SemaDecl.cpp revision c1fb54265614845ee1e09856af6e46961c6209f4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
353/// where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Union:  return DeclSpec::TST_union;
364      case TTK_Class:  return DeclSpec::TST_class;
365      case TTK_Enum:   return DeclSpec::TST_enum;
366      }
367    }
368
369  return DeclSpec::TST_unspecified;
370}
371
372/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
373/// if a CXXScopeSpec's type is equal to the type of one of the base classes
374/// then downgrade the missing typename error to a warning.
375/// This is needed for MSVC compatibility; Example:
376/// @code
377/// template<class T> class A {
378/// public:
379///   typedef int TYPE;
380/// };
381/// template<class T> class B : public A<T> {
382/// public:
383///   A<T>::TYPE a; // no typename required because A<T> is a base class.
384/// };
385/// @endcode
386bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
387  if (CurContext->isRecord()) {
388    const Type *Ty = SS->getScopeRep()->getAsType();
389
390    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
391    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
392          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
393      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
394        return true;
395    return S->isFunctionPrototypeScope();
396  }
397  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
398}
399
400bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
401                                   SourceLocation IILoc,
402                                   Scope *S,
403                                   CXXScopeSpec *SS,
404                                   ParsedType &SuggestedType) {
405  // We don't have anything to suggest (yet).
406  SuggestedType = ParsedType();
407
408  // There may have been a typo in the name of the type. Look up typo
409  // results, in case we have something that we can suggest.
410  TypeNameValidatorCCC Validator(false);
411  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
412                                             LookupOrdinaryName, S, SS,
413                                             Validator)) {
414    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
415    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
416
417    if (Corrected.isKeyword()) {
418      // We corrected to a keyword.
419      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
420      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
421        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
422      Diag(IILoc, diag::err_unknown_typename_suggest)
423        << II << CorrectedQuotedStr
424        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
425      II = NewII;
426    } else {
427      NamedDecl *Result = Corrected.getCorrectionDecl();
428      // We found a similarly-named type or interface; suggest that.
429      if (!SS || !SS->isSet())
430        Diag(IILoc, diag::err_unknown_typename_suggest)
431          << II << CorrectedQuotedStr
432          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
433      else if (DeclContext *DC = computeDeclContext(*SS, false))
434        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
435          << II << DC << CorrectedQuotedStr << SS->getRange()
436          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
437      else
438        llvm_unreachable("could not have corrected a typo here");
439
440      Diag(Result->getLocation(), diag::note_previous_decl)
441        << CorrectedQuotedStr;
442
443      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
444                                  false, false, ParsedType(),
445                                  /*IsCtorOrDtorName=*/false,
446                                  /*NonTrivialTypeSourceInfo=*/true);
447    }
448    return true;
449  }
450
451  if (getLangOpts().CPlusPlus) {
452    // See if II is a class template that the user forgot to pass arguments to.
453    UnqualifiedId Name;
454    Name.setIdentifier(II, IILoc);
455    CXXScopeSpec EmptySS;
456    TemplateTy TemplateResult;
457    bool MemberOfUnknownSpecialization;
458    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
459                       Name, ParsedType(), true, TemplateResult,
460                       MemberOfUnknownSpecialization) == TNK_Type_template) {
461      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
462      Diag(IILoc, diag::err_template_missing_args) << TplName;
463      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
464        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
465          << TplDecl->getTemplateParameters()->getSourceRange();
466      }
467      return true;
468    }
469  }
470
471  // FIXME: Should we move the logic that tries to recover from a missing tag
472  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
473
474  if (!SS || (!SS->isSet() && !SS->isInvalid()))
475    Diag(IILoc, diag::err_unknown_typename) << II;
476  else if (DeclContext *DC = computeDeclContext(*SS, false))
477    Diag(IILoc, diag::err_typename_nested_not_found)
478      << II << DC << SS->getRange();
479  else if (isDependentScopeSpecifier(*SS)) {
480    unsigned DiagID = diag::err_typename_missing;
481    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
482      DiagID = diag::warn_typename_missing;
483
484    Diag(SS->getRange().getBegin(), DiagID)
485      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
486      << SourceRange(SS->getRange().getBegin(), IILoc)
487      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
488    SuggestedType = ActOnTypenameType(S, SourceLocation(),
489                                      *SS, *II, IILoc).get();
490  } else {
491    assert(SS && SS->isInvalid() &&
492           "Invalid scope specifier has already been diagnosed");
493  }
494
495  return true;
496}
497
498/// \brief Determine whether the given result set contains either a type name
499/// or
500static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
501  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
502                       NextToken.is(tok::less);
503
504  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
505    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
506      return true;
507
508    if (CheckTemplate && isa<TemplateDecl>(*I))
509      return true;
510  }
511
512  return false;
513}
514
515static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
516                                    Scope *S, CXXScopeSpec &SS,
517                                    IdentifierInfo *&Name,
518                                    SourceLocation NameLoc) {
519  Result.clear(Sema::LookupTagName);
520  SemaRef.LookupParsedName(Result, S, &SS);
521  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
522    const char *TagName = 0;
523    const char *FixItTagName = 0;
524    switch (Tag->getTagKind()) {
525      case TTK_Class:
526        TagName = "class";
527        FixItTagName = "class ";
528        break;
529
530      case TTK_Enum:
531        TagName = "enum";
532        FixItTagName = "enum ";
533        break;
534
535      case TTK_Struct:
536        TagName = "struct";
537        FixItTagName = "struct ";
538        break;
539
540      case TTK_Union:
541        TagName = "union";
542        FixItTagName = "union ";
543        break;
544    }
545
546    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
547      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
548      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
549
550    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
551    if (SemaRef.LookupParsedName(R, S, &SS)) {
552      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
553           I != IEnd; ++I)
554        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
555          << Name << TagName;
556    }
557    return true;
558  }
559
560  Result.clear(Sema::LookupOrdinaryName);
561  return false;
562}
563
564Sema::NameClassification Sema::ClassifyName(Scope *S,
565                                            CXXScopeSpec &SS,
566                                            IdentifierInfo *&Name,
567                                            SourceLocation NameLoc,
568                                            const Token &NextToken) {
569  DeclarationNameInfo NameInfo(Name, NameLoc);
570  ObjCMethodDecl *CurMethod = getCurMethodDecl();
571
572  if (NextToken.is(tok::coloncolon)) {
573    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
574                                QualType(), false, SS, 0, false);
575
576  }
577
578  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
579  LookupParsedName(Result, S, &SS, !CurMethod);
580
581  // Perform lookup for Objective-C instance variables (including automatically
582  // synthesized instance variables), if we're in an Objective-C method.
583  // FIXME: This lookup really, really needs to be folded in to the normal
584  // unqualified lookup mechanism.
585  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
586    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
587    if (E.get() || E.isInvalid())
588      return E;
589  }
590
591  bool SecondTry = false;
592  bool IsFilteredTemplateName = false;
593
594Corrected:
595  switch (Result.getResultKind()) {
596  case LookupResult::NotFound:
597    // If an unqualified-id is followed by a '(', then we have a function
598    // call.
599    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
600      // In C++, this is an ADL-only call.
601      // FIXME: Reference?
602      if (getLangOpts().CPlusPlus)
603        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
604
605      // C90 6.3.2.2:
606      //   If the expression that precedes the parenthesized argument list in a
607      //   function call consists solely of an identifier, and if no
608      //   declaration is visible for this identifier, the identifier is
609      //   implicitly declared exactly as if, in the innermost block containing
610      //   the function call, the declaration
611      //
612      //     extern int identifier ();
613      //
614      //   appeared.
615      //
616      // We also allow this in C99 as an extension.
617      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
618        Result.addDecl(D);
619        Result.resolveKind();
620        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
621      }
622    }
623
624    // In C, we first see whether there is a tag type by the same name, in
625    // which case it's likely that the user just forget to write "enum",
626    // "struct", or "union".
627    if (!getLangOpts().CPlusPlus && !SecondTry &&
628        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
629      break;
630    }
631
632    // Perform typo correction to determine if there is another name that is
633    // close to this name.
634    if (!SecondTry) {
635      SecondTry = true;
636      CorrectionCandidateCallback DefaultValidator;
637      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
638                                                 Result.getLookupKind(), S,
639                                                 &SS, DefaultValidator)) {
640        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
641        unsigned QualifiedDiag = diag::err_no_member_suggest;
642        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
643        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
644
645        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
646        NamedDecl *UnderlyingFirstDecl
647          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
648        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
649            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
650          UnqualifiedDiag = diag::err_no_template_suggest;
651          QualifiedDiag = diag::err_no_member_template_suggest;
652        } else if (UnderlyingFirstDecl &&
653                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
654                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
655                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
656           UnqualifiedDiag = diag::err_unknown_typename_suggest;
657           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
658         }
659
660        if (SS.isEmpty())
661          Diag(NameLoc, UnqualifiedDiag)
662            << Name << CorrectedQuotedStr
663            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
664        else
665          Diag(NameLoc, QualifiedDiag)
666            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
667            << SS.getRange()
668            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
669
670        // Update the name, so that the caller has the new name.
671        Name = Corrected.getCorrectionAsIdentifierInfo();
672
673        // Typo correction corrected to a keyword.
674        if (Corrected.isKeyword())
675          return Corrected.getCorrectionAsIdentifierInfo();
676
677        // Also update the LookupResult...
678        // FIXME: This should probably go away at some point
679        Result.clear();
680        Result.setLookupName(Corrected.getCorrection());
681        if (FirstDecl) {
682          Result.addDecl(FirstDecl);
683          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
684            << CorrectedQuotedStr;
685        }
686
687        // If we found an Objective-C instance variable, let
688        // LookupInObjCMethod build the appropriate expression to
689        // reference the ivar.
690        // FIXME: This is a gross hack.
691        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
692          Result.clear();
693          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
694          return move(E);
695        }
696
697        goto Corrected;
698      }
699    }
700
701    // We failed to correct; just fall through and let the parser deal with it.
702    Result.suppressDiagnostics();
703    return NameClassification::Unknown();
704
705  case LookupResult::NotFoundInCurrentInstantiation: {
706    // We performed name lookup into the current instantiation, and there were
707    // dependent bases, so we treat this result the same way as any other
708    // dependent nested-name-specifier.
709
710    // C++ [temp.res]p2:
711    //   A name used in a template declaration or definition and that is
712    //   dependent on a template-parameter is assumed not to name a type
713    //   unless the applicable name lookup finds a type name or the name is
714    //   qualified by the keyword typename.
715    //
716    // FIXME: If the next token is '<', we might want to ask the parser to
717    // perform some heroics to see if we actually have a
718    // template-argument-list, which would indicate a missing 'template'
719    // keyword here.
720    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
721                                     NameInfo, /*TemplateArgs=*/0);
722  }
723
724  case LookupResult::Found:
725  case LookupResult::FoundOverloaded:
726  case LookupResult::FoundUnresolvedValue:
727    break;
728
729  case LookupResult::Ambiguous:
730    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
731        hasAnyAcceptableTemplateNames(Result)) {
732      // C++ [temp.local]p3:
733      //   A lookup that finds an injected-class-name (10.2) can result in an
734      //   ambiguity in certain cases (for example, if it is found in more than
735      //   one base class). If all of the injected-class-names that are found
736      //   refer to specializations of the same class template, and if the name
737      //   is followed by a template-argument-list, the reference refers to the
738      //   class template itself and not a specialization thereof, and is not
739      //   ambiguous.
740      //
741      // This filtering can make an ambiguous result into an unambiguous one,
742      // so try again after filtering out template names.
743      FilterAcceptableTemplateNames(Result);
744      if (!Result.isAmbiguous()) {
745        IsFilteredTemplateName = true;
746        break;
747      }
748    }
749
750    // Diagnose the ambiguity and return an error.
751    return NameClassification::Error();
752  }
753
754  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
756    // C++ [temp.names]p3:
757    //   After name lookup (3.4) finds that a name is a template-name or that
758    //   an operator-function-id or a literal- operator-id refers to a set of
759    //   overloaded functions any member of which is a function template if
760    //   this is followed by a <, the < is always taken as the delimiter of a
761    //   template-argument-list and never as the less-than operator.
762    if (!IsFilteredTemplateName)
763      FilterAcceptableTemplateNames(Result);
764
765    if (!Result.empty()) {
766      bool IsFunctionTemplate;
767      TemplateName Template;
768      if (Result.end() - Result.begin() > 1) {
769        IsFunctionTemplate = true;
770        Template = Context.getOverloadedTemplateName(Result.begin(),
771                                                     Result.end());
772      } else {
773        TemplateDecl *TD
774          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
775        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
776
777        if (SS.isSet() && !SS.isInvalid())
778          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
779                                                    /*TemplateKeyword=*/false,
780                                                      TD);
781        else
782          Template = TemplateName(TD);
783      }
784
785      if (IsFunctionTemplate) {
786        // Function templates always go through overload resolution, at which
787        // point we'll perform the various checks (e.g., accessibility) we need
788        // to based on which function we selected.
789        Result.suppressDiagnostics();
790
791        return NameClassification::FunctionTemplate(Template);
792      }
793
794      return NameClassification::TypeTemplate(Template);
795    }
796  }
797
798  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
799  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
800    DiagnoseUseOfDecl(Type, NameLoc);
801    QualType T = Context.getTypeDeclType(Type);
802    return ParsedType::make(T);
803  }
804
805  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
806  if (!Class) {
807    // FIXME: It's unfortunate that we don't have a Type node for handling this.
808    if (ObjCCompatibleAliasDecl *Alias
809                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
810      Class = Alias->getClassInterface();
811  }
812
813  if (Class) {
814    DiagnoseUseOfDecl(Class, NameLoc);
815
816    if (NextToken.is(tok::period)) {
817      // Interface. <something> is parsed as a property reference expression.
818      // Just return "unknown" as a fall-through for now.
819      Result.suppressDiagnostics();
820      return NameClassification::Unknown();
821    }
822
823    QualType T = Context.getObjCInterfaceType(Class);
824    return ParsedType::make(T);
825  }
826
827  // Check for a tag type hidden by a non-type decl in a few cases where it
828  // seems likely a type is wanted instead of the non-type that was found.
829  if (!getLangOpts().ObjC1 && FirstDecl && !isa<ClassTemplateDecl>(FirstDecl) &&
830      !isa<TypeAliasTemplateDecl>(FirstDecl)) {
831    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
832    if ((NextToken.is(tok::identifier) ||
833         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
834        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
835      FirstDecl = (*Result.begin())->getUnderlyingDecl();
836      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
837        DiagnoseUseOfDecl(Type, NameLoc);
838        QualType T = Context.getTypeDeclType(Type);
839        return ParsedType::make(T);
840      }
841    }
842  }
843
844  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
845    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
846
847  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
848  return BuildDeclarationNameExpr(SS, Result, ADL);
849}
850
851// Determines the context to return to after temporarily entering a
852// context.  This depends in an unnecessarily complicated way on the
853// exact ordering of callbacks from the parser.
854DeclContext *Sema::getContainingDC(DeclContext *DC) {
855
856  // Functions defined inline within classes aren't parsed until we've
857  // finished parsing the top-level class, so the top-level class is
858  // the context we'll need to return to.
859  if (isa<FunctionDecl>(DC)) {
860    DC = DC->getLexicalParent();
861
862    // A function not defined within a class will always return to its
863    // lexical context.
864    if (!isa<CXXRecordDecl>(DC))
865      return DC;
866
867    // A C++ inline method/friend is parsed *after* the topmost class
868    // it was declared in is fully parsed ("complete");  the topmost
869    // class is the context we need to return to.
870    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
871      DC = RD;
872
873    // Return the declaration context of the topmost class the inline method is
874    // declared in.
875    return DC;
876  }
877
878  return DC->getLexicalParent();
879}
880
881void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
882  assert(getContainingDC(DC) == CurContext &&
883      "The next DeclContext should be lexically contained in the current one.");
884  CurContext = DC;
885  S->setEntity(DC);
886}
887
888void Sema::PopDeclContext() {
889  assert(CurContext && "DeclContext imbalance!");
890
891  CurContext = getContainingDC(CurContext);
892  assert(CurContext && "Popped translation unit!");
893}
894
895/// EnterDeclaratorContext - Used when we must lookup names in the context
896/// of a declarator's nested name specifier.
897///
898void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
899  // C++0x [basic.lookup.unqual]p13:
900  //   A name used in the definition of a static data member of class
901  //   X (after the qualified-id of the static member) is looked up as
902  //   if the name was used in a member function of X.
903  // C++0x [basic.lookup.unqual]p14:
904  //   If a variable member of a namespace is defined outside of the
905  //   scope of its namespace then any name used in the definition of
906  //   the variable member (after the declarator-id) is looked up as
907  //   if the definition of the variable member occurred in its
908  //   namespace.
909  // Both of these imply that we should push a scope whose context
910  // is the semantic context of the declaration.  We can't use
911  // PushDeclContext here because that context is not necessarily
912  // lexically contained in the current context.  Fortunately,
913  // the containing scope should have the appropriate information.
914
915  assert(!S->getEntity() && "scope already has entity");
916
917#ifndef NDEBUG
918  Scope *Ancestor = S->getParent();
919  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
920  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
921#endif
922
923  CurContext = DC;
924  S->setEntity(DC);
925}
926
927void Sema::ExitDeclaratorContext(Scope *S) {
928  assert(S->getEntity() == CurContext && "Context imbalance!");
929
930  // Switch back to the lexical context.  The safety of this is
931  // enforced by an assert in EnterDeclaratorContext.
932  Scope *Ancestor = S->getParent();
933  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
934  CurContext = (DeclContext*) Ancestor->getEntity();
935
936  // We don't need to do anything with the scope, which is going to
937  // disappear.
938}
939
940
941void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
942  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
943  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
944    // We assume that the caller has already called
945    // ActOnReenterTemplateScope
946    FD = TFD->getTemplatedDecl();
947  }
948  if (!FD)
949    return;
950
951  // Same implementation as PushDeclContext, but enters the context
952  // from the lexical parent, rather than the top-level class.
953  assert(CurContext == FD->getLexicalParent() &&
954    "The next DeclContext should be lexically contained in the current one.");
955  CurContext = FD;
956  S->setEntity(CurContext);
957
958  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
959    ParmVarDecl *Param = FD->getParamDecl(P);
960    // If the parameter has an identifier, then add it to the scope
961    if (Param->getIdentifier()) {
962      S->AddDecl(Param);
963      IdResolver.AddDecl(Param);
964    }
965  }
966}
967
968
969void Sema::ActOnExitFunctionContext() {
970  // Same implementation as PopDeclContext, but returns to the lexical parent,
971  // rather than the top-level class.
972  assert(CurContext && "DeclContext imbalance!");
973  CurContext = CurContext->getLexicalParent();
974  assert(CurContext && "Popped translation unit!");
975}
976
977
978/// \brief Determine whether we allow overloading of the function
979/// PrevDecl with another declaration.
980///
981/// This routine determines whether overloading is possible, not
982/// whether some new function is actually an overload. It will return
983/// true in C++ (where we can always provide overloads) or, as an
984/// extension, in C when the previous function is already an
985/// overloaded function declaration or has the "overloadable"
986/// attribute.
987static bool AllowOverloadingOfFunction(LookupResult &Previous,
988                                       ASTContext &Context) {
989  if (Context.getLangOpts().CPlusPlus)
990    return true;
991
992  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
993    return true;
994
995  return (Previous.getResultKind() == LookupResult::Found
996          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
997}
998
999/// Add this decl to the scope shadowed decl chains.
1000void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1001  // Move up the scope chain until we find the nearest enclosing
1002  // non-transparent context. The declaration will be introduced into this
1003  // scope.
1004  while (S->getEntity() &&
1005         ((DeclContext *)S->getEntity())->isTransparentContext())
1006    S = S->getParent();
1007
1008  // Add scoped declarations into their context, so that they can be
1009  // found later. Declarations without a context won't be inserted
1010  // into any context.
1011  if (AddToContext)
1012    CurContext->addDecl(D);
1013
1014  // Out-of-line definitions shouldn't be pushed into scope in C++.
1015  // Out-of-line variable and function definitions shouldn't even in C.
1016  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1017      D->isOutOfLine() &&
1018      !D->getDeclContext()->getRedeclContext()->Equals(
1019        D->getLexicalDeclContext()->getRedeclContext()))
1020    return;
1021
1022  // Template instantiations should also not be pushed into scope.
1023  if (isa<FunctionDecl>(D) &&
1024      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1025    return;
1026
1027  // If this replaces anything in the current scope,
1028  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1029                               IEnd = IdResolver.end();
1030  for (; I != IEnd; ++I) {
1031    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1032      S->RemoveDecl(*I);
1033      IdResolver.RemoveDecl(*I);
1034
1035      // Should only need to replace one decl.
1036      break;
1037    }
1038  }
1039
1040  S->AddDecl(D);
1041
1042  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1043    // Implicitly-generated labels may end up getting generated in an order that
1044    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1045    // the label at the appropriate place in the identifier chain.
1046    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1047      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1048      if (IDC == CurContext) {
1049        if (!S->isDeclScope(*I))
1050          continue;
1051      } else if (IDC->Encloses(CurContext))
1052        break;
1053    }
1054
1055    IdResolver.InsertDeclAfter(I, D);
1056  } else {
1057    IdResolver.AddDecl(D);
1058  }
1059}
1060
1061void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1062  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1063    TUScope->AddDecl(D);
1064}
1065
1066bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1067                         bool ExplicitInstantiationOrSpecialization) {
1068  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1069                                  ExplicitInstantiationOrSpecialization);
1070}
1071
1072Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1073  DeclContext *TargetDC = DC->getPrimaryContext();
1074  do {
1075    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1076      if (ScopeDC->getPrimaryContext() == TargetDC)
1077        return S;
1078  } while ((S = S->getParent()));
1079
1080  return 0;
1081}
1082
1083static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1084                                            DeclContext*,
1085                                            ASTContext&);
1086
1087/// Filters out lookup results that don't fall within the given scope
1088/// as determined by isDeclInScope.
1089void Sema::FilterLookupForScope(LookupResult &R,
1090                                DeclContext *Ctx, Scope *S,
1091                                bool ConsiderLinkage,
1092                                bool ExplicitInstantiationOrSpecialization) {
1093  LookupResult::Filter F = R.makeFilter();
1094  while (F.hasNext()) {
1095    NamedDecl *D = F.next();
1096
1097    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1098      continue;
1099
1100    if (ConsiderLinkage &&
1101        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1102      continue;
1103
1104    F.erase();
1105  }
1106
1107  F.done();
1108}
1109
1110static bool isUsingDecl(NamedDecl *D) {
1111  return isa<UsingShadowDecl>(D) ||
1112         isa<UnresolvedUsingTypenameDecl>(D) ||
1113         isa<UnresolvedUsingValueDecl>(D);
1114}
1115
1116/// Removes using shadow declarations from the lookup results.
1117static void RemoveUsingDecls(LookupResult &R) {
1118  LookupResult::Filter F = R.makeFilter();
1119  while (F.hasNext())
1120    if (isUsingDecl(F.next()))
1121      F.erase();
1122
1123  F.done();
1124}
1125
1126/// \brief Check for this common pattern:
1127/// @code
1128/// class S {
1129///   S(const S&); // DO NOT IMPLEMENT
1130///   void operator=(const S&); // DO NOT IMPLEMENT
1131/// };
1132/// @endcode
1133static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1134  // FIXME: Should check for private access too but access is set after we get
1135  // the decl here.
1136  if (D->doesThisDeclarationHaveABody())
1137    return false;
1138
1139  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1140    return CD->isCopyConstructor();
1141  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1142    return Method->isCopyAssignmentOperator();
1143  return false;
1144}
1145
1146bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1147  assert(D);
1148
1149  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1150    return false;
1151
1152  // Ignore class templates.
1153  if (D->getDeclContext()->isDependentContext() ||
1154      D->getLexicalDeclContext()->isDependentContext())
1155    return false;
1156
1157  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1158    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1159      return false;
1160
1161    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1162      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1163        return false;
1164    } else {
1165      // 'static inline' functions are used in headers; don't warn.
1166      if (FD->getStorageClass() == SC_Static &&
1167          FD->isInlineSpecified())
1168        return false;
1169    }
1170
1171    if (FD->doesThisDeclarationHaveABody() &&
1172        Context.DeclMustBeEmitted(FD))
1173      return false;
1174  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1175    if (!VD->isFileVarDecl() ||
1176        VD->getType().isConstant(Context) ||
1177        Context.DeclMustBeEmitted(VD))
1178      return false;
1179
1180    if (VD->isStaticDataMember() &&
1181        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1182      return false;
1183
1184  } else {
1185    return false;
1186  }
1187
1188  // Only warn for unused decls internal to the translation unit.
1189  if (D->getLinkage() == ExternalLinkage)
1190    return false;
1191
1192  return true;
1193}
1194
1195void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1196  if (!D)
1197    return;
1198
1199  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1200    const FunctionDecl *First = FD->getFirstDeclaration();
1201    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1202      return; // First should already be in the vector.
1203  }
1204
1205  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    const VarDecl *First = VD->getFirstDeclaration();
1207    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1208      return; // First should already be in the vector.
1209  }
1210
1211  if (ShouldWarnIfUnusedFileScopedDecl(D))
1212    UnusedFileScopedDecls.push_back(D);
1213}
1214
1215static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1216  if (D->isInvalidDecl())
1217    return false;
1218
1219  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1220    return false;
1221
1222  if (isa<LabelDecl>(D))
1223    return true;
1224
1225  // White-list anything that isn't a local variable.
1226  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1227      !D->getDeclContext()->isFunctionOrMethod())
1228    return false;
1229
1230  // Types of valid local variables should be complete, so this should succeed.
1231  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1232
1233    // White-list anything with an __attribute__((unused)) type.
1234    QualType Ty = VD->getType();
1235
1236    // Only look at the outermost level of typedef.
1237    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1238      if (TT->getDecl()->hasAttr<UnusedAttr>())
1239        return false;
1240    }
1241
1242    // If we failed to complete the type for some reason, or if the type is
1243    // dependent, don't diagnose the variable.
1244    if (Ty->isIncompleteType() || Ty->isDependentType())
1245      return false;
1246
1247    if (const TagType *TT = Ty->getAs<TagType>()) {
1248      const TagDecl *Tag = TT->getDecl();
1249      if (Tag->hasAttr<UnusedAttr>())
1250        return false;
1251
1252      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1253        if (!RD->hasTrivialDestructor())
1254          return false;
1255
1256        if (const Expr *Init = VD->getInit()) {
1257          const CXXConstructExpr *Construct =
1258            dyn_cast<CXXConstructExpr>(Init);
1259          if (Construct && !Construct->isElidable()) {
1260            CXXConstructorDecl *CD = Construct->getConstructor();
1261            if (!CD->isTrivial())
1262              return false;
1263          }
1264        }
1265      }
1266    }
1267
1268    // TODO: __attribute__((unused)) templates?
1269  }
1270
1271  return true;
1272}
1273
1274static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1275                                     FixItHint &Hint) {
1276  if (isa<LabelDecl>(D)) {
1277    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1278                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1279    if (AfterColon.isInvalid())
1280      return;
1281    Hint = FixItHint::CreateRemoval(CharSourceRange::
1282                                    getCharRange(D->getLocStart(), AfterColon));
1283  }
1284  return;
1285}
1286
1287/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1288/// unless they are marked attr(unused).
1289void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1290  FixItHint Hint;
1291  if (!ShouldDiagnoseUnusedDecl(D))
1292    return;
1293
1294  GenerateFixForUnusedDecl(D, Context, Hint);
1295
1296  unsigned DiagID;
1297  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1298    DiagID = diag::warn_unused_exception_param;
1299  else if (isa<LabelDecl>(D))
1300    DiagID = diag::warn_unused_label;
1301  else
1302    DiagID = diag::warn_unused_variable;
1303
1304  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1305}
1306
1307static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1308  // Verify that we have no forward references left.  If so, there was a goto
1309  // or address of a label taken, but no definition of it.  Label fwd
1310  // definitions are indicated with a null substmt.
1311  if (L->getStmt() == 0)
1312    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1313}
1314
1315void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1316  if (S->decl_empty()) return;
1317  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1318         "Scope shouldn't contain decls!");
1319
1320  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1321       I != E; ++I) {
1322    Decl *TmpD = (*I);
1323    assert(TmpD && "This decl didn't get pushed??");
1324
1325    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1326    NamedDecl *D = cast<NamedDecl>(TmpD);
1327
1328    if (!D->getDeclName()) continue;
1329
1330    // Diagnose unused variables in this scope.
1331    if (!S->hasErrorOccurred())
1332      DiagnoseUnusedDecl(D);
1333
1334    // If this was a forward reference to a label, verify it was defined.
1335    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1336      CheckPoppedLabel(LD, *this);
1337
1338    // Remove this name from our lexical scope.
1339    IdResolver.RemoveDecl(D);
1340  }
1341}
1342
1343void Sema::ActOnStartFunctionDeclarator() {
1344  ++InFunctionDeclarator;
1345}
1346
1347void Sema::ActOnEndFunctionDeclarator() {
1348  assert(InFunctionDeclarator);
1349  --InFunctionDeclarator;
1350}
1351
1352/// \brief Look for an Objective-C class in the translation unit.
1353///
1354/// \param Id The name of the Objective-C class we're looking for. If
1355/// typo-correction fixes this name, the Id will be updated
1356/// to the fixed name.
1357///
1358/// \param IdLoc The location of the name in the translation unit.
1359///
1360/// \param DoTypoCorrection If true, this routine will attempt typo correction
1361/// if there is no class with the given name.
1362///
1363/// \returns The declaration of the named Objective-C class, or NULL if the
1364/// class could not be found.
1365ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1366                                              SourceLocation IdLoc,
1367                                              bool DoTypoCorrection) {
1368  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1369  // creation from this context.
1370  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1371
1372  if (!IDecl && DoTypoCorrection) {
1373    // Perform typo correction at the given location, but only if we
1374    // find an Objective-C class name.
1375    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1376    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1377                                       LookupOrdinaryName, TUScope, NULL,
1378                                       Validator)) {
1379      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1380      Diag(IdLoc, diag::err_undef_interface_suggest)
1381        << Id << IDecl->getDeclName()
1382        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1383      Diag(IDecl->getLocation(), diag::note_previous_decl)
1384        << IDecl->getDeclName();
1385
1386      Id = IDecl->getIdentifier();
1387    }
1388  }
1389  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1390  // This routine must always return a class definition, if any.
1391  if (Def && Def->getDefinition())
1392      Def = Def->getDefinition();
1393  return Def;
1394}
1395
1396/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1397/// from S, where a non-field would be declared. This routine copes
1398/// with the difference between C and C++ scoping rules in structs and
1399/// unions. For example, the following code is well-formed in C but
1400/// ill-formed in C++:
1401/// @code
1402/// struct S6 {
1403///   enum { BAR } e;
1404/// };
1405///
1406/// void test_S6() {
1407///   struct S6 a;
1408///   a.e = BAR;
1409/// }
1410/// @endcode
1411/// For the declaration of BAR, this routine will return a different
1412/// scope. The scope S will be the scope of the unnamed enumeration
1413/// within S6. In C++, this routine will return the scope associated
1414/// with S6, because the enumeration's scope is a transparent
1415/// context but structures can contain non-field names. In C, this
1416/// routine will return the translation unit scope, since the
1417/// enumeration's scope is a transparent context and structures cannot
1418/// contain non-field names.
1419Scope *Sema::getNonFieldDeclScope(Scope *S) {
1420  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1421         (S->getEntity() &&
1422          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1423         (S->isClassScope() && !getLangOpts().CPlusPlus))
1424    S = S->getParent();
1425  return S;
1426}
1427
1428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1429/// file scope.  lazily create a decl for it. ForRedeclaration is true
1430/// if we're creating this built-in in anticipation of redeclaring the
1431/// built-in.
1432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1433                                     Scope *S, bool ForRedeclaration,
1434                                     SourceLocation Loc) {
1435  Builtin::ID BID = (Builtin::ID)bid;
1436
1437  ASTContext::GetBuiltinTypeError Error;
1438  QualType R = Context.GetBuiltinType(BID, Error);
1439  switch (Error) {
1440  case ASTContext::GE_None:
1441    // Okay
1442    break;
1443
1444  case ASTContext::GE_Missing_stdio:
1445    if (ForRedeclaration)
1446      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1447        << Context.BuiltinInfo.GetName(BID);
1448    return 0;
1449
1450  case ASTContext::GE_Missing_setjmp:
1451    if (ForRedeclaration)
1452      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1453        << Context.BuiltinInfo.GetName(BID);
1454    return 0;
1455
1456  case ASTContext::GE_Missing_ucontext:
1457    if (ForRedeclaration)
1458      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1459        << Context.BuiltinInfo.GetName(BID);
1460    return 0;
1461  }
1462
1463  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1464    Diag(Loc, diag::ext_implicit_lib_function_decl)
1465      << Context.BuiltinInfo.GetName(BID)
1466      << R;
1467    if (Context.BuiltinInfo.getHeaderName(BID) &&
1468        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1469          != DiagnosticsEngine::Ignored)
1470      Diag(Loc, diag::note_please_include_header)
1471        << Context.BuiltinInfo.getHeaderName(BID)
1472        << Context.BuiltinInfo.GetName(BID);
1473  }
1474
1475  FunctionDecl *New = FunctionDecl::Create(Context,
1476                                           Context.getTranslationUnitDecl(),
1477                                           Loc, Loc, II, R, /*TInfo=*/0,
1478                                           SC_Extern,
1479                                           SC_None, false,
1480                                           /*hasPrototype=*/true);
1481  New->setImplicit();
1482
1483  // Create Decl objects for each parameter, adding them to the
1484  // FunctionDecl.
1485  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1486    SmallVector<ParmVarDecl*, 16> Params;
1487    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1488      ParmVarDecl *parm =
1489        ParmVarDecl::Create(Context, New, SourceLocation(),
1490                            SourceLocation(), 0,
1491                            FT->getArgType(i), /*TInfo=*/0,
1492                            SC_None, SC_None, 0);
1493      parm->setScopeInfo(0, i);
1494      Params.push_back(parm);
1495    }
1496    New->setParams(Params);
1497  }
1498
1499  AddKnownFunctionAttributes(New);
1500
1501  // TUScope is the translation-unit scope to insert this function into.
1502  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1503  // relate Scopes to DeclContexts, and probably eliminate CurContext
1504  // entirely, but we're not there yet.
1505  DeclContext *SavedContext = CurContext;
1506  CurContext = Context.getTranslationUnitDecl();
1507  PushOnScopeChains(New, TUScope);
1508  CurContext = SavedContext;
1509  return New;
1510}
1511
1512bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1513  QualType OldType;
1514  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1515    OldType = OldTypedef->getUnderlyingType();
1516  else
1517    OldType = Context.getTypeDeclType(Old);
1518  QualType NewType = New->getUnderlyingType();
1519
1520  if (NewType->isVariablyModifiedType()) {
1521    // Must not redefine a typedef with a variably-modified type.
1522    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1523    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1524      << Kind << NewType;
1525    if (Old->getLocation().isValid())
1526      Diag(Old->getLocation(), diag::note_previous_definition);
1527    New->setInvalidDecl();
1528    return true;
1529  }
1530
1531  if (OldType != NewType &&
1532      !OldType->isDependentType() &&
1533      !NewType->isDependentType() &&
1534      !Context.hasSameType(OldType, NewType)) {
1535    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1536    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1537      << Kind << NewType << OldType;
1538    if (Old->getLocation().isValid())
1539      Diag(Old->getLocation(), diag::note_previous_definition);
1540    New->setInvalidDecl();
1541    return true;
1542  }
1543  return false;
1544}
1545
1546/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1547/// same name and scope as a previous declaration 'Old'.  Figure out
1548/// how to resolve this situation, merging decls or emitting
1549/// diagnostics as appropriate. If there was an error, set New to be invalid.
1550///
1551void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1552  // If the new decl is known invalid already, don't bother doing any
1553  // merging checks.
1554  if (New->isInvalidDecl()) return;
1555
1556  // Allow multiple definitions for ObjC built-in typedefs.
1557  // FIXME: Verify the underlying types are equivalent!
1558  if (getLangOpts().ObjC1) {
1559    const IdentifierInfo *TypeID = New->getIdentifier();
1560    switch (TypeID->getLength()) {
1561    default: break;
1562    case 2:
1563      {
1564        if (!TypeID->isStr("id"))
1565          break;
1566        QualType T = New->getUnderlyingType();
1567        if (!T->isPointerType())
1568          break;
1569        if (!T->isVoidPointerType()) {
1570          QualType PT = T->getAs<PointerType>()->getPointeeType();
1571          if (!PT->isStructureType())
1572            break;
1573        }
1574        Context.setObjCIdRedefinitionType(T);
1575        // Install the built-in type for 'id', ignoring the current definition.
1576        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1577        return;
1578      }
1579    case 5:
1580      if (!TypeID->isStr("Class"))
1581        break;
1582      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1583      // Install the built-in type for 'Class', ignoring the current definition.
1584      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1585      return;
1586    case 3:
1587      if (!TypeID->isStr("SEL"))
1588        break;
1589      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1590      // Install the built-in type for 'SEL', ignoring the current definition.
1591      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1592      return;
1593    }
1594    // Fall through - the typedef name was not a builtin type.
1595  }
1596
1597  // Verify the old decl was also a type.
1598  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1599  if (!Old) {
1600    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1601      << New->getDeclName();
1602
1603    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1604    if (OldD->getLocation().isValid())
1605      Diag(OldD->getLocation(), diag::note_previous_definition);
1606
1607    return New->setInvalidDecl();
1608  }
1609
1610  // If the old declaration is invalid, just give up here.
1611  if (Old->isInvalidDecl())
1612    return New->setInvalidDecl();
1613
1614  // If the typedef types are not identical, reject them in all languages and
1615  // with any extensions enabled.
1616  if (isIncompatibleTypedef(Old, New))
1617    return;
1618
1619  // The types match.  Link up the redeclaration chain if the old
1620  // declaration was a typedef.
1621  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1622    New->setPreviousDeclaration(Typedef);
1623
1624  if (getLangOpts().MicrosoftExt)
1625    return;
1626
1627  if (getLangOpts().CPlusPlus) {
1628    // C++ [dcl.typedef]p2:
1629    //   In a given non-class scope, a typedef specifier can be used to
1630    //   redefine the name of any type declared in that scope to refer
1631    //   to the type to which it already refers.
1632    if (!isa<CXXRecordDecl>(CurContext))
1633      return;
1634
1635    // C++0x [dcl.typedef]p4:
1636    //   In a given class scope, a typedef specifier can be used to redefine
1637    //   any class-name declared in that scope that is not also a typedef-name
1638    //   to refer to the type to which it already refers.
1639    //
1640    // This wording came in via DR424, which was a correction to the
1641    // wording in DR56, which accidentally banned code like:
1642    //
1643    //   struct S {
1644    //     typedef struct A { } A;
1645    //   };
1646    //
1647    // in the C++03 standard. We implement the C++0x semantics, which
1648    // allow the above but disallow
1649    //
1650    //   struct S {
1651    //     typedef int I;
1652    //     typedef int I;
1653    //   };
1654    //
1655    // since that was the intent of DR56.
1656    if (!isa<TypedefNameDecl>(Old))
1657      return;
1658
1659    Diag(New->getLocation(), diag::err_redefinition)
1660      << New->getDeclName();
1661    Diag(Old->getLocation(), diag::note_previous_definition);
1662    return New->setInvalidDecl();
1663  }
1664
1665  // Modules always permit redefinition of typedefs, as does C11.
1666  if (getLangOpts().Modules || getLangOpts().C11)
1667    return;
1668
1669  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1670  // is normally mapped to an error, but can be controlled with
1671  // -Wtypedef-redefinition.  If either the original or the redefinition is
1672  // in a system header, don't emit this for compatibility with GCC.
1673  if (getDiagnostics().getSuppressSystemWarnings() &&
1674      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1675       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1676    return;
1677
1678  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1679    << New->getDeclName();
1680  Diag(Old->getLocation(), diag::note_previous_definition);
1681  return;
1682}
1683
1684/// DeclhasAttr - returns true if decl Declaration already has the target
1685/// attribute.
1686static bool
1687DeclHasAttr(const Decl *D, const Attr *A) {
1688  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1689  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1690  // responsible for making sure they are consistent.
1691  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1692  if (AA)
1693    return false;
1694
1695  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1696  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1697  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1698    if ((*i)->getKind() == A->getKind()) {
1699      if (Ann) {
1700        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1701          return true;
1702        continue;
1703      }
1704      // FIXME: Don't hardcode this check
1705      if (OA && isa<OwnershipAttr>(*i))
1706        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1707      return true;
1708    }
1709
1710  return false;
1711}
1712
1713bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1714  InheritableAttr *NewAttr = NULL;
1715  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1716    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1717                                    AA->getIntroduced(), AA->getDeprecated(),
1718                                    AA->getObsoleted(), AA->getUnavailable(),
1719                                    AA->getMessage());
1720  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1721    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1722  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1723    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1724  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1725    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1726  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1727    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1728                              FA->getFormatIdx(), FA->getFirstArg());
1729  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1730    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1731  else if (!DeclHasAttr(D, Attr))
1732    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1733
1734  if (NewAttr) {
1735    NewAttr->setInherited(true);
1736    D->addAttr(NewAttr);
1737    return true;
1738  }
1739
1740  return false;
1741}
1742
1743static const Decl *getDefinition(Decl *D) {
1744  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1745    return TD->getDefinition();
1746  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1747    return VD->getDefinition();
1748  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1749    const FunctionDecl* Def;
1750    if (FD->hasBody(Def))
1751      return Def;
1752  }
1753  return NULL;
1754}
1755
1756/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1757void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1758                               bool MergeDeprecation) {
1759  // attributes declared post-definition are currently ignored
1760  const Decl *Def = getDefinition(Old);
1761  if (Def && Def != New && New->hasAttrs()) {
1762    Diag(New->getLocation(), diag::warn_attribute_precede_definition);
1763    Diag(Def->getLocation(), diag::note_previous_definition);
1764    New->dropAttrs();
1765  }
1766
1767  if (!Old->hasAttrs())
1768    return;
1769
1770  bool foundAny = New->hasAttrs();
1771
1772  // Ensure that any moving of objects within the allocated map is done before
1773  // we process them.
1774  if (!foundAny) New->setAttrs(AttrVec());
1775
1776  for (specific_attr_iterator<InheritableAttr>
1777         i = Old->specific_attr_begin<InheritableAttr>(),
1778         e = Old->specific_attr_end<InheritableAttr>();
1779       i != e; ++i) {
1780    // Ignore deprecated/unavailable/availability attributes if requested.
1781    if (!MergeDeprecation &&
1782        (isa<DeprecatedAttr>(*i) ||
1783         isa<UnavailableAttr>(*i) ||
1784         isa<AvailabilityAttr>(*i)))
1785      continue;
1786
1787    if (mergeDeclAttribute(New, *i))
1788      foundAny = true;
1789  }
1790
1791  if (!foundAny) New->dropAttrs();
1792}
1793
1794/// mergeParamDeclAttributes - Copy attributes from the old parameter
1795/// to the new one.
1796static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1797                                     const ParmVarDecl *oldDecl,
1798                                     ASTContext &C) {
1799  if (!oldDecl->hasAttrs())
1800    return;
1801
1802  bool foundAny = newDecl->hasAttrs();
1803
1804  // Ensure that any moving of objects within the allocated map is
1805  // done before we process them.
1806  if (!foundAny) newDecl->setAttrs(AttrVec());
1807
1808  for (specific_attr_iterator<InheritableParamAttr>
1809       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1810       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1811    if (!DeclHasAttr(newDecl, *i)) {
1812      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1813      newAttr->setInherited(true);
1814      newDecl->addAttr(newAttr);
1815      foundAny = true;
1816    }
1817  }
1818
1819  if (!foundAny) newDecl->dropAttrs();
1820}
1821
1822namespace {
1823
1824/// Used in MergeFunctionDecl to keep track of function parameters in
1825/// C.
1826struct GNUCompatibleParamWarning {
1827  ParmVarDecl *OldParm;
1828  ParmVarDecl *NewParm;
1829  QualType PromotedType;
1830};
1831
1832}
1833
1834/// getSpecialMember - get the special member enum for a method.
1835Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1836  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1837    if (Ctor->isDefaultConstructor())
1838      return Sema::CXXDefaultConstructor;
1839
1840    if (Ctor->isCopyConstructor())
1841      return Sema::CXXCopyConstructor;
1842
1843    if (Ctor->isMoveConstructor())
1844      return Sema::CXXMoveConstructor;
1845  } else if (isa<CXXDestructorDecl>(MD)) {
1846    return Sema::CXXDestructor;
1847  } else if (MD->isCopyAssignmentOperator()) {
1848    return Sema::CXXCopyAssignment;
1849  } else if (MD->isMoveAssignmentOperator()) {
1850    return Sema::CXXMoveAssignment;
1851  }
1852
1853  return Sema::CXXInvalid;
1854}
1855
1856/// canRedefineFunction - checks if a function can be redefined. Currently,
1857/// only extern inline functions can be redefined, and even then only in
1858/// GNU89 mode.
1859static bool canRedefineFunction(const FunctionDecl *FD,
1860                                const LangOptions& LangOpts) {
1861  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1862          !LangOpts.CPlusPlus &&
1863          FD->isInlineSpecified() &&
1864          FD->getStorageClass() == SC_Extern);
1865}
1866
1867/// MergeFunctionDecl - We just parsed a function 'New' from
1868/// declarator D which has the same name and scope as a previous
1869/// declaration 'Old'.  Figure out how to resolve this situation,
1870/// merging decls or emitting diagnostics as appropriate.
1871///
1872/// In C++, New and Old must be declarations that are not
1873/// overloaded. Use IsOverload to determine whether New and Old are
1874/// overloaded, and to select the Old declaration that New should be
1875/// merged with.
1876///
1877/// Returns true if there was an error, false otherwise.
1878bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1879  // Verify the old decl was also a function.
1880  FunctionDecl *Old = 0;
1881  if (FunctionTemplateDecl *OldFunctionTemplate
1882        = dyn_cast<FunctionTemplateDecl>(OldD))
1883    Old = OldFunctionTemplate->getTemplatedDecl();
1884  else
1885    Old = dyn_cast<FunctionDecl>(OldD);
1886  if (!Old) {
1887    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1888      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1889      Diag(Shadow->getTargetDecl()->getLocation(),
1890           diag::note_using_decl_target);
1891      Diag(Shadow->getUsingDecl()->getLocation(),
1892           diag::note_using_decl) << 0;
1893      return true;
1894    }
1895
1896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1897      << New->getDeclName();
1898    Diag(OldD->getLocation(), diag::note_previous_definition);
1899    return true;
1900  }
1901
1902  // Determine whether the previous declaration was a definition,
1903  // implicit declaration, or a declaration.
1904  diag::kind PrevDiag;
1905  if (Old->isThisDeclarationADefinition())
1906    PrevDiag = diag::note_previous_definition;
1907  else if (Old->isImplicit())
1908    PrevDiag = diag::note_previous_implicit_declaration;
1909  else
1910    PrevDiag = diag::note_previous_declaration;
1911
1912  QualType OldQType = Context.getCanonicalType(Old->getType());
1913  QualType NewQType = Context.getCanonicalType(New->getType());
1914
1915  // Don't complain about this if we're in GNU89 mode and the old function
1916  // is an extern inline function.
1917  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1918      New->getStorageClass() == SC_Static &&
1919      Old->getStorageClass() != SC_Static &&
1920      !canRedefineFunction(Old, getLangOpts())) {
1921    if (getLangOpts().MicrosoftExt) {
1922      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1923      Diag(Old->getLocation(), PrevDiag);
1924    } else {
1925      Diag(New->getLocation(), diag::err_static_non_static) << New;
1926      Diag(Old->getLocation(), PrevDiag);
1927      return true;
1928    }
1929  }
1930
1931  // If a function is first declared with a calling convention, but is
1932  // later declared or defined without one, the second decl assumes the
1933  // calling convention of the first.
1934  //
1935  // For the new decl, we have to look at the NON-canonical type to tell the
1936  // difference between a function that really doesn't have a calling
1937  // convention and one that is declared cdecl. That's because in
1938  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1939  // because it is the default calling convention.
1940  //
1941  // Note also that we DO NOT return at this point, because we still have
1942  // other tests to run.
1943  const FunctionType *OldType = cast<FunctionType>(OldQType);
1944  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1945  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1946  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1947  bool RequiresAdjustment = false;
1948  if (OldTypeInfo.getCC() != CC_Default &&
1949      NewTypeInfo.getCC() == CC_Default) {
1950    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1951    RequiresAdjustment = true;
1952  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1953                                     NewTypeInfo.getCC())) {
1954    // Calling conventions really aren't compatible, so complain.
1955    Diag(New->getLocation(), diag::err_cconv_change)
1956      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1957      << (OldTypeInfo.getCC() == CC_Default)
1958      << (OldTypeInfo.getCC() == CC_Default ? "" :
1959          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1960    Diag(Old->getLocation(), diag::note_previous_declaration);
1961    return true;
1962  }
1963
1964  // FIXME: diagnose the other way around?
1965  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1966    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1967    RequiresAdjustment = true;
1968  }
1969
1970  // Merge regparm attribute.
1971  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1972      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1973    if (NewTypeInfo.getHasRegParm()) {
1974      Diag(New->getLocation(), diag::err_regparm_mismatch)
1975        << NewType->getRegParmType()
1976        << OldType->getRegParmType();
1977      Diag(Old->getLocation(), diag::note_previous_declaration);
1978      return true;
1979    }
1980
1981    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1982    RequiresAdjustment = true;
1983  }
1984
1985  // Merge ns_returns_retained attribute.
1986  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1987    if (NewTypeInfo.getProducesResult()) {
1988      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1989      Diag(Old->getLocation(), diag::note_previous_declaration);
1990      return true;
1991    }
1992
1993    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1994    RequiresAdjustment = true;
1995  }
1996
1997  if (RequiresAdjustment) {
1998    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1999    New->setType(QualType(NewType, 0));
2000    NewQType = Context.getCanonicalType(New->getType());
2001  }
2002
2003  if (getLangOpts().CPlusPlus) {
2004    // (C++98 13.1p2):
2005    //   Certain function declarations cannot be overloaded:
2006    //     -- Function declarations that differ only in the return type
2007    //        cannot be overloaded.
2008    QualType OldReturnType = OldType->getResultType();
2009    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2010    QualType ResQT;
2011    if (OldReturnType != NewReturnType) {
2012      if (NewReturnType->isObjCObjectPointerType()
2013          && OldReturnType->isObjCObjectPointerType())
2014        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2015      if (ResQT.isNull()) {
2016        if (New->isCXXClassMember() && New->isOutOfLine())
2017          Diag(New->getLocation(),
2018               diag::err_member_def_does_not_match_ret_type) << New;
2019        else
2020          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2021        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2022        return true;
2023      }
2024      else
2025        NewQType = ResQT;
2026    }
2027
2028    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2029    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2030    if (OldMethod && NewMethod) {
2031      // Preserve triviality.
2032      NewMethod->setTrivial(OldMethod->isTrivial());
2033
2034      // MSVC allows explicit template specialization at class scope:
2035      // 2 CXMethodDecls referring to the same function will be injected.
2036      // We don't want a redeclartion error.
2037      bool IsClassScopeExplicitSpecialization =
2038                              OldMethod->isFunctionTemplateSpecialization() &&
2039                              NewMethod->isFunctionTemplateSpecialization();
2040      bool isFriend = NewMethod->getFriendObjectKind();
2041
2042      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2043          !IsClassScopeExplicitSpecialization) {
2044        //    -- Member function declarations with the same name and the
2045        //       same parameter types cannot be overloaded if any of them
2046        //       is a static member function declaration.
2047        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2048          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2049          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2050          return true;
2051        }
2052
2053        // C++ [class.mem]p1:
2054        //   [...] A member shall not be declared twice in the
2055        //   member-specification, except that a nested class or member
2056        //   class template can be declared and then later defined.
2057        unsigned NewDiag;
2058        if (isa<CXXConstructorDecl>(OldMethod))
2059          NewDiag = diag::err_constructor_redeclared;
2060        else if (isa<CXXDestructorDecl>(NewMethod))
2061          NewDiag = diag::err_destructor_redeclared;
2062        else if (isa<CXXConversionDecl>(NewMethod))
2063          NewDiag = diag::err_conv_function_redeclared;
2064        else
2065          NewDiag = diag::err_member_redeclared;
2066
2067        Diag(New->getLocation(), NewDiag);
2068        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2069
2070      // Complain if this is an explicit declaration of a special
2071      // member that was initially declared implicitly.
2072      //
2073      // As an exception, it's okay to befriend such methods in order
2074      // to permit the implicit constructor/destructor/operator calls.
2075      } else if (OldMethod->isImplicit()) {
2076        if (isFriend) {
2077          NewMethod->setImplicit();
2078        } else {
2079          Diag(NewMethod->getLocation(),
2080               diag::err_definition_of_implicitly_declared_member)
2081            << New << getSpecialMember(OldMethod);
2082          return true;
2083        }
2084      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2085        Diag(NewMethod->getLocation(),
2086             diag::err_definition_of_explicitly_defaulted_member)
2087          << getSpecialMember(OldMethod);
2088        return true;
2089      }
2090    }
2091
2092    // (C++98 8.3.5p3):
2093    //   All declarations for a function shall agree exactly in both the
2094    //   return type and the parameter-type-list.
2095    // We also want to respect all the extended bits except noreturn.
2096
2097    // noreturn should now match unless the old type info didn't have it.
2098    QualType OldQTypeForComparison = OldQType;
2099    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2100      assert(OldQType == QualType(OldType, 0));
2101      const FunctionType *OldTypeForComparison
2102        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2103      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2104      assert(OldQTypeForComparison.isCanonical());
2105    }
2106
2107    if (OldQTypeForComparison == NewQType)
2108      return MergeCompatibleFunctionDecls(New, Old, S);
2109
2110    // Fall through for conflicting redeclarations and redefinitions.
2111  }
2112
2113  // C: Function types need to be compatible, not identical. This handles
2114  // duplicate function decls like "void f(int); void f(enum X);" properly.
2115  if (!getLangOpts().CPlusPlus &&
2116      Context.typesAreCompatible(OldQType, NewQType)) {
2117    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2118    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2119    const FunctionProtoType *OldProto = 0;
2120    if (isa<FunctionNoProtoType>(NewFuncType) &&
2121        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2122      // The old declaration provided a function prototype, but the
2123      // new declaration does not. Merge in the prototype.
2124      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2125      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2126                                                 OldProto->arg_type_end());
2127      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2128                                         ParamTypes.data(), ParamTypes.size(),
2129                                         OldProto->getExtProtoInfo());
2130      New->setType(NewQType);
2131      New->setHasInheritedPrototype();
2132
2133      // Synthesize a parameter for each argument type.
2134      SmallVector<ParmVarDecl*, 16> Params;
2135      for (FunctionProtoType::arg_type_iterator
2136             ParamType = OldProto->arg_type_begin(),
2137             ParamEnd = OldProto->arg_type_end();
2138           ParamType != ParamEnd; ++ParamType) {
2139        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2140                                                 SourceLocation(),
2141                                                 SourceLocation(), 0,
2142                                                 *ParamType, /*TInfo=*/0,
2143                                                 SC_None, SC_None,
2144                                                 0);
2145        Param->setScopeInfo(0, Params.size());
2146        Param->setImplicit();
2147        Params.push_back(Param);
2148      }
2149
2150      New->setParams(Params);
2151    }
2152
2153    return MergeCompatibleFunctionDecls(New, Old, S);
2154  }
2155
2156  // GNU C permits a K&R definition to follow a prototype declaration
2157  // if the declared types of the parameters in the K&R definition
2158  // match the types in the prototype declaration, even when the
2159  // promoted types of the parameters from the K&R definition differ
2160  // from the types in the prototype. GCC then keeps the types from
2161  // the prototype.
2162  //
2163  // If a variadic prototype is followed by a non-variadic K&R definition,
2164  // the K&R definition becomes variadic.  This is sort of an edge case, but
2165  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2166  // C99 6.9.1p8.
2167  if (!getLangOpts().CPlusPlus &&
2168      Old->hasPrototype() && !New->hasPrototype() &&
2169      New->getType()->getAs<FunctionProtoType>() &&
2170      Old->getNumParams() == New->getNumParams()) {
2171    SmallVector<QualType, 16> ArgTypes;
2172    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2173    const FunctionProtoType *OldProto
2174      = Old->getType()->getAs<FunctionProtoType>();
2175    const FunctionProtoType *NewProto
2176      = New->getType()->getAs<FunctionProtoType>();
2177
2178    // Determine whether this is the GNU C extension.
2179    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2180                                               NewProto->getResultType());
2181    bool LooseCompatible = !MergedReturn.isNull();
2182    for (unsigned Idx = 0, End = Old->getNumParams();
2183         LooseCompatible && Idx != End; ++Idx) {
2184      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2185      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2186      if (Context.typesAreCompatible(OldParm->getType(),
2187                                     NewProto->getArgType(Idx))) {
2188        ArgTypes.push_back(NewParm->getType());
2189      } else if (Context.typesAreCompatible(OldParm->getType(),
2190                                            NewParm->getType(),
2191                                            /*CompareUnqualified=*/true)) {
2192        GNUCompatibleParamWarning Warn
2193          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2194        Warnings.push_back(Warn);
2195        ArgTypes.push_back(NewParm->getType());
2196      } else
2197        LooseCompatible = false;
2198    }
2199
2200    if (LooseCompatible) {
2201      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2202        Diag(Warnings[Warn].NewParm->getLocation(),
2203             diag::ext_param_promoted_not_compatible_with_prototype)
2204          << Warnings[Warn].PromotedType
2205          << Warnings[Warn].OldParm->getType();
2206        if (Warnings[Warn].OldParm->getLocation().isValid())
2207          Diag(Warnings[Warn].OldParm->getLocation(),
2208               diag::note_previous_declaration);
2209      }
2210
2211      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2212                                           ArgTypes.size(),
2213                                           OldProto->getExtProtoInfo()));
2214      return MergeCompatibleFunctionDecls(New, Old, S);
2215    }
2216
2217    // Fall through to diagnose conflicting types.
2218  }
2219
2220  // A function that has already been declared has been redeclared or defined
2221  // with a different type- show appropriate diagnostic
2222  if (unsigned BuiltinID = Old->getBuiltinID()) {
2223    // The user has declared a builtin function with an incompatible
2224    // signature.
2225    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2226      // The function the user is redeclaring is a library-defined
2227      // function like 'malloc' or 'printf'. Warn about the
2228      // redeclaration, then pretend that we don't know about this
2229      // library built-in.
2230      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2231      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2232        << Old << Old->getType();
2233      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2234      Old->setInvalidDecl();
2235      return false;
2236    }
2237
2238    PrevDiag = diag::note_previous_builtin_declaration;
2239  }
2240
2241  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2242  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2243  return true;
2244}
2245
2246/// \brief Completes the merge of two function declarations that are
2247/// known to be compatible.
2248///
2249/// This routine handles the merging of attributes and other
2250/// properties of function declarations form the old declaration to
2251/// the new declaration, once we know that New is in fact a
2252/// redeclaration of Old.
2253///
2254/// \returns false
2255bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2256                                        Scope *S) {
2257  // Merge the attributes
2258  mergeDeclAttributes(New, Old);
2259
2260  // Merge the storage class.
2261  if (Old->getStorageClass() != SC_Extern &&
2262      Old->getStorageClass() != SC_None)
2263    New->setStorageClass(Old->getStorageClass());
2264
2265  // Merge "pure" flag.
2266  if (Old->isPure())
2267    New->setPure();
2268
2269  // Merge attributes from the parameters.  These can mismatch with K&R
2270  // declarations.
2271  if (New->getNumParams() == Old->getNumParams())
2272    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2273      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2274                               Context);
2275
2276  if (getLangOpts().CPlusPlus)
2277    return MergeCXXFunctionDecl(New, Old, S);
2278
2279  return false;
2280}
2281
2282
2283void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2284                                ObjCMethodDecl *oldMethod) {
2285
2286  // Merge the attributes, including deprecated/unavailable
2287  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2288
2289  // Merge attributes from the parameters.
2290  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2291                                       oe = oldMethod->param_end();
2292  for (ObjCMethodDecl::param_iterator
2293         ni = newMethod->param_begin(), ne = newMethod->param_end();
2294       ni != ne && oi != oe; ++ni, ++oi)
2295    mergeParamDeclAttributes(*ni, *oi, Context);
2296
2297  CheckObjCMethodOverride(newMethod, oldMethod, true);
2298}
2299
2300/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2301/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2302/// emitting diagnostics as appropriate.
2303///
2304/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2305/// to here in AddInitializerToDecl. We can't check them before the initializer
2306/// is attached.
2307void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2308  if (New->isInvalidDecl() || Old->isInvalidDecl())
2309    return;
2310
2311  QualType MergedT;
2312  if (getLangOpts().CPlusPlus) {
2313    AutoType *AT = New->getType()->getContainedAutoType();
2314    if (AT && !AT->isDeduced()) {
2315      // We don't know what the new type is until the initializer is attached.
2316      return;
2317    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2318      // These could still be something that needs exception specs checked.
2319      return MergeVarDeclExceptionSpecs(New, Old);
2320    }
2321    // C++ [basic.link]p10:
2322    //   [...] the types specified by all declarations referring to a given
2323    //   object or function shall be identical, except that declarations for an
2324    //   array object can specify array types that differ by the presence or
2325    //   absence of a major array bound (8.3.4).
2326    else if (Old->getType()->isIncompleteArrayType() &&
2327             New->getType()->isArrayType()) {
2328      CanQual<ArrayType> OldArray
2329        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2330      CanQual<ArrayType> NewArray
2331        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2332      if (OldArray->getElementType() == NewArray->getElementType())
2333        MergedT = New->getType();
2334    } else if (Old->getType()->isArrayType() &&
2335             New->getType()->isIncompleteArrayType()) {
2336      CanQual<ArrayType> OldArray
2337        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2338      CanQual<ArrayType> NewArray
2339        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2340      if (OldArray->getElementType() == NewArray->getElementType())
2341        MergedT = Old->getType();
2342    } else if (New->getType()->isObjCObjectPointerType()
2343               && Old->getType()->isObjCObjectPointerType()) {
2344        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2345                                                        Old->getType());
2346    }
2347  } else {
2348    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2349  }
2350  if (MergedT.isNull()) {
2351    Diag(New->getLocation(), diag::err_redefinition_different_type)
2352      << New->getDeclName();
2353    Diag(Old->getLocation(), diag::note_previous_definition);
2354    return New->setInvalidDecl();
2355  }
2356  New->setType(MergedT);
2357}
2358
2359/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2360/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2361/// situation, merging decls or emitting diagnostics as appropriate.
2362///
2363/// Tentative definition rules (C99 6.9.2p2) are checked by
2364/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2365/// definitions here, since the initializer hasn't been attached.
2366///
2367void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2368  // If the new decl is already invalid, don't do any other checking.
2369  if (New->isInvalidDecl())
2370    return;
2371
2372  // Verify the old decl was also a variable.
2373  VarDecl *Old = 0;
2374  if (!Previous.isSingleResult() ||
2375      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2376    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2377      << New->getDeclName();
2378    Diag(Previous.getRepresentativeDecl()->getLocation(),
2379         diag::note_previous_definition);
2380    return New->setInvalidDecl();
2381  }
2382
2383  // C++ [class.mem]p1:
2384  //   A member shall not be declared twice in the member-specification [...]
2385  //
2386  // Here, we need only consider static data members.
2387  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2388    Diag(New->getLocation(), diag::err_duplicate_member)
2389      << New->getIdentifier();
2390    Diag(Old->getLocation(), diag::note_previous_declaration);
2391    New->setInvalidDecl();
2392  }
2393
2394  mergeDeclAttributes(New, Old);
2395  // Warn if an already-declared variable is made a weak_import in a subsequent
2396  // declaration
2397  if (New->getAttr<WeakImportAttr>() &&
2398      Old->getStorageClass() == SC_None &&
2399      !Old->getAttr<WeakImportAttr>()) {
2400    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2401    Diag(Old->getLocation(), diag::note_previous_definition);
2402    // Remove weak_import attribute on new declaration.
2403    New->dropAttr<WeakImportAttr>();
2404  }
2405
2406  // Merge the types.
2407  MergeVarDeclTypes(New, Old);
2408  if (New->isInvalidDecl())
2409    return;
2410
2411  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2412  if (New->getStorageClass() == SC_Static &&
2413      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2414    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2415    Diag(Old->getLocation(), diag::note_previous_definition);
2416    return New->setInvalidDecl();
2417  }
2418  // C99 6.2.2p4:
2419  //   For an identifier declared with the storage-class specifier
2420  //   extern in a scope in which a prior declaration of that
2421  //   identifier is visible,23) if the prior declaration specifies
2422  //   internal or external linkage, the linkage of the identifier at
2423  //   the later declaration is the same as the linkage specified at
2424  //   the prior declaration. If no prior declaration is visible, or
2425  //   if the prior declaration specifies no linkage, then the
2426  //   identifier has external linkage.
2427  if (New->hasExternalStorage() && Old->hasLinkage())
2428    /* Okay */;
2429  else if (New->getStorageClass() != SC_Static &&
2430           Old->getStorageClass() == SC_Static) {
2431    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2432    Diag(Old->getLocation(), diag::note_previous_definition);
2433    return New->setInvalidDecl();
2434  }
2435
2436  // Check if extern is followed by non-extern and vice-versa.
2437  if (New->hasExternalStorage() &&
2438      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2439    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2440    Diag(Old->getLocation(), diag::note_previous_definition);
2441    return New->setInvalidDecl();
2442  }
2443  if (Old->hasExternalStorage() &&
2444      !New->hasLinkage() && New->isLocalVarDecl()) {
2445    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2446    Diag(Old->getLocation(), diag::note_previous_definition);
2447    return New->setInvalidDecl();
2448  }
2449
2450  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2451
2452  // FIXME: The test for external storage here seems wrong? We still
2453  // need to check for mismatches.
2454  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2455      // Don't complain about out-of-line definitions of static members.
2456      !(Old->getLexicalDeclContext()->isRecord() &&
2457        !New->getLexicalDeclContext()->isRecord())) {
2458    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2459    Diag(Old->getLocation(), diag::note_previous_definition);
2460    return New->setInvalidDecl();
2461  }
2462
2463  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2464    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2465    Diag(Old->getLocation(), diag::note_previous_definition);
2466  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2467    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2468    Diag(Old->getLocation(), diag::note_previous_definition);
2469  }
2470
2471  // C++ doesn't have tentative definitions, so go right ahead and check here.
2472  const VarDecl *Def;
2473  if (getLangOpts().CPlusPlus &&
2474      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2475      (Def = Old->getDefinition())) {
2476    Diag(New->getLocation(), diag::err_redefinition)
2477      << New->getDeclName();
2478    Diag(Def->getLocation(), diag::note_previous_definition);
2479    New->setInvalidDecl();
2480    return;
2481  }
2482  // c99 6.2.2 P4.
2483  // For an identifier declared with the storage-class specifier extern in a
2484  // scope in which a prior declaration of that identifier is visible, if
2485  // the prior declaration specifies internal or external linkage, the linkage
2486  // of the identifier at the later declaration is the same as the linkage
2487  // specified at the prior declaration.
2488  // FIXME. revisit this code.
2489  if (New->hasExternalStorage() &&
2490      Old->getLinkage() == InternalLinkage &&
2491      New->getDeclContext() == Old->getDeclContext())
2492    New->setStorageClass(Old->getStorageClass());
2493
2494  // Keep a chain of previous declarations.
2495  New->setPreviousDeclaration(Old);
2496
2497  // Inherit access appropriately.
2498  New->setAccess(Old->getAccess());
2499}
2500
2501/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2502/// no declarator (e.g. "struct foo;") is parsed.
2503Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2504                                       DeclSpec &DS) {
2505  return ParsedFreeStandingDeclSpec(S, AS, DS,
2506                                    MultiTemplateParamsArg(*this, 0, 0));
2507}
2508
2509/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2510/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2511/// parameters to cope with template friend declarations.
2512Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2513                                       DeclSpec &DS,
2514                                       MultiTemplateParamsArg TemplateParams) {
2515  Decl *TagD = 0;
2516  TagDecl *Tag = 0;
2517  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2518      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2519      DS.getTypeSpecType() == DeclSpec::TST_union ||
2520      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2521    TagD = DS.getRepAsDecl();
2522
2523    if (!TagD) // We probably had an error
2524      return 0;
2525
2526    // Note that the above type specs guarantee that the
2527    // type rep is a Decl, whereas in many of the others
2528    // it's a Type.
2529    if (isa<TagDecl>(TagD))
2530      Tag = cast<TagDecl>(TagD);
2531    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2532      Tag = CTD->getTemplatedDecl();
2533  }
2534
2535  if (Tag) {
2536    Tag->setFreeStanding();
2537    if (Tag->isInvalidDecl())
2538      return Tag;
2539  }
2540
2541  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2542    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2543    // or incomplete types shall not be restrict-qualified."
2544    if (TypeQuals & DeclSpec::TQ_restrict)
2545      Diag(DS.getRestrictSpecLoc(),
2546           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2547           << DS.getSourceRange();
2548  }
2549
2550  if (DS.isConstexprSpecified()) {
2551    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2552    // and definitions of functions and variables.
2553    if (Tag)
2554      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2555        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2556            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2557            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2558    else
2559      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2560    // Don't emit warnings after this error.
2561    return TagD;
2562  }
2563
2564  if (DS.isFriendSpecified()) {
2565    // If we're dealing with a decl but not a TagDecl, assume that
2566    // whatever routines created it handled the friendship aspect.
2567    if (TagD && !Tag)
2568      return 0;
2569    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2570  }
2571
2572  // Track whether we warned about the fact that there aren't any
2573  // declarators.
2574  bool emittedWarning = false;
2575
2576  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2577    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2578        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2579      if (getLangOpts().CPlusPlus ||
2580          Record->getDeclContext()->isRecord())
2581        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2582
2583      Diag(DS.getLocStart(), diag::ext_no_declarators)
2584        << DS.getSourceRange();
2585      emittedWarning = true;
2586    }
2587  }
2588
2589  // Check for Microsoft C extension: anonymous struct.
2590  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2591      CurContext->isRecord() &&
2592      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2593    // Handle 2 kinds of anonymous struct:
2594    //   struct STRUCT;
2595    // and
2596    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2597    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2598    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2599        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2600         DS.getRepAsType().get()->isStructureType())) {
2601      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2602        << DS.getSourceRange();
2603      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2604    }
2605  }
2606
2607  if (getLangOpts().CPlusPlus &&
2608      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2609    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2610      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2611          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2612        Diag(Enum->getLocation(), diag::ext_no_declarators)
2613          << DS.getSourceRange();
2614        emittedWarning = true;
2615      }
2616
2617  // Skip all the checks below if we have a type error.
2618  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2619
2620  if (!DS.isMissingDeclaratorOk()) {
2621    // Warn about typedefs of enums without names, since this is an
2622    // extension in both Microsoft and GNU.
2623    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2624        Tag && isa<EnumDecl>(Tag)) {
2625      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2626        << DS.getSourceRange();
2627      return Tag;
2628    }
2629
2630    Diag(DS.getLocStart(), diag::ext_no_declarators)
2631      << DS.getSourceRange();
2632    emittedWarning = true;
2633  }
2634
2635  // We're going to complain about a bunch of spurious specifiers;
2636  // only do this if we're declaring a tag, because otherwise we
2637  // should be getting diag::ext_no_declarators.
2638  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2639    return TagD;
2640
2641  // Note that a linkage-specification sets a storage class, but
2642  // 'extern "C" struct foo;' is actually valid and not theoretically
2643  // useless.
2644  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2645    if (!DS.isExternInLinkageSpec())
2646      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2647        << DeclSpec::getSpecifierName(scs);
2648
2649  if (DS.isThreadSpecified())
2650    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2651  if (DS.getTypeQualifiers()) {
2652    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2653      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2654    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2655      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2656    // Restrict is covered above.
2657  }
2658  if (DS.isInlineSpecified())
2659    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2660  if (DS.isVirtualSpecified())
2661    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2662  if (DS.isExplicitSpecified())
2663    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2664
2665  if (DS.isModulePrivateSpecified() &&
2666      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2667    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2668      << Tag->getTagKind()
2669      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2670
2671  // Warn about ignored type attributes, for example:
2672  // __attribute__((aligned)) struct A;
2673  // Attributes should be placed after tag to apply to type declaration.
2674  if (!DS.getAttributes().empty()) {
2675    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2676    if (TypeSpecType == DeclSpec::TST_class ||
2677        TypeSpecType == DeclSpec::TST_struct ||
2678        TypeSpecType == DeclSpec::TST_union ||
2679        TypeSpecType == DeclSpec::TST_enum) {
2680      AttributeList* attrs = DS.getAttributes().getList();
2681      while (attrs) {
2682        Diag(attrs->getScopeLoc(),
2683             diag::warn_declspec_attribute_ignored)
2684        << attrs->getName()
2685        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2686            TypeSpecType == DeclSpec::TST_struct ? 1 :
2687            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2688        attrs = attrs->getNext();
2689      }
2690    }
2691  }
2692
2693  return TagD;
2694}
2695
2696/// We are trying to inject an anonymous member into the given scope;
2697/// check if there's an existing declaration that can't be overloaded.
2698///
2699/// \return true if this is a forbidden redeclaration
2700static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2701                                         Scope *S,
2702                                         DeclContext *Owner,
2703                                         DeclarationName Name,
2704                                         SourceLocation NameLoc,
2705                                         unsigned diagnostic) {
2706  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2707                 Sema::ForRedeclaration);
2708  if (!SemaRef.LookupName(R, S)) return false;
2709
2710  if (R.getAsSingle<TagDecl>())
2711    return false;
2712
2713  // Pick a representative declaration.
2714  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2715  assert(PrevDecl && "Expected a non-null Decl");
2716
2717  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2718    return false;
2719
2720  SemaRef.Diag(NameLoc, diagnostic) << Name;
2721  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2722
2723  return true;
2724}
2725
2726/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2727/// anonymous struct or union AnonRecord into the owning context Owner
2728/// and scope S. This routine will be invoked just after we realize
2729/// that an unnamed union or struct is actually an anonymous union or
2730/// struct, e.g.,
2731///
2732/// @code
2733/// union {
2734///   int i;
2735///   float f;
2736/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2737///    // f into the surrounding scope.x
2738/// @endcode
2739///
2740/// This routine is recursive, injecting the names of nested anonymous
2741/// structs/unions into the owning context and scope as well.
2742static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2743                                                DeclContext *Owner,
2744                                                RecordDecl *AnonRecord,
2745                                                AccessSpecifier AS,
2746                              SmallVector<NamedDecl*, 2> &Chaining,
2747                                                      bool MSAnonStruct) {
2748  unsigned diagKind
2749    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2750                            : diag::err_anonymous_struct_member_redecl;
2751
2752  bool Invalid = false;
2753
2754  // Look every FieldDecl and IndirectFieldDecl with a name.
2755  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2756                               DEnd = AnonRecord->decls_end();
2757       D != DEnd; ++D) {
2758    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2759        cast<NamedDecl>(*D)->getDeclName()) {
2760      ValueDecl *VD = cast<ValueDecl>(*D);
2761      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2762                                       VD->getLocation(), diagKind)) {
2763        // C++ [class.union]p2:
2764        //   The names of the members of an anonymous union shall be
2765        //   distinct from the names of any other entity in the
2766        //   scope in which the anonymous union is declared.
2767        Invalid = true;
2768      } else {
2769        // C++ [class.union]p2:
2770        //   For the purpose of name lookup, after the anonymous union
2771        //   definition, the members of the anonymous union are
2772        //   considered to have been defined in the scope in which the
2773        //   anonymous union is declared.
2774        unsigned OldChainingSize = Chaining.size();
2775        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2776          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2777               PE = IF->chain_end(); PI != PE; ++PI)
2778            Chaining.push_back(*PI);
2779        else
2780          Chaining.push_back(VD);
2781
2782        assert(Chaining.size() >= 2);
2783        NamedDecl **NamedChain =
2784          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2785        for (unsigned i = 0; i < Chaining.size(); i++)
2786          NamedChain[i] = Chaining[i];
2787
2788        IndirectFieldDecl* IndirectField =
2789          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2790                                    VD->getIdentifier(), VD->getType(),
2791                                    NamedChain, Chaining.size());
2792
2793        IndirectField->setAccess(AS);
2794        IndirectField->setImplicit();
2795        SemaRef.PushOnScopeChains(IndirectField, S);
2796
2797        // That includes picking up the appropriate access specifier.
2798        if (AS != AS_none) IndirectField->setAccess(AS);
2799
2800        Chaining.resize(OldChainingSize);
2801      }
2802    }
2803  }
2804
2805  return Invalid;
2806}
2807
2808/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2809/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2810/// illegal input values are mapped to SC_None.
2811static StorageClass
2812StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2813  switch (StorageClassSpec) {
2814  case DeclSpec::SCS_unspecified:    return SC_None;
2815  case DeclSpec::SCS_extern:         return SC_Extern;
2816  case DeclSpec::SCS_static:         return SC_Static;
2817  case DeclSpec::SCS_auto:           return SC_Auto;
2818  case DeclSpec::SCS_register:       return SC_Register;
2819  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2820    // Illegal SCSs map to None: error reporting is up to the caller.
2821  case DeclSpec::SCS_mutable:        // Fall through.
2822  case DeclSpec::SCS_typedef:        return SC_None;
2823  }
2824  llvm_unreachable("unknown storage class specifier");
2825}
2826
2827/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2828/// a StorageClass. Any error reporting is up to the caller:
2829/// illegal input values are mapped to SC_None.
2830static StorageClass
2831StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2832  switch (StorageClassSpec) {
2833  case DeclSpec::SCS_unspecified:    return SC_None;
2834  case DeclSpec::SCS_extern:         return SC_Extern;
2835  case DeclSpec::SCS_static:         return SC_Static;
2836  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2837    // Illegal SCSs map to None: error reporting is up to the caller.
2838  case DeclSpec::SCS_auto:           // Fall through.
2839  case DeclSpec::SCS_mutable:        // Fall through.
2840  case DeclSpec::SCS_register:       // Fall through.
2841  case DeclSpec::SCS_typedef:        return SC_None;
2842  }
2843  llvm_unreachable("unknown storage class specifier");
2844}
2845
2846/// BuildAnonymousStructOrUnion - Handle the declaration of an
2847/// anonymous structure or union. Anonymous unions are a C++ feature
2848/// (C++ [class.union]) and a C11 feature; anonymous structures
2849/// are a C11 feature and GNU C++ extension.
2850Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2851                                             AccessSpecifier AS,
2852                                             RecordDecl *Record) {
2853  DeclContext *Owner = Record->getDeclContext();
2854
2855  // Diagnose whether this anonymous struct/union is an extension.
2856  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2857    Diag(Record->getLocation(), diag::ext_anonymous_union);
2858  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2859    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2860  else if (!Record->isUnion() && !getLangOpts().C11)
2861    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2862
2863  // C and C++ require different kinds of checks for anonymous
2864  // structs/unions.
2865  bool Invalid = false;
2866  if (getLangOpts().CPlusPlus) {
2867    const char* PrevSpec = 0;
2868    unsigned DiagID;
2869    if (Record->isUnion()) {
2870      // C++ [class.union]p6:
2871      //   Anonymous unions declared in a named namespace or in the
2872      //   global namespace shall be declared static.
2873      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2874          (isa<TranslationUnitDecl>(Owner) ||
2875           (isa<NamespaceDecl>(Owner) &&
2876            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2877        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2878          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2879
2880        // Recover by adding 'static'.
2881        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2882                               PrevSpec, DiagID);
2883      }
2884      // C++ [class.union]p6:
2885      //   A storage class is not allowed in a declaration of an
2886      //   anonymous union in a class scope.
2887      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2888               isa<RecordDecl>(Owner)) {
2889        Diag(DS.getStorageClassSpecLoc(),
2890             diag::err_anonymous_union_with_storage_spec)
2891          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2892
2893        // Recover by removing the storage specifier.
2894        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2895                               SourceLocation(),
2896                               PrevSpec, DiagID);
2897      }
2898    }
2899
2900    // Ignore const/volatile/restrict qualifiers.
2901    if (DS.getTypeQualifiers()) {
2902      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2903        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2904          << Record->isUnion() << 0
2905          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2906      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2907        Diag(DS.getVolatileSpecLoc(),
2908             diag::ext_anonymous_struct_union_qualified)
2909          << Record->isUnion() << 1
2910          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2911      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2912        Diag(DS.getRestrictSpecLoc(),
2913             diag::ext_anonymous_struct_union_qualified)
2914          << Record->isUnion() << 2
2915          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2916
2917      DS.ClearTypeQualifiers();
2918    }
2919
2920    // C++ [class.union]p2:
2921    //   The member-specification of an anonymous union shall only
2922    //   define non-static data members. [Note: nested types and
2923    //   functions cannot be declared within an anonymous union. ]
2924    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2925                                 MemEnd = Record->decls_end();
2926         Mem != MemEnd; ++Mem) {
2927      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2928        // C++ [class.union]p3:
2929        //   An anonymous union shall not have private or protected
2930        //   members (clause 11).
2931        assert(FD->getAccess() != AS_none);
2932        if (FD->getAccess() != AS_public) {
2933          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2934            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2935          Invalid = true;
2936        }
2937
2938        // C++ [class.union]p1
2939        //   An object of a class with a non-trivial constructor, a non-trivial
2940        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2941        //   assignment operator cannot be a member of a union, nor can an
2942        //   array of such objects.
2943        if (CheckNontrivialField(FD))
2944          Invalid = true;
2945      } else if ((*Mem)->isImplicit()) {
2946        // Any implicit members are fine.
2947      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2948        // This is a type that showed up in an
2949        // elaborated-type-specifier inside the anonymous struct or
2950        // union, but which actually declares a type outside of the
2951        // anonymous struct or union. It's okay.
2952      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2953        if (!MemRecord->isAnonymousStructOrUnion() &&
2954            MemRecord->getDeclName()) {
2955          // Visual C++ allows type definition in anonymous struct or union.
2956          if (getLangOpts().MicrosoftExt)
2957            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2958              << (int)Record->isUnion();
2959          else {
2960            // This is a nested type declaration.
2961            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2962              << (int)Record->isUnion();
2963            Invalid = true;
2964          }
2965        }
2966      } else if (isa<AccessSpecDecl>(*Mem)) {
2967        // Any access specifier is fine.
2968      } else {
2969        // We have something that isn't a non-static data
2970        // member. Complain about it.
2971        unsigned DK = diag::err_anonymous_record_bad_member;
2972        if (isa<TypeDecl>(*Mem))
2973          DK = diag::err_anonymous_record_with_type;
2974        else if (isa<FunctionDecl>(*Mem))
2975          DK = diag::err_anonymous_record_with_function;
2976        else if (isa<VarDecl>(*Mem))
2977          DK = diag::err_anonymous_record_with_static;
2978
2979        // Visual C++ allows type definition in anonymous struct or union.
2980        if (getLangOpts().MicrosoftExt &&
2981            DK == diag::err_anonymous_record_with_type)
2982          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2983            << (int)Record->isUnion();
2984        else {
2985          Diag((*Mem)->getLocation(), DK)
2986              << (int)Record->isUnion();
2987          Invalid = true;
2988        }
2989      }
2990    }
2991  }
2992
2993  if (!Record->isUnion() && !Owner->isRecord()) {
2994    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2995      << (int)getLangOpts().CPlusPlus;
2996    Invalid = true;
2997  }
2998
2999  // Mock up a declarator.
3000  Declarator Dc(DS, Declarator::MemberContext);
3001  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3002  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3003
3004  // Create a declaration for this anonymous struct/union.
3005  NamedDecl *Anon = 0;
3006  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3007    Anon = FieldDecl::Create(Context, OwningClass,
3008                             DS.getLocStart(),
3009                             Record->getLocation(),
3010                             /*IdentifierInfo=*/0,
3011                             Context.getTypeDeclType(Record),
3012                             TInfo,
3013                             /*BitWidth=*/0, /*Mutable=*/false,
3014                             /*InitStyle=*/ICIS_NoInit);
3015    Anon->setAccess(AS);
3016    if (getLangOpts().CPlusPlus)
3017      FieldCollector->Add(cast<FieldDecl>(Anon));
3018  } else {
3019    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3020    assert(SCSpec != DeclSpec::SCS_typedef &&
3021           "Parser allowed 'typedef' as storage class VarDecl.");
3022    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3023    if (SCSpec == DeclSpec::SCS_mutable) {
3024      // mutable can only appear on non-static class members, so it's always
3025      // an error here
3026      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3027      Invalid = true;
3028      SC = SC_None;
3029    }
3030    SCSpec = DS.getStorageClassSpecAsWritten();
3031    VarDecl::StorageClass SCAsWritten
3032      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3033
3034    Anon = VarDecl::Create(Context, Owner,
3035                           DS.getLocStart(),
3036                           Record->getLocation(), /*IdentifierInfo=*/0,
3037                           Context.getTypeDeclType(Record),
3038                           TInfo, SC, SCAsWritten);
3039
3040    // Default-initialize the implicit variable. This initialization will be
3041    // trivial in almost all cases, except if a union member has an in-class
3042    // initializer:
3043    //   union { int n = 0; };
3044    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3045  }
3046  Anon->setImplicit();
3047
3048  // Add the anonymous struct/union object to the current
3049  // context. We'll be referencing this object when we refer to one of
3050  // its members.
3051  Owner->addDecl(Anon);
3052
3053  // Inject the members of the anonymous struct/union into the owning
3054  // context and into the identifier resolver chain for name lookup
3055  // purposes.
3056  SmallVector<NamedDecl*, 2> Chain;
3057  Chain.push_back(Anon);
3058
3059  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3060                                          Chain, false))
3061    Invalid = true;
3062
3063  // Mark this as an anonymous struct/union type. Note that we do not
3064  // do this until after we have already checked and injected the
3065  // members of this anonymous struct/union type, because otherwise
3066  // the members could be injected twice: once by DeclContext when it
3067  // builds its lookup table, and once by
3068  // InjectAnonymousStructOrUnionMembers.
3069  Record->setAnonymousStructOrUnion(true);
3070
3071  if (Invalid)
3072    Anon->setInvalidDecl();
3073
3074  return Anon;
3075}
3076
3077/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3078/// Microsoft C anonymous structure.
3079/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3080/// Example:
3081///
3082/// struct A { int a; };
3083/// struct B { struct A; int b; };
3084///
3085/// void foo() {
3086///   B var;
3087///   var.a = 3;
3088/// }
3089///
3090Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3091                                           RecordDecl *Record) {
3092
3093  // If there is no Record, get the record via the typedef.
3094  if (!Record)
3095    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3096
3097  // Mock up a declarator.
3098  Declarator Dc(DS, Declarator::TypeNameContext);
3099  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3100  assert(TInfo && "couldn't build declarator info for anonymous struct");
3101
3102  // Create a declaration for this anonymous struct.
3103  NamedDecl* Anon = FieldDecl::Create(Context,
3104                             cast<RecordDecl>(CurContext),
3105                             DS.getLocStart(),
3106                             DS.getLocStart(),
3107                             /*IdentifierInfo=*/0,
3108                             Context.getTypeDeclType(Record),
3109                             TInfo,
3110                             /*BitWidth=*/0, /*Mutable=*/false,
3111                             /*InitStyle=*/ICIS_NoInit);
3112  Anon->setImplicit();
3113
3114  // Add the anonymous struct object to the current context.
3115  CurContext->addDecl(Anon);
3116
3117  // Inject the members of the anonymous struct into the current
3118  // context and into the identifier resolver chain for name lookup
3119  // purposes.
3120  SmallVector<NamedDecl*, 2> Chain;
3121  Chain.push_back(Anon);
3122
3123  RecordDecl *RecordDef = Record->getDefinition();
3124  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3125                                                        RecordDef, AS_none,
3126                                                        Chain, true))
3127    Anon->setInvalidDecl();
3128
3129  return Anon;
3130}
3131
3132/// GetNameForDeclarator - Determine the full declaration name for the
3133/// given Declarator.
3134DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3135  return GetNameFromUnqualifiedId(D.getName());
3136}
3137
3138/// \brief Retrieves the declaration name from a parsed unqualified-id.
3139DeclarationNameInfo
3140Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3141  DeclarationNameInfo NameInfo;
3142  NameInfo.setLoc(Name.StartLocation);
3143
3144  switch (Name.getKind()) {
3145
3146  case UnqualifiedId::IK_ImplicitSelfParam:
3147  case UnqualifiedId::IK_Identifier:
3148    NameInfo.setName(Name.Identifier);
3149    NameInfo.setLoc(Name.StartLocation);
3150    return NameInfo;
3151
3152  case UnqualifiedId::IK_OperatorFunctionId:
3153    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3154                                           Name.OperatorFunctionId.Operator));
3155    NameInfo.setLoc(Name.StartLocation);
3156    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3157      = Name.OperatorFunctionId.SymbolLocations[0];
3158    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3159      = Name.EndLocation.getRawEncoding();
3160    return NameInfo;
3161
3162  case UnqualifiedId::IK_LiteralOperatorId:
3163    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3164                                                           Name.Identifier));
3165    NameInfo.setLoc(Name.StartLocation);
3166    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3167    return NameInfo;
3168
3169  case UnqualifiedId::IK_ConversionFunctionId: {
3170    TypeSourceInfo *TInfo;
3171    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3172    if (Ty.isNull())
3173      return DeclarationNameInfo();
3174    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3175                                               Context.getCanonicalType(Ty)));
3176    NameInfo.setLoc(Name.StartLocation);
3177    NameInfo.setNamedTypeInfo(TInfo);
3178    return NameInfo;
3179  }
3180
3181  case UnqualifiedId::IK_ConstructorName: {
3182    TypeSourceInfo *TInfo;
3183    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3184    if (Ty.isNull())
3185      return DeclarationNameInfo();
3186    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3187                                              Context.getCanonicalType(Ty)));
3188    NameInfo.setLoc(Name.StartLocation);
3189    NameInfo.setNamedTypeInfo(TInfo);
3190    return NameInfo;
3191  }
3192
3193  case UnqualifiedId::IK_ConstructorTemplateId: {
3194    // In well-formed code, we can only have a constructor
3195    // template-id that refers to the current context, so go there
3196    // to find the actual type being constructed.
3197    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3198    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3199      return DeclarationNameInfo();
3200
3201    // Determine the type of the class being constructed.
3202    QualType CurClassType = Context.getTypeDeclType(CurClass);
3203
3204    // FIXME: Check two things: that the template-id names the same type as
3205    // CurClassType, and that the template-id does not occur when the name
3206    // was qualified.
3207
3208    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3209                                    Context.getCanonicalType(CurClassType)));
3210    NameInfo.setLoc(Name.StartLocation);
3211    // FIXME: should we retrieve TypeSourceInfo?
3212    NameInfo.setNamedTypeInfo(0);
3213    return NameInfo;
3214  }
3215
3216  case UnqualifiedId::IK_DestructorName: {
3217    TypeSourceInfo *TInfo;
3218    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3219    if (Ty.isNull())
3220      return DeclarationNameInfo();
3221    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3222                                              Context.getCanonicalType(Ty)));
3223    NameInfo.setLoc(Name.StartLocation);
3224    NameInfo.setNamedTypeInfo(TInfo);
3225    return NameInfo;
3226  }
3227
3228  case UnqualifiedId::IK_TemplateId: {
3229    TemplateName TName = Name.TemplateId->Template.get();
3230    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3231    return Context.getNameForTemplate(TName, TNameLoc);
3232  }
3233
3234  } // switch (Name.getKind())
3235
3236  llvm_unreachable("Unknown name kind");
3237}
3238
3239static QualType getCoreType(QualType Ty) {
3240  do {
3241    if (Ty->isPointerType() || Ty->isReferenceType())
3242      Ty = Ty->getPointeeType();
3243    else if (Ty->isArrayType())
3244      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3245    else
3246      return Ty.withoutLocalFastQualifiers();
3247  } while (true);
3248}
3249
3250/// hasSimilarParameters - Determine whether the C++ functions Declaration
3251/// and Definition have "nearly" matching parameters. This heuristic is
3252/// used to improve diagnostics in the case where an out-of-line function
3253/// definition doesn't match any declaration within the class or namespace.
3254/// Also sets Params to the list of indices to the parameters that differ
3255/// between the declaration and the definition. If hasSimilarParameters
3256/// returns true and Params is empty, then all of the parameters match.
3257static bool hasSimilarParameters(ASTContext &Context,
3258                                     FunctionDecl *Declaration,
3259                                     FunctionDecl *Definition,
3260                                     llvm::SmallVectorImpl<unsigned> &Params) {
3261  Params.clear();
3262  if (Declaration->param_size() != Definition->param_size())
3263    return false;
3264  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3265    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3266    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3267
3268    // The parameter types are identical
3269    if (Context.hasSameType(DefParamTy, DeclParamTy))
3270      continue;
3271
3272    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3273    QualType DefParamBaseTy = getCoreType(DefParamTy);
3274    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3275    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3276
3277    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3278        (DeclTyName && DeclTyName == DefTyName))
3279      Params.push_back(Idx);
3280    else  // The two parameters aren't even close
3281      return false;
3282  }
3283
3284  return true;
3285}
3286
3287/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3288/// declarator needs to be rebuilt in the current instantiation.
3289/// Any bits of declarator which appear before the name are valid for
3290/// consideration here.  That's specifically the type in the decl spec
3291/// and the base type in any member-pointer chunks.
3292static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3293                                                    DeclarationName Name) {
3294  // The types we specifically need to rebuild are:
3295  //   - typenames, typeofs, and decltypes
3296  //   - types which will become injected class names
3297  // Of course, we also need to rebuild any type referencing such a
3298  // type.  It's safest to just say "dependent", but we call out a
3299  // few cases here.
3300
3301  DeclSpec &DS = D.getMutableDeclSpec();
3302  switch (DS.getTypeSpecType()) {
3303  case DeclSpec::TST_typename:
3304  case DeclSpec::TST_typeofType:
3305  case DeclSpec::TST_decltype:
3306  case DeclSpec::TST_underlyingType:
3307  case DeclSpec::TST_atomic: {
3308    // Grab the type from the parser.
3309    TypeSourceInfo *TSI = 0;
3310    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3311    if (T.isNull() || !T->isDependentType()) break;
3312
3313    // Make sure there's a type source info.  This isn't really much
3314    // of a waste; most dependent types should have type source info
3315    // attached already.
3316    if (!TSI)
3317      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3318
3319    // Rebuild the type in the current instantiation.
3320    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3321    if (!TSI) return true;
3322
3323    // Store the new type back in the decl spec.
3324    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3325    DS.UpdateTypeRep(LocType);
3326    break;
3327  }
3328
3329  case DeclSpec::TST_typeofExpr: {
3330    Expr *E = DS.getRepAsExpr();
3331    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3332    if (Result.isInvalid()) return true;
3333    DS.UpdateExprRep(Result.get());
3334    break;
3335  }
3336
3337  default:
3338    // Nothing to do for these decl specs.
3339    break;
3340  }
3341
3342  // It doesn't matter what order we do this in.
3343  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3344    DeclaratorChunk &Chunk = D.getTypeObject(I);
3345
3346    // The only type information in the declarator which can come
3347    // before the declaration name is the base type of a member
3348    // pointer.
3349    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3350      continue;
3351
3352    // Rebuild the scope specifier in-place.
3353    CXXScopeSpec &SS = Chunk.Mem.Scope();
3354    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3355      return true;
3356  }
3357
3358  return false;
3359}
3360
3361Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3362  D.setFunctionDefinitionKind(FDK_Declaration);
3363  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3364
3365  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3366      Dcl && Dcl->getDeclContext()->isFileContext())
3367    Dcl->setTopLevelDeclInObjCContainer();
3368
3369  return Dcl;
3370}
3371
3372/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3373///   If T is the name of a class, then each of the following shall have a
3374///   name different from T:
3375///     - every static data member of class T;
3376///     - every member function of class T
3377///     - every member of class T that is itself a type;
3378/// \returns true if the declaration name violates these rules.
3379bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3380                                   DeclarationNameInfo NameInfo) {
3381  DeclarationName Name = NameInfo.getName();
3382
3383  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3384    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3385      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3386      return true;
3387    }
3388
3389  return false;
3390}
3391
3392/// \brief Diagnose a declaration whose declarator-id has the given
3393/// nested-name-specifier.
3394///
3395/// \param SS The nested-name-specifier of the declarator-id.
3396///
3397/// \param DC The declaration context to which the nested-name-specifier
3398/// resolves.
3399///
3400/// \param Name The name of the entity being declared.
3401///
3402/// \param Loc The location of the name of the entity being declared.
3403///
3404/// \returns true if we cannot safely recover from this error, false otherwise.
3405bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3406                                        DeclarationName Name,
3407                                      SourceLocation Loc) {
3408  DeclContext *Cur = CurContext;
3409  while (isa<LinkageSpecDecl>(Cur))
3410    Cur = Cur->getParent();
3411
3412  // C++ [dcl.meaning]p1:
3413  //   A declarator-id shall not be qualified except for the definition
3414  //   of a member function (9.3) or static data member (9.4) outside of
3415  //   its class, the definition or explicit instantiation of a function
3416  //   or variable member of a namespace outside of its namespace, or the
3417  //   definition of an explicit specialization outside of its namespace,
3418  //   or the declaration of a friend function that is a member of
3419  //   another class or namespace (11.3). [...]
3420
3421  // The user provided a superfluous scope specifier that refers back to the
3422  // class or namespaces in which the entity is already declared.
3423  //
3424  // class X {
3425  //   void X::f();
3426  // };
3427  if (Cur->Equals(DC)) {
3428    Diag(Loc, diag::warn_member_extra_qualification)
3429      << Name << FixItHint::CreateRemoval(SS.getRange());
3430    SS.clear();
3431    return false;
3432  }
3433
3434  // Check whether the qualifying scope encloses the scope of the original
3435  // declaration.
3436  if (!Cur->Encloses(DC)) {
3437    if (Cur->isRecord())
3438      Diag(Loc, diag::err_member_qualification)
3439        << Name << SS.getRange();
3440    else if (isa<TranslationUnitDecl>(DC))
3441      Diag(Loc, diag::err_invalid_declarator_global_scope)
3442        << Name << SS.getRange();
3443    else if (isa<FunctionDecl>(Cur))
3444      Diag(Loc, diag::err_invalid_declarator_in_function)
3445        << Name << SS.getRange();
3446    else
3447      Diag(Loc, diag::err_invalid_declarator_scope)
3448      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3449
3450    return true;
3451  }
3452
3453  if (Cur->isRecord()) {
3454    // Cannot qualify members within a class.
3455    Diag(Loc, diag::err_member_qualification)
3456      << Name << SS.getRange();
3457    SS.clear();
3458
3459    // C++ constructors and destructors with incorrect scopes can break
3460    // our AST invariants by having the wrong underlying types. If
3461    // that's the case, then drop this declaration entirely.
3462    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3463         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3464        !Context.hasSameType(Name.getCXXNameType(),
3465                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3466      return true;
3467
3468    return false;
3469  }
3470
3471  // C++11 [dcl.meaning]p1:
3472  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3473  //   not begin with a decltype-specifer"
3474  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3475  while (SpecLoc.getPrefix())
3476    SpecLoc = SpecLoc.getPrefix();
3477  if (dyn_cast_or_null<DecltypeType>(
3478        SpecLoc.getNestedNameSpecifier()->getAsType()))
3479    Diag(Loc, diag::err_decltype_in_declarator)
3480      << SpecLoc.getTypeLoc().getSourceRange();
3481
3482  return false;
3483}
3484
3485Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3486                             MultiTemplateParamsArg TemplateParamLists) {
3487  // TODO: consider using NameInfo for diagnostic.
3488  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3489  DeclarationName Name = NameInfo.getName();
3490
3491  // All of these full declarators require an identifier.  If it doesn't have
3492  // one, the ParsedFreeStandingDeclSpec action should be used.
3493  if (!Name) {
3494    if (!D.isInvalidType())  // Reject this if we think it is valid.
3495      Diag(D.getDeclSpec().getLocStart(),
3496           diag::err_declarator_need_ident)
3497        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3498    return 0;
3499  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3500    return 0;
3501
3502  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3503  // we find one that is.
3504  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3505         (S->getFlags() & Scope::TemplateParamScope) != 0)
3506    S = S->getParent();
3507
3508  DeclContext *DC = CurContext;
3509  if (D.getCXXScopeSpec().isInvalid())
3510    D.setInvalidType();
3511  else if (D.getCXXScopeSpec().isSet()) {
3512    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3513                                        UPPC_DeclarationQualifier))
3514      return 0;
3515
3516    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3517    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3518    if (!DC) {
3519      // If we could not compute the declaration context, it's because the
3520      // declaration context is dependent but does not refer to a class,
3521      // class template, or class template partial specialization. Complain
3522      // and return early, to avoid the coming semantic disaster.
3523      Diag(D.getIdentifierLoc(),
3524           diag::err_template_qualified_declarator_no_match)
3525        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3526        << D.getCXXScopeSpec().getRange();
3527      return 0;
3528    }
3529    bool IsDependentContext = DC->isDependentContext();
3530
3531    if (!IsDependentContext &&
3532        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3533      return 0;
3534
3535    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3536      Diag(D.getIdentifierLoc(),
3537           diag::err_member_def_undefined_record)
3538        << Name << DC << D.getCXXScopeSpec().getRange();
3539      D.setInvalidType();
3540    } else if (!D.getDeclSpec().isFriendSpecified()) {
3541      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3542                                      Name, D.getIdentifierLoc())) {
3543        if (DC->isRecord())
3544          return 0;
3545
3546        D.setInvalidType();
3547      }
3548    }
3549
3550    // Check whether we need to rebuild the type of the given
3551    // declaration in the current instantiation.
3552    if (EnteringContext && IsDependentContext &&
3553        TemplateParamLists.size() != 0) {
3554      ContextRAII SavedContext(*this, DC);
3555      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3556        D.setInvalidType();
3557    }
3558  }
3559
3560  if (DiagnoseClassNameShadow(DC, NameInfo))
3561    // If this is a typedef, we'll end up spewing multiple diagnostics.
3562    // Just return early; it's safer.
3563    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3564      return 0;
3565
3566  NamedDecl *New;
3567
3568  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3569  QualType R = TInfo->getType();
3570
3571  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3572                                      UPPC_DeclarationType))
3573    D.setInvalidType();
3574
3575  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3576                        ForRedeclaration);
3577
3578  // See if this is a redefinition of a variable in the same scope.
3579  if (!D.getCXXScopeSpec().isSet()) {
3580    bool IsLinkageLookup = false;
3581
3582    // If the declaration we're planning to build will be a function
3583    // or object with linkage, then look for another declaration with
3584    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3585    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3586      /* Do nothing*/;
3587    else if (R->isFunctionType()) {
3588      if (CurContext->isFunctionOrMethod() ||
3589          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3590        IsLinkageLookup = true;
3591    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3592      IsLinkageLookup = true;
3593    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3594             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3595      IsLinkageLookup = true;
3596
3597    if (IsLinkageLookup)
3598      Previous.clear(LookupRedeclarationWithLinkage);
3599
3600    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3601  } else { // Something like "int foo::x;"
3602    LookupQualifiedName(Previous, DC);
3603
3604    // C++ [dcl.meaning]p1:
3605    //   When the declarator-id is qualified, the declaration shall refer to a
3606    //  previously declared member of the class or namespace to which the
3607    //  qualifier refers (or, in the case of a namespace, of an element of the
3608    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3609    //  thereof; [...]
3610    //
3611    // Note that we already checked the context above, and that we do not have
3612    // enough information to make sure that Previous contains the declaration
3613    // we want to match. For example, given:
3614    //
3615    //   class X {
3616    //     void f();
3617    //     void f(float);
3618    //   };
3619    //
3620    //   void X::f(int) { } // ill-formed
3621    //
3622    // In this case, Previous will point to the overload set
3623    // containing the two f's declared in X, but neither of them
3624    // matches.
3625
3626    // C++ [dcl.meaning]p1:
3627    //   [...] the member shall not merely have been introduced by a
3628    //   using-declaration in the scope of the class or namespace nominated by
3629    //   the nested-name-specifier of the declarator-id.
3630    RemoveUsingDecls(Previous);
3631  }
3632
3633  if (Previous.isSingleResult() &&
3634      Previous.getFoundDecl()->isTemplateParameter()) {
3635    // Maybe we will complain about the shadowed template parameter.
3636    if (!D.isInvalidType())
3637      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3638                                      Previous.getFoundDecl());
3639
3640    // Just pretend that we didn't see the previous declaration.
3641    Previous.clear();
3642  }
3643
3644  // In C++, the previous declaration we find might be a tag type
3645  // (class or enum). In this case, the new declaration will hide the
3646  // tag type. Note that this does does not apply if we're declaring a
3647  // typedef (C++ [dcl.typedef]p4).
3648  if (Previous.isSingleTagDecl() &&
3649      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3650    Previous.clear();
3651
3652  bool AddToScope = true;
3653  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3654    if (TemplateParamLists.size()) {
3655      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3656      return 0;
3657    }
3658
3659    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3660  } else if (R->isFunctionType()) {
3661    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3662                                  move(TemplateParamLists),
3663                                  AddToScope);
3664  } else {
3665    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3666                                  move(TemplateParamLists));
3667  }
3668
3669  if (New == 0)
3670    return 0;
3671
3672  // If this has an identifier and is not an invalid redeclaration or
3673  // function template specialization, add it to the scope stack.
3674  if (New->getDeclName() && AddToScope &&
3675       !(D.isRedeclaration() && New->isInvalidDecl()))
3676    PushOnScopeChains(New, S);
3677
3678  return New;
3679}
3680
3681/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3682/// types into constant array types in certain situations which would otherwise
3683/// be errors (for GCC compatibility).
3684static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3685                                                    ASTContext &Context,
3686                                                    bool &SizeIsNegative,
3687                                                    llvm::APSInt &Oversized) {
3688  // This method tries to turn a variable array into a constant
3689  // array even when the size isn't an ICE.  This is necessary
3690  // for compatibility with code that depends on gcc's buggy
3691  // constant expression folding, like struct {char x[(int)(char*)2];}
3692  SizeIsNegative = false;
3693  Oversized = 0;
3694
3695  if (T->isDependentType())
3696    return QualType();
3697
3698  QualifierCollector Qs;
3699  const Type *Ty = Qs.strip(T);
3700
3701  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3702    QualType Pointee = PTy->getPointeeType();
3703    QualType FixedType =
3704        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3705                                            Oversized);
3706    if (FixedType.isNull()) return FixedType;
3707    FixedType = Context.getPointerType(FixedType);
3708    return Qs.apply(Context, FixedType);
3709  }
3710  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3711    QualType Inner = PTy->getInnerType();
3712    QualType FixedType =
3713        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3714                                            Oversized);
3715    if (FixedType.isNull()) return FixedType;
3716    FixedType = Context.getParenType(FixedType);
3717    return Qs.apply(Context, FixedType);
3718  }
3719
3720  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3721  if (!VLATy)
3722    return QualType();
3723  // FIXME: We should probably handle this case
3724  if (VLATy->getElementType()->isVariablyModifiedType())
3725    return QualType();
3726
3727  llvm::APSInt Res;
3728  if (!VLATy->getSizeExpr() ||
3729      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3730    return QualType();
3731
3732  // Check whether the array size is negative.
3733  if (Res.isSigned() && Res.isNegative()) {
3734    SizeIsNegative = true;
3735    return QualType();
3736  }
3737
3738  // Check whether the array is too large to be addressed.
3739  unsigned ActiveSizeBits
3740    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3741                                              Res);
3742  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3743    Oversized = Res;
3744    return QualType();
3745  }
3746
3747  return Context.getConstantArrayType(VLATy->getElementType(),
3748                                      Res, ArrayType::Normal, 0);
3749}
3750
3751/// \brief Register the given locally-scoped external C declaration so
3752/// that it can be found later for redeclarations
3753void
3754Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3755                                       const LookupResult &Previous,
3756                                       Scope *S) {
3757  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3758         "Decl is not a locally-scoped decl!");
3759  // Note that we have a locally-scoped external with this name.
3760  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3761
3762  if (!Previous.isSingleResult())
3763    return;
3764
3765  NamedDecl *PrevDecl = Previous.getFoundDecl();
3766
3767  // If there was a previous declaration of this variable, it may be
3768  // in our identifier chain. Update the identifier chain with the new
3769  // declaration.
3770  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3771    // The previous declaration was found on the identifer resolver
3772    // chain, so remove it from its scope.
3773
3774    if (S->isDeclScope(PrevDecl)) {
3775      // Special case for redeclarations in the SAME scope.
3776      // Because this declaration is going to be added to the identifier chain
3777      // later, we should temporarily take it OFF the chain.
3778      IdResolver.RemoveDecl(ND);
3779
3780    } else {
3781      // Find the scope for the original declaration.
3782      while (S && !S->isDeclScope(PrevDecl))
3783        S = S->getParent();
3784    }
3785
3786    if (S)
3787      S->RemoveDecl(PrevDecl);
3788  }
3789}
3790
3791llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3792Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3793  if (ExternalSource) {
3794    // Load locally-scoped external decls from the external source.
3795    SmallVector<NamedDecl *, 4> Decls;
3796    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3797    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3798      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3799        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3800      if (Pos == LocallyScopedExternalDecls.end())
3801        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3802    }
3803  }
3804
3805  return LocallyScopedExternalDecls.find(Name);
3806}
3807
3808/// \brief Diagnose function specifiers on a declaration of an identifier that
3809/// does not identify a function.
3810void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3811  // FIXME: We should probably indicate the identifier in question to avoid
3812  // confusion for constructs like "inline int a(), b;"
3813  if (D.getDeclSpec().isInlineSpecified())
3814    Diag(D.getDeclSpec().getInlineSpecLoc(),
3815         diag::err_inline_non_function);
3816
3817  if (D.getDeclSpec().isVirtualSpecified())
3818    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3819         diag::err_virtual_non_function);
3820
3821  if (D.getDeclSpec().isExplicitSpecified())
3822    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3823         diag::err_explicit_non_function);
3824}
3825
3826NamedDecl*
3827Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3828                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3829  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3830  if (D.getCXXScopeSpec().isSet()) {
3831    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3832      << D.getCXXScopeSpec().getRange();
3833    D.setInvalidType();
3834    // Pretend we didn't see the scope specifier.
3835    DC = CurContext;
3836    Previous.clear();
3837  }
3838
3839  if (getLangOpts().CPlusPlus) {
3840    // Check that there are no default arguments (C++ only).
3841    CheckExtraCXXDefaultArguments(D);
3842  }
3843
3844  DiagnoseFunctionSpecifiers(D);
3845
3846  if (D.getDeclSpec().isThreadSpecified())
3847    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3848  if (D.getDeclSpec().isConstexprSpecified())
3849    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3850      << 1;
3851
3852  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3853    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3854      << D.getName().getSourceRange();
3855    return 0;
3856  }
3857
3858  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3859  if (!NewTD) return 0;
3860
3861  // Handle attributes prior to checking for duplicates in MergeVarDecl
3862  ProcessDeclAttributes(S, NewTD, D);
3863
3864  CheckTypedefForVariablyModifiedType(S, NewTD);
3865
3866  bool Redeclaration = D.isRedeclaration();
3867  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3868  D.setRedeclaration(Redeclaration);
3869  return ND;
3870}
3871
3872void
3873Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3874  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3875  // then it shall have block scope.
3876  // Note that variably modified types must be fixed before merging the decl so
3877  // that redeclarations will match.
3878  QualType T = NewTD->getUnderlyingType();
3879  if (T->isVariablyModifiedType()) {
3880    getCurFunction()->setHasBranchProtectedScope();
3881
3882    if (S->getFnParent() == 0) {
3883      bool SizeIsNegative;
3884      llvm::APSInt Oversized;
3885      QualType FixedTy =
3886          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3887                                              Oversized);
3888      if (!FixedTy.isNull()) {
3889        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3890        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3891      } else {
3892        if (SizeIsNegative)
3893          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3894        else if (T->isVariableArrayType())
3895          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3896        else if (Oversized.getBoolValue())
3897          Diag(NewTD->getLocation(), diag::err_array_too_large)
3898            << Oversized.toString(10);
3899        else
3900          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3901        NewTD->setInvalidDecl();
3902      }
3903    }
3904  }
3905}
3906
3907
3908/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3909/// declares a typedef-name, either using the 'typedef' type specifier or via
3910/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3911NamedDecl*
3912Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3913                           LookupResult &Previous, bool &Redeclaration) {
3914  // Merge the decl with the existing one if appropriate. If the decl is
3915  // in an outer scope, it isn't the same thing.
3916  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3917                       /*ExplicitInstantiationOrSpecialization=*/false);
3918  if (!Previous.empty()) {
3919    Redeclaration = true;
3920    MergeTypedefNameDecl(NewTD, Previous);
3921  }
3922
3923  // If this is the C FILE type, notify the AST context.
3924  if (IdentifierInfo *II = NewTD->getIdentifier())
3925    if (!NewTD->isInvalidDecl() &&
3926        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3927      if (II->isStr("FILE"))
3928        Context.setFILEDecl(NewTD);
3929      else if (II->isStr("jmp_buf"))
3930        Context.setjmp_bufDecl(NewTD);
3931      else if (II->isStr("sigjmp_buf"))
3932        Context.setsigjmp_bufDecl(NewTD);
3933      else if (II->isStr("ucontext_t"))
3934        Context.setucontext_tDecl(NewTD);
3935    }
3936
3937  return NewTD;
3938}
3939
3940/// \brief Determines whether the given declaration is an out-of-scope
3941/// previous declaration.
3942///
3943/// This routine should be invoked when name lookup has found a
3944/// previous declaration (PrevDecl) that is not in the scope where a
3945/// new declaration by the same name is being introduced. If the new
3946/// declaration occurs in a local scope, previous declarations with
3947/// linkage may still be considered previous declarations (C99
3948/// 6.2.2p4-5, C++ [basic.link]p6).
3949///
3950/// \param PrevDecl the previous declaration found by name
3951/// lookup
3952///
3953/// \param DC the context in which the new declaration is being
3954/// declared.
3955///
3956/// \returns true if PrevDecl is an out-of-scope previous declaration
3957/// for a new delcaration with the same name.
3958static bool
3959isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3960                                ASTContext &Context) {
3961  if (!PrevDecl)
3962    return false;
3963
3964  if (!PrevDecl->hasLinkage())
3965    return false;
3966
3967  if (Context.getLangOpts().CPlusPlus) {
3968    // C++ [basic.link]p6:
3969    //   If there is a visible declaration of an entity with linkage
3970    //   having the same name and type, ignoring entities declared
3971    //   outside the innermost enclosing namespace scope, the block
3972    //   scope declaration declares that same entity and receives the
3973    //   linkage of the previous declaration.
3974    DeclContext *OuterContext = DC->getRedeclContext();
3975    if (!OuterContext->isFunctionOrMethod())
3976      // This rule only applies to block-scope declarations.
3977      return false;
3978
3979    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3980    if (PrevOuterContext->isRecord())
3981      // We found a member function: ignore it.
3982      return false;
3983
3984    // Find the innermost enclosing namespace for the new and
3985    // previous declarations.
3986    OuterContext = OuterContext->getEnclosingNamespaceContext();
3987    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3988
3989    // The previous declaration is in a different namespace, so it
3990    // isn't the same function.
3991    if (!OuterContext->Equals(PrevOuterContext))
3992      return false;
3993  }
3994
3995  return true;
3996}
3997
3998static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3999  CXXScopeSpec &SS = D.getCXXScopeSpec();
4000  if (!SS.isSet()) return;
4001  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4002}
4003
4004bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4005  QualType type = decl->getType();
4006  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4007  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4008    // Various kinds of declaration aren't allowed to be __autoreleasing.
4009    unsigned kind = -1U;
4010    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4011      if (var->hasAttr<BlocksAttr>())
4012        kind = 0; // __block
4013      else if (!var->hasLocalStorage())
4014        kind = 1; // global
4015    } else if (isa<ObjCIvarDecl>(decl)) {
4016      kind = 3; // ivar
4017    } else if (isa<FieldDecl>(decl)) {
4018      kind = 2; // field
4019    }
4020
4021    if (kind != -1U) {
4022      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4023        << kind;
4024    }
4025  } else if (lifetime == Qualifiers::OCL_None) {
4026    // Try to infer lifetime.
4027    if (!type->isObjCLifetimeType())
4028      return false;
4029
4030    lifetime = type->getObjCARCImplicitLifetime();
4031    type = Context.getLifetimeQualifiedType(type, lifetime);
4032    decl->setType(type);
4033  }
4034
4035  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4036    // Thread-local variables cannot have lifetime.
4037    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4038        var->isThreadSpecified()) {
4039      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4040        << var->getType();
4041      return true;
4042    }
4043  }
4044
4045  return false;
4046}
4047
4048NamedDecl*
4049Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4050                              TypeSourceInfo *TInfo, LookupResult &Previous,
4051                              MultiTemplateParamsArg TemplateParamLists) {
4052  QualType R = TInfo->getType();
4053  DeclarationName Name = GetNameForDeclarator(D).getName();
4054
4055  // Check that there are no default arguments (C++ only).
4056  if (getLangOpts().CPlusPlus)
4057    CheckExtraCXXDefaultArguments(D);
4058
4059  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4060  assert(SCSpec != DeclSpec::SCS_typedef &&
4061         "Parser allowed 'typedef' as storage class VarDecl.");
4062  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4063  if (SCSpec == DeclSpec::SCS_mutable) {
4064    // mutable can only appear on non-static class members, so it's always
4065    // an error here
4066    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4067    D.setInvalidType();
4068    SC = SC_None;
4069  }
4070  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4071  VarDecl::StorageClass SCAsWritten
4072    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4073
4074  IdentifierInfo *II = Name.getAsIdentifierInfo();
4075  if (!II) {
4076    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4077      << Name;
4078    return 0;
4079  }
4080
4081  DiagnoseFunctionSpecifiers(D);
4082
4083  if (!DC->isRecord() && S->getFnParent() == 0) {
4084    // C99 6.9p2: The storage-class specifiers auto and register shall not
4085    // appear in the declaration specifiers in an external declaration.
4086    if (SC == SC_Auto || SC == SC_Register) {
4087
4088      // If this is a register variable with an asm label specified, then this
4089      // is a GNU extension.
4090      if (SC == SC_Register && D.getAsmLabel())
4091        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4092      else
4093        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4094      D.setInvalidType();
4095    }
4096  }
4097
4098  if (getLangOpts().OpenCL) {
4099    // Set up the special work-group-local storage class for variables in the
4100    // OpenCL __local address space.
4101    if (R.getAddressSpace() == LangAS::opencl_local)
4102      SC = SC_OpenCLWorkGroupLocal;
4103  }
4104
4105  bool isExplicitSpecialization = false;
4106  VarDecl *NewVD;
4107  if (!getLangOpts().CPlusPlus) {
4108    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4109                            D.getIdentifierLoc(), II,
4110                            R, TInfo, SC, SCAsWritten);
4111
4112    if (D.isInvalidType())
4113      NewVD->setInvalidDecl();
4114  } else {
4115    if (DC->isRecord() && !CurContext->isRecord()) {
4116      // This is an out-of-line definition of a static data member.
4117      if (SC == SC_Static) {
4118        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4119             diag::err_static_out_of_line)
4120          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4121      } else if (SC == SC_None)
4122        SC = SC_Static;
4123    }
4124    if (SC == SC_Static && CurContext->isRecord()) {
4125      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4126        if (RD->isLocalClass())
4127          Diag(D.getIdentifierLoc(),
4128               diag::err_static_data_member_not_allowed_in_local_class)
4129            << Name << RD->getDeclName();
4130
4131        // C++98 [class.union]p1: If a union contains a static data member,
4132        // the program is ill-formed. C++11 drops this restriction.
4133        if (RD->isUnion())
4134          Diag(D.getIdentifierLoc(),
4135               getLangOpts().CPlusPlus0x
4136                 ? diag::warn_cxx98_compat_static_data_member_in_union
4137                 : diag::ext_static_data_member_in_union) << Name;
4138        // We conservatively disallow static data members in anonymous structs.
4139        else if (!RD->getDeclName())
4140          Diag(D.getIdentifierLoc(),
4141               diag::err_static_data_member_not_allowed_in_anon_struct)
4142            << Name << RD->isUnion();
4143      }
4144    }
4145
4146    // Match up the template parameter lists with the scope specifier, then
4147    // determine whether we have a template or a template specialization.
4148    isExplicitSpecialization = false;
4149    bool Invalid = false;
4150    if (TemplateParameterList *TemplateParams
4151        = MatchTemplateParametersToScopeSpecifier(
4152                                  D.getDeclSpec().getLocStart(),
4153                                                  D.getIdentifierLoc(),
4154                                                  D.getCXXScopeSpec(),
4155                                                  TemplateParamLists.get(),
4156                                                  TemplateParamLists.size(),
4157                                                  /*never a friend*/ false,
4158                                                  isExplicitSpecialization,
4159                                                  Invalid)) {
4160      if (TemplateParams->size() > 0) {
4161        // There is no such thing as a variable template.
4162        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4163          << II
4164          << SourceRange(TemplateParams->getTemplateLoc(),
4165                         TemplateParams->getRAngleLoc());
4166        return 0;
4167      } else {
4168        // There is an extraneous 'template<>' for this variable. Complain
4169        // about it, but allow the declaration of the variable.
4170        Diag(TemplateParams->getTemplateLoc(),
4171             diag::err_template_variable_noparams)
4172          << II
4173          << SourceRange(TemplateParams->getTemplateLoc(),
4174                         TemplateParams->getRAngleLoc());
4175      }
4176    }
4177
4178    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4179                            D.getIdentifierLoc(), II,
4180                            R, TInfo, SC, SCAsWritten);
4181
4182    // If this decl has an auto type in need of deduction, make a note of the
4183    // Decl so we can diagnose uses of it in its own initializer.
4184    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4185        R->getContainedAutoType())
4186      ParsingInitForAutoVars.insert(NewVD);
4187
4188    if (D.isInvalidType() || Invalid)
4189      NewVD->setInvalidDecl();
4190
4191    SetNestedNameSpecifier(NewVD, D);
4192
4193    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4194      NewVD->setTemplateParameterListsInfo(Context,
4195                                           TemplateParamLists.size(),
4196                                           TemplateParamLists.release());
4197    }
4198
4199    if (D.getDeclSpec().isConstexprSpecified())
4200      NewVD->setConstexpr(true);
4201  }
4202
4203  // Set the lexical context. If the declarator has a C++ scope specifier, the
4204  // lexical context will be different from the semantic context.
4205  NewVD->setLexicalDeclContext(CurContext);
4206
4207  if (D.getDeclSpec().isThreadSpecified()) {
4208    if (NewVD->hasLocalStorage())
4209      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4210    else if (!Context.getTargetInfo().isTLSSupported())
4211      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4212    else
4213      NewVD->setThreadSpecified(true);
4214  }
4215
4216  if (D.getDeclSpec().isModulePrivateSpecified()) {
4217    if (isExplicitSpecialization)
4218      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4219        << 2
4220        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4221    else if (NewVD->hasLocalStorage())
4222      Diag(NewVD->getLocation(), diag::err_module_private_local)
4223        << 0 << NewVD->getDeclName()
4224        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4225        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4226    else
4227      NewVD->setModulePrivate();
4228  }
4229
4230  // Handle attributes prior to checking for duplicates in MergeVarDecl
4231  ProcessDeclAttributes(S, NewVD, D);
4232
4233  // In auto-retain/release, infer strong retension for variables of
4234  // retainable type.
4235  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4236    NewVD->setInvalidDecl();
4237
4238  // Handle GNU asm-label extension (encoded as an attribute).
4239  if (Expr *E = (Expr*)D.getAsmLabel()) {
4240    // The parser guarantees this is a string.
4241    StringLiteral *SE = cast<StringLiteral>(E);
4242    StringRef Label = SE->getString();
4243    if (S->getFnParent() != 0) {
4244      switch (SC) {
4245      case SC_None:
4246      case SC_Auto:
4247        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4248        break;
4249      case SC_Register:
4250        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4251          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4252        break;
4253      case SC_Static:
4254      case SC_Extern:
4255      case SC_PrivateExtern:
4256      case SC_OpenCLWorkGroupLocal:
4257        break;
4258      }
4259    }
4260
4261    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4262                                                Context, Label));
4263  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4264    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4265      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4266    if (I != ExtnameUndeclaredIdentifiers.end()) {
4267      NewVD->addAttr(I->second);
4268      ExtnameUndeclaredIdentifiers.erase(I);
4269    }
4270  }
4271
4272  // Diagnose shadowed variables before filtering for scope.
4273  if (!D.getCXXScopeSpec().isSet())
4274    CheckShadow(S, NewVD, Previous);
4275
4276  // Don't consider existing declarations that are in a different
4277  // scope and are out-of-semantic-context declarations (if the new
4278  // declaration has linkage).
4279  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4280                       isExplicitSpecialization);
4281
4282  if (!getLangOpts().CPlusPlus) {
4283    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4284  } else {
4285    // Merge the decl with the existing one if appropriate.
4286    if (!Previous.empty()) {
4287      if (Previous.isSingleResult() &&
4288          isa<FieldDecl>(Previous.getFoundDecl()) &&
4289          D.getCXXScopeSpec().isSet()) {
4290        // The user tried to define a non-static data member
4291        // out-of-line (C++ [dcl.meaning]p1).
4292        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4293          << D.getCXXScopeSpec().getRange();
4294        Previous.clear();
4295        NewVD->setInvalidDecl();
4296      }
4297    } else if (D.getCXXScopeSpec().isSet()) {
4298      // No previous declaration in the qualifying scope.
4299      Diag(D.getIdentifierLoc(), diag::err_no_member)
4300        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4301        << D.getCXXScopeSpec().getRange();
4302      NewVD->setInvalidDecl();
4303    }
4304
4305    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4306
4307    // This is an explicit specialization of a static data member. Check it.
4308    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4309        CheckMemberSpecialization(NewVD, Previous))
4310      NewVD->setInvalidDecl();
4311  }
4312
4313  // If this is a locally-scoped extern C variable, update the map of
4314  // such variables.
4315  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4316      !NewVD->isInvalidDecl())
4317    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4318
4319  // If there's a #pragma GCC visibility in scope, and this isn't a class
4320  // member, set the visibility of this variable.
4321  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4322    AddPushedVisibilityAttribute(NewVD);
4323
4324  MarkUnusedFileScopedDecl(NewVD);
4325
4326  return NewVD;
4327}
4328
4329/// \brief Diagnose variable or built-in function shadowing.  Implements
4330/// -Wshadow.
4331///
4332/// This method is called whenever a VarDecl is added to a "useful"
4333/// scope.
4334///
4335/// \param S the scope in which the shadowing name is being declared
4336/// \param R the lookup of the name
4337///
4338void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4339  // Return if warning is ignored.
4340  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4341        DiagnosticsEngine::Ignored)
4342    return;
4343
4344  // Don't diagnose declarations at file scope.
4345  if (D->hasGlobalStorage())
4346    return;
4347
4348  DeclContext *NewDC = D->getDeclContext();
4349
4350  // Only diagnose if we're shadowing an unambiguous field or variable.
4351  if (R.getResultKind() != LookupResult::Found)
4352    return;
4353
4354  NamedDecl* ShadowedDecl = R.getFoundDecl();
4355  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4356    return;
4357
4358  // Fields are not shadowed by variables in C++ static methods.
4359  if (isa<FieldDecl>(ShadowedDecl))
4360    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4361      if (MD->isStatic())
4362        return;
4363
4364  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4365    if (shadowedVar->isExternC()) {
4366      // For shadowing external vars, make sure that we point to the global
4367      // declaration, not a locally scoped extern declaration.
4368      for (VarDecl::redecl_iterator
4369             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4370           I != E; ++I)
4371        if (I->isFileVarDecl()) {
4372          ShadowedDecl = *I;
4373          break;
4374        }
4375    }
4376
4377  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4378
4379  // Only warn about certain kinds of shadowing for class members.
4380  if (NewDC && NewDC->isRecord()) {
4381    // In particular, don't warn about shadowing non-class members.
4382    if (!OldDC->isRecord())
4383      return;
4384
4385    // TODO: should we warn about static data members shadowing
4386    // static data members from base classes?
4387
4388    // TODO: don't diagnose for inaccessible shadowed members.
4389    // This is hard to do perfectly because we might friend the
4390    // shadowing context, but that's just a false negative.
4391  }
4392
4393  // Determine what kind of declaration we're shadowing.
4394  unsigned Kind;
4395  if (isa<RecordDecl>(OldDC)) {
4396    if (isa<FieldDecl>(ShadowedDecl))
4397      Kind = 3; // field
4398    else
4399      Kind = 2; // static data member
4400  } else if (OldDC->isFileContext())
4401    Kind = 1; // global
4402  else
4403    Kind = 0; // local
4404
4405  DeclarationName Name = R.getLookupName();
4406
4407  // Emit warning and note.
4408  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4409  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4410}
4411
4412/// \brief Check -Wshadow without the advantage of a previous lookup.
4413void Sema::CheckShadow(Scope *S, VarDecl *D) {
4414  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4415        DiagnosticsEngine::Ignored)
4416    return;
4417
4418  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4419                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4420  LookupName(R, S);
4421  CheckShadow(S, D, R);
4422}
4423
4424/// \brief Perform semantic checking on a newly-created variable
4425/// declaration.
4426///
4427/// This routine performs all of the type-checking required for a
4428/// variable declaration once it has been built. It is used both to
4429/// check variables after they have been parsed and their declarators
4430/// have been translated into a declaration, and to check variables
4431/// that have been instantiated from a template.
4432///
4433/// Sets NewVD->isInvalidDecl() if an error was encountered.
4434///
4435/// Returns true if the variable declaration is a redeclaration.
4436bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4437                                    LookupResult &Previous) {
4438  // If the decl is already known invalid, don't check it.
4439  if (NewVD->isInvalidDecl())
4440    return false;
4441
4442  QualType T = NewVD->getType();
4443
4444  if (T->isObjCObjectType()) {
4445    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4446      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4447    T = Context.getObjCObjectPointerType(T);
4448    NewVD->setType(T);
4449  }
4450
4451  // Emit an error if an address space was applied to decl with local storage.
4452  // This includes arrays of objects with address space qualifiers, but not
4453  // automatic variables that point to other address spaces.
4454  // ISO/IEC TR 18037 S5.1.2
4455  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4456    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4457    NewVD->setInvalidDecl();
4458    return false;
4459  }
4460
4461  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4462  // scope.
4463  if ((getLangOpts().OpenCLVersion >= 120)
4464      && NewVD->isStaticLocal()) {
4465    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4466    NewVD->setInvalidDecl();
4467    return false;
4468  }
4469
4470  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4471      && !NewVD->hasAttr<BlocksAttr>()) {
4472    if (getLangOpts().getGC() != LangOptions::NonGC)
4473      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4474    else
4475      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4476  }
4477
4478  bool isVM = T->isVariablyModifiedType();
4479  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4480      NewVD->hasAttr<BlocksAttr>())
4481    getCurFunction()->setHasBranchProtectedScope();
4482
4483  if ((isVM && NewVD->hasLinkage()) ||
4484      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4485    bool SizeIsNegative;
4486    llvm::APSInt Oversized;
4487    QualType FixedTy =
4488        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4489                                            Oversized);
4490
4491    if (FixedTy.isNull() && T->isVariableArrayType()) {
4492      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4493      // FIXME: This won't give the correct result for
4494      // int a[10][n];
4495      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4496
4497      if (NewVD->isFileVarDecl())
4498        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4499        << SizeRange;
4500      else if (NewVD->getStorageClass() == SC_Static)
4501        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4502        << SizeRange;
4503      else
4504        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4505        << SizeRange;
4506      NewVD->setInvalidDecl();
4507      return false;
4508    }
4509
4510    if (FixedTy.isNull()) {
4511      if (NewVD->isFileVarDecl())
4512        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4513      else
4514        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4515      NewVD->setInvalidDecl();
4516      return false;
4517    }
4518
4519    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4520    NewVD->setType(FixedTy);
4521  }
4522
4523  if (Previous.empty() && NewVD->isExternC()) {
4524    // Since we did not find anything by this name and we're declaring
4525    // an extern "C" variable, look for a non-visible extern "C"
4526    // declaration with the same name.
4527    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4528      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4529    if (Pos != LocallyScopedExternalDecls.end())
4530      Previous.addDecl(Pos->second);
4531  }
4532
4533  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4534    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4535      << T;
4536    NewVD->setInvalidDecl();
4537    return false;
4538  }
4539
4540  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4541    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4542    NewVD->setInvalidDecl();
4543    return false;
4544  }
4545
4546  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4547    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4548    NewVD->setInvalidDecl();
4549    return false;
4550  }
4551
4552  if (NewVD->isConstexpr() && !T->isDependentType() &&
4553      RequireLiteralType(NewVD->getLocation(), T,
4554                         diag::err_constexpr_var_non_literal)) {
4555    NewVD->setInvalidDecl();
4556    return false;
4557  }
4558
4559  if (!Previous.empty()) {
4560    MergeVarDecl(NewVD, Previous);
4561    return true;
4562  }
4563  return false;
4564}
4565
4566/// \brief Data used with FindOverriddenMethod
4567struct FindOverriddenMethodData {
4568  Sema *S;
4569  CXXMethodDecl *Method;
4570};
4571
4572/// \brief Member lookup function that determines whether a given C++
4573/// method overrides a method in a base class, to be used with
4574/// CXXRecordDecl::lookupInBases().
4575static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4576                                 CXXBasePath &Path,
4577                                 void *UserData) {
4578  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4579
4580  FindOverriddenMethodData *Data
4581    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4582
4583  DeclarationName Name = Data->Method->getDeclName();
4584
4585  // FIXME: Do we care about other names here too?
4586  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4587    // We really want to find the base class destructor here.
4588    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4589    CanQualType CT = Data->S->Context.getCanonicalType(T);
4590
4591    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4592  }
4593
4594  for (Path.Decls = BaseRecord->lookup(Name);
4595       Path.Decls.first != Path.Decls.second;
4596       ++Path.Decls.first) {
4597    NamedDecl *D = *Path.Decls.first;
4598    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4599      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4600        return true;
4601    }
4602  }
4603
4604  return false;
4605}
4606
4607static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
4608  const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
4609  return Proto && Proto->getExceptionSpecType() == EST_Delayed;
4610}
4611
4612/// AddOverriddenMethods - See if a method overrides any in the base classes,
4613/// and if so, check that it's a valid override and remember it.
4614bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4615  // Look for virtual methods in base classes that this method might override.
4616  CXXBasePaths Paths;
4617  FindOverriddenMethodData Data;
4618  Data.Method = MD;
4619  Data.S = this;
4620  bool AddedAny = false;
4621  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4622    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4623         E = Paths.found_decls_end(); I != E; ++I) {
4624      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4625        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4626        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4627            (hasDelayedExceptionSpec(MD) ||
4628             !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
4629            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4630          AddedAny = true;
4631        }
4632      }
4633    }
4634  }
4635
4636  return AddedAny;
4637}
4638
4639namespace {
4640  // Struct for holding all of the extra arguments needed by
4641  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4642  struct ActOnFDArgs {
4643    Scope *S;
4644    Declarator &D;
4645    MultiTemplateParamsArg TemplateParamLists;
4646    bool AddToScope;
4647  };
4648}
4649
4650namespace {
4651
4652// Callback to only accept typo corrections that have a non-zero edit distance.
4653// Also only accept corrections that have the same parent decl.
4654class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4655 public:
4656  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4657                            CXXRecordDecl *Parent)
4658      : Context(Context), OriginalFD(TypoFD),
4659        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4660
4661  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4662    if (candidate.getEditDistance() == 0)
4663      return false;
4664
4665    llvm::SmallVector<unsigned, 1> MismatchedParams;
4666    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4667                                          CDeclEnd = candidate.end();
4668         CDecl != CDeclEnd; ++CDecl) {
4669      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4670
4671      if (FD && !FD->hasBody() &&
4672          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4673        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4674          CXXRecordDecl *Parent = MD->getParent();
4675          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4676            return true;
4677        } else if (!ExpectedParent) {
4678          return true;
4679        }
4680      }
4681    }
4682
4683    return false;
4684  }
4685
4686 private:
4687  ASTContext &Context;
4688  FunctionDecl *OriginalFD;
4689  CXXRecordDecl *ExpectedParent;
4690};
4691
4692}
4693
4694/// \brief Generate diagnostics for an invalid function redeclaration.
4695///
4696/// This routine handles generating the diagnostic messages for an invalid
4697/// function redeclaration, including finding possible similar declarations
4698/// or performing typo correction if there are no previous declarations with
4699/// the same name.
4700///
4701/// Returns a NamedDecl iff typo correction was performed and substituting in
4702/// the new declaration name does not cause new errors.
4703static NamedDecl* DiagnoseInvalidRedeclaration(
4704    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4705    ActOnFDArgs &ExtraArgs) {
4706  NamedDecl *Result = NULL;
4707  DeclarationName Name = NewFD->getDeclName();
4708  DeclContext *NewDC = NewFD->getDeclContext();
4709  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4710                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4711  llvm::SmallVector<unsigned, 1> MismatchedParams;
4712  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4713  TypoCorrection Correction;
4714  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4715                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4716  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4717                                  : diag::err_member_def_does_not_match;
4718
4719  NewFD->setInvalidDecl();
4720  SemaRef.LookupQualifiedName(Prev, NewDC);
4721  assert(!Prev.isAmbiguous() &&
4722         "Cannot have an ambiguity in previous-declaration lookup");
4723  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4724  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4725                                      MD ? MD->getParent() : 0);
4726  if (!Prev.empty()) {
4727    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4728         Func != FuncEnd; ++Func) {
4729      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4730      if (FD &&
4731          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4732        // Add 1 to the index so that 0 can mean the mismatch didn't
4733        // involve a parameter
4734        unsigned ParamNum =
4735            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4736        NearMatches.push_back(std::make_pair(FD, ParamNum));
4737      }
4738    }
4739  // If the qualified name lookup yielded nothing, try typo correction
4740  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4741                                         Prev.getLookupKind(), 0, 0,
4742                                         Validator, NewDC))) {
4743    // Trap errors.
4744    Sema::SFINAETrap Trap(SemaRef);
4745
4746    // Set up everything for the call to ActOnFunctionDeclarator
4747    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4748                              ExtraArgs.D.getIdentifierLoc());
4749    Previous.clear();
4750    Previous.setLookupName(Correction.getCorrection());
4751    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4752                                    CDeclEnd = Correction.end();
4753         CDecl != CDeclEnd; ++CDecl) {
4754      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4755      if (FD && !FD->hasBody() &&
4756          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4757        Previous.addDecl(FD);
4758      }
4759    }
4760    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4761    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4762    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4763    // eliminate the need for the parameter pack ExtraArgs.
4764    Result = SemaRef.ActOnFunctionDeclarator(
4765        ExtraArgs.S, ExtraArgs.D,
4766        Correction.getCorrectionDecl()->getDeclContext(),
4767        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4768        ExtraArgs.AddToScope);
4769    if (Trap.hasErrorOccurred()) {
4770      // Pretend the typo correction never occurred
4771      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4772                                ExtraArgs.D.getIdentifierLoc());
4773      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4774      Previous.clear();
4775      Previous.setLookupName(Name);
4776      Result = NULL;
4777    } else {
4778      for (LookupResult::iterator Func = Previous.begin(),
4779                               FuncEnd = Previous.end();
4780           Func != FuncEnd; ++Func) {
4781        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4782          NearMatches.push_back(std::make_pair(FD, 0));
4783      }
4784    }
4785    if (NearMatches.empty()) {
4786      // Ignore the correction if it didn't yield any close FunctionDecl matches
4787      Correction = TypoCorrection();
4788    } else {
4789      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4790                             : diag::err_member_def_does_not_match_suggest;
4791    }
4792  }
4793
4794  if (Correction) {
4795    SourceRange FixItLoc(NewFD->getLocation());
4796    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4797    if (Correction.getCorrectionSpecifier() && SS.isValid())
4798      FixItLoc.setBegin(SS.getBeginLoc());
4799    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4800        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4801        << FixItHint::CreateReplacement(
4802            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4803  } else {
4804    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4805        << Name << NewDC << NewFD->getLocation();
4806  }
4807
4808  bool NewFDisConst = false;
4809  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4810    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4811
4812  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4813       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4814       NearMatch != NearMatchEnd; ++NearMatch) {
4815    FunctionDecl *FD = NearMatch->first;
4816    bool FDisConst = false;
4817    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4818      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4819
4820    if (unsigned Idx = NearMatch->second) {
4821      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4822      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4823      if (Loc.isInvalid()) Loc = FD->getLocation();
4824      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4825          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4826    } else if (Correction) {
4827      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4828          << Correction.getQuoted(SemaRef.getLangOpts());
4829    } else if (FDisConst != NewFDisConst) {
4830      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4831          << NewFDisConst << FD->getSourceRange().getEnd();
4832    } else
4833      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4834  }
4835  return Result;
4836}
4837
4838static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4839                                                          Declarator &D) {
4840  switch (D.getDeclSpec().getStorageClassSpec()) {
4841  default: llvm_unreachable("Unknown storage class!");
4842  case DeclSpec::SCS_auto:
4843  case DeclSpec::SCS_register:
4844  case DeclSpec::SCS_mutable:
4845    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4846                 diag::err_typecheck_sclass_func);
4847    D.setInvalidType();
4848    break;
4849  case DeclSpec::SCS_unspecified: break;
4850  case DeclSpec::SCS_extern: return SC_Extern;
4851  case DeclSpec::SCS_static: {
4852    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4853      // C99 6.7.1p5:
4854      //   The declaration of an identifier for a function that has
4855      //   block scope shall have no explicit storage-class specifier
4856      //   other than extern
4857      // See also (C++ [dcl.stc]p4).
4858      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4859                   diag::err_static_block_func);
4860      break;
4861    } else
4862      return SC_Static;
4863  }
4864  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4865  }
4866
4867  // No explicit storage class has already been returned
4868  return SC_None;
4869}
4870
4871static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4872                                           DeclContext *DC, QualType &R,
4873                                           TypeSourceInfo *TInfo,
4874                                           FunctionDecl::StorageClass SC,
4875                                           bool &IsVirtualOkay) {
4876  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4877  DeclarationName Name = NameInfo.getName();
4878
4879  FunctionDecl *NewFD = 0;
4880  bool isInline = D.getDeclSpec().isInlineSpecified();
4881  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4882  FunctionDecl::StorageClass SCAsWritten
4883    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4884
4885  if (!SemaRef.getLangOpts().CPlusPlus) {
4886    // Determine whether the function was written with a
4887    // prototype. This true when:
4888    //   - there is a prototype in the declarator, or
4889    //   - the type R of the function is some kind of typedef or other reference
4890    //     to a type name (which eventually refers to a function type).
4891    bool HasPrototype =
4892      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4893      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4894
4895    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4896                                 D.getLocStart(), NameInfo, R,
4897                                 TInfo, SC, SCAsWritten, isInline,
4898                                 HasPrototype);
4899    if (D.isInvalidType())
4900      NewFD->setInvalidDecl();
4901
4902    // Set the lexical context.
4903    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4904
4905    return NewFD;
4906  }
4907
4908  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4909  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4910
4911  // Check that the return type is not an abstract class type.
4912  // For record types, this is done by the AbstractClassUsageDiagnoser once
4913  // the class has been completely parsed.
4914  if (!DC->isRecord() &&
4915      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4916                                     R->getAs<FunctionType>()->getResultType(),
4917                                     diag::err_abstract_type_in_decl,
4918                                     SemaRef.AbstractReturnType))
4919    D.setInvalidType();
4920
4921  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4922    // This is a C++ constructor declaration.
4923    assert(DC->isRecord() &&
4924           "Constructors can only be declared in a member context");
4925
4926    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4927    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4928                                      D.getLocStart(), NameInfo,
4929                                      R, TInfo, isExplicit, isInline,
4930                                      /*isImplicitlyDeclared=*/false,
4931                                      isConstexpr);
4932
4933  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4934    // This is a C++ destructor declaration.
4935    if (DC->isRecord()) {
4936      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4937      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4938      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4939                                        SemaRef.Context, Record,
4940                                        D.getLocStart(),
4941                                        NameInfo, R, TInfo, isInline,
4942                                        /*isImplicitlyDeclared=*/false);
4943
4944      // If the class is complete, then we now create the implicit exception
4945      // specification. If the class is incomplete or dependent, we can't do
4946      // it yet.
4947      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4948          Record->getDefinition() && !Record->isBeingDefined() &&
4949          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4950        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4951      }
4952
4953      IsVirtualOkay = true;
4954      return NewDD;
4955
4956    } else {
4957      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4958      D.setInvalidType();
4959
4960      // Create a FunctionDecl to satisfy the function definition parsing
4961      // code path.
4962      return FunctionDecl::Create(SemaRef.Context, DC,
4963                                  D.getLocStart(),
4964                                  D.getIdentifierLoc(), Name, R, TInfo,
4965                                  SC, SCAsWritten, isInline,
4966                                  /*hasPrototype=*/true, isConstexpr);
4967    }
4968
4969  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4970    if (!DC->isRecord()) {
4971      SemaRef.Diag(D.getIdentifierLoc(),
4972           diag::err_conv_function_not_member);
4973      return 0;
4974    }
4975
4976    SemaRef.CheckConversionDeclarator(D, R, SC);
4977    IsVirtualOkay = true;
4978    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4979                                     D.getLocStart(), NameInfo,
4980                                     R, TInfo, isInline, isExplicit,
4981                                     isConstexpr, SourceLocation());
4982
4983  } else if (DC->isRecord()) {
4984    // If the name of the function is the same as the name of the record,
4985    // then this must be an invalid constructor that has a return type.
4986    // (The parser checks for a return type and makes the declarator a
4987    // constructor if it has no return type).
4988    if (Name.getAsIdentifierInfo() &&
4989        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4990      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4991        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4992        << SourceRange(D.getIdentifierLoc());
4993      return 0;
4994    }
4995
4996    bool isStatic = SC == SC_Static;
4997
4998    // [class.free]p1:
4999    // Any allocation function for a class T is a static member
5000    // (even if not explicitly declared static).
5001    if (Name.getCXXOverloadedOperator() == OO_New ||
5002        Name.getCXXOverloadedOperator() == OO_Array_New)
5003      isStatic = true;
5004
5005    // [class.free]p6 Any deallocation function for a class X is a static member
5006    // (even if not explicitly declared static).
5007    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5008        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5009      isStatic = true;
5010
5011    IsVirtualOkay = !isStatic;
5012
5013    // This is a C++ method declaration.
5014    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5015                                 D.getLocStart(), NameInfo, R,
5016                                 TInfo, isStatic, SCAsWritten, isInline,
5017                                 isConstexpr, SourceLocation());
5018
5019  } else {
5020    // Determine whether the function was written with a
5021    // prototype. This true when:
5022    //   - we're in C++ (where every function has a prototype),
5023    return FunctionDecl::Create(SemaRef.Context, DC,
5024                                D.getLocStart(),
5025                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5026                                true/*HasPrototype*/, isConstexpr);
5027  }
5028}
5029
5030NamedDecl*
5031Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5032                              TypeSourceInfo *TInfo, LookupResult &Previous,
5033                              MultiTemplateParamsArg TemplateParamLists,
5034                              bool &AddToScope) {
5035  QualType R = TInfo->getType();
5036
5037  assert(R.getTypePtr()->isFunctionType());
5038
5039  // TODO: consider using NameInfo for diagnostic.
5040  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5041  DeclarationName Name = NameInfo.getName();
5042  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5043
5044  if (D.getDeclSpec().isThreadSpecified())
5045    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5046
5047  // Do not allow returning a objc interface by-value.
5048  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5049    Diag(D.getIdentifierLoc(),
5050         diag::err_object_cannot_be_passed_returned_by_value) << 0
5051    << R->getAs<FunctionType>()->getResultType()
5052    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5053
5054    QualType T = R->getAs<FunctionType>()->getResultType();
5055    T = Context.getObjCObjectPointerType(T);
5056    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5057      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5058      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5059                                  FPT->getNumArgs(), EPI);
5060    }
5061    else if (isa<FunctionNoProtoType>(R))
5062      R = Context.getFunctionNoProtoType(T);
5063  }
5064
5065  bool isFriend = false;
5066  FunctionTemplateDecl *FunctionTemplate = 0;
5067  bool isExplicitSpecialization = false;
5068  bool isFunctionTemplateSpecialization = false;
5069  bool isDependentClassScopeExplicitSpecialization = false;
5070  bool isVirtualOkay = false;
5071
5072  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5073                                              isVirtualOkay);
5074  if (!NewFD) return 0;
5075
5076  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5077    NewFD->setTopLevelDeclInObjCContainer();
5078
5079  if (getLangOpts().CPlusPlus) {
5080    bool isInline = D.getDeclSpec().isInlineSpecified();
5081    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5082    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5083    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5084    isFriend = D.getDeclSpec().isFriendSpecified();
5085    if (isFriend && !isInline && D.isFunctionDefinition()) {
5086      // C++ [class.friend]p5
5087      //   A function can be defined in a friend declaration of a
5088      //   class . . . . Such a function is implicitly inline.
5089      NewFD->setImplicitlyInline();
5090    }
5091
5092    SetNestedNameSpecifier(NewFD, D);
5093    isExplicitSpecialization = false;
5094    isFunctionTemplateSpecialization = false;
5095    if (D.isInvalidType())
5096      NewFD->setInvalidDecl();
5097
5098    // Set the lexical context. If the declarator has a C++
5099    // scope specifier, or is the object of a friend declaration, the
5100    // lexical context will be different from the semantic context.
5101    NewFD->setLexicalDeclContext(CurContext);
5102
5103    // Match up the template parameter lists with the scope specifier, then
5104    // determine whether we have a template or a template specialization.
5105    bool Invalid = false;
5106    if (TemplateParameterList *TemplateParams
5107          = MatchTemplateParametersToScopeSpecifier(
5108                                  D.getDeclSpec().getLocStart(),
5109                                  D.getIdentifierLoc(),
5110                                  D.getCXXScopeSpec(),
5111                                  TemplateParamLists.get(),
5112                                  TemplateParamLists.size(),
5113                                  isFriend,
5114                                  isExplicitSpecialization,
5115                                  Invalid)) {
5116      if (TemplateParams->size() > 0) {
5117        // This is a function template
5118
5119        // Check that we can declare a template here.
5120        if (CheckTemplateDeclScope(S, TemplateParams))
5121          return 0;
5122
5123        // A destructor cannot be a template.
5124        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5125          Diag(NewFD->getLocation(), diag::err_destructor_template);
5126          return 0;
5127        }
5128
5129        // If we're adding a template to a dependent context, we may need to
5130        // rebuilding some of the types used within the template parameter list,
5131        // now that we know what the current instantiation is.
5132        if (DC->isDependentContext()) {
5133          ContextRAII SavedContext(*this, DC);
5134          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5135            Invalid = true;
5136        }
5137
5138
5139        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5140                                                        NewFD->getLocation(),
5141                                                        Name, TemplateParams,
5142                                                        NewFD);
5143        FunctionTemplate->setLexicalDeclContext(CurContext);
5144        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5145
5146        // For source fidelity, store the other template param lists.
5147        if (TemplateParamLists.size() > 1) {
5148          NewFD->setTemplateParameterListsInfo(Context,
5149                                               TemplateParamLists.size() - 1,
5150                                               TemplateParamLists.release());
5151        }
5152      } else {
5153        // This is a function template specialization.
5154        isFunctionTemplateSpecialization = true;
5155        // For source fidelity, store all the template param lists.
5156        NewFD->setTemplateParameterListsInfo(Context,
5157                                             TemplateParamLists.size(),
5158                                             TemplateParamLists.release());
5159
5160        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5161        if (isFriend) {
5162          // We want to remove the "template<>", found here.
5163          SourceRange RemoveRange = TemplateParams->getSourceRange();
5164
5165          // If we remove the template<> and the name is not a
5166          // template-id, we're actually silently creating a problem:
5167          // the friend declaration will refer to an untemplated decl,
5168          // and clearly the user wants a template specialization.  So
5169          // we need to insert '<>' after the name.
5170          SourceLocation InsertLoc;
5171          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5172            InsertLoc = D.getName().getSourceRange().getEnd();
5173            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5174          }
5175
5176          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5177            << Name << RemoveRange
5178            << FixItHint::CreateRemoval(RemoveRange)
5179            << FixItHint::CreateInsertion(InsertLoc, "<>");
5180        }
5181      }
5182    }
5183    else {
5184      // All template param lists were matched against the scope specifier:
5185      // this is NOT (an explicit specialization of) a template.
5186      if (TemplateParamLists.size() > 0)
5187        // For source fidelity, store all the template param lists.
5188        NewFD->setTemplateParameterListsInfo(Context,
5189                                             TemplateParamLists.size(),
5190                                             TemplateParamLists.release());
5191    }
5192
5193    if (Invalid) {
5194      NewFD->setInvalidDecl();
5195      if (FunctionTemplate)
5196        FunctionTemplate->setInvalidDecl();
5197    }
5198
5199    // If we see "T var();" at block scope, where T is a class type, it is
5200    // probably an attempt to initialize a variable, not a function declaration.
5201    // We don't catch this case earlier, since there is no ambiguity here.
5202    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5203        CurContext->isFunctionOrMethod() &&
5204        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5205        D.getDeclSpec().getStorageClassSpecAsWritten()
5206          == DeclSpec::SCS_unspecified) {
5207      QualType T = R->getAs<FunctionType>()->getResultType();
5208      DeclaratorChunk &C = D.getTypeObject(0);
5209      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5210          !C.Fun.hasTrailingReturnType() &&
5211          C.Fun.getExceptionSpecType() == EST_None) {
5212        SourceRange ParenRange(C.Loc, C.EndLoc);
5213        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5214
5215        // If the declaration looks like:
5216        //   T var1,
5217        //   f();
5218        // and name lookup finds a function named 'f', then the ',' was
5219        // probably intended to be a ';'.
5220        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5221          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5222          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5223          if (Comma.getFileID() != Name.getFileID() ||
5224              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5225            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5226                                LookupOrdinaryName);
5227            if (LookupName(Result, S))
5228              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5229                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5230          }
5231        }
5232        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5233        // Empty parens mean value-initialization, and no parens mean default
5234        // initialization. These are equivalent if the default constructor is
5235        // user-provided, or if zero-initialization is a no-op.
5236        if (RD && RD->hasDefinition() &&
5237            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5238          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5239            << FixItHint::CreateRemoval(ParenRange);
5240        else {
5241          std::string Init = getFixItZeroInitializerForType(T);
5242          if (Init.empty() && LangOpts.CPlusPlus0x)
5243            Init = "{}";
5244          if (!Init.empty())
5245            Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5246              << FixItHint::CreateReplacement(ParenRange, Init);
5247        }
5248      }
5249    }
5250
5251    // C++ [dcl.fct.spec]p5:
5252    //   The virtual specifier shall only be used in declarations of
5253    //   nonstatic class member functions that appear within a
5254    //   member-specification of a class declaration; see 10.3.
5255    //
5256    if (isVirtual && !NewFD->isInvalidDecl()) {
5257      if (!isVirtualOkay) {
5258        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5259             diag::err_virtual_non_function);
5260      } else if (!CurContext->isRecord()) {
5261        // 'virtual' was specified outside of the class.
5262        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5263             diag::err_virtual_out_of_class)
5264          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5265      } else if (NewFD->getDescribedFunctionTemplate()) {
5266        // C++ [temp.mem]p3:
5267        //  A member function template shall not be virtual.
5268        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5269             diag::err_virtual_member_function_template)
5270          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5271      } else {
5272        // Okay: Add virtual to the method.
5273        NewFD->setVirtualAsWritten(true);
5274      }
5275    }
5276
5277    // C++ [dcl.fct.spec]p3:
5278    //  The inline specifier shall not appear on a block scope function
5279    //  declaration.
5280    if (isInline && !NewFD->isInvalidDecl()) {
5281      if (CurContext->isFunctionOrMethod()) {
5282        // 'inline' is not allowed on block scope function declaration.
5283        Diag(D.getDeclSpec().getInlineSpecLoc(),
5284             diag::err_inline_declaration_block_scope) << Name
5285          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5286      }
5287    }
5288
5289    // C++ [dcl.fct.spec]p6:
5290    //  The explicit specifier shall be used only in the declaration of a
5291    //  constructor or conversion function within its class definition;
5292    //  see 12.3.1 and 12.3.2.
5293    if (isExplicit && !NewFD->isInvalidDecl()) {
5294      if (!CurContext->isRecord()) {
5295        // 'explicit' was specified outside of the class.
5296        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5297             diag::err_explicit_out_of_class)
5298          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5299      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5300                 !isa<CXXConversionDecl>(NewFD)) {
5301        // 'explicit' was specified on a function that wasn't a constructor
5302        // or conversion function.
5303        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5304             diag::err_explicit_non_ctor_or_conv_function)
5305          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5306      }
5307    }
5308
5309    if (isConstexpr) {
5310      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5311      // are implicitly inline.
5312      NewFD->setImplicitlyInline();
5313
5314      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5315      // be either constructors or to return a literal type. Therefore,
5316      // destructors cannot be declared constexpr.
5317      if (isa<CXXDestructorDecl>(NewFD))
5318        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5319    }
5320
5321    // If __module_private__ was specified, mark the function accordingly.
5322    if (D.getDeclSpec().isModulePrivateSpecified()) {
5323      if (isFunctionTemplateSpecialization) {
5324        SourceLocation ModulePrivateLoc
5325          = D.getDeclSpec().getModulePrivateSpecLoc();
5326        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5327          << 0
5328          << FixItHint::CreateRemoval(ModulePrivateLoc);
5329      } else {
5330        NewFD->setModulePrivate();
5331        if (FunctionTemplate)
5332          FunctionTemplate->setModulePrivate();
5333      }
5334    }
5335
5336    if (isFriend) {
5337      // For now, claim that the objects have no previous declaration.
5338      if (FunctionTemplate) {
5339        FunctionTemplate->setObjectOfFriendDecl(false);
5340        FunctionTemplate->setAccess(AS_public);
5341      }
5342      NewFD->setObjectOfFriendDecl(false);
5343      NewFD->setAccess(AS_public);
5344    }
5345
5346    // If a function is defined as defaulted or deleted, mark it as such now.
5347    switch (D.getFunctionDefinitionKind()) {
5348      case FDK_Declaration:
5349      case FDK_Definition:
5350        break;
5351
5352      case FDK_Defaulted:
5353        NewFD->setDefaulted();
5354        break;
5355
5356      case FDK_Deleted:
5357        NewFD->setDeletedAsWritten();
5358        break;
5359    }
5360
5361    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5362        D.isFunctionDefinition()) {
5363      // C++ [class.mfct]p2:
5364      //   A member function may be defined (8.4) in its class definition, in
5365      //   which case it is an inline member function (7.1.2)
5366      NewFD->setImplicitlyInline();
5367    }
5368
5369    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5370        !CurContext->isRecord()) {
5371      // C++ [class.static]p1:
5372      //   A data or function member of a class may be declared static
5373      //   in a class definition, in which case it is a static member of
5374      //   the class.
5375
5376      // Complain about the 'static' specifier if it's on an out-of-line
5377      // member function definition.
5378      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5379           diag::err_static_out_of_line)
5380        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5381    }
5382  }
5383
5384  // Filter out previous declarations that don't match the scope.
5385  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5386                       isExplicitSpecialization ||
5387                       isFunctionTemplateSpecialization);
5388
5389  // Handle GNU asm-label extension (encoded as an attribute).
5390  if (Expr *E = (Expr*) D.getAsmLabel()) {
5391    // The parser guarantees this is a string.
5392    StringLiteral *SE = cast<StringLiteral>(E);
5393    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5394                                                SE->getString()));
5395  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5396    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5397      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5398    if (I != ExtnameUndeclaredIdentifiers.end()) {
5399      NewFD->addAttr(I->second);
5400      ExtnameUndeclaredIdentifiers.erase(I);
5401    }
5402  }
5403
5404  // Copy the parameter declarations from the declarator D to the function
5405  // declaration NewFD, if they are available.  First scavenge them into Params.
5406  SmallVector<ParmVarDecl*, 16> Params;
5407  if (D.isFunctionDeclarator()) {
5408    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5409
5410    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5411    // function that takes no arguments, not a function that takes a
5412    // single void argument.
5413    // We let through "const void" here because Sema::GetTypeForDeclarator
5414    // already checks for that case.
5415    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5416        FTI.ArgInfo[0].Param &&
5417        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5418      // Empty arg list, don't push any params.
5419      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5420
5421      // In C++, the empty parameter-type-list must be spelled "void"; a
5422      // typedef of void is not permitted.
5423      if (getLangOpts().CPlusPlus &&
5424          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5425        bool IsTypeAlias = false;
5426        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5427          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5428        else if (const TemplateSpecializationType *TST =
5429                   Param->getType()->getAs<TemplateSpecializationType>())
5430          IsTypeAlias = TST->isTypeAlias();
5431        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5432          << IsTypeAlias;
5433      }
5434    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5435      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5436        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5437        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5438        Param->setDeclContext(NewFD);
5439        Params.push_back(Param);
5440
5441        if (Param->isInvalidDecl())
5442          NewFD->setInvalidDecl();
5443      }
5444    }
5445
5446  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5447    // When we're declaring a function with a typedef, typeof, etc as in the
5448    // following example, we'll need to synthesize (unnamed)
5449    // parameters for use in the declaration.
5450    //
5451    // @code
5452    // typedef void fn(int);
5453    // fn f;
5454    // @endcode
5455
5456    // Synthesize a parameter for each argument type.
5457    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5458         AE = FT->arg_type_end(); AI != AE; ++AI) {
5459      ParmVarDecl *Param =
5460        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5461      Param->setScopeInfo(0, Params.size());
5462      Params.push_back(Param);
5463    }
5464  } else {
5465    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5466           "Should not need args for typedef of non-prototype fn");
5467  }
5468
5469  // Finally, we know we have the right number of parameters, install them.
5470  NewFD->setParams(Params);
5471
5472  // Find all anonymous symbols defined during the declaration of this function
5473  // and add to NewFD. This lets us track decls such 'enum Y' in:
5474  //
5475  //   void f(enum Y {AA} x) {}
5476  //
5477  // which would otherwise incorrectly end up in the translation unit scope.
5478  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5479  DeclsInPrototypeScope.clear();
5480
5481  // Process the non-inheritable attributes on this declaration.
5482  ProcessDeclAttributes(S, NewFD, D,
5483                        /*NonInheritable=*/true, /*Inheritable=*/false);
5484
5485  // Functions returning a variably modified type violate C99 6.7.5.2p2
5486  // because all functions have linkage.
5487  if (!NewFD->isInvalidDecl() &&
5488      NewFD->getResultType()->isVariablyModifiedType()) {
5489    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5490    NewFD->setInvalidDecl();
5491  }
5492
5493  // Handle attributes.
5494  ProcessDeclAttributes(S, NewFD, D,
5495                        /*NonInheritable=*/false, /*Inheritable=*/true);
5496
5497  if (!getLangOpts().CPlusPlus) {
5498    // Perform semantic checking on the function declaration.
5499    bool isExplicitSpecialization=false;
5500    if (!NewFD->isInvalidDecl()) {
5501      if (NewFD->isMain())
5502        CheckMain(NewFD, D.getDeclSpec());
5503      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5504                                                  isExplicitSpecialization));
5505    }
5506    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5507            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5508           "previous declaration set still overloaded");
5509  } else {
5510    // If the declarator is a template-id, translate the parser's template
5511    // argument list into our AST format.
5512    bool HasExplicitTemplateArgs = false;
5513    TemplateArgumentListInfo TemplateArgs;
5514    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5515      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5516      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5517      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5518      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5519                                         TemplateId->getTemplateArgs(),
5520                                         TemplateId->NumArgs);
5521      translateTemplateArguments(TemplateArgsPtr,
5522                                 TemplateArgs);
5523      TemplateArgsPtr.release();
5524
5525      HasExplicitTemplateArgs = true;
5526
5527      if (NewFD->isInvalidDecl()) {
5528        HasExplicitTemplateArgs = false;
5529      } else if (FunctionTemplate) {
5530        // Function template with explicit template arguments.
5531        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5532          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5533
5534        HasExplicitTemplateArgs = false;
5535      } else if (!isFunctionTemplateSpecialization &&
5536                 !D.getDeclSpec().isFriendSpecified()) {
5537        // We have encountered something that the user meant to be a
5538        // specialization (because it has explicitly-specified template
5539        // arguments) but that was not introduced with a "template<>" (or had
5540        // too few of them).
5541        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5542          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5543          << FixItHint::CreateInsertion(
5544                                    D.getDeclSpec().getLocStart(),
5545                                        "template<> ");
5546        isFunctionTemplateSpecialization = true;
5547      } else {
5548        // "friend void foo<>(int);" is an implicit specialization decl.
5549        isFunctionTemplateSpecialization = true;
5550      }
5551    } else if (isFriend && isFunctionTemplateSpecialization) {
5552      // This combination is only possible in a recovery case;  the user
5553      // wrote something like:
5554      //   template <> friend void foo(int);
5555      // which we're recovering from as if the user had written:
5556      //   friend void foo<>(int);
5557      // Go ahead and fake up a template id.
5558      HasExplicitTemplateArgs = true;
5559        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5560      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5561    }
5562
5563    // If it's a friend (and only if it's a friend), it's possible
5564    // that either the specialized function type or the specialized
5565    // template is dependent, and therefore matching will fail.  In
5566    // this case, don't check the specialization yet.
5567    bool InstantiationDependent = false;
5568    if (isFunctionTemplateSpecialization && isFriend &&
5569        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5570         TemplateSpecializationType::anyDependentTemplateArguments(
5571            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5572            InstantiationDependent))) {
5573      assert(HasExplicitTemplateArgs &&
5574             "friend function specialization without template args");
5575      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5576                                                       Previous))
5577        NewFD->setInvalidDecl();
5578    } else if (isFunctionTemplateSpecialization) {
5579      if (CurContext->isDependentContext() && CurContext->isRecord()
5580          && !isFriend) {
5581        isDependentClassScopeExplicitSpecialization = true;
5582        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5583          diag::ext_function_specialization_in_class :
5584          diag::err_function_specialization_in_class)
5585          << NewFD->getDeclName();
5586      } else if (CheckFunctionTemplateSpecialization(NewFD,
5587                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5588                                                     Previous))
5589        NewFD->setInvalidDecl();
5590
5591      // C++ [dcl.stc]p1:
5592      //   A storage-class-specifier shall not be specified in an explicit
5593      //   specialization (14.7.3)
5594      if (SC != SC_None) {
5595        if (SC != NewFD->getStorageClass())
5596          Diag(NewFD->getLocation(),
5597               diag::err_explicit_specialization_inconsistent_storage_class)
5598            << SC
5599            << FixItHint::CreateRemoval(
5600                                      D.getDeclSpec().getStorageClassSpecLoc());
5601
5602        else
5603          Diag(NewFD->getLocation(),
5604               diag::ext_explicit_specialization_storage_class)
5605            << FixItHint::CreateRemoval(
5606                                      D.getDeclSpec().getStorageClassSpecLoc());
5607      }
5608
5609    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5610      if (CheckMemberSpecialization(NewFD, Previous))
5611          NewFD->setInvalidDecl();
5612    }
5613
5614    // Perform semantic checking on the function declaration.
5615    if (!isDependentClassScopeExplicitSpecialization) {
5616      if (NewFD->isInvalidDecl()) {
5617        // If this is a class member, mark the class invalid immediately.
5618        // This avoids some consistency errors later.
5619        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5620          methodDecl->getParent()->setInvalidDecl();
5621      } else {
5622        if (NewFD->isMain())
5623          CheckMain(NewFD, D.getDeclSpec());
5624        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5625                                                    isExplicitSpecialization));
5626      }
5627    }
5628
5629    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5630            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5631           "previous declaration set still overloaded");
5632
5633    NamedDecl *PrincipalDecl = (FunctionTemplate
5634                                ? cast<NamedDecl>(FunctionTemplate)
5635                                : NewFD);
5636
5637    if (isFriend && D.isRedeclaration()) {
5638      AccessSpecifier Access = AS_public;
5639      if (!NewFD->isInvalidDecl())
5640        Access = NewFD->getPreviousDecl()->getAccess();
5641
5642      NewFD->setAccess(Access);
5643      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5644
5645      PrincipalDecl->setObjectOfFriendDecl(true);
5646    }
5647
5648    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5649        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5650      PrincipalDecl->setNonMemberOperator();
5651
5652    // If we have a function template, check the template parameter
5653    // list. This will check and merge default template arguments.
5654    if (FunctionTemplate) {
5655      FunctionTemplateDecl *PrevTemplate =
5656                                     FunctionTemplate->getPreviousDecl();
5657      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5658                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5659                            D.getDeclSpec().isFriendSpecified()
5660                              ? (D.isFunctionDefinition()
5661                                   ? TPC_FriendFunctionTemplateDefinition
5662                                   : TPC_FriendFunctionTemplate)
5663                              : (D.getCXXScopeSpec().isSet() &&
5664                                 DC && DC->isRecord() &&
5665                                 DC->isDependentContext())
5666                                  ? TPC_ClassTemplateMember
5667                                  : TPC_FunctionTemplate);
5668    }
5669
5670    if (NewFD->isInvalidDecl()) {
5671      // Ignore all the rest of this.
5672    } else if (!D.isRedeclaration()) {
5673      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5674                                       AddToScope };
5675      // Fake up an access specifier if it's supposed to be a class member.
5676      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5677        NewFD->setAccess(AS_public);
5678
5679      // Qualified decls generally require a previous declaration.
5680      if (D.getCXXScopeSpec().isSet()) {
5681        // ...with the major exception of templated-scope or
5682        // dependent-scope friend declarations.
5683
5684        // TODO: we currently also suppress this check in dependent
5685        // contexts because (1) the parameter depth will be off when
5686        // matching friend templates and (2) we might actually be
5687        // selecting a friend based on a dependent factor.  But there
5688        // are situations where these conditions don't apply and we
5689        // can actually do this check immediately.
5690        if (isFriend &&
5691            (TemplateParamLists.size() ||
5692             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5693             CurContext->isDependentContext())) {
5694          // ignore these
5695        } else {
5696          // The user tried to provide an out-of-line definition for a
5697          // function that is a member of a class or namespace, but there
5698          // was no such member function declared (C++ [class.mfct]p2,
5699          // C++ [namespace.memdef]p2). For example:
5700          //
5701          // class X {
5702          //   void f() const;
5703          // };
5704          //
5705          // void X::f() { } // ill-formed
5706          //
5707          // Complain about this problem, and attempt to suggest close
5708          // matches (e.g., those that differ only in cv-qualifiers and
5709          // whether the parameter types are references).
5710
5711          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5712                                                               NewFD,
5713                                                               ExtraArgs)) {
5714            AddToScope = ExtraArgs.AddToScope;
5715            return Result;
5716          }
5717        }
5718
5719        // Unqualified local friend declarations are required to resolve
5720        // to something.
5721      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5722        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5723                                                             NewFD,
5724                                                             ExtraArgs)) {
5725          AddToScope = ExtraArgs.AddToScope;
5726          return Result;
5727        }
5728      }
5729
5730    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5731               !isFriend && !isFunctionTemplateSpecialization &&
5732               !isExplicitSpecialization) {
5733      // An out-of-line member function declaration must also be a
5734      // definition (C++ [dcl.meaning]p1).
5735      // Note that this is not the case for explicit specializations of
5736      // function templates or member functions of class templates, per
5737      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5738      // extension for compatibility with old SWIG code which likes to
5739      // generate them.
5740      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5741        << D.getCXXScopeSpec().getRange();
5742    }
5743  }
5744
5745  AddKnownFunctionAttributes(NewFD);
5746
5747  if (NewFD->hasAttr<OverloadableAttr>() &&
5748      !NewFD->getType()->getAs<FunctionProtoType>()) {
5749    Diag(NewFD->getLocation(),
5750         diag::err_attribute_overloadable_no_prototype)
5751      << NewFD;
5752
5753    // Turn this into a variadic function with no parameters.
5754    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5755    FunctionProtoType::ExtProtoInfo EPI;
5756    EPI.Variadic = true;
5757    EPI.ExtInfo = FT->getExtInfo();
5758
5759    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5760    NewFD->setType(R);
5761  }
5762
5763  // If there's a #pragma GCC visibility in scope, and this isn't a class
5764  // member, set the visibility of this function.
5765  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5766    AddPushedVisibilityAttribute(NewFD);
5767
5768  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5769  // marking the function.
5770  AddCFAuditedAttribute(NewFD);
5771
5772  // If this is a locally-scoped extern C function, update the
5773  // map of such names.
5774  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5775      && !NewFD->isInvalidDecl())
5776    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5777
5778  // Set this FunctionDecl's range up to the right paren.
5779  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5780
5781  if (getLangOpts().CPlusPlus) {
5782    if (FunctionTemplate) {
5783      if (NewFD->isInvalidDecl())
5784        FunctionTemplate->setInvalidDecl();
5785      return FunctionTemplate;
5786    }
5787  }
5788
5789  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5790  if ((getLangOpts().OpenCLVersion >= 120)
5791      && NewFD->hasAttr<OpenCLKernelAttr>()
5792      && (SC == SC_Static)) {
5793    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5794    D.setInvalidType();
5795  }
5796
5797  MarkUnusedFileScopedDecl(NewFD);
5798
5799  if (getLangOpts().CUDA)
5800    if (IdentifierInfo *II = NewFD->getIdentifier())
5801      if (!NewFD->isInvalidDecl() &&
5802          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5803        if (II->isStr("cudaConfigureCall")) {
5804          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5805            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5806
5807          Context.setcudaConfigureCallDecl(NewFD);
5808        }
5809      }
5810
5811  // Here we have an function template explicit specialization at class scope.
5812  // The actually specialization will be postponed to template instatiation
5813  // time via the ClassScopeFunctionSpecializationDecl node.
5814  if (isDependentClassScopeExplicitSpecialization) {
5815    ClassScopeFunctionSpecializationDecl *NewSpec =
5816                         ClassScopeFunctionSpecializationDecl::Create(
5817                                Context, CurContext,  SourceLocation(),
5818                                cast<CXXMethodDecl>(NewFD));
5819    CurContext->addDecl(NewSpec);
5820    AddToScope = false;
5821  }
5822
5823  return NewFD;
5824}
5825
5826/// \brief Perform semantic checking of a new function declaration.
5827///
5828/// Performs semantic analysis of the new function declaration
5829/// NewFD. This routine performs all semantic checking that does not
5830/// require the actual declarator involved in the declaration, and is
5831/// used both for the declaration of functions as they are parsed
5832/// (called via ActOnDeclarator) and for the declaration of functions
5833/// that have been instantiated via C++ template instantiation (called
5834/// via InstantiateDecl).
5835///
5836/// \param IsExplicitSpecialization whether this new function declaration is
5837/// an explicit specialization of the previous declaration.
5838///
5839/// This sets NewFD->isInvalidDecl() to true if there was an error.
5840///
5841/// \returns true if the function declaration is a redeclaration.
5842bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5843                                    LookupResult &Previous,
5844                                    bool IsExplicitSpecialization) {
5845  assert(!NewFD->getResultType()->isVariablyModifiedType()
5846         && "Variably modified return types are not handled here");
5847
5848  // Check for a previous declaration of this name.
5849  if (Previous.empty() && NewFD->isExternC()) {
5850    // Since we did not find anything by this name and we're declaring
5851    // an extern "C" function, look for a non-visible extern "C"
5852    // declaration with the same name.
5853    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5854      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5855    if (Pos != LocallyScopedExternalDecls.end())
5856      Previous.addDecl(Pos->second);
5857  }
5858
5859  bool Redeclaration = false;
5860
5861  // Merge or overload the declaration with an existing declaration of
5862  // the same name, if appropriate.
5863  if (!Previous.empty()) {
5864    // Determine whether NewFD is an overload of PrevDecl or
5865    // a declaration that requires merging. If it's an overload,
5866    // there's no more work to do here; we'll just add the new
5867    // function to the scope.
5868
5869    NamedDecl *OldDecl = 0;
5870    if (!AllowOverloadingOfFunction(Previous, Context)) {
5871      Redeclaration = true;
5872      OldDecl = Previous.getFoundDecl();
5873    } else {
5874      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5875                            /*NewIsUsingDecl*/ false)) {
5876      case Ovl_Match:
5877        Redeclaration = true;
5878        break;
5879
5880      case Ovl_NonFunction:
5881        Redeclaration = true;
5882        break;
5883
5884      case Ovl_Overload:
5885        Redeclaration = false;
5886        break;
5887      }
5888
5889      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5890        // If a function name is overloadable in C, then every function
5891        // with that name must be marked "overloadable".
5892        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5893          << Redeclaration << NewFD;
5894        NamedDecl *OverloadedDecl = 0;
5895        if (Redeclaration)
5896          OverloadedDecl = OldDecl;
5897        else if (!Previous.empty())
5898          OverloadedDecl = Previous.getRepresentativeDecl();
5899        if (OverloadedDecl)
5900          Diag(OverloadedDecl->getLocation(),
5901               diag::note_attribute_overloadable_prev_overload);
5902        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5903                                                        Context));
5904      }
5905    }
5906
5907    if (Redeclaration) {
5908      // NewFD and OldDecl represent declarations that need to be
5909      // merged.
5910      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5911        NewFD->setInvalidDecl();
5912        return Redeclaration;
5913      }
5914
5915      Previous.clear();
5916      Previous.addDecl(OldDecl);
5917
5918      if (FunctionTemplateDecl *OldTemplateDecl
5919                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5920        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5921        FunctionTemplateDecl *NewTemplateDecl
5922          = NewFD->getDescribedFunctionTemplate();
5923        assert(NewTemplateDecl && "Template/non-template mismatch");
5924        if (CXXMethodDecl *Method
5925              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5926          Method->setAccess(OldTemplateDecl->getAccess());
5927          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5928        }
5929
5930        // If this is an explicit specialization of a member that is a function
5931        // template, mark it as a member specialization.
5932        if (IsExplicitSpecialization &&
5933            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5934          NewTemplateDecl->setMemberSpecialization();
5935          assert(OldTemplateDecl->isMemberSpecialization());
5936        }
5937
5938      } else {
5939        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5940          NewFD->setAccess(OldDecl->getAccess());
5941        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5942      }
5943    }
5944  }
5945
5946  // Semantic checking for this function declaration (in isolation).
5947  if (getLangOpts().CPlusPlus) {
5948    // C++-specific checks.
5949    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5950      CheckConstructor(Constructor);
5951    } else if (CXXDestructorDecl *Destructor =
5952                dyn_cast<CXXDestructorDecl>(NewFD)) {
5953      CXXRecordDecl *Record = Destructor->getParent();
5954      QualType ClassType = Context.getTypeDeclType(Record);
5955
5956      // FIXME: Shouldn't we be able to perform this check even when the class
5957      // type is dependent? Both gcc and edg can handle that.
5958      if (!ClassType->isDependentType()) {
5959        DeclarationName Name
5960          = Context.DeclarationNames.getCXXDestructorName(
5961                                        Context.getCanonicalType(ClassType));
5962        if (NewFD->getDeclName() != Name) {
5963          Diag(NewFD->getLocation(), diag::err_destructor_name);
5964          NewFD->setInvalidDecl();
5965          return Redeclaration;
5966        }
5967      }
5968    } else if (CXXConversionDecl *Conversion
5969               = dyn_cast<CXXConversionDecl>(NewFD)) {
5970      ActOnConversionDeclarator(Conversion);
5971    }
5972
5973    // Find any virtual functions that this function overrides.
5974    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5975      if (!Method->isFunctionTemplateSpecialization() &&
5976          !Method->getDescribedFunctionTemplate()) {
5977        if (AddOverriddenMethods(Method->getParent(), Method)) {
5978          // If the function was marked as "static", we have a problem.
5979          if (NewFD->getStorageClass() == SC_Static) {
5980            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5981              << NewFD->getDeclName();
5982            for (CXXMethodDecl::method_iterator
5983                      Overridden = Method->begin_overridden_methods(),
5984                   OverriddenEnd = Method->end_overridden_methods();
5985                 Overridden != OverriddenEnd;
5986                 ++Overridden) {
5987              Diag((*Overridden)->getLocation(),
5988                   diag::note_overridden_virtual_function);
5989            }
5990          }
5991        }
5992      }
5993
5994      if (Method->isStatic())
5995        checkThisInStaticMemberFunctionType(Method);
5996    }
5997
5998    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5999    if (NewFD->isOverloadedOperator() &&
6000        CheckOverloadedOperatorDeclaration(NewFD)) {
6001      NewFD->setInvalidDecl();
6002      return Redeclaration;
6003    }
6004
6005    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6006    if (NewFD->getLiteralIdentifier() &&
6007        CheckLiteralOperatorDeclaration(NewFD)) {
6008      NewFD->setInvalidDecl();
6009      return Redeclaration;
6010    }
6011
6012    // In C++, check default arguments now that we have merged decls. Unless
6013    // the lexical context is the class, because in this case this is done
6014    // during delayed parsing anyway.
6015    if (!CurContext->isRecord())
6016      CheckCXXDefaultArguments(NewFD);
6017
6018    // If this function declares a builtin function, check the type of this
6019    // declaration against the expected type for the builtin.
6020    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6021      ASTContext::GetBuiltinTypeError Error;
6022      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6023      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6024        // The type of this function differs from the type of the builtin,
6025        // so forget about the builtin entirely.
6026        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6027      }
6028    }
6029
6030    // If this function is declared as being extern "C", then check to see if
6031    // the function returns a UDT (class, struct, or union type) that is not C
6032    // compatible, and if it does, warn the user.
6033    if (NewFD->isExternC()) {
6034      QualType R = NewFD->getResultType();
6035      if (!R.isPODType(Context) &&
6036          !R->isVoidType())
6037        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
6038          << NewFD << R;
6039    }
6040  }
6041  return Redeclaration;
6042}
6043
6044void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6045  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6046  //   static or constexpr is ill-formed.
6047  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6048  //   shall not appear in a declaration of main.
6049  // static main is not an error under C99, but we should warn about it.
6050  if (FD->getStorageClass() == SC_Static)
6051    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6052         ? diag::err_static_main : diag::warn_static_main)
6053      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6054  if (FD->isInlineSpecified())
6055    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6056      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6057  if (FD->isConstexpr()) {
6058    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6059      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6060    FD->setConstexpr(false);
6061  }
6062
6063  QualType T = FD->getType();
6064  assert(T->isFunctionType() && "function decl is not of function type");
6065  const FunctionType* FT = T->castAs<FunctionType>();
6066
6067  // All the standards say that main() should should return 'int'.
6068  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6069    // In C and C++, main magically returns 0 if you fall off the end;
6070    // set the flag which tells us that.
6071    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6072    FD->setHasImplicitReturnZero(true);
6073
6074  // In C with GNU extensions we allow main() to have non-integer return
6075  // type, but we should warn about the extension, and we disable the
6076  // implicit-return-zero rule.
6077  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6078    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6079
6080  // Otherwise, this is just a flat-out error.
6081  } else {
6082    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6083    FD->setInvalidDecl(true);
6084  }
6085
6086  // Treat protoless main() as nullary.
6087  if (isa<FunctionNoProtoType>(FT)) return;
6088
6089  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6090  unsigned nparams = FTP->getNumArgs();
6091  assert(FD->getNumParams() == nparams);
6092
6093  bool HasExtraParameters = (nparams > 3);
6094
6095  // Darwin passes an undocumented fourth argument of type char**.  If
6096  // other platforms start sprouting these, the logic below will start
6097  // getting shifty.
6098  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6099    HasExtraParameters = false;
6100
6101  if (HasExtraParameters) {
6102    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6103    FD->setInvalidDecl(true);
6104    nparams = 3;
6105  }
6106
6107  // FIXME: a lot of the following diagnostics would be improved
6108  // if we had some location information about types.
6109
6110  QualType CharPP =
6111    Context.getPointerType(Context.getPointerType(Context.CharTy));
6112  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6113
6114  for (unsigned i = 0; i < nparams; ++i) {
6115    QualType AT = FTP->getArgType(i);
6116
6117    bool mismatch = true;
6118
6119    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6120      mismatch = false;
6121    else if (Expected[i] == CharPP) {
6122      // As an extension, the following forms are okay:
6123      //   char const **
6124      //   char const * const *
6125      //   char * const *
6126
6127      QualifierCollector qs;
6128      const PointerType* PT;
6129      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6130          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6131          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6132        qs.removeConst();
6133        mismatch = !qs.empty();
6134      }
6135    }
6136
6137    if (mismatch) {
6138      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6139      // TODO: suggest replacing given type with expected type
6140      FD->setInvalidDecl(true);
6141    }
6142  }
6143
6144  if (nparams == 1 && !FD->isInvalidDecl()) {
6145    Diag(FD->getLocation(), diag::warn_main_one_arg);
6146  }
6147
6148  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6149    Diag(FD->getLocation(), diag::err_main_template_decl);
6150    FD->setInvalidDecl();
6151  }
6152}
6153
6154bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6155  // FIXME: Need strict checking.  In C89, we need to check for
6156  // any assignment, increment, decrement, function-calls, or
6157  // commas outside of a sizeof.  In C99, it's the same list,
6158  // except that the aforementioned are allowed in unevaluated
6159  // expressions.  Everything else falls under the
6160  // "may accept other forms of constant expressions" exception.
6161  // (We never end up here for C++, so the constant expression
6162  // rules there don't matter.)
6163  if (Init->isConstantInitializer(Context, false))
6164    return false;
6165  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6166    << Init->getSourceRange();
6167  return true;
6168}
6169
6170namespace {
6171  // Visits an initialization expression to see if OrigDecl is evaluated in
6172  // its own initialization and throws a warning if it does.
6173  class SelfReferenceChecker
6174      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6175    Sema &S;
6176    Decl *OrigDecl;
6177    bool isRecordType;
6178    bool isPODType;
6179
6180  public:
6181    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6182
6183    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6184                                                    S(S), OrigDecl(OrigDecl) {
6185      isPODType = false;
6186      isRecordType = false;
6187      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6188        isPODType = VD->getType().isPODType(S.Context);
6189        isRecordType = VD->getType()->isRecordType();
6190      }
6191    }
6192
6193    // Sometimes, the expression passed in lacks the casts that are used
6194    // to determine which DeclRefExpr's to check.  Assume that the casts
6195    // are present and continue visiting the expression.
6196    void HandleExpr(Expr *E) {
6197      // Skip checking T a = a where T is not a record type.  Doing so is a
6198      // way to silence uninitialized warnings.
6199      if (isRecordType)
6200        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6201          HandleDeclRefExpr(DRE);
6202
6203      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6204        HandleValue(CO->getTrueExpr());
6205        HandleValue(CO->getFalseExpr());
6206      }
6207
6208      Visit(E);
6209    }
6210
6211    // For most expressions, the cast is directly above the DeclRefExpr.
6212    // For conditional operators, the cast can be outside the conditional
6213    // operator if both expressions are DeclRefExpr's.
6214    void HandleValue(Expr *E) {
6215      E = E->IgnoreParenImpCasts();
6216      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6217        HandleDeclRefExpr(DRE);
6218        return;
6219      }
6220
6221      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6222        HandleValue(CO->getTrueExpr());
6223        HandleValue(CO->getFalseExpr());
6224      }
6225    }
6226
6227    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6228      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6229          (isRecordType && E->getCastKind() == CK_NoOp))
6230        HandleValue(E->getSubExpr());
6231
6232      Inherited::VisitImplicitCastExpr(E);
6233    }
6234
6235    void VisitMemberExpr(MemberExpr *E) {
6236      // Don't warn on arrays since they can be treated as pointers.
6237      if (E->getType()->canDecayToPointerType()) return;
6238
6239      ValueDecl *VD = E->getMemberDecl();
6240      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6241      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6242        if (DeclRefExpr *DRE
6243              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6244          HandleDeclRefExpr(DRE);
6245          return;
6246        }
6247
6248      Inherited::VisitMemberExpr(E);
6249    }
6250
6251    void VisitUnaryOperator(UnaryOperator *E) {
6252      // For POD record types, addresses of its own members are well-defined.
6253      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6254          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6255      Inherited::VisitUnaryOperator(E);
6256    }
6257
6258    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6259
6260    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6261      Decl* ReferenceDecl = DRE->getDecl();
6262      if (OrigDecl != ReferenceDecl) return;
6263      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6264                          Sema::NotForRedeclaration);
6265      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6266                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6267                              << Result.getLookupName()
6268                              << OrigDecl->getLocation()
6269                              << DRE->getSourceRange());
6270    }
6271  };
6272}
6273
6274/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6275void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6276  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6277}
6278
6279/// AddInitializerToDecl - Adds the initializer Init to the
6280/// declaration dcl. If DirectInit is true, this is C++ direct
6281/// initialization rather than copy initialization.
6282void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6283                                bool DirectInit, bool TypeMayContainAuto) {
6284  // If there is no declaration, there was an error parsing it.  Just ignore
6285  // the initializer.
6286  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6287    return;
6288
6289  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6290    // With declarators parsed the way they are, the parser cannot
6291    // distinguish between a normal initializer and a pure-specifier.
6292    // Thus this grotesque test.
6293    IntegerLiteral *IL;
6294    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6295        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6296      CheckPureMethod(Method, Init->getSourceRange());
6297    else {
6298      Diag(Method->getLocation(), diag::err_member_function_initialization)
6299        << Method->getDeclName() << Init->getSourceRange();
6300      Method->setInvalidDecl();
6301    }
6302    return;
6303  }
6304
6305  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6306  if (!VDecl) {
6307    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6308    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6309    RealDecl->setInvalidDecl();
6310    return;
6311  }
6312
6313  // Check for self-references within variable initializers.
6314  // Variables declared within a function/method body are handled
6315  // by a dataflow analysis.
6316  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6317    CheckSelfReference(RealDecl, Init);
6318
6319  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6320
6321  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6322  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6323    Expr *DeduceInit = Init;
6324    // Initializer could be a C++ direct-initializer. Deduction only works if it
6325    // contains exactly one expression.
6326    if (CXXDirectInit) {
6327      if (CXXDirectInit->getNumExprs() == 0) {
6328        // It isn't possible to write this directly, but it is possible to
6329        // end up in this situation with "auto x(some_pack...);"
6330        Diag(CXXDirectInit->getLocStart(),
6331             diag::err_auto_var_init_no_expression)
6332          << VDecl->getDeclName() << VDecl->getType()
6333          << VDecl->getSourceRange();
6334        RealDecl->setInvalidDecl();
6335        return;
6336      } else if (CXXDirectInit->getNumExprs() > 1) {
6337        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6338             diag::err_auto_var_init_multiple_expressions)
6339          << VDecl->getDeclName() << VDecl->getType()
6340          << VDecl->getSourceRange();
6341        RealDecl->setInvalidDecl();
6342        return;
6343      } else {
6344        DeduceInit = CXXDirectInit->getExpr(0);
6345      }
6346    }
6347    TypeSourceInfo *DeducedType = 0;
6348    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6349            DAR_Failed)
6350      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6351    if (!DeducedType) {
6352      RealDecl->setInvalidDecl();
6353      return;
6354    }
6355    VDecl->setTypeSourceInfo(DeducedType);
6356    VDecl->setType(DeducedType->getType());
6357    VDecl->ClearLinkageCache();
6358
6359    // In ARC, infer lifetime.
6360    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6361      VDecl->setInvalidDecl();
6362
6363    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6364    // 'id' instead of a specific object type prevents most of our usual checks.
6365    // We only want to warn outside of template instantiations, though:
6366    // inside a template, the 'id' could have come from a parameter.
6367    if (ActiveTemplateInstantiations.empty() &&
6368        DeducedType->getType()->isObjCIdType()) {
6369      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6370      Diag(Loc, diag::warn_auto_var_is_id)
6371        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6372    }
6373
6374    // If this is a redeclaration, check that the type we just deduced matches
6375    // the previously declared type.
6376    if (VarDecl *Old = VDecl->getPreviousDecl())
6377      MergeVarDeclTypes(VDecl, Old);
6378  }
6379
6380  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6381    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6382    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6383    VDecl->setInvalidDecl();
6384    return;
6385  }
6386
6387  if (!VDecl->getType()->isDependentType()) {
6388    // A definition must end up with a complete type, which means it must be
6389    // complete with the restriction that an array type might be completed by
6390    // the initializer; note that later code assumes this restriction.
6391    QualType BaseDeclType = VDecl->getType();
6392    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6393      BaseDeclType = Array->getElementType();
6394    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6395                            diag::err_typecheck_decl_incomplete_type)) {
6396      RealDecl->setInvalidDecl();
6397      return;
6398    }
6399
6400    // The variable can not have an abstract class type.
6401    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6402                               diag::err_abstract_type_in_decl,
6403                               AbstractVariableType))
6404      VDecl->setInvalidDecl();
6405  }
6406
6407  const VarDecl *Def;
6408  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6409    Diag(VDecl->getLocation(), diag::err_redefinition)
6410      << VDecl->getDeclName();
6411    Diag(Def->getLocation(), diag::note_previous_definition);
6412    VDecl->setInvalidDecl();
6413    return;
6414  }
6415
6416  const VarDecl* PrevInit = 0;
6417  if (getLangOpts().CPlusPlus) {
6418    // C++ [class.static.data]p4
6419    //   If a static data member is of const integral or const
6420    //   enumeration type, its declaration in the class definition can
6421    //   specify a constant-initializer which shall be an integral
6422    //   constant expression (5.19). In that case, the member can appear
6423    //   in integral constant expressions. The member shall still be
6424    //   defined in a namespace scope if it is used in the program and the
6425    //   namespace scope definition shall not contain an initializer.
6426    //
6427    // We already performed a redefinition check above, but for static
6428    // data members we also need to check whether there was an in-class
6429    // declaration with an initializer.
6430    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6431      Diag(VDecl->getLocation(), diag::err_redefinition)
6432        << VDecl->getDeclName();
6433      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6434      return;
6435    }
6436
6437    if (VDecl->hasLocalStorage())
6438      getCurFunction()->setHasBranchProtectedScope();
6439
6440    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6441      VDecl->setInvalidDecl();
6442      return;
6443    }
6444  }
6445
6446  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6447  // a kernel function cannot be initialized."
6448  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6449    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6450    VDecl->setInvalidDecl();
6451    return;
6452  }
6453
6454  // Get the decls type and save a reference for later, since
6455  // CheckInitializerTypes may change it.
6456  QualType DclT = VDecl->getType(), SavT = DclT;
6457
6458  // Top-level message sends default to 'id' when we're in a debugger
6459  // and we are assigning it to a variable of 'id' type.
6460  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6461    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6462      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6463      if (Result.isInvalid()) {
6464        VDecl->setInvalidDecl();
6465        return;
6466      }
6467      Init = Result.take();
6468    }
6469
6470  // Perform the initialization.
6471  if (!VDecl->isInvalidDecl()) {
6472    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6473    InitializationKind Kind
6474      = DirectInit ?
6475          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6476                                                           Init->getLocStart(),
6477                                                           Init->getLocEnd())
6478                        : InitializationKind::CreateDirectList(
6479                                                          VDecl->getLocation())
6480                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6481                                                    Init->getLocStart());
6482
6483    Expr **Args = &Init;
6484    unsigned NumArgs = 1;
6485    if (CXXDirectInit) {
6486      Args = CXXDirectInit->getExprs();
6487      NumArgs = CXXDirectInit->getNumExprs();
6488    }
6489    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6490    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6491                                              MultiExprArg(*this, Args,NumArgs),
6492                                              &DclT);
6493    if (Result.isInvalid()) {
6494      VDecl->setInvalidDecl();
6495      return;
6496    }
6497
6498    Init = Result.takeAs<Expr>();
6499  }
6500
6501  // If the type changed, it means we had an incomplete type that was
6502  // completed by the initializer. For example:
6503  //   int ary[] = { 1, 3, 5 };
6504  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6505  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6506    VDecl->setType(DclT);
6507
6508  // Check any implicit conversions within the expression.
6509  CheckImplicitConversions(Init, VDecl->getLocation());
6510
6511  if (!VDecl->isInvalidDecl())
6512    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6513
6514  Init = MaybeCreateExprWithCleanups(Init);
6515  // Attach the initializer to the decl.
6516  VDecl->setInit(Init);
6517
6518  if (VDecl->isLocalVarDecl()) {
6519    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6520    // static storage duration shall be constant expressions or string literals.
6521    // C++ does not have this restriction.
6522    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6523        VDecl->getStorageClass() == SC_Static)
6524      CheckForConstantInitializer(Init, DclT);
6525  } else if (VDecl->isStaticDataMember() &&
6526             VDecl->getLexicalDeclContext()->isRecord()) {
6527    // This is an in-class initialization for a static data member, e.g.,
6528    //
6529    // struct S {
6530    //   static const int value = 17;
6531    // };
6532
6533    // C++ [class.mem]p4:
6534    //   A member-declarator can contain a constant-initializer only
6535    //   if it declares a static member (9.4) of const integral or
6536    //   const enumeration type, see 9.4.2.
6537    //
6538    // C++11 [class.static.data]p3:
6539    //   If a non-volatile const static data member is of integral or
6540    //   enumeration type, its declaration in the class definition can
6541    //   specify a brace-or-equal-initializer in which every initalizer-clause
6542    //   that is an assignment-expression is a constant expression. A static
6543    //   data member of literal type can be declared in the class definition
6544    //   with the constexpr specifier; if so, its declaration shall specify a
6545    //   brace-or-equal-initializer in which every initializer-clause that is
6546    //   an assignment-expression is a constant expression.
6547
6548    // Do nothing on dependent types.
6549    if (DclT->isDependentType()) {
6550
6551    // Allow any 'static constexpr' members, whether or not they are of literal
6552    // type. We separately check that every constexpr variable is of literal
6553    // type.
6554    } else if (VDecl->isConstexpr()) {
6555
6556    // Require constness.
6557    } else if (!DclT.isConstQualified()) {
6558      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6559        << Init->getSourceRange();
6560      VDecl->setInvalidDecl();
6561
6562    // We allow integer constant expressions in all cases.
6563    } else if (DclT->isIntegralOrEnumerationType()) {
6564      // Check whether the expression is a constant expression.
6565      SourceLocation Loc;
6566      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6567        // In C++11, a non-constexpr const static data member with an
6568        // in-class initializer cannot be volatile.
6569        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6570      else if (Init->isValueDependent())
6571        ; // Nothing to check.
6572      else if (Init->isIntegerConstantExpr(Context, &Loc))
6573        ; // Ok, it's an ICE!
6574      else if (Init->isEvaluatable(Context)) {
6575        // If we can constant fold the initializer through heroics, accept it,
6576        // but report this as a use of an extension for -pedantic.
6577        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6578          << Init->getSourceRange();
6579      } else {
6580        // Otherwise, this is some crazy unknown case.  Report the issue at the
6581        // location provided by the isIntegerConstantExpr failed check.
6582        Diag(Loc, diag::err_in_class_initializer_non_constant)
6583          << Init->getSourceRange();
6584        VDecl->setInvalidDecl();
6585      }
6586
6587    // We allow foldable floating-point constants as an extension.
6588    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6589      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6590        << DclT << Init->getSourceRange();
6591      if (getLangOpts().CPlusPlus0x)
6592        Diag(VDecl->getLocation(),
6593             diag::note_in_class_initializer_float_type_constexpr)
6594          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6595
6596      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6597        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6598          << Init->getSourceRange();
6599        VDecl->setInvalidDecl();
6600      }
6601
6602    // Suggest adding 'constexpr' in C++11 for literal types.
6603    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6604      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6605        << DclT << Init->getSourceRange()
6606        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6607      VDecl->setConstexpr(true);
6608
6609    } else {
6610      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6611        << DclT << Init->getSourceRange();
6612      VDecl->setInvalidDecl();
6613    }
6614  } else if (VDecl->isFileVarDecl()) {
6615    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6616        (!getLangOpts().CPlusPlus ||
6617         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6618      Diag(VDecl->getLocation(), diag::warn_extern_init);
6619
6620    // C99 6.7.8p4. All file scoped initializers need to be constant.
6621    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6622      CheckForConstantInitializer(Init, DclT);
6623  }
6624
6625  // We will represent direct-initialization similarly to copy-initialization:
6626  //    int x(1);  -as-> int x = 1;
6627  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6628  //
6629  // Clients that want to distinguish between the two forms, can check for
6630  // direct initializer using VarDecl::getInitStyle().
6631  // A major benefit is that clients that don't particularly care about which
6632  // exactly form was it (like the CodeGen) can handle both cases without
6633  // special case code.
6634
6635  // C++ 8.5p11:
6636  // The form of initialization (using parentheses or '=') is generally
6637  // insignificant, but does matter when the entity being initialized has a
6638  // class type.
6639  if (CXXDirectInit) {
6640    assert(DirectInit && "Call-style initializer must be direct init.");
6641    VDecl->setInitStyle(VarDecl::CallInit);
6642  } else if (DirectInit) {
6643    // This must be list-initialization. No other way is direct-initialization.
6644    VDecl->setInitStyle(VarDecl::ListInit);
6645  }
6646
6647  CheckCompleteVariableDeclaration(VDecl);
6648}
6649
6650/// ActOnInitializerError - Given that there was an error parsing an
6651/// initializer for the given declaration, try to return to some form
6652/// of sanity.
6653void Sema::ActOnInitializerError(Decl *D) {
6654  // Our main concern here is re-establishing invariants like "a
6655  // variable's type is either dependent or complete".
6656  if (!D || D->isInvalidDecl()) return;
6657
6658  VarDecl *VD = dyn_cast<VarDecl>(D);
6659  if (!VD) return;
6660
6661  // Auto types are meaningless if we can't make sense of the initializer.
6662  if (ParsingInitForAutoVars.count(D)) {
6663    D->setInvalidDecl();
6664    return;
6665  }
6666
6667  QualType Ty = VD->getType();
6668  if (Ty->isDependentType()) return;
6669
6670  // Require a complete type.
6671  if (RequireCompleteType(VD->getLocation(),
6672                          Context.getBaseElementType(Ty),
6673                          diag::err_typecheck_decl_incomplete_type)) {
6674    VD->setInvalidDecl();
6675    return;
6676  }
6677
6678  // Require an abstract type.
6679  if (RequireNonAbstractType(VD->getLocation(), Ty,
6680                             diag::err_abstract_type_in_decl,
6681                             AbstractVariableType)) {
6682    VD->setInvalidDecl();
6683    return;
6684  }
6685
6686  // Don't bother complaining about constructors or destructors,
6687  // though.
6688}
6689
6690void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6691                                  bool TypeMayContainAuto) {
6692  // If there is no declaration, there was an error parsing it. Just ignore it.
6693  if (RealDecl == 0)
6694    return;
6695
6696  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6697    QualType Type = Var->getType();
6698
6699    // C++11 [dcl.spec.auto]p3
6700    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6701      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6702        << Var->getDeclName() << Type;
6703      Var->setInvalidDecl();
6704      return;
6705    }
6706
6707    // C++11 [class.static.data]p3: A static data member can be declared with
6708    // the constexpr specifier; if so, its declaration shall specify
6709    // a brace-or-equal-initializer.
6710    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6711    // the definition of a variable [...] or the declaration of a static data
6712    // member.
6713    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6714      if (Var->isStaticDataMember())
6715        Diag(Var->getLocation(),
6716             diag::err_constexpr_static_mem_var_requires_init)
6717          << Var->getDeclName();
6718      else
6719        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6720      Var->setInvalidDecl();
6721      return;
6722    }
6723
6724    switch (Var->isThisDeclarationADefinition()) {
6725    case VarDecl::Definition:
6726      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6727        break;
6728
6729      // We have an out-of-line definition of a static data member
6730      // that has an in-class initializer, so we type-check this like
6731      // a declaration.
6732      //
6733      // Fall through
6734
6735    case VarDecl::DeclarationOnly:
6736      // It's only a declaration.
6737
6738      // Block scope. C99 6.7p7: If an identifier for an object is
6739      // declared with no linkage (C99 6.2.2p6), the type for the
6740      // object shall be complete.
6741      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6742          !Var->getLinkage() && !Var->isInvalidDecl() &&
6743          RequireCompleteType(Var->getLocation(), Type,
6744                              diag::err_typecheck_decl_incomplete_type))
6745        Var->setInvalidDecl();
6746
6747      // Make sure that the type is not abstract.
6748      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6749          RequireNonAbstractType(Var->getLocation(), Type,
6750                                 diag::err_abstract_type_in_decl,
6751                                 AbstractVariableType))
6752        Var->setInvalidDecl();
6753      return;
6754
6755    case VarDecl::TentativeDefinition:
6756      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6757      // object that has file scope without an initializer, and without a
6758      // storage-class specifier or with the storage-class specifier "static",
6759      // constitutes a tentative definition. Note: A tentative definition with
6760      // external linkage is valid (C99 6.2.2p5).
6761      if (!Var->isInvalidDecl()) {
6762        if (const IncompleteArrayType *ArrayT
6763                                    = Context.getAsIncompleteArrayType(Type)) {
6764          if (RequireCompleteType(Var->getLocation(),
6765                                  ArrayT->getElementType(),
6766                                  diag::err_illegal_decl_array_incomplete_type))
6767            Var->setInvalidDecl();
6768        } else if (Var->getStorageClass() == SC_Static) {
6769          // C99 6.9.2p3: If the declaration of an identifier for an object is
6770          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6771          // declared type shall not be an incomplete type.
6772          // NOTE: code such as the following
6773          //     static struct s;
6774          //     struct s { int a; };
6775          // is accepted by gcc. Hence here we issue a warning instead of
6776          // an error and we do not invalidate the static declaration.
6777          // NOTE: to avoid multiple warnings, only check the first declaration.
6778          if (Var->getPreviousDecl() == 0)
6779            RequireCompleteType(Var->getLocation(), Type,
6780                                diag::ext_typecheck_decl_incomplete_type);
6781        }
6782      }
6783
6784      // Record the tentative definition; we're done.
6785      if (!Var->isInvalidDecl())
6786        TentativeDefinitions.push_back(Var);
6787      return;
6788    }
6789
6790    // Provide a specific diagnostic for uninitialized variable
6791    // definitions with incomplete array type.
6792    if (Type->isIncompleteArrayType()) {
6793      Diag(Var->getLocation(),
6794           diag::err_typecheck_incomplete_array_needs_initializer);
6795      Var->setInvalidDecl();
6796      return;
6797    }
6798
6799    // Provide a specific diagnostic for uninitialized variable
6800    // definitions with reference type.
6801    if (Type->isReferenceType()) {
6802      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6803        << Var->getDeclName()
6804        << SourceRange(Var->getLocation(), Var->getLocation());
6805      Var->setInvalidDecl();
6806      return;
6807    }
6808
6809    // Do not attempt to type-check the default initializer for a
6810    // variable with dependent type.
6811    if (Type->isDependentType())
6812      return;
6813
6814    if (Var->isInvalidDecl())
6815      return;
6816
6817    if (RequireCompleteType(Var->getLocation(),
6818                            Context.getBaseElementType(Type),
6819                            diag::err_typecheck_decl_incomplete_type)) {
6820      Var->setInvalidDecl();
6821      return;
6822    }
6823
6824    // The variable can not have an abstract class type.
6825    if (RequireNonAbstractType(Var->getLocation(), Type,
6826                               diag::err_abstract_type_in_decl,
6827                               AbstractVariableType)) {
6828      Var->setInvalidDecl();
6829      return;
6830    }
6831
6832    // Check for jumps past the implicit initializer.  C++0x
6833    // clarifies that this applies to a "variable with automatic
6834    // storage duration", not a "local variable".
6835    // C++11 [stmt.dcl]p3
6836    //   A program that jumps from a point where a variable with automatic
6837    //   storage duration is not in scope to a point where it is in scope is
6838    //   ill-formed unless the variable has scalar type, class type with a
6839    //   trivial default constructor and a trivial destructor, a cv-qualified
6840    //   version of one of these types, or an array of one of the preceding
6841    //   types and is declared without an initializer.
6842    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6843      if (const RecordType *Record
6844            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6845        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6846        // Mark the function for further checking even if the looser rules of
6847        // C++11 do not require such checks, so that we can diagnose
6848        // incompatibilities with C++98.
6849        if (!CXXRecord->isPOD())
6850          getCurFunction()->setHasBranchProtectedScope();
6851      }
6852    }
6853
6854    // C++03 [dcl.init]p9:
6855    //   If no initializer is specified for an object, and the
6856    //   object is of (possibly cv-qualified) non-POD class type (or
6857    //   array thereof), the object shall be default-initialized; if
6858    //   the object is of const-qualified type, the underlying class
6859    //   type shall have a user-declared default
6860    //   constructor. Otherwise, if no initializer is specified for
6861    //   a non- static object, the object and its subobjects, if
6862    //   any, have an indeterminate initial value); if the object
6863    //   or any of its subobjects are of const-qualified type, the
6864    //   program is ill-formed.
6865    // C++0x [dcl.init]p11:
6866    //   If no initializer is specified for an object, the object is
6867    //   default-initialized; [...].
6868    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6869    InitializationKind Kind
6870      = InitializationKind::CreateDefault(Var->getLocation());
6871
6872    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6873    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6874                                      MultiExprArg(*this, 0, 0));
6875    if (Init.isInvalid())
6876      Var->setInvalidDecl();
6877    else if (Init.get()) {
6878      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6879      // This is important for template substitution.
6880      Var->setInitStyle(VarDecl::CallInit);
6881    }
6882
6883    CheckCompleteVariableDeclaration(Var);
6884  }
6885}
6886
6887void Sema::ActOnCXXForRangeDecl(Decl *D) {
6888  VarDecl *VD = dyn_cast<VarDecl>(D);
6889  if (!VD) {
6890    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6891    D->setInvalidDecl();
6892    return;
6893  }
6894
6895  VD->setCXXForRangeDecl(true);
6896
6897  // for-range-declaration cannot be given a storage class specifier.
6898  int Error = -1;
6899  switch (VD->getStorageClassAsWritten()) {
6900  case SC_None:
6901    break;
6902  case SC_Extern:
6903    Error = 0;
6904    break;
6905  case SC_Static:
6906    Error = 1;
6907    break;
6908  case SC_PrivateExtern:
6909    Error = 2;
6910    break;
6911  case SC_Auto:
6912    Error = 3;
6913    break;
6914  case SC_Register:
6915    Error = 4;
6916    break;
6917  case SC_OpenCLWorkGroupLocal:
6918    llvm_unreachable("Unexpected storage class");
6919  }
6920  if (VD->isConstexpr())
6921    Error = 5;
6922  if (Error != -1) {
6923    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6924      << VD->getDeclName() << Error;
6925    D->setInvalidDecl();
6926  }
6927}
6928
6929void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6930  if (var->isInvalidDecl()) return;
6931
6932  // In ARC, don't allow jumps past the implicit initialization of a
6933  // local retaining variable.
6934  if (getLangOpts().ObjCAutoRefCount &&
6935      var->hasLocalStorage()) {
6936    switch (var->getType().getObjCLifetime()) {
6937    case Qualifiers::OCL_None:
6938    case Qualifiers::OCL_ExplicitNone:
6939    case Qualifiers::OCL_Autoreleasing:
6940      break;
6941
6942    case Qualifiers::OCL_Weak:
6943    case Qualifiers::OCL_Strong:
6944      getCurFunction()->setHasBranchProtectedScope();
6945      break;
6946    }
6947  }
6948
6949  // All the following checks are C++ only.
6950  if (!getLangOpts().CPlusPlus) return;
6951
6952  QualType baseType = Context.getBaseElementType(var->getType());
6953  if (baseType->isDependentType()) return;
6954
6955  // __block variables might require us to capture a copy-initializer.
6956  if (var->hasAttr<BlocksAttr>()) {
6957    // It's currently invalid to ever have a __block variable with an
6958    // array type; should we diagnose that here?
6959
6960    // Regardless, we don't want to ignore array nesting when
6961    // constructing this copy.
6962    QualType type = var->getType();
6963
6964    if (type->isStructureOrClassType()) {
6965      SourceLocation poi = var->getLocation();
6966      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6967      ExprResult result =
6968        PerformCopyInitialization(
6969                        InitializedEntity::InitializeBlock(poi, type, false),
6970                                  poi, Owned(varRef));
6971      if (!result.isInvalid()) {
6972        result = MaybeCreateExprWithCleanups(result);
6973        Expr *init = result.takeAs<Expr>();
6974        Context.setBlockVarCopyInits(var, init);
6975      }
6976    }
6977  }
6978
6979  Expr *Init = var->getInit();
6980  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6981
6982  if (!var->getDeclContext()->isDependentContext() && Init) {
6983    if (IsGlobal && !var->isConstexpr() &&
6984        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6985                                            var->getLocation())
6986          != DiagnosticsEngine::Ignored &&
6987        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6988      Diag(var->getLocation(), diag::warn_global_constructor)
6989        << Init->getSourceRange();
6990
6991    if (var->isConstexpr()) {
6992      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6993      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6994        SourceLocation DiagLoc = var->getLocation();
6995        // If the note doesn't add any useful information other than a source
6996        // location, fold it into the primary diagnostic.
6997        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6998              diag::note_invalid_subexpr_in_const_expr) {
6999          DiagLoc = Notes[0].first;
7000          Notes.clear();
7001        }
7002        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7003          << var << Init->getSourceRange();
7004        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7005          Diag(Notes[I].first, Notes[I].second);
7006      }
7007    } else if (var->isUsableInConstantExpressions(Context)) {
7008      // Check whether the initializer of a const variable of integral or
7009      // enumeration type is an ICE now, since we can't tell whether it was
7010      // initialized by a constant expression if we check later.
7011      var->checkInitIsICE();
7012    }
7013  }
7014
7015  // Require the destructor.
7016  if (const RecordType *recordType = baseType->getAs<RecordType>())
7017    FinalizeVarWithDestructor(var, recordType);
7018}
7019
7020/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7021/// any semantic actions necessary after any initializer has been attached.
7022void
7023Sema::FinalizeDeclaration(Decl *ThisDecl) {
7024  // Note that we are no longer parsing the initializer for this declaration.
7025  ParsingInitForAutoVars.erase(ThisDecl);
7026}
7027
7028Sema::DeclGroupPtrTy
7029Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7030                              Decl **Group, unsigned NumDecls) {
7031  SmallVector<Decl*, 8> Decls;
7032
7033  if (DS.isTypeSpecOwned())
7034    Decls.push_back(DS.getRepAsDecl());
7035
7036  for (unsigned i = 0; i != NumDecls; ++i)
7037    if (Decl *D = Group[i])
7038      Decls.push_back(D);
7039
7040  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7041                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7042}
7043
7044/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7045/// group, performing any necessary semantic checking.
7046Sema::DeclGroupPtrTy
7047Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7048                           bool TypeMayContainAuto) {
7049  // C++0x [dcl.spec.auto]p7:
7050  //   If the type deduced for the template parameter U is not the same in each
7051  //   deduction, the program is ill-formed.
7052  // FIXME: When initializer-list support is added, a distinction is needed
7053  // between the deduced type U and the deduced type which 'auto' stands for.
7054  //   auto a = 0, b = { 1, 2, 3 };
7055  // is legal because the deduced type U is 'int' in both cases.
7056  if (TypeMayContainAuto && NumDecls > 1) {
7057    QualType Deduced;
7058    CanQualType DeducedCanon;
7059    VarDecl *DeducedDecl = 0;
7060    for (unsigned i = 0; i != NumDecls; ++i) {
7061      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7062        AutoType *AT = D->getType()->getContainedAutoType();
7063        // Don't reissue diagnostics when instantiating a template.
7064        if (AT && D->isInvalidDecl())
7065          break;
7066        if (AT && AT->isDeduced()) {
7067          QualType U = AT->getDeducedType();
7068          CanQualType UCanon = Context.getCanonicalType(U);
7069          if (Deduced.isNull()) {
7070            Deduced = U;
7071            DeducedCanon = UCanon;
7072            DeducedDecl = D;
7073          } else if (DeducedCanon != UCanon) {
7074            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7075                 diag::err_auto_different_deductions)
7076              << Deduced << DeducedDecl->getDeclName()
7077              << U << D->getDeclName()
7078              << DeducedDecl->getInit()->getSourceRange()
7079              << D->getInit()->getSourceRange();
7080            D->setInvalidDecl();
7081            break;
7082          }
7083        }
7084      }
7085    }
7086  }
7087
7088  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7089}
7090
7091
7092/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7093/// to introduce parameters into function prototype scope.
7094Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7095  const DeclSpec &DS = D.getDeclSpec();
7096
7097  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7098  // C++03 [dcl.stc]p2 also permits 'auto'.
7099  VarDecl::StorageClass StorageClass = SC_None;
7100  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7101  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7102    StorageClass = SC_Register;
7103    StorageClassAsWritten = SC_Register;
7104  } else if (getLangOpts().CPlusPlus &&
7105             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7106    StorageClass = SC_Auto;
7107    StorageClassAsWritten = SC_Auto;
7108  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7109    Diag(DS.getStorageClassSpecLoc(),
7110         diag::err_invalid_storage_class_in_func_decl);
7111    D.getMutableDeclSpec().ClearStorageClassSpecs();
7112  }
7113
7114  if (D.getDeclSpec().isThreadSpecified())
7115    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7116  if (D.getDeclSpec().isConstexprSpecified())
7117    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7118      << 0;
7119
7120  DiagnoseFunctionSpecifiers(D);
7121
7122  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7123  QualType parmDeclType = TInfo->getType();
7124
7125  if (getLangOpts().CPlusPlus) {
7126    // Check that there are no default arguments inside the type of this
7127    // parameter.
7128    CheckExtraCXXDefaultArguments(D);
7129
7130    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7131    if (D.getCXXScopeSpec().isSet()) {
7132      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7133        << D.getCXXScopeSpec().getRange();
7134      D.getCXXScopeSpec().clear();
7135    }
7136  }
7137
7138  // Ensure we have a valid name
7139  IdentifierInfo *II = 0;
7140  if (D.hasName()) {
7141    II = D.getIdentifier();
7142    if (!II) {
7143      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7144        << GetNameForDeclarator(D).getName().getAsString();
7145      D.setInvalidType(true);
7146    }
7147  }
7148
7149  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7150  if (II) {
7151    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7152                   ForRedeclaration);
7153    LookupName(R, S);
7154    if (R.isSingleResult()) {
7155      NamedDecl *PrevDecl = R.getFoundDecl();
7156      if (PrevDecl->isTemplateParameter()) {
7157        // Maybe we will complain about the shadowed template parameter.
7158        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7159        // Just pretend that we didn't see the previous declaration.
7160        PrevDecl = 0;
7161      } else if (S->isDeclScope(PrevDecl)) {
7162        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7163        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7164
7165        // Recover by removing the name
7166        II = 0;
7167        D.SetIdentifier(0, D.getIdentifierLoc());
7168        D.setInvalidType(true);
7169      }
7170    }
7171  }
7172
7173  // Temporarily put parameter variables in the translation unit, not
7174  // the enclosing context.  This prevents them from accidentally
7175  // looking like class members in C++.
7176  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7177                                    D.getLocStart(),
7178                                    D.getIdentifierLoc(), II,
7179                                    parmDeclType, TInfo,
7180                                    StorageClass, StorageClassAsWritten);
7181
7182  if (D.isInvalidType())
7183    New->setInvalidDecl();
7184
7185  assert(S->isFunctionPrototypeScope());
7186  assert(S->getFunctionPrototypeDepth() >= 1);
7187  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7188                    S->getNextFunctionPrototypeIndex());
7189
7190  // Add the parameter declaration into this scope.
7191  S->AddDecl(New);
7192  if (II)
7193    IdResolver.AddDecl(New);
7194
7195  ProcessDeclAttributes(S, New, D);
7196
7197  if (D.getDeclSpec().isModulePrivateSpecified())
7198    Diag(New->getLocation(), diag::err_module_private_local)
7199      << 1 << New->getDeclName()
7200      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7201      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7202
7203  if (New->hasAttr<BlocksAttr>()) {
7204    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7205  }
7206  return New;
7207}
7208
7209/// \brief Synthesizes a variable for a parameter arising from a
7210/// typedef.
7211ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7212                                              SourceLocation Loc,
7213                                              QualType T) {
7214  /* FIXME: setting StartLoc == Loc.
7215     Would it be worth to modify callers so as to provide proper source
7216     location for the unnamed parameters, embedding the parameter's type? */
7217  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7218                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7219                                           SC_None, SC_None, 0);
7220  Param->setImplicit();
7221  return Param;
7222}
7223
7224void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7225                                    ParmVarDecl * const *ParamEnd) {
7226  // Don't diagnose unused-parameter errors in template instantiations; we
7227  // will already have done so in the template itself.
7228  if (!ActiveTemplateInstantiations.empty())
7229    return;
7230
7231  for (; Param != ParamEnd; ++Param) {
7232    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7233        !(*Param)->hasAttr<UnusedAttr>()) {
7234      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7235        << (*Param)->getDeclName();
7236    }
7237  }
7238}
7239
7240void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7241                                                  ParmVarDecl * const *ParamEnd,
7242                                                  QualType ReturnTy,
7243                                                  NamedDecl *D) {
7244  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7245    return;
7246
7247  // Warn if the return value is pass-by-value and larger than the specified
7248  // threshold.
7249  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7250    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7251    if (Size > LangOpts.NumLargeByValueCopy)
7252      Diag(D->getLocation(), diag::warn_return_value_size)
7253          << D->getDeclName() << Size;
7254  }
7255
7256  // Warn if any parameter is pass-by-value and larger than the specified
7257  // threshold.
7258  for (; Param != ParamEnd; ++Param) {
7259    QualType T = (*Param)->getType();
7260    if (T->isDependentType() || !T.isPODType(Context))
7261      continue;
7262    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7263    if (Size > LangOpts.NumLargeByValueCopy)
7264      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7265          << (*Param)->getDeclName() << Size;
7266  }
7267}
7268
7269ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7270                                  SourceLocation NameLoc, IdentifierInfo *Name,
7271                                  QualType T, TypeSourceInfo *TSInfo,
7272                                  VarDecl::StorageClass StorageClass,
7273                                  VarDecl::StorageClass StorageClassAsWritten) {
7274  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7275  if (getLangOpts().ObjCAutoRefCount &&
7276      T.getObjCLifetime() == Qualifiers::OCL_None &&
7277      T->isObjCLifetimeType()) {
7278
7279    Qualifiers::ObjCLifetime lifetime;
7280
7281    // Special cases for arrays:
7282    //   - if it's const, use __unsafe_unretained
7283    //   - otherwise, it's an error
7284    if (T->isArrayType()) {
7285      if (!T.isConstQualified()) {
7286        DelayedDiagnostics.add(
7287            sema::DelayedDiagnostic::makeForbiddenType(
7288            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7289      }
7290      lifetime = Qualifiers::OCL_ExplicitNone;
7291    } else {
7292      lifetime = T->getObjCARCImplicitLifetime();
7293    }
7294    T = Context.getLifetimeQualifiedType(T, lifetime);
7295  }
7296
7297  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7298                                         Context.getAdjustedParameterType(T),
7299                                         TSInfo,
7300                                         StorageClass, StorageClassAsWritten,
7301                                         0);
7302
7303  // Parameters can not be abstract class types.
7304  // For record types, this is done by the AbstractClassUsageDiagnoser once
7305  // the class has been completely parsed.
7306  if (!CurContext->isRecord() &&
7307      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7308                             AbstractParamType))
7309    New->setInvalidDecl();
7310
7311  // Parameter declarators cannot be interface types. All ObjC objects are
7312  // passed by reference.
7313  if (T->isObjCObjectType()) {
7314    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7315    Diag(NameLoc,
7316         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7317      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7318    T = Context.getObjCObjectPointerType(T);
7319    New->setType(T);
7320  }
7321
7322  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7323  // duration shall not be qualified by an address-space qualifier."
7324  // Since all parameters have automatic store duration, they can not have
7325  // an address space.
7326  if (T.getAddressSpace() != 0) {
7327    Diag(NameLoc, diag::err_arg_with_address_space);
7328    New->setInvalidDecl();
7329  }
7330
7331  return New;
7332}
7333
7334void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7335                                           SourceLocation LocAfterDecls) {
7336  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7337
7338  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7339  // for a K&R function.
7340  if (!FTI.hasPrototype) {
7341    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7342      --i;
7343      if (FTI.ArgInfo[i].Param == 0) {
7344        SmallString<256> Code;
7345        llvm::raw_svector_ostream(Code) << "  int "
7346                                        << FTI.ArgInfo[i].Ident->getName()
7347                                        << ";\n";
7348        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7349          << FTI.ArgInfo[i].Ident
7350          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7351
7352        // Implicitly declare the argument as type 'int' for lack of a better
7353        // type.
7354        AttributeFactory attrs;
7355        DeclSpec DS(attrs);
7356        const char* PrevSpec; // unused
7357        unsigned DiagID; // unused
7358        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7359                           PrevSpec, DiagID);
7360        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7361        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7362        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7363      }
7364    }
7365  }
7366}
7367
7368Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7369  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7370  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7371  Scope *ParentScope = FnBodyScope->getParent();
7372
7373  D.setFunctionDefinitionKind(FDK_Definition);
7374  Decl *DP = HandleDeclarator(ParentScope, D,
7375                              MultiTemplateParamsArg(*this));
7376  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7377}
7378
7379static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7380  // Don't warn about invalid declarations.
7381  if (FD->isInvalidDecl())
7382    return false;
7383
7384  // Or declarations that aren't global.
7385  if (!FD->isGlobal())
7386    return false;
7387
7388  // Don't warn about C++ member functions.
7389  if (isa<CXXMethodDecl>(FD))
7390    return false;
7391
7392  // Don't warn about 'main'.
7393  if (FD->isMain())
7394    return false;
7395
7396  // Don't warn about inline functions.
7397  if (FD->isInlined())
7398    return false;
7399
7400  // Don't warn about function templates.
7401  if (FD->getDescribedFunctionTemplate())
7402    return false;
7403
7404  // Don't warn about function template specializations.
7405  if (FD->isFunctionTemplateSpecialization())
7406    return false;
7407
7408  bool MissingPrototype = true;
7409  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7410       Prev; Prev = Prev->getPreviousDecl()) {
7411    // Ignore any declarations that occur in function or method
7412    // scope, because they aren't visible from the header.
7413    if (Prev->getDeclContext()->isFunctionOrMethod())
7414      continue;
7415
7416    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7417    break;
7418  }
7419
7420  return MissingPrototype;
7421}
7422
7423void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7424  // Don't complain if we're in GNU89 mode and the previous definition
7425  // was an extern inline function.
7426  const FunctionDecl *Definition;
7427  if (FD->isDefined(Definition) &&
7428      !canRedefineFunction(Definition, getLangOpts())) {
7429    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7430        Definition->getStorageClass() == SC_Extern)
7431      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7432        << FD->getDeclName() << getLangOpts().CPlusPlus;
7433    else
7434      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7435    Diag(Definition->getLocation(), diag::note_previous_definition);
7436  }
7437}
7438
7439Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7440  // Clear the last template instantiation error context.
7441  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7442
7443  if (!D)
7444    return D;
7445  FunctionDecl *FD = 0;
7446
7447  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7448    FD = FunTmpl->getTemplatedDecl();
7449  else
7450    FD = cast<FunctionDecl>(D);
7451
7452  // Enter a new function scope
7453  PushFunctionScope();
7454
7455  // See if this is a redefinition.
7456  if (!FD->isLateTemplateParsed())
7457    CheckForFunctionRedefinition(FD);
7458
7459  // Builtin functions cannot be defined.
7460  if (unsigned BuiltinID = FD->getBuiltinID()) {
7461    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7462      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7463      FD->setInvalidDecl();
7464    }
7465  }
7466
7467  // The return type of a function definition must be complete
7468  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7469  QualType ResultType = FD->getResultType();
7470  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7471      !FD->isInvalidDecl() &&
7472      RequireCompleteType(FD->getLocation(), ResultType,
7473                          diag::err_func_def_incomplete_result))
7474    FD->setInvalidDecl();
7475
7476  // GNU warning -Wmissing-prototypes:
7477  //   Warn if a global function is defined without a previous
7478  //   prototype declaration. This warning is issued even if the
7479  //   definition itself provides a prototype. The aim is to detect
7480  //   global functions that fail to be declared in header files.
7481  if (ShouldWarnAboutMissingPrototype(FD))
7482    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7483
7484  if (FnBodyScope)
7485    PushDeclContext(FnBodyScope, FD);
7486
7487  // Check the validity of our function parameters
7488  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7489                           /*CheckParameterNames=*/true);
7490
7491  // Introduce our parameters into the function scope
7492  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7493    ParmVarDecl *Param = FD->getParamDecl(p);
7494    Param->setOwningFunction(FD);
7495
7496    // If this has an identifier, add it to the scope stack.
7497    if (Param->getIdentifier() && FnBodyScope) {
7498      CheckShadow(FnBodyScope, Param);
7499
7500      PushOnScopeChains(Param, FnBodyScope);
7501    }
7502  }
7503
7504  // If we had any tags defined in the function prototype,
7505  // introduce them into the function scope.
7506  if (FnBodyScope) {
7507    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7508           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7509      NamedDecl *D = *I;
7510
7511      // Some of these decls (like enums) may have been pinned to the translation unit
7512      // for lack of a real context earlier. If so, remove from the translation unit
7513      // and reattach to the current context.
7514      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7515        // Is the decl actually in the context?
7516        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7517               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7518          if (*DI == D) {
7519            Context.getTranslationUnitDecl()->removeDecl(D);
7520            break;
7521          }
7522        }
7523        // Either way, reassign the lexical decl context to our FunctionDecl.
7524        D->setLexicalDeclContext(CurContext);
7525      }
7526
7527      // If the decl has a non-null name, make accessible in the current scope.
7528      if (!D->getName().empty())
7529        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7530
7531      // Similarly, dive into enums and fish their constants out, making them
7532      // accessible in this scope.
7533      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7534        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7535               EE = ED->enumerator_end(); EI != EE; ++EI)
7536          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7537      }
7538    }
7539  }
7540
7541  // Ensure that the function's exception specification is instantiated.
7542  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7543    ResolveExceptionSpec(D->getLocation(), FPT);
7544
7545  // Checking attributes of current function definition
7546  // dllimport attribute.
7547  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7548  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7549    // dllimport attribute cannot be directly applied to definition.
7550    // Microsoft accepts dllimport for functions defined within class scope.
7551    if (!DA->isInherited() &&
7552        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7553      Diag(FD->getLocation(),
7554           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7555        << "dllimport";
7556      FD->setInvalidDecl();
7557      return FD;
7558    }
7559
7560    // Visual C++ appears to not think this is an issue, so only issue
7561    // a warning when Microsoft extensions are disabled.
7562    if (!LangOpts.MicrosoftExt) {
7563      // If a symbol previously declared dllimport is later defined, the
7564      // attribute is ignored in subsequent references, and a warning is
7565      // emitted.
7566      Diag(FD->getLocation(),
7567           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7568        << FD->getName() << "dllimport";
7569    }
7570  }
7571  return FD;
7572}
7573
7574/// \brief Given the set of return statements within a function body,
7575/// compute the variables that are subject to the named return value
7576/// optimization.
7577///
7578/// Each of the variables that is subject to the named return value
7579/// optimization will be marked as NRVO variables in the AST, and any
7580/// return statement that has a marked NRVO variable as its NRVO candidate can
7581/// use the named return value optimization.
7582///
7583/// This function applies a very simplistic algorithm for NRVO: if every return
7584/// statement in the function has the same NRVO candidate, that candidate is
7585/// the NRVO variable.
7586///
7587/// FIXME: Employ a smarter algorithm that accounts for multiple return
7588/// statements and the lifetimes of the NRVO candidates. We should be able to
7589/// find a maximal set of NRVO variables.
7590void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7591  ReturnStmt **Returns = Scope->Returns.data();
7592
7593  const VarDecl *NRVOCandidate = 0;
7594  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7595    if (!Returns[I]->getNRVOCandidate())
7596      return;
7597
7598    if (!NRVOCandidate)
7599      NRVOCandidate = Returns[I]->getNRVOCandidate();
7600    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7601      return;
7602  }
7603
7604  if (NRVOCandidate)
7605    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7606}
7607
7608Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7609  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7610}
7611
7612Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7613                                    bool IsInstantiation) {
7614  FunctionDecl *FD = 0;
7615  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7616  if (FunTmpl)
7617    FD = FunTmpl->getTemplatedDecl();
7618  else
7619    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7620
7621  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7622  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7623
7624  if (FD) {
7625    FD->setBody(Body);
7626
7627    // If the function implicitly returns zero (like 'main') or is naked,
7628    // don't complain about missing return statements.
7629    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7630      WP.disableCheckFallThrough();
7631
7632    // MSVC permits the use of pure specifier (=0) on function definition,
7633    // defined at class scope, warn about this non standard construct.
7634    if (getLangOpts().MicrosoftExt && FD->isPure())
7635      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7636
7637    if (!FD->isInvalidDecl()) {
7638      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7639      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7640                                             FD->getResultType(), FD);
7641
7642      // If this is a constructor, we need a vtable.
7643      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7644        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7645
7646      computeNRVO(Body, getCurFunction());
7647    }
7648
7649    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7650           "Function parsing confused");
7651  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7652    assert(MD == getCurMethodDecl() && "Method parsing confused");
7653    MD->setBody(Body);
7654    if (!MD->isInvalidDecl()) {
7655      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7656      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7657                                             MD->getResultType(), MD);
7658
7659      if (Body)
7660        computeNRVO(Body, getCurFunction());
7661    }
7662    if (ObjCShouldCallSuperDealloc) {
7663      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7664      ObjCShouldCallSuperDealloc = false;
7665    }
7666    if (ObjCShouldCallSuperFinalize) {
7667      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7668      ObjCShouldCallSuperFinalize = false;
7669    }
7670  } else {
7671    return 0;
7672  }
7673
7674  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7675         "ObjC methods, which should have been handled in the block above.");
7676  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7677         "ObjC methods, which should have been handled in the block above.");
7678
7679  // Verify and clean out per-function state.
7680  if (Body) {
7681    // C++ constructors that have function-try-blocks can't have return
7682    // statements in the handlers of that block. (C++ [except.handle]p14)
7683    // Verify this.
7684    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7685      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7686
7687    // Verify that gotos and switch cases don't jump into scopes illegally.
7688    if (getCurFunction()->NeedsScopeChecking() &&
7689        !dcl->isInvalidDecl() &&
7690        !hasAnyUnrecoverableErrorsInThisFunction())
7691      DiagnoseInvalidJumps(Body);
7692
7693    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7694      if (!Destructor->getParent()->isDependentType())
7695        CheckDestructor(Destructor);
7696
7697      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7698                                             Destructor->getParent());
7699    }
7700
7701    // If any errors have occurred, clear out any temporaries that may have
7702    // been leftover. This ensures that these temporaries won't be picked up for
7703    // deletion in some later function.
7704    if (PP.getDiagnostics().hasErrorOccurred() ||
7705        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7706      DiscardCleanupsInEvaluationContext();
7707    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7708      // Since the body is valid, issue any analysis-based warnings that are
7709      // enabled.
7710      ActivePolicy = &WP;
7711    }
7712
7713    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7714        (!CheckConstexprFunctionDecl(FD) ||
7715         !CheckConstexprFunctionBody(FD, Body)))
7716      FD->setInvalidDecl();
7717
7718    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7719    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7720    assert(MaybeODRUseExprs.empty() &&
7721           "Leftover expressions for odr-use checking");
7722  }
7723
7724  if (!IsInstantiation)
7725    PopDeclContext();
7726
7727  PopFunctionScopeInfo(ActivePolicy, dcl);
7728
7729  // If any errors have occurred, clear out any temporaries that may have
7730  // been leftover. This ensures that these temporaries won't be picked up for
7731  // deletion in some later function.
7732  if (getDiagnostics().hasErrorOccurred()) {
7733    DiscardCleanupsInEvaluationContext();
7734  }
7735
7736  return dcl;
7737}
7738
7739
7740/// When we finish delayed parsing of an attribute, we must attach it to the
7741/// relevant Decl.
7742void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7743                                       ParsedAttributes &Attrs) {
7744  // Always attach attributes to the underlying decl.
7745  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7746    D = TD->getTemplatedDecl();
7747  ProcessDeclAttributeList(S, D, Attrs.getList());
7748
7749  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7750    if (Method->isStatic())
7751      checkThisInStaticMemberFunctionAttributes(Method);
7752}
7753
7754
7755/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7756/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7757NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7758                                          IdentifierInfo &II, Scope *S) {
7759  // Before we produce a declaration for an implicitly defined
7760  // function, see whether there was a locally-scoped declaration of
7761  // this name as a function or variable. If so, use that
7762  // (non-visible) declaration, and complain about it.
7763  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7764    = findLocallyScopedExternalDecl(&II);
7765  if (Pos != LocallyScopedExternalDecls.end()) {
7766    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7767    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7768    return Pos->second;
7769  }
7770
7771  // Extension in C99.  Legal in C90, but warn about it.
7772  unsigned diag_id;
7773  if (II.getName().startswith("__builtin_"))
7774    diag_id = diag::warn_builtin_unknown;
7775  else if (getLangOpts().C99)
7776    diag_id = diag::ext_implicit_function_decl;
7777  else
7778    diag_id = diag::warn_implicit_function_decl;
7779  Diag(Loc, diag_id) << &II;
7780
7781  // Because typo correction is expensive, only do it if the implicit
7782  // function declaration is going to be treated as an error.
7783  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7784    TypoCorrection Corrected;
7785    DeclFilterCCC<FunctionDecl> Validator;
7786    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7787                                      LookupOrdinaryName, S, 0, Validator))) {
7788      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7789      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7790      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7791
7792      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7793          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7794
7795      if (Func->getLocation().isValid()
7796          && !II.getName().startswith("__builtin_"))
7797        Diag(Func->getLocation(), diag::note_previous_decl)
7798            << CorrectedQuotedStr;
7799    }
7800  }
7801
7802  // Set a Declarator for the implicit definition: int foo();
7803  const char *Dummy;
7804  AttributeFactory attrFactory;
7805  DeclSpec DS(attrFactory);
7806  unsigned DiagID;
7807  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7808  (void)Error; // Silence warning.
7809  assert(!Error && "Error setting up implicit decl!");
7810  Declarator D(DS, Declarator::BlockContext);
7811  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7812                                             0, 0, true, SourceLocation(),
7813                                             SourceLocation(), SourceLocation(),
7814                                             SourceLocation(),
7815                                             EST_None, SourceLocation(),
7816                                             0, 0, 0, 0, Loc, Loc, D),
7817                DS.getAttributes(),
7818                SourceLocation());
7819  D.SetIdentifier(&II, Loc);
7820
7821  // Insert this function into translation-unit scope.
7822
7823  DeclContext *PrevDC = CurContext;
7824  CurContext = Context.getTranslationUnitDecl();
7825
7826  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7827  FD->setImplicit();
7828
7829  CurContext = PrevDC;
7830
7831  AddKnownFunctionAttributes(FD);
7832
7833  return FD;
7834}
7835
7836/// \brief Adds any function attributes that we know a priori based on
7837/// the declaration of this function.
7838///
7839/// These attributes can apply both to implicitly-declared builtins
7840/// (like __builtin___printf_chk) or to library-declared functions
7841/// like NSLog or printf.
7842///
7843/// We need to check for duplicate attributes both here and where user-written
7844/// attributes are applied to declarations.
7845void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7846  if (FD->isInvalidDecl())
7847    return;
7848
7849  // If this is a built-in function, map its builtin attributes to
7850  // actual attributes.
7851  if (unsigned BuiltinID = FD->getBuiltinID()) {
7852    // Handle printf-formatting attributes.
7853    unsigned FormatIdx;
7854    bool HasVAListArg;
7855    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7856      if (!FD->getAttr<FormatAttr>()) {
7857        const char *fmt = "printf";
7858        unsigned int NumParams = FD->getNumParams();
7859        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7860            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7861          fmt = "NSString";
7862        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7863                                               fmt, FormatIdx+1,
7864                                               HasVAListArg ? 0 : FormatIdx+2));
7865      }
7866    }
7867    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7868                                             HasVAListArg)) {
7869     if (!FD->getAttr<FormatAttr>())
7870       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7871                                              "scanf", FormatIdx+1,
7872                                              HasVAListArg ? 0 : FormatIdx+2));
7873    }
7874
7875    // Mark const if we don't care about errno and that is the only
7876    // thing preventing the function from being const. This allows
7877    // IRgen to use LLVM intrinsics for such functions.
7878    if (!getLangOpts().MathErrno &&
7879        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7880      if (!FD->getAttr<ConstAttr>())
7881        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7882    }
7883
7884    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7885        !FD->getAttr<ReturnsTwiceAttr>())
7886      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7887    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7888      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7889    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7890      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7891  }
7892
7893  IdentifierInfo *Name = FD->getIdentifier();
7894  if (!Name)
7895    return;
7896  if ((!getLangOpts().CPlusPlus &&
7897       FD->getDeclContext()->isTranslationUnit()) ||
7898      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7899       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7900       LinkageSpecDecl::lang_c)) {
7901    // Okay: this could be a libc/libm/Objective-C function we know
7902    // about.
7903  } else
7904    return;
7905
7906  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7907    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7908    // target-specific builtins, perhaps?
7909    if (!FD->getAttr<FormatAttr>())
7910      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7911                                             "printf", 2,
7912                                             Name->isStr("vasprintf") ? 0 : 3));
7913  }
7914}
7915
7916TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7917                                    TypeSourceInfo *TInfo) {
7918  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7919  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7920
7921  if (!TInfo) {
7922    assert(D.isInvalidType() && "no declarator info for valid type");
7923    TInfo = Context.getTrivialTypeSourceInfo(T);
7924  }
7925
7926  // Scope manipulation handled by caller.
7927  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7928                                           D.getLocStart(),
7929                                           D.getIdentifierLoc(),
7930                                           D.getIdentifier(),
7931                                           TInfo);
7932
7933  // Bail out immediately if we have an invalid declaration.
7934  if (D.isInvalidType()) {
7935    NewTD->setInvalidDecl();
7936    return NewTD;
7937  }
7938
7939  if (D.getDeclSpec().isModulePrivateSpecified()) {
7940    if (CurContext->isFunctionOrMethod())
7941      Diag(NewTD->getLocation(), diag::err_module_private_local)
7942        << 2 << NewTD->getDeclName()
7943        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7944        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7945    else
7946      NewTD->setModulePrivate();
7947  }
7948
7949  // C++ [dcl.typedef]p8:
7950  //   If the typedef declaration defines an unnamed class (or
7951  //   enum), the first typedef-name declared by the declaration
7952  //   to be that class type (or enum type) is used to denote the
7953  //   class type (or enum type) for linkage purposes only.
7954  // We need to check whether the type was declared in the declaration.
7955  switch (D.getDeclSpec().getTypeSpecType()) {
7956  case TST_enum:
7957  case TST_struct:
7958  case TST_union:
7959  case TST_class: {
7960    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7961
7962    // Do nothing if the tag is not anonymous or already has an
7963    // associated typedef (from an earlier typedef in this decl group).
7964    if (tagFromDeclSpec->getIdentifier()) break;
7965    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7966
7967    // A well-formed anonymous tag must always be a TUK_Definition.
7968    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7969
7970    // The type must match the tag exactly;  no qualifiers allowed.
7971    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7972      break;
7973
7974    // Otherwise, set this is the anon-decl typedef for the tag.
7975    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7976    break;
7977  }
7978
7979  default:
7980    break;
7981  }
7982
7983  return NewTD;
7984}
7985
7986
7987/// \brief Check that this is a valid underlying type for an enum declaration.
7988bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7989  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7990  QualType T = TI->getType();
7991
7992  if (T->isDependentType() || T->isIntegralType(Context))
7993    return false;
7994
7995  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7996  return true;
7997}
7998
7999/// Check whether this is a valid redeclaration of a previous enumeration.
8000/// \return true if the redeclaration was invalid.
8001bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8002                                  QualType EnumUnderlyingTy,
8003                                  const EnumDecl *Prev) {
8004  bool IsFixed = !EnumUnderlyingTy.isNull();
8005
8006  if (IsScoped != Prev->isScoped()) {
8007    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8008      << Prev->isScoped();
8009    Diag(Prev->getLocation(), diag::note_previous_use);
8010    return true;
8011  }
8012
8013  if (IsFixed && Prev->isFixed()) {
8014    if (!EnumUnderlyingTy->isDependentType() &&
8015        !Prev->getIntegerType()->isDependentType() &&
8016        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8017                                        Prev->getIntegerType())) {
8018      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8019        << EnumUnderlyingTy << Prev->getIntegerType();
8020      Diag(Prev->getLocation(), diag::note_previous_use);
8021      return true;
8022    }
8023  } else if (IsFixed != Prev->isFixed()) {
8024    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8025      << Prev->isFixed();
8026    Diag(Prev->getLocation(), diag::note_previous_use);
8027    return true;
8028  }
8029
8030  return false;
8031}
8032
8033/// \brief Determine whether a tag with a given kind is acceptable
8034/// as a redeclaration of the given tag declaration.
8035///
8036/// \returns true if the new tag kind is acceptable, false otherwise.
8037bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8038                                        TagTypeKind NewTag, bool isDefinition,
8039                                        SourceLocation NewTagLoc,
8040                                        const IdentifierInfo &Name) {
8041  // C++ [dcl.type.elab]p3:
8042  //   The class-key or enum keyword present in the
8043  //   elaborated-type-specifier shall agree in kind with the
8044  //   declaration to which the name in the elaborated-type-specifier
8045  //   refers. This rule also applies to the form of
8046  //   elaborated-type-specifier that declares a class-name or
8047  //   friend class since it can be construed as referring to the
8048  //   definition of the class. Thus, in any
8049  //   elaborated-type-specifier, the enum keyword shall be used to
8050  //   refer to an enumeration (7.2), the union class-key shall be
8051  //   used to refer to a union (clause 9), and either the class or
8052  //   struct class-key shall be used to refer to a class (clause 9)
8053  //   declared using the class or struct class-key.
8054  TagTypeKind OldTag = Previous->getTagKind();
8055  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
8056    if (OldTag == NewTag)
8057      return true;
8058
8059  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
8060      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
8061    // Warn about the struct/class tag mismatch.
8062    bool isTemplate = false;
8063    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8064      isTemplate = Record->getDescribedClassTemplate();
8065
8066    if (!ActiveTemplateInstantiations.empty()) {
8067      // In a template instantiation, do not offer fix-its for tag mismatches
8068      // since they usually mess up the template instead of fixing the problem.
8069      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8070        << (NewTag == TTK_Class) << isTemplate << &Name;
8071      return true;
8072    }
8073
8074    if (isDefinition) {
8075      // On definitions, check previous tags and issue a fix-it for each
8076      // one that doesn't match the current tag.
8077      if (Previous->getDefinition()) {
8078        // Don't suggest fix-its for redefinitions.
8079        return true;
8080      }
8081
8082      bool previousMismatch = false;
8083      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8084           E(Previous->redecls_end()); I != E; ++I) {
8085        if (I->getTagKind() != NewTag) {
8086          if (!previousMismatch) {
8087            previousMismatch = true;
8088            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8089              << (NewTag == TTK_Class) << isTemplate << &Name;
8090          }
8091          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8092            << (NewTag == TTK_Class)
8093            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8094                                            NewTag == TTK_Class?
8095                                            "class" : "struct");
8096        }
8097      }
8098      return true;
8099    }
8100
8101    // Check for a previous definition.  If current tag and definition
8102    // are same type, do nothing.  If no definition, but disagree with
8103    // with previous tag type, give a warning, but no fix-it.
8104    const TagDecl *Redecl = Previous->getDefinition() ?
8105                            Previous->getDefinition() : Previous;
8106    if (Redecl->getTagKind() == NewTag) {
8107      return true;
8108    }
8109
8110    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8111      << (NewTag == TTK_Class)
8112      << isTemplate << &Name;
8113    Diag(Redecl->getLocation(), diag::note_previous_use);
8114
8115    // If there is a previous defintion, suggest a fix-it.
8116    if (Previous->getDefinition()) {
8117        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8118          << (Redecl->getTagKind() == TTK_Class)
8119          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8120                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8121    }
8122
8123    return true;
8124  }
8125  return false;
8126}
8127
8128/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8129/// former case, Name will be non-null.  In the later case, Name will be null.
8130/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8131/// reference/declaration/definition of a tag.
8132Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8133                     SourceLocation KWLoc, CXXScopeSpec &SS,
8134                     IdentifierInfo *Name, SourceLocation NameLoc,
8135                     AttributeList *Attr, AccessSpecifier AS,
8136                     SourceLocation ModulePrivateLoc,
8137                     MultiTemplateParamsArg TemplateParameterLists,
8138                     bool &OwnedDecl, bool &IsDependent,
8139                     SourceLocation ScopedEnumKWLoc,
8140                     bool ScopedEnumUsesClassTag,
8141                     TypeResult UnderlyingType) {
8142  // If this is not a definition, it must have a name.
8143  IdentifierInfo *OrigName = Name;
8144  assert((Name != 0 || TUK == TUK_Definition) &&
8145         "Nameless record must be a definition!");
8146  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8147
8148  OwnedDecl = false;
8149  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8150  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8151
8152  // FIXME: Check explicit specializations more carefully.
8153  bool isExplicitSpecialization = false;
8154  bool Invalid = false;
8155
8156  // We only need to do this matching if we have template parameters
8157  // or a scope specifier, which also conveniently avoids this work
8158  // for non-C++ cases.
8159  if (TemplateParameterLists.size() > 0 ||
8160      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8161    if (TemplateParameterList *TemplateParams
8162          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8163                                                TemplateParameterLists.get(),
8164                                                TemplateParameterLists.size(),
8165                                                    TUK == TUK_Friend,
8166                                                    isExplicitSpecialization,
8167                                                    Invalid)) {
8168      if (TemplateParams->size() > 0) {
8169        // This is a declaration or definition of a class template (which may
8170        // be a member of another template).
8171
8172        if (Invalid)
8173          return 0;
8174
8175        OwnedDecl = false;
8176        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8177                                               SS, Name, NameLoc, Attr,
8178                                               TemplateParams, AS,
8179                                               ModulePrivateLoc,
8180                                           TemplateParameterLists.size() - 1,
8181                 (TemplateParameterList**) TemplateParameterLists.release());
8182        return Result.get();
8183      } else {
8184        // The "template<>" header is extraneous.
8185        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8186          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8187        isExplicitSpecialization = true;
8188      }
8189    }
8190  }
8191
8192  // Figure out the underlying type if this a enum declaration. We need to do
8193  // this early, because it's needed to detect if this is an incompatible
8194  // redeclaration.
8195  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8196
8197  if (Kind == TTK_Enum) {
8198    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8199      // No underlying type explicitly specified, or we failed to parse the
8200      // type, default to int.
8201      EnumUnderlying = Context.IntTy.getTypePtr();
8202    else if (UnderlyingType.get()) {
8203      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8204      // integral type; any cv-qualification is ignored.
8205      TypeSourceInfo *TI = 0;
8206      GetTypeFromParser(UnderlyingType.get(), &TI);
8207      EnumUnderlying = TI;
8208
8209      if (CheckEnumUnderlyingType(TI))
8210        // Recover by falling back to int.
8211        EnumUnderlying = Context.IntTy.getTypePtr();
8212
8213      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8214                                          UPPC_FixedUnderlyingType))
8215        EnumUnderlying = Context.IntTy.getTypePtr();
8216
8217    } else if (getLangOpts().MicrosoftMode)
8218      // Microsoft enums are always of int type.
8219      EnumUnderlying = Context.IntTy.getTypePtr();
8220  }
8221
8222  DeclContext *SearchDC = CurContext;
8223  DeclContext *DC = CurContext;
8224  bool isStdBadAlloc = false;
8225
8226  RedeclarationKind Redecl = ForRedeclaration;
8227  if (TUK == TUK_Friend || TUK == TUK_Reference)
8228    Redecl = NotForRedeclaration;
8229
8230  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8231
8232  if (Name && SS.isNotEmpty()) {
8233    // We have a nested-name tag ('struct foo::bar').
8234
8235    // Check for invalid 'foo::'.
8236    if (SS.isInvalid()) {
8237      Name = 0;
8238      goto CreateNewDecl;
8239    }
8240
8241    // If this is a friend or a reference to a class in a dependent
8242    // context, don't try to make a decl for it.
8243    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8244      DC = computeDeclContext(SS, false);
8245      if (!DC) {
8246        IsDependent = true;
8247        return 0;
8248      }
8249    } else {
8250      DC = computeDeclContext(SS, true);
8251      if (!DC) {
8252        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8253          << SS.getRange();
8254        return 0;
8255      }
8256    }
8257
8258    if (RequireCompleteDeclContext(SS, DC))
8259      return 0;
8260
8261    SearchDC = DC;
8262    // Look-up name inside 'foo::'.
8263    LookupQualifiedName(Previous, DC);
8264
8265    if (Previous.isAmbiguous())
8266      return 0;
8267
8268    if (Previous.empty()) {
8269      // Name lookup did not find anything. However, if the
8270      // nested-name-specifier refers to the current instantiation,
8271      // and that current instantiation has any dependent base
8272      // classes, we might find something at instantiation time: treat
8273      // this as a dependent elaborated-type-specifier.
8274      // But this only makes any sense for reference-like lookups.
8275      if (Previous.wasNotFoundInCurrentInstantiation() &&
8276          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8277        IsDependent = true;
8278        return 0;
8279      }
8280
8281      // A tag 'foo::bar' must already exist.
8282      Diag(NameLoc, diag::err_not_tag_in_scope)
8283        << Kind << Name << DC << SS.getRange();
8284      Name = 0;
8285      Invalid = true;
8286      goto CreateNewDecl;
8287    }
8288  } else if (Name) {
8289    // If this is a named struct, check to see if there was a previous forward
8290    // declaration or definition.
8291    // FIXME: We're looking into outer scopes here, even when we
8292    // shouldn't be. Doing so can result in ambiguities that we
8293    // shouldn't be diagnosing.
8294    LookupName(Previous, S);
8295
8296    if (Previous.isAmbiguous() &&
8297        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8298      LookupResult::Filter F = Previous.makeFilter();
8299      while (F.hasNext()) {
8300        NamedDecl *ND = F.next();
8301        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8302          F.erase();
8303      }
8304      F.done();
8305    }
8306
8307    // Note:  there used to be some attempt at recovery here.
8308    if (Previous.isAmbiguous())
8309      return 0;
8310
8311    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8312      // FIXME: This makes sure that we ignore the contexts associated
8313      // with C structs, unions, and enums when looking for a matching
8314      // tag declaration or definition. See the similar lookup tweak
8315      // in Sema::LookupName; is there a better way to deal with this?
8316      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8317        SearchDC = SearchDC->getParent();
8318    }
8319  } else if (S->isFunctionPrototypeScope()) {
8320    // If this is an enum declaration in function prototype scope, set its
8321    // initial context to the translation unit.
8322    // FIXME: [citation needed]
8323    SearchDC = Context.getTranslationUnitDecl();
8324  }
8325
8326  if (Previous.isSingleResult() &&
8327      Previous.getFoundDecl()->isTemplateParameter()) {
8328    // Maybe we will complain about the shadowed template parameter.
8329    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8330    // Just pretend that we didn't see the previous declaration.
8331    Previous.clear();
8332  }
8333
8334  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8335      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8336    // This is a declaration of or a reference to "std::bad_alloc".
8337    isStdBadAlloc = true;
8338
8339    if (Previous.empty() && StdBadAlloc) {
8340      // std::bad_alloc has been implicitly declared (but made invisible to
8341      // name lookup). Fill in this implicit declaration as the previous
8342      // declaration, so that the declarations get chained appropriately.
8343      Previous.addDecl(getStdBadAlloc());
8344    }
8345  }
8346
8347  // If we didn't find a previous declaration, and this is a reference
8348  // (or friend reference), move to the correct scope.  In C++, we
8349  // also need to do a redeclaration lookup there, just in case
8350  // there's a shadow friend decl.
8351  if (Name && Previous.empty() &&
8352      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8353    if (Invalid) goto CreateNewDecl;
8354    assert(SS.isEmpty());
8355
8356    if (TUK == TUK_Reference) {
8357      // C++ [basic.scope.pdecl]p5:
8358      //   -- for an elaborated-type-specifier of the form
8359      //
8360      //          class-key identifier
8361      //
8362      //      if the elaborated-type-specifier is used in the
8363      //      decl-specifier-seq or parameter-declaration-clause of a
8364      //      function defined in namespace scope, the identifier is
8365      //      declared as a class-name in the namespace that contains
8366      //      the declaration; otherwise, except as a friend
8367      //      declaration, the identifier is declared in the smallest
8368      //      non-class, non-function-prototype scope that contains the
8369      //      declaration.
8370      //
8371      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8372      // C structs and unions.
8373      //
8374      // It is an error in C++ to declare (rather than define) an enum
8375      // type, including via an elaborated type specifier.  We'll
8376      // diagnose that later; for now, declare the enum in the same
8377      // scope as we would have picked for any other tag type.
8378      //
8379      // GNU C also supports this behavior as part of its incomplete
8380      // enum types extension, while GNU C++ does not.
8381      //
8382      // Find the context where we'll be declaring the tag.
8383      // FIXME: We would like to maintain the current DeclContext as the
8384      // lexical context,
8385      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8386        SearchDC = SearchDC->getParent();
8387
8388      // Find the scope where we'll be declaring the tag.
8389      while (S->isClassScope() ||
8390             (getLangOpts().CPlusPlus &&
8391              S->isFunctionPrototypeScope()) ||
8392             ((S->getFlags() & Scope::DeclScope) == 0) ||
8393             (S->getEntity() &&
8394              ((DeclContext *)S->getEntity())->isTransparentContext()))
8395        S = S->getParent();
8396    } else {
8397      assert(TUK == TUK_Friend);
8398      // C++ [namespace.memdef]p3:
8399      //   If a friend declaration in a non-local class first declares a
8400      //   class or function, the friend class or function is a member of
8401      //   the innermost enclosing namespace.
8402      SearchDC = SearchDC->getEnclosingNamespaceContext();
8403    }
8404
8405    // In C++, we need to do a redeclaration lookup to properly
8406    // diagnose some problems.
8407    if (getLangOpts().CPlusPlus) {
8408      Previous.setRedeclarationKind(ForRedeclaration);
8409      LookupQualifiedName(Previous, SearchDC);
8410    }
8411  }
8412
8413  if (!Previous.empty()) {
8414    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8415
8416    // It's okay to have a tag decl in the same scope as a typedef
8417    // which hides a tag decl in the same scope.  Finding this
8418    // insanity with a redeclaration lookup can only actually happen
8419    // in C++.
8420    //
8421    // This is also okay for elaborated-type-specifiers, which is
8422    // technically forbidden by the current standard but which is
8423    // okay according to the likely resolution of an open issue;
8424    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8425    if (getLangOpts().CPlusPlus) {
8426      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8427        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8428          TagDecl *Tag = TT->getDecl();
8429          if (Tag->getDeclName() == Name &&
8430              Tag->getDeclContext()->getRedeclContext()
8431                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8432            PrevDecl = Tag;
8433            Previous.clear();
8434            Previous.addDecl(Tag);
8435            Previous.resolveKind();
8436          }
8437        }
8438      }
8439    }
8440
8441    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8442      // If this is a use of a previous tag, or if the tag is already declared
8443      // in the same scope (so that the definition/declaration completes or
8444      // rementions the tag), reuse the decl.
8445      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8446          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8447        // Make sure that this wasn't declared as an enum and now used as a
8448        // struct or something similar.
8449        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8450                                          TUK == TUK_Definition, KWLoc,
8451                                          *Name)) {
8452          bool SafeToContinue
8453            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8454               Kind != TTK_Enum);
8455          if (SafeToContinue)
8456            Diag(KWLoc, diag::err_use_with_wrong_tag)
8457              << Name
8458              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8459                                              PrevTagDecl->getKindName());
8460          else
8461            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8462          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8463
8464          if (SafeToContinue)
8465            Kind = PrevTagDecl->getTagKind();
8466          else {
8467            // Recover by making this an anonymous redefinition.
8468            Name = 0;
8469            Previous.clear();
8470            Invalid = true;
8471          }
8472        }
8473
8474        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8475          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8476
8477          // If this is an elaborated-type-specifier for a scoped enumeration,
8478          // the 'class' keyword is not necessary and not permitted.
8479          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8480            if (ScopedEnum)
8481              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8482                << PrevEnum->isScoped()
8483                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8484            return PrevTagDecl;
8485          }
8486
8487          QualType EnumUnderlyingTy;
8488          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8489            EnumUnderlyingTy = TI->getType();
8490          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8491            EnumUnderlyingTy = QualType(T, 0);
8492
8493          // All conflicts with previous declarations are recovered by
8494          // returning the previous declaration, unless this is a definition,
8495          // in which case we want the caller to bail out.
8496          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8497                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8498            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8499        }
8500
8501        if (!Invalid) {
8502          // If this is a use, just return the declaration we found.
8503
8504          // FIXME: In the future, return a variant or some other clue
8505          // for the consumer of this Decl to know it doesn't own it.
8506          // For our current ASTs this shouldn't be a problem, but will
8507          // need to be changed with DeclGroups.
8508          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8509               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8510            return PrevTagDecl;
8511
8512          // Diagnose attempts to redefine a tag.
8513          if (TUK == TUK_Definition) {
8514            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8515              // If we're defining a specialization and the previous definition
8516              // is from an implicit instantiation, don't emit an error
8517              // here; we'll catch this in the general case below.
8518              bool IsExplicitSpecializationAfterInstantiation = false;
8519              if (isExplicitSpecialization) {
8520                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8521                  IsExplicitSpecializationAfterInstantiation =
8522                    RD->getTemplateSpecializationKind() !=
8523                    TSK_ExplicitSpecialization;
8524                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8525                  IsExplicitSpecializationAfterInstantiation =
8526                    ED->getTemplateSpecializationKind() !=
8527                    TSK_ExplicitSpecialization;
8528              }
8529
8530              if (!IsExplicitSpecializationAfterInstantiation) {
8531                // A redeclaration in function prototype scope in C isn't
8532                // visible elsewhere, so merely issue a warning.
8533                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8534                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8535                else
8536                  Diag(NameLoc, diag::err_redefinition) << Name;
8537                Diag(Def->getLocation(), diag::note_previous_definition);
8538                // If this is a redefinition, recover by making this
8539                // struct be anonymous, which will make any later
8540                // references get the previous definition.
8541                Name = 0;
8542                Previous.clear();
8543                Invalid = true;
8544              }
8545            } else {
8546              // If the type is currently being defined, complain
8547              // about a nested redefinition.
8548              const TagType *Tag
8549                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8550              if (Tag->isBeingDefined()) {
8551                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8552                Diag(PrevTagDecl->getLocation(),
8553                     diag::note_previous_definition);
8554                Name = 0;
8555                Previous.clear();
8556                Invalid = true;
8557              }
8558            }
8559
8560            // Okay, this is definition of a previously declared or referenced
8561            // tag PrevDecl. We're going to create a new Decl for it.
8562          }
8563        }
8564        // If we get here we have (another) forward declaration or we
8565        // have a definition.  Just create a new decl.
8566
8567      } else {
8568        // If we get here, this is a definition of a new tag type in a nested
8569        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8570        // new decl/type.  We set PrevDecl to NULL so that the entities
8571        // have distinct types.
8572        Previous.clear();
8573      }
8574      // If we get here, we're going to create a new Decl. If PrevDecl
8575      // is non-NULL, it's a definition of the tag declared by
8576      // PrevDecl. If it's NULL, we have a new definition.
8577
8578
8579    // Otherwise, PrevDecl is not a tag, but was found with tag
8580    // lookup.  This is only actually possible in C++, where a few
8581    // things like templates still live in the tag namespace.
8582    } else {
8583      // Use a better diagnostic if an elaborated-type-specifier
8584      // found the wrong kind of type on the first
8585      // (non-redeclaration) lookup.
8586      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8587          !Previous.isForRedeclaration()) {
8588        unsigned Kind = 0;
8589        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8590        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8591        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8592        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8593        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8594        Invalid = true;
8595
8596      // Otherwise, only diagnose if the declaration is in scope.
8597      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8598                                isExplicitSpecialization)) {
8599        // do nothing
8600
8601      // Diagnose implicit declarations introduced by elaborated types.
8602      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8603        unsigned Kind = 0;
8604        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8605        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8606        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8607        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8608        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8609        Invalid = true;
8610
8611      // Otherwise it's a declaration.  Call out a particularly common
8612      // case here.
8613      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8614        unsigned Kind = 0;
8615        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8616        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8617          << Name << Kind << TND->getUnderlyingType();
8618        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8619        Invalid = true;
8620
8621      // Otherwise, diagnose.
8622      } else {
8623        // The tag name clashes with something else in the target scope,
8624        // issue an error and recover by making this tag be anonymous.
8625        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8626        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8627        Name = 0;
8628        Invalid = true;
8629      }
8630
8631      // The existing declaration isn't relevant to us; we're in a
8632      // new scope, so clear out the previous declaration.
8633      Previous.clear();
8634    }
8635  }
8636
8637CreateNewDecl:
8638
8639  TagDecl *PrevDecl = 0;
8640  if (Previous.isSingleResult())
8641    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8642
8643  // If there is an identifier, use the location of the identifier as the
8644  // location of the decl, otherwise use the location of the struct/union
8645  // keyword.
8646  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8647
8648  // Otherwise, create a new declaration. If there is a previous
8649  // declaration of the same entity, the two will be linked via
8650  // PrevDecl.
8651  TagDecl *New;
8652
8653  bool IsForwardReference = false;
8654  if (Kind == TTK_Enum) {
8655    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8656    // enum X { A, B, C } D;    D should chain to X.
8657    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8658                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8659                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8660    // If this is an undefined enum, warn.
8661    if (TUK != TUK_Definition && !Invalid) {
8662      TagDecl *Def;
8663      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8664        // C++0x: 7.2p2: opaque-enum-declaration.
8665        // Conflicts are diagnosed above. Do nothing.
8666      }
8667      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8668        Diag(Loc, diag::ext_forward_ref_enum_def)
8669          << New;
8670        Diag(Def->getLocation(), diag::note_previous_definition);
8671      } else {
8672        unsigned DiagID = diag::ext_forward_ref_enum;
8673        if (getLangOpts().MicrosoftMode)
8674          DiagID = diag::ext_ms_forward_ref_enum;
8675        else if (getLangOpts().CPlusPlus)
8676          DiagID = diag::err_forward_ref_enum;
8677        Diag(Loc, DiagID);
8678
8679        // If this is a forward-declared reference to an enumeration, make a
8680        // note of it; we won't actually be introducing the declaration into
8681        // the declaration context.
8682        if (TUK == TUK_Reference)
8683          IsForwardReference = true;
8684      }
8685    }
8686
8687    if (EnumUnderlying) {
8688      EnumDecl *ED = cast<EnumDecl>(New);
8689      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8690        ED->setIntegerTypeSourceInfo(TI);
8691      else
8692        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8693      ED->setPromotionType(ED->getIntegerType());
8694    }
8695
8696  } else {
8697    // struct/union/class
8698
8699    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8700    // struct X { int A; } D;    D should chain to X.
8701    if (getLangOpts().CPlusPlus) {
8702      // FIXME: Look for a way to use RecordDecl for simple structs.
8703      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8704                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8705
8706      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8707        StdBadAlloc = cast<CXXRecordDecl>(New);
8708    } else
8709      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8710                               cast_or_null<RecordDecl>(PrevDecl));
8711  }
8712
8713  // Maybe add qualifier info.
8714  if (SS.isNotEmpty()) {
8715    if (SS.isSet()) {
8716      // If this is either a declaration or a definition, check the
8717      // nested-name-specifier against the current context. We don't do this
8718      // for explicit specializations, because they have similar checking
8719      // (with more specific diagnostics) in the call to
8720      // CheckMemberSpecialization, below.
8721      if (!isExplicitSpecialization &&
8722          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8723          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8724        Invalid = true;
8725
8726      New->setQualifierInfo(SS.getWithLocInContext(Context));
8727      if (TemplateParameterLists.size() > 0) {
8728        New->setTemplateParameterListsInfo(Context,
8729                                           TemplateParameterLists.size(),
8730                    (TemplateParameterList**) TemplateParameterLists.release());
8731      }
8732    }
8733    else
8734      Invalid = true;
8735  }
8736
8737  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8738    // Add alignment attributes if necessary; these attributes are checked when
8739    // the ASTContext lays out the structure.
8740    //
8741    // It is important for implementing the correct semantics that this
8742    // happen here (in act on tag decl). The #pragma pack stack is
8743    // maintained as a result of parser callbacks which can occur at
8744    // many points during the parsing of a struct declaration (because
8745    // the #pragma tokens are effectively skipped over during the
8746    // parsing of the struct).
8747    AddAlignmentAttributesForRecord(RD);
8748
8749    AddMsStructLayoutForRecord(RD);
8750  }
8751
8752  if (ModulePrivateLoc.isValid()) {
8753    if (isExplicitSpecialization)
8754      Diag(New->getLocation(), diag::err_module_private_specialization)
8755        << 2
8756        << FixItHint::CreateRemoval(ModulePrivateLoc);
8757    // __module_private__ does not apply to local classes. However, we only
8758    // diagnose this as an error when the declaration specifiers are
8759    // freestanding. Here, we just ignore the __module_private__.
8760    else if (!SearchDC->isFunctionOrMethod())
8761      New->setModulePrivate();
8762  }
8763
8764  // If this is a specialization of a member class (of a class template),
8765  // check the specialization.
8766  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8767    Invalid = true;
8768
8769  if (Invalid)
8770    New->setInvalidDecl();
8771
8772  if (Attr)
8773    ProcessDeclAttributeList(S, New, Attr);
8774
8775  // If we're declaring or defining a tag in function prototype scope
8776  // in C, note that this type can only be used within the function.
8777  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8778    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8779
8780  // Set the lexical context. If the tag has a C++ scope specifier, the
8781  // lexical context will be different from the semantic context.
8782  New->setLexicalDeclContext(CurContext);
8783
8784  // Mark this as a friend decl if applicable.
8785  // In Microsoft mode, a friend declaration also acts as a forward
8786  // declaration so we always pass true to setObjectOfFriendDecl to make
8787  // the tag name visible.
8788  if (TUK == TUK_Friend)
8789    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8790                               getLangOpts().MicrosoftExt);
8791
8792  // Set the access specifier.
8793  if (!Invalid && SearchDC->isRecord())
8794    SetMemberAccessSpecifier(New, PrevDecl, AS);
8795
8796  if (TUK == TUK_Definition)
8797    New->startDefinition();
8798
8799  // If this has an identifier, add it to the scope stack.
8800  if (TUK == TUK_Friend) {
8801    // We might be replacing an existing declaration in the lookup tables;
8802    // if so, borrow its access specifier.
8803    if (PrevDecl)
8804      New->setAccess(PrevDecl->getAccess());
8805
8806    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8807    DC->makeDeclVisibleInContext(New);
8808    if (Name) // can be null along some error paths
8809      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8810        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8811  } else if (Name) {
8812    S = getNonFieldDeclScope(S);
8813    PushOnScopeChains(New, S, !IsForwardReference);
8814    if (IsForwardReference)
8815      SearchDC->makeDeclVisibleInContext(New);
8816
8817  } else {
8818    CurContext->addDecl(New);
8819  }
8820
8821  // If this is the C FILE type, notify the AST context.
8822  if (IdentifierInfo *II = New->getIdentifier())
8823    if (!New->isInvalidDecl() &&
8824        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8825        II->isStr("FILE"))
8826      Context.setFILEDecl(New);
8827
8828  // If we were in function prototype scope (and not in C++ mode), add this
8829  // tag to the list of decls to inject into the function definition scope.
8830  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8831      InFunctionDeclarator && Name)
8832    DeclsInPrototypeScope.push_back(New);
8833
8834  if (PrevDecl)
8835    mergeDeclAttributes(New, PrevDecl);
8836
8837  OwnedDecl = true;
8838  return New;
8839}
8840
8841void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8842  AdjustDeclIfTemplate(TagD);
8843  TagDecl *Tag = cast<TagDecl>(TagD);
8844
8845  // Enter the tag context.
8846  PushDeclContext(S, Tag);
8847}
8848
8849Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8850  assert(isa<ObjCContainerDecl>(IDecl) &&
8851         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8852  DeclContext *OCD = cast<DeclContext>(IDecl);
8853  assert(getContainingDC(OCD) == CurContext &&
8854      "The next DeclContext should be lexically contained in the current one.");
8855  CurContext = OCD;
8856  return IDecl;
8857}
8858
8859void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8860                                           SourceLocation FinalLoc,
8861                                           SourceLocation LBraceLoc) {
8862  AdjustDeclIfTemplate(TagD);
8863  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8864
8865  FieldCollector->StartClass();
8866
8867  if (!Record->getIdentifier())
8868    return;
8869
8870  if (FinalLoc.isValid())
8871    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8872
8873  // C++ [class]p2:
8874  //   [...] The class-name is also inserted into the scope of the
8875  //   class itself; this is known as the injected-class-name. For
8876  //   purposes of access checking, the injected-class-name is treated
8877  //   as if it were a public member name.
8878  CXXRecordDecl *InjectedClassName
8879    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8880                            Record->getLocStart(), Record->getLocation(),
8881                            Record->getIdentifier(),
8882                            /*PrevDecl=*/0,
8883                            /*DelayTypeCreation=*/true);
8884  Context.getTypeDeclType(InjectedClassName, Record);
8885  InjectedClassName->setImplicit();
8886  InjectedClassName->setAccess(AS_public);
8887  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8888      InjectedClassName->setDescribedClassTemplate(Template);
8889  PushOnScopeChains(InjectedClassName, S);
8890  assert(InjectedClassName->isInjectedClassName() &&
8891         "Broken injected-class-name");
8892}
8893
8894void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8895                                    SourceLocation RBraceLoc) {
8896  AdjustDeclIfTemplate(TagD);
8897  TagDecl *Tag = cast<TagDecl>(TagD);
8898  Tag->setRBraceLoc(RBraceLoc);
8899
8900  // Make sure we "complete" the definition even it is invalid.
8901  if (Tag->isBeingDefined()) {
8902    assert(Tag->isInvalidDecl() && "We should already have completed it");
8903    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8904      RD->completeDefinition();
8905  }
8906
8907  if (isa<CXXRecordDecl>(Tag))
8908    FieldCollector->FinishClass();
8909
8910  // Exit this scope of this tag's definition.
8911  PopDeclContext();
8912
8913  // Notify the consumer that we've defined a tag.
8914  Consumer.HandleTagDeclDefinition(Tag);
8915}
8916
8917void Sema::ActOnObjCContainerFinishDefinition() {
8918  // Exit this scope of this interface definition.
8919  PopDeclContext();
8920}
8921
8922void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8923  assert(DC == CurContext && "Mismatch of container contexts");
8924  OriginalLexicalContext = DC;
8925  ActOnObjCContainerFinishDefinition();
8926}
8927
8928void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8929  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8930  OriginalLexicalContext = 0;
8931}
8932
8933void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8934  AdjustDeclIfTemplate(TagD);
8935  TagDecl *Tag = cast<TagDecl>(TagD);
8936  Tag->setInvalidDecl();
8937
8938  // Make sure we "complete" the definition even it is invalid.
8939  if (Tag->isBeingDefined()) {
8940    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8941      RD->completeDefinition();
8942  }
8943
8944  // We're undoing ActOnTagStartDefinition here, not
8945  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8946  // the FieldCollector.
8947
8948  PopDeclContext();
8949}
8950
8951// Note that FieldName may be null for anonymous bitfields.
8952ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8953                                IdentifierInfo *FieldName,
8954                                QualType FieldTy, Expr *BitWidth,
8955                                bool *ZeroWidth) {
8956  // Default to true; that shouldn't confuse checks for emptiness
8957  if (ZeroWidth)
8958    *ZeroWidth = true;
8959
8960  // C99 6.7.2.1p4 - verify the field type.
8961  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8962  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8963    // Handle incomplete types with specific error.
8964    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8965      return ExprError();
8966    if (FieldName)
8967      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8968        << FieldName << FieldTy << BitWidth->getSourceRange();
8969    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8970      << FieldTy << BitWidth->getSourceRange();
8971  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8972                                             UPPC_BitFieldWidth))
8973    return ExprError();
8974
8975  // If the bit-width is type- or value-dependent, don't try to check
8976  // it now.
8977  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8978    return Owned(BitWidth);
8979
8980  llvm::APSInt Value;
8981  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8982  if (ICE.isInvalid())
8983    return ICE;
8984  BitWidth = ICE.take();
8985
8986  if (Value != 0 && ZeroWidth)
8987    *ZeroWidth = false;
8988
8989  // Zero-width bitfield is ok for anonymous field.
8990  if (Value == 0 && FieldName)
8991    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8992
8993  if (Value.isSigned() && Value.isNegative()) {
8994    if (FieldName)
8995      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8996               << FieldName << Value.toString(10);
8997    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8998      << Value.toString(10);
8999  }
9000
9001  if (!FieldTy->isDependentType()) {
9002    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9003    if (Value.getZExtValue() > TypeSize) {
9004      if (!getLangOpts().CPlusPlus) {
9005        if (FieldName)
9006          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9007            << FieldName << (unsigned)Value.getZExtValue()
9008            << (unsigned)TypeSize;
9009
9010        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9011          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9012      }
9013
9014      if (FieldName)
9015        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9016          << FieldName << (unsigned)Value.getZExtValue()
9017          << (unsigned)TypeSize;
9018      else
9019        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9020          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9021    }
9022  }
9023
9024  return Owned(BitWidth);
9025}
9026
9027/// ActOnField - Each field of a C struct/union is passed into this in order
9028/// to create a FieldDecl object for it.
9029Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9030                       Declarator &D, Expr *BitfieldWidth) {
9031  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9032                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9033                               /*InitStyle=*/ICIS_NoInit, AS_public);
9034  return Res;
9035}
9036
9037/// HandleField - Analyze a field of a C struct or a C++ data member.
9038///
9039FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9040                             SourceLocation DeclStart,
9041                             Declarator &D, Expr *BitWidth,
9042                             InClassInitStyle InitStyle,
9043                             AccessSpecifier AS) {
9044  IdentifierInfo *II = D.getIdentifier();
9045  SourceLocation Loc = DeclStart;
9046  if (II) Loc = D.getIdentifierLoc();
9047
9048  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9049  QualType T = TInfo->getType();
9050  if (getLangOpts().CPlusPlus) {
9051    CheckExtraCXXDefaultArguments(D);
9052
9053    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9054                                        UPPC_DataMemberType)) {
9055      D.setInvalidType();
9056      T = Context.IntTy;
9057      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9058    }
9059  }
9060
9061  DiagnoseFunctionSpecifiers(D);
9062
9063  if (D.getDeclSpec().isThreadSpecified())
9064    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9065  if (D.getDeclSpec().isConstexprSpecified())
9066    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9067      << 2;
9068
9069  // Check to see if this name was declared as a member previously
9070  NamedDecl *PrevDecl = 0;
9071  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9072  LookupName(Previous, S);
9073  switch (Previous.getResultKind()) {
9074    case LookupResult::Found:
9075    case LookupResult::FoundUnresolvedValue:
9076      PrevDecl = Previous.getAsSingle<NamedDecl>();
9077      break;
9078
9079    case LookupResult::FoundOverloaded:
9080      PrevDecl = Previous.getRepresentativeDecl();
9081      break;
9082
9083    case LookupResult::NotFound:
9084    case LookupResult::NotFoundInCurrentInstantiation:
9085    case LookupResult::Ambiguous:
9086      break;
9087  }
9088  Previous.suppressDiagnostics();
9089
9090  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9091    // Maybe we will complain about the shadowed template parameter.
9092    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9093    // Just pretend that we didn't see the previous declaration.
9094    PrevDecl = 0;
9095  }
9096
9097  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9098    PrevDecl = 0;
9099
9100  bool Mutable
9101    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9102  SourceLocation TSSL = D.getLocStart();
9103  FieldDecl *NewFD
9104    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9105                     TSSL, AS, PrevDecl, &D);
9106
9107  if (NewFD->isInvalidDecl())
9108    Record->setInvalidDecl();
9109
9110  if (D.getDeclSpec().isModulePrivateSpecified())
9111    NewFD->setModulePrivate();
9112
9113  if (NewFD->isInvalidDecl() && PrevDecl) {
9114    // Don't introduce NewFD into scope; there's already something
9115    // with the same name in the same scope.
9116  } else if (II) {
9117    PushOnScopeChains(NewFD, S);
9118  } else
9119    Record->addDecl(NewFD);
9120
9121  return NewFD;
9122}
9123
9124/// \brief Build a new FieldDecl and check its well-formedness.
9125///
9126/// This routine builds a new FieldDecl given the fields name, type,
9127/// record, etc. \p PrevDecl should refer to any previous declaration
9128/// with the same name and in the same scope as the field to be
9129/// created.
9130///
9131/// \returns a new FieldDecl.
9132///
9133/// \todo The Declarator argument is a hack. It will be removed once
9134FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9135                                TypeSourceInfo *TInfo,
9136                                RecordDecl *Record, SourceLocation Loc,
9137                                bool Mutable, Expr *BitWidth,
9138                                InClassInitStyle InitStyle,
9139                                SourceLocation TSSL,
9140                                AccessSpecifier AS, NamedDecl *PrevDecl,
9141                                Declarator *D) {
9142  IdentifierInfo *II = Name.getAsIdentifierInfo();
9143  bool InvalidDecl = false;
9144  if (D) InvalidDecl = D->isInvalidType();
9145
9146  // If we receive a broken type, recover by assuming 'int' and
9147  // marking this declaration as invalid.
9148  if (T.isNull()) {
9149    InvalidDecl = true;
9150    T = Context.IntTy;
9151  }
9152
9153  QualType EltTy = Context.getBaseElementType(T);
9154  if (!EltTy->isDependentType()) {
9155    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9156      // Fields of incomplete type force their record to be invalid.
9157      Record->setInvalidDecl();
9158      InvalidDecl = true;
9159    } else {
9160      NamedDecl *Def;
9161      EltTy->isIncompleteType(&Def);
9162      if (Def && Def->isInvalidDecl()) {
9163        Record->setInvalidDecl();
9164        InvalidDecl = true;
9165      }
9166    }
9167  }
9168
9169  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9170  // than a variably modified type.
9171  if (!InvalidDecl && T->isVariablyModifiedType()) {
9172    bool SizeIsNegative;
9173    llvm::APSInt Oversized;
9174    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9175                                                           SizeIsNegative,
9176                                                           Oversized);
9177    if (!FixedTy.isNull()) {
9178      Diag(Loc, diag::warn_illegal_constant_array_size);
9179      T = FixedTy;
9180    } else {
9181      if (SizeIsNegative)
9182        Diag(Loc, diag::err_typecheck_negative_array_size);
9183      else if (Oversized.getBoolValue())
9184        Diag(Loc, diag::err_array_too_large)
9185          << Oversized.toString(10);
9186      else
9187        Diag(Loc, diag::err_typecheck_field_variable_size);
9188      InvalidDecl = true;
9189    }
9190  }
9191
9192  // Fields can not have abstract class types
9193  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9194                                             diag::err_abstract_type_in_decl,
9195                                             AbstractFieldType))
9196    InvalidDecl = true;
9197
9198  bool ZeroWidth = false;
9199  // If this is declared as a bit-field, check the bit-field.
9200  if (!InvalidDecl && BitWidth) {
9201    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9202    if (!BitWidth) {
9203      InvalidDecl = true;
9204      BitWidth = 0;
9205      ZeroWidth = false;
9206    }
9207  }
9208
9209  // Check that 'mutable' is consistent with the type of the declaration.
9210  if (!InvalidDecl && Mutable) {
9211    unsigned DiagID = 0;
9212    if (T->isReferenceType())
9213      DiagID = diag::err_mutable_reference;
9214    else if (T.isConstQualified())
9215      DiagID = diag::err_mutable_const;
9216
9217    if (DiagID) {
9218      SourceLocation ErrLoc = Loc;
9219      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9220        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9221      Diag(ErrLoc, DiagID);
9222      Mutable = false;
9223      InvalidDecl = true;
9224    }
9225  }
9226
9227  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9228                                       BitWidth, Mutable, InitStyle);
9229  if (InvalidDecl)
9230    NewFD->setInvalidDecl();
9231
9232  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9233    Diag(Loc, diag::err_duplicate_member) << II;
9234    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9235    NewFD->setInvalidDecl();
9236  }
9237
9238  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9239    if (Record->isUnion()) {
9240      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9241        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9242        if (RDecl->getDefinition()) {
9243          // C++ [class.union]p1: An object of a class with a non-trivial
9244          // constructor, a non-trivial copy constructor, a non-trivial
9245          // destructor, or a non-trivial copy assignment operator
9246          // cannot be a member of a union, nor can an array of such
9247          // objects.
9248          if (CheckNontrivialField(NewFD))
9249            NewFD->setInvalidDecl();
9250        }
9251      }
9252
9253      // C++ [class.union]p1: If a union contains a member of reference type,
9254      // the program is ill-formed.
9255      if (EltTy->isReferenceType()) {
9256        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9257          << NewFD->getDeclName() << EltTy;
9258        NewFD->setInvalidDecl();
9259      }
9260    }
9261  }
9262
9263  // FIXME: We need to pass in the attributes given an AST
9264  // representation, not a parser representation.
9265  if (D)
9266    // FIXME: What to pass instead of TUScope?
9267    ProcessDeclAttributes(TUScope, NewFD, *D);
9268
9269  // In auto-retain/release, infer strong retension for fields of
9270  // retainable type.
9271  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9272    NewFD->setInvalidDecl();
9273
9274  if (T.isObjCGCWeak())
9275    Diag(Loc, diag::warn_attribute_weak_on_field);
9276
9277  NewFD->setAccess(AS);
9278  return NewFD;
9279}
9280
9281bool Sema::CheckNontrivialField(FieldDecl *FD) {
9282  assert(FD);
9283  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9284
9285  if (FD->isInvalidDecl())
9286    return true;
9287
9288  QualType EltTy = Context.getBaseElementType(FD->getType());
9289  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9290    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9291    if (RDecl->getDefinition()) {
9292      // We check for copy constructors before constructors
9293      // because otherwise we'll never get complaints about
9294      // copy constructors.
9295
9296      CXXSpecialMember member = CXXInvalid;
9297      if (!RDecl->hasTrivialCopyConstructor())
9298        member = CXXCopyConstructor;
9299      else if (!RDecl->hasTrivialDefaultConstructor())
9300        member = CXXDefaultConstructor;
9301      else if (!RDecl->hasTrivialCopyAssignment())
9302        member = CXXCopyAssignment;
9303      else if (!RDecl->hasTrivialDestructor())
9304        member = CXXDestructor;
9305
9306      if (member != CXXInvalid) {
9307        if (!getLangOpts().CPlusPlus0x &&
9308            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9309          // Objective-C++ ARC: it is an error to have a non-trivial field of
9310          // a union. However, system headers in Objective-C programs
9311          // occasionally have Objective-C lifetime objects within unions,
9312          // and rather than cause the program to fail, we make those
9313          // members unavailable.
9314          SourceLocation Loc = FD->getLocation();
9315          if (getSourceManager().isInSystemHeader(Loc)) {
9316            if (!FD->hasAttr<UnavailableAttr>())
9317              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9318                                  "this system field has retaining ownership"));
9319            return false;
9320          }
9321        }
9322
9323        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9324               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9325               diag::err_illegal_union_or_anon_struct_member)
9326          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9327        DiagnoseNontrivial(RT, member);
9328        return !getLangOpts().CPlusPlus0x;
9329      }
9330    }
9331  }
9332
9333  return false;
9334}
9335
9336/// If the given constructor is user-provided, produce a diagnostic explaining
9337/// that it makes the class non-trivial.
9338static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9339                                               CXXConstructorDecl *CD,
9340                                               Sema::CXXSpecialMember CSM) {
9341  if (!CD->isUserProvided())
9342    return false;
9343
9344  SourceLocation CtorLoc = CD->getLocation();
9345  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9346  return true;
9347}
9348
9349/// DiagnoseNontrivial - Given that a class has a non-trivial
9350/// special member, figure out why.
9351void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9352  QualType QT(T, 0U);
9353  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9354
9355  // Check whether the member was user-declared.
9356  switch (member) {
9357  case CXXInvalid:
9358    break;
9359
9360  case CXXDefaultConstructor:
9361    if (RD->hasUserDeclaredConstructor()) {
9362      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9363      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9364        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9365          return;
9366
9367      // No user-provided constructors; look for constructor templates.
9368      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9369          tmpl_iter;
9370      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9371           TI != TE; ++TI) {
9372        CXXConstructorDecl *CD =
9373            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9374        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9375          return;
9376      }
9377    }
9378    break;
9379
9380  case CXXCopyConstructor:
9381    if (RD->hasUserDeclaredCopyConstructor()) {
9382      SourceLocation CtorLoc =
9383        RD->getCopyConstructor(0)->getLocation();
9384      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9385      return;
9386    }
9387    break;
9388
9389  case CXXMoveConstructor:
9390    if (RD->hasUserDeclaredMoveConstructor()) {
9391      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9392      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9393      return;
9394    }
9395    break;
9396
9397  case CXXCopyAssignment:
9398    if (RD->hasUserDeclaredCopyAssignment()) {
9399      // FIXME: this should use the location of the copy
9400      // assignment, not the type.
9401      SourceLocation TyLoc = RD->getLocStart();
9402      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9403      return;
9404    }
9405    break;
9406
9407  case CXXMoveAssignment:
9408    if (RD->hasUserDeclaredMoveAssignment()) {
9409      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9410      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9411      return;
9412    }
9413    break;
9414
9415  case CXXDestructor:
9416    if (RD->hasUserDeclaredDestructor()) {
9417      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9418      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9419      return;
9420    }
9421    break;
9422  }
9423
9424  typedef CXXRecordDecl::base_class_iterator base_iter;
9425
9426  // Virtual bases and members inhibit trivial copying/construction,
9427  // but not trivial destruction.
9428  if (member != CXXDestructor) {
9429    // Check for virtual bases.  vbases includes indirect virtual bases,
9430    // so we just iterate through the direct bases.
9431    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9432      if (bi->isVirtual()) {
9433        SourceLocation BaseLoc = bi->getLocStart();
9434        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9435        return;
9436      }
9437
9438    // Check for virtual methods.
9439    typedef CXXRecordDecl::method_iterator meth_iter;
9440    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9441         ++mi) {
9442      if (mi->isVirtual()) {
9443        SourceLocation MLoc = mi->getLocStart();
9444        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9445        return;
9446      }
9447    }
9448  }
9449
9450  bool (CXXRecordDecl::*hasTrivial)() const;
9451  switch (member) {
9452  case CXXDefaultConstructor:
9453    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9454  case CXXCopyConstructor:
9455    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9456  case CXXCopyAssignment:
9457    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9458  case CXXDestructor:
9459    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9460  default:
9461    llvm_unreachable("unexpected special member");
9462  }
9463
9464  // Check for nontrivial bases (and recurse).
9465  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9466    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9467    assert(BaseRT && "Don't know how to handle dependent bases");
9468    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9469    if (!(BaseRecTy->*hasTrivial)()) {
9470      SourceLocation BaseLoc = bi->getLocStart();
9471      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9472      DiagnoseNontrivial(BaseRT, member);
9473      return;
9474    }
9475  }
9476
9477  // Check for nontrivial members (and recurse).
9478  typedef RecordDecl::field_iterator field_iter;
9479  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9480       ++fi) {
9481    QualType EltTy = Context.getBaseElementType(fi->getType());
9482    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9483      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9484
9485      if (!(EltRD->*hasTrivial)()) {
9486        SourceLocation FLoc = fi->getLocation();
9487        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9488        DiagnoseNontrivial(EltRT, member);
9489        return;
9490      }
9491    }
9492
9493    if (EltTy->isObjCLifetimeType()) {
9494      switch (EltTy.getObjCLifetime()) {
9495      case Qualifiers::OCL_None:
9496      case Qualifiers::OCL_ExplicitNone:
9497        break;
9498
9499      case Qualifiers::OCL_Autoreleasing:
9500      case Qualifiers::OCL_Weak:
9501      case Qualifiers::OCL_Strong:
9502        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9503          << QT << EltTy.getObjCLifetime();
9504        return;
9505      }
9506    }
9507  }
9508
9509  llvm_unreachable("found no explanation for non-trivial member");
9510}
9511
9512/// TranslateIvarVisibility - Translate visibility from a token ID to an
9513///  AST enum value.
9514static ObjCIvarDecl::AccessControl
9515TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9516  switch (ivarVisibility) {
9517  default: llvm_unreachable("Unknown visitibility kind");
9518  case tok::objc_private: return ObjCIvarDecl::Private;
9519  case tok::objc_public: return ObjCIvarDecl::Public;
9520  case tok::objc_protected: return ObjCIvarDecl::Protected;
9521  case tok::objc_package: return ObjCIvarDecl::Package;
9522  }
9523}
9524
9525/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9526/// in order to create an IvarDecl object for it.
9527Decl *Sema::ActOnIvar(Scope *S,
9528                                SourceLocation DeclStart,
9529                                Declarator &D, Expr *BitfieldWidth,
9530                                tok::ObjCKeywordKind Visibility) {
9531
9532  IdentifierInfo *II = D.getIdentifier();
9533  Expr *BitWidth = (Expr*)BitfieldWidth;
9534  SourceLocation Loc = DeclStart;
9535  if (II) Loc = D.getIdentifierLoc();
9536
9537  // FIXME: Unnamed fields can be handled in various different ways, for
9538  // example, unnamed unions inject all members into the struct namespace!
9539
9540  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9541  QualType T = TInfo->getType();
9542
9543  if (BitWidth) {
9544    // 6.7.2.1p3, 6.7.2.1p4
9545    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9546    if (!BitWidth)
9547      D.setInvalidType();
9548  } else {
9549    // Not a bitfield.
9550
9551    // validate II.
9552
9553  }
9554  if (T->isReferenceType()) {
9555    Diag(Loc, diag::err_ivar_reference_type);
9556    D.setInvalidType();
9557  }
9558  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9559  // than a variably modified type.
9560  else if (T->isVariablyModifiedType()) {
9561    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9562    D.setInvalidType();
9563  }
9564
9565  // Get the visibility (access control) for this ivar.
9566  ObjCIvarDecl::AccessControl ac =
9567    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9568                                        : ObjCIvarDecl::None;
9569  // Must set ivar's DeclContext to its enclosing interface.
9570  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9571  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9572    return 0;
9573  ObjCContainerDecl *EnclosingContext;
9574  if (ObjCImplementationDecl *IMPDecl =
9575      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9576    if (LangOpts.ObjCRuntime.isFragile()) {
9577    // Case of ivar declared in an implementation. Context is that of its class.
9578      EnclosingContext = IMPDecl->getClassInterface();
9579      assert(EnclosingContext && "Implementation has no class interface!");
9580    }
9581    else
9582      EnclosingContext = EnclosingDecl;
9583  } else {
9584    if (ObjCCategoryDecl *CDecl =
9585        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9586      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9587        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9588        return 0;
9589      }
9590    }
9591    EnclosingContext = EnclosingDecl;
9592  }
9593
9594  // Construct the decl.
9595  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9596                                             DeclStart, Loc, II, T,
9597                                             TInfo, ac, (Expr *)BitfieldWidth);
9598
9599  if (II) {
9600    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9601                                           ForRedeclaration);
9602    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9603        && !isa<TagDecl>(PrevDecl)) {
9604      Diag(Loc, diag::err_duplicate_member) << II;
9605      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9606      NewID->setInvalidDecl();
9607    }
9608  }
9609
9610  // Process attributes attached to the ivar.
9611  ProcessDeclAttributes(S, NewID, D);
9612
9613  if (D.isInvalidType())
9614    NewID->setInvalidDecl();
9615
9616  // In ARC, infer 'retaining' for ivars of retainable type.
9617  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9618    NewID->setInvalidDecl();
9619
9620  if (D.getDeclSpec().isModulePrivateSpecified())
9621    NewID->setModulePrivate();
9622
9623  if (II) {
9624    // FIXME: When interfaces are DeclContexts, we'll need to add
9625    // these to the interface.
9626    S->AddDecl(NewID);
9627    IdResolver.AddDecl(NewID);
9628  }
9629
9630  if (LangOpts.ObjCRuntime.isNonFragile() &&
9631      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9632    Diag(Loc, diag::warn_ivars_in_interface);
9633
9634  return NewID;
9635}
9636
9637/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9638/// class and class extensions. For every class @interface and class
9639/// extension @interface, if the last ivar is a bitfield of any type,
9640/// then add an implicit `char :0` ivar to the end of that interface.
9641void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9642                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9643  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9644    return;
9645
9646  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9647  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9648
9649  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9650    return;
9651  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9652  if (!ID) {
9653    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9654      if (!CD->IsClassExtension())
9655        return;
9656    }
9657    // No need to add this to end of @implementation.
9658    else
9659      return;
9660  }
9661  // All conditions are met. Add a new bitfield to the tail end of ivars.
9662  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9663  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9664
9665  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9666                              DeclLoc, DeclLoc, 0,
9667                              Context.CharTy,
9668                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9669                                                               DeclLoc),
9670                              ObjCIvarDecl::Private, BW,
9671                              true);
9672  AllIvarDecls.push_back(Ivar);
9673}
9674
9675void Sema::ActOnFields(Scope* S,
9676                       SourceLocation RecLoc, Decl *EnclosingDecl,
9677                       llvm::ArrayRef<Decl *> Fields,
9678                       SourceLocation LBrac, SourceLocation RBrac,
9679                       AttributeList *Attr) {
9680  assert(EnclosingDecl && "missing record or interface decl");
9681
9682  // If the decl this is being inserted into is invalid, then it may be a
9683  // redeclaration or some other bogus case.  Don't try to add fields to it.
9684  if (EnclosingDecl->isInvalidDecl())
9685    return;
9686
9687  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9688
9689  // Start counting up the number of named members; make sure to include
9690  // members of anonymous structs and unions in the total.
9691  unsigned NumNamedMembers = 0;
9692  if (Record) {
9693    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9694                                   e = Record->decls_end(); i != e; i++) {
9695      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9696        if (IFD->getDeclName())
9697          ++NumNamedMembers;
9698    }
9699  }
9700
9701  // Verify that all the fields are okay.
9702  SmallVector<FieldDecl*, 32> RecFields;
9703
9704  bool ARCErrReported = false;
9705  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9706       i != end; ++i) {
9707    FieldDecl *FD = cast<FieldDecl>(*i);
9708
9709    // Get the type for the field.
9710    const Type *FDTy = FD->getType().getTypePtr();
9711
9712    if (!FD->isAnonymousStructOrUnion()) {
9713      // Remember all fields written by the user.
9714      RecFields.push_back(FD);
9715    }
9716
9717    // If the field is already invalid for some reason, don't emit more
9718    // diagnostics about it.
9719    if (FD->isInvalidDecl()) {
9720      EnclosingDecl->setInvalidDecl();
9721      continue;
9722    }
9723
9724    // C99 6.7.2.1p2:
9725    //   A structure or union shall not contain a member with
9726    //   incomplete or function type (hence, a structure shall not
9727    //   contain an instance of itself, but may contain a pointer to
9728    //   an instance of itself), except that the last member of a
9729    //   structure with more than one named member may have incomplete
9730    //   array type; such a structure (and any union containing,
9731    //   possibly recursively, a member that is such a structure)
9732    //   shall not be a member of a structure or an element of an
9733    //   array.
9734    if (FDTy->isFunctionType()) {
9735      // Field declared as a function.
9736      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9737        << FD->getDeclName();
9738      FD->setInvalidDecl();
9739      EnclosingDecl->setInvalidDecl();
9740      continue;
9741    } else if (FDTy->isIncompleteArrayType() && Record &&
9742               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9743                ((getLangOpts().MicrosoftExt ||
9744                  getLangOpts().CPlusPlus) &&
9745                 (i + 1 == Fields.end() || Record->isUnion())))) {
9746      // Flexible array member.
9747      // Microsoft and g++ is more permissive regarding flexible array.
9748      // It will accept flexible array in union and also
9749      // as the sole element of a struct/class.
9750      if (getLangOpts().MicrosoftExt) {
9751        if (Record->isUnion())
9752          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9753            << FD->getDeclName();
9754        else if (Fields.size() == 1)
9755          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9756            << FD->getDeclName() << Record->getTagKind();
9757      } else if (getLangOpts().CPlusPlus) {
9758        if (Record->isUnion())
9759          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9760            << FD->getDeclName();
9761        else if (Fields.size() == 1)
9762          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9763            << FD->getDeclName() << Record->getTagKind();
9764      } else if (!getLangOpts().C99) {
9765      if (Record->isUnion())
9766        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9767          << FD->getDeclName();
9768      else
9769        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9770          << FD->getDeclName() << Record->getTagKind();
9771      } else if (NumNamedMembers < 1) {
9772        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9773          << FD->getDeclName();
9774        FD->setInvalidDecl();
9775        EnclosingDecl->setInvalidDecl();
9776        continue;
9777      }
9778      if (!FD->getType()->isDependentType() &&
9779          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9780        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9781          << FD->getDeclName() << FD->getType();
9782        FD->setInvalidDecl();
9783        EnclosingDecl->setInvalidDecl();
9784        continue;
9785      }
9786      // Okay, we have a legal flexible array member at the end of the struct.
9787      if (Record)
9788        Record->setHasFlexibleArrayMember(true);
9789    } else if (!FDTy->isDependentType() &&
9790               RequireCompleteType(FD->getLocation(), FD->getType(),
9791                                   diag::err_field_incomplete)) {
9792      // Incomplete type
9793      FD->setInvalidDecl();
9794      EnclosingDecl->setInvalidDecl();
9795      continue;
9796    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9797      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9798        // If this is a member of a union, then entire union becomes "flexible".
9799        if (Record && Record->isUnion()) {
9800          Record->setHasFlexibleArrayMember(true);
9801        } else {
9802          // If this is a struct/class and this is not the last element, reject
9803          // it.  Note that GCC supports variable sized arrays in the middle of
9804          // structures.
9805          if (i + 1 != Fields.end())
9806            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9807              << FD->getDeclName() << FD->getType();
9808          else {
9809            // We support flexible arrays at the end of structs in
9810            // other structs as an extension.
9811            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9812              << FD->getDeclName();
9813            if (Record)
9814              Record->setHasFlexibleArrayMember(true);
9815          }
9816        }
9817      }
9818      if (Record && FDTTy->getDecl()->hasObjectMember())
9819        Record->setHasObjectMember(true);
9820    } else if (FDTy->isObjCObjectType()) {
9821      /// A field cannot be an Objective-c object
9822      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9823        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9824      QualType T = Context.getObjCObjectPointerType(FD->getType());
9825      FD->setType(T);
9826    }
9827    else if (!getLangOpts().CPlusPlus) {
9828      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9829        // It's an error in ARC if a field has lifetime.
9830        // We don't want to report this in a system header, though,
9831        // so we just make the field unavailable.
9832        // FIXME: that's really not sufficient; we need to make the type
9833        // itself invalid to, say, initialize or copy.
9834        QualType T = FD->getType();
9835        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9836        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9837          SourceLocation loc = FD->getLocation();
9838          if (getSourceManager().isInSystemHeader(loc)) {
9839            if (!FD->hasAttr<UnavailableAttr>()) {
9840              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9841                                "this system field has retaining ownership"));
9842            }
9843          } else {
9844            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9845              << T->isBlockPointerType();
9846          }
9847          ARCErrReported = true;
9848        }
9849      }
9850      else if (getLangOpts().ObjC1 &&
9851               getLangOpts().getGC() != LangOptions::NonGC &&
9852               Record && !Record->hasObjectMember()) {
9853        if (FD->getType()->isObjCObjectPointerType() ||
9854            FD->getType().isObjCGCStrong())
9855          Record->setHasObjectMember(true);
9856        else if (Context.getAsArrayType(FD->getType())) {
9857          QualType BaseType = Context.getBaseElementType(FD->getType());
9858          if (BaseType->isRecordType() &&
9859              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9860            Record->setHasObjectMember(true);
9861          else if (BaseType->isObjCObjectPointerType() ||
9862                   BaseType.isObjCGCStrong())
9863                 Record->setHasObjectMember(true);
9864        }
9865      }
9866    }
9867    // Keep track of the number of named members.
9868    if (FD->getIdentifier())
9869      ++NumNamedMembers;
9870  }
9871
9872  // Okay, we successfully defined 'Record'.
9873  if (Record) {
9874    bool Completed = false;
9875    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9876      if (!CXXRecord->isInvalidDecl()) {
9877        // Set access bits correctly on the directly-declared conversions.
9878        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9879        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9880             I != E; ++I)
9881          Convs->setAccess(I, (*I)->getAccess());
9882
9883        if (!CXXRecord->isDependentType()) {
9884          // Objective-C Automatic Reference Counting:
9885          //   If a class has a non-static data member of Objective-C pointer
9886          //   type (or array thereof), it is a non-POD type and its
9887          //   default constructor (if any), copy constructor, copy assignment
9888          //   operator, and destructor are non-trivial.
9889          //
9890          // This rule is also handled by CXXRecordDecl::completeDefinition().
9891          // However, here we check whether this particular class is only
9892          // non-POD because of the presence of an Objective-C pointer member.
9893          // If so, objects of this type cannot be shared between code compiled
9894          // with instant objects and code compiled with manual retain/release.
9895          if (getLangOpts().ObjCAutoRefCount &&
9896              CXXRecord->hasObjectMember() &&
9897              CXXRecord->getLinkage() == ExternalLinkage) {
9898            if (CXXRecord->isPOD()) {
9899              Diag(CXXRecord->getLocation(),
9900                   diag::warn_arc_non_pod_class_with_object_member)
9901               << CXXRecord;
9902            } else {
9903              // FIXME: Fix-Its would be nice here, but finding a good location
9904              // for them is going to be tricky.
9905              if (CXXRecord->hasTrivialCopyConstructor())
9906                Diag(CXXRecord->getLocation(),
9907                     diag::warn_arc_trivial_member_function_with_object_member)
9908                  << CXXRecord << 0;
9909              if (CXXRecord->hasTrivialCopyAssignment())
9910                Diag(CXXRecord->getLocation(),
9911                     diag::warn_arc_trivial_member_function_with_object_member)
9912                << CXXRecord << 1;
9913              if (CXXRecord->hasTrivialDestructor())
9914                Diag(CXXRecord->getLocation(),
9915                     diag::warn_arc_trivial_member_function_with_object_member)
9916                << CXXRecord << 2;
9917            }
9918          }
9919
9920          // Adjust user-defined destructor exception spec.
9921          if (getLangOpts().CPlusPlus0x &&
9922              CXXRecord->hasUserDeclaredDestructor())
9923            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9924
9925          // Add any implicitly-declared members to this class.
9926          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9927
9928          // If we have virtual base classes, we may end up finding multiple
9929          // final overriders for a given virtual function. Check for this
9930          // problem now.
9931          if (CXXRecord->getNumVBases()) {
9932            CXXFinalOverriderMap FinalOverriders;
9933            CXXRecord->getFinalOverriders(FinalOverriders);
9934
9935            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9936                                             MEnd = FinalOverriders.end();
9937                 M != MEnd; ++M) {
9938              for (OverridingMethods::iterator SO = M->second.begin(),
9939                                            SOEnd = M->second.end();
9940                   SO != SOEnd; ++SO) {
9941                assert(SO->second.size() > 0 &&
9942                       "Virtual function without overridding functions?");
9943                if (SO->second.size() == 1)
9944                  continue;
9945
9946                // C++ [class.virtual]p2:
9947                //   In a derived class, if a virtual member function of a base
9948                //   class subobject has more than one final overrider the
9949                //   program is ill-formed.
9950                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9951                  << (NamedDecl *)M->first << Record;
9952                Diag(M->first->getLocation(),
9953                     diag::note_overridden_virtual_function);
9954                for (OverridingMethods::overriding_iterator
9955                          OM = SO->second.begin(),
9956                       OMEnd = SO->second.end();
9957                     OM != OMEnd; ++OM)
9958                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9959                    << (NamedDecl *)M->first << OM->Method->getParent();
9960
9961                Record->setInvalidDecl();
9962              }
9963            }
9964            CXXRecord->completeDefinition(&FinalOverriders);
9965            Completed = true;
9966          }
9967        }
9968      }
9969    }
9970
9971    if (!Completed)
9972      Record->completeDefinition();
9973
9974  } else {
9975    ObjCIvarDecl **ClsFields =
9976      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9977    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9978      ID->setEndOfDefinitionLoc(RBrac);
9979      // Add ivar's to class's DeclContext.
9980      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9981        ClsFields[i]->setLexicalDeclContext(ID);
9982        ID->addDecl(ClsFields[i]);
9983      }
9984      // Must enforce the rule that ivars in the base classes may not be
9985      // duplicates.
9986      if (ID->getSuperClass())
9987        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9988    } else if (ObjCImplementationDecl *IMPDecl =
9989                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9990      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9991      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9992        // Ivar declared in @implementation never belongs to the implementation.
9993        // Only it is in implementation's lexical context.
9994        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9995      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9996      IMPDecl->setIvarLBraceLoc(LBrac);
9997      IMPDecl->setIvarRBraceLoc(RBrac);
9998    } else if (ObjCCategoryDecl *CDecl =
9999                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10000      // case of ivars in class extension; all other cases have been
10001      // reported as errors elsewhere.
10002      // FIXME. Class extension does not have a LocEnd field.
10003      // CDecl->setLocEnd(RBrac);
10004      // Add ivar's to class extension's DeclContext.
10005      // Diagnose redeclaration of private ivars.
10006      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10007      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10008        if (IDecl) {
10009          if (const ObjCIvarDecl *ClsIvar =
10010              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10011            Diag(ClsFields[i]->getLocation(),
10012                 diag::err_duplicate_ivar_declaration);
10013            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10014            continue;
10015          }
10016          for (const ObjCCategoryDecl *ClsExtDecl =
10017                IDecl->getFirstClassExtension();
10018               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10019            if (const ObjCIvarDecl *ClsExtIvar =
10020                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10021              Diag(ClsFields[i]->getLocation(),
10022                   diag::err_duplicate_ivar_declaration);
10023              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10024              continue;
10025            }
10026          }
10027        }
10028        ClsFields[i]->setLexicalDeclContext(CDecl);
10029        CDecl->addDecl(ClsFields[i]);
10030      }
10031      CDecl->setIvarLBraceLoc(LBrac);
10032      CDecl->setIvarRBraceLoc(RBrac);
10033    }
10034  }
10035
10036  if (Attr)
10037    ProcessDeclAttributeList(S, Record, Attr);
10038
10039  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
10040  // set the visibility of this record.
10041  if (Record && !Record->getDeclContext()->isRecord())
10042    AddPushedVisibilityAttribute(Record);
10043}
10044
10045/// \brief Determine whether the given integral value is representable within
10046/// the given type T.
10047static bool isRepresentableIntegerValue(ASTContext &Context,
10048                                        llvm::APSInt &Value,
10049                                        QualType T) {
10050  assert(T->isIntegralType(Context) && "Integral type required!");
10051  unsigned BitWidth = Context.getIntWidth(T);
10052
10053  if (Value.isUnsigned() || Value.isNonNegative()) {
10054    if (T->isSignedIntegerOrEnumerationType())
10055      --BitWidth;
10056    return Value.getActiveBits() <= BitWidth;
10057  }
10058  return Value.getMinSignedBits() <= BitWidth;
10059}
10060
10061// \brief Given an integral type, return the next larger integral type
10062// (or a NULL type of no such type exists).
10063static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10064  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10065  // enum checking below.
10066  assert(T->isIntegralType(Context) && "Integral type required!");
10067  const unsigned NumTypes = 4;
10068  QualType SignedIntegralTypes[NumTypes] = {
10069    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10070  };
10071  QualType UnsignedIntegralTypes[NumTypes] = {
10072    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10073    Context.UnsignedLongLongTy
10074  };
10075
10076  unsigned BitWidth = Context.getTypeSize(T);
10077  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10078                                                        : UnsignedIntegralTypes;
10079  for (unsigned I = 0; I != NumTypes; ++I)
10080    if (Context.getTypeSize(Types[I]) > BitWidth)
10081      return Types[I];
10082
10083  return QualType();
10084}
10085
10086EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10087                                          EnumConstantDecl *LastEnumConst,
10088                                          SourceLocation IdLoc,
10089                                          IdentifierInfo *Id,
10090                                          Expr *Val) {
10091  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10092  llvm::APSInt EnumVal(IntWidth);
10093  QualType EltTy;
10094
10095  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10096    Val = 0;
10097
10098  if (Val)
10099    Val = DefaultLvalueConversion(Val).take();
10100
10101  if (Val) {
10102    if (Enum->isDependentType() || Val->isTypeDependent())
10103      EltTy = Context.DependentTy;
10104    else {
10105      SourceLocation ExpLoc;
10106      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10107          !getLangOpts().MicrosoftMode) {
10108        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10109        // constant-expression in the enumerator-definition shall be a converted
10110        // constant expression of the underlying type.
10111        EltTy = Enum->getIntegerType();
10112        ExprResult Converted =
10113          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10114                                           CCEK_Enumerator);
10115        if (Converted.isInvalid())
10116          Val = 0;
10117        else
10118          Val = Converted.take();
10119      } else if (!Val->isValueDependent() &&
10120                 !(Val = VerifyIntegerConstantExpression(Val,
10121                                                         &EnumVal).take())) {
10122        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10123      } else {
10124        if (Enum->isFixed()) {
10125          EltTy = Enum->getIntegerType();
10126
10127          // In Obj-C and Microsoft mode, require the enumeration value to be
10128          // representable in the underlying type of the enumeration. In C++11,
10129          // we perform a non-narrowing conversion as part of converted constant
10130          // expression checking.
10131          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10132            if (getLangOpts().MicrosoftMode) {
10133              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10134              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10135            } else
10136              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10137          } else
10138            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10139        } else if (getLangOpts().CPlusPlus) {
10140          // C++11 [dcl.enum]p5:
10141          //   If the underlying type is not fixed, the type of each enumerator
10142          //   is the type of its initializing value:
10143          //     - If an initializer is specified for an enumerator, the
10144          //       initializing value has the same type as the expression.
10145          EltTy = Val->getType();
10146        } else {
10147          // C99 6.7.2.2p2:
10148          //   The expression that defines the value of an enumeration constant
10149          //   shall be an integer constant expression that has a value
10150          //   representable as an int.
10151
10152          // Complain if the value is not representable in an int.
10153          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10154            Diag(IdLoc, diag::ext_enum_value_not_int)
10155              << EnumVal.toString(10) << Val->getSourceRange()
10156              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10157          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10158            // Force the type of the expression to 'int'.
10159            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10160          }
10161          EltTy = Val->getType();
10162        }
10163      }
10164    }
10165  }
10166
10167  if (!Val) {
10168    if (Enum->isDependentType())
10169      EltTy = Context.DependentTy;
10170    else if (!LastEnumConst) {
10171      // C++0x [dcl.enum]p5:
10172      //   If the underlying type is not fixed, the type of each enumerator
10173      //   is the type of its initializing value:
10174      //     - If no initializer is specified for the first enumerator, the
10175      //       initializing value has an unspecified integral type.
10176      //
10177      // GCC uses 'int' for its unspecified integral type, as does
10178      // C99 6.7.2.2p3.
10179      if (Enum->isFixed()) {
10180        EltTy = Enum->getIntegerType();
10181      }
10182      else {
10183        EltTy = Context.IntTy;
10184      }
10185    } else {
10186      // Assign the last value + 1.
10187      EnumVal = LastEnumConst->getInitVal();
10188      ++EnumVal;
10189      EltTy = LastEnumConst->getType();
10190
10191      // Check for overflow on increment.
10192      if (EnumVal < LastEnumConst->getInitVal()) {
10193        // C++0x [dcl.enum]p5:
10194        //   If the underlying type is not fixed, the type of each enumerator
10195        //   is the type of its initializing value:
10196        //
10197        //     - Otherwise the type of the initializing value is the same as
10198        //       the type of the initializing value of the preceding enumerator
10199        //       unless the incremented value is not representable in that type,
10200        //       in which case the type is an unspecified integral type
10201        //       sufficient to contain the incremented value. If no such type
10202        //       exists, the program is ill-formed.
10203        QualType T = getNextLargerIntegralType(Context, EltTy);
10204        if (T.isNull() || Enum->isFixed()) {
10205          // There is no integral type larger enough to represent this
10206          // value. Complain, then allow the value to wrap around.
10207          EnumVal = LastEnumConst->getInitVal();
10208          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10209          ++EnumVal;
10210          if (Enum->isFixed())
10211            // When the underlying type is fixed, this is ill-formed.
10212            Diag(IdLoc, diag::err_enumerator_wrapped)
10213              << EnumVal.toString(10)
10214              << EltTy;
10215          else
10216            Diag(IdLoc, diag::warn_enumerator_too_large)
10217              << EnumVal.toString(10);
10218        } else {
10219          EltTy = T;
10220        }
10221
10222        // Retrieve the last enumerator's value, extent that type to the
10223        // type that is supposed to be large enough to represent the incremented
10224        // value, then increment.
10225        EnumVal = LastEnumConst->getInitVal();
10226        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10227        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10228        ++EnumVal;
10229
10230        // If we're not in C++, diagnose the overflow of enumerator values,
10231        // which in C99 means that the enumerator value is not representable in
10232        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10233        // permits enumerator values that are representable in some larger
10234        // integral type.
10235        if (!getLangOpts().CPlusPlus && !T.isNull())
10236          Diag(IdLoc, diag::warn_enum_value_overflow);
10237      } else if (!getLangOpts().CPlusPlus &&
10238                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10239        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10240        Diag(IdLoc, diag::ext_enum_value_not_int)
10241          << EnumVal.toString(10) << 1;
10242      }
10243    }
10244  }
10245
10246  if (!EltTy->isDependentType()) {
10247    // Make the enumerator value match the signedness and size of the
10248    // enumerator's type.
10249    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10250    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10251  }
10252
10253  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10254                                  Val, EnumVal);
10255}
10256
10257
10258Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10259                              SourceLocation IdLoc, IdentifierInfo *Id,
10260                              AttributeList *Attr,
10261                              SourceLocation EqualLoc, Expr *Val) {
10262  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10263  EnumConstantDecl *LastEnumConst =
10264    cast_or_null<EnumConstantDecl>(lastEnumConst);
10265
10266  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10267  // we find one that is.
10268  S = getNonFieldDeclScope(S);
10269
10270  // Verify that there isn't already something declared with this name in this
10271  // scope.
10272  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10273                                         ForRedeclaration);
10274  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10275    // Maybe we will complain about the shadowed template parameter.
10276    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10277    // Just pretend that we didn't see the previous declaration.
10278    PrevDecl = 0;
10279  }
10280
10281  if (PrevDecl) {
10282    // When in C++, we may get a TagDecl with the same name; in this case the
10283    // enum constant will 'hide' the tag.
10284    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10285           "Received TagDecl when not in C++!");
10286    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10287      if (isa<EnumConstantDecl>(PrevDecl))
10288        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10289      else
10290        Diag(IdLoc, diag::err_redefinition) << Id;
10291      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10292      return 0;
10293    }
10294  }
10295
10296  // C++ [class.mem]p13:
10297  //   If T is the name of a class, then each of the following shall have a
10298  //   name different from T:
10299  //     - every enumerator of every member of class T that is an enumerated
10300  //       type
10301  if (CXXRecordDecl *Record
10302                      = dyn_cast<CXXRecordDecl>(
10303                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10304    if (Record->getIdentifier() && Record->getIdentifier() == Id)
10305      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10306
10307  EnumConstantDecl *New =
10308    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10309
10310  if (New) {
10311    // Process attributes.
10312    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10313
10314    // Register this decl in the current scope stack.
10315    New->setAccess(TheEnumDecl->getAccess());
10316    PushOnScopeChains(New, S);
10317  }
10318
10319  return New;
10320}
10321
10322// Emits a warning if every element in the enum is the same value and if
10323// every element is initialized with a integer or boolean literal.
10324static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10325                                     unsigned NumElements, EnumDecl *Enum,
10326                                     QualType EnumType) {
10327  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10328                                 Enum->getLocation()) ==
10329      DiagnosticsEngine::Ignored)
10330    return;
10331
10332  if (NumElements < 2)
10333    return;
10334
10335  if (!Enum->getIdentifier())
10336    return;
10337
10338  llvm::APSInt FirstVal;
10339
10340  for (unsigned i = 0; i != NumElements; ++i) {
10341    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10342    if (!ECD)
10343      return;
10344
10345    Expr *InitExpr = ECD->getInitExpr();
10346    if (!InitExpr)
10347      return;
10348    InitExpr = InitExpr->IgnoreImpCasts();
10349    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10350      return;
10351
10352    if (i == 0) {
10353      FirstVal = ECD->getInitVal();
10354      continue;
10355    }
10356
10357    if (FirstVal != ECD->getInitVal())
10358      return;
10359  }
10360
10361  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10362      << EnumType << FirstVal.toString(10)
10363      << Enum->getSourceRange();
10364}
10365
10366void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10367                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10368                         Decl **Elements, unsigned NumElements,
10369                         Scope *S, AttributeList *Attr) {
10370  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10371  QualType EnumType = Context.getTypeDeclType(Enum);
10372
10373  if (Attr)
10374    ProcessDeclAttributeList(S, Enum, Attr);
10375
10376  if (Enum->isDependentType()) {
10377    for (unsigned i = 0; i != NumElements; ++i) {
10378      EnumConstantDecl *ECD =
10379        cast_or_null<EnumConstantDecl>(Elements[i]);
10380      if (!ECD) continue;
10381
10382      ECD->setType(EnumType);
10383    }
10384
10385    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10386    return;
10387  }
10388
10389  // TODO: If the result value doesn't fit in an int, it must be a long or long
10390  // long value.  ISO C does not support this, but GCC does as an extension,
10391  // emit a warning.
10392  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10393  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10394  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10395
10396  // Verify that all the values are okay, compute the size of the values, and
10397  // reverse the list.
10398  unsigned NumNegativeBits = 0;
10399  unsigned NumPositiveBits = 0;
10400
10401  // Keep track of whether all elements have type int.
10402  bool AllElementsInt = true;
10403
10404  for (unsigned i = 0; i != NumElements; ++i) {
10405    EnumConstantDecl *ECD =
10406      cast_or_null<EnumConstantDecl>(Elements[i]);
10407    if (!ECD) continue;  // Already issued a diagnostic.
10408
10409    const llvm::APSInt &InitVal = ECD->getInitVal();
10410
10411    // Keep track of the size of positive and negative values.
10412    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10413      NumPositiveBits = std::max(NumPositiveBits,
10414                                 (unsigned)InitVal.getActiveBits());
10415    else
10416      NumNegativeBits = std::max(NumNegativeBits,
10417                                 (unsigned)InitVal.getMinSignedBits());
10418
10419    // Keep track of whether every enum element has type int (very commmon).
10420    if (AllElementsInt)
10421      AllElementsInt = ECD->getType() == Context.IntTy;
10422  }
10423
10424  // Figure out the type that should be used for this enum.
10425  QualType BestType;
10426  unsigned BestWidth;
10427
10428  // C++0x N3000 [conv.prom]p3:
10429  //   An rvalue of an unscoped enumeration type whose underlying
10430  //   type is not fixed can be converted to an rvalue of the first
10431  //   of the following types that can represent all the values of
10432  //   the enumeration: int, unsigned int, long int, unsigned long
10433  //   int, long long int, or unsigned long long int.
10434  // C99 6.4.4.3p2:
10435  //   An identifier declared as an enumeration constant has type int.
10436  // The C99 rule is modified by a gcc extension
10437  QualType BestPromotionType;
10438
10439  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10440  // -fshort-enums is the equivalent to specifying the packed attribute on all
10441  // enum definitions.
10442  if (LangOpts.ShortEnums)
10443    Packed = true;
10444
10445  if (Enum->isFixed()) {
10446    BestType = Enum->getIntegerType();
10447    if (BestType->isPromotableIntegerType())
10448      BestPromotionType = Context.getPromotedIntegerType(BestType);
10449    else
10450      BestPromotionType = BestType;
10451    // We don't need to set BestWidth, because BestType is going to be the type
10452    // of the enumerators, but we do anyway because otherwise some compilers
10453    // warn that it might be used uninitialized.
10454    BestWidth = CharWidth;
10455  }
10456  else if (NumNegativeBits) {
10457    // If there is a negative value, figure out the smallest integer type (of
10458    // int/long/longlong) that fits.
10459    // If it's packed, check also if it fits a char or a short.
10460    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10461      BestType = Context.SignedCharTy;
10462      BestWidth = CharWidth;
10463    } else if (Packed && NumNegativeBits <= ShortWidth &&
10464               NumPositiveBits < ShortWidth) {
10465      BestType = Context.ShortTy;
10466      BestWidth = ShortWidth;
10467    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10468      BestType = Context.IntTy;
10469      BestWidth = IntWidth;
10470    } else {
10471      BestWidth = Context.getTargetInfo().getLongWidth();
10472
10473      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10474        BestType = Context.LongTy;
10475      } else {
10476        BestWidth = Context.getTargetInfo().getLongLongWidth();
10477
10478        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10479          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10480        BestType = Context.LongLongTy;
10481      }
10482    }
10483    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10484  } else {
10485    // If there is no negative value, figure out the smallest type that fits
10486    // all of the enumerator values.
10487    // If it's packed, check also if it fits a char or a short.
10488    if (Packed && NumPositiveBits <= CharWidth) {
10489      BestType = Context.UnsignedCharTy;
10490      BestPromotionType = Context.IntTy;
10491      BestWidth = CharWidth;
10492    } else if (Packed && NumPositiveBits <= ShortWidth) {
10493      BestType = Context.UnsignedShortTy;
10494      BestPromotionType = Context.IntTy;
10495      BestWidth = ShortWidth;
10496    } else if (NumPositiveBits <= IntWidth) {
10497      BestType = Context.UnsignedIntTy;
10498      BestWidth = IntWidth;
10499      BestPromotionType
10500        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10501                           ? Context.UnsignedIntTy : Context.IntTy;
10502    } else if (NumPositiveBits <=
10503               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10504      BestType = Context.UnsignedLongTy;
10505      BestPromotionType
10506        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10507                           ? Context.UnsignedLongTy : Context.LongTy;
10508    } else {
10509      BestWidth = Context.getTargetInfo().getLongLongWidth();
10510      assert(NumPositiveBits <= BestWidth &&
10511             "How could an initializer get larger than ULL?");
10512      BestType = Context.UnsignedLongLongTy;
10513      BestPromotionType
10514        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10515                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10516    }
10517  }
10518
10519  // Loop over all of the enumerator constants, changing their types to match
10520  // the type of the enum if needed.
10521  for (unsigned i = 0; i != NumElements; ++i) {
10522    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10523    if (!ECD) continue;  // Already issued a diagnostic.
10524
10525    // Standard C says the enumerators have int type, but we allow, as an
10526    // extension, the enumerators to be larger than int size.  If each
10527    // enumerator value fits in an int, type it as an int, otherwise type it the
10528    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10529    // that X has type 'int', not 'unsigned'.
10530
10531    // Determine whether the value fits into an int.
10532    llvm::APSInt InitVal = ECD->getInitVal();
10533
10534    // If it fits into an integer type, force it.  Otherwise force it to match
10535    // the enum decl type.
10536    QualType NewTy;
10537    unsigned NewWidth;
10538    bool NewSign;
10539    if (!getLangOpts().CPlusPlus &&
10540        !Enum->isFixed() &&
10541        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10542      NewTy = Context.IntTy;
10543      NewWidth = IntWidth;
10544      NewSign = true;
10545    } else if (ECD->getType() == BestType) {
10546      // Already the right type!
10547      if (getLangOpts().CPlusPlus)
10548        // C++ [dcl.enum]p4: Following the closing brace of an
10549        // enum-specifier, each enumerator has the type of its
10550        // enumeration.
10551        ECD->setType(EnumType);
10552      continue;
10553    } else {
10554      NewTy = BestType;
10555      NewWidth = BestWidth;
10556      NewSign = BestType->isSignedIntegerOrEnumerationType();
10557    }
10558
10559    // Adjust the APSInt value.
10560    InitVal = InitVal.extOrTrunc(NewWidth);
10561    InitVal.setIsSigned(NewSign);
10562    ECD->setInitVal(InitVal);
10563
10564    // Adjust the Expr initializer and type.
10565    if (ECD->getInitExpr() &&
10566        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10567      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10568                                                CK_IntegralCast,
10569                                                ECD->getInitExpr(),
10570                                                /*base paths*/ 0,
10571                                                VK_RValue));
10572    if (getLangOpts().CPlusPlus)
10573      // C++ [dcl.enum]p4: Following the closing brace of an
10574      // enum-specifier, each enumerator has the type of its
10575      // enumeration.
10576      ECD->setType(EnumType);
10577    else
10578      ECD->setType(NewTy);
10579  }
10580
10581  Enum->completeDefinition(BestType, BestPromotionType,
10582                           NumPositiveBits, NumNegativeBits);
10583
10584  // If we're declaring a function, ensure this decl isn't forgotten about -
10585  // it needs to go into the function scope.
10586  if (InFunctionDeclarator)
10587    DeclsInPrototypeScope.push_back(Enum);
10588
10589  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
10590}
10591
10592Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10593                                  SourceLocation StartLoc,
10594                                  SourceLocation EndLoc) {
10595  StringLiteral *AsmString = cast<StringLiteral>(expr);
10596
10597  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10598                                                   AsmString, StartLoc,
10599                                                   EndLoc);
10600  CurContext->addDecl(New);
10601  return New;
10602}
10603
10604DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10605                                   SourceLocation ImportLoc,
10606                                   ModuleIdPath Path) {
10607  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10608                                                Module::AllVisible,
10609                                                /*IsIncludeDirective=*/false);
10610  if (!Mod)
10611    return true;
10612
10613  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10614  Module *ModCheck = Mod;
10615  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10616    // If we've run out of module parents, just drop the remaining identifiers.
10617    // We need the length to be consistent.
10618    if (!ModCheck)
10619      break;
10620    ModCheck = ModCheck->Parent;
10621
10622    IdentifierLocs.push_back(Path[I].second);
10623  }
10624
10625  ImportDecl *Import = ImportDecl::Create(Context,
10626                                          Context.getTranslationUnitDecl(),
10627                                          AtLoc.isValid()? AtLoc : ImportLoc,
10628                                          Mod, IdentifierLocs);
10629  Context.getTranslationUnitDecl()->addDecl(Import);
10630  return Import;
10631}
10632
10633void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10634                                      IdentifierInfo* AliasName,
10635                                      SourceLocation PragmaLoc,
10636                                      SourceLocation NameLoc,
10637                                      SourceLocation AliasNameLoc) {
10638  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10639                                    LookupOrdinaryName);
10640  AsmLabelAttr *Attr =
10641     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10642
10643  if (PrevDecl)
10644    PrevDecl->addAttr(Attr);
10645  else
10646    (void)ExtnameUndeclaredIdentifiers.insert(
10647      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10648}
10649
10650void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10651                             SourceLocation PragmaLoc,
10652                             SourceLocation NameLoc) {
10653  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10654
10655  if (PrevDecl) {
10656    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10657  } else {
10658    (void)WeakUndeclaredIdentifiers.insert(
10659      std::pair<IdentifierInfo*,WeakInfo>
10660        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10661  }
10662}
10663
10664void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10665                                IdentifierInfo* AliasName,
10666                                SourceLocation PragmaLoc,
10667                                SourceLocation NameLoc,
10668                                SourceLocation AliasNameLoc) {
10669  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10670                                    LookupOrdinaryName);
10671  WeakInfo W = WeakInfo(Name, NameLoc);
10672
10673  if (PrevDecl) {
10674    if (!PrevDecl->hasAttr<AliasAttr>())
10675      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10676        DeclApplyPragmaWeak(TUScope, ND, W);
10677  } else {
10678    (void)WeakUndeclaredIdentifiers.insert(
10679      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10680  }
10681}
10682
10683Decl *Sema::getObjCDeclContext() const {
10684  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10685}
10686
10687AvailabilityResult Sema::getCurContextAvailability() const {
10688  const Decl *D = cast<Decl>(getCurLexicalContext());
10689  // A category implicitly has the availability of the interface.
10690  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10691    D = CatD->getClassInterface();
10692
10693  return D->getAvailability();
10694}
10695