducedAuto) {
4535  // If there is no declaration, there was an error parsing it. Just ignore it.
4536  if (RealDecl == 0)
4537    return;
4538
4539  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4540    QualType Type = Var->getType();
4541
4542    // C++0x [dcl.spec.auto]p3
4543    if (TypeContainsUndeducedAuto) {
4544      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4545        << Var->getDeclName() << Type;
4546      Var->setInvalidDecl();
4547      return;
4548    }
4549
4550    switch (Var->isThisDeclarationADefinition()) {
4551    case VarDecl::Definition:
4552      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4553        break;
4554
4555      // We have an out-of-line definition of a static data member
4556      // that has an in-class initializer, so we type-check this like
4557      // a declaration.
4558      //
4559      // Fall through
4560
4561    case VarDecl::DeclarationOnly:
4562      // It's only a declaration.
4563
4564      // Block scope. C99 6.7p7: If an identifier for an object is
4565      // declared with no linkage (C99 6.2.2p6), the type for the
4566      // object shall be complete.
4567      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4568          !Var->getLinkage() && !Var->isInvalidDecl() &&
4569          RequireCompleteType(Var->getLocation(), Type,
4570                              diag::err_typecheck_decl_incomplete_type))
4571        Var->setInvalidDecl();
4572
4573      // Make sure that the type is not abstract.
4574      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4575          RequireNonAbstractType(Var->getLocation(), Type,
4576                                 diag::err_abstract_type_in_decl,
4577                                 AbstractVariableType))
4578        Var->setInvalidDecl();
4579      return;
4580
4581    case VarDecl::TentativeDefinition:
4582      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4583      // object that has file scope without an initializer, and without a
4584      // storage-class specifier or with the storage-class specifier "static",
4585      // constitutes a tentative definition. Note: A tentative definition with
4586      // external linkage is valid (C99 6.2.2p5).
4587      if (!Var->isInvalidDecl()) {
4588        if (const IncompleteArrayType *ArrayT
4589                                    = Context.getAsIncompleteArrayType(Type)) {
4590          if (RequireCompleteType(Var->getLocation(),
4591                                  ArrayT->getElementType(),
4592                                  diag::err_illegal_decl_array_incomplete_type))
4593            Var->setInvalidDecl();
4594        } else if (Var->getStorageClass() == SC_Static) {
4595          // C99 6.9.2p3: If the declaration of an identifier for an object is
4596          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4597          // declared type shall not be an incomplete type.
4598          // NOTE: code such as the following
4599          //     static struct s;
4600          //     struct s { int a; };
4601          // is accepted by gcc. Hence here we issue a warning instead of
4602          // an error and we do not invalidate the static declaration.
4603          // NOTE: to avoid multiple warnings, only check the first declaration.
4604          if (Var->getPreviousDeclaration() == 0)
4605            RequireCompleteType(Var->getLocation(), Type,
4606                                diag::ext_typecheck_decl_incomplete_type);
4607        }
4608      }
4609
4610      // Record the tentative definition; we're done.
4611      if (!Var->isInvalidDecl())
4612        TentativeDefinitions.push_back(Var);
4613      return;
4614    }
4615
4616    // Provide a specific diagnostic for uninitialized variable
4617    // definitions with incomplete array type.
4618    if (Type->isIncompleteArrayType()) {
4619      Diag(Var->getLocation(),
4620           diag::err_typecheck_incomplete_array_needs_initializer);
4621      Var->setInvalidDecl();
4622      return;
4623    }
4624
4625    // Provide a specific diagnostic for uninitialized variable
4626    // definitions with reference type.
4627    if (Type->isReferenceType()) {
4628      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4629        << Var->getDeclName()
4630        << SourceRange(Var->getLocation(), Var->getLocation());
4631      Var->setInvalidDecl();
4632      return;
4633    }
4634
4635    // Do not attempt to type-check the default initializer for a
4636    // variable with dependent type.
4637    if (Type->isDependentType())
4638      return;
4639
4640    if (Var->isInvalidDecl())
4641      return;
4642
4643    if (RequireCompleteType(Var->getLocation(),
4644                            Context.getBaseElementType(Type),
4645                            diag::err_typecheck_decl_incomplete_type)) {
4646      Var->setInvalidDecl();
4647      return;
4648    }
4649
4650    // The variable can not have an abstract class type.
4651    if (RequireNonAbstractType(Var->getLocation(), Type,
4652                               diag::err_abstract_type_in_decl,
4653                               AbstractVariableType)) {
4654      Var->setInvalidDecl();
4655      return;
4656    }
4657
4658    const RecordType *Record
4659      = Context.getBaseElementType(Type)->getAs<RecordType>();
4660    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4661        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4662      // C++03 [dcl.init]p9:
4663      //   If no initializer is specified for an object, and the
4664      //   object is of (possibly cv-qualified) non-POD class type (or
4665      //   array thereof), the object shall be default-initialized; if
4666      //   the object is of const-qualified type, the underlying class
4667      //   type shall have a user-declared default
4668      //   constructor. Otherwise, if no initializer is specified for
4669      //   a non- static object, the object and its subobjects, if
4670      //   any, have an indeterminate initial value); if the object
4671      //   or any of its subobjects are of const-qualified type, the
4672      //   program is ill-formed.
4673      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4674    } else {
4675      // Check for jumps past the implicit initializer.  C++0x
4676      // clarifies that this applies to a "variable with automatic
4677      // storage duration", not a "local variable".
4678      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4679        getCurFunction()->setHasBranchProtectedScope();
4680
4681      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4682      InitializationKind Kind
4683        = InitializationKind::CreateDefault(Var->getLocation());
4684
4685      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4686      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4687                                        MultiExprArg(*this, 0, 0));
4688      if (Init.isInvalid())
4689        Var->setInvalidDecl();
4690      else if (Init.get()) {
4691        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4692
4693        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4694            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4695            !Var->getDeclContext()->isDependentContext() &&
4696            !Var->getInit()->isConstantInitializer(Context, false))
4697          Diag(Var->getLocation(), diag::warn_global_constructor);
4698      }
4699    }
4700
4701    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4702      FinalizeVarWithDestructor(Var, Record);
4703  }
4704}
4705
4706Sema::DeclGroupPtrTy
4707Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4708                              Decl **Group, unsigned NumDecls) {
4709  llvm::SmallVector<Decl*, 8> Decls;
4710
4711  if (DS.isTypeSpecOwned())
4712    Decls.push_back(DS.getRepAsDecl());
4713
4714  for (unsigned i = 0; i != NumDecls; ++i)
4715    if (Decl *D = Group[i])
4716      Decls.push_back(D);
4717
4718  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4719                                                   Decls.data(), Decls.size()));
4720}
4721
4722
4723/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4724/// to introduce parameters into function prototype scope.
4725Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4726  const DeclSpec &DS = D.getDeclSpec();
4727
4728  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4729  VarDecl::StorageClass StorageClass = SC_None;
4730  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4731  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4732    StorageClass = SC_Register;
4733    StorageClassAsWritten = SC_Register;
4734  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4735    Diag(DS.getStorageClassSpecLoc(),
4736         diag::err_invalid_storage_class_in_func_decl);
4737    D.getMutableDeclSpec().ClearStorageClassSpecs();
4738  }
4739
4740  if (D.getDeclSpec().isThreadSpecified())
4741    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4742
4743  DiagnoseFunctionSpecifiers(D);
4744
4745  // Check that there are no default arguments inside the type of this
4746  // parameter (C++ only).
4747  if (getLangOptions().CPlusPlus)
4748    CheckExtraCXXDefaultArguments(D);
4749
4750  TagDecl *OwnedDecl = 0;
4751  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4752  QualType parmDeclType = TInfo->getType();
4753
4754  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4755    // C++ [dcl.fct]p6:
4756    //   Types shall not be defined in return or parameter types.
4757    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4758      << Context.getTypeDeclType(OwnedDecl);
4759  }
4760
4761  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4762  IdentifierInfo *II = D.getIdentifier();
4763  if (II) {
4764    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4765                   ForRedeclaration);
4766    LookupName(R, S);
4767    if (R.isSingleResult()) {
4768      NamedDecl *PrevDecl = R.getFoundDecl();
4769      if (PrevDecl->isTemplateParameter()) {
4770        // Maybe we will complain about the shadowed template parameter.
4771        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4772        // Just pretend that we didn't see the previous declaration.
4773        PrevDecl = 0;
4774      } else if (S->isDeclScope(PrevDecl)) {
4775        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4776        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4777
4778        // Recover by removing the name
4779        II = 0;
4780        D.SetIdentifier(0, D.getIdentifierLoc());
4781        D.setInvalidType(true);
4782      }
4783    }
4784  }
4785
4786  // Temporarily put parameter variables in the translation unit, not
4787  // the enclosing context.  This prevents them from accidentally
4788  // looking like class members in C++.
4789  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4790                                    TInfo, parmDeclType, II,
4791                                    D.getIdentifierLoc(),
4792                                    StorageClass, StorageClassAsWritten);
4793
4794  if (D.isInvalidType())
4795    New->setInvalidDecl();
4796
4797  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4798  if (D.getCXXScopeSpec().isSet()) {
4799    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4800      << D.getCXXScopeSpec().getRange();
4801    New->setInvalidDecl();
4802  }
4803
4804  // Add the parameter declaration into this scope.
4805  S->AddDecl(New);
4806  if (II)
4807    IdResolver.AddDecl(New);
4808
4809  ProcessDeclAttributes(S, New, D);
4810
4811  if (New->hasAttr<BlocksAttr>()) {
4812    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4813  }
4814  return New;
4815}
4816
4817/// \brief Synthesizes a variable for a parameter arising from a
4818/// typedef.
4819ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4820                                              SourceLocation Loc,
4821                                              QualType T) {
4822  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4823                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4824                                           SC_None, SC_None, 0);
4825  Param->setImplicit();
4826  return Param;
4827}
4828
4829void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4830                                    ParmVarDecl * const *ParamEnd) {
4831  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4832        Diagnostic::Ignored)
4833    return;
4834
4835  // Don't diagnose unused-parameter errors in template instantiations; we
4836  // will already have done so in the template itself.
4837  if (!ActiveTemplateInstantiations.empty())
4838    return;
4839
4840  for (; Param != ParamEnd; ++Param) {
4841    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4842        !(*Param)->hasAttr<UnusedAttr>()) {
4843      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4844        << (*Param)->getDeclName();
4845    }
4846  }
4847}
4848
4849ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4850                                  TypeSourceInfo *TSInfo, QualType T,
4851                                  IdentifierInfo *Name,
4852                                  SourceLocation NameLoc,
4853                                  VarDecl::StorageClass StorageClass,
4854                                  VarDecl::StorageClass StorageClassAsWritten) {
4855  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4856                                         adjustParameterType(T), TSInfo,
4857                                         StorageClass, StorageClassAsWritten,
4858                                         0);
4859
4860  // Parameters can not be abstract class types.
4861  // For record types, this is done by the AbstractClassUsageDiagnoser once
4862  // the class has been completely parsed.
4863  if (!CurContext->isRecord() &&
4864      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4865                             AbstractParamType))
4866    New->setInvalidDecl();
4867
4868  // Parameter declarators cannot be interface types. All ObjC objects are
4869  // passed by reference.
4870  if (T->isObjCObjectType()) {
4871    Diag(NameLoc,
4872         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4873    New->setInvalidDecl();
4874  }
4875
4876  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4877  // duration shall not be qualified by an address-space qualifier."
4878  // Since all parameters have automatic store duration, they can not have
4879  // an address space.
4880  if (T.getAddressSpace() != 0) {
4881    Diag(NameLoc, diag::err_arg_with_address_space);
4882    New->setInvalidDecl();
4883  }
4884
4885  return New;
4886}
4887
4888void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4889                                           SourceLocation LocAfterDecls) {
4890  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4891         "Not a function declarator!");
4892  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4893
4894  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4895  // for a K&R function.
4896  if (!FTI.hasPrototype) {
4897    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4898      --i;
4899      if (FTI.ArgInfo[i].Param == 0) {
4900        llvm::SmallString<256> Code;
4901        llvm::raw_svector_ostream(Code) << "  int "
4902                                        << FTI.ArgInfo[i].Ident->getName()
4903                                        << ";\n";
4904        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4905          << FTI.ArgInfo[i].Ident
4906          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4907
4908        // Implicitly declare the argument as type 'int' for lack of a better
4909        // type.
4910        DeclSpec DS;
4911        const char* PrevSpec; // unused
4912        unsigned DiagID; // unused
4913        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4914                           PrevSpec, DiagID);
4915        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4916        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4917        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4918      }
4919    }
4920  }
4921}
4922
4923Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4924                                         Declarator &D) {
4925  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4926  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4927         "Not a function declarator!");
4928  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4929
4930  if (FTI.hasPrototype) {
4931    // FIXME: Diagnose arguments without names in C.
4932  }
4933
4934  Scope *ParentScope = FnBodyScope->getParent();
4935
4936  Decl *DP = HandleDeclarator(ParentScope, D,
4937                              MultiTemplateParamsArg(*this),
4938                              /*IsFunctionDefinition=*/true);
4939  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4940}
4941
4942static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4943  // Don't warn about invalid declarations.
4944  if (FD->isInvalidDecl())
4945    return false;
4946
4947  // Or declarations that aren't global.
4948  if (!FD->isGlobal())
4949    return false;
4950
4951  // Don't warn about C++ member functions.
4952  if (isa<CXXMethodDecl>(FD))
4953    return false;
4954
4955  // Don't warn about 'main'.
4956  if (FD->isMain())
4957    return false;
4958
4959  // Don't warn about inline functions.
4960  if (FD->isInlineSpecified())
4961    return false;
4962
4963  // Don't warn about function templates.
4964  if (FD->getDescribedFunctionTemplate())
4965    return false;
4966
4967  // Don't warn about function template specializations.
4968  if (FD->isFunctionTemplateSpecialization())
4969    return false;
4970
4971  bool MissingPrototype = true;
4972  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4973       Prev; Prev = Prev->getPreviousDeclaration()) {
4974    // Ignore any declarations that occur in function or method
4975    // scope, because they aren't visible from the header.
4976    if (Prev->getDeclContext()->isFunctionOrMethod())
4977      continue;
4978
4979    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4980    break;
4981  }
4982
4983  return MissingPrototype;
4984}
4985
4986Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4987  // Clear the last template instantiation error context.
4988  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4989
4990  if (!D)
4991    return D;
4992  FunctionDecl *FD = 0;
4993
4994  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4995    FD = FunTmpl->getTemplatedDecl();
4996  else
4997    FD = cast<FunctionDecl>(D);
4998
4999  // Enter a new function scope
5000  PushFunctionScope();
5001
5002  // See if this is a redefinition.
5003  // But don't complain if we're in GNU89 mode and the previous definition
5004  // was an extern inline function.
5005  const FunctionDecl *Definition;
5006  if (FD->hasBody(Definition) &&
5007      !canRedefineFunction(Definition, getLangOptions())) {
5008    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5009        Definition->getStorageClass() == SC_Extern)
5010      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5011        << FD->getDeclName() << getLangOptions().CPlusPlus;
5012    else
5013      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5014    Diag(Definition->getLocation(), diag::note_previous_definition);
5015  }
5016
5017  // Builtin functions cannot be defined.
5018  if (unsigned BuiltinID = FD->getBuiltinID()) {
5019    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5020      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5021      FD->setInvalidDecl();
5022    }
5023  }
5024
5025  // The return type of a function definition must be complete
5026  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5027  QualType ResultType = FD->getResultType();
5028  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5029      !FD->isInvalidDecl() &&
5030      RequireCompleteType(FD->getLocation(), ResultType,
5031                          diag::err_func_def_incomplete_result))
5032    FD->setInvalidDecl();
5033
5034  // GNU warning -Wmissing-prototypes:
5035  //   Warn if a global function is defined without a previous
5036  //   prototype declaration. This warning is issued even if the
5037  //   definition itself provides a prototype. The aim is to detect
5038  //   global functions that fail to be declared in header files.
5039  if (ShouldWarnAboutMissingPrototype(FD))
5040    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5041
5042  if (FnBodyScope)
5043    PushDeclContext(FnBodyScope, FD);
5044
5045  // Check the validity of our function parameters
5046  CheckParmsForFunctionDef(FD);
5047
5048  bool ShouldCheckShadow =
5049    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
5050
5051  // Introduce our parameters into the function scope
5052  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5053    ParmVarDecl *Param = FD->getParamDecl(p);
5054    Param->setOwningFunction(FD);
5055
5056    // If this has an identifier, add it to the scope stack.
5057    if (Param->getIdentifier() && FnBodyScope) {
5058      if (ShouldCheckShadow)
5059        CheckShadow(FnBodyScope, Param);
5060
5061      PushOnScopeChains(Param, FnBodyScope);
5062    }
5063  }
5064
5065  // Checking attributes of current function definition
5066  // dllimport attribute.
5067  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5068  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5069    // dllimport attribute cannot be directly applied to definition.
5070    if (!DA->isInherited()) {
5071      Diag(FD->getLocation(),
5072           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5073        << "dllimport";
5074      FD->setInvalidDecl();
5075      return FD;
5076    }
5077
5078    // Visual C++ appears to not think this is an issue, so only issue
5079    // a warning when Microsoft extensions are disabled.
5080    if (!LangOpts.Microsoft) {
5081      // If a symbol previously declared dllimport is later defined, the
5082      // attribute is ignored in subsequent references, and a warning is
5083      // emitted.
5084      Diag(FD->getLocation(),
5085           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5086        << FD->getName() << "dllimport";
5087    }
5088  }
5089  return FD;
5090}
5091
5092/// \brief Given the set of return statements within a function body,
5093/// compute the variables that are subject to the named return value
5094/// optimization.
5095///
5096/// Each of the variables that is subject to the named return value
5097/// optimization will be marked as NRVO variables in the AST, and any
5098/// return statement that has a marked NRVO variable as its NRVO candidate can
5099/// use the named return value optimization.
5100///
5101/// This function applies a very simplistic algorithm for NRVO: if every return
5102/// statement in the function has the same NRVO candidate, that candidate is
5103/// the NRVO variable.
5104///
5105/// FIXME: Employ a smarter algorithm that accounts for multiple return
5106/// statements and the lifetimes of the NRVO candidates. We should be able to
5107/// find a maximal set of NRVO variables.
5108static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5109  ReturnStmt **Returns = Scope->Returns.data();
5110
5111  const VarDecl *NRVOCandidate = 0;
5112  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5113    if (!Returns[I]->getNRVOCandidate())
5114      return;
5115
5116    if (!NRVOCandidate)
5117      NRVOCandidate = Returns[I]->getNRVOCandidate();
5118    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5119      return;
5120  }
5121
5122  if (NRVOCandidate)
5123    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5124}
5125
5126Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5127  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5128}
5129
5130Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5131                                    bool IsInstantiation) {
5132  FunctionDecl *FD = 0;
5133  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5134  if (FunTmpl)
5135    FD = FunTmpl->getTemplatedDecl();
5136  else
5137    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5138
5139  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5140
5141  if (FD) {
5142    FD->setBody(Body);
5143    if (FD->isMain()) {
5144      // C and C++ allow for main to automagically return 0.
5145      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5146      FD->setHasImplicitReturnZero(true);
5147      WP.disableCheckFallThrough();
5148    }
5149
5150    if (!FD->isInvalidDecl()) {
5151      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5152
5153      // If this is a constructor, we need a vtable.
5154      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5155        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5156
5157      ComputeNRVO(Body, getCurFunction());
5158    }
5159
5160    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5161  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5162    assert(MD == getCurMethodDecl() && "Method parsing confused");
5163    MD->setBody(Body);
5164    MD->setEndLoc(Body->getLocEnd());
5165    if (!MD->isInvalidDecl())
5166      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5167  } else {
5168    return 0;
5169  }
5170
5171  // Verify and clean out per-function state.
5172
5173  // Check goto/label use.
5174  FunctionScopeInfo *CurFn = getCurFunction();
5175  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5176         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5177    LabelStmt *L = I->second;
5178
5179    // Verify that we have no forward references left.  If so, there was a goto
5180    // or address of a label taken, but no definition of it.  Label fwd
5181    // definitions are indicated with a null substmt.
5182    if (L->getSubStmt() != 0) {
5183      if (!L->isUsed())
5184        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5185      continue;
5186    }
5187
5188    // Emit error.
5189    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5190
5191    // At this point, we have gotos that use the bogus label.  Stitch it into
5192    // the function body so that they aren't leaked and that the AST is well
5193    // formed.
5194    if (Body == 0) {
5195      // The whole function wasn't parsed correctly.
5196      continue;
5197    }
5198
5199    // Otherwise, the body is valid: we want to stitch the label decl into the
5200    // function somewhere so that it is properly owned and so that the goto
5201    // has a valid target.  Do this by creating a new compound stmt with the
5202    // label in it.
5203
5204    // Give the label a sub-statement.
5205    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5206
5207    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5208                               cast<CXXTryStmt>(Body)->getTryBlock() :
5209                               cast<CompoundStmt>(Body);
5210    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5211                                          Compound->body_end());
5212    Elements.push_back(L);
5213    Compound->setStmts(Context, Elements.data(), Elements.size());
5214  }
5215
5216  if (Body) {
5217    // C++ constructors that have function-try-blocks can't have return
5218    // statements in the handlers of that block. (C++ [except.handle]p14)
5219    // Verify this.
5220    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5221      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5222
5223    // Verify that that gotos and switch cases don't jump into scopes illegally.
5224    // Verify that that gotos and switch cases don't jump into scopes illegally.
5225    if (getCurFunction()->NeedsScopeChecking() &&
5226        !dcl->isInvalidDecl() &&
5227        !hasAnyErrorsInThisFunction())
5228      DiagnoseInvalidJumps(Body);
5229
5230    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5231      if (!Destructor->getParent()->isDependentType())
5232        CheckDestructor(Destructor);
5233
5234      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5235                                             Destructor->getParent());
5236    }
5237
5238    // If any errors have occurred, clear out any temporaries that may have
5239    // been leftover. This ensures that these temporaries won't be picked up for
5240    // deletion in some later function.
5241    if (PP.getDiagnostics().hasErrorOccurred())
5242      ExprTemporaries.clear();
5243    else if (!isa<FunctionTemplateDecl>(dcl)) {
5244      // Since the body is valid, issue any analysis-based warnings that are
5245      // enabled.
5246      QualType ResultType;
5247      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5248        AnalysisWarnings.IssueWarnings(WP, FD);
5249      } else {
5250        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5251        AnalysisWarnings.IssueWarnings(WP, MD);
5252      }
5253    }
5254
5255    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5256  }
5257
5258  if (!IsInstantiation)
5259    PopDeclContext();
5260
5261  PopFunctionOrBlockScope();
5262
5263  // If any errors have occurred, clear out any temporaries that may have
5264  // been leftover. This ensures that these temporaries won't be picked up for
5265  // deletion in some later function.
5266  if (getDiagnostics().hasErrorOccurred())
5267    ExprTemporaries.clear();
5268
5269  return dcl;
5270}
5271
5272/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5273/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5274NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5275                                          IdentifierInfo &II, Scope *S) {
5276  // Before we produce a declaration for an implicitly defined
5277  // function, see whether there was a locally-scoped declaration of
5278  // this name as a function or variable. If so, use that
5279  // (non-visible) declaration, and complain about it.
5280  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5281    = LocallyScopedExternalDecls.find(&II);
5282  if (Pos != LocallyScopedExternalDecls.end()) {
5283    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5284    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5285    return Pos->second;
5286  }
5287
5288  // Extension in C99.  Legal in C90, but warn about it.
5289  if (II.getName().startswith("__builtin_"))
5290    Diag(Loc, diag::warn_builtin_unknown) << &II;
5291  else if (getLangOptions().C99)
5292    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5293  else
5294    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5295
5296  // Set a Declarator for the implicit definition: int foo();
5297  const char *Dummy;
5298  DeclSpec DS;
5299  unsigned DiagID;
5300  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5301  Error = Error; // Silence warning.
5302  assert(!Error && "Error setting up implicit decl!");
5303  Declarator D(DS, Declarator::BlockContext);
5304  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5305                                             0, 0, false, SourceLocation(),
5306                                             false, 0,0,0, Loc, Loc, D),
5307                SourceLocation());
5308  D.SetIdentifier(&II, Loc);
5309
5310  // Insert this function into translation-unit scope.
5311
5312  DeclContext *PrevDC = CurContext;
5313  CurContext = Context.getTranslationUnitDecl();
5314
5315  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5316  FD->setImplicit();
5317
5318  CurContext = PrevDC;
5319
5320  AddKnownFunctionAttributes(FD);
5321
5322  return FD;
5323}
5324
5325/// \brief Adds any function attributes that we know a priori based on
5326/// the declaration of this function.
5327///
5328/// These attributes can apply both to implicitly-declared builtins
5329/// (like __builtin___printf_chk) or to library-declared functions
5330/// like NSLog or printf.
5331void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5332  if (FD->isInvalidDecl())
5333    return;
5334
5335  // If this is a built-in function, map its builtin attributes to
5336  // actual attributes.
5337  if (unsigned BuiltinID = FD->getBuiltinID()) {
5338    // Handle printf-formatting attributes.
5339    unsigned FormatIdx;
5340    bool HasVAListArg;
5341    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5342      if (!FD->getAttr<FormatAttr>())
5343        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5344                                                "printf", FormatIdx+1,
5345                                               HasVAListArg ? 0 : FormatIdx+2));
5346    }
5347    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5348                                             HasVAListArg)) {
5349     if (!FD->getAttr<FormatAttr>())
5350       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5351                                              "scanf", FormatIdx+1,
5352                                              HasVAListArg ? 0 : FormatIdx+2));
5353    }
5354
5355    // Mark const if we don't care about errno and that is the only
5356    // thing preventing the function from being const. This allows
5357    // IRgen to use LLVM intrinsics for such functions.
5358    if (!getLangOptions().MathErrno &&
5359        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5360      if (!FD->getAttr<ConstAttr>())
5361        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5362    }
5363
5364    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5365      FD->setType(Context.getNoReturnType(FD->getType()));
5366    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5367      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5368    if (Context.BuiltinInfo.isConst(BuiltinID))
5369      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5370  }
5371
5372  IdentifierInfo *Name = FD->getIdentifier();
5373  if (!Name)
5374    return;
5375  if ((!getLangOptions().CPlusPlus &&
5376       FD->getDeclContext()->isTranslationUnit()) ||
5377      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5378       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5379       LinkageSpecDecl::lang_c)) {
5380    // Okay: this could be a libc/libm/Objective-C function we know
5381    // about.
5382  } else
5383    return;
5384
5385  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5386    // FIXME: NSLog and NSLogv should be target specific
5387    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5388      // FIXME: We known better than our headers.
5389      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5390    } else
5391      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5392                                             "printf", 1,
5393                                             Name->isStr("NSLogv") ? 0 : 2));
5394  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5395    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5396    // target-specific builtins, perhaps?
5397    if (!FD->getAttr<FormatAttr>())
5398      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5399                                             "printf", 2,
5400                                             Name->isStr("vasprintf") ? 0 : 3));
5401  }
5402}
5403
5404TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5405                                    TypeSourceInfo *TInfo) {
5406  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5407  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5408
5409  if (!TInfo) {
5410    assert(D.isInvalidType() && "no declarator info for valid type");
5411    TInfo = Context.getTrivialTypeSourceInfo(T);
5412  }
5413
5414  // Scope manipulation handled by caller.
5415  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5416                                           D.getIdentifierLoc(),
5417                                           D.getIdentifier(),
5418                                           TInfo);
5419
5420  if (const TagType *TT = T->getAs<TagType>()) {
5421    TagDecl *TD = TT->getDecl();
5422
5423    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5424    // keep track of the TypedefDecl.
5425    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5426      TD->setTypedefForAnonDecl(NewTD);
5427  }
5428
5429  if (D.isInvalidType())
5430    NewTD->setInvalidDecl();
5431  return NewTD;
5432}
5433
5434
5435/// \brief Determine whether a tag with a given kind is acceptable
5436/// as a redeclaration of the given tag declaration.
5437///
5438/// \returns true if the new tag kind is acceptable, false otherwise.
5439bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5440                                        TagTypeKind NewTag,
5441                                        SourceLocation NewTagLoc,
5442                                        const IdentifierInfo &Name) {
5443  // C++ [dcl.type.elab]p3:
5444  //   The class-key or enum keyword present in the
5445  //   elaborated-type-specifier shall agree in kind with the
5446  //   declaration to which the name in the elaborated-type-specifier
5447  //   refers. This rule also applies to the form of
5448  //   elaborated-type-specifier that declares a class-name or
5449  //   friend class since it can be construed as referring to the
5450  //   definition of the class. Thus, in any
5451  //   elaborated-type-specifier, the enum keyword shall be used to
5452  //   refer to an enumeration (7.2), the union class-key shall be
5453  //   used to refer to a union (clause 9), and either the class or
5454  //   struct class-key shall be used to refer to a class (clause 9)
5455  //   declared using the class or struct class-key.
5456  TagTypeKind OldTag = Previous->getTagKind();
5457  if (OldTag == NewTag)
5458    return true;
5459
5460  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5461      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5462    // Warn about the struct/class tag mismatch.
5463    bool isTemplate = false;
5464    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5465      isTemplate = Record->getDescribedClassTemplate();
5466
5467    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5468      << (NewTag == TTK_Class)
5469      << isTemplate << &Name
5470      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5471                              OldTag == TTK_Class? "class" : "struct");
5472    Diag(Previous->getLocation(), diag::note_previous_use);
5473    return true;
5474  }
5475  return false;
5476}
5477
5478/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5479/// former case, Name will be non-null.  In the later case, Name will be null.
5480/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5481/// reference/declaration/definition of a tag.
5482Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5483                     SourceLocation KWLoc, CXXScopeSpec &SS,
5484                     IdentifierInfo *Name, SourceLocation NameLoc,
5485                     AttributeList *Attr, AccessSpecifier AS,
5486                     MultiTemplateParamsArg TemplateParameterLists,
5487                     bool &OwnedDecl, bool &IsDependent, bool ScopedEnum,
5488                     TypeResult UnderlyingType) {
5489  // If this is not a definition, it must have a name.
5490  assert((Name != 0 || TUK == TUK_Definition) &&
5491         "Nameless record must be a definition!");
5492  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5493
5494  OwnedDecl = false;
5495  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5496
5497  // FIXME: Check explicit specializations more carefully.
5498  bool isExplicitSpecialization = false;
5499  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5500  bool Invalid = false;
5501
5502  // We only need to do this matching if we have template parameters
5503  // or a scope specifier, which also conveniently avoids this work
5504  // for non-C++ cases.
5505  if (NumMatchedTemplateParamLists ||
5506      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5507    if (TemplateParameterList *TemplateParams
5508          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5509                                                TemplateParameterLists.get(),
5510                                               TemplateParameterLists.size(),
5511                                                    TUK == TUK_Friend,
5512                                                    isExplicitSpecialization,
5513                                                    Invalid)) {
5514      // All but one template parameter lists have been matching.
5515      --NumMatchedTemplateParamLists;
5516
5517      if (TemplateParams->size() > 0) {
5518        // This is a declaration or definition of a class template (which may
5519        // be a member of another template).
5520        if (Invalid)
5521          return 0;
5522
5523        OwnedDecl = false;
5524        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5525                                               SS, Name, NameLoc, Attr,
5526                                               TemplateParams,
5527                                               AS);
5528        TemplateParameterLists.release();
5529        return Result.get();
5530      } else {
5531        // The "template<>" header is extraneous.
5532        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5533          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5534        isExplicitSpecialization = true;
5535      }
5536    }
5537  }
5538
5539  // Figure out the underlying type if this a enum declaration. We need to do
5540  // this early, because it's needed to detect if this is an incompatible
5541  // redeclaration.
5542  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5543
5544  if (Kind == TTK_Enum) {
5545    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5546      // No underlying type explicitly specified, or we failed to parse the
5547      // type, default to int.
5548      EnumUnderlying = Context.IntTy.getTypePtr();
5549    else if (UnderlyingType.get()) {
5550      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5551      // integral type; any cv-qualification is ignored.
5552      TypeSourceInfo *TI = 0;
5553      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5554      EnumUnderlying = TI;
5555
5556      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5557
5558      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5559        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5560          << T;
5561        // Recover by falling back to int.
5562        EnumUnderlying = Context.IntTy.getTypePtr();
5563      }
5564    } else if (getLangOptions().Microsoft)
5565      // Microsoft enums are always of int type.
5566      EnumUnderlying = Context.IntTy.getTypePtr();
5567  }
5568
5569  DeclContext *SearchDC = CurContext;
5570  DeclContext *DC = CurContext;
5571  bool isStdBadAlloc = false;
5572
5573  RedeclarationKind Redecl = ForRedeclaration;
5574  if (TUK == TUK_Friend || TUK == TUK_Reference)
5575    Redecl = NotForRedeclaration;
5576
5577  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5578
5579  if (Name && SS.isNotEmpty()) {
5580    // We have a nested-name tag ('struct foo::bar').
5581
5582    // Check for invalid 'foo::'.
5583    if (SS.isInvalid()) {
5584      Name = 0;
5585      goto CreateNewDecl;
5586    }
5587
5588    // If this is a friend or a reference to a class in a dependent
5589    // context, don't try to make a decl for it.
5590    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5591      DC = computeDeclContext(SS, false);
5592      if (!DC) {
5593        IsDependent = true;
5594        return 0;
5595      }
5596    } else {
5597      DC = computeDeclContext(SS, true);
5598      if (!DC) {
5599        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5600          << SS.getRange();
5601        return 0;
5602      }
5603    }
5604
5605    if (RequireCompleteDeclContext(SS, DC))
5606      return 0;
5607
5608    SearchDC = DC;
5609    // Look-up name inside 'foo::'.
5610    LookupQualifiedName(Previous, DC);
5611
5612    if (Previous.isAmbiguous())
5613      return 0;
5614
5615    if (Previous.empty()) {
5616      // Name lookup did not find anything. However, if the
5617      // nested-name-specifier refers to the current instantiation,
5618      // and that current instantiation has any dependent base
5619      // classes, we might find something at instantiation time: treat
5620      // this as a dependent elaborated-type-specifier.
5621      // But this only makes any sense for reference-like lookups.
5622      if (Previous.wasNotFoundInCurrentInstantiation() &&
5623          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5624        IsDependent = true;
5625        return 0;
5626      }
5627
5628      // A tag 'foo::bar' must already exist.
5629      Diag(NameLoc, diag::err_not_tag_in_scope)
5630        << Kind << Name << DC << SS.getRange();
5631      Name = 0;
5632      Invalid = true;
5633      goto CreateNewDecl;
5634    }
5635  } else if (Name) {
5636    // If this is a named struct, check to see if there was a previous forward
5637    // declaration or definition.
5638    // FIXME: We're looking into outer scopes here, even when we
5639    // shouldn't be. Doing so can result in ambiguities that we
5640    // shouldn't be diagnosing.
5641    LookupName(Previous, S);
5642
5643    // Note:  there used to be some attempt at recovery here.
5644    if (Previous.isAmbiguous())
5645      return 0;
5646
5647    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5648      // FIXME: This makes sure that we ignore the contexts associated
5649      // with C structs, unions, and enums when looking for a matching
5650      // tag declaration or definition. See the similar lookup tweak
5651      // in Sema::LookupName; is there a better way to deal with this?
5652      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5653        SearchDC = SearchDC->getParent();
5654    }
5655  } else if (S->isFunctionPrototypeScope()) {
5656    // If this is an enum declaration in function prototype scope, set its
5657    // initial context to the translation unit.
5658    SearchDC = Context.getTranslationUnitDecl();
5659  }
5660
5661  if (Previous.isSingleResult() &&
5662      Previous.getFoundDecl()->isTemplateParameter()) {
5663    // Maybe we will complain about the shadowed template parameter.
5664    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5665    // Just pretend that we didn't see the previous declaration.
5666    Previous.clear();
5667  }
5668
5669  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5670      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5671    // This is a declaration of or a reference to "std::bad_alloc".
5672    isStdBadAlloc = true;
5673
5674    if (Previous.empty() && StdBadAlloc) {
5675      // std::bad_alloc has been implicitly declared (but made invisible to
5676      // name lookup). Fill in this implicit declaration as the previous
5677      // declaration, so that the declarations get chained appropriately.
5678      Previous.addDecl(getStdBadAlloc());
5679    }
5680  }
5681
5682  // If we didn't find a previous declaration, and this is a reference
5683  // (or friend reference), move to the correct scope.  In C++, we
5684  // also need to do a redeclaration lookup there, just in case
5685  // there's a shadow friend decl.
5686  if (Name && Previous.empty() &&
5687      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5688    if (Invalid) goto CreateNewDecl;
5689    assert(SS.isEmpty());
5690
5691    if (TUK == TUK_Reference) {
5692      // C++ [basic.scope.pdecl]p5:
5693      //   -- for an elaborated-type-specifier of the form
5694      //
5695      //          class-key identifier
5696      //
5697      //      if the elaborated-type-specifier is used in the
5698      //      decl-specifier-seq or parameter-declaration-clause of a
5699      //      function defined in namespace scope, the identifier is
5700      //      declared as a class-name in the namespace that contains
5701      //      the declaration; otherwise, except as a friend
5702      //      declaration, the identifier is declared in the smallest
5703      //      non-class, non-function-prototype scope that contains the
5704      //      declaration.
5705      //
5706      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5707      // C structs and unions.
5708      //
5709      // It is an error in C++ to declare (rather than define) an enum
5710      // type, including via an elaborated type specifier.  We'll
5711      // diagnose that later; for now, declare the enum in the same
5712      // scope as we would have picked for any other tag type.
5713      //
5714      // GNU C also supports this behavior as part of its incomplete
5715      // enum types extension, while GNU C++ does not.
5716      //
5717      // Find the context where we'll be declaring the tag.
5718      // FIXME: We would like to maintain the current DeclContext as the
5719      // lexical context,
5720      while (SearchDC->isRecord())
5721        SearchDC = SearchDC->getParent();
5722
5723      // Find the scope where we'll be declaring the tag.
5724      while (S->isClassScope() ||
5725             (getLangOptions().CPlusPlus &&
5726              S->isFunctionPrototypeScope()) ||
5727             ((S->getFlags() & Scope::DeclScope) == 0) ||
5728             (S->getEntity() &&
5729              ((DeclContext *)S->getEntity())->isTransparentContext()))
5730        S = S->getParent();
5731    } else {
5732      assert(TUK == TUK_Friend);
5733      // C++ [namespace.memdef]p3:
5734      //   If a friend declaration in a non-local class first declares a
5735      //   class or function, the friend class or function is a member of
5736      //   the innermost enclosing namespace.
5737      SearchDC = SearchDC->getEnclosingNamespaceContext();
5738    }
5739
5740    // In C++, we need to do a redeclaration lookup to properly
5741    // diagnose some problems.
5742    if (getLangOptions().CPlusPlus) {
5743      Previous.setRedeclarationKind(ForRedeclaration);
5744      LookupQualifiedName(Previous, SearchDC);
5745    }
5746  }
5747
5748  if (!Previous.empty()) {
5749    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5750
5751    // It's okay to have a tag decl in the same scope as a typedef
5752    // which hides a tag decl in the same scope.  Finding this
5753    // insanity with a redeclaration lookup can only actually happen
5754    // in C++.
5755    //
5756    // This is also okay for elaborated-type-specifiers, which is
5757    // technically forbidden by the current standard but which is
5758    // okay according to the likely resolution of an open issue;
5759    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5760    if (getLangOptions().CPlusPlus) {
5761      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5762        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5763          TagDecl *Tag = TT->getDecl();
5764          if (Tag->getDeclName() == Name &&
5765              Tag->getDeclContext()->getRedeclContext()
5766                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5767            PrevDecl = Tag;
5768            Previous.clear();
5769            Previous.addDecl(Tag);
5770            Previous.resolveKind();
5771          }
5772        }
5773      }
5774    }
5775
5776    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5777      // If this is a use of a previous tag, or if the tag is already declared
5778      // in the same scope (so that the definition/declaration completes or
5779      // rementions the tag), reuse the decl.
5780      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5781          isDeclInScope(PrevDecl, SearchDC, S)) {
5782        // Make sure that this wasn't declared as an enum and now used as a
5783        // struct or something similar.
5784        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5785          bool SafeToContinue
5786            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5787               Kind != TTK_Enum);
5788          if (SafeToContinue)
5789            Diag(KWLoc, diag::err_use_with_wrong_tag)
5790              << Name
5791              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5792                                              PrevTagDecl->getKindName());
5793          else
5794            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5795          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5796
5797          if (SafeToContinue)
5798            Kind = PrevTagDecl->getTagKind();
5799          else {
5800            // Recover by making this an anonymous redefinition.
5801            Name = 0;
5802            Previous.clear();
5803            Invalid = true;
5804          }
5805        }
5806
5807        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5808          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5809
5810          // All conflicts with previous declarations are recovered by
5811          // returning the previous declaration.
5812          if (ScopedEnum != PrevEnum->isScoped()) {
5813            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5814              << PrevEnum->isScoped();
5815            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5816            return PrevTagDecl;
5817          }
5818          else if (EnumUnderlying && PrevEnum->isFixed()) {
5819            QualType T;
5820            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5821                T = TI->getType();
5822            else
5823                T = QualType(EnumUnderlying.get<const Type*>(), 0);
5824
5825            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5826              Diag(KWLoc, diag::err_enum_redeclare_type_mismatch);
5827              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5828              return PrevTagDecl;
5829            }
5830          }
5831          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5832            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5833              << PrevEnum->isFixed();
5834            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5835            return PrevTagDecl;
5836          }
5837        }
5838
5839        if (!Invalid) {
5840          // If this is a use, just return the declaration we found.
5841
5842          // FIXME: In the future, return a variant or some other clue
5843          // for the consumer of this Decl to know it doesn't own it.
5844          // For our current ASTs this shouldn't be a problem, but will
5845          // need to be changed with DeclGroups.
5846          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5847              TUK == TUK_Friend)
5848            return PrevTagDecl;
5849
5850          // Diagnose attempts to redefine a tag.
5851          if (TUK == TUK_Definition) {
5852            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5853              // If we're defining a specialization and the previous definition
5854              // is from an implicit instantiation, don't emit an error
5855              // here; we'll catch this in the general case below.
5856              if (!isExplicitSpecialization ||
5857                  !isa<CXXRecordDecl>(Def) ||
5858                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5859                                               == TSK_ExplicitSpecialization) {
5860                Diag(NameLoc, diag::err_redefinition) << Name;
5861                Diag(Def->getLocation(), diag::note_previous_definition);
5862                // If this is a redefinition, recover by making this
5863                // struct be anonymous, which will make any later
5864                // references get the previous definition.
5865                Name = 0;
5866                Previous.clear();
5867                Invalid = true;
5868              }
5869            } else {
5870              // If the type is currently being defined, complain
5871              // about a nested redefinition.
5872              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5873              if (Tag->isBeingDefined()) {
5874                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5875                Diag(PrevTagDecl->getLocation(),
5876                     diag::note_previous_definition);
5877                Name = 0;
5878                Previous.clear();
5879                Invalid = true;
5880              }
5881            }
5882
5883            // Okay, this is definition of a previously declared or referenced
5884            // tag PrevDecl. We're going to create a new Decl for it.
5885          }
5886        }
5887        // If we get here we have (another) forward declaration or we
5888        // have a definition.  Just create a new decl.
5889
5890      } else {
5891        // If we get here, this is a definition of a new tag type in a nested
5892        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5893        // new decl/type.  We set PrevDecl to NULL so that the entities
5894        // have distinct types.
5895        Previous.clear();
5896      }
5897      // If we get here, we're going to create a new Decl. If PrevDecl
5898      // is non-NULL, it's a definition of the tag declared by
5899      // PrevDecl. If it's NULL, we have a new definition.
5900
5901
5902    // Otherwise, PrevDecl is not a tag, but was found with tag
5903    // lookup.  This is only actually possible in C++, where a few
5904    // things like templates still live in the tag namespace.
5905    } else {
5906      assert(getLangOptions().CPlusPlus);
5907
5908      // Use a better diagnostic if an elaborated-type-specifier
5909      // found the wrong kind of type on the first
5910      // (non-redeclaration) lookup.
5911      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5912          !Previous.isForRedeclaration()) {
5913        unsigned Kind = 0;
5914        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5915        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5916        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5917        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5918        Invalid = true;
5919
5920      // Otherwise, only diagnose if the declaration is in scope.
5921      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5922        // do nothing
5923
5924      // Diagnose implicit declarations introduced by elaborated types.
5925      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5926        unsigned Kind = 0;
5927        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5928        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5929        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5930        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5931        Invalid = true;
5932
5933      // Otherwise it's a declaration.  Call out a particularly common
5934      // case here.
5935      } else if (isa<TypedefDecl>(PrevDecl)) {
5936        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5937          << Name
5938          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5939        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5940        Invalid = true;
5941
5942      // Otherwise, diagnose.
5943      } else {
5944        // The tag name clashes with something else in the target scope,
5945        // issue an error and recover by making this tag be anonymous.
5946        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5947        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5948        Name = 0;
5949        Invalid = true;
5950      }
5951
5952      // The existing declaration isn't relevant to us; we're in a
5953      // new scope, so clear out the previous declaration.
5954      Previous.clear();
5955    }
5956  }
5957
5958CreateNewDecl:
5959
5960  TagDecl *PrevDecl = 0;
5961  if (Previous.isSingleResult())
5962    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5963
5964  // If there is an identifier, use the location of the identifier as the
5965  // location of the decl, otherwise use the location of the struct/union
5966  // keyword.
5967  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5968
5969  // Otherwise, create a new declaration. If there is a previous
5970  // declaration of the same entity, the two will be linked via
5971  // PrevDecl.
5972  TagDecl *New;
5973
5974  bool IsForwardReference = false;
5975  if (Kind == TTK_Enum) {
5976    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5977    // enum X { A, B, C } D;    D should chain to X.
5978    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5979                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
5980                           !EnumUnderlying.isNull());
5981    // If this is an undefined enum, warn.
5982    if (TUK != TUK_Definition && !Invalid) {
5983      TagDecl *Def;
5984      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
5985        // C++0x: 7.2p2: opaque-enum-declaration.
5986        // Conflicts are diagnosed above. Do nothing.
5987      }
5988      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5989        Diag(Loc, diag::ext_forward_ref_enum_def)
5990          << New;
5991        Diag(Def->getLocation(), diag::note_previous_definition);
5992      } else {
5993        unsigned DiagID = diag::ext_forward_ref_enum;
5994        if (getLangOptions().Microsoft)
5995          DiagID = diag::ext_ms_forward_ref_enum;
5996        else if (getLangOptions().CPlusPlus)
5997          DiagID = diag::err_forward_ref_enum;
5998        Diag(Loc, DiagID);
5999
6000        // If this is a forward-declared reference to an enumeration, make a
6001        // note of it; we won't actually be introducing the declaration into
6002        // the declaration context.
6003        if (TUK == TUK_Reference)
6004          IsForwardReference = true;
6005      }
6006    }
6007
6008    if (EnumUnderlying) {
6009      EnumDecl *ED = cast<EnumDecl>(New);
6010      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6011        ED->setIntegerTypeSourceInfo(TI);
6012      else
6013        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6014      ED->setPromotionType(ED->getIntegerType());
6015    }
6016
6017  } else {
6018    // struct/union/class
6019
6020    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6021    // struct X { int A; } D;    D should chain to X.
6022    if (getLangOptions().CPlusPlus) {
6023      // FIXME: Look for a way to use RecordDecl for simple structs.
6024      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6025                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6026
6027      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6028        StdBadAlloc = cast<CXXRecordDecl>(New);
6029    } else
6030      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6031                               cast_or_null<RecordDecl>(PrevDecl));
6032  }
6033
6034  // Maybe add qualifier info.
6035  if (SS.isNotEmpty()) {
6036    if (SS.isSet()) {
6037      NestedNameSpecifier *NNS
6038        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6039      New->setQualifierInfo(NNS, SS.getRange());
6040      if (NumMatchedTemplateParamLists > 0) {
6041        New->setTemplateParameterListsInfo(Context,
6042                                           NumMatchedTemplateParamLists,
6043                    (TemplateParameterList**) TemplateParameterLists.release());
6044      }
6045    }
6046    else
6047      Invalid = true;
6048  }
6049
6050  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6051    // Add alignment attributes if necessary; these attributes are checked when
6052    // the ASTContext lays out the structure.
6053    //
6054    // It is important for implementing the correct semantics that this
6055    // happen here (in act on tag decl). The #pragma pack stack is
6056    // maintained as a result of parser callbacks which can occur at
6057    // many points during the parsing of a struct declaration (because
6058    // the #pragma tokens are effectively skipped over during the
6059    // parsing of the struct).
6060    AddAlignmentAttributesForRecord(RD);
6061  }
6062
6063  // If this is a specialization of a member class (of a class template),
6064  // check the specialization.
6065  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6066    Invalid = true;
6067
6068  if (Invalid)
6069    New->setInvalidDecl();
6070
6071  if (Attr)
6072    ProcessDeclAttributeList(S, New, Attr);
6073
6074  // If we're declaring or defining a tag in function prototype scope
6075  // in C, note that this type can only be used within the function.
6076  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6077    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6078
6079  // Set the lexical context. If the tag has a C++ scope specifier, the
6080  // lexical context will be different from the semantic context.
6081  New->setLexicalDeclContext(CurContext);
6082
6083  // Mark this as a friend decl if applicable.
6084  if (TUK == TUK_Friend)
6085    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6086
6087  // Set the access specifier.
6088  if (!Invalid && SearchDC->isRecord())
6089    SetMemberAccessSpecifier(New, PrevDecl, AS);
6090
6091  if (TUK == TUK_Definition)
6092    New->startDefinition();
6093
6094  // If this has an identifier, add it to the scope stack.
6095  if (TUK == TUK_Friend) {
6096    // We might be replacing an existing declaration in the lookup tables;
6097    // if so, borrow its access specifier.
6098    if (PrevDecl)
6099      New->setAccess(PrevDecl->getAccess());
6100
6101    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6102    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6103    if (Name) // can be null along some error paths
6104      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6105        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6106  } else if (Name) {
6107    S = getNonFieldDeclScope(S);
6108    PushOnScopeChains(New, S, !IsForwardReference);
6109    if (IsForwardReference)
6110      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6111
6112  } else {
6113    CurContext->addDecl(New);
6114  }
6115
6116  // If this is the C FILE type, notify the AST context.
6117  if (IdentifierInfo *II = New->getIdentifier())
6118    if (!New->isInvalidDecl() &&
6119        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6120        II->isStr("FILE"))
6121      Context.setFILEDecl(New);
6122
6123  OwnedDecl = true;
6124  return New;
6125}
6126
6127void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6128  AdjustDeclIfTemplate(TagD);
6129  TagDecl *Tag = cast<TagDecl>(TagD);
6130
6131  // Enter the tag context.
6132  PushDeclContext(S, Tag);
6133}
6134
6135void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6136                                           SourceLocation LBraceLoc) {
6137  AdjustDeclIfTemplate(TagD);
6138  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6139
6140  FieldCollector->StartClass();
6141
6142  if (!Record->getIdentifier())
6143    return;
6144
6145  // C++ [class]p2:
6146  //   [...] The class-name is also inserted into the scope of the
6147  //   class itself; this is known as the injected-class-name. For
6148  //   purposes of access checking, the injected-class-name is treated
6149  //   as if it were a public member name.
6150  CXXRecordDecl *InjectedClassName
6151    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6152                            CurContext, Record->getLocation(),
6153                            Record->getIdentifier(),
6154                            Record->getTagKeywordLoc(),
6155                            /*PrevDecl=*/0,
6156                            /*DelayTypeCreation=*/true);
6157  Context.getTypeDeclType(InjectedClassName, Record);
6158  InjectedClassName->setImplicit();
6159  InjectedClassName->setAccess(AS_public);
6160  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6161      InjectedClassName->setDescribedClassTemplate(Template);
6162  PushOnScopeChains(InjectedClassName, S);
6163  assert(InjectedClassName->isInjectedClassName() &&
6164         "Broken injected-class-name");
6165}
6166
6167void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6168                                    SourceLocation RBraceLoc) {
6169  AdjustDeclIfTemplate(TagD);
6170  TagDecl *Tag = cast<TagDecl>(TagD);
6171  Tag->setRBraceLoc(RBraceLoc);
6172
6173  if (isa<CXXRecordDecl>(Tag))
6174    FieldCollector->FinishClass();
6175
6176  // Exit this scope of this tag's definition.
6177  PopDeclContext();
6178
6179  // Notify the consumer that we've defined a tag.
6180  Consumer.HandleTagDeclDefinition(Tag);
6181}
6182
6183void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6184  AdjustDeclIfTemplate(TagD);
6185  TagDecl *Tag = cast<TagDecl>(TagD);
6186  Tag->setInvalidDecl();
6187
6188  // We're undoing ActOnTagStartDefinition here, not
6189  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6190  // the FieldCollector.
6191
6192  PopDeclContext();
6193}
6194
6195// Note that FieldName may be null for anonymous bitfields.
6196bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6197                          QualType FieldTy, const Expr *BitWidth,
6198                          bool *ZeroWidth) {
6199  // Default to true; that shouldn't confuse checks for emptiness
6200  if (ZeroWidth)
6201    *ZeroWidth = true;
6202
6203  // C99 6.7.2.1p4 - verify the field type.
6204  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6205  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6206    // Handle incomplete types with specific error.
6207    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6208      return true;
6209    if (FieldName)
6210      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6211        << FieldName << FieldTy << BitWidth->getSourceRange();
6212    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6213      << FieldTy << BitWidth->getSourceRange();
6214  }
6215
6216  // If the bit-width is type- or value-dependent, don't try to check
6217  // it now.
6218  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6219    return false;
6220
6221  llvm::APSInt Value;
6222  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6223    return true;
6224
6225  if (Value != 0 && ZeroWidth)
6226    *ZeroWidth = false;
6227
6228  // Zero-width bitfield is ok for anonymous field.
6229  if (Value == 0 && FieldName)
6230    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6231
6232  if (Value.isSigned() && Value.isNegative()) {
6233    if (FieldName)
6234      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6235               << FieldName << Value.toString(10);
6236    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6237      << Value.toString(10);
6238  }
6239
6240  if (!FieldTy->isDependentType()) {
6241    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6242    if (Value.getZExtValue() > TypeSize) {
6243      if (!getLangOptions().CPlusPlus) {
6244        if (FieldName)
6245          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6246            << FieldName << (unsigned)Value.getZExtValue()
6247            << (unsigned)TypeSize;
6248
6249        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6250          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6251      }
6252
6253      if (FieldName)
6254        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6255          << FieldName << (unsigned)Value.getZExtValue()
6256          << (unsigned)TypeSize;
6257      else
6258        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6259          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6260    }
6261  }
6262
6263  return false;
6264}
6265
6266/// ActOnField - Each field of a struct/union/class is passed into this in order
6267/// to create a FieldDecl object for it.
6268Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6269                                 SourceLocation DeclStart,
6270                                 Declarator &D, ExprTy *BitfieldWidth) {
6271  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6272                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6273                               AS_public);
6274  return Res;
6275}
6276
6277/// HandleField - Analyze a field of a C struct or a C++ data member.
6278///
6279FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6280                             SourceLocation DeclStart,
6281                             Declarator &D, Expr *BitWidth,
6282                             AccessSpecifier AS) {
6283  IdentifierInfo *II = D.getIdentifier();
6284  SourceLocation Loc = DeclStart;
6285  if (II) Loc = D.getIdentifierLoc();
6286
6287  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6288  QualType T = TInfo->getType();
6289  if (getLangOptions().CPlusPlus)
6290    CheckExtraCXXDefaultArguments(D);
6291
6292  DiagnoseFunctionSpecifiers(D);
6293
6294  if (D.getDeclSpec().isThreadSpecified())
6295    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6296
6297  // Check to see if this name was declared as a member previously
6298  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6299  LookupName(Previous, S);
6300  assert((Previous.empty() || Previous.isOverloadedResult() ||
6301          Previous.isSingleResult())
6302    && "Lookup of member name should be either overloaded, single or null");
6303
6304  // If the name is overloaded then get any declaration else get the single result
6305  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6306    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6307
6308  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6309    // Maybe we will complain about the shadowed template parameter.
6310    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6311    // Just pretend that we didn't see the previous declaration.
6312    PrevDecl = 0;
6313  }
6314
6315  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6316    PrevDecl = 0;
6317
6318  bool Mutable
6319    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6320  SourceLocation TSSL = D.getSourceRange().getBegin();
6321  FieldDecl *NewFD
6322    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6323                     AS, PrevDecl, &D);
6324
6325  if (NewFD->isInvalidDecl())
6326    Record->setInvalidDecl();
6327
6328  if (NewFD->isInvalidDecl() && PrevDecl) {
6329    // Don't introduce NewFD into scope; there's already something
6330    // with the same name in the same scope.
6331  } else if (II) {
6332    PushOnScopeChains(NewFD, S);
6333  } else
6334    Record->addDecl(NewFD);
6335
6336  return NewFD;
6337}
6338
6339/// \brief Build a new FieldDecl and check its well-formedness.
6340///
6341/// This routine builds a new FieldDecl given the fields name, type,
6342/// record, etc. \p PrevDecl should refer to any previous declaration
6343/// with the same name and in the same scope as the field to be
6344/// created.
6345///
6346/// \returns a new FieldDecl.
6347///
6348/// \todo The Declarator argument is a hack. It will be removed once
6349FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6350                                TypeSourceInfo *TInfo,
6351                                RecordDecl *Record, SourceLocation Loc,
6352                                bool Mutable, Expr *BitWidth,
6353                                SourceLocation TSSL,
6354                                AccessSpecifier AS, NamedDecl *PrevDecl,
6355                                Declarator *D) {
6356  IdentifierInfo *II = Name.getAsIdentifierInfo();
6357  bool InvalidDecl = false;
6358  if (D) InvalidDecl = D->isInvalidType();
6359
6360  // If we receive a broken type, recover by assuming 'int' and
6361  // marking this declaration as invalid.
6362  if (T.isNull()) {
6363    InvalidDecl = true;
6364    T = Context.IntTy;
6365  }
6366
6367  QualType EltTy = Context.getBaseElementType(T);
6368  if (!EltTy->isDependentType() &&
6369      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6370    // Fields of incomplete type force their record to be invalid.
6371    Record->setInvalidDecl();
6372    InvalidDecl = true;
6373  }
6374
6375  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6376  // than a variably modified type.
6377  if (!InvalidDecl && T->isVariablyModifiedType()) {
6378    bool SizeIsNegative;
6379    llvm::APSInt Oversized;
6380    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6381                                                           SizeIsNegative,
6382                                                           Oversized);
6383    if (!FixedTy.isNull()) {
6384      Diag(Loc, diag::warn_illegal_constant_array_size);
6385      T = FixedTy;
6386    } else {
6387      if (SizeIsNegative)
6388        Diag(Loc, diag::err_typecheck_negative_array_size);
6389      else if (Oversized.getBoolValue())
6390        Diag(Loc, diag::err_array_too_large)
6391          << Oversized.toString(10);
6392      else
6393        Diag(Loc, diag::err_typecheck_field_variable_size);
6394      InvalidDecl = true;
6395    }
6396  }
6397
6398  // Fields can not have abstract class types
6399  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6400                                             diag::err_abstract_type_in_decl,
6401                                             AbstractFieldType))
6402    InvalidDecl = true;
6403
6404  bool ZeroWidth = false;
6405  // If this is declared as a bit-field, check the bit-field.
6406  if (!InvalidDecl && BitWidth &&
6407      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6408    InvalidDecl = true;
6409    BitWidth = 0;
6410    ZeroWidth = false;
6411  }
6412
6413  // Check that 'mutable' is consistent with the type of the declaration.
6414  if (!InvalidDecl && Mutable) {
6415    unsigned DiagID = 0;
6416    if (T->isReferenceType())
6417      DiagID = diag::err_mutable_reference;
6418    else if (T.isConstQualified())
6419      DiagID = diag::err_mutable_const;
6420
6421    if (DiagID) {
6422      SourceLocation ErrLoc = Loc;
6423      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6424        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6425      Diag(ErrLoc, DiagID);
6426      Mutable = false;
6427      InvalidDecl = true;
6428    }
6429  }
6430
6431  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6432                                       BitWidth, Mutable);
6433  if (InvalidDecl)
6434    NewFD->setInvalidDecl();
6435
6436  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6437    Diag(Loc, diag::err_duplicate_member) << II;
6438    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6439    NewFD->setInvalidDecl();
6440  }
6441
6442  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6443    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6444      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6445      if (RDecl->getDefinition()) {
6446        // C++ 9.5p1: An object of a class with a non-trivial
6447        // constructor, a non-trivial copy constructor, a non-trivial
6448        // destructor, or a non-trivial copy assignment operator
6449        // cannot be a member of a union, nor can an array of such
6450        // objects.
6451        // TODO: C++0x alters this restriction significantly.
6452        if (Record->isUnion() && CheckNontrivialField(NewFD))
6453          NewFD->setInvalidDecl();
6454      }
6455    }
6456  }
6457
6458  // FIXME: We need to pass in the attributes given an AST
6459  // representation, not a parser representation.
6460  if (D)
6461    // FIXME: What to pass instead of TUScope?
6462    ProcessDeclAttributes(TUScope, NewFD, *D);
6463
6464  if (T.isObjCGCWeak())
6465    Diag(Loc, diag::warn_attribute_weak_on_field);
6466
6467  NewFD->setAccess(AS);
6468  return NewFD;
6469}
6470
6471bool Sema::CheckNontrivialField(FieldDecl *FD) {
6472  assert(FD);
6473  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6474
6475  if (FD->isInvalidDecl())
6476    return true;
6477
6478  QualType EltTy = Context.getBaseElementType(FD->getType());
6479  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6480    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6481    if (RDecl->getDefinition()) {
6482      // We check for copy constructors before constructors
6483      // because otherwise we'll never get complaints about
6484      // copy constructors.
6485
6486      CXXSpecialMember member = CXXInvalid;
6487      if (!RDecl->hasTrivialCopyConstructor())
6488        member = CXXCopyConstructor;
6489      else if (!RDecl->hasTrivialConstructor())
6490        member = CXXConstructor;
6491      else if (!RDecl->hasTrivialCopyAssignment())
6492        member = CXXCopyAssignment;
6493      else if (!RDecl->hasTrivialDestructor())
6494        member = CXXDestructor;
6495
6496      if (member != CXXInvalid) {
6497        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6498              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6499        DiagnoseNontrivial(RT, member);
6500        return true;
6501      }
6502    }
6503  }
6504
6505  return false;
6506}
6507
6508/// DiagnoseNontrivial - Given that a class has a non-trivial
6509/// special member, figure out why.
6510void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6511  QualType QT(T, 0U);
6512  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6513
6514  // Check whether the member was user-declared.
6515  switch (member) {
6516  case CXXInvalid:
6517    break;
6518
6519  case CXXConstructor:
6520    if (RD->hasUserDeclaredConstructor()) {
6521      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6522      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6523        const FunctionDecl *body = 0;
6524        ci->hasBody(body);
6525        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6526          SourceLocation CtorLoc = ci->getLocation();
6527          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6528          return;
6529        }
6530      }
6531
6532      assert(0 && "found no user-declared constructors");
6533      return;
6534    }
6535    break;
6536
6537  case CXXCopyConstructor:
6538    if (RD->hasUserDeclaredCopyConstructor()) {
6539      SourceLocation CtorLoc =
6540        RD->getCopyConstructor(Context, 0)->getLocation();
6541      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6542      return;
6543    }
6544    break;
6545
6546  case CXXCopyAssignment:
6547    if (RD->hasUserDeclaredCopyAssignment()) {
6548      // FIXME: this should use the location of the copy
6549      // assignment, not the type.
6550      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6551      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6552      return;
6553    }
6554    break;
6555
6556  case CXXDestructor:
6557    if (RD->hasUserDeclaredDestructor()) {
6558      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6559      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6560      return;
6561    }
6562    break;
6563  }
6564
6565  typedef CXXRecordDecl::base_class_iterator base_iter;
6566
6567  // Virtual bases and members inhibit trivial copying/construction,
6568  // but not trivial destruction.
6569  if (member != CXXDestructor) {
6570    // Check for virtual bases.  vbases includes indirect virtual bases,
6571    // so we just iterate through the direct bases.
6572    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6573      if (bi->isVirtual()) {
6574        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6575        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6576        return;
6577      }
6578
6579    // Check for virtual methods.
6580    typedef CXXRecordDecl::method_iterator meth_iter;
6581    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6582         ++mi) {
6583      if (mi->isVirtual()) {
6584        SourceLocation MLoc = mi->getSourceRange().getBegin();
6585        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6586        return;
6587      }
6588    }
6589  }
6590
6591  bool (CXXRecordDecl::*hasTrivial)() const;
6592  switch (member) {
6593  case CXXConstructor:
6594    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6595  case CXXCopyConstructor:
6596    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6597  case CXXCopyAssignment:
6598    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6599  case CXXDestructor:
6600    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6601  default:
6602    assert(0 && "unexpected special member"); return;
6603  }
6604
6605  // Check for nontrivial bases (and recurse).
6606  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6607    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6608    assert(BaseRT && "Don't know how to handle dependent bases");
6609    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6610    if (!(BaseRecTy->*hasTrivial)()) {
6611      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6612      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6613      DiagnoseNontrivial(BaseRT, member);
6614      return;
6615    }
6616  }
6617
6618  // Check for nontrivial members (and recurse).
6619  typedef RecordDecl::field_iterator field_iter;
6620  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6621       ++fi) {
6622    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6623    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6624      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6625
6626      if (!(EltRD->*hasTrivial)()) {
6627        SourceLocation FLoc = (*fi)->getLocation();
6628        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6629        DiagnoseNontrivial(EltRT, member);
6630        return;
6631      }
6632    }
6633  }
6634
6635  assert(0 && "found no explanation for non-trivial member");
6636}
6637
6638/// TranslateIvarVisibility - Translate visibility from a token ID to an
6639///  AST enum value.
6640static ObjCIvarDecl::AccessControl
6641TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6642  switch (ivarVisibility) {
6643  default: assert(0 && "Unknown visitibility kind");
6644  case tok::objc_private: return ObjCIvarDecl::Private;
6645  case tok::objc_public: return ObjCIvarDecl::Public;
6646  case tok::objc_protected: return ObjCIvarDecl::Protected;
6647  case tok::objc_package: return ObjCIvarDecl::Package;
6648  }
6649}
6650
6651/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6652/// in order to create an IvarDecl object for it.
6653Decl *Sema::ActOnIvar(Scope *S,
6654                                SourceLocation DeclStart,
6655                                Decl *IntfDecl,
6656                                Declarator &D, ExprTy *BitfieldWidth,
6657                                tok::ObjCKeywordKind Visibility) {
6658
6659  IdentifierInfo *II = D.getIdentifier();
6660  Expr *BitWidth = (Expr*)BitfieldWidth;
6661  SourceLocation Loc = DeclStart;
6662  if (II) Loc = D.getIdentifierLoc();
6663
6664  // FIXME: Unnamed fields can be handled in various different ways, for
6665  // example, unnamed unions inject all members into the struct namespace!
6666
6667  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6668  QualType T = TInfo->getType();
6669
6670  if (BitWidth) {
6671    // 6.7.2.1p3, 6.7.2.1p4
6672    if (VerifyBitField(Loc, II, T, BitWidth)) {
6673      D.setInvalidType();
6674      BitWidth = 0;
6675    }
6676  } else {
6677    // Not a bitfield.
6678
6679    // validate II.
6680
6681  }
6682  if (T->isReferenceType()) {
6683    Diag(Loc, diag::err_ivar_reference_type);
6684    D.setInvalidType();
6685  }
6686  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6687  // than a variably modified type.
6688  else if (T->isVariablyModifiedType()) {
6689    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6690    D.setInvalidType();
6691  }
6692
6693  // Get the visibility (access control) for this ivar.
6694  ObjCIvarDecl::AccessControl ac =
6695    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6696                                        : ObjCIvarDecl::None;
6697  // Must set ivar's DeclContext to its enclosing interface.
6698  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6699  ObjCContainerDecl *EnclosingContext;
6700  if (ObjCImplementationDecl *IMPDecl =
6701      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6702    if (!LangOpts.ObjCNonFragileABI2) {
6703    // Case of ivar declared in an implementation. Context is that of its class.
6704      EnclosingContext = IMPDecl->getClassInterface();
6705      assert(EnclosingContext && "Implementation has no class interface!");
6706    }
6707    else
6708      EnclosingContext = EnclosingDecl;
6709  } else {
6710    if (ObjCCategoryDecl *CDecl =
6711        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6712      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6713        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6714        return 0;
6715      }
6716    }
6717    EnclosingContext = EnclosingDecl;
6718  }
6719
6720  // Construct the decl.
6721  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6722                                             EnclosingContext, Loc, II, T,
6723                                             TInfo, ac, (Expr *)BitfieldWidth);
6724
6725  if (II) {
6726    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6727                                           ForRedeclaration);
6728    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6729        && !isa<TagDecl>(PrevDecl)) {
6730      Diag(Loc, diag::err_duplicate_member) << II;
6731      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6732      NewID->setInvalidDecl();
6733    }
6734  }
6735
6736  // Process attributes attached to the ivar.
6737  ProcessDeclAttributes(S, NewID, D);
6738
6739  if (D.isInvalidType())
6740    NewID->setInvalidDecl();
6741
6742  if (II) {
6743    // FIXME: When interfaces are DeclContexts, we'll need to add
6744    // these to the interface.
6745    S->AddDecl(NewID);
6746    IdResolver.AddDecl(NewID);
6747  }
6748
6749  return NewID;
6750}
6751
6752/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6753/// class and class extensions. For every class @interface and class
6754/// extension @interface, if the last ivar is a bitfield of any type,
6755/// then add an implicit `char :0` ivar to the end of that interface.
6756void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6757                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6758  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6759    return;
6760
6761  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6762  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6763
6764  if (!Ivar->isBitField())
6765    return;
6766  uint64_t BitFieldSize =
6767    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6768  if (BitFieldSize == 0)
6769    return;
6770  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6771  if (!ID) {
6772    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6773      if (!CD->IsClassExtension())
6774        return;
6775    }
6776    // No need to add this to end of @implementation.
6777    else
6778      return;
6779  }
6780  // All conditions are met. Add a new bitfield to the tail end of ivars.
6781  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6782  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6783
6784  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6785                              DeclLoc, 0,
6786                              Context.CharTy,
6787                              Context.CreateTypeSourceInfo(Context.CharTy),
6788                              ObjCIvarDecl::Private, BW,
6789                              true);
6790  AllIvarDecls.push_back(Ivar);
6791}
6792
6793void Sema::ActOnFields(Scope* S,
6794                       SourceLocation RecLoc, Decl *EnclosingDecl,
6795                       Decl **Fields, unsigned NumFields,
6796                       SourceLocation LBrac, SourceLocation RBrac,
6797                       AttributeList *Attr) {
6798  assert(EnclosingDecl && "missing record or interface decl");
6799
6800  // If the decl this is being inserted into is invalid, then it may be a
6801  // redeclaration or some other bogus case.  Don't try to add fields to it.
6802  if (EnclosingDecl->isInvalidDecl()) {
6803    // FIXME: Deallocate fields?
6804    return;
6805  }
6806
6807
6808  // Verify that all the fields are okay.
6809  unsigned NumNamedMembers = 0;
6810  llvm::SmallVector<FieldDecl*, 32> RecFields;
6811
6812  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6813  for (unsigned i = 0; i != NumFields; ++i) {
6814    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6815
6816    // Get the type for the field.
6817    Type *FDTy = FD->getType().getTypePtr();
6818
6819    if (!FD->isAnonymousStructOrUnion()) {
6820      // Remember all fields written by the user.
6821      RecFields.push_back(FD);
6822    }
6823
6824    // If the field is already invalid for some reason, don't emit more
6825    // diagnostics about it.
6826    if (FD->isInvalidDecl()) {
6827      EnclosingDecl->setInvalidDecl();
6828      continue;
6829    }
6830
6831    // C99 6.7.2.1p2:
6832    //   A structure or union shall not contain a member with
6833    //   incomplete or function type (hence, a structure shall not
6834    //   contain an instance of itself, but may contain a pointer to
6835    //   an instance of itself), except that the last member of a
6836    //   structure with more than one named member may have incomplete
6837    //   array type; such a structure (and any union containing,
6838    //   possibly recursively, a member that is such a structure)
6839    //   shall not be a member of a structure or an element of an
6840    //   array.
6841    if (FDTy->isFunctionType()) {
6842      // Field declared as a function.
6843      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6844        << FD->getDeclName();
6845      FD->setInvalidDecl();
6846      EnclosingDecl->setInvalidDecl();
6847      continue;
6848    } else if (FDTy->isIncompleteArrayType() && Record &&
6849               ((i == NumFields - 1 && !Record->isUnion()) ||
6850                (getLangOptions().Microsoft &&
6851                 (i == NumFields - 1 || Record->isUnion())))) {
6852      // Flexible array member.
6853      // Microsoft is more permissive regarding flexible array.
6854      // It will accept flexible array in union and also
6855      // as the sole element of a struct/class.
6856      if (getLangOptions().Microsoft) {
6857        if (Record->isUnion())
6858          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6859            << FD->getDeclName();
6860        else if (NumFields == 1)
6861          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6862            << FD->getDeclName() << Record->getTagKind();
6863      } else  if (NumNamedMembers < 1) {
6864        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6865          << FD->getDeclName();
6866        FD->setInvalidDecl();
6867        EnclosingDecl->setInvalidDecl();
6868        continue;
6869      }
6870      if (!FD->getType()->isDependentType() &&
6871          !Context.getBaseElementType(FD->getType())->isPODType()) {
6872        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6873          << FD->getDeclName() << FD->getType();
6874        FD->setInvalidDecl();
6875        EnclosingDecl->setInvalidDecl();
6876        continue;
6877      }
6878      // Okay, we have a legal flexible array member at the end of the struct.
6879      if (Record)
6880        Record->setHasFlexibleArrayMember(true);
6881    } else if (!FDTy->isDependentType() &&
6882               RequireCompleteType(FD->getLocation(), FD->getType(),
6883                                   diag::err_field_incomplete)) {
6884      // Incomplete type
6885      FD->setInvalidDecl();
6886      EnclosingDecl->setInvalidDecl();
6887      continue;
6888    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6889      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6890        // If this is a member of a union, then entire union becomes "flexible".
6891        if (Record && Record->isUnion()) {
6892          Record->setHasFlexibleArrayMember(true);
6893        } else {
6894          // If this is a struct/class and this is not the last element, reject
6895          // it.  Note that GCC supports variable sized arrays in the middle of
6896          // structures.
6897          if (i != NumFields-1)
6898            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6899              << FD->getDeclName() << FD->getType();
6900          else {
6901            // We support flexible arrays at the end of structs in
6902            // other structs as an extension.
6903            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6904              << FD->getDeclName();
6905            if (Record)
6906              Record->setHasFlexibleArrayMember(true);
6907          }
6908        }
6909      }
6910      if (Record && FDTTy->getDecl()->hasObjectMember())
6911        Record->setHasObjectMember(true);
6912    } else if (FDTy->isObjCObjectType()) {
6913      /// A field cannot be an Objective-c object
6914      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6915      FD->setInvalidDecl();
6916      EnclosingDecl->setInvalidDecl();
6917      continue;
6918    } else if (getLangOptions().ObjC1 &&
6919               getLangOptions().getGCMode() != LangOptions::NonGC &&
6920               Record &&
6921               (FD->getType()->isObjCObjectPointerType() ||
6922                FD->getType().isObjCGCStrong()))
6923      Record->setHasObjectMember(true);
6924    else if (Context.getAsArrayType(FD->getType())) {
6925      QualType BaseType = Context.getBaseElementType(FD->getType());
6926      if (Record && BaseType->isRecordType() &&
6927          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6928        Record->setHasObjectMember(true);
6929    }
6930    // Keep track of the number of named members.
6931    if (FD->getIdentifier())
6932      ++NumNamedMembers;
6933  }
6934
6935  // Okay, we successfully defined 'Record'.
6936  if (Record) {
6937    bool Completed = false;
6938    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
6939      if (!CXXRecord->isInvalidDecl()) {
6940        // Set access bits correctly on the directly-declared conversions.
6941        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
6942        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
6943             I != E; ++I)
6944          Convs->setAccess(I, (*I)->getAccess());
6945
6946        if (!CXXRecord->isDependentType()) {
6947          // Add any implicitly-declared members to this class.
6948          AddImplicitlyDeclaredMembersToClass(CXXRecord);
6949
6950          // If we have virtual base classes, we may end up finding multiple
6951          // final overriders for a given virtual function. Check for this
6952          // problem now.
6953          if (CXXRecord->getNumVBases()) {
6954            CXXFinalOverriderMap FinalOverriders;
6955            CXXRecord->getFinalOverriders(FinalOverriders);
6956
6957            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6958                                             MEnd = FinalOverriders.end();
6959                 M != MEnd; ++M) {
6960              for (OverridingMethods::iterator SO = M->second.begin(),
6961                                            SOEnd = M->second.end();
6962                   SO != SOEnd; ++SO) {
6963                assert(SO->second.size() > 0 &&
6964                       "Virtual function without overridding functions?");
6965                if (SO->second.size() == 1)
6966                  continue;
6967
6968                // C++ [class.virtual]p2:
6969                //   In a derived class, if a virtual member function of a base
6970                //   class subobject has more than one final overrider the
6971                //   program is ill-formed.
6972                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
6973                  << (NamedDecl *)M->first << Record;
6974                Diag(M->first->getLocation(),
6975                     diag::note_overridden_virtual_function);
6976                for (OverridingMethods::overriding_iterator
6977                          OM = SO->second.begin(),
6978                       OMEnd = SO->second.end();
6979                     OM != OMEnd; ++OM)
6980                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
6981                    << (NamedDecl *)M->first << OM->Method->getParent();
6982
6983                Record->setInvalidDecl();
6984              }
6985            }
6986            CXXRecord->completeDefinition(&FinalOverriders);
6987            Completed = true;
6988          }
6989        }
6990      }
6991    }
6992
6993    if (!Completed)
6994      Record->completeDefinition();
6995  } else {
6996    ObjCIvarDecl **ClsFields =
6997      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6998    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6999      ID->setLocEnd(RBrac);
7000      // Add ivar's to class's DeclContext.
7001      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7002        ClsFields[i]->setLexicalDeclContext(ID);
7003        ID->addDecl(ClsFields[i]);
7004      }
7005      // Must enforce the rule that ivars in the base classes may not be
7006      // duplicates.
7007      if (ID->getSuperClass())
7008        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7009    } else if (ObjCImplementationDecl *IMPDecl =
7010                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7011      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7012      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7013        // Ivar declared in @implementation never belongs to the implementation.
7014        // Only it is in implementation's lexical context.
7015        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7016      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7017    } else if (ObjCCategoryDecl *CDecl =
7018                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7019      // case of ivars in class extension; all other cases have been
7020      // reported as errors elsewhere.
7021      // FIXME. Class extension does not have a LocEnd field.
7022      // CDecl->setLocEnd(RBrac);
7023      // Add ivar's to class extension's DeclContext.
7024      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7025        ClsFields[i]->setLexicalDeclContext(CDecl);
7026        CDecl->addDecl(ClsFields[i]);
7027      }
7028    }
7029  }
7030
7031  if (Attr)
7032    ProcessDeclAttributeList(S, Record, Attr);
7033
7034  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7035  // set the visibility of this record.
7036  if (Record && !Record->getDeclContext()->isRecord())
7037    AddPushedVisibilityAttribute(Record);
7038}
7039
7040/// \brief Determine whether the given integral value is representable within
7041/// the given type T.
7042static bool isRepresentableIntegerValue(ASTContext &Context,
7043                                        llvm::APSInt &Value,
7044                                        QualType T) {
7045  assert(T->isIntegralType(Context) && "Integral type required!");
7046  unsigned BitWidth = Context.getIntWidth(T);
7047
7048  if (Value.isUnsigned() || Value.isNonNegative()) {
7049    if (T->isSignedIntegerType())
7050      --BitWidth;
7051    return Value.getActiveBits() <= BitWidth;
7052  }
7053  return Value.getMinSignedBits() <= BitWidth;
7054}
7055
7056// \brief Given an integral type, return the next larger integral type
7057// (or a NULL type of no such type exists).
7058static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7059  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7060  // enum checking below.
7061  assert(T->isIntegralType(Context) && "Integral type required!");
7062  const unsigned NumTypes = 4;
7063  QualType SignedIntegralTypes[NumTypes] = {
7064    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7065  };
7066  QualType UnsignedIntegralTypes[NumTypes] = {
7067    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7068    Context.UnsignedLongLongTy
7069  };
7070
7071  unsigned BitWidth = Context.getTypeSize(T);
7072  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7073                                            : UnsignedIntegralTypes;
7074  for (unsigned I = 0; I != NumTypes; ++I)
7075    if (Context.getTypeSize(Types[I]) > BitWidth)
7076      return Types[I];
7077
7078  return QualType();
7079}
7080
7081EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7082                                          EnumConstantDecl *LastEnumConst,
7083                                          SourceLocation IdLoc,
7084                                          IdentifierInfo *Id,
7085                                          Expr *Val) {
7086  unsigned IntWidth = Context.Target.getIntWidth();
7087  llvm::APSInt EnumVal(IntWidth);
7088  QualType EltTy;
7089  if (Val) {
7090    if (Enum->isDependentType() || Val->isTypeDependent())
7091      EltTy = Context.DependentTy;
7092    else {
7093      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7094      SourceLocation ExpLoc;
7095      if (!Val->isValueDependent() &&
7096          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7097        Val = 0;
7098      } else {
7099        if (!getLangOptions().CPlusPlus) {
7100          // C99 6.7.2.2p2:
7101          //   The expression that defines the value of an enumeration constant
7102          //   shall be an integer constant expression that has a value
7103          //   representable as an int.
7104
7105          // Complain if the value is not representable in an int.
7106          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7107            Diag(IdLoc, diag::ext_enum_value_not_int)
7108              << EnumVal.toString(10) << Val->getSourceRange()
7109              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7110          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7111            // Force the type of the expression to 'int'.
7112            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7113          }
7114        }
7115
7116        if (Enum->isFixed()) {
7117          EltTy = Enum->getIntegerType();
7118
7119          // C++0x [dcl.enum]p5:
7120          //   ... if the initializing value of an enumerator cannot be
7121          //   represented by the underlying type, the program is ill-formed.
7122          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7123            if (getLangOptions().Microsoft) {
7124              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7125              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7126            } else
7127              Diag(IdLoc, diag::err_enumerator_too_large)
7128                << EltTy;
7129          } else
7130            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7131        }
7132        else {
7133          // C++0x [dcl.enum]p5:
7134          //   If the underlying type is not fixed, the type of each enumerator
7135          //   is the type of its initializing value:
7136          //     - If an initializer is specified for an enumerator, the
7137          //       initializing value has the same type as the expression.
7138          EltTy = Val->getType();
7139        }
7140      }
7141    }
7142  }
7143
7144  if (!Val) {
7145    if (Enum->isDependentType())
7146      EltTy = Context.DependentTy;
7147    else if (!LastEnumConst) {
7148      // C++0x [dcl.enum]p5:
7149      //   If the underlying type is not fixed, the type of each enumerator
7150      //   is the type of its initializing value:
7151      //     - If no initializer is specified for the first enumerator, the
7152      //       initializing value has an unspecified integral type.
7153      //
7154      // GCC uses 'int' for its unspecified integral type, as does
7155      // C99 6.7.2.2p3.
7156      if (Enum->isFixed()) {
7157        EltTy = Enum->getIntegerType();
7158      }
7159      else {
7160        EltTy = Context.IntTy;
7161      }
7162    } else {
7163      // Assign the last value + 1.
7164      EnumVal = LastEnumConst->getInitVal();
7165      ++EnumVal;
7166      EltTy = LastEnumConst->getType();
7167
7168      // Check for overflow on increment.
7169      if (EnumVal < LastEnumConst->getInitVal()) {
7170        // C++0x [dcl.enum]p5:
7171        //   If the underlying type is not fixed, the type of each enumerator
7172        //   is the type of its initializing value:
7173        //
7174        //     - Otherwise the type of the initializing value is the same as
7175        //       the type of the initializing value of the preceding enumerator
7176        //       unless the incremented value is not representable in that type,
7177        //       in which case the type is an unspecified integral type
7178        //       sufficient to contain the incremented value. If no such type
7179        //       exists, the program is ill-formed.
7180        QualType T = getNextLargerIntegralType(Context, EltTy);
7181        if (T.isNull() || Enum->isFixed()) {
7182          // There is no integral type larger enough to represent this
7183          // value. Complain, then allow the value to wrap around.
7184          EnumVal = LastEnumConst->getInitVal();
7185          EnumVal.zext(EnumVal.getBitWidth() * 2);
7186          ++EnumVal;
7187          if (Enum->isFixed())
7188            // When the underlying type is fixed, this is ill-formed.
7189            Diag(IdLoc, diag::err_enumerator_wrapped)
7190              << EnumVal.toString(10)
7191              << EltTy;
7192          else
7193            Diag(IdLoc, diag::warn_enumerator_too_large)
7194              << EnumVal.toString(10);
7195        } else {
7196          EltTy = T;
7197        }
7198
7199        // Retrieve the last enumerator's value, extent that type to the
7200        // type that is supposed to be large enough to represent the incremented
7201        // value, then increment.
7202        EnumVal = LastEnumConst->getInitVal();
7203        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7204        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7205        ++EnumVal;
7206
7207        // If we're not in C++, diagnose the overflow of enumerator values,
7208        // which in C99 means that the enumerator value is not representable in
7209        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7210        // permits enumerator values that are representable in some larger
7211        // integral type.
7212        if (!getLangOptions().CPlusPlus && !T.isNull())
7213          Diag(IdLoc, diag::warn_enum_value_overflow);
7214      } else if (!getLangOptions().CPlusPlus &&
7215                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7216        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7217        Diag(IdLoc, diag::ext_enum_value_not_int)
7218          << EnumVal.toString(10) << 1;
7219      }
7220    }
7221  }
7222
7223  if (!EltTy->isDependentType()) {
7224    // Make the enumerator value match the signedness and size of the
7225    // enumerator's type.
7226    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7227    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7228  }
7229
7230  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7231                                  Val, EnumVal);
7232}
7233
7234
7235Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7236                              SourceLocation IdLoc, IdentifierInfo *Id,
7237                              AttributeList *Attr,
7238                              SourceLocation EqualLoc, ExprTy *val) {
7239  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7240  EnumConstantDecl *LastEnumConst =
7241    cast_or_null<EnumConstantDecl>(lastEnumConst);
7242  Expr *Val = static_cast<Expr*>(val);
7243
7244  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7245  // we find one that is.
7246  S = getNonFieldDeclScope(S);
7247
7248  // Verify that there isn't already something declared with this name in this
7249  // scope.
7250  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7251                                         ForRedeclaration);
7252  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7253    // Maybe we will complain about the shadowed template parameter.
7254    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7255    // Just pretend that we didn't see the previous declaration.
7256    PrevDecl = 0;
7257  }
7258
7259  if (PrevDecl) {
7260    // When in C++, we may get a TagDecl with the same name; in this case the
7261    // enum constant will 'hide' the tag.
7262    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7263           "Received TagDecl when not in C++!");
7264    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7265      if (isa<EnumConstantDecl>(PrevDecl))
7266        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7267      else
7268        Diag(IdLoc, diag::err_redefinition) << Id;
7269      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7270      return 0;
7271    }
7272  }
7273
7274  // C++ [class.mem]p13:
7275  //   If T is the name of a class, then each of the following shall have a
7276  //   name different from T:
7277  //     - every enumerator of every member of class T that is an enumerated
7278  //       type
7279  if (CXXRecordDecl *Record
7280                      = dyn_cast<CXXRecordDecl>(
7281                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7282    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7283      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7284
7285  EnumConstantDecl *New =
7286    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7287
7288  if (New) {
7289    // Process attributes.
7290    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7291
7292    // Register this decl in the current scope stack.
7293    New->setAccess(TheEnumDecl->getAccess());
7294    PushOnScopeChains(New, S);
7295  }
7296
7297  return New;
7298}
7299
7300void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7301                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7302                         Decl **Elements, unsigned NumElements,
7303                         Scope *S, AttributeList *Attr) {
7304  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7305  QualType EnumType = Context.getTypeDeclType(Enum);
7306
7307  if (Attr)
7308    ProcessDeclAttributeList(S, Enum, Attr);
7309
7310  if (Enum->isDependentType()) {
7311    for (unsigned i = 0; i != NumElements; ++i) {
7312      EnumConstantDecl *ECD =
7313        cast_or_null<EnumConstantDecl>(Elements[i]);
7314      if (!ECD) continue;
7315
7316      ECD->setType(EnumType);
7317    }
7318
7319    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7320    return;
7321  }
7322
7323  // TODO: If the result value doesn't fit in an int, it must be a long or long
7324  // long value.  ISO C does not support this, but GCC does as an extension,
7325  // emit a warning.
7326  unsigned IntWidth = Context.Target.getIntWidth();
7327  unsigned CharWidth = Context.Target.getCharWidth();
7328  unsigned ShortWidth = Context.Target.getShortWidth();
7329
7330  // Verify that all the values are okay, compute the size of the values, and
7331  // reverse the list.
7332  unsigned NumNegativeBits = 0;
7333  unsigned NumPositiveBits = 0;
7334
7335  // Keep track of whether all elements have type int.
7336  bool AllElementsInt = true;
7337
7338  for (unsigned i = 0; i != NumElements; ++i) {
7339    EnumConstantDecl *ECD =
7340      cast_or_null<EnumConstantDecl>(Elements[i]);
7341    if (!ECD) continue;  // Already issued a diagnostic.
7342
7343    const llvm::APSInt &InitVal = ECD->getInitVal();
7344
7345    // Keep track of the size of positive and negative values.
7346    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7347      NumPositiveBits = std::max(NumPositiveBits,
7348                                 (unsigned)InitVal.getActiveBits());
7349    else
7350      NumNegativeBits = std::max(NumNegativeBits,
7351                                 (unsigned)InitVal.getMinSignedBits());
7352
7353    // Keep track of whether every enum element has type int (very commmon).
7354    if (AllElementsInt)
7355      AllElementsInt = ECD->getType() == Context.IntTy;
7356  }
7357
7358  // Figure out the type that should be used for this enum.
7359  // FIXME: Support -fshort-enums.
7360  QualType BestType;
7361  unsigned BestWidth;
7362
7363  // C++0x N3000 [conv.prom]p3:
7364  //   An rvalue of an unscoped enumeration type whose underlying
7365  //   type is not fixed can be converted to an rvalue of the first
7366  //   of the following types that can represent all the values of
7367  //   the enumeration: int, unsigned int, long int, unsigned long
7368  //   int, long long int, or unsigned long long int.
7369  // C99 6.4.4.3p2:
7370  //   An identifier declared as an enumeration constant has type int.
7371  // The C99 rule is modified by a gcc extension
7372  QualType BestPromotionType;
7373
7374  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7375  // -fshort-enums is the equivalent to specifying the packed attribute on all
7376  // enum definitions.
7377  if (LangOpts.ShortEnums)
7378    Packed = true;
7379
7380  if (Enum->isFixed()) {
7381    BestType = BestPromotionType = Enum->getIntegerType();
7382    // We don't need to set BestWidth, because BestType is going to be the type
7383    // of the enumerators, but we do anyway because otherwise some compilers
7384    // warn that it might be used uninitialized.
7385    BestWidth = CharWidth;
7386  }
7387  else if (NumNegativeBits) {
7388    // If there is a negative value, figure out the smallest integer type (of
7389    // int/long/longlong) that fits.
7390    // If it's packed, check also if it fits a char or a short.
7391    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7392      BestType = Context.SignedCharTy;
7393      BestWidth = CharWidth;
7394    } else if (Packed && NumNegativeBits <= ShortWidth &&
7395               NumPositiveBits < ShortWidth) {
7396      BestType = Context.ShortTy;
7397      BestWidth = ShortWidth;
7398    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7399      BestType = Context.IntTy;
7400      BestWidth = IntWidth;
7401    } else {
7402      BestWidth = Context.Target.getLongWidth();
7403
7404      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7405        BestType = Context.LongTy;
7406      } else {
7407        BestWidth = Context.Target.getLongLongWidth();
7408
7409        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7410          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7411        BestType = Context.LongLongTy;
7412      }
7413    }
7414    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7415  } else {
7416    // If there is no negative value, figure out the smallest type that fits
7417    // all of the enumerator values.
7418    // If it's packed, check also if it fits a char or a short.
7419    if (Packed && NumPositiveBits <= CharWidth) {
7420      BestType = Context.UnsignedCharTy;
7421      BestPromotionType = Context.IntTy;
7422      BestWidth = CharWidth;
7423    } else if (Packed && NumPositiveBits <= ShortWidth) {
7424      BestType = Context.UnsignedShortTy;
7425      BestPromotionType = Context.IntTy;
7426      BestWidth = ShortWidth;
7427    } else if (NumPositiveBits <= IntWidth) {
7428      BestType = Context.UnsignedIntTy;
7429      BestWidth = IntWidth;
7430      BestPromotionType
7431        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7432                           ? Context.UnsignedIntTy : Context.IntTy;
7433    } else if (NumPositiveBits <=
7434               (BestWidth = Context.Target.getLongWidth())) {
7435      BestType = Context.UnsignedLongTy;
7436      BestPromotionType
7437        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7438                           ? Context.UnsignedLongTy : Context.LongTy;
7439    } else {
7440      BestWidth = Context.Target.getLongLongWidth();
7441      assert(NumPositiveBits <= BestWidth &&
7442             "How could an initializer get larger than ULL?");
7443      BestType = Context.UnsignedLongLongTy;
7444      BestPromotionType
7445        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7446                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7447    }
7448  }
7449
7450  // Loop over all of the enumerator constants, changing their types to match
7451  // the type of the enum if needed.
7452  for (unsigned i = 0; i != NumElements; ++i) {
7453    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7454    if (!ECD) continue;  // Already issued a diagnostic.
7455
7456    // Standard C says the enumerators have int type, but we allow, as an
7457    // extension, the enumerators to be larger than int size.  If each
7458    // enumerator value fits in an int, type it as an int, otherwise type it the
7459    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7460    // that X has type 'int', not 'unsigned'.
7461
7462    // Determine whether the value fits into an int.
7463    llvm::APSInt InitVal = ECD->getInitVal();
7464
7465    // If it fits into an integer type, force it.  Otherwise force it to match
7466    // the enum decl type.
7467    QualType NewTy;
7468    unsigned NewWidth;
7469    bool NewSign;
7470    if (!getLangOptions().CPlusPlus &&
7471        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7472      NewTy = Context.IntTy;
7473      NewWidth = IntWidth;
7474      NewSign = true;
7475    } else if (ECD->getType() == BestType) {
7476      // Already the right type!
7477      if (getLangOptions().CPlusPlus)
7478        // C++ [dcl.enum]p4: Following the closing brace of an
7479        // enum-specifier, each enumerator has the type of its
7480        // enumeration.
7481        ECD->setType(EnumType);
7482      continue;
7483    } else {
7484      NewTy = BestType;
7485      NewWidth = BestWidth;
7486      NewSign = BestType->isSignedIntegerType();
7487    }
7488
7489    // Adjust the APSInt value.
7490    InitVal.extOrTrunc(NewWidth);
7491    InitVal.setIsSigned(NewSign);
7492    ECD->setInitVal(InitVal);
7493
7494    // Adjust the Expr initializer and type.
7495    if (ECD->getInitExpr())
7496      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7497                                                CK_IntegralCast,
7498                                                ECD->getInitExpr(),
7499                                                /*base paths*/ 0,
7500                                                VK_RValue));
7501    if (getLangOptions().CPlusPlus)
7502      // C++ [dcl.enum]p4: Following the closing brace of an
7503      // enum-specifier, each enumerator has the type of its
7504      // enumeration.
7505      ECD->setType(EnumType);
7506    else
7507      ECD->setType(NewTy);
7508  }
7509
7510  Enum->completeDefinition(BestType, BestPromotionType,
7511                           NumPositiveBits, NumNegativeBits);
7512}
7513
7514Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7515  StringLiteral *AsmString = cast<StringLiteral>(expr);
7516
7517  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7518                                                   Loc, AsmString);
7519  CurContext->addDecl(New);
7520  return New;
7521}
7522
7523void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7524                             SourceLocation PragmaLoc,
7525                             SourceLocation NameLoc) {
7526  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7527
7528  if (PrevDecl) {
7529    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7530  } else {
7531    (void)WeakUndeclaredIdentifiers.insert(
7532      std::pair<IdentifierInfo*,WeakInfo>
7533        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7534  }
7535}
7536
7537void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7538                                IdentifierInfo* AliasName,
7539                                SourceLocation PragmaLoc,
7540                                SourceLocation NameLoc,
7541                                SourceLocation AliasNameLoc) {
7542  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7543                                    LookupOrdinaryName);
7544  WeakInfo W = WeakInfo(Name, NameLoc);
7545
7546  if (PrevDecl) {
7547    if (!PrevDecl->hasAttr<AliasAttr>())
7548      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7549        DeclApplyPragmaWeak(TUScope, ND, W);
7550  } else {
7551    (void)WeakUndeclaredIdentifiers.insert(
7552      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7553  }
7554}
7555