SemaDecl.cpp revision c371db6b1dac65d61c8952b6198cc970a9e25ee4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
426                                        CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet()) {
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
435                                          CorrectedStr);
436      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
437        bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
438                                II->getName().equals(CorrectedStr);
439        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
440            << II << DC << droppedSpecifier << CorrectedQuotedStr
441            << SS->getRange()
442            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
443                                            CorrectedStr);
444      }
445      else {
446        llvm_unreachable("could not have corrected a typo here");
447      }
448
449      Diag(Result->getLocation(), diag::note_previous_decl)
450        << CorrectedQuotedStr;
451
452      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
453                                  false, false, ParsedType(),
454                                  /*IsCtorOrDtorName=*/false,
455                                  /*NonTrivialTypeSourceInfo=*/true);
456    }
457    return true;
458  }
459
460  if (getLangOpts().CPlusPlus) {
461    // See if II is a class template that the user forgot to pass arguments to.
462    UnqualifiedId Name;
463    Name.setIdentifier(II, IILoc);
464    CXXScopeSpec EmptySS;
465    TemplateTy TemplateResult;
466    bool MemberOfUnknownSpecialization;
467    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
468                       Name, ParsedType(), true, TemplateResult,
469                       MemberOfUnknownSpecialization) == TNK_Type_template) {
470      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
471      Diag(IILoc, diag::err_template_missing_args) << TplName;
472      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
473        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
474          << TplDecl->getTemplateParameters()->getSourceRange();
475      }
476      return true;
477    }
478  }
479
480  // FIXME: Should we move the logic that tries to recover from a missing tag
481  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
482
483  if (!SS || (!SS->isSet() && !SS->isInvalid()))
484    Diag(IILoc, diag::err_unknown_typename) << II;
485  else if (DeclContext *DC = computeDeclContext(*SS, false))
486    Diag(IILoc, diag::err_typename_nested_not_found)
487      << II << DC << SS->getRange();
488  else if (isDependentScopeSpecifier(*SS)) {
489    unsigned DiagID = diag::err_typename_missing;
490    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
491      DiagID = diag::warn_typename_missing;
492
493    Diag(SS->getRange().getBegin(), DiagID)
494      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
495      << SourceRange(SS->getRange().getBegin(), IILoc)
496      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
497    SuggestedType = ActOnTypenameType(S, SourceLocation(),
498                                      *SS, *II, IILoc).get();
499  } else {
500    assert(SS && SS->isInvalid() &&
501           "Invalid scope specifier has already been diagnosed");
502  }
503
504  return true;
505}
506
507/// \brief Determine whether the given result set contains either a type name
508/// or
509static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
510  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
511                       NextToken.is(tok::less);
512
513  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
514    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
515      return true;
516
517    if (CheckTemplate && isa<TemplateDecl>(*I))
518      return true;
519  }
520
521  return false;
522}
523
524static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
525                                    Scope *S, CXXScopeSpec &SS,
526                                    IdentifierInfo *&Name,
527                                    SourceLocation NameLoc) {
528  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
529  SemaRef.LookupParsedName(R, S, &SS);
530  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
531    const char *TagName = 0;
532    const char *FixItTagName = 0;
533    switch (Tag->getTagKind()) {
534      case TTK_Class:
535        TagName = "class";
536        FixItTagName = "class ";
537        break;
538
539      case TTK_Enum:
540        TagName = "enum";
541        FixItTagName = "enum ";
542        break;
543
544      case TTK_Struct:
545        TagName = "struct";
546        FixItTagName = "struct ";
547        break;
548
549      case TTK_Interface:
550        TagName = "__interface";
551        FixItTagName = "__interface ";
552        break;
553
554      case TTK_Union:
555        TagName = "union";
556        FixItTagName = "union ";
557        break;
558    }
559
560    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
561      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
562      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
563
564    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
565         I != IEnd; ++I)
566      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
567        << Name << TagName;
568
569    // Replace lookup results with just the tag decl.
570    Result.clear(Sema::LookupTagName);
571    SemaRef.LookupParsedName(Result, S, &SS);
572    return true;
573  }
574
575  return false;
576}
577
578/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
579static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
580                                  QualType T, SourceLocation NameLoc) {
581  ASTContext &Context = S.Context;
582
583  TypeLocBuilder Builder;
584  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
585
586  T = S.getElaboratedType(ETK_None, SS, T);
587  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
588  ElabTL.setElaboratedKeywordLoc(SourceLocation());
589  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
590  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
591}
592
593Sema::NameClassification Sema::ClassifyName(Scope *S,
594                                            CXXScopeSpec &SS,
595                                            IdentifierInfo *&Name,
596                                            SourceLocation NameLoc,
597                                            const Token &NextToken,
598                                            bool IsAddressOfOperand,
599                                            CorrectionCandidateCallback *CCC) {
600  DeclarationNameInfo NameInfo(Name, NameLoc);
601  ObjCMethodDecl *CurMethod = getCurMethodDecl();
602
603  if (NextToken.is(tok::coloncolon)) {
604    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
605                                QualType(), false, SS, 0, false);
606
607  }
608
609  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
610  LookupParsedName(Result, S, &SS, !CurMethod);
611
612  // Perform lookup for Objective-C instance variables (including automatically
613  // synthesized instance variables), if we're in an Objective-C method.
614  // FIXME: This lookup really, really needs to be folded in to the normal
615  // unqualified lookup mechanism.
616  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
617    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
618    if (E.get() || E.isInvalid())
619      return E;
620  }
621
622  bool SecondTry = false;
623  bool IsFilteredTemplateName = false;
624
625Corrected:
626  switch (Result.getResultKind()) {
627  case LookupResult::NotFound:
628    // If an unqualified-id is followed by a '(', then we have a function
629    // call.
630    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
631      // In C++, this is an ADL-only call.
632      // FIXME: Reference?
633      if (getLangOpts().CPlusPlus)
634        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
635
636      // C90 6.3.2.2:
637      //   If the expression that precedes the parenthesized argument list in a
638      //   function call consists solely of an identifier, and if no
639      //   declaration is visible for this identifier, the identifier is
640      //   implicitly declared exactly as if, in the innermost block containing
641      //   the function call, the declaration
642      //
643      //     extern int identifier ();
644      //
645      //   appeared.
646      //
647      // We also allow this in C99 as an extension.
648      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
649        Result.addDecl(D);
650        Result.resolveKind();
651        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
652      }
653    }
654
655    // In C, we first see whether there is a tag type by the same name, in
656    // which case it's likely that the user just forget to write "enum",
657    // "struct", or "union".
658    if (!getLangOpts().CPlusPlus && !SecondTry &&
659        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
660      break;
661    }
662
663    // Perform typo correction to determine if there is another name that is
664    // close to this name.
665    if (!SecondTry && CCC) {
666      SecondTry = true;
667      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
668                                                 Result.getLookupKind(), S,
669                                                 &SS, *CCC)) {
670        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
671        unsigned QualifiedDiag = diag::err_no_member_suggest;
672        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
673        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
674
675        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
676        NamedDecl *UnderlyingFirstDecl
677          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
678        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
679            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
680          UnqualifiedDiag = diag::err_no_template_suggest;
681          QualifiedDiag = diag::err_no_member_template_suggest;
682        } else if (UnderlyingFirstDecl &&
683                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
684                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
685                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
686          UnqualifiedDiag = diag::err_unknown_typename_suggest;
687          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
688        }
689
690        if (SS.isEmpty()) {
691          Diag(NameLoc, UnqualifiedDiag)
692            << Name << CorrectedQuotedStr
693            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
694        } else {// FIXME: is this even reachable? Test it.
695          bool droppedSpecifier = Corrected.WillReplaceSpecifier() &&
696                                  Name->getName().equals(CorrectedStr);
697          Diag(NameLoc, QualifiedDiag)
698            << Name << computeDeclContext(SS, false) << droppedSpecifier
699            << CorrectedQuotedStr << SS.getRange()
700            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
701                                            CorrectedStr);
702        }
703
704        // Update the name, so that the caller has the new name.
705        Name = Corrected.getCorrectionAsIdentifierInfo();
706
707        // Typo correction corrected to a keyword.
708        if (Corrected.isKeyword())
709          return Corrected.getCorrectionAsIdentifierInfo();
710
711        // Also update the LookupResult...
712        // FIXME: This should probably go away at some point
713        Result.clear();
714        Result.setLookupName(Corrected.getCorrection());
715        if (FirstDecl) {
716          Result.addDecl(FirstDecl);
717          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
718            << CorrectedQuotedStr;
719        }
720
721        // If we found an Objective-C instance variable, let
722        // LookupInObjCMethod build the appropriate expression to
723        // reference the ivar.
724        // FIXME: This is a gross hack.
725        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
726          Result.clear();
727          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
728          return E;
729        }
730
731        goto Corrected;
732      }
733    }
734
735    // We failed to correct; just fall through and let the parser deal with it.
736    Result.suppressDiagnostics();
737    return NameClassification::Unknown();
738
739  case LookupResult::NotFoundInCurrentInstantiation: {
740    // We performed name lookup into the current instantiation, and there were
741    // dependent bases, so we treat this result the same way as any other
742    // dependent nested-name-specifier.
743
744    // C++ [temp.res]p2:
745    //   A name used in a template declaration or definition and that is
746    //   dependent on a template-parameter is assumed not to name a type
747    //   unless the applicable name lookup finds a type name or the name is
748    //   qualified by the keyword typename.
749    //
750    // FIXME: If the next token is '<', we might want to ask the parser to
751    // perform some heroics to see if we actually have a
752    // template-argument-list, which would indicate a missing 'template'
753    // keyword here.
754    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
755                                      NameInfo, IsAddressOfOperand,
756                                      /*TemplateArgs=*/0);
757  }
758
759  case LookupResult::Found:
760  case LookupResult::FoundOverloaded:
761  case LookupResult::FoundUnresolvedValue:
762    break;
763
764  case LookupResult::Ambiguous:
765    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
766        hasAnyAcceptableTemplateNames(Result)) {
767      // C++ [temp.local]p3:
768      //   A lookup that finds an injected-class-name (10.2) can result in an
769      //   ambiguity in certain cases (for example, if it is found in more than
770      //   one base class). If all of the injected-class-names that are found
771      //   refer to specializations of the same class template, and if the name
772      //   is followed by a template-argument-list, the reference refers to the
773      //   class template itself and not a specialization thereof, and is not
774      //   ambiguous.
775      //
776      // This filtering can make an ambiguous result into an unambiguous one,
777      // so try again after filtering out template names.
778      FilterAcceptableTemplateNames(Result);
779      if (!Result.isAmbiguous()) {
780        IsFilteredTemplateName = true;
781        break;
782      }
783    }
784
785    // Diagnose the ambiguity and return an error.
786    return NameClassification::Error();
787  }
788
789  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
790      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
791    // C++ [temp.names]p3:
792    //   After name lookup (3.4) finds that a name is a template-name or that
793    //   an operator-function-id or a literal- operator-id refers to a set of
794    //   overloaded functions any member of which is a function template if
795    //   this is followed by a <, the < is always taken as the delimiter of a
796    //   template-argument-list and never as the less-than operator.
797    if (!IsFilteredTemplateName)
798      FilterAcceptableTemplateNames(Result);
799
800    if (!Result.empty()) {
801      bool IsFunctionTemplate;
802      TemplateName Template;
803      if (Result.end() - Result.begin() > 1) {
804        IsFunctionTemplate = true;
805        Template = Context.getOverloadedTemplateName(Result.begin(),
806                                                     Result.end());
807      } else {
808        TemplateDecl *TD
809          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
810        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
811
812        if (SS.isSet() && !SS.isInvalid())
813          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
814                                                    /*TemplateKeyword=*/false,
815                                                      TD);
816        else
817          Template = TemplateName(TD);
818      }
819
820      if (IsFunctionTemplate) {
821        // Function templates always go through overload resolution, at which
822        // point we'll perform the various checks (e.g., accessibility) we need
823        // to based on which function we selected.
824        Result.suppressDiagnostics();
825
826        return NameClassification::FunctionTemplate(Template);
827      }
828
829      return NameClassification::TypeTemplate(Template);
830    }
831  }
832
833  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
834  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
835    DiagnoseUseOfDecl(Type, NameLoc);
836    QualType T = Context.getTypeDeclType(Type);
837    if (SS.isNotEmpty())
838      return buildNestedType(*this, SS, T, NameLoc);
839    return ParsedType::make(T);
840  }
841
842  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
843  if (!Class) {
844    // FIXME: It's unfortunate that we don't have a Type node for handling this.
845    if (ObjCCompatibleAliasDecl *Alias
846                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
847      Class = Alias->getClassInterface();
848  }
849
850  if (Class) {
851    DiagnoseUseOfDecl(Class, NameLoc);
852
853    if (NextToken.is(tok::period)) {
854      // Interface. <something> is parsed as a property reference expression.
855      // Just return "unknown" as a fall-through for now.
856      Result.suppressDiagnostics();
857      return NameClassification::Unknown();
858    }
859
860    QualType T = Context.getObjCInterfaceType(Class);
861    return ParsedType::make(T);
862  }
863
864  // We can have a type template here if we're classifying a template argument.
865  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
866    return NameClassification::TypeTemplate(
867        TemplateName(cast<TemplateDecl>(FirstDecl)));
868
869  // Check for a tag type hidden by a non-type decl in a few cases where it
870  // seems likely a type is wanted instead of the non-type that was found.
871  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
872  if ((NextToken.is(tok::identifier) ||
873       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
874      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
875    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
876    DiagnoseUseOfDecl(Type, NameLoc);
877    QualType T = Context.getTypeDeclType(Type);
878    if (SS.isNotEmpty())
879      return buildNestedType(*this, SS, T, NameLoc);
880    return ParsedType::make(T);
881  }
882
883  if (FirstDecl->isCXXClassMember())
884    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
885
886  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
887  return BuildDeclarationNameExpr(SS, Result, ADL);
888}
889
890// Determines the context to return to after temporarily entering a
891// context.  This depends in an unnecessarily complicated way on the
892// exact ordering of callbacks from the parser.
893DeclContext *Sema::getContainingDC(DeclContext *DC) {
894
895  // Functions defined inline within classes aren't parsed until we've
896  // finished parsing the top-level class, so the top-level class is
897  // the context we'll need to return to.
898  if (isa<FunctionDecl>(DC)) {
899    DC = DC->getLexicalParent();
900
901    // A function not defined within a class will always return to its
902    // lexical context.
903    if (!isa<CXXRecordDecl>(DC))
904      return DC;
905
906    // A C++ inline method/friend is parsed *after* the topmost class
907    // it was declared in is fully parsed ("complete");  the topmost
908    // class is the context we need to return to.
909    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
910      DC = RD;
911
912    // Return the declaration context of the topmost class the inline method is
913    // declared in.
914    return DC;
915  }
916
917  return DC->getLexicalParent();
918}
919
920void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
921  assert(getContainingDC(DC) == CurContext &&
922      "The next DeclContext should be lexically contained in the current one.");
923  CurContext = DC;
924  S->setEntity(DC);
925}
926
927void Sema::PopDeclContext() {
928  assert(CurContext && "DeclContext imbalance!");
929
930  CurContext = getContainingDC(CurContext);
931  assert(CurContext && "Popped translation unit!");
932}
933
934/// EnterDeclaratorContext - Used when we must lookup names in the context
935/// of a declarator's nested name specifier.
936///
937void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
938  // C++0x [basic.lookup.unqual]p13:
939  //   A name used in the definition of a static data member of class
940  //   X (after the qualified-id of the static member) is looked up as
941  //   if the name was used in a member function of X.
942  // C++0x [basic.lookup.unqual]p14:
943  //   If a variable member of a namespace is defined outside of the
944  //   scope of its namespace then any name used in the definition of
945  //   the variable member (after the declarator-id) is looked up as
946  //   if the definition of the variable member occurred in its
947  //   namespace.
948  // Both of these imply that we should push a scope whose context
949  // is the semantic context of the declaration.  We can't use
950  // PushDeclContext here because that context is not necessarily
951  // lexically contained in the current context.  Fortunately,
952  // the containing scope should have the appropriate information.
953
954  assert(!S->getEntity() && "scope already has entity");
955
956#ifndef NDEBUG
957  Scope *Ancestor = S->getParent();
958  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
959  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
960#endif
961
962  CurContext = DC;
963  S->setEntity(DC);
964}
965
966void Sema::ExitDeclaratorContext(Scope *S) {
967  assert(S->getEntity() == CurContext && "Context imbalance!");
968
969  // Switch back to the lexical context.  The safety of this is
970  // enforced by an assert in EnterDeclaratorContext.
971  Scope *Ancestor = S->getParent();
972  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
973  CurContext = (DeclContext*) Ancestor->getEntity();
974
975  // We don't need to do anything with the scope, which is going to
976  // disappear.
977}
978
979
980void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
981  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
982  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
983    // We assume that the caller has already called
984    // ActOnReenterTemplateScope
985    FD = TFD->getTemplatedDecl();
986  }
987  if (!FD)
988    return;
989
990  // Same implementation as PushDeclContext, but enters the context
991  // from the lexical parent, rather than the top-level class.
992  assert(CurContext == FD->getLexicalParent() &&
993    "The next DeclContext should be lexically contained in the current one.");
994  CurContext = FD;
995  S->setEntity(CurContext);
996
997  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
998    ParmVarDecl *Param = FD->getParamDecl(P);
999    // If the parameter has an identifier, then add it to the scope
1000    if (Param->getIdentifier()) {
1001      S->AddDecl(Param);
1002      IdResolver.AddDecl(Param);
1003    }
1004  }
1005}
1006
1007
1008void Sema::ActOnExitFunctionContext() {
1009  // Same implementation as PopDeclContext, but returns to the lexical parent,
1010  // rather than the top-level class.
1011  assert(CurContext && "DeclContext imbalance!");
1012  CurContext = CurContext->getLexicalParent();
1013  assert(CurContext && "Popped translation unit!");
1014}
1015
1016
1017/// \brief Determine whether we allow overloading of the function
1018/// PrevDecl with another declaration.
1019///
1020/// This routine determines whether overloading is possible, not
1021/// whether some new function is actually an overload. It will return
1022/// true in C++ (where we can always provide overloads) or, as an
1023/// extension, in C when the previous function is already an
1024/// overloaded function declaration or has the "overloadable"
1025/// attribute.
1026static bool AllowOverloadingOfFunction(LookupResult &Previous,
1027                                       ASTContext &Context) {
1028  if (Context.getLangOpts().CPlusPlus)
1029    return true;
1030
1031  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1032    return true;
1033
1034  return (Previous.getResultKind() == LookupResult::Found
1035          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1036}
1037
1038/// Add this decl to the scope shadowed decl chains.
1039void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1040  // Move up the scope chain until we find the nearest enclosing
1041  // non-transparent context. The declaration will be introduced into this
1042  // scope.
1043  while (S->getEntity() &&
1044         ((DeclContext *)S->getEntity())->isTransparentContext())
1045    S = S->getParent();
1046
1047  // Add scoped declarations into their context, so that they can be
1048  // found later. Declarations without a context won't be inserted
1049  // into any context.
1050  if (AddToContext)
1051    CurContext->addDecl(D);
1052
1053  // Out-of-line definitions shouldn't be pushed into scope in C++.
1054  // Out-of-line variable and function definitions shouldn't even in C.
1055  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1056      D->isOutOfLine() &&
1057      !D->getDeclContext()->getRedeclContext()->Equals(
1058        D->getLexicalDeclContext()->getRedeclContext()))
1059    return;
1060
1061  // Template instantiations should also not be pushed into scope.
1062  if (isa<FunctionDecl>(D) &&
1063      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1064    return;
1065
1066  // If this replaces anything in the current scope,
1067  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1068                               IEnd = IdResolver.end();
1069  for (; I != IEnd; ++I) {
1070    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1071      S->RemoveDecl(*I);
1072      IdResolver.RemoveDecl(*I);
1073
1074      // Should only need to replace one decl.
1075      break;
1076    }
1077  }
1078
1079  S->AddDecl(D);
1080
1081  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1082    // Implicitly-generated labels may end up getting generated in an order that
1083    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1084    // the label at the appropriate place in the identifier chain.
1085    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1086      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1087      if (IDC == CurContext) {
1088        if (!S->isDeclScope(*I))
1089          continue;
1090      } else if (IDC->Encloses(CurContext))
1091        break;
1092    }
1093
1094    IdResolver.InsertDeclAfter(I, D);
1095  } else {
1096    IdResolver.AddDecl(D);
1097  }
1098}
1099
1100void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1101  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1102    TUScope->AddDecl(D);
1103}
1104
1105bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1106                         bool ExplicitInstantiationOrSpecialization) {
1107  return IdResolver.isDeclInScope(D, Ctx, S,
1108                                  ExplicitInstantiationOrSpecialization);
1109}
1110
1111Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1112  DeclContext *TargetDC = DC->getPrimaryContext();
1113  do {
1114    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1115      if (ScopeDC->getPrimaryContext() == TargetDC)
1116        return S;
1117  } while ((S = S->getParent()));
1118
1119  return 0;
1120}
1121
1122static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1123                                            DeclContext*,
1124                                            ASTContext&);
1125
1126/// Filters out lookup results that don't fall within the given scope
1127/// as determined by isDeclInScope.
1128void Sema::FilterLookupForScope(LookupResult &R,
1129                                DeclContext *Ctx, Scope *S,
1130                                bool ConsiderLinkage,
1131                                bool ExplicitInstantiationOrSpecialization) {
1132  LookupResult::Filter F = R.makeFilter();
1133  while (F.hasNext()) {
1134    NamedDecl *D = F.next();
1135
1136    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1137      continue;
1138
1139    if (ConsiderLinkage &&
1140        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1141      continue;
1142
1143    F.erase();
1144  }
1145
1146  F.done();
1147}
1148
1149static bool isUsingDecl(NamedDecl *D) {
1150  return isa<UsingShadowDecl>(D) ||
1151         isa<UnresolvedUsingTypenameDecl>(D) ||
1152         isa<UnresolvedUsingValueDecl>(D);
1153}
1154
1155/// Removes using shadow declarations from the lookup results.
1156static void RemoveUsingDecls(LookupResult &R) {
1157  LookupResult::Filter F = R.makeFilter();
1158  while (F.hasNext())
1159    if (isUsingDecl(F.next()))
1160      F.erase();
1161
1162  F.done();
1163}
1164
1165/// \brief Check for this common pattern:
1166/// @code
1167/// class S {
1168///   S(const S&); // DO NOT IMPLEMENT
1169///   void operator=(const S&); // DO NOT IMPLEMENT
1170/// };
1171/// @endcode
1172static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1173  // FIXME: Should check for private access too but access is set after we get
1174  // the decl here.
1175  if (D->doesThisDeclarationHaveABody())
1176    return false;
1177
1178  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1179    return CD->isCopyConstructor();
1180  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1181    return Method->isCopyAssignmentOperator();
1182  return false;
1183}
1184
1185// We need this to handle
1186//
1187// typedef struct {
1188//   void *foo() { return 0; }
1189// } A;
1190//
1191// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1192// for example. If 'A', foo will have external linkage. If we have '*A',
1193// foo will have no linkage. Since we can't know untill we get to the end
1194// of the typedef, this function finds out if D might have non external linkage.
1195// Callers should verify at the end of the TU if it D has external linkage or
1196// not.
1197bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1198  const DeclContext *DC = D->getDeclContext();
1199  while (!DC->isTranslationUnit()) {
1200    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1201      if (!RD->hasNameForLinkage())
1202        return true;
1203    }
1204    DC = DC->getParent();
1205  }
1206
1207  return !D->isExternallyVisible();
1208}
1209
1210bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1211  assert(D);
1212
1213  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1214    return false;
1215
1216  // Ignore class templates.
1217  if (D->getDeclContext()->isDependentContext() ||
1218      D->getLexicalDeclContext()->isDependentContext())
1219    return false;
1220
1221  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1222    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1223      return false;
1224
1225    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1226      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1227        return false;
1228    } else {
1229      // 'static inline' functions are used in headers; don't warn.
1230      // Make sure we get the storage class from the canonical declaration,
1231      // since otherwise we will get spurious warnings on specialized
1232      // static template functions.
1233      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1234          FD->isInlineSpecified())
1235        return false;
1236    }
1237
1238    if (FD->doesThisDeclarationHaveABody() &&
1239        Context.DeclMustBeEmitted(FD))
1240      return false;
1241  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1242    // Don't warn on variables of const-qualified or reference type, since their
1243    // values can be used even if though they're not odr-used, and because const
1244    // qualified variables can appear in headers in contexts where they're not
1245    // intended to be used.
1246    // FIXME: Use more principled rules for these exemptions.
1247    if (!VD->isFileVarDecl() ||
1248        VD->getType().isConstQualified() ||
1249        VD->getType()->isReferenceType() ||
1250        Context.DeclMustBeEmitted(VD))
1251      return false;
1252
1253    if (VD->isStaticDataMember() &&
1254        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1255      return false;
1256
1257  } else {
1258    return false;
1259  }
1260
1261  // Only warn for unused decls internal to the translation unit.
1262  return mightHaveNonExternalLinkage(D);
1263}
1264
1265void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1266  if (!D)
1267    return;
1268
1269  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1270    const FunctionDecl *First = FD->getFirstDeclaration();
1271    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1272      return; // First should already be in the vector.
1273  }
1274
1275  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1276    const VarDecl *First = VD->getFirstDeclaration();
1277    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1278      return; // First should already be in the vector.
1279  }
1280
1281  if (ShouldWarnIfUnusedFileScopedDecl(D))
1282    UnusedFileScopedDecls.push_back(D);
1283}
1284
1285static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1286  if (D->isInvalidDecl())
1287    return false;
1288
1289  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1290    return false;
1291
1292  if (isa<LabelDecl>(D))
1293    return true;
1294
1295  // White-list anything that isn't a local variable.
1296  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1297      !D->getDeclContext()->isFunctionOrMethod())
1298    return false;
1299
1300  // Types of valid local variables should be complete, so this should succeed.
1301  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1302
1303    // White-list anything with an __attribute__((unused)) type.
1304    QualType Ty = VD->getType();
1305
1306    // Only look at the outermost level of typedef.
1307    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1308      if (TT->getDecl()->hasAttr<UnusedAttr>())
1309        return false;
1310    }
1311
1312    // If we failed to complete the type for some reason, or if the type is
1313    // dependent, don't diagnose the variable.
1314    if (Ty->isIncompleteType() || Ty->isDependentType())
1315      return false;
1316
1317    if (const TagType *TT = Ty->getAs<TagType>()) {
1318      const TagDecl *Tag = TT->getDecl();
1319      if (Tag->hasAttr<UnusedAttr>())
1320        return false;
1321
1322      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1323        if (!RD->hasTrivialDestructor())
1324          return false;
1325
1326        if (const Expr *Init = VD->getInit()) {
1327          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1328            Init = Cleanups->getSubExpr();
1329          const CXXConstructExpr *Construct =
1330            dyn_cast<CXXConstructExpr>(Init);
1331          if (Construct && !Construct->isElidable()) {
1332            CXXConstructorDecl *CD = Construct->getConstructor();
1333            if (!CD->isTrivial())
1334              return false;
1335          }
1336        }
1337      }
1338    }
1339
1340    // TODO: __attribute__((unused)) templates?
1341  }
1342
1343  return true;
1344}
1345
1346static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1347                                     FixItHint &Hint) {
1348  if (isa<LabelDecl>(D)) {
1349    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1350                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1351    if (AfterColon.isInvalid())
1352      return;
1353    Hint = FixItHint::CreateRemoval(CharSourceRange::
1354                                    getCharRange(D->getLocStart(), AfterColon));
1355  }
1356  return;
1357}
1358
1359/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1360/// unless they are marked attr(unused).
1361void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1362  FixItHint Hint;
1363  if (!ShouldDiagnoseUnusedDecl(D))
1364    return;
1365
1366  GenerateFixForUnusedDecl(D, Context, Hint);
1367
1368  unsigned DiagID;
1369  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1370    DiagID = diag::warn_unused_exception_param;
1371  else if (isa<LabelDecl>(D))
1372    DiagID = diag::warn_unused_label;
1373  else
1374    DiagID = diag::warn_unused_variable;
1375
1376  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1377}
1378
1379static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1380  // Verify that we have no forward references left.  If so, there was a goto
1381  // or address of a label taken, but no definition of it.  Label fwd
1382  // definitions are indicated with a null substmt.
1383  if (L->getStmt() == 0)
1384    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1385}
1386
1387void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1388  if (S->decl_empty()) return;
1389  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1390         "Scope shouldn't contain decls!");
1391
1392  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1393       I != E; ++I) {
1394    Decl *TmpD = (*I);
1395    assert(TmpD && "This decl didn't get pushed??");
1396
1397    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1398    NamedDecl *D = cast<NamedDecl>(TmpD);
1399
1400    if (!D->getDeclName()) continue;
1401
1402    // Diagnose unused variables in this scope.
1403    if (!S->hasUnrecoverableErrorOccurred())
1404      DiagnoseUnusedDecl(D);
1405
1406    // If this was a forward reference to a label, verify it was defined.
1407    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1408      CheckPoppedLabel(LD, *this);
1409
1410    // Remove this name from our lexical scope.
1411    IdResolver.RemoveDecl(D);
1412  }
1413}
1414
1415void Sema::ActOnStartFunctionDeclarator() {
1416  ++InFunctionDeclarator;
1417}
1418
1419void Sema::ActOnEndFunctionDeclarator() {
1420  assert(InFunctionDeclarator);
1421  --InFunctionDeclarator;
1422}
1423
1424/// \brief Look for an Objective-C class in the translation unit.
1425///
1426/// \param Id The name of the Objective-C class we're looking for. If
1427/// typo-correction fixes this name, the Id will be updated
1428/// to the fixed name.
1429///
1430/// \param IdLoc The location of the name in the translation unit.
1431///
1432/// \param DoTypoCorrection If true, this routine will attempt typo correction
1433/// if there is no class with the given name.
1434///
1435/// \returns The declaration of the named Objective-C class, or NULL if the
1436/// class could not be found.
1437ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1438                                              SourceLocation IdLoc,
1439                                              bool DoTypoCorrection) {
1440  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1441  // creation from this context.
1442  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1443
1444  if (!IDecl && DoTypoCorrection) {
1445    // Perform typo correction at the given location, but only if we
1446    // find an Objective-C class name.
1447    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1448    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1449                                       LookupOrdinaryName, TUScope, NULL,
1450                                       Validator)) {
1451      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1452      Diag(IdLoc, diag::err_undef_interface_suggest)
1453        << Id << IDecl->getDeclName()
1454        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1455      Diag(IDecl->getLocation(), diag::note_previous_decl)
1456        << IDecl->getDeclName();
1457
1458      Id = IDecl->getIdentifier();
1459    }
1460  }
1461  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1462  // This routine must always return a class definition, if any.
1463  if (Def && Def->getDefinition())
1464      Def = Def->getDefinition();
1465  return Def;
1466}
1467
1468/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1469/// from S, where a non-field would be declared. This routine copes
1470/// with the difference between C and C++ scoping rules in structs and
1471/// unions. For example, the following code is well-formed in C but
1472/// ill-formed in C++:
1473/// @code
1474/// struct S6 {
1475///   enum { BAR } e;
1476/// };
1477///
1478/// void test_S6() {
1479///   struct S6 a;
1480///   a.e = BAR;
1481/// }
1482/// @endcode
1483/// For the declaration of BAR, this routine will return a different
1484/// scope. The scope S will be the scope of the unnamed enumeration
1485/// within S6. In C++, this routine will return the scope associated
1486/// with S6, because the enumeration's scope is a transparent
1487/// context but structures can contain non-field names. In C, this
1488/// routine will return the translation unit scope, since the
1489/// enumeration's scope is a transparent context and structures cannot
1490/// contain non-field names.
1491Scope *Sema::getNonFieldDeclScope(Scope *S) {
1492  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1493         (S->getEntity() &&
1494          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1495         (S->isClassScope() && !getLangOpts().CPlusPlus))
1496    S = S->getParent();
1497  return S;
1498}
1499
1500/// \brief Looks up the declaration of "struct objc_super" and
1501/// saves it for later use in building builtin declaration of
1502/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1503/// pre-existing declaration exists no action takes place.
1504static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1505                                        IdentifierInfo *II) {
1506  if (!II->isStr("objc_msgSendSuper"))
1507    return;
1508  ASTContext &Context = ThisSema.Context;
1509
1510  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1511                      SourceLocation(), Sema::LookupTagName);
1512  ThisSema.LookupName(Result, S);
1513  if (Result.getResultKind() == LookupResult::Found)
1514    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1515      Context.setObjCSuperType(Context.getTagDeclType(TD));
1516}
1517
1518/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1519/// file scope.  lazily create a decl for it. ForRedeclaration is true
1520/// if we're creating this built-in in anticipation of redeclaring the
1521/// built-in.
1522NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1523                                     Scope *S, bool ForRedeclaration,
1524                                     SourceLocation Loc) {
1525  LookupPredefedObjCSuperType(*this, S, II);
1526
1527  Builtin::ID BID = (Builtin::ID)bid;
1528
1529  ASTContext::GetBuiltinTypeError Error;
1530  QualType R = Context.GetBuiltinType(BID, Error);
1531  switch (Error) {
1532  case ASTContext::GE_None:
1533    // Okay
1534    break;
1535
1536  case ASTContext::GE_Missing_stdio:
1537    if (ForRedeclaration)
1538      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1539        << Context.BuiltinInfo.GetName(BID);
1540    return 0;
1541
1542  case ASTContext::GE_Missing_setjmp:
1543    if (ForRedeclaration)
1544      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1545        << Context.BuiltinInfo.GetName(BID);
1546    return 0;
1547
1548  case ASTContext::GE_Missing_ucontext:
1549    if (ForRedeclaration)
1550      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1551        << Context.BuiltinInfo.GetName(BID);
1552    return 0;
1553  }
1554
1555  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1556    Diag(Loc, diag::ext_implicit_lib_function_decl)
1557      << Context.BuiltinInfo.GetName(BID)
1558      << R;
1559    if (Context.BuiltinInfo.getHeaderName(BID) &&
1560        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1561          != DiagnosticsEngine::Ignored)
1562      Diag(Loc, diag::note_please_include_header)
1563        << Context.BuiltinInfo.getHeaderName(BID)
1564        << Context.BuiltinInfo.GetName(BID);
1565  }
1566
1567  FunctionDecl *New = FunctionDecl::Create(Context,
1568                                           Context.getTranslationUnitDecl(),
1569                                           Loc, Loc, II, R, /*TInfo=*/0,
1570                                           SC_Extern,
1571                                           false,
1572                                           /*hasPrototype=*/true);
1573  New->setImplicit();
1574
1575  // Create Decl objects for each parameter, adding them to the
1576  // FunctionDecl.
1577  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1578    SmallVector<ParmVarDecl*, 16> Params;
1579    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1580      ParmVarDecl *parm =
1581        ParmVarDecl::Create(Context, New, SourceLocation(),
1582                            SourceLocation(), 0,
1583                            FT->getArgType(i), /*TInfo=*/0,
1584                            SC_None, 0);
1585      parm->setScopeInfo(0, i);
1586      Params.push_back(parm);
1587    }
1588    New->setParams(Params);
1589  }
1590
1591  AddKnownFunctionAttributes(New);
1592
1593  // TUScope is the translation-unit scope to insert this function into.
1594  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1595  // relate Scopes to DeclContexts, and probably eliminate CurContext
1596  // entirely, but we're not there yet.
1597  DeclContext *SavedContext = CurContext;
1598  CurContext = Context.getTranslationUnitDecl();
1599  PushOnScopeChains(New, TUScope);
1600  CurContext = SavedContext;
1601  return New;
1602}
1603
1604/// \brief Filter out any previous declarations that the given declaration
1605/// should not consider because they are not permitted to conflict, e.g.,
1606/// because they come from hidden sub-modules and do not refer to the same
1607/// entity.
1608static void filterNonConflictingPreviousDecls(ASTContext &context,
1609                                              NamedDecl *decl,
1610                                              LookupResult &previous){
1611  // This is only interesting when modules are enabled.
1612  if (!context.getLangOpts().Modules)
1613    return;
1614
1615  // Empty sets are uninteresting.
1616  if (previous.empty())
1617    return;
1618
1619  LookupResult::Filter filter = previous.makeFilter();
1620  while (filter.hasNext()) {
1621    NamedDecl *old = filter.next();
1622
1623    // Non-hidden declarations are never ignored.
1624    if (!old->isHidden())
1625      continue;
1626
1627    if (!old->isExternallyVisible())
1628      filter.erase();
1629  }
1630
1631  filter.done();
1632}
1633
1634bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1635  QualType OldType;
1636  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1637    OldType = OldTypedef->getUnderlyingType();
1638  else
1639    OldType = Context.getTypeDeclType(Old);
1640  QualType NewType = New->getUnderlyingType();
1641
1642  if (NewType->isVariablyModifiedType()) {
1643    // Must not redefine a typedef with a variably-modified type.
1644    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1645    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1646      << Kind << NewType;
1647    if (Old->getLocation().isValid())
1648      Diag(Old->getLocation(), diag::note_previous_definition);
1649    New->setInvalidDecl();
1650    return true;
1651  }
1652
1653  if (OldType != NewType &&
1654      !OldType->isDependentType() &&
1655      !NewType->isDependentType() &&
1656      !Context.hasSameType(OldType, NewType)) {
1657    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1658    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1659      << Kind << NewType << OldType;
1660    if (Old->getLocation().isValid())
1661      Diag(Old->getLocation(), diag::note_previous_definition);
1662    New->setInvalidDecl();
1663    return true;
1664  }
1665  return false;
1666}
1667
1668/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1669/// same name and scope as a previous declaration 'Old'.  Figure out
1670/// how to resolve this situation, merging decls or emitting
1671/// diagnostics as appropriate. If there was an error, set New to be invalid.
1672///
1673void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1674  // If the new decl is known invalid already, don't bother doing any
1675  // merging checks.
1676  if (New->isInvalidDecl()) return;
1677
1678  // Allow multiple definitions for ObjC built-in typedefs.
1679  // FIXME: Verify the underlying types are equivalent!
1680  if (getLangOpts().ObjC1) {
1681    const IdentifierInfo *TypeID = New->getIdentifier();
1682    switch (TypeID->getLength()) {
1683    default: break;
1684    case 2:
1685      {
1686        if (!TypeID->isStr("id"))
1687          break;
1688        QualType T = New->getUnderlyingType();
1689        if (!T->isPointerType())
1690          break;
1691        if (!T->isVoidPointerType()) {
1692          QualType PT = T->getAs<PointerType>()->getPointeeType();
1693          if (!PT->isStructureType())
1694            break;
1695        }
1696        Context.setObjCIdRedefinitionType(T);
1697        // Install the built-in type for 'id', ignoring the current definition.
1698        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1699        return;
1700      }
1701    case 5:
1702      if (!TypeID->isStr("Class"))
1703        break;
1704      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1705      // Install the built-in type for 'Class', ignoring the current definition.
1706      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1707      return;
1708    case 3:
1709      if (!TypeID->isStr("SEL"))
1710        break;
1711      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1712      // Install the built-in type for 'SEL', ignoring the current definition.
1713      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1714      return;
1715    }
1716    // Fall through - the typedef name was not a builtin type.
1717  }
1718
1719  // Verify the old decl was also a type.
1720  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1721  if (!Old) {
1722    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1723      << New->getDeclName();
1724
1725    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1726    if (OldD->getLocation().isValid())
1727      Diag(OldD->getLocation(), diag::note_previous_definition);
1728
1729    return New->setInvalidDecl();
1730  }
1731
1732  // If the old declaration is invalid, just give up here.
1733  if (Old->isInvalidDecl())
1734    return New->setInvalidDecl();
1735
1736  // If the typedef types are not identical, reject them in all languages and
1737  // with any extensions enabled.
1738  if (isIncompatibleTypedef(Old, New))
1739    return;
1740
1741  // The types match.  Link up the redeclaration chain if the old
1742  // declaration was a typedef.
1743  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1744    New->setPreviousDeclaration(Typedef);
1745
1746  if (getLangOpts().MicrosoftExt)
1747    return;
1748
1749  if (getLangOpts().CPlusPlus) {
1750    // C++ [dcl.typedef]p2:
1751    //   In a given non-class scope, a typedef specifier can be used to
1752    //   redefine the name of any type declared in that scope to refer
1753    //   to the type to which it already refers.
1754    if (!isa<CXXRecordDecl>(CurContext))
1755      return;
1756
1757    // C++0x [dcl.typedef]p4:
1758    //   In a given class scope, a typedef specifier can be used to redefine
1759    //   any class-name declared in that scope that is not also a typedef-name
1760    //   to refer to the type to which it already refers.
1761    //
1762    // This wording came in via DR424, which was a correction to the
1763    // wording in DR56, which accidentally banned code like:
1764    //
1765    //   struct S {
1766    //     typedef struct A { } A;
1767    //   };
1768    //
1769    // in the C++03 standard. We implement the C++0x semantics, which
1770    // allow the above but disallow
1771    //
1772    //   struct S {
1773    //     typedef int I;
1774    //     typedef int I;
1775    //   };
1776    //
1777    // since that was the intent of DR56.
1778    if (!isa<TypedefNameDecl>(Old))
1779      return;
1780
1781    Diag(New->getLocation(), diag::err_redefinition)
1782      << New->getDeclName();
1783    Diag(Old->getLocation(), diag::note_previous_definition);
1784    return New->setInvalidDecl();
1785  }
1786
1787  // Modules always permit redefinition of typedefs, as does C11.
1788  if (getLangOpts().Modules || getLangOpts().C11)
1789    return;
1790
1791  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1792  // is normally mapped to an error, but can be controlled with
1793  // -Wtypedef-redefinition.  If either the original or the redefinition is
1794  // in a system header, don't emit this for compatibility with GCC.
1795  if (getDiagnostics().getSuppressSystemWarnings() &&
1796      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1797       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1798    return;
1799
1800  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1801    << New->getDeclName();
1802  Diag(Old->getLocation(), diag::note_previous_definition);
1803  return;
1804}
1805
1806/// DeclhasAttr - returns true if decl Declaration already has the target
1807/// attribute.
1808static bool
1809DeclHasAttr(const Decl *D, const Attr *A) {
1810  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1811  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1812  // responsible for making sure they are consistent.
1813  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1814  if (AA)
1815    return false;
1816
1817  // The following thread safety attributes can also be duplicated.
1818  switch (A->getKind()) {
1819    case attr::ExclusiveLocksRequired:
1820    case attr::SharedLocksRequired:
1821    case attr::LocksExcluded:
1822    case attr::ExclusiveLockFunction:
1823    case attr::SharedLockFunction:
1824    case attr::UnlockFunction:
1825    case attr::ExclusiveTrylockFunction:
1826    case attr::SharedTrylockFunction:
1827    case attr::GuardedBy:
1828    case attr::PtGuardedBy:
1829    case attr::AcquiredBefore:
1830    case attr::AcquiredAfter:
1831      return false;
1832    default:
1833      ;
1834  }
1835
1836  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1837  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1838  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1839    if ((*i)->getKind() == A->getKind()) {
1840      if (Ann) {
1841        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1842          return true;
1843        continue;
1844      }
1845      // FIXME: Don't hardcode this check
1846      if (OA && isa<OwnershipAttr>(*i))
1847        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1848      return true;
1849    }
1850
1851  return false;
1852}
1853
1854static bool isAttributeTargetADefinition(Decl *D) {
1855  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1856    return VD->isThisDeclarationADefinition();
1857  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1858    return TD->isCompleteDefinition() || TD->isBeingDefined();
1859  return true;
1860}
1861
1862/// Merge alignment attributes from \p Old to \p New, taking into account the
1863/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1864///
1865/// \return \c true if any attributes were added to \p New.
1866static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1867  // Look for alignas attributes on Old, and pick out whichever attribute
1868  // specifies the strictest alignment requirement.
1869  AlignedAttr *OldAlignasAttr = 0;
1870  AlignedAttr *OldStrictestAlignAttr = 0;
1871  unsigned OldAlign = 0;
1872  for (specific_attr_iterator<AlignedAttr>
1873         I = Old->specific_attr_begin<AlignedAttr>(),
1874         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1875    // FIXME: We have no way of representing inherited dependent alignments
1876    // in a case like:
1877    //   template<int A, int B> struct alignas(A) X;
1878    //   template<int A, int B> struct alignas(B) X {};
1879    // For now, we just ignore any alignas attributes which are not on the
1880    // definition in such a case.
1881    if (I->isAlignmentDependent())
1882      return false;
1883
1884    if (I->isAlignas())
1885      OldAlignasAttr = *I;
1886
1887    unsigned Align = I->getAlignment(S.Context);
1888    if (Align > OldAlign) {
1889      OldAlign = Align;
1890      OldStrictestAlignAttr = *I;
1891    }
1892  }
1893
1894  // Look for alignas attributes on New.
1895  AlignedAttr *NewAlignasAttr = 0;
1896  unsigned NewAlign = 0;
1897  for (specific_attr_iterator<AlignedAttr>
1898         I = New->specific_attr_begin<AlignedAttr>(),
1899         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1900    if (I->isAlignmentDependent())
1901      return false;
1902
1903    if (I->isAlignas())
1904      NewAlignasAttr = *I;
1905
1906    unsigned Align = I->getAlignment(S.Context);
1907    if (Align > NewAlign)
1908      NewAlign = Align;
1909  }
1910
1911  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1912    // Both declarations have 'alignas' attributes. We require them to match.
1913    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1914    // fall short. (If two declarations both have alignas, they must both match
1915    // every definition, and so must match each other if there is a definition.)
1916
1917    // If either declaration only contains 'alignas(0)' specifiers, then it
1918    // specifies the natural alignment for the type.
1919    if (OldAlign == 0 || NewAlign == 0) {
1920      QualType Ty;
1921      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1922        Ty = VD->getType();
1923      else
1924        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1925
1926      if (OldAlign == 0)
1927        OldAlign = S.Context.getTypeAlign(Ty);
1928      if (NewAlign == 0)
1929        NewAlign = S.Context.getTypeAlign(Ty);
1930    }
1931
1932    if (OldAlign != NewAlign) {
1933      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1934        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1935        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1936      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1937    }
1938  }
1939
1940  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1941    // C++11 [dcl.align]p6:
1942    //   if any declaration of an entity has an alignment-specifier,
1943    //   every defining declaration of that entity shall specify an
1944    //   equivalent alignment.
1945    // C11 6.7.5/7:
1946    //   If the definition of an object does not have an alignment
1947    //   specifier, any other declaration of that object shall also
1948    //   have no alignment specifier.
1949    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1950      << OldAlignasAttr->isC11();
1951    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1952      << OldAlignasAttr->isC11();
1953  }
1954
1955  bool AnyAdded = false;
1956
1957  // Ensure we have an attribute representing the strictest alignment.
1958  if (OldAlign > NewAlign) {
1959    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1960    Clone->setInherited(true);
1961    New->addAttr(Clone);
1962    AnyAdded = true;
1963  }
1964
1965  // Ensure we have an alignas attribute if the old declaration had one.
1966  if (OldAlignasAttr && !NewAlignasAttr &&
1967      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1968    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1969    Clone->setInherited(true);
1970    New->addAttr(Clone);
1971    AnyAdded = true;
1972  }
1973
1974  return AnyAdded;
1975}
1976
1977static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1978                               bool Override) {
1979  InheritableAttr *NewAttr = NULL;
1980  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1981  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1982    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1983                                      AA->getIntroduced(), AA->getDeprecated(),
1984                                      AA->getObsoleted(), AA->getUnavailable(),
1985                                      AA->getMessage(), Override,
1986                                      AttrSpellingListIndex);
1987  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1988    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1989                                    AttrSpellingListIndex);
1990  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1991    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1992                                        AttrSpellingListIndex);
1993  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1994    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1995                                   AttrSpellingListIndex);
1996  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1997    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1998                                   AttrSpellingListIndex);
1999  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2000    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2001                                FA->getFormatIdx(), FA->getFirstArg(),
2002                                AttrSpellingListIndex);
2003  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2004    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2005                                 AttrSpellingListIndex);
2006  else if (isa<AlignedAttr>(Attr))
2007    // AlignedAttrs are handled separately, because we need to handle all
2008    // such attributes on a declaration at the same time.
2009    NewAttr = 0;
2010  else if (!DeclHasAttr(D, Attr))
2011    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2012
2013  if (NewAttr) {
2014    NewAttr->setInherited(true);
2015    D->addAttr(NewAttr);
2016    return true;
2017  }
2018
2019  return false;
2020}
2021
2022static const Decl *getDefinition(const Decl *D) {
2023  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2024    return TD->getDefinition();
2025  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2026    return VD->getDefinition();
2027  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2028    const FunctionDecl* Def;
2029    if (FD->hasBody(Def))
2030      return Def;
2031  }
2032  return NULL;
2033}
2034
2035static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2036  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2037       I != E; ++I) {
2038    Attr *Attribute = *I;
2039    if (Attribute->getKind() == Kind)
2040      return true;
2041  }
2042  return false;
2043}
2044
2045/// checkNewAttributesAfterDef - If we already have a definition, check that
2046/// there are no new attributes in this declaration.
2047static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2048  if (!New->hasAttrs())
2049    return;
2050
2051  const Decl *Def = getDefinition(Old);
2052  if (!Def || Def == New)
2053    return;
2054
2055  AttrVec &NewAttributes = New->getAttrs();
2056  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2057    const Attr *NewAttribute = NewAttributes[I];
2058    if (hasAttribute(Def, NewAttribute->getKind())) {
2059      ++I;
2060      continue; // regular attr merging will take care of validating this.
2061    }
2062
2063    if (isa<C11NoReturnAttr>(NewAttribute)) {
2064      // C's _Noreturn is allowed to be added to a function after it is defined.
2065      ++I;
2066      continue;
2067    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2068      if (AA->isAlignas()) {
2069        // C++11 [dcl.align]p6:
2070        //   if any declaration of an entity has an alignment-specifier,
2071        //   every defining declaration of that entity shall specify an
2072        //   equivalent alignment.
2073        // C11 6.7.5/7:
2074        //   If the definition of an object does not have an alignment
2075        //   specifier, any other declaration of that object shall also
2076        //   have no alignment specifier.
2077        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2078          << AA->isC11();
2079        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2080          << AA->isC11();
2081        NewAttributes.erase(NewAttributes.begin() + I);
2082        --E;
2083        continue;
2084      }
2085    }
2086
2087    S.Diag(NewAttribute->getLocation(),
2088           diag::warn_attribute_precede_definition);
2089    S.Diag(Def->getLocation(), diag::note_previous_definition);
2090    NewAttributes.erase(NewAttributes.begin() + I);
2091    --E;
2092  }
2093}
2094
2095/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2096void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2097                               AvailabilityMergeKind AMK) {
2098  if (!Old->hasAttrs() && !New->hasAttrs())
2099    return;
2100
2101  // attributes declared post-definition are currently ignored
2102  checkNewAttributesAfterDef(*this, New, Old);
2103
2104  if (!Old->hasAttrs())
2105    return;
2106
2107  bool foundAny = New->hasAttrs();
2108
2109  // Ensure that any moving of objects within the allocated map is done before
2110  // we process them.
2111  if (!foundAny) New->setAttrs(AttrVec());
2112
2113  for (specific_attr_iterator<InheritableAttr>
2114         i = Old->specific_attr_begin<InheritableAttr>(),
2115         e = Old->specific_attr_end<InheritableAttr>();
2116       i != e; ++i) {
2117    bool Override = false;
2118    // Ignore deprecated/unavailable/availability attributes if requested.
2119    if (isa<DeprecatedAttr>(*i) ||
2120        isa<UnavailableAttr>(*i) ||
2121        isa<AvailabilityAttr>(*i)) {
2122      switch (AMK) {
2123      case AMK_None:
2124        continue;
2125
2126      case AMK_Redeclaration:
2127        break;
2128
2129      case AMK_Override:
2130        Override = true;
2131        break;
2132      }
2133    }
2134
2135    if (mergeDeclAttribute(*this, New, *i, Override))
2136      foundAny = true;
2137  }
2138
2139  if (mergeAlignedAttrs(*this, New, Old))
2140    foundAny = true;
2141
2142  if (!foundAny) New->dropAttrs();
2143}
2144
2145/// mergeParamDeclAttributes - Copy attributes from the old parameter
2146/// to the new one.
2147static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2148                                     const ParmVarDecl *oldDecl,
2149                                     Sema &S) {
2150  // C++11 [dcl.attr.depend]p2:
2151  //   The first declaration of a function shall specify the
2152  //   carries_dependency attribute for its declarator-id if any declaration
2153  //   of the function specifies the carries_dependency attribute.
2154  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2155      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2156    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2157           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2158    // Find the first declaration of the parameter.
2159    // FIXME: Should we build redeclaration chains for function parameters?
2160    const FunctionDecl *FirstFD =
2161      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2162    const ParmVarDecl *FirstVD =
2163      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2164    S.Diag(FirstVD->getLocation(),
2165           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2166  }
2167
2168  if (!oldDecl->hasAttrs())
2169    return;
2170
2171  bool foundAny = newDecl->hasAttrs();
2172
2173  // Ensure that any moving of objects within the allocated map is
2174  // done before we process them.
2175  if (!foundAny) newDecl->setAttrs(AttrVec());
2176
2177  for (specific_attr_iterator<InheritableParamAttr>
2178       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2179       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2180    if (!DeclHasAttr(newDecl, *i)) {
2181      InheritableAttr *newAttr =
2182        cast<InheritableParamAttr>((*i)->clone(S.Context));
2183      newAttr->setInherited(true);
2184      newDecl->addAttr(newAttr);
2185      foundAny = true;
2186    }
2187  }
2188
2189  if (!foundAny) newDecl->dropAttrs();
2190}
2191
2192namespace {
2193
2194/// Used in MergeFunctionDecl to keep track of function parameters in
2195/// C.
2196struct GNUCompatibleParamWarning {
2197  ParmVarDecl *OldParm;
2198  ParmVarDecl *NewParm;
2199  QualType PromotedType;
2200};
2201
2202}
2203
2204/// getSpecialMember - get the special member enum for a method.
2205Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2206  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2207    if (Ctor->isDefaultConstructor())
2208      return Sema::CXXDefaultConstructor;
2209
2210    if (Ctor->isCopyConstructor())
2211      return Sema::CXXCopyConstructor;
2212
2213    if (Ctor->isMoveConstructor())
2214      return Sema::CXXMoveConstructor;
2215  } else if (isa<CXXDestructorDecl>(MD)) {
2216    return Sema::CXXDestructor;
2217  } else if (MD->isCopyAssignmentOperator()) {
2218    return Sema::CXXCopyAssignment;
2219  } else if (MD->isMoveAssignmentOperator()) {
2220    return Sema::CXXMoveAssignment;
2221  }
2222
2223  return Sema::CXXInvalid;
2224}
2225
2226/// canRedefineFunction - checks if a function can be redefined. Currently,
2227/// only extern inline functions can be redefined, and even then only in
2228/// GNU89 mode.
2229static bool canRedefineFunction(const FunctionDecl *FD,
2230                                const LangOptions& LangOpts) {
2231  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2232          !LangOpts.CPlusPlus &&
2233          FD->isInlineSpecified() &&
2234          FD->getStorageClass() == SC_Extern);
2235}
2236
2237/// Is the given calling convention the ABI default for the given
2238/// declaration?
2239static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2240  CallingConv ABIDefaultCC;
2241  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2242    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2243  } else {
2244    // Free C function or a static method.
2245    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2246  }
2247  return ABIDefaultCC == CC;
2248}
2249
2250template <typename T>
2251static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2252  const DeclContext *DC = Old->getDeclContext();
2253  if (DC->isRecord())
2254    return false;
2255
2256  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2257  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2258    return true;
2259  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2260    return true;
2261  return false;
2262}
2263
2264/// MergeFunctionDecl - We just parsed a function 'New' from
2265/// declarator D which has the same name and scope as a previous
2266/// declaration 'Old'.  Figure out how to resolve this situation,
2267/// merging decls or emitting diagnostics as appropriate.
2268///
2269/// In C++, New and Old must be declarations that are not
2270/// overloaded. Use IsOverload to determine whether New and Old are
2271/// overloaded, and to select the Old declaration that New should be
2272/// merged with.
2273///
2274/// Returns true if there was an error, false otherwise.
2275bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2276  // Verify the old decl was also a function.
2277  FunctionDecl *Old = 0;
2278  if (FunctionTemplateDecl *OldFunctionTemplate
2279        = dyn_cast<FunctionTemplateDecl>(OldD))
2280    Old = OldFunctionTemplate->getTemplatedDecl();
2281  else
2282    Old = dyn_cast<FunctionDecl>(OldD);
2283  if (!Old) {
2284    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2285      if (New->getFriendObjectKind()) {
2286        Diag(New->getLocation(), diag::err_using_decl_friend);
2287        Diag(Shadow->getTargetDecl()->getLocation(),
2288             diag::note_using_decl_target);
2289        Diag(Shadow->getUsingDecl()->getLocation(),
2290             diag::note_using_decl) << 0;
2291        return true;
2292      }
2293
2294      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2295      Diag(Shadow->getTargetDecl()->getLocation(),
2296           diag::note_using_decl_target);
2297      Diag(Shadow->getUsingDecl()->getLocation(),
2298           diag::note_using_decl) << 0;
2299      return true;
2300    }
2301
2302    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2303      << New->getDeclName();
2304    Diag(OldD->getLocation(), diag::note_previous_definition);
2305    return true;
2306  }
2307
2308  // Determine whether the previous declaration was a definition,
2309  // implicit declaration, or a declaration.
2310  diag::kind PrevDiag;
2311  if (Old->isThisDeclarationADefinition())
2312    PrevDiag = diag::note_previous_definition;
2313  else if (Old->isImplicit())
2314    PrevDiag = diag::note_previous_implicit_declaration;
2315  else
2316    PrevDiag = diag::note_previous_declaration;
2317
2318  QualType OldQType = Context.getCanonicalType(Old->getType());
2319  QualType NewQType = Context.getCanonicalType(New->getType());
2320
2321  // Don't complain about this if we're in GNU89 mode and the old function
2322  // is an extern inline function.
2323  // Don't complain about specializations. They are not supposed to have
2324  // storage classes.
2325  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2326      New->getStorageClass() == SC_Static &&
2327      Old->hasExternalFormalLinkage() &&
2328      !New->getTemplateSpecializationInfo() &&
2329      !canRedefineFunction(Old, getLangOpts())) {
2330    if (getLangOpts().MicrosoftExt) {
2331      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2332      Diag(Old->getLocation(), PrevDiag);
2333    } else {
2334      Diag(New->getLocation(), diag::err_static_non_static) << New;
2335      Diag(Old->getLocation(), PrevDiag);
2336      return true;
2337    }
2338  }
2339
2340  // If a function is first declared with a calling convention, but is
2341  // later declared or defined without one, the second decl assumes the
2342  // calling convention of the first.
2343  //
2344  // It's OK if a function is first declared without a calling convention,
2345  // but is later declared or defined with the default calling convention.
2346  //
2347  // For the new decl, we have to look at the NON-canonical type to tell the
2348  // difference between a function that really doesn't have a calling
2349  // convention and one that is declared cdecl. That's because in
2350  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2351  // because it is the default calling convention.
2352  //
2353  // Note also that we DO NOT return at this point, because we still have
2354  // other tests to run.
2355  const FunctionType *OldType = cast<FunctionType>(OldQType);
2356  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2357  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2358  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2359  bool RequiresAdjustment = false;
2360  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2361    // Fast path: nothing to do.
2362
2363  // Inherit the CC from the previous declaration if it was specified
2364  // there but not here.
2365  } else if (NewTypeInfo.getCC() == CC_Default) {
2366    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2367    RequiresAdjustment = true;
2368
2369  // Don't complain about mismatches when the default CC is
2370  // effectively the same as the explict one. Only Old decl contains correct
2371  // information about storage class of CXXMethod.
2372  } else if (OldTypeInfo.getCC() == CC_Default &&
2373             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2374    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2375    RequiresAdjustment = true;
2376
2377  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2378                                     NewTypeInfo.getCC())) {
2379    // Calling conventions really aren't compatible, so complain.
2380    Diag(New->getLocation(), diag::err_cconv_change)
2381      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2382      << (OldTypeInfo.getCC() == CC_Default)
2383      << (OldTypeInfo.getCC() == CC_Default ? "" :
2384          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2385    Diag(Old->getLocation(), diag::note_previous_declaration);
2386    return true;
2387  }
2388
2389  // FIXME: diagnose the other way around?
2390  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2391    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2392    RequiresAdjustment = true;
2393  }
2394
2395  // Merge regparm attribute.
2396  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2397      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2398    if (NewTypeInfo.getHasRegParm()) {
2399      Diag(New->getLocation(), diag::err_regparm_mismatch)
2400        << NewType->getRegParmType()
2401        << OldType->getRegParmType();
2402      Diag(Old->getLocation(), diag::note_previous_declaration);
2403      return true;
2404    }
2405
2406    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2407    RequiresAdjustment = true;
2408  }
2409
2410  // Merge ns_returns_retained attribute.
2411  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2412    if (NewTypeInfo.getProducesResult()) {
2413      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2414      Diag(Old->getLocation(), diag::note_previous_declaration);
2415      return true;
2416    }
2417
2418    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2419    RequiresAdjustment = true;
2420  }
2421
2422  if (RequiresAdjustment) {
2423    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2424    New->setType(QualType(NewType, 0));
2425    NewQType = Context.getCanonicalType(New->getType());
2426  }
2427
2428  // If this redeclaration makes the function inline, we may need to add it to
2429  // UndefinedButUsed.
2430  if (!Old->isInlined() && New->isInlined() &&
2431      !New->hasAttr<GNUInlineAttr>() &&
2432      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2433      Old->isUsed(false) &&
2434      !Old->isDefined() && !New->isThisDeclarationADefinition())
2435    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2436                                           SourceLocation()));
2437
2438  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2439  // about it.
2440  if (New->hasAttr<GNUInlineAttr>() &&
2441      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2442    UndefinedButUsed.erase(Old->getCanonicalDecl());
2443  }
2444
2445  if (getLangOpts().CPlusPlus) {
2446    // (C++98 13.1p2):
2447    //   Certain function declarations cannot be overloaded:
2448    //     -- Function declarations that differ only in the return type
2449    //        cannot be overloaded.
2450
2451    // Go back to the type source info to compare the declared return types,
2452    // per C++1y [dcl.type.auto]p??:
2453    //   Redeclarations or specializations of a function or function template
2454    //   with a declared return type that uses a placeholder type shall also
2455    //   use that placeholder, not a deduced type.
2456    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2457      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2458      : OldType)->getResultType();
2459    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2460      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2461      : NewType)->getResultType();
2462    QualType ResQT;
2463    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2464      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2465          OldDeclaredReturnType->isObjCObjectPointerType())
2466        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2467      if (ResQT.isNull()) {
2468        if (New->isCXXClassMember() && New->isOutOfLine())
2469          Diag(New->getLocation(),
2470               diag::err_member_def_does_not_match_ret_type) << New;
2471        else
2472          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2473        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2474        return true;
2475      }
2476      else
2477        NewQType = ResQT;
2478    }
2479
2480    QualType OldReturnType = OldType->getResultType();
2481    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2482    if (OldReturnType != NewReturnType) {
2483      // If this function has a deduced return type and has already been
2484      // defined, copy the deduced value from the old declaration.
2485      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2486      if (OldAT && OldAT->isDeduced()) {
2487        New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2488        NewQType = Context.getCanonicalType(
2489            SubstAutoType(NewQType, OldAT->getDeducedType()));
2490      }
2491    }
2492
2493    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2494    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2495    if (OldMethod && NewMethod) {
2496      // Preserve triviality.
2497      NewMethod->setTrivial(OldMethod->isTrivial());
2498
2499      // MSVC allows explicit template specialization at class scope:
2500      // 2 CXMethodDecls referring to the same function will be injected.
2501      // We don't want a redeclartion error.
2502      bool IsClassScopeExplicitSpecialization =
2503                              OldMethod->isFunctionTemplateSpecialization() &&
2504                              NewMethod->isFunctionTemplateSpecialization();
2505      bool isFriend = NewMethod->getFriendObjectKind();
2506
2507      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2508          !IsClassScopeExplicitSpecialization) {
2509        //    -- Member function declarations with the same name and the
2510        //       same parameter types cannot be overloaded if any of them
2511        //       is a static member function declaration.
2512        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2513          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2514          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2515          return true;
2516        }
2517
2518        // C++ [class.mem]p1:
2519        //   [...] A member shall not be declared twice in the
2520        //   member-specification, except that a nested class or member
2521        //   class template can be declared and then later defined.
2522        if (ActiveTemplateInstantiations.empty()) {
2523          unsigned NewDiag;
2524          if (isa<CXXConstructorDecl>(OldMethod))
2525            NewDiag = diag::err_constructor_redeclared;
2526          else if (isa<CXXDestructorDecl>(NewMethod))
2527            NewDiag = diag::err_destructor_redeclared;
2528          else if (isa<CXXConversionDecl>(NewMethod))
2529            NewDiag = diag::err_conv_function_redeclared;
2530          else
2531            NewDiag = diag::err_member_redeclared;
2532
2533          Diag(New->getLocation(), NewDiag);
2534        } else {
2535          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2536            << New << New->getType();
2537        }
2538        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2539
2540      // Complain if this is an explicit declaration of a special
2541      // member that was initially declared implicitly.
2542      //
2543      // As an exception, it's okay to befriend such methods in order
2544      // to permit the implicit constructor/destructor/operator calls.
2545      } else if (OldMethod->isImplicit()) {
2546        if (isFriend) {
2547          NewMethod->setImplicit();
2548        } else {
2549          Diag(NewMethod->getLocation(),
2550               diag::err_definition_of_implicitly_declared_member)
2551            << New << getSpecialMember(OldMethod);
2552          return true;
2553        }
2554      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2555        Diag(NewMethod->getLocation(),
2556             diag::err_definition_of_explicitly_defaulted_member)
2557          << getSpecialMember(OldMethod);
2558        return true;
2559      }
2560    }
2561
2562    // C++11 [dcl.attr.noreturn]p1:
2563    //   The first declaration of a function shall specify the noreturn
2564    //   attribute if any declaration of that function specifies the noreturn
2565    //   attribute.
2566    if (New->hasAttr<CXX11NoReturnAttr>() &&
2567        !Old->hasAttr<CXX11NoReturnAttr>()) {
2568      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2569           diag::err_noreturn_missing_on_first_decl);
2570      Diag(Old->getFirstDeclaration()->getLocation(),
2571           diag::note_noreturn_missing_first_decl);
2572    }
2573
2574    // C++11 [dcl.attr.depend]p2:
2575    //   The first declaration of a function shall specify the
2576    //   carries_dependency attribute for its declarator-id if any declaration
2577    //   of the function specifies the carries_dependency attribute.
2578    if (New->hasAttr<CarriesDependencyAttr>() &&
2579        !Old->hasAttr<CarriesDependencyAttr>()) {
2580      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2581           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2582      Diag(Old->getFirstDeclaration()->getLocation(),
2583           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2584    }
2585
2586    // (C++98 8.3.5p3):
2587    //   All declarations for a function shall agree exactly in both the
2588    //   return type and the parameter-type-list.
2589    // We also want to respect all the extended bits except noreturn.
2590
2591    // noreturn should now match unless the old type info didn't have it.
2592    QualType OldQTypeForComparison = OldQType;
2593    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2594      assert(OldQType == QualType(OldType, 0));
2595      const FunctionType *OldTypeForComparison
2596        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2597      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2598      assert(OldQTypeForComparison.isCanonical());
2599    }
2600
2601    if (haveIncompatibleLanguageLinkages(Old, New)) {
2602      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2603      Diag(Old->getLocation(), PrevDiag);
2604      return true;
2605    }
2606
2607    if (OldQTypeForComparison == NewQType)
2608      return MergeCompatibleFunctionDecls(New, Old, S);
2609
2610    // Fall through for conflicting redeclarations and redefinitions.
2611  }
2612
2613  // C: Function types need to be compatible, not identical. This handles
2614  // duplicate function decls like "void f(int); void f(enum X);" properly.
2615  if (!getLangOpts().CPlusPlus &&
2616      Context.typesAreCompatible(OldQType, NewQType)) {
2617    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2618    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2619    const FunctionProtoType *OldProto = 0;
2620    if (isa<FunctionNoProtoType>(NewFuncType) &&
2621        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2622      // The old declaration provided a function prototype, but the
2623      // new declaration does not. Merge in the prototype.
2624      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2625      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2626                                                 OldProto->arg_type_end());
2627      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2628                                         ParamTypes,
2629                                         OldProto->getExtProtoInfo());
2630      New->setType(NewQType);
2631      New->setHasInheritedPrototype();
2632
2633      // Synthesize a parameter for each argument type.
2634      SmallVector<ParmVarDecl*, 16> Params;
2635      for (FunctionProtoType::arg_type_iterator
2636             ParamType = OldProto->arg_type_begin(),
2637             ParamEnd = OldProto->arg_type_end();
2638           ParamType != ParamEnd; ++ParamType) {
2639        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2640                                                 SourceLocation(),
2641                                                 SourceLocation(), 0,
2642                                                 *ParamType, /*TInfo=*/0,
2643                                                 SC_None,
2644                                                 0);
2645        Param->setScopeInfo(0, Params.size());
2646        Param->setImplicit();
2647        Params.push_back(Param);
2648      }
2649
2650      New->setParams(Params);
2651    }
2652
2653    return MergeCompatibleFunctionDecls(New, Old, S);
2654  }
2655
2656  // GNU C permits a K&R definition to follow a prototype declaration
2657  // if the declared types of the parameters in the K&R definition
2658  // match the types in the prototype declaration, even when the
2659  // promoted types of the parameters from the K&R definition differ
2660  // from the types in the prototype. GCC then keeps the types from
2661  // the prototype.
2662  //
2663  // If a variadic prototype is followed by a non-variadic K&R definition,
2664  // the K&R definition becomes variadic.  This is sort of an edge case, but
2665  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2666  // C99 6.9.1p8.
2667  if (!getLangOpts().CPlusPlus &&
2668      Old->hasPrototype() && !New->hasPrototype() &&
2669      New->getType()->getAs<FunctionProtoType>() &&
2670      Old->getNumParams() == New->getNumParams()) {
2671    SmallVector<QualType, 16> ArgTypes;
2672    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2673    const FunctionProtoType *OldProto
2674      = Old->getType()->getAs<FunctionProtoType>();
2675    const FunctionProtoType *NewProto
2676      = New->getType()->getAs<FunctionProtoType>();
2677
2678    // Determine whether this is the GNU C extension.
2679    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2680                                               NewProto->getResultType());
2681    bool LooseCompatible = !MergedReturn.isNull();
2682    for (unsigned Idx = 0, End = Old->getNumParams();
2683         LooseCompatible && Idx != End; ++Idx) {
2684      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2685      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2686      if (Context.typesAreCompatible(OldParm->getType(),
2687                                     NewProto->getArgType(Idx))) {
2688        ArgTypes.push_back(NewParm->getType());
2689      } else if (Context.typesAreCompatible(OldParm->getType(),
2690                                            NewParm->getType(),
2691                                            /*CompareUnqualified=*/true)) {
2692        GNUCompatibleParamWarning Warn
2693          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2694        Warnings.push_back(Warn);
2695        ArgTypes.push_back(NewParm->getType());
2696      } else
2697        LooseCompatible = false;
2698    }
2699
2700    if (LooseCompatible) {
2701      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2702        Diag(Warnings[Warn].NewParm->getLocation(),
2703             diag::ext_param_promoted_not_compatible_with_prototype)
2704          << Warnings[Warn].PromotedType
2705          << Warnings[Warn].OldParm->getType();
2706        if (Warnings[Warn].OldParm->getLocation().isValid())
2707          Diag(Warnings[Warn].OldParm->getLocation(),
2708               diag::note_previous_declaration);
2709      }
2710
2711      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2712                                           OldProto->getExtProtoInfo()));
2713      return MergeCompatibleFunctionDecls(New, Old, S);
2714    }
2715
2716    // Fall through to diagnose conflicting types.
2717  }
2718
2719  // A function that has already been declared has been redeclared or
2720  // defined with a different type; show an appropriate diagnostic.
2721
2722  // If the previous declaration was an implicitly-generated builtin
2723  // declaration, then at the very least we should use a specialized note.
2724  unsigned BuiltinID;
2725  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2726    // If it's actually a library-defined builtin function like 'malloc'
2727    // or 'printf', just warn about the incompatible redeclaration.
2728    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2729      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2730      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2731        << Old << Old->getType();
2732
2733      // If this is a global redeclaration, just forget hereafter
2734      // about the "builtin-ness" of the function.
2735      //
2736      // Doing this for local extern declarations is problematic.  If
2737      // the builtin declaration remains visible, a second invalid
2738      // local declaration will produce a hard error; if it doesn't
2739      // remain visible, a single bogus local redeclaration (which is
2740      // actually only a warning) could break all the downstream code.
2741      if (!New->getDeclContext()->isFunctionOrMethod())
2742        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2743
2744      return false;
2745    }
2746
2747    PrevDiag = diag::note_previous_builtin_declaration;
2748  }
2749
2750  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2751  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2752  return true;
2753}
2754
2755/// \brief Completes the merge of two function declarations that are
2756/// known to be compatible.
2757///
2758/// This routine handles the merging of attributes and other
2759/// properties of function declarations form the old declaration to
2760/// the new declaration, once we know that New is in fact a
2761/// redeclaration of Old.
2762///
2763/// \returns false
2764bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2765                                        Scope *S) {
2766  // Merge the attributes
2767  mergeDeclAttributes(New, Old);
2768
2769  // Merge "pure" flag.
2770  if (Old->isPure())
2771    New->setPure();
2772
2773  // Merge "used" flag.
2774  if (Old->isUsed(false))
2775    New->setUsed();
2776
2777  // Merge attributes from the parameters.  These can mismatch with K&R
2778  // declarations.
2779  if (New->getNumParams() == Old->getNumParams())
2780    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2781      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2782                               *this);
2783
2784  if (getLangOpts().CPlusPlus)
2785    return MergeCXXFunctionDecl(New, Old, S);
2786
2787  // Merge the function types so the we get the composite types for the return
2788  // and argument types.
2789  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2790  if (!Merged.isNull())
2791    New->setType(Merged);
2792
2793  return false;
2794}
2795
2796
2797void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2798                                ObjCMethodDecl *oldMethod) {
2799
2800  // Merge the attributes, including deprecated/unavailable
2801  AvailabilityMergeKind MergeKind =
2802    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2803                                                   : AMK_Override;
2804  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2805
2806  // Merge attributes from the parameters.
2807  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2808                                       oe = oldMethod->param_end();
2809  for (ObjCMethodDecl::param_iterator
2810         ni = newMethod->param_begin(), ne = newMethod->param_end();
2811       ni != ne && oi != oe; ++ni, ++oi)
2812    mergeParamDeclAttributes(*ni, *oi, *this);
2813
2814  CheckObjCMethodOverride(newMethod, oldMethod);
2815}
2816
2817/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2818/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2819/// emitting diagnostics as appropriate.
2820///
2821/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2822/// to here in AddInitializerToDecl. We can't check them before the initializer
2823/// is attached.
2824void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2825  if (New->isInvalidDecl() || Old->isInvalidDecl())
2826    return;
2827
2828  QualType MergedT;
2829  if (getLangOpts().CPlusPlus) {
2830    if (New->getType()->isUndeducedType()) {
2831      // We don't know what the new type is until the initializer is attached.
2832      return;
2833    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2834      // These could still be something that needs exception specs checked.
2835      return MergeVarDeclExceptionSpecs(New, Old);
2836    }
2837    // C++ [basic.link]p10:
2838    //   [...] the types specified by all declarations referring to a given
2839    //   object or function shall be identical, except that declarations for an
2840    //   array object can specify array types that differ by the presence or
2841    //   absence of a major array bound (8.3.4).
2842    else if (Old->getType()->isIncompleteArrayType() &&
2843             New->getType()->isArrayType()) {
2844      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2845      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2846      if (Context.hasSameType(OldArray->getElementType(),
2847                              NewArray->getElementType()))
2848        MergedT = New->getType();
2849    } else if (Old->getType()->isArrayType() &&
2850             New->getType()->isIncompleteArrayType()) {
2851      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2852      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2853      if (Context.hasSameType(OldArray->getElementType(),
2854                              NewArray->getElementType()))
2855        MergedT = Old->getType();
2856    } else if (New->getType()->isObjCObjectPointerType()
2857               && Old->getType()->isObjCObjectPointerType()) {
2858        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2859                                                        Old->getType());
2860    }
2861  } else {
2862    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2863  }
2864  if (MergedT.isNull()) {
2865    Diag(New->getLocation(), diag::err_redefinition_different_type)
2866      << New->getDeclName() << New->getType() << Old->getType();
2867    Diag(Old->getLocation(), diag::note_previous_definition);
2868    return New->setInvalidDecl();
2869  }
2870
2871  // Don't actually update the type on the new declaration if the old
2872  // declaration was a extern declaration in a different scope.
2873  if (!OldWasHidden)
2874    New->setType(MergedT);
2875}
2876
2877/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2878/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2879/// situation, merging decls or emitting diagnostics as appropriate.
2880///
2881/// Tentative definition rules (C99 6.9.2p2) are checked by
2882/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2883/// definitions here, since the initializer hasn't been attached.
2884///
2885void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2886                        bool PreviousWasHidden) {
2887  // If the new decl is already invalid, don't do any other checking.
2888  if (New->isInvalidDecl())
2889    return;
2890
2891  // Verify the old decl was also a variable.
2892  VarDecl *Old = 0;
2893  if (!Previous.isSingleResult() ||
2894      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2895    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2896      << New->getDeclName();
2897    Diag(Previous.getRepresentativeDecl()->getLocation(),
2898         diag::note_previous_definition);
2899    return New->setInvalidDecl();
2900  }
2901
2902  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2903    return;
2904
2905  // C++ [class.mem]p1:
2906  //   A member shall not be declared twice in the member-specification [...]
2907  //
2908  // Here, we need only consider static data members.
2909  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2910    Diag(New->getLocation(), diag::err_duplicate_member)
2911      << New->getIdentifier();
2912    Diag(Old->getLocation(), diag::note_previous_declaration);
2913    New->setInvalidDecl();
2914  }
2915
2916  mergeDeclAttributes(New, Old);
2917  // Warn if an already-declared variable is made a weak_import in a subsequent
2918  // declaration
2919  if (New->getAttr<WeakImportAttr>() &&
2920      Old->getStorageClass() == SC_None &&
2921      !Old->getAttr<WeakImportAttr>()) {
2922    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2923    Diag(Old->getLocation(), diag::note_previous_definition);
2924    // Remove weak_import attribute on new declaration.
2925    New->dropAttr<WeakImportAttr>();
2926  }
2927
2928  // Merge the types.
2929  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2930  if (New->isInvalidDecl())
2931    return;
2932
2933  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2934  if (New->getStorageClass() == SC_Static &&
2935      !New->isStaticDataMember() &&
2936      Old->hasExternalFormalLinkage()) {
2937    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2938    Diag(Old->getLocation(), diag::note_previous_definition);
2939    return New->setInvalidDecl();
2940  }
2941  // C99 6.2.2p4:
2942  //   For an identifier declared with the storage-class specifier
2943  //   extern in a scope in which a prior declaration of that
2944  //   identifier is visible,23) if the prior declaration specifies
2945  //   internal or external linkage, the linkage of the identifier at
2946  //   the later declaration is the same as the linkage specified at
2947  //   the prior declaration. If no prior declaration is visible, or
2948  //   if the prior declaration specifies no linkage, then the
2949  //   identifier has external linkage.
2950  if (New->hasExternalStorage() && Old->hasLinkage())
2951    /* Okay */;
2952  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2953           !New->isStaticDataMember() &&
2954           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2955    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2956    Diag(Old->getLocation(), diag::note_previous_definition);
2957    return New->setInvalidDecl();
2958  }
2959
2960  // Check if extern is followed by non-extern and vice-versa.
2961  if (New->hasExternalStorage() &&
2962      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2963    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2964    Diag(Old->getLocation(), diag::note_previous_definition);
2965    return New->setInvalidDecl();
2966  }
2967  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2968      !New->hasExternalStorage()) {
2969    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2970    Diag(Old->getLocation(), diag::note_previous_definition);
2971    return New->setInvalidDecl();
2972  }
2973
2974  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2975
2976  // FIXME: The test for external storage here seems wrong? We still
2977  // need to check for mismatches.
2978  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2979      // Don't complain about out-of-line definitions of static members.
2980      !(Old->getLexicalDeclContext()->isRecord() &&
2981        !New->getLexicalDeclContext()->isRecord())) {
2982    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2983    Diag(Old->getLocation(), diag::note_previous_definition);
2984    return New->setInvalidDecl();
2985  }
2986
2987  if (New->getTLSKind() != Old->getTLSKind()) {
2988    if (!Old->getTLSKind()) {
2989      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2990      Diag(Old->getLocation(), diag::note_previous_declaration);
2991    } else if (!New->getTLSKind()) {
2992      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2993      Diag(Old->getLocation(), diag::note_previous_declaration);
2994    } else {
2995      // Do not allow redeclaration to change the variable between requiring
2996      // static and dynamic initialization.
2997      // FIXME: GCC allows this, but uses the TLS keyword on the first
2998      // declaration to determine the kind. Do we need to be compatible here?
2999      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3000        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3001      Diag(Old->getLocation(), diag::note_previous_declaration);
3002    }
3003  }
3004
3005  // C++ doesn't have tentative definitions, so go right ahead and check here.
3006  const VarDecl *Def;
3007  if (getLangOpts().CPlusPlus &&
3008      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3009      (Def = Old->getDefinition())) {
3010    Diag(New->getLocation(), diag::err_redefinition)
3011      << New->getDeclName();
3012    Diag(Def->getLocation(), diag::note_previous_definition);
3013    New->setInvalidDecl();
3014    return;
3015  }
3016
3017  if (haveIncompatibleLanguageLinkages(Old, New)) {
3018    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3019    Diag(Old->getLocation(), diag::note_previous_definition);
3020    New->setInvalidDecl();
3021    return;
3022  }
3023
3024  // Merge "used" flag.
3025  if (Old->isUsed(false))
3026    New->setUsed();
3027
3028  // Keep a chain of previous declarations.
3029  New->setPreviousDeclaration(Old);
3030
3031  // Inherit access appropriately.
3032  New->setAccess(Old->getAccess());
3033}
3034
3035/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3036/// no declarator (e.g. "struct foo;") is parsed.
3037Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3038                                       DeclSpec &DS) {
3039  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3040}
3041
3042/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3043/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3044/// parameters to cope with template friend declarations.
3045Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3046                                       DeclSpec &DS,
3047                                       MultiTemplateParamsArg TemplateParams,
3048                                       bool IsExplicitInstantiation) {
3049  Decl *TagD = 0;
3050  TagDecl *Tag = 0;
3051  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3052      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3053      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3054      DS.getTypeSpecType() == DeclSpec::TST_union ||
3055      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3056    TagD = DS.getRepAsDecl();
3057
3058    if (!TagD) // We probably had an error
3059      return 0;
3060
3061    // Note that the above type specs guarantee that the
3062    // type rep is a Decl, whereas in many of the others
3063    // it's a Type.
3064    if (isa<TagDecl>(TagD))
3065      Tag = cast<TagDecl>(TagD);
3066    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3067      Tag = CTD->getTemplatedDecl();
3068  }
3069
3070  if (Tag) {
3071    getASTContext().addUnnamedTag(Tag);
3072    Tag->setFreeStanding();
3073    if (Tag->isInvalidDecl())
3074      return Tag;
3075  }
3076
3077  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3078    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3079    // or incomplete types shall not be restrict-qualified."
3080    if (TypeQuals & DeclSpec::TQ_restrict)
3081      Diag(DS.getRestrictSpecLoc(),
3082           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3083           << DS.getSourceRange();
3084  }
3085
3086  if (DS.isConstexprSpecified()) {
3087    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3088    // and definitions of functions and variables.
3089    if (Tag)
3090      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3091        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3092            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3093            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3094            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3095    else
3096      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3097    // Don't emit warnings after this error.
3098    return TagD;
3099  }
3100
3101  DiagnoseFunctionSpecifiers(DS);
3102
3103  if (DS.isFriendSpecified()) {
3104    // If we're dealing with a decl but not a TagDecl, assume that
3105    // whatever routines created it handled the friendship aspect.
3106    if (TagD && !Tag)
3107      return 0;
3108    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3109  }
3110
3111  CXXScopeSpec &SS = DS.getTypeSpecScope();
3112  bool IsExplicitSpecialization =
3113    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3114  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3115      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3116    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3117    // nested-name-specifier unless it is an explicit instantiation
3118    // or an explicit specialization.
3119    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3120    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3121      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3122          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3123          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3124          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3125      << SS.getRange();
3126    return 0;
3127  }
3128
3129  // Track whether this decl-specifier declares anything.
3130  bool DeclaresAnything = true;
3131
3132  // Handle anonymous struct definitions.
3133  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3134    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3135        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3136      if (getLangOpts().CPlusPlus ||
3137          Record->getDeclContext()->isRecord())
3138        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3139
3140      DeclaresAnything = false;
3141    }
3142  }
3143
3144  // Check for Microsoft C extension: anonymous struct member.
3145  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3146      CurContext->isRecord() &&
3147      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3148    // Handle 2 kinds of anonymous struct:
3149    //   struct STRUCT;
3150    // and
3151    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3152    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3153    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3154        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3155         DS.getRepAsType().get()->isStructureType())) {
3156      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3157        << DS.getSourceRange();
3158      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3159    }
3160  }
3161
3162  // Skip all the checks below if we have a type error.
3163  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3164      (TagD && TagD->isInvalidDecl()))
3165    return TagD;
3166
3167  if (getLangOpts().CPlusPlus &&
3168      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3169    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3170      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3171          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3172        DeclaresAnything = false;
3173
3174  if (!DS.isMissingDeclaratorOk()) {
3175    // Customize diagnostic for a typedef missing a name.
3176    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3177      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3178        << DS.getSourceRange();
3179    else
3180      DeclaresAnything = false;
3181  }
3182
3183  if (DS.isModulePrivateSpecified() &&
3184      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3185    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3186      << Tag->getTagKind()
3187      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3188
3189  ActOnDocumentableDecl(TagD);
3190
3191  // C 6.7/2:
3192  //   A declaration [...] shall declare at least a declarator [...], a tag,
3193  //   or the members of an enumeration.
3194  // C++ [dcl.dcl]p3:
3195  //   [If there are no declarators], and except for the declaration of an
3196  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3197  //   names into the program, or shall redeclare a name introduced by a
3198  //   previous declaration.
3199  if (!DeclaresAnything) {
3200    // In C, we allow this as a (popular) extension / bug. Don't bother
3201    // producing further diagnostics for redundant qualifiers after this.
3202    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3203    return TagD;
3204  }
3205
3206  // C++ [dcl.stc]p1:
3207  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3208  //   init-declarator-list of the declaration shall not be empty.
3209  // C++ [dcl.fct.spec]p1:
3210  //   If a cv-qualifier appears in a decl-specifier-seq, the
3211  //   init-declarator-list of the declaration shall not be empty.
3212  //
3213  // Spurious qualifiers here appear to be valid in C.
3214  unsigned DiagID = diag::warn_standalone_specifier;
3215  if (getLangOpts().CPlusPlus)
3216    DiagID = diag::ext_standalone_specifier;
3217
3218  // Note that a linkage-specification sets a storage class, but
3219  // 'extern "C" struct foo;' is actually valid and not theoretically
3220  // useless.
3221  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3222    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3223      Diag(DS.getStorageClassSpecLoc(), DiagID)
3224        << DeclSpec::getSpecifierName(SCS);
3225
3226  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3227    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3228      << DeclSpec::getSpecifierName(TSCS);
3229  if (DS.getTypeQualifiers()) {
3230    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3231      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3232    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3233      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3234    // Restrict is covered above.
3235    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3236      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3237  }
3238
3239  // Warn about ignored type attributes, for example:
3240  // __attribute__((aligned)) struct A;
3241  // Attributes should be placed after tag to apply to type declaration.
3242  if (!DS.getAttributes().empty()) {
3243    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3244    if (TypeSpecType == DeclSpec::TST_class ||
3245        TypeSpecType == DeclSpec::TST_struct ||
3246        TypeSpecType == DeclSpec::TST_interface ||
3247        TypeSpecType == DeclSpec::TST_union ||
3248        TypeSpecType == DeclSpec::TST_enum) {
3249      AttributeList* attrs = DS.getAttributes().getList();
3250      while (attrs) {
3251        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3252        << attrs->getName()
3253        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3254            TypeSpecType == DeclSpec::TST_struct ? 1 :
3255            TypeSpecType == DeclSpec::TST_union ? 2 :
3256            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3257        attrs = attrs->getNext();
3258      }
3259    }
3260  }
3261
3262  return TagD;
3263}
3264
3265/// We are trying to inject an anonymous member into the given scope;
3266/// check if there's an existing declaration that can't be overloaded.
3267///
3268/// \return true if this is a forbidden redeclaration
3269static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3270                                         Scope *S,
3271                                         DeclContext *Owner,
3272                                         DeclarationName Name,
3273                                         SourceLocation NameLoc,
3274                                         unsigned diagnostic) {
3275  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3276                 Sema::ForRedeclaration);
3277  if (!SemaRef.LookupName(R, S)) return false;
3278
3279  if (R.getAsSingle<TagDecl>())
3280    return false;
3281
3282  // Pick a representative declaration.
3283  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3284  assert(PrevDecl && "Expected a non-null Decl");
3285
3286  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3287    return false;
3288
3289  SemaRef.Diag(NameLoc, diagnostic) << Name;
3290  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3291
3292  return true;
3293}
3294
3295/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3296/// anonymous struct or union AnonRecord into the owning context Owner
3297/// and scope S. This routine will be invoked just after we realize
3298/// that an unnamed union or struct is actually an anonymous union or
3299/// struct, e.g.,
3300///
3301/// @code
3302/// union {
3303///   int i;
3304///   float f;
3305/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3306///    // f into the surrounding scope.x
3307/// @endcode
3308///
3309/// This routine is recursive, injecting the names of nested anonymous
3310/// structs/unions into the owning context and scope as well.
3311static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3312                                         DeclContext *Owner,
3313                                         RecordDecl *AnonRecord,
3314                                         AccessSpecifier AS,
3315                                         SmallVectorImpl<NamedDecl *> &Chaining,
3316                                         bool MSAnonStruct) {
3317  unsigned diagKind
3318    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3319                            : diag::err_anonymous_struct_member_redecl;
3320
3321  bool Invalid = false;
3322
3323  // Look every FieldDecl and IndirectFieldDecl with a name.
3324  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3325                               DEnd = AnonRecord->decls_end();
3326       D != DEnd; ++D) {
3327    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3328        cast<NamedDecl>(*D)->getDeclName()) {
3329      ValueDecl *VD = cast<ValueDecl>(*D);
3330      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3331                                       VD->getLocation(), diagKind)) {
3332        // C++ [class.union]p2:
3333        //   The names of the members of an anonymous union shall be
3334        //   distinct from the names of any other entity in the
3335        //   scope in which the anonymous union is declared.
3336        Invalid = true;
3337      } else {
3338        // C++ [class.union]p2:
3339        //   For the purpose of name lookup, after the anonymous union
3340        //   definition, the members of the anonymous union are
3341        //   considered to have been defined in the scope in which the
3342        //   anonymous union is declared.
3343        unsigned OldChainingSize = Chaining.size();
3344        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3345          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3346               PE = IF->chain_end(); PI != PE; ++PI)
3347            Chaining.push_back(*PI);
3348        else
3349          Chaining.push_back(VD);
3350
3351        assert(Chaining.size() >= 2);
3352        NamedDecl **NamedChain =
3353          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3354        for (unsigned i = 0; i < Chaining.size(); i++)
3355          NamedChain[i] = Chaining[i];
3356
3357        IndirectFieldDecl* IndirectField =
3358          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3359                                    VD->getIdentifier(), VD->getType(),
3360                                    NamedChain, Chaining.size());
3361
3362        IndirectField->setAccess(AS);
3363        IndirectField->setImplicit();
3364        SemaRef.PushOnScopeChains(IndirectField, S);
3365
3366        // That includes picking up the appropriate access specifier.
3367        if (AS != AS_none) IndirectField->setAccess(AS);
3368
3369        Chaining.resize(OldChainingSize);
3370      }
3371    }
3372  }
3373
3374  return Invalid;
3375}
3376
3377/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3378/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3379/// illegal input values are mapped to SC_None.
3380static StorageClass
3381StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3382  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3383  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3384         "Parser allowed 'typedef' as storage class VarDecl.");
3385  switch (StorageClassSpec) {
3386  case DeclSpec::SCS_unspecified:    return SC_None;
3387  case DeclSpec::SCS_extern:
3388    if (DS.isExternInLinkageSpec())
3389      return SC_None;
3390    return SC_Extern;
3391  case DeclSpec::SCS_static:         return SC_Static;
3392  case DeclSpec::SCS_auto:           return SC_Auto;
3393  case DeclSpec::SCS_register:       return SC_Register;
3394  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3395    // Illegal SCSs map to None: error reporting is up to the caller.
3396  case DeclSpec::SCS_mutable:        // Fall through.
3397  case DeclSpec::SCS_typedef:        return SC_None;
3398  }
3399  llvm_unreachable("unknown storage class specifier");
3400}
3401
3402/// BuildAnonymousStructOrUnion - Handle the declaration of an
3403/// anonymous structure or union. Anonymous unions are a C++ feature
3404/// (C++ [class.union]) and a C11 feature; anonymous structures
3405/// are a C11 feature and GNU C++ extension.
3406Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3407                                             AccessSpecifier AS,
3408                                             RecordDecl *Record) {
3409  DeclContext *Owner = Record->getDeclContext();
3410
3411  // Diagnose whether this anonymous struct/union is an extension.
3412  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3413    Diag(Record->getLocation(), diag::ext_anonymous_union);
3414  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3415    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3416  else if (!Record->isUnion() && !getLangOpts().C11)
3417    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3418
3419  // C and C++ require different kinds of checks for anonymous
3420  // structs/unions.
3421  bool Invalid = false;
3422  if (getLangOpts().CPlusPlus) {
3423    const char* PrevSpec = 0;
3424    unsigned DiagID;
3425    if (Record->isUnion()) {
3426      // C++ [class.union]p6:
3427      //   Anonymous unions declared in a named namespace or in the
3428      //   global namespace shall be declared static.
3429      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3430          (isa<TranslationUnitDecl>(Owner) ||
3431           (isa<NamespaceDecl>(Owner) &&
3432            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3433        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3434          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3435
3436        // Recover by adding 'static'.
3437        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3438                               PrevSpec, DiagID);
3439      }
3440      // C++ [class.union]p6:
3441      //   A storage class is not allowed in a declaration of an
3442      //   anonymous union in a class scope.
3443      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3444               isa<RecordDecl>(Owner)) {
3445        Diag(DS.getStorageClassSpecLoc(),
3446             diag::err_anonymous_union_with_storage_spec)
3447          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3448
3449        // Recover by removing the storage specifier.
3450        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3451                               SourceLocation(),
3452                               PrevSpec, DiagID);
3453      }
3454    }
3455
3456    // Ignore const/volatile/restrict qualifiers.
3457    if (DS.getTypeQualifiers()) {
3458      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3459        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3460          << Record->isUnion() << "const"
3461          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3462      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3463        Diag(DS.getVolatileSpecLoc(),
3464             diag::ext_anonymous_struct_union_qualified)
3465          << Record->isUnion() << "volatile"
3466          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3467      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3468        Diag(DS.getRestrictSpecLoc(),
3469             diag::ext_anonymous_struct_union_qualified)
3470          << Record->isUnion() << "restrict"
3471          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3472      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3473        Diag(DS.getAtomicSpecLoc(),
3474             diag::ext_anonymous_struct_union_qualified)
3475          << Record->isUnion() << "_Atomic"
3476          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3477
3478      DS.ClearTypeQualifiers();
3479    }
3480
3481    // C++ [class.union]p2:
3482    //   The member-specification of an anonymous union shall only
3483    //   define non-static data members. [Note: nested types and
3484    //   functions cannot be declared within an anonymous union. ]
3485    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3486                                 MemEnd = Record->decls_end();
3487         Mem != MemEnd; ++Mem) {
3488      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3489        // C++ [class.union]p3:
3490        //   An anonymous union shall not have private or protected
3491        //   members (clause 11).
3492        assert(FD->getAccess() != AS_none);
3493        if (FD->getAccess() != AS_public) {
3494          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3495            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3496          Invalid = true;
3497        }
3498
3499        // C++ [class.union]p1
3500        //   An object of a class with a non-trivial constructor, a non-trivial
3501        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3502        //   assignment operator cannot be a member of a union, nor can an
3503        //   array of such objects.
3504        if (CheckNontrivialField(FD))
3505          Invalid = true;
3506      } else if ((*Mem)->isImplicit()) {
3507        // Any implicit members are fine.
3508      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3509        // This is a type that showed up in an
3510        // elaborated-type-specifier inside the anonymous struct or
3511        // union, but which actually declares a type outside of the
3512        // anonymous struct or union. It's okay.
3513      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3514        if (!MemRecord->isAnonymousStructOrUnion() &&
3515            MemRecord->getDeclName()) {
3516          // Visual C++ allows type definition in anonymous struct or union.
3517          if (getLangOpts().MicrosoftExt)
3518            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3519              << (int)Record->isUnion();
3520          else {
3521            // This is a nested type declaration.
3522            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3523              << (int)Record->isUnion();
3524            Invalid = true;
3525          }
3526        } else {
3527          // This is an anonymous type definition within another anonymous type.
3528          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3529          // not part of standard C++.
3530          Diag(MemRecord->getLocation(),
3531               diag::ext_anonymous_record_with_anonymous_type)
3532            << (int)Record->isUnion();
3533        }
3534      } else if (isa<AccessSpecDecl>(*Mem)) {
3535        // Any access specifier is fine.
3536      } else {
3537        // We have something that isn't a non-static data
3538        // member. Complain about it.
3539        unsigned DK = diag::err_anonymous_record_bad_member;
3540        if (isa<TypeDecl>(*Mem))
3541          DK = diag::err_anonymous_record_with_type;
3542        else if (isa<FunctionDecl>(*Mem))
3543          DK = diag::err_anonymous_record_with_function;
3544        else if (isa<VarDecl>(*Mem))
3545          DK = diag::err_anonymous_record_with_static;
3546
3547        // Visual C++ allows type definition in anonymous struct or union.
3548        if (getLangOpts().MicrosoftExt &&
3549            DK == diag::err_anonymous_record_with_type)
3550          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3551            << (int)Record->isUnion();
3552        else {
3553          Diag((*Mem)->getLocation(), DK)
3554              << (int)Record->isUnion();
3555          Invalid = true;
3556        }
3557      }
3558    }
3559  }
3560
3561  if (!Record->isUnion() && !Owner->isRecord()) {
3562    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3563      << (int)getLangOpts().CPlusPlus;
3564    Invalid = true;
3565  }
3566
3567  // Mock up a declarator.
3568  Declarator Dc(DS, Declarator::MemberContext);
3569  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3570  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3571
3572  // Create a declaration for this anonymous struct/union.
3573  NamedDecl *Anon = 0;
3574  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3575    Anon = FieldDecl::Create(Context, OwningClass,
3576                             DS.getLocStart(),
3577                             Record->getLocation(),
3578                             /*IdentifierInfo=*/0,
3579                             Context.getTypeDeclType(Record),
3580                             TInfo,
3581                             /*BitWidth=*/0, /*Mutable=*/false,
3582                             /*InitStyle=*/ICIS_NoInit);
3583    Anon->setAccess(AS);
3584    if (getLangOpts().CPlusPlus)
3585      FieldCollector->Add(cast<FieldDecl>(Anon));
3586  } else {
3587    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3588    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3589    if (SCSpec == DeclSpec::SCS_mutable) {
3590      // mutable can only appear on non-static class members, so it's always
3591      // an error here
3592      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3593      Invalid = true;
3594      SC = SC_None;
3595    }
3596
3597    Anon = VarDecl::Create(Context, Owner,
3598                           DS.getLocStart(),
3599                           Record->getLocation(), /*IdentifierInfo=*/0,
3600                           Context.getTypeDeclType(Record),
3601                           TInfo, SC);
3602
3603    // Default-initialize the implicit variable. This initialization will be
3604    // trivial in almost all cases, except if a union member has an in-class
3605    // initializer:
3606    //   union { int n = 0; };
3607    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3608  }
3609  Anon->setImplicit();
3610
3611  // Add the anonymous struct/union object to the current
3612  // context. We'll be referencing this object when we refer to one of
3613  // its members.
3614  Owner->addDecl(Anon);
3615
3616  // Inject the members of the anonymous struct/union into the owning
3617  // context and into the identifier resolver chain for name lookup
3618  // purposes.
3619  SmallVector<NamedDecl*, 2> Chain;
3620  Chain.push_back(Anon);
3621
3622  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3623                                          Chain, false))
3624    Invalid = true;
3625
3626  // Mark this as an anonymous struct/union type. Note that we do not
3627  // do this until after we have already checked and injected the
3628  // members of this anonymous struct/union type, because otherwise
3629  // the members could be injected twice: once by DeclContext when it
3630  // builds its lookup table, and once by
3631  // InjectAnonymousStructOrUnionMembers.
3632  Record->setAnonymousStructOrUnion(true);
3633
3634  if (Invalid)
3635    Anon->setInvalidDecl();
3636
3637  return Anon;
3638}
3639
3640/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3641/// Microsoft C anonymous structure.
3642/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3643/// Example:
3644///
3645/// struct A { int a; };
3646/// struct B { struct A; int b; };
3647///
3648/// void foo() {
3649///   B var;
3650///   var.a = 3;
3651/// }
3652///
3653Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3654                                           RecordDecl *Record) {
3655
3656  // If there is no Record, get the record via the typedef.
3657  if (!Record)
3658    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3659
3660  // Mock up a declarator.
3661  Declarator Dc(DS, Declarator::TypeNameContext);
3662  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3663  assert(TInfo && "couldn't build declarator info for anonymous struct");
3664
3665  // Create a declaration for this anonymous struct.
3666  NamedDecl* Anon = FieldDecl::Create(Context,
3667                             cast<RecordDecl>(CurContext),
3668                             DS.getLocStart(),
3669                             DS.getLocStart(),
3670                             /*IdentifierInfo=*/0,
3671                             Context.getTypeDeclType(Record),
3672                             TInfo,
3673                             /*BitWidth=*/0, /*Mutable=*/false,
3674                             /*InitStyle=*/ICIS_NoInit);
3675  Anon->setImplicit();
3676
3677  // Add the anonymous struct object to the current context.
3678  CurContext->addDecl(Anon);
3679
3680  // Inject the members of the anonymous struct into the current
3681  // context and into the identifier resolver chain for name lookup
3682  // purposes.
3683  SmallVector<NamedDecl*, 2> Chain;
3684  Chain.push_back(Anon);
3685
3686  RecordDecl *RecordDef = Record->getDefinition();
3687  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3688                                                        RecordDef, AS_none,
3689                                                        Chain, true))
3690    Anon->setInvalidDecl();
3691
3692  return Anon;
3693}
3694
3695/// GetNameForDeclarator - Determine the full declaration name for the
3696/// given Declarator.
3697DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3698  return GetNameFromUnqualifiedId(D.getName());
3699}
3700
3701/// \brief Retrieves the declaration name from a parsed unqualified-id.
3702DeclarationNameInfo
3703Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3704  DeclarationNameInfo NameInfo;
3705  NameInfo.setLoc(Name.StartLocation);
3706
3707  switch (Name.getKind()) {
3708
3709  case UnqualifiedId::IK_ImplicitSelfParam:
3710  case UnqualifiedId::IK_Identifier:
3711    NameInfo.setName(Name.Identifier);
3712    NameInfo.setLoc(Name.StartLocation);
3713    return NameInfo;
3714
3715  case UnqualifiedId::IK_OperatorFunctionId:
3716    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3717                                           Name.OperatorFunctionId.Operator));
3718    NameInfo.setLoc(Name.StartLocation);
3719    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3720      = Name.OperatorFunctionId.SymbolLocations[0];
3721    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3722      = Name.EndLocation.getRawEncoding();
3723    return NameInfo;
3724
3725  case UnqualifiedId::IK_LiteralOperatorId:
3726    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3727                                                           Name.Identifier));
3728    NameInfo.setLoc(Name.StartLocation);
3729    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3730    return NameInfo;
3731
3732  case UnqualifiedId::IK_ConversionFunctionId: {
3733    TypeSourceInfo *TInfo;
3734    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3735    if (Ty.isNull())
3736      return DeclarationNameInfo();
3737    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3738                                               Context.getCanonicalType(Ty)));
3739    NameInfo.setLoc(Name.StartLocation);
3740    NameInfo.setNamedTypeInfo(TInfo);
3741    return NameInfo;
3742  }
3743
3744  case UnqualifiedId::IK_ConstructorName: {
3745    TypeSourceInfo *TInfo;
3746    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3747    if (Ty.isNull())
3748      return DeclarationNameInfo();
3749    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3750                                              Context.getCanonicalType(Ty)));
3751    NameInfo.setLoc(Name.StartLocation);
3752    NameInfo.setNamedTypeInfo(TInfo);
3753    return NameInfo;
3754  }
3755
3756  case UnqualifiedId::IK_ConstructorTemplateId: {
3757    // In well-formed code, we can only have a constructor
3758    // template-id that refers to the current context, so go there
3759    // to find the actual type being constructed.
3760    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3761    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3762      return DeclarationNameInfo();
3763
3764    // Determine the type of the class being constructed.
3765    QualType CurClassType = Context.getTypeDeclType(CurClass);
3766
3767    // FIXME: Check two things: that the template-id names the same type as
3768    // CurClassType, and that the template-id does not occur when the name
3769    // was qualified.
3770
3771    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3772                                    Context.getCanonicalType(CurClassType)));
3773    NameInfo.setLoc(Name.StartLocation);
3774    // FIXME: should we retrieve TypeSourceInfo?
3775    NameInfo.setNamedTypeInfo(0);
3776    return NameInfo;
3777  }
3778
3779  case UnqualifiedId::IK_DestructorName: {
3780    TypeSourceInfo *TInfo;
3781    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3782    if (Ty.isNull())
3783      return DeclarationNameInfo();
3784    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3785                                              Context.getCanonicalType(Ty)));
3786    NameInfo.setLoc(Name.StartLocation);
3787    NameInfo.setNamedTypeInfo(TInfo);
3788    return NameInfo;
3789  }
3790
3791  case UnqualifiedId::IK_TemplateId: {
3792    TemplateName TName = Name.TemplateId->Template.get();
3793    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3794    return Context.getNameForTemplate(TName, TNameLoc);
3795  }
3796
3797  } // switch (Name.getKind())
3798
3799  llvm_unreachable("Unknown name kind");
3800}
3801
3802static QualType getCoreType(QualType Ty) {
3803  do {
3804    if (Ty->isPointerType() || Ty->isReferenceType())
3805      Ty = Ty->getPointeeType();
3806    else if (Ty->isArrayType())
3807      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3808    else
3809      return Ty.withoutLocalFastQualifiers();
3810  } while (true);
3811}
3812
3813/// hasSimilarParameters - Determine whether the C++ functions Declaration
3814/// and Definition have "nearly" matching parameters. This heuristic is
3815/// used to improve diagnostics in the case where an out-of-line function
3816/// definition doesn't match any declaration within the class or namespace.
3817/// Also sets Params to the list of indices to the parameters that differ
3818/// between the declaration and the definition. If hasSimilarParameters
3819/// returns true and Params is empty, then all of the parameters match.
3820static bool hasSimilarParameters(ASTContext &Context,
3821                                     FunctionDecl *Declaration,
3822                                     FunctionDecl *Definition,
3823                                     SmallVectorImpl<unsigned> &Params) {
3824  Params.clear();
3825  if (Declaration->param_size() != Definition->param_size())
3826    return false;
3827  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3828    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3829    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3830
3831    // The parameter types are identical
3832    if (Context.hasSameType(DefParamTy, DeclParamTy))
3833      continue;
3834
3835    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3836    QualType DefParamBaseTy = getCoreType(DefParamTy);
3837    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3838    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3839
3840    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3841        (DeclTyName && DeclTyName == DefTyName))
3842      Params.push_back(Idx);
3843    else  // The two parameters aren't even close
3844      return false;
3845  }
3846
3847  return true;
3848}
3849
3850/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3851/// declarator needs to be rebuilt in the current instantiation.
3852/// Any bits of declarator which appear before the name are valid for
3853/// consideration here.  That's specifically the type in the decl spec
3854/// and the base type in any member-pointer chunks.
3855static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3856                                                    DeclarationName Name) {
3857  // The types we specifically need to rebuild are:
3858  //   - typenames, typeofs, and decltypes
3859  //   - types which will become injected class names
3860  // Of course, we also need to rebuild any type referencing such a
3861  // type.  It's safest to just say "dependent", but we call out a
3862  // few cases here.
3863
3864  DeclSpec &DS = D.getMutableDeclSpec();
3865  switch (DS.getTypeSpecType()) {
3866  case DeclSpec::TST_typename:
3867  case DeclSpec::TST_typeofType:
3868  case DeclSpec::TST_underlyingType:
3869  case DeclSpec::TST_atomic: {
3870    // Grab the type from the parser.
3871    TypeSourceInfo *TSI = 0;
3872    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3873    if (T.isNull() || !T->isDependentType()) break;
3874
3875    // Make sure there's a type source info.  This isn't really much
3876    // of a waste; most dependent types should have type source info
3877    // attached already.
3878    if (!TSI)
3879      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3880
3881    // Rebuild the type in the current instantiation.
3882    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3883    if (!TSI) return true;
3884
3885    // Store the new type back in the decl spec.
3886    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3887    DS.UpdateTypeRep(LocType);
3888    break;
3889  }
3890
3891  case DeclSpec::TST_decltype:
3892  case DeclSpec::TST_typeofExpr: {
3893    Expr *E = DS.getRepAsExpr();
3894    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3895    if (Result.isInvalid()) return true;
3896    DS.UpdateExprRep(Result.get());
3897    break;
3898  }
3899
3900  default:
3901    // Nothing to do for these decl specs.
3902    break;
3903  }
3904
3905  // It doesn't matter what order we do this in.
3906  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3907    DeclaratorChunk &Chunk = D.getTypeObject(I);
3908
3909    // The only type information in the declarator which can come
3910    // before the declaration name is the base type of a member
3911    // pointer.
3912    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3913      continue;
3914
3915    // Rebuild the scope specifier in-place.
3916    CXXScopeSpec &SS = Chunk.Mem.Scope();
3917    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3918      return true;
3919  }
3920
3921  return false;
3922}
3923
3924Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3925  D.setFunctionDefinitionKind(FDK_Declaration);
3926  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3927
3928  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3929      Dcl && Dcl->getDeclContext()->isFileContext())
3930    Dcl->setTopLevelDeclInObjCContainer();
3931
3932  return Dcl;
3933}
3934
3935/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3936///   If T is the name of a class, then each of the following shall have a
3937///   name different from T:
3938///     - every static data member of class T;
3939///     - every member function of class T
3940///     - every member of class T that is itself a type;
3941/// \returns true if the declaration name violates these rules.
3942bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3943                                   DeclarationNameInfo NameInfo) {
3944  DeclarationName Name = NameInfo.getName();
3945
3946  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3947    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3948      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3949      return true;
3950    }
3951
3952  return false;
3953}
3954
3955/// \brief Diagnose a declaration whose declarator-id has the given
3956/// nested-name-specifier.
3957///
3958/// \param SS The nested-name-specifier of the declarator-id.
3959///
3960/// \param DC The declaration context to which the nested-name-specifier
3961/// resolves.
3962///
3963/// \param Name The name of the entity being declared.
3964///
3965/// \param Loc The location of the name of the entity being declared.
3966///
3967/// \returns true if we cannot safely recover from this error, false otherwise.
3968bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3969                                        DeclarationName Name,
3970                                      SourceLocation Loc) {
3971  DeclContext *Cur = CurContext;
3972  while (isa<LinkageSpecDecl>(Cur))
3973    Cur = Cur->getParent();
3974
3975  // C++ [dcl.meaning]p1:
3976  //   A declarator-id shall not be qualified except for the definition
3977  //   of a member function (9.3) or static data member (9.4) outside of
3978  //   its class, the definition or explicit instantiation of a function
3979  //   or variable member of a namespace outside of its namespace, or the
3980  //   definition of an explicit specialization outside of its namespace,
3981  //   or the declaration of a friend function that is a member of
3982  //   another class or namespace (11.3). [...]
3983
3984  // The user provided a superfluous scope specifier that refers back to the
3985  // class or namespaces in which the entity is already declared.
3986  //
3987  // class X {
3988  //   void X::f();
3989  // };
3990  if (Cur->Equals(DC)) {
3991    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3992                                   : diag::err_member_extra_qualification)
3993      << Name << FixItHint::CreateRemoval(SS.getRange());
3994    SS.clear();
3995    return false;
3996  }
3997
3998  // Check whether the qualifying scope encloses the scope of the original
3999  // declaration.
4000  if (!Cur->Encloses(DC)) {
4001    if (Cur->isRecord())
4002      Diag(Loc, diag::err_member_qualification)
4003        << Name << SS.getRange();
4004    else if (isa<TranslationUnitDecl>(DC))
4005      Diag(Loc, diag::err_invalid_declarator_global_scope)
4006        << Name << SS.getRange();
4007    else if (isa<FunctionDecl>(Cur))
4008      Diag(Loc, diag::err_invalid_declarator_in_function)
4009        << Name << SS.getRange();
4010    else
4011      Diag(Loc, diag::err_invalid_declarator_scope)
4012      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4013
4014    return true;
4015  }
4016
4017  if (Cur->isRecord()) {
4018    // Cannot qualify members within a class.
4019    Diag(Loc, diag::err_member_qualification)
4020      << Name << SS.getRange();
4021    SS.clear();
4022
4023    // C++ constructors and destructors with incorrect scopes can break
4024    // our AST invariants by having the wrong underlying types. If
4025    // that's the case, then drop this declaration entirely.
4026    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4027         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4028        !Context.hasSameType(Name.getCXXNameType(),
4029                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4030      return true;
4031
4032    return false;
4033  }
4034
4035  // C++11 [dcl.meaning]p1:
4036  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4037  //   not begin with a decltype-specifer"
4038  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4039  while (SpecLoc.getPrefix())
4040    SpecLoc = SpecLoc.getPrefix();
4041  if (dyn_cast_or_null<DecltypeType>(
4042        SpecLoc.getNestedNameSpecifier()->getAsType()))
4043    Diag(Loc, diag::err_decltype_in_declarator)
4044      << SpecLoc.getTypeLoc().getSourceRange();
4045
4046  return false;
4047}
4048
4049NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4050                                  MultiTemplateParamsArg TemplateParamLists) {
4051  // TODO: consider using NameInfo for diagnostic.
4052  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4053  DeclarationName Name = NameInfo.getName();
4054
4055  // All of these full declarators require an identifier.  If it doesn't have
4056  // one, the ParsedFreeStandingDeclSpec action should be used.
4057  if (!Name) {
4058    if (!D.isInvalidType())  // Reject this if we think it is valid.
4059      Diag(D.getDeclSpec().getLocStart(),
4060           diag::err_declarator_need_ident)
4061        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4062    return 0;
4063  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4064    return 0;
4065
4066  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4067  // we find one that is.
4068  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4069         (S->getFlags() & Scope::TemplateParamScope) != 0)
4070    S = S->getParent();
4071
4072  DeclContext *DC = CurContext;
4073  if (D.getCXXScopeSpec().isInvalid())
4074    D.setInvalidType();
4075  else if (D.getCXXScopeSpec().isSet()) {
4076    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4077                                        UPPC_DeclarationQualifier))
4078      return 0;
4079
4080    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4081    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4082    if (!DC) {
4083      // If we could not compute the declaration context, it's because the
4084      // declaration context is dependent but does not refer to a class,
4085      // class template, or class template partial specialization. Complain
4086      // and return early, to avoid the coming semantic disaster.
4087      Diag(D.getIdentifierLoc(),
4088           diag::err_template_qualified_declarator_no_match)
4089        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4090        << D.getCXXScopeSpec().getRange();
4091      return 0;
4092    }
4093    bool IsDependentContext = DC->isDependentContext();
4094
4095    if (!IsDependentContext &&
4096        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4097      return 0;
4098
4099    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4100      Diag(D.getIdentifierLoc(),
4101           diag::err_member_def_undefined_record)
4102        << Name << DC << D.getCXXScopeSpec().getRange();
4103      D.setInvalidType();
4104    } else if (!D.getDeclSpec().isFriendSpecified()) {
4105      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4106                                      Name, D.getIdentifierLoc())) {
4107        if (DC->isRecord())
4108          return 0;
4109
4110        D.setInvalidType();
4111      }
4112    }
4113
4114    // Check whether we need to rebuild the type of the given
4115    // declaration in the current instantiation.
4116    if (EnteringContext && IsDependentContext &&
4117        TemplateParamLists.size() != 0) {
4118      ContextRAII SavedContext(*this, DC);
4119      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4120        D.setInvalidType();
4121    }
4122  }
4123
4124  if (DiagnoseClassNameShadow(DC, NameInfo))
4125    // If this is a typedef, we'll end up spewing multiple diagnostics.
4126    // Just return early; it's safer.
4127    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4128      return 0;
4129
4130  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4131  QualType R = TInfo->getType();
4132
4133  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4134                                      UPPC_DeclarationType))
4135    D.setInvalidType();
4136
4137  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4138                        ForRedeclaration);
4139
4140  // See if this is a redefinition of a variable in the same scope.
4141  if (!D.getCXXScopeSpec().isSet()) {
4142    bool IsLinkageLookup = false;
4143
4144    // If the declaration we're planning to build will be a function
4145    // or object with linkage, then look for another declaration with
4146    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4147    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4148      /* Do nothing*/;
4149    else if (R->isFunctionType()) {
4150      if (CurContext->isFunctionOrMethod() ||
4151          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4152        IsLinkageLookup = true;
4153    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4154      IsLinkageLookup = true;
4155    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4156             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4157      IsLinkageLookup = true;
4158
4159    if (IsLinkageLookup)
4160      Previous.clear(LookupRedeclarationWithLinkage);
4161
4162    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4163  } else { // Something like "int foo::x;"
4164    LookupQualifiedName(Previous, DC);
4165
4166    // C++ [dcl.meaning]p1:
4167    //   When the declarator-id is qualified, the declaration shall refer to a
4168    //  previously declared member of the class or namespace to which the
4169    //  qualifier refers (or, in the case of a namespace, of an element of the
4170    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4171    //  thereof; [...]
4172    //
4173    // Note that we already checked the context above, and that we do not have
4174    // enough information to make sure that Previous contains the declaration
4175    // we want to match. For example, given:
4176    //
4177    //   class X {
4178    //     void f();
4179    //     void f(float);
4180    //   };
4181    //
4182    //   void X::f(int) { } // ill-formed
4183    //
4184    // In this case, Previous will point to the overload set
4185    // containing the two f's declared in X, but neither of them
4186    // matches.
4187
4188    // C++ [dcl.meaning]p1:
4189    //   [...] the member shall not merely have been introduced by a
4190    //   using-declaration in the scope of the class or namespace nominated by
4191    //   the nested-name-specifier of the declarator-id.
4192    RemoveUsingDecls(Previous);
4193  }
4194
4195  if (Previous.isSingleResult() &&
4196      Previous.getFoundDecl()->isTemplateParameter()) {
4197    // Maybe we will complain about the shadowed template parameter.
4198    if (!D.isInvalidType())
4199      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4200                                      Previous.getFoundDecl());
4201
4202    // Just pretend that we didn't see the previous declaration.
4203    Previous.clear();
4204  }
4205
4206  // In C++, the previous declaration we find might be a tag type
4207  // (class or enum). In this case, the new declaration will hide the
4208  // tag type. Note that this does does not apply if we're declaring a
4209  // typedef (C++ [dcl.typedef]p4).
4210  if (Previous.isSingleTagDecl() &&
4211      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4212    Previous.clear();
4213
4214  // Check that there are no default arguments other than in the parameters
4215  // of a function declaration (C++ only).
4216  if (getLangOpts().CPlusPlus)
4217    CheckExtraCXXDefaultArguments(D);
4218
4219  NamedDecl *New;
4220
4221  bool AddToScope = true;
4222  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4223    if (TemplateParamLists.size()) {
4224      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4225      return 0;
4226    }
4227
4228    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4229  } else if (R->isFunctionType()) {
4230    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4231                                  TemplateParamLists,
4232                                  AddToScope);
4233  } else {
4234    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4235                                  TemplateParamLists);
4236  }
4237
4238  if (New == 0)
4239    return 0;
4240
4241  // If this has an identifier and is not an invalid redeclaration or
4242  // function template specialization, add it to the scope stack.
4243  if (New->getDeclName() && AddToScope &&
4244       !(D.isRedeclaration() && New->isInvalidDecl()))
4245    PushOnScopeChains(New, S);
4246
4247  return New;
4248}
4249
4250/// Helper method to turn variable array types into constant array
4251/// types in certain situations which would otherwise be errors (for
4252/// GCC compatibility).
4253static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4254                                                    ASTContext &Context,
4255                                                    bool &SizeIsNegative,
4256                                                    llvm::APSInt &Oversized) {
4257  // This method tries to turn a variable array into a constant
4258  // array even when the size isn't an ICE.  This is necessary
4259  // for compatibility with code that depends on gcc's buggy
4260  // constant expression folding, like struct {char x[(int)(char*)2];}
4261  SizeIsNegative = false;
4262  Oversized = 0;
4263
4264  if (T->isDependentType())
4265    return QualType();
4266
4267  QualifierCollector Qs;
4268  const Type *Ty = Qs.strip(T);
4269
4270  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4271    QualType Pointee = PTy->getPointeeType();
4272    QualType FixedType =
4273        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4274                                            Oversized);
4275    if (FixedType.isNull()) return FixedType;
4276    FixedType = Context.getPointerType(FixedType);
4277    return Qs.apply(Context, FixedType);
4278  }
4279  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4280    QualType Inner = PTy->getInnerType();
4281    QualType FixedType =
4282        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4283                                            Oversized);
4284    if (FixedType.isNull()) return FixedType;
4285    FixedType = Context.getParenType(FixedType);
4286    return Qs.apply(Context, FixedType);
4287  }
4288
4289  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4290  if (!VLATy)
4291    return QualType();
4292  // FIXME: We should probably handle this case
4293  if (VLATy->getElementType()->isVariablyModifiedType())
4294    return QualType();
4295
4296  llvm::APSInt Res;
4297  if (!VLATy->getSizeExpr() ||
4298      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4299    return QualType();
4300
4301  // Check whether the array size is negative.
4302  if (Res.isSigned() && Res.isNegative()) {
4303    SizeIsNegative = true;
4304    return QualType();
4305  }
4306
4307  // Check whether the array is too large to be addressed.
4308  unsigned ActiveSizeBits
4309    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4310                                              Res);
4311  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4312    Oversized = Res;
4313    return QualType();
4314  }
4315
4316  return Context.getConstantArrayType(VLATy->getElementType(),
4317                                      Res, ArrayType::Normal, 0);
4318}
4319
4320static void
4321FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4322  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4323    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4324    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4325                                      DstPTL.getPointeeLoc());
4326    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4327    return;
4328  }
4329  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4330    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4331    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4332                                      DstPTL.getInnerLoc());
4333    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4334    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4335    return;
4336  }
4337  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4338  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4339  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4340  TypeLoc DstElemTL = DstATL.getElementLoc();
4341  DstElemTL.initializeFullCopy(SrcElemTL);
4342  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4343  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4344  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4345}
4346
4347/// Helper method to turn variable array types into constant array
4348/// types in certain situations which would otherwise be errors (for
4349/// GCC compatibility).
4350static TypeSourceInfo*
4351TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4352                                              ASTContext &Context,
4353                                              bool &SizeIsNegative,
4354                                              llvm::APSInt &Oversized) {
4355  QualType FixedTy
4356    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4357                                          SizeIsNegative, Oversized);
4358  if (FixedTy.isNull())
4359    return 0;
4360  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4361  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4362                                    FixedTInfo->getTypeLoc());
4363  return FixedTInfo;
4364}
4365
4366/// \brief Register the given locally-scoped extern "C" declaration so
4367/// that it can be found later for redeclarations. We include any extern "C"
4368/// declaration that is not visible in the translation unit here, not just
4369/// function-scope declarations.
4370void
4371Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4372  if (!getLangOpts().CPlusPlus &&
4373      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4374    // Don't need to track declarations in the TU in C.
4375    return;
4376
4377  // Note that we have a locally-scoped external with this name.
4378  // FIXME: There can be multiple such declarations if they are functions marked
4379  // __attribute__((overloadable)) declared in function scope in C.
4380  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4381}
4382
4383NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4384  if (ExternalSource) {
4385    // Load locally-scoped external decls from the external source.
4386    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4387    SmallVector<NamedDecl *, 4> Decls;
4388    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4389    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4390      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4391        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4392      if (Pos == LocallyScopedExternCDecls.end())
4393        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4394    }
4395  }
4396
4397  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4398  return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4399}
4400
4401/// \brief Diagnose function specifiers on a declaration of an identifier that
4402/// does not identify a function.
4403void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4404  // FIXME: We should probably indicate the identifier in question to avoid
4405  // confusion for constructs like "inline int a(), b;"
4406  if (DS.isInlineSpecified())
4407    Diag(DS.getInlineSpecLoc(),
4408         diag::err_inline_non_function);
4409
4410  if (DS.isVirtualSpecified())
4411    Diag(DS.getVirtualSpecLoc(),
4412         diag::err_virtual_non_function);
4413
4414  if (DS.isExplicitSpecified())
4415    Diag(DS.getExplicitSpecLoc(),
4416         diag::err_explicit_non_function);
4417
4418  if (DS.isNoreturnSpecified())
4419    Diag(DS.getNoreturnSpecLoc(),
4420         diag::err_noreturn_non_function);
4421}
4422
4423NamedDecl*
4424Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4425                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4426  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4427  if (D.getCXXScopeSpec().isSet()) {
4428    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4429      << D.getCXXScopeSpec().getRange();
4430    D.setInvalidType();
4431    // Pretend we didn't see the scope specifier.
4432    DC = CurContext;
4433    Previous.clear();
4434  }
4435
4436  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4437
4438  if (D.getDeclSpec().isConstexprSpecified())
4439    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4440      << 1;
4441
4442  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4443    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4444      << D.getName().getSourceRange();
4445    return 0;
4446  }
4447
4448  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4449  if (!NewTD) return 0;
4450
4451  // Handle attributes prior to checking for duplicates in MergeVarDecl
4452  ProcessDeclAttributes(S, NewTD, D);
4453
4454  CheckTypedefForVariablyModifiedType(S, NewTD);
4455
4456  bool Redeclaration = D.isRedeclaration();
4457  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4458  D.setRedeclaration(Redeclaration);
4459  return ND;
4460}
4461
4462void
4463Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4464  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4465  // then it shall have block scope.
4466  // Note that variably modified types must be fixed before merging the decl so
4467  // that redeclarations will match.
4468  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4469  QualType T = TInfo->getType();
4470  if (T->isVariablyModifiedType()) {
4471    getCurFunction()->setHasBranchProtectedScope();
4472
4473    if (S->getFnParent() == 0) {
4474      bool SizeIsNegative;
4475      llvm::APSInt Oversized;
4476      TypeSourceInfo *FixedTInfo =
4477        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4478                                                      SizeIsNegative,
4479                                                      Oversized);
4480      if (FixedTInfo) {
4481        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4482        NewTD->setTypeSourceInfo(FixedTInfo);
4483      } else {
4484        if (SizeIsNegative)
4485          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4486        else if (T->isVariableArrayType())
4487          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4488        else if (Oversized.getBoolValue())
4489          Diag(NewTD->getLocation(), diag::err_array_too_large)
4490            << Oversized.toString(10);
4491        else
4492          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4493        NewTD->setInvalidDecl();
4494      }
4495    }
4496  }
4497}
4498
4499
4500/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4501/// declares a typedef-name, either using the 'typedef' type specifier or via
4502/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4503NamedDecl*
4504Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4505                           LookupResult &Previous, bool &Redeclaration) {
4506  // Merge the decl with the existing one if appropriate. If the decl is
4507  // in an outer scope, it isn't the same thing.
4508  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4509                       /*ExplicitInstantiationOrSpecialization=*/false);
4510  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4511  if (!Previous.empty()) {
4512    Redeclaration = true;
4513    MergeTypedefNameDecl(NewTD, Previous);
4514  }
4515
4516  // If this is the C FILE type, notify the AST context.
4517  if (IdentifierInfo *II = NewTD->getIdentifier())
4518    if (!NewTD->isInvalidDecl() &&
4519        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4520      if (II->isStr("FILE"))
4521        Context.setFILEDecl(NewTD);
4522      else if (II->isStr("jmp_buf"))
4523        Context.setjmp_bufDecl(NewTD);
4524      else if (II->isStr("sigjmp_buf"))
4525        Context.setsigjmp_bufDecl(NewTD);
4526      else if (II->isStr("ucontext_t"))
4527        Context.setucontext_tDecl(NewTD);
4528    }
4529
4530  return NewTD;
4531}
4532
4533/// \brief Determines whether the given declaration is an out-of-scope
4534/// previous declaration.
4535///
4536/// This routine should be invoked when name lookup has found a
4537/// previous declaration (PrevDecl) that is not in the scope where a
4538/// new declaration by the same name is being introduced. If the new
4539/// declaration occurs in a local scope, previous declarations with
4540/// linkage may still be considered previous declarations (C99
4541/// 6.2.2p4-5, C++ [basic.link]p6).
4542///
4543/// \param PrevDecl the previous declaration found by name
4544/// lookup
4545///
4546/// \param DC the context in which the new declaration is being
4547/// declared.
4548///
4549/// \returns true if PrevDecl is an out-of-scope previous declaration
4550/// for a new delcaration with the same name.
4551static bool
4552isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4553                                ASTContext &Context) {
4554  if (!PrevDecl)
4555    return false;
4556
4557  if (!PrevDecl->hasLinkage())
4558    return false;
4559
4560  if (Context.getLangOpts().CPlusPlus) {
4561    // C++ [basic.link]p6:
4562    //   If there is a visible declaration of an entity with linkage
4563    //   having the same name and type, ignoring entities declared
4564    //   outside the innermost enclosing namespace scope, the block
4565    //   scope declaration declares that same entity and receives the
4566    //   linkage of the previous declaration.
4567    DeclContext *OuterContext = DC->getRedeclContext();
4568    if (!OuterContext->isFunctionOrMethod())
4569      // This rule only applies to block-scope declarations.
4570      return false;
4571
4572    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4573    if (PrevOuterContext->isRecord())
4574      // We found a member function: ignore it.
4575      return false;
4576
4577    // Find the innermost enclosing namespace for the new and
4578    // previous declarations.
4579    OuterContext = OuterContext->getEnclosingNamespaceContext();
4580    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4581
4582    // The previous declaration is in a different namespace, so it
4583    // isn't the same function.
4584    if (!OuterContext->Equals(PrevOuterContext))
4585      return false;
4586  }
4587
4588  return true;
4589}
4590
4591static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4592  CXXScopeSpec &SS = D.getCXXScopeSpec();
4593  if (!SS.isSet()) return;
4594  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4595}
4596
4597bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4598  QualType type = decl->getType();
4599  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4600  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4601    // Various kinds of declaration aren't allowed to be __autoreleasing.
4602    unsigned kind = -1U;
4603    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4604      if (var->hasAttr<BlocksAttr>())
4605        kind = 0; // __block
4606      else if (!var->hasLocalStorage())
4607        kind = 1; // global
4608    } else if (isa<ObjCIvarDecl>(decl)) {
4609      kind = 3; // ivar
4610    } else if (isa<FieldDecl>(decl)) {
4611      kind = 2; // field
4612    }
4613
4614    if (kind != -1U) {
4615      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4616        << kind;
4617    }
4618  } else if (lifetime == Qualifiers::OCL_None) {
4619    // Try to infer lifetime.
4620    if (!type->isObjCLifetimeType())
4621      return false;
4622
4623    lifetime = type->getObjCARCImplicitLifetime();
4624    type = Context.getLifetimeQualifiedType(type, lifetime);
4625    decl->setType(type);
4626  }
4627
4628  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4629    // Thread-local variables cannot have lifetime.
4630    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4631        var->getTLSKind()) {
4632      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4633        << var->getType();
4634      return true;
4635    }
4636  }
4637
4638  return false;
4639}
4640
4641static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4642  // 'weak' only applies to declarations with external linkage.
4643  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4644    if (!ND.isExternallyVisible()) {
4645      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4646      ND.dropAttr<WeakAttr>();
4647    }
4648  }
4649  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4650    if (ND.isExternallyVisible()) {
4651      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4652      ND.dropAttr<WeakRefAttr>();
4653    }
4654  }
4655
4656  // 'selectany' only applies to externally visible varable declarations.
4657  // It does not apply to functions.
4658  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4659    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4660      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4661      ND.dropAttr<SelectAnyAttr>();
4662    }
4663  }
4664}
4665
4666/// Given that we are within the definition of the given function,
4667/// will that definition behave like C99's 'inline', where the
4668/// definition is discarded except for optimization purposes?
4669static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4670  // Try to avoid calling GetGVALinkageForFunction.
4671
4672  // All cases of this require the 'inline' keyword.
4673  if (!FD->isInlined()) return false;
4674
4675  // This is only possible in C++ with the gnu_inline attribute.
4676  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4677    return false;
4678
4679  // Okay, go ahead and call the relatively-more-expensive function.
4680
4681#ifndef NDEBUG
4682  // AST quite reasonably asserts that it's working on a function
4683  // definition.  We don't really have a way to tell it that we're
4684  // currently defining the function, so just lie to it in +Asserts
4685  // builds.  This is an awful hack.
4686  FD->setLazyBody(1);
4687#endif
4688
4689  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4690
4691#ifndef NDEBUG
4692  FD->setLazyBody(0);
4693#endif
4694
4695  return isC99Inline;
4696}
4697
4698/// Determine whether a variable is extern "C" prior to attaching
4699/// an initializer. We can't just call isExternC() here, because that
4700/// will also compute and cache whether the declaration is externally
4701/// visible, which might change when we attach the initializer.
4702///
4703/// This can only be used if the declaration is known to not be a
4704/// redeclaration of an internal linkage declaration.
4705///
4706/// For instance:
4707///
4708///   auto x = []{};
4709///
4710/// Attaching the initializer here makes this declaration not externally
4711/// visible, because its type has internal linkage.
4712///
4713/// FIXME: This is a hack.
4714template<typename T>
4715static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4716  if (S.getLangOpts().CPlusPlus) {
4717    // In C++, the overloadable attribute negates the effects of extern "C".
4718    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4719      return false;
4720  }
4721  return D->isExternC();
4722}
4723
4724static bool shouldConsiderLinkage(const VarDecl *VD) {
4725  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4726  if (DC->isFunctionOrMethod())
4727    return VD->hasExternalStorage();
4728  if (DC->isFileContext())
4729    return true;
4730  if (DC->isRecord())
4731    return false;
4732  llvm_unreachable("Unexpected context");
4733}
4734
4735static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4736  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4737  if (DC->isFileContext() || DC->isFunctionOrMethod())
4738    return true;
4739  if (DC->isRecord())
4740    return false;
4741  llvm_unreachable("Unexpected context");
4742}
4743
4744NamedDecl*
4745Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4746                              TypeSourceInfo *TInfo, LookupResult &Previous,
4747                              MultiTemplateParamsArg TemplateParamLists) {
4748  QualType R = TInfo->getType();
4749  DeclarationName Name = GetNameForDeclarator(D).getName();
4750
4751  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4752  VarDecl::StorageClass SC =
4753    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4754
4755  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4756    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4757    // half array type (unless the cl_khr_fp16 extension is enabled).
4758    if (Context.getBaseElementType(R)->isHalfType()) {
4759      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4760      D.setInvalidType();
4761    }
4762  }
4763
4764  if (SCSpec == DeclSpec::SCS_mutable) {
4765    // mutable can only appear on non-static class members, so it's always
4766    // an error here
4767    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4768    D.setInvalidType();
4769    SC = SC_None;
4770  }
4771
4772  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4773      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4774                              D.getDeclSpec().getStorageClassSpecLoc())) {
4775    // In C++11, the 'register' storage class specifier is deprecated.
4776    // Suppress the warning in system macros, it's used in macros in some
4777    // popular C system headers, such as in glibc's htonl() macro.
4778    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4779         diag::warn_deprecated_register)
4780      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4781  }
4782
4783  IdentifierInfo *II = Name.getAsIdentifierInfo();
4784  if (!II) {
4785    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4786      << Name;
4787    return 0;
4788  }
4789
4790  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4791
4792  if (!DC->isRecord() && S->getFnParent() == 0) {
4793    // C99 6.9p2: The storage-class specifiers auto and register shall not
4794    // appear in the declaration specifiers in an external declaration.
4795    if (SC == SC_Auto || SC == SC_Register) {
4796      // If this is a register variable with an asm label specified, then this
4797      // is a GNU extension.
4798      if (SC == SC_Register && D.getAsmLabel())
4799        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4800      else
4801        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4802      D.setInvalidType();
4803    }
4804  }
4805
4806  if (getLangOpts().OpenCL) {
4807    // Set up the special work-group-local storage class for variables in the
4808    // OpenCL __local address space.
4809    if (R.getAddressSpace() == LangAS::opencl_local) {
4810      SC = SC_OpenCLWorkGroupLocal;
4811    }
4812
4813    // OpenCL v1.2 s6.9.b p4:
4814    // The sampler type cannot be used with the __local and __global address
4815    // space qualifiers.
4816    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4817      R.getAddressSpace() == LangAS::opencl_global)) {
4818      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4819    }
4820
4821    // OpenCL 1.2 spec, p6.9 r:
4822    // The event type cannot be used to declare a program scope variable.
4823    // The event type cannot be used with the __local, __constant and __global
4824    // address space qualifiers.
4825    if (R->isEventT()) {
4826      if (S->getParent() == 0) {
4827        Diag(D.getLocStart(), diag::err_event_t_global_var);
4828        D.setInvalidType();
4829      }
4830
4831      if (R.getAddressSpace()) {
4832        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4833        D.setInvalidType();
4834      }
4835    }
4836  }
4837
4838  bool isExplicitSpecialization = false;
4839  VarDecl *NewVD;
4840  if (!getLangOpts().CPlusPlus) {
4841    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4842                            D.getIdentifierLoc(), II,
4843                            R, TInfo, SC);
4844
4845    if (D.isInvalidType())
4846      NewVD->setInvalidDecl();
4847  } else {
4848    if (DC->isRecord() && !CurContext->isRecord()) {
4849      // This is an out-of-line definition of a static data member.
4850      switch (SC) {
4851      case SC_None:
4852        break;
4853      case SC_Static:
4854        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4855             diag::err_static_out_of_line)
4856          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4857        break;
4858      case SC_Auto:
4859      case SC_Register:
4860      case SC_Extern:
4861        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4862        // to names of variables declared in a block or to function parameters.
4863        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4864        // of class members
4865
4866        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4867             diag::err_storage_class_for_static_member)
4868          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4869        break;
4870      case SC_PrivateExtern:
4871        llvm_unreachable("C storage class in c++!");
4872      case SC_OpenCLWorkGroupLocal:
4873        llvm_unreachable("OpenCL storage class in c++!");
4874      }
4875    }
4876    if (SC == SC_Static && CurContext->isRecord()) {
4877      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4878        if (RD->isLocalClass())
4879          Diag(D.getIdentifierLoc(),
4880               diag::err_static_data_member_not_allowed_in_local_class)
4881            << Name << RD->getDeclName();
4882
4883        // C++98 [class.union]p1: If a union contains a static data member,
4884        // the program is ill-formed. C++11 drops this restriction.
4885        if (RD->isUnion())
4886          Diag(D.getIdentifierLoc(),
4887               getLangOpts().CPlusPlus11
4888                 ? diag::warn_cxx98_compat_static_data_member_in_union
4889                 : diag::ext_static_data_member_in_union) << Name;
4890        // We conservatively disallow static data members in anonymous structs.
4891        else if (!RD->getDeclName())
4892          Diag(D.getIdentifierLoc(),
4893               diag::err_static_data_member_not_allowed_in_anon_struct)
4894            << Name << RD->isUnion();
4895      }
4896    }
4897
4898    // Match up the template parameter lists with the scope specifier, then
4899    // determine whether we have a template or a template specialization.
4900    isExplicitSpecialization = false;
4901    bool Invalid = false;
4902    if (TemplateParameterList *TemplateParams
4903        = MatchTemplateParametersToScopeSpecifier(
4904                                  D.getDeclSpec().getLocStart(),
4905                                                  D.getIdentifierLoc(),
4906                                                  D.getCXXScopeSpec(),
4907                                                  TemplateParamLists.data(),
4908                                                  TemplateParamLists.size(),
4909                                                  /*never a friend*/ false,
4910                                                  isExplicitSpecialization,
4911                                                  Invalid)) {
4912      if (TemplateParams->size() > 0) {
4913        // There is no such thing as a variable template.
4914        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4915          << II
4916          << SourceRange(TemplateParams->getTemplateLoc(),
4917                         TemplateParams->getRAngleLoc());
4918        return 0;
4919      } else {
4920        // There is an extraneous 'template<>' for this variable. Complain
4921        // about it, but allow the declaration of the variable.
4922        Diag(TemplateParams->getTemplateLoc(),
4923             diag::err_template_variable_noparams)
4924          << II
4925          << SourceRange(TemplateParams->getTemplateLoc(),
4926                         TemplateParams->getRAngleLoc());
4927      }
4928    }
4929
4930    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4931                            D.getIdentifierLoc(), II,
4932                            R, TInfo, SC);
4933
4934    // If this decl has an auto type in need of deduction, make a note of the
4935    // Decl so we can diagnose uses of it in its own initializer.
4936    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
4937      ParsingInitForAutoVars.insert(NewVD);
4938
4939    if (D.isInvalidType() || Invalid)
4940      NewVD->setInvalidDecl();
4941
4942    SetNestedNameSpecifier(NewVD, D);
4943
4944    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4945      NewVD->setTemplateParameterListsInfo(Context,
4946                                           TemplateParamLists.size(),
4947                                           TemplateParamLists.data());
4948    }
4949
4950    if (D.getDeclSpec().isConstexprSpecified())
4951      NewVD->setConstexpr(true);
4952  }
4953
4954  // Set the lexical context. If the declarator has a C++ scope specifier, the
4955  // lexical context will be different from the semantic context.
4956  NewVD->setLexicalDeclContext(CurContext);
4957
4958  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
4959    if (NewVD->hasLocalStorage()) {
4960      // C++11 [dcl.stc]p4:
4961      //   When thread_local is applied to a variable of block scope the
4962      //   storage-class-specifier static is implied if it does not appear
4963      //   explicitly.
4964      // Core issue: 'static' is not implied if the variable is declared
4965      //   'extern'.
4966      if (SCSpec == DeclSpec::SCS_unspecified &&
4967          TSCS == DeclSpec::TSCS_thread_local &&
4968          DC->isFunctionOrMethod())
4969        NewVD->setTSCSpec(TSCS);
4970      else
4971        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4972             diag::err_thread_non_global)
4973          << DeclSpec::getSpecifierName(TSCS);
4974    } else if (!Context.getTargetInfo().isTLSSupported())
4975      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4976           diag::err_thread_unsupported);
4977    else
4978      NewVD->setTSCSpec(TSCS);
4979  }
4980
4981  // C99 6.7.4p3
4982  //   An inline definition of a function with external linkage shall
4983  //   not contain a definition of a modifiable object with static or
4984  //   thread storage duration...
4985  // We only apply this when the function is required to be defined
4986  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4987  // that a local variable with thread storage duration still has to
4988  // be marked 'static'.  Also note that it's possible to get these
4989  // semantics in C++ using __attribute__((gnu_inline)).
4990  if (SC == SC_Static && S->getFnParent() != 0 &&
4991      !NewVD->getType().isConstQualified()) {
4992    FunctionDecl *CurFD = getCurFunctionDecl();
4993    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4994      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4995           diag::warn_static_local_in_extern_inline);
4996      MaybeSuggestAddingStaticToDecl(CurFD);
4997    }
4998  }
4999
5000  if (D.getDeclSpec().isModulePrivateSpecified()) {
5001    if (isExplicitSpecialization)
5002      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5003        << 2
5004        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5005    else if (NewVD->hasLocalStorage())
5006      Diag(NewVD->getLocation(), diag::err_module_private_local)
5007        << 0 << NewVD->getDeclName()
5008        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5009        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5010    else
5011      NewVD->setModulePrivate();
5012  }
5013
5014  // Handle attributes prior to checking for duplicates in MergeVarDecl
5015  ProcessDeclAttributes(S, NewVD, D);
5016
5017  if (NewVD->hasAttrs())
5018    CheckAlignasUnderalignment(NewVD);
5019
5020  if (getLangOpts().CUDA) {
5021    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5022    // storage [duration]."
5023    if (SC == SC_None && S->getFnParent() != 0 &&
5024        (NewVD->hasAttr<CUDASharedAttr>() ||
5025         NewVD->hasAttr<CUDAConstantAttr>())) {
5026      NewVD->setStorageClass(SC_Static);
5027    }
5028  }
5029
5030  // In auto-retain/release, infer strong retension for variables of
5031  // retainable type.
5032  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5033    NewVD->setInvalidDecl();
5034
5035  // Handle GNU asm-label extension (encoded as an attribute).
5036  if (Expr *E = (Expr*)D.getAsmLabel()) {
5037    // The parser guarantees this is a string.
5038    StringLiteral *SE = cast<StringLiteral>(E);
5039    StringRef Label = SE->getString();
5040    if (S->getFnParent() != 0) {
5041      switch (SC) {
5042      case SC_None:
5043      case SC_Auto:
5044        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5045        break;
5046      case SC_Register:
5047        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5048          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5049        break;
5050      case SC_Static:
5051      case SC_Extern:
5052      case SC_PrivateExtern:
5053      case SC_OpenCLWorkGroupLocal:
5054        break;
5055      }
5056    }
5057
5058    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5059                                                Context, Label));
5060  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5061    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5062      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5063    if (I != ExtnameUndeclaredIdentifiers.end()) {
5064      NewVD->addAttr(I->second);
5065      ExtnameUndeclaredIdentifiers.erase(I);
5066    }
5067  }
5068
5069  // Diagnose shadowed variables before filtering for scope.
5070  if (!D.getCXXScopeSpec().isSet())
5071    CheckShadow(S, NewVD, Previous);
5072
5073  // Don't consider existing declarations that are in a different
5074  // scope and are out-of-semantic-context declarations (if the new
5075  // declaration has linkage).
5076  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
5077                       isExplicitSpecialization);
5078
5079  if (!getLangOpts().CPlusPlus) {
5080    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5081  } else {
5082    // Merge the decl with the existing one if appropriate.
5083    if (!Previous.empty()) {
5084      if (Previous.isSingleResult() &&
5085          isa<FieldDecl>(Previous.getFoundDecl()) &&
5086          D.getCXXScopeSpec().isSet()) {
5087        // The user tried to define a non-static data member
5088        // out-of-line (C++ [dcl.meaning]p1).
5089        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5090          << D.getCXXScopeSpec().getRange();
5091        Previous.clear();
5092        NewVD->setInvalidDecl();
5093      }
5094    } else if (D.getCXXScopeSpec().isSet()) {
5095      // No previous declaration in the qualifying scope.
5096      Diag(D.getIdentifierLoc(), diag::err_no_member)
5097        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5098        << D.getCXXScopeSpec().getRange();
5099      NewVD->setInvalidDecl();
5100    }
5101
5102    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5103
5104    // This is an explicit specialization of a static data member. Check it.
5105    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5106        CheckMemberSpecialization(NewVD, Previous))
5107      NewVD->setInvalidDecl();
5108  }
5109
5110  ProcessPragmaWeak(S, NewVD);
5111  checkAttributesAfterMerging(*this, *NewVD);
5112
5113  // If this is the first declaration of an extern C variable, update
5114  // the map of such variables.
5115  if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5116      isIncompleteDeclExternC(*this, NewVD))
5117    RegisterLocallyScopedExternCDecl(NewVD, S);
5118
5119  return NewVD;
5120}
5121
5122/// \brief Diagnose variable or built-in function shadowing.  Implements
5123/// -Wshadow.
5124///
5125/// This method is called whenever a VarDecl is added to a "useful"
5126/// scope.
5127///
5128/// \param S the scope in which the shadowing name is being declared
5129/// \param R the lookup of the name
5130///
5131void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5132  // Return if warning is ignored.
5133  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5134        DiagnosticsEngine::Ignored)
5135    return;
5136
5137  // Don't diagnose declarations at file scope.
5138  if (D->hasGlobalStorage())
5139    return;
5140
5141  DeclContext *NewDC = D->getDeclContext();
5142
5143  // Only diagnose if we're shadowing an unambiguous field or variable.
5144  if (R.getResultKind() != LookupResult::Found)
5145    return;
5146
5147  NamedDecl* ShadowedDecl = R.getFoundDecl();
5148  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5149    return;
5150
5151  // Fields are not shadowed by variables in C++ static methods.
5152  if (isa<FieldDecl>(ShadowedDecl))
5153    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5154      if (MD->isStatic())
5155        return;
5156
5157  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5158    if (shadowedVar->isExternC()) {
5159      // For shadowing external vars, make sure that we point to the global
5160      // declaration, not a locally scoped extern declaration.
5161      for (VarDecl::redecl_iterator
5162             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5163           I != E; ++I)
5164        if (I->isFileVarDecl()) {
5165          ShadowedDecl = *I;
5166          break;
5167        }
5168    }
5169
5170  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5171
5172  // Only warn about certain kinds of shadowing for class members.
5173  if (NewDC && NewDC->isRecord()) {
5174    // In particular, don't warn about shadowing non-class members.
5175    if (!OldDC->isRecord())
5176      return;
5177
5178    // TODO: should we warn about static data members shadowing
5179    // static data members from base classes?
5180
5181    // TODO: don't diagnose for inaccessible shadowed members.
5182    // This is hard to do perfectly because we might friend the
5183    // shadowing context, but that's just a false negative.
5184  }
5185
5186  // Determine what kind of declaration we're shadowing.
5187  unsigned Kind;
5188  if (isa<RecordDecl>(OldDC)) {
5189    if (isa<FieldDecl>(ShadowedDecl))
5190      Kind = 3; // field
5191    else
5192      Kind = 2; // static data member
5193  } else if (OldDC->isFileContext())
5194    Kind = 1; // global
5195  else
5196    Kind = 0; // local
5197
5198  DeclarationName Name = R.getLookupName();
5199
5200  // Emit warning and note.
5201  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5202  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5203}
5204
5205/// \brief Check -Wshadow without the advantage of a previous lookup.
5206void Sema::CheckShadow(Scope *S, VarDecl *D) {
5207  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5208        DiagnosticsEngine::Ignored)
5209    return;
5210
5211  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5212                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5213  LookupName(R, S);
5214  CheckShadow(S, D, R);
5215}
5216
5217/// Check for conflict between this global or extern "C" declaration and
5218/// previous global or extern "C" declarations. This is only used in C++.
5219template<typename T>
5220static bool checkGlobalOrExternCConflict(
5221    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5222  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5223  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5224
5225  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5226    // The common case: this global doesn't conflict with any extern "C"
5227    // declaration.
5228    return false;
5229  }
5230
5231  if (Prev) {
5232    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5233      // Both the old and new declarations have C language linkage. This is a
5234      // redeclaration.
5235      Previous.clear();
5236      Previous.addDecl(Prev);
5237      return true;
5238    }
5239
5240    // This is a global, non-extern "C" declaration, and there is a previous
5241    // non-global extern "C" declaration. Diagnose if this is a variable
5242    // declaration.
5243    if (!isa<VarDecl>(ND))
5244      return false;
5245  } else {
5246    // The declaration is extern "C". Check for any declaration in the
5247    // translation unit which might conflict.
5248    if (IsGlobal) {
5249      // We have already performed the lookup into the translation unit.
5250      IsGlobal = false;
5251      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5252           I != E; ++I) {
5253        if (isa<VarDecl>(*I)) {
5254          Prev = *I;
5255          break;
5256        }
5257      }
5258    } else {
5259      DeclContext::lookup_result R =
5260          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5261      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5262           I != E; ++I) {
5263        if (isa<VarDecl>(*I)) {
5264          Prev = *I;
5265          break;
5266        }
5267        // FIXME: If we have any other entity with this name in global scope,
5268        // the declaration is ill-formed, but that is a defect: it breaks the
5269        // 'stat' hack, for instance. Only variables can have mangled name
5270        // clashes with extern "C" declarations, so only they deserve a
5271        // diagnostic.
5272      }
5273    }
5274
5275    if (!Prev)
5276      return false;
5277  }
5278
5279  // Use the first declaration's location to ensure we point at something which
5280  // is lexically inside an extern "C" linkage-spec.
5281  assert(Prev && "should have found a previous declaration to diagnose");
5282  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5283    Prev = FD->getFirstDeclaration();
5284  else
5285    Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5286
5287  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5288    << IsGlobal << ND;
5289  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5290    << IsGlobal;
5291  return false;
5292}
5293
5294/// Apply special rules for handling extern "C" declarations. Returns \c true
5295/// if we have found that this is a redeclaration of some prior entity.
5296///
5297/// Per C++ [dcl.link]p6:
5298///   Two declarations [for a function or variable] with C language linkage
5299///   with the same name that appear in different scopes refer to the same
5300///   [entity]. An entity with C language linkage shall not be declared with
5301///   the same name as an entity in global scope.
5302template<typename T>
5303static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5304                                                  LookupResult &Previous) {
5305  if (!S.getLangOpts().CPlusPlus) {
5306    // In C, when declaring a global variable, look for a corresponding 'extern'
5307    // variable declared in function scope.
5308    //
5309    // FIXME: The corresponding case in C++ does not work.  We should instead
5310    // set the semantic DC for an extern local variable to be the innermost
5311    // enclosing namespace, and ensure they are only found by redeclaration
5312    // lookup.
5313    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5314      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5315        Previous.clear();
5316        Previous.addDecl(Prev);
5317        return true;
5318      }
5319    }
5320    return false;
5321  }
5322
5323  // A declaration in the translation unit can conflict with an extern "C"
5324  // declaration.
5325  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5326    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5327
5328  // An extern "C" declaration can conflict with a declaration in the
5329  // translation unit or can be a redeclaration of an extern "C" declaration
5330  // in another scope.
5331  if (isIncompleteDeclExternC(S,ND))
5332    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5333
5334  // Neither global nor extern "C": nothing to do.
5335  return false;
5336}
5337
5338void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5339  // If the decl is already known invalid, don't check it.
5340  if (NewVD->isInvalidDecl())
5341    return;
5342
5343  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5344  QualType T = TInfo->getType();
5345
5346  // Defer checking an 'auto' type until its initializer is attached.
5347  if (T->isUndeducedType())
5348    return;
5349
5350  if (T->isObjCObjectType()) {
5351    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5352      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5353    T = Context.getObjCObjectPointerType(T);
5354    NewVD->setType(T);
5355  }
5356
5357  // Emit an error if an address space was applied to decl with local storage.
5358  // This includes arrays of objects with address space qualifiers, but not
5359  // automatic variables that point to other address spaces.
5360  // ISO/IEC TR 18037 S5.1.2
5361  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5362    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5363    NewVD->setInvalidDecl();
5364    return;
5365  }
5366
5367  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5368  // __constant address space.
5369  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5370      && T.getAddressSpace() != LangAS::opencl_constant
5371      && !T->isSamplerT()){
5372    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5373    NewVD->setInvalidDecl();
5374    return;
5375  }
5376
5377  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5378  // scope.
5379  if ((getLangOpts().OpenCLVersion >= 120)
5380      && NewVD->isStaticLocal()) {
5381    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5382    NewVD->setInvalidDecl();
5383    return;
5384  }
5385
5386  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5387      && !NewVD->hasAttr<BlocksAttr>()) {
5388    if (getLangOpts().getGC() != LangOptions::NonGC)
5389      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5390    else {
5391      assert(!getLangOpts().ObjCAutoRefCount);
5392      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5393    }
5394  }
5395
5396  bool isVM = T->isVariablyModifiedType();
5397  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5398      NewVD->hasAttr<BlocksAttr>())
5399    getCurFunction()->setHasBranchProtectedScope();
5400
5401  if ((isVM && NewVD->hasLinkage()) ||
5402      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5403    bool SizeIsNegative;
5404    llvm::APSInt Oversized;
5405    TypeSourceInfo *FixedTInfo =
5406      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5407                                                    SizeIsNegative, Oversized);
5408    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5409      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5410      // FIXME: This won't give the correct result for
5411      // int a[10][n];
5412      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5413
5414      if (NewVD->isFileVarDecl())
5415        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5416        << SizeRange;
5417      else if (NewVD->isStaticLocal())
5418        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5419        << SizeRange;
5420      else
5421        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5422        << SizeRange;
5423      NewVD->setInvalidDecl();
5424      return;
5425    }
5426
5427    if (FixedTInfo == 0) {
5428      if (NewVD->isFileVarDecl())
5429        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5430      else
5431        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5432      NewVD->setInvalidDecl();
5433      return;
5434    }
5435
5436    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5437    NewVD->setType(FixedTInfo->getType());
5438    NewVD->setTypeSourceInfo(FixedTInfo);
5439  }
5440
5441  if (T->isVoidType()) {
5442    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5443    //                    of objects and functions.
5444    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5445      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5446        << T;
5447      NewVD->setInvalidDecl();
5448      return;
5449    }
5450  }
5451
5452  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5453    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5454    NewVD->setInvalidDecl();
5455    return;
5456  }
5457
5458  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5459    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5460    NewVD->setInvalidDecl();
5461    return;
5462  }
5463
5464  if (NewVD->isConstexpr() && !T->isDependentType() &&
5465      RequireLiteralType(NewVD->getLocation(), T,
5466                         diag::err_constexpr_var_non_literal)) {
5467    // Can't perform this check until the type is deduced.
5468    NewVD->setInvalidDecl();
5469    return;
5470  }
5471}
5472
5473/// \brief Perform semantic checking on a newly-created variable
5474/// declaration.
5475///
5476/// This routine performs all of the type-checking required for a
5477/// variable declaration once it has been built. It is used both to
5478/// check variables after they have been parsed and their declarators
5479/// have been translated into a declaration, and to check variables
5480/// that have been instantiated from a template.
5481///
5482/// Sets NewVD->isInvalidDecl() if an error was encountered.
5483///
5484/// Returns true if the variable declaration is a redeclaration.
5485bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5486                                    LookupResult &Previous) {
5487  CheckVariableDeclarationType(NewVD);
5488
5489  // If the decl is already known invalid, don't check it.
5490  if (NewVD->isInvalidDecl())
5491    return false;
5492
5493  // If we did not find anything by this name, look for a non-visible
5494  // extern "C" declaration with the same name.
5495  //
5496  // Clang has a lot of problems with extern local declarations.
5497  // The actual standards text here is:
5498  //
5499  // C++11 [basic.link]p6:
5500  //   The name of a function declared in block scope and the name
5501  //   of a variable declared by a block scope extern declaration
5502  //   have linkage. If there is a visible declaration of an entity
5503  //   with linkage having the same name and type, ignoring entities
5504  //   declared outside the innermost enclosing namespace scope, the
5505  //   block scope declaration declares that same entity and
5506  //   receives the linkage of the previous declaration.
5507  //
5508  // C11 6.2.7p4:
5509  //   For an identifier with internal or external linkage declared
5510  //   in a scope in which a prior declaration of that identifier is
5511  //   visible, if the prior declaration specifies internal or
5512  //   external linkage, the type of the identifier at the later
5513  //   declaration becomes the composite type.
5514  //
5515  // The most important point here is that we're not allowed to
5516  // update our understanding of the type according to declarations
5517  // not in scope.
5518  bool PreviousWasHidden =
5519      Previous.empty() &&
5520      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
5521
5522  // Filter out any non-conflicting previous declarations.
5523  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5524
5525  if (!Previous.empty()) {
5526    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5527    return true;
5528  }
5529  return false;
5530}
5531
5532/// \brief Data used with FindOverriddenMethod
5533struct FindOverriddenMethodData {
5534  Sema *S;
5535  CXXMethodDecl *Method;
5536};
5537
5538/// \brief Member lookup function that determines whether a given C++
5539/// method overrides a method in a base class, to be used with
5540/// CXXRecordDecl::lookupInBases().
5541static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5542                                 CXXBasePath &Path,
5543                                 void *UserData) {
5544  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5545
5546  FindOverriddenMethodData *Data
5547    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5548
5549  DeclarationName Name = Data->Method->getDeclName();
5550
5551  // FIXME: Do we care about other names here too?
5552  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5553    // We really want to find the base class destructor here.
5554    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5555    CanQualType CT = Data->S->Context.getCanonicalType(T);
5556
5557    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5558  }
5559
5560  for (Path.Decls = BaseRecord->lookup(Name);
5561       !Path.Decls.empty();
5562       Path.Decls = Path.Decls.slice(1)) {
5563    NamedDecl *D = Path.Decls.front();
5564    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5565      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5566        return true;
5567    }
5568  }
5569
5570  return false;
5571}
5572
5573namespace {
5574  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5575}
5576/// \brief Report an error regarding overriding, along with any relevant
5577/// overriden methods.
5578///
5579/// \param DiagID the primary error to report.
5580/// \param MD the overriding method.
5581/// \param OEK which overrides to include as notes.
5582static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5583                            OverrideErrorKind OEK = OEK_All) {
5584  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5585  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5586                                      E = MD->end_overridden_methods();
5587       I != E; ++I) {
5588    // This check (& the OEK parameter) could be replaced by a predicate, but
5589    // without lambdas that would be overkill. This is still nicer than writing
5590    // out the diag loop 3 times.
5591    if ((OEK == OEK_All) ||
5592        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5593        (OEK == OEK_Deleted && (*I)->isDeleted()))
5594      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5595  }
5596}
5597
5598/// AddOverriddenMethods - See if a method overrides any in the base classes,
5599/// and if so, check that it's a valid override and remember it.
5600bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5601  // Look for virtual methods in base classes that this method might override.
5602  CXXBasePaths Paths;
5603  FindOverriddenMethodData Data;
5604  Data.Method = MD;
5605  Data.S = this;
5606  bool hasDeletedOverridenMethods = false;
5607  bool hasNonDeletedOverridenMethods = false;
5608  bool AddedAny = false;
5609  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5610    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5611         E = Paths.found_decls_end(); I != E; ++I) {
5612      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5613        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5614        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5615            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5616            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5617            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5618          hasDeletedOverridenMethods |= OldMD->isDeleted();
5619          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5620          AddedAny = true;
5621        }
5622      }
5623    }
5624  }
5625
5626  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5627    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5628  }
5629  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5630    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5631  }
5632
5633  return AddedAny;
5634}
5635
5636namespace {
5637  // Struct for holding all of the extra arguments needed by
5638  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5639  struct ActOnFDArgs {
5640    Scope *S;
5641    Declarator &D;
5642    MultiTemplateParamsArg TemplateParamLists;
5643    bool AddToScope;
5644  };
5645}
5646
5647namespace {
5648
5649// Callback to only accept typo corrections that have a non-zero edit distance.
5650// Also only accept corrections that have the same parent decl.
5651class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5652 public:
5653  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5654                            CXXRecordDecl *Parent)
5655      : Context(Context), OriginalFD(TypoFD),
5656        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5657
5658  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5659    if (candidate.getEditDistance() == 0)
5660      return false;
5661
5662    SmallVector<unsigned, 1> MismatchedParams;
5663    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5664                                          CDeclEnd = candidate.end();
5665         CDecl != CDeclEnd; ++CDecl) {
5666      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5667
5668      if (FD && !FD->hasBody() &&
5669          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5670        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5671          CXXRecordDecl *Parent = MD->getParent();
5672          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5673            return true;
5674        } else if (!ExpectedParent) {
5675          return true;
5676        }
5677      }
5678    }
5679
5680    return false;
5681  }
5682
5683 private:
5684  ASTContext &Context;
5685  FunctionDecl *OriginalFD;
5686  CXXRecordDecl *ExpectedParent;
5687};
5688
5689}
5690
5691/// \brief Generate diagnostics for an invalid function redeclaration.
5692///
5693/// This routine handles generating the diagnostic messages for an invalid
5694/// function redeclaration, including finding possible similar declarations
5695/// or performing typo correction if there are no previous declarations with
5696/// the same name.
5697///
5698/// Returns a NamedDecl iff typo correction was performed and substituting in
5699/// the new declaration name does not cause new errors.
5700static NamedDecl* DiagnoseInvalidRedeclaration(
5701    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5702    ActOnFDArgs &ExtraArgs) {
5703  NamedDecl *Result = NULL;
5704  DeclarationName Name = NewFD->getDeclName();
5705  DeclContext *NewDC = NewFD->getDeclContext();
5706  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5707                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5708  SmallVector<unsigned, 1> MismatchedParams;
5709  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5710  TypoCorrection Correction;
5711  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5712                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5713  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5714                                  : diag::err_member_def_does_not_match;
5715
5716  NewFD->setInvalidDecl();
5717  SemaRef.LookupQualifiedName(Prev, NewDC);
5718  assert(!Prev.isAmbiguous() &&
5719         "Cannot have an ambiguity in previous-declaration lookup");
5720  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5721  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5722                                      MD ? MD->getParent() : 0);
5723  if (!Prev.empty()) {
5724    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5725         Func != FuncEnd; ++Func) {
5726      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5727      if (FD &&
5728          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5729        // Add 1 to the index so that 0 can mean the mismatch didn't
5730        // involve a parameter
5731        unsigned ParamNum =
5732            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5733        NearMatches.push_back(std::make_pair(FD, ParamNum));
5734      }
5735    }
5736  // If the qualified name lookup yielded nothing, try typo correction
5737  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5738                                         Prev.getLookupKind(), 0, 0,
5739                                         Validator, NewDC))) {
5740    // Trap errors.
5741    Sema::SFINAETrap Trap(SemaRef);
5742
5743    // Set up everything for the call to ActOnFunctionDeclarator
5744    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5745                              ExtraArgs.D.getIdentifierLoc());
5746    Previous.clear();
5747    Previous.setLookupName(Correction.getCorrection());
5748    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5749                                    CDeclEnd = Correction.end();
5750         CDecl != CDeclEnd; ++CDecl) {
5751      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5752      if (FD && !FD->hasBody() &&
5753          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5754        Previous.addDecl(FD);
5755      }
5756    }
5757    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5758    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5759    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5760    // eliminate the need for the parameter pack ExtraArgs.
5761    Result = SemaRef.ActOnFunctionDeclarator(
5762        ExtraArgs.S, ExtraArgs.D,
5763        Correction.getCorrectionDecl()->getDeclContext(),
5764        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5765        ExtraArgs.AddToScope);
5766    if (Trap.hasErrorOccurred()) {
5767      // Pretend the typo correction never occurred
5768      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5769                                ExtraArgs.D.getIdentifierLoc());
5770      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5771      Previous.clear();
5772      Previous.setLookupName(Name);
5773      Result = NULL;
5774    } else {
5775      for (LookupResult::iterator Func = Previous.begin(),
5776                               FuncEnd = Previous.end();
5777           Func != FuncEnd; ++Func) {
5778        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5779          NearMatches.push_back(std::make_pair(FD, 0));
5780      }
5781    }
5782    if (NearMatches.empty()) {
5783      // Ignore the correction if it didn't yield any close FunctionDecl matches
5784      Correction = TypoCorrection();
5785    } else {
5786      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5787                             : diag::err_member_def_does_not_match_suggest;
5788    }
5789  }
5790
5791  if (Correction) {
5792    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5793    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5794    // turn causes the correction to fully qualify the name. If we fix
5795    // CorrectTypo to minimally qualify then this change should be good.
5796    SourceRange FixItLoc(NewFD->getLocation());
5797    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5798    if (Correction.getCorrectionSpecifier() && SS.isValid())
5799      FixItLoc.setBegin(SS.getBeginLoc());
5800    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5801        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5802        << FixItHint::CreateReplacement(
5803            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5804  } else {
5805    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5806        << Name << NewDC << NewFD->getLocation();
5807  }
5808
5809  bool NewFDisConst = false;
5810  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5811    NewFDisConst = NewMD->isConst();
5812
5813  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
5814       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5815       NearMatch != NearMatchEnd; ++NearMatch) {
5816    FunctionDecl *FD = NearMatch->first;
5817    bool FDisConst = false;
5818    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5819      FDisConst = MD->isConst();
5820
5821    if (unsigned Idx = NearMatch->second) {
5822      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5823      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5824      if (Loc.isInvalid()) Loc = FD->getLocation();
5825      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5826          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5827    } else if (Correction) {
5828      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5829          << Correction.getQuoted(SemaRef.getLangOpts());
5830    } else if (FDisConst != NewFDisConst) {
5831      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5832          << NewFDisConst << FD->getSourceRange().getEnd();
5833    } else
5834      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5835  }
5836  return Result;
5837}
5838
5839static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5840                                                          Declarator &D) {
5841  switch (D.getDeclSpec().getStorageClassSpec()) {
5842  default: llvm_unreachable("Unknown storage class!");
5843  case DeclSpec::SCS_auto:
5844  case DeclSpec::SCS_register:
5845  case DeclSpec::SCS_mutable:
5846    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5847                 diag::err_typecheck_sclass_func);
5848    D.setInvalidType();
5849    break;
5850  case DeclSpec::SCS_unspecified: break;
5851  case DeclSpec::SCS_extern:
5852    if (D.getDeclSpec().isExternInLinkageSpec())
5853      return SC_None;
5854    return SC_Extern;
5855  case DeclSpec::SCS_static: {
5856    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5857      // C99 6.7.1p5:
5858      //   The declaration of an identifier for a function that has
5859      //   block scope shall have no explicit storage-class specifier
5860      //   other than extern
5861      // See also (C++ [dcl.stc]p4).
5862      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5863                   diag::err_static_block_func);
5864      break;
5865    } else
5866      return SC_Static;
5867  }
5868  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5869  }
5870
5871  // No explicit storage class has already been returned
5872  return SC_None;
5873}
5874
5875static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5876                                           DeclContext *DC, QualType &R,
5877                                           TypeSourceInfo *TInfo,
5878                                           FunctionDecl::StorageClass SC,
5879                                           bool &IsVirtualOkay) {
5880  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5881  DeclarationName Name = NameInfo.getName();
5882
5883  FunctionDecl *NewFD = 0;
5884  bool isInline = D.getDeclSpec().isInlineSpecified();
5885
5886  if (!SemaRef.getLangOpts().CPlusPlus) {
5887    // Determine whether the function was written with a
5888    // prototype. This true when:
5889    //   - there is a prototype in the declarator, or
5890    //   - the type R of the function is some kind of typedef or other reference
5891    //     to a type name (which eventually refers to a function type).
5892    bool HasPrototype =
5893      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5894      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5895
5896    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5897                                 D.getLocStart(), NameInfo, R,
5898                                 TInfo, SC, isInline,
5899                                 HasPrototype, false);
5900    if (D.isInvalidType())
5901      NewFD->setInvalidDecl();
5902
5903    // Set the lexical context.
5904    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5905
5906    return NewFD;
5907  }
5908
5909  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5910  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5911
5912  // Check that the return type is not an abstract class type.
5913  // For record types, this is done by the AbstractClassUsageDiagnoser once
5914  // the class has been completely parsed.
5915  if (!DC->isRecord() &&
5916      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5917                                     R->getAs<FunctionType>()->getResultType(),
5918                                     diag::err_abstract_type_in_decl,
5919                                     SemaRef.AbstractReturnType))
5920    D.setInvalidType();
5921
5922  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5923    // This is a C++ constructor declaration.
5924    assert(DC->isRecord() &&
5925           "Constructors can only be declared in a member context");
5926
5927    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5928    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5929                                      D.getLocStart(), NameInfo,
5930                                      R, TInfo, isExplicit, isInline,
5931                                      /*isImplicitlyDeclared=*/false,
5932                                      isConstexpr);
5933
5934  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5935    // This is a C++ destructor declaration.
5936    if (DC->isRecord()) {
5937      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5938      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5939      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5940                                        SemaRef.Context, Record,
5941                                        D.getLocStart(),
5942                                        NameInfo, R, TInfo, isInline,
5943                                        /*isImplicitlyDeclared=*/false);
5944
5945      // If the class is complete, then we now create the implicit exception
5946      // specification. If the class is incomplete or dependent, we can't do
5947      // it yet.
5948      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5949          Record->getDefinition() && !Record->isBeingDefined() &&
5950          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5951        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5952      }
5953
5954      // The Microsoft ABI requires that we perform the destructor body
5955      // checks (i.e. operator delete() lookup) at every declaration, as
5956      // any translation unit may need to emit a deleting destructor.
5957      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5958          !Record->isDependentType() && Record->getDefinition() &&
5959          !Record->isBeingDefined()) {
5960        SemaRef.CheckDestructor(NewDD);
5961      }
5962
5963      IsVirtualOkay = true;
5964      return NewDD;
5965
5966    } else {
5967      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5968      D.setInvalidType();
5969
5970      // Create a FunctionDecl to satisfy the function definition parsing
5971      // code path.
5972      return FunctionDecl::Create(SemaRef.Context, DC,
5973                                  D.getLocStart(),
5974                                  D.getIdentifierLoc(), Name, R, TInfo,
5975                                  SC, isInline,
5976                                  /*hasPrototype=*/true, isConstexpr);
5977    }
5978
5979  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5980    if (!DC->isRecord()) {
5981      SemaRef.Diag(D.getIdentifierLoc(),
5982           diag::err_conv_function_not_member);
5983      return 0;
5984    }
5985
5986    SemaRef.CheckConversionDeclarator(D, R, SC);
5987    IsVirtualOkay = true;
5988    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5989                                     D.getLocStart(), NameInfo,
5990                                     R, TInfo, isInline, isExplicit,
5991                                     isConstexpr, SourceLocation());
5992
5993  } else if (DC->isRecord()) {
5994    // If the name of the function is the same as the name of the record,
5995    // then this must be an invalid constructor that has a return type.
5996    // (The parser checks for a return type and makes the declarator a
5997    // constructor if it has no return type).
5998    if (Name.getAsIdentifierInfo() &&
5999        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6000      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6001        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6002        << SourceRange(D.getIdentifierLoc());
6003      return 0;
6004    }
6005
6006    // This is a C++ method declaration.
6007    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6008                                               cast<CXXRecordDecl>(DC),
6009                                               D.getLocStart(), NameInfo, R,
6010                                               TInfo, SC, isInline,
6011                                               isConstexpr, SourceLocation());
6012    IsVirtualOkay = !Ret->isStatic();
6013    return Ret;
6014  } else {
6015    // Determine whether the function was written with a
6016    // prototype. This true when:
6017    //   - we're in C++ (where every function has a prototype),
6018    return FunctionDecl::Create(SemaRef.Context, DC,
6019                                D.getLocStart(),
6020                                NameInfo, R, TInfo, SC, isInline,
6021                                true/*HasPrototype*/, isConstexpr);
6022  }
6023}
6024
6025void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6026  // In C++, the empty parameter-type-list must be spelled "void"; a
6027  // typedef of void is not permitted.
6028  if (getLangOpts().CPlusPlus &&
6029      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6030    bool IsTypeAlias = false;
6031    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6032      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6033    else if (const TemplateSpecializationType *TST =
6034               Param->getType()->getAs<TemplateSpecializationType>())
6035      IsTypeAlias = TST->isTypeAlias();
6036    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6037      << IsTypeAlias;
6038  }
6039}
6040
6041NamedDecl*
6042Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6043                              TypeSourceInfo *TInfo, LookupResult &Previous,
6044                              MultiTemplateParamsArg TemplateParamLists,
6045                              bool &AddToScope) {
6046  QualType R = TInfo->getType();
6047
6048  assert(R.getTypePtr()->isFunctionType());
6049
6050  // TODO: consider using NameInfo for diagnostic.
6051  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6052  DeclarationName Name = NameInfo.getName();
6053  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6054
6055  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6056    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6057         diag::err_invalid_thread)
6058      << DeclSpec::getSpecifierName(TSCS);
6059
6060  bool isFriend = false;
6061  FunctionTemplateDecl *FunctionTemplate = 0;
6062  bool isExplicitSpecialization = false;
6063  bool isFunctionTemplateSpecialization = false;
6064
6065  bool isDependentClassScopeExplicitSpecialization = false;
6066  bool HasExplicitTemplateArgs = false;
6067  TemplateArgumentListInfo TemplateArgs;
6068
6069  bool isVirtualOkay = false;
6070
6071  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6072                                              isVirtualOkay);
6073  if (!NewFD) return 0;
6074
6075  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6076    NewFD->setTopLevelDeclInObjCContainer();
6077
6078  if (getLangOpts().CPlusPlus) {
6079    bool isInline = D.getDeclSpec().isInlineSpecified();
6080    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6081    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6082    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6083    isFriend = D.getDeclSpec().isFriendSpecified();
6084    if (isFriend && !isInline && D.isFunctionDefinition()) {
6085      // C++ [class.friend]p5
6086      //   A function can be defined in a friend declaration of a
6087      //   class . . . . Such a function is implicitly inline.
6088      NewFD->setImplicitlyInline();
6089    }
6090
6091    // If this is a method defined in an __interface, and is not a constructor
6092    // or an overloaded operator, then set the pure flag (isVirtual will already
6093    // return true).
6094    if (const CXXRecordDecl *Parent =
6095          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6096      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6097        NewFD->setPure(true);
6098    }
6099
6100    SetNestedNameSpecifier(NewFD, D);
6101    isExplicitSpecialization = false;
6102    isFunctionTemplateSpecialization = false;
6103    if (D.isInvalidType())
6104      NewFD->setInvalidDecl();
6105
6106    // Set the lexical context. If the declarator has a C++
6107    // scope specifier, or is the object of a friend declaration, the
6108    // lexical context will be different from the semantic context.
6109    NewFD->setLexicalDeclContext(CurContext);
6110
6111    // Match up the template parameter lists with the scope specifier, then
6112    // determine whether we have a template or a template specialization.
6113    bool Invalid = false;
6114    if (TemplateParameterList *TemplateParams
6115          = MatchTemplateParametersToScopeSpecifier(
6116                                  D.getDeclSpec().getLocStart(),
6117                                  D.getIdentifierLoc(),
6118                                  D.getCXXScopeSpec(),
6119                                  TemplateParamLists.data(),
6120                                  TemplateParamLists.size(),
6121                                  isFriend,
6122                                  isExplicitSpecialization,
6123                                  Invalid)) {
6124      if (TemplateParams->size() > 0) {
6125        // This is a function template
6126
6127        // Check that we can declare a template here.
6128        if (CheckTemplateDeclScope(S, TemplateParams))
6129          return 0;
6130
6131        // A destructor cannot be a template.
6132        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6133          Diag(NewFD->getLocation(), diag::err_destructor_template);
6134          return 0;
6135        }
6136
6137        // If we're adding a template to a dependent context, we may need to
6138        // rebuilding some of the types used within the template parameter list,
6139        // now that we know what the current instantiation is.
6140        if (DC->isDependentContext()) {
6141          ContextRAII SavedContext(*this, DC);
6142          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6143            Invalid = true;
6144        }
6145
6146
6147        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6148                                                        NewFD->getLocation(),
6149                                                        Name, TemplateParams,
6150                                                        NewFD);
6151        FunctionTemplate->setLexicalDeclContext(CurContext);
6152        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6153
6154        // For source fidelity, store the other template param lists.
6155        if (TemplateParamLists.size() > 1) {
6156          NewFD->setTemplateParameterListsInfo(Context,
6157                                               TemplateParamLists.size() - 1,
6158                                               TemplateParamLists.data());
6159        }
6160      } else {
6161        // This is a function template specialization.
6162        isFunctionTemplateSpecialization = true;
6163        // For source fidelity, store all the template param lists.
6164        NewFD->setTemplateParameterListsInfo(Context,
6165                                             TemplateParamLists.size(),
6166                                             TemplateParamLists.data());
6167
6168        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6169        if (isFriend) {
6170          // We want to remove the "template<>", found here.
6171          SourceRange RemoveRange = TemplateParams->getSourceRange();
6172
6173          // If we remove the template<> and the name is not a
6174          // template-id, we're actually silently creating a problem:
6175          // the friend declaration will refer to an untemplated decl,
6176          // and clearly the user wants a template specialization.  So
6177          // we need to insert '<>' after the name.
6178          SourceLocation InsertLoc;
6179          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6180            InsertLoc = D.getName().getSourceRange().getEnd();
6181            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6182          }
6183
6184          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6185            << Name << RemoveRange
6186            << FixItHint::CreateRemoval(RemoveRange)
6187            << FixItHint::CreateInsertion(InsertLoc, "<>");
6188        }
6189      }
6190    }
6191    else {
6192      // All template param lists were matched against the scope specifier:
6193      // this is NOT (an explicit specialization of) a template.
6194      if (TemplateParamLists.size() > 0)
6195        // For source fidelity, store all the template param lists.
6196        NewFD->setTemplateParameterListsInfo(Context,
6197                                             TemplateParamLists.size(),
6198                                             TemplateParamLists.data());
6199    }
6200
6201    if (Invalid) {
6202      NewFD->setInvalidDecl();
6203      if (FunctionTemplate)
6204        FunctionTemplate->setInvalidDecl();
6205    }
6206
6207    // C++ [dcl.fct.spec]p5:
6208    //   The virtual specifier shall only be used in declarations of
6209    //   nonstatic class member functions that appear within a
6210    //   member-specification of a class declaration; see 10.3.
6211    //
6212    if (isVirtual && !NewFD->isInvalidDecl()) {
6213      if (!isVirtualOkay) {
6214        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6215             diag::err_virtual_non_function);
6216      } else if (!CurContext->isRecord()) {
6217        // 'virtual' was specified outside of the class.
6218        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6219             diag::err_virtual_out_of_class)
6220          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6221      } else if (NewFD->getDescribedFunctionTemplate()) {
6222        // C++ [temp.mem]p3:
6223        //  A member function template shall not be virtual.
6224        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6225             diag::err_virtual_member_function_template)
6226          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6227      } else {
6228        // Okay: Add virtual to the method.
6229        NewFD->setVirtualAsWritten(true);
6230      }
6231
6232      if (getLangOpts().CPlusPlus1y &&
6233          NewFD->getResultType()->isUndeducedType())
6234        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6235    }
6236
6237    // C++ [dcl.fct.spec]p3:
6238    //  The inline specifier shall not appear on a block scope function
6239    //  declaration.
6240    if (isInline && !NewFD->isInvalidDecl()) {
6241      if (CurContext->isFunctionOrMethod()) {
6242        // 'inline' is not allowed on block scope function declaration.
6243        Diag(D.getDeclSpec().getInlineSpecLoc(),
6244             diag::err_inline_declaration_block_scope) << Name
6245          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6246      }
6247    }
6248
6249    // C++ [dcl.fct.spec]p6:
6250    //  The explicit specifier shall be used only in the declaration of a
6251    //  constructor or conversion function within its class definition;
6252    //  see 12.3.1 and 12.3.2.
6253    if (isExplicit && !NewFD->isInvalidDecl()) {
6254      if (!CurContext->isRecord()) {
6255        // 'explicit' was specified outside of the class.
6256        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6257             diag::err_explicit_out_of_class)
6258          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6259      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6260                 !isa<CXXConversionDecl>(NewFD)) {
6261        // 'explicit' was specified on a function that wasn't a constructor
6262        // or conversion function.
6263        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6264             diag::err_explicit_non_ctor_or_conv_function)
6265          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6266      }
6267    }
6268
6269    if (isConstexpr) {
6270      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6271      // are implicitly inline.
6272      NewFD->setImplicitlyInline();
6273
6274      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6275      // be either constructors or to return a literal type. Therefore,
6276      // destructors cannot be declared constexpr.
6277      if (isa<CXXDestructorDecl>(NewFD))
6278        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6279    }
6280
6281    // If __module_private__ was specified, mark the function accordingly.
6282    if (D.getDeclSpec().isModulePrivateSpecified()) {
6283      if (isFunctionTemplateSpecialization) {
6284        SourceLocation ModulePrivateLoc
6285          = D.getDeclSpec().getModulePrivateSpecLoc();
6286        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6287          << 0
6288          << FixItHint::CreateRemoval(ModulePrivateLoc);
6289      } else {
6290        NewFD->setModulePrivate();
6291        if (FunctionTemplate)
6292          FunctionTemplate->setModulePrivate();
6293      }
6294    }
6295
6296    if (isFriend) {
6297      // For now, claim that the objects have no previous declaration.
6298      if (FunctionTemplate) {
6299        FunctionTemplate->setObjectOfFriendDecl(false);
6300        FunctionTemplate->setAccess(AS_public);
6301      }
6302      NewFD->setObjectOfFriendDecl(false);
6303      NewFD->setAccess(AS_public);
6304    }
6305
6306    // If a function is defined as defaulted or deleted, mark it as such now.
6307    switch (D.getFunctionDefinitionKind()) {
6308      case FDK_Declaration:
6309      case FDK_Definition:
6310        break;
6311
6312      case FDK_Defaulted:
6313        NewFD->setDefaulted();
6314        break;
6315
6316      case FDK_Deleted:
6317        NewFD->setDeletedAsWritten();
6318        break;
6319    }
6320
6321    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6322        D.isFunctionDefinition()) {
6323      // C++ [class.mfct]p2:
6324      //   A member function may be defined (8.4) in its class definition, in
6325      //   which case it is an inline member function (7.1.2)
6326      NewFD->setImplicitlyInline();
6327    }
6328
6329    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6330        !CurContext->isRecord()) {
6331      // C++ [class.static]p1:
6332      //   A data or function member of a class may be declared static
6333      //   in a class definition, in which case it is a static member of
6334      //   the class.
6335
6336      // Complain about the 'static' specifier if it's on an out-of-line
6337      // member function definition.
6338      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6339           diag::err_static_out_of_line)
6340        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6341    }
6342
6343    // C++11 [except.spec]p15:
6344    //   A deallocation function with no exception-specification is treated
6345    //   as if it were specified with noexcept(true).
6346    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6347    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6348         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6349        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6350      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6351      EPI.ExceptionSpecType = EST_BasicNoexcept;
6352      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6353                                             FPT->getArgTypes(), EPI));
6354    }
6355  }
6356
6357  // Filter out previous declarations that don't match the scope.
6358  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6359                       isExplicitSpecialization ||
6360                       isFunctionTemplateSpecialization);
6361
6362  // Handle GNU asm-label extension (encoded as an attribute).
6363  if (Expr *E = (Expr*) D.getAsmLabel()) {
6364    // The parser guarantees this is a string.
6365    StringLiteral *SE = cast<StringLiteral>(E);
6366    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6367                                                SE->getString()));
6368  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6369    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6370      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6371    if (I != ExtnameUndeclaredIdentifiers.end()) {
6372      NewFD->addAttr(I->second);
6373      ExtnameUndeclaredIdentifiers.erase(I);
6374    }
6375  }
6376
6377  // Copy the parameter declarations from the declarator D to the function
6378  // declaration NewFD, if they are available.  First scavenge them into Params.
6379  SmallVector<ParmVarDecl*, 16> Params;
6380  if (D.isFunctionDeclarator()) {
6381    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6382
6383    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6384    // function that takes no arguments, not a function that takes a
6385    // single void argument.
6386    // We let through "const void" here because Sema::GetTypeForDeclarator
6387    // already checks for that case.
6388    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6389        FTI.ArgInfo[0].Param &&
6390        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6391      // Empty arg list, don't push any params.
6392      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6393    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6394      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6395        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6396        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6397        Param->setDeclContext(NewFD);
6398        Params.push_back(Param);
6399
6400        if (Param->isInvalidDecl())
6401          NewFD->setInvalidDecl();
6402      }
6403    }
6404
6405  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6406    // When we're declaring a function with a typedef, typeof, etc as in the
6407    // following example, we'll need to synthesize (unnamed)
6408    // parameters for use in the declaration.
6409    //
6410    // @code
6411    // typedef void fn(int);
6412    // fn f;
6413    // @endcode
6414
6415    // Synthesize a parameter for each argument type.
6416    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6417         AE = FT->arg_type_end(); AI != AE; ++AI) {
6418      ParmVarDecl *Param =
6419        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6420      Param->setScopeInfo(0, Params.size());
6421      Params.push_back(Param);
6422    }
6423  } else {
6424    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6425           "Should not need args for typedef of non-prototype fn");
6426  }
6427
6428  // Finally, we know we have the right number of parameters, install them.
6429  NewFD->setParams(Params);
6430
6431  // Find all anonymous symbols defined during the declaration of this function
6432  // and add to NewFD. This lets us track decls such 'enum Y' in:
6433  //
6434  //   void f(enum Y {AA} x) {}
6435  //
6436  // which would otherwise incorrectly end up in the translation unit scope.
6437  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6438  DeclsInPrototypeScope.clear();
6439
6440  if (D.getDeclSpec().isNoreturnSpecified())
6441    NewFD->addAttr(
6442        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6443                                       Context));
6444
6445  // Process the non-inheritable attributes on this declaration.
6446  ProcessDeclAttributes(S, NewFD, D,
6447                        /*NonInheritable=*/true, /*Inheritable=*/false);
6448
6449  // Functions returning a variably modified type violate C99 6.7.5.2p2
6450  // because all functions have linkage.
6451  if (!NewFD->isInvalidDecl() &&
6452      NewFD->getResultType()->isVariablyModifiedType()) {
6453    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6454    NewFD->setInvalidDecl();
6455  }
6456
6457  // Handle attributes.
6458  ProcessDeclAttributes(S, NewFD, D,
6459                        /*NonInheritable=*/false, /*Inheritable=*/true);
6460
6461  QualType RetType = NewFD->getResultType();
6462  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6463      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6464  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6465      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6466    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6467    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6468      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6469                                                        Context));
6470    }
6471  }
6472
6473  if (!getLangOpts().CPlusPlus) {
6474    // Perform semantic checking on the function declaration.
6475    bool isExplicitSpecialization=false;
6476    if (!NewFD->isInvalidDecl() && NewFD->isMain())
6477      CheckMain(NewFD, D.getDeclSpec());
6478
6479    if (!NewFD->isInvalidDecl())
6480      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6481                                                  isExplicitSpecialization));
6482    // Make graceful recovery from an invalid redeclaration.
6483    else if (!Previous.empty())
6484           D.setRedeclaration(true);
6485    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6486            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6487           "previous declaration set still overloaded");
6488  } else {
6489    // If the declarator is a template-id, translate the parser's template
6490    // argument list into our AST format.
6491    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6492      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6493      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6494      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6495      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6496                                         TemplateId->NumArgs);
6497      translateTemplateArguments(TemplateArgsPtr,
6498                                 TemplateArgs);
6499
6500      HasExplicitTemplateArgs = true;
6501
6502      if (NewFD->isInvalidDecl()) {
6503        HasExplicitTemplateArgs = false;
6504      } else if (FunctionTemplate) {
6505        // Function template with explicit template arguments.
6506        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6507          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6508
6509        HasExplicitTemplateArgs = false;
6510      } else if (!isFunctionTemplateSpecialization &&
6511                 !D.getDeclSpec().isFriendSpecified()) {
6512        // We have encountered something that the user meant to be a
6513        // specialization (because it has explicitly-specified template
6514        // arguments) but that was not introduced with a "template<>" (or had
6515        // too few of them).
6516        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6517          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6518          << FixItHint::CreateInsertion(
6519                                    D.getDeclSpec().getLocStart(),
6520                                        "template<> ");
6521        isFunctionTemplateSpecialization = true;
6522      } else {
6523        // "friend void foo<>(int);" is an implicit specialization decl.
6524        isFunctionTemplateSpecialization = true;
6525      }
6526    } else if (isFriend && isFunctionTemplateSpecialization) {
6527      // This combination is only possible in a recovery case;  the user
6528      // wrote something like:
6529      //   template <> friend void foo(int);
6530      // which we're recovering from as if the user had written:
6531      //   friend void foo<>(int);
6532      // Go ahead and fake up a template id.
6533      HasExplicitTemplateArgs = true;
6534        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6535      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6536    }
6537
6538    // If it's a friend (and only if it's a friend), it's possible
6539    // that either the specialized function type or the specialized
6540    // template is dependent, and therefore matching will fail.  In
6541    // this case, don't check the specialization yet.
6542    bool InstantiationDependent = false;
6543    if (isFunctionTemplateSpecialization && isFriend &&
6544        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6545         TemplateSpecializationType::anyDependentTemplateArguments(
6546            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6547            InstantiationDependent))) {
6548      assert(HasExplicitTemplateArgs &&
6549             "friend function specialization without template args");
6550      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6551                                                       Previous))
6552        NewFD->setInvalidDecl();
6553    } else if (isFunctionTemplateSpecialization) {
6554      if (CurContext->isDependentContext() && CurContext->isRecord()
6555          && !isFriend) {
6556        isDependentClassScopeExplicitSpecialization = true;
6557        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6558          diag::ext_function_specialization_in_class :
6559          diag::err_function_specialization_in_class)
6560          << NewFD->getDeclName();
6561      } else if (CheckFunctionTemplateSpecialization(NewFD,
6562                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6563                                                     Previous))
6564        NewFD->setInvalidDecl();
6565
6566      // C++ [dcl.stc]p1:
6567      //   A storage-class-specifier shall not be specified in an explicit
6568      //   specialization (14.7.3)
6569      FunctionTemplateSpecializationInfo *Info =
6570          NewFD->getTemplateSpecializationInfo();
6571      if (Info && SC != SC_None) {
6572        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
6573          Diag(NewFD->getLocation(),
6574               diag::err_explicit_specialization_inconsistent_storage_class)
6575            << SC
6576            << FixItHint::CreateRemoval(
6577                                      D.getDeclSpec().getStorageClassSpecLoc());
6578
6579        else
6580          Diag(NewFD->getLocation(),
6581               diag::ext_explicit_specialization_storage_class)
6582            << FixItHint::CreateRemoval(
6583                                      D.getDeclSpec().getStorageClassSpecLoc());
6584      }
6585
6586    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6587      if (CheckMemberSpecialization(NewFD, Previous))
6588          NewFD->setInvalidDecl();
6589    }
6590
6591    // Perform semantic checking on the function declaration.
6592    if (!isDependentClassScopeExplicitSpecialization) {
6593      if (!NewFD->isInvalidDecl() && NewFD->isMain())
6594        CheckMain(NewFD, D.getDeclSpec());
6595
6596      if (NewFD->isInvalidDecl()) {
6597        // If this is a class member, mark the class invalid immediately.
6598        // This avoids some consistency errors later.
6599        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6600          methodDecl->getParent()->setInvalidDecl();
6601      } else
6602        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6603                                                    isExplicitSpecialization));
6604    }
6605
6606    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6607            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6608           "previous declaration set still overloaded");
6609
6610    NamedDecl *PrincipalDecl = (FunctionTemplate
6611                                ? cast<NamedDecl>(FunctionTemplate)
6612                                : NewFD);
6613
6614    if (isFriend && D.isRedeclaration()) {
6615      AccessSpecifier Access = AS_public;
6616      if (!NewFD->isInvalidDecl())
6617        Access = NewFD->getPreviousDecl()->getAccess();
6618
6619      NewFD->setAccess(Access);
6620      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6621
6622      PrincipalDecl->setObjectOfFriendDecl(true);
6623    }
6624
6625    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6626        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6627      PrincipalDecl->setNonMemberOperator();
6628
6629    // If we have a function template, check the template parameter
6630    // list. This will check and merge default template arguments.
6631    if (FunctionTemplate) {
6632      FunctionTemplateDecl *PrevTemplate =
6633                                     FunctionTemplate->getPreviousDecl();
6634      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6635                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6636                            D.getDeclSpec().isFriendSpecified()
6637                              ? (D.isFunctionDefinition()
6638                                   ? TPC_FriendFunctionTemplateDefinition
6639                                   : TPC_FriendFunctionTemplate)
6640                              : (D.getCXXScopeSpec().isSet() &&
6641                                 DC && DC->isRecord() &&
6642                                 DC->isDependentContext())
6643                                  ? TPC_ClassTemplateMember
6644                                  : TPC_FunctionTemplate);
6645    }
6646
6647    if (NewFD->isInvalidDecl()) {
6648      // Ignore all the rest of this.
6649    } else if (!D.isRedeclaration()) {
6650      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6651                                       AddToScope };
6652      // Fake up an access specifier if it's supposed to be a class member.
6653      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6654        NewFD->setAccess(AS_public);
6655
6656      // Qualified decls generally require a previous declaration.
6657      if (D.getCXXScopeSpec().isSet()) {
6658        // ...with the major exception of templated-scope or
6659        // dependent-scope friend declarations.
6660
6661        // TODO: we currently also suppress this check in dependent
6662        // contexts because (1) the parameter depth will be off when
6663        // matching friend templates and (2) we might actually be
6664        // selecting a friend based on a dependent factor.  But there
6665        // are situations where these conditions don't apply and we
6666        // can actually do this check immediately.
6667        if (isFriend &&
6668            (TemplateParamLists.size() ||
6669             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6670             CurContext->isDependentContext())) {
6671          // ignore these
6672        } else {
6673          // The user tried to provide an out-of-line definition for a
6674          // function that is a member of a class or namespace, but there
6675          // was no such member function declared (C++ [class.mfct]p2,
6676          // C++ [namespace.memdef]p2). For example:
6677          //
6678          // class X {
6679          //   void f() const;
6680          // };
6681          //
6682          // void X::f() { } // ill-formed
6683          //
6684          // Complain about this problem, and attempt to suggest close
6685          // matches (e.g., those that differ only in cv-qualifiers and
6686          // whether the parameter types are references).
6687
6688          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6689                                                               NewFD,
6690                                                               ExtraArgs)) {
6691            AddToScope = ExtraArgs.AddToScope;
6692            return Result;
6693          }
6694        }
6695
6696        // Unqualified local friend declarations are required to resolve
6697        // to something.
6698      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6699        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6700                                                             NewFD,
6701                                                             ExtraArgs)) {
6702          AddToScope = ExtraArgs.AddToScope;
6703          return Result;
6704        }
6705      }
6706
6707    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6708               !isFriend && !isFunctionTemplateSpecialization &&
6709               !isExplicitSpecialization) {
6710      // An out-of-line member function declaration must also be a
6711      // definition (C++ [dcl.meaning]p1).
6712      // Note that this is not the case for explicit specializations of
6713      // function templates or member functions of class templates, per
6714      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6715      // extension for compatibility with old SWIG code which likes to
6716      // generate them.
6717      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6718        << D.getCXXScopeSpec().getRange();
6719    }
6720  }
6721
6722  ProcessPragmaWeak(S, NewFD);
6723  checkAttributesAfterMerging(*this, *NewFD);
6724
6725  AddKnownFunctionAttributes(NewFD);
6726
6727  if (NewFD->hasAttr<OverloadableAttr>() &&
6728      !NewFD->getType()->getAs<FunctionProtoType>()) {
6729    Diag(NewFD->getLocation(),
6730         diag::err_attribute_overloadable_no_prototype)
6731      << NewFD;
6732
6733    // Turn this into a variadic function with no parameters.
6734    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6735    FunctionProtoType::ExtProtoInfo EPI;
6736    EPI.Variadic = true;
6737    EPI.ExtInfo = FT->getExtInfo();
6738
6739    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
6740    NewFD->setType(R);
6741  }
6742
6743  // If there's a #pragma GCC visibility in scope, and this isn't a class
6744  // member, set the visibility of this function.
6745  if (!DC->isRecord() && NewFD->isExternallyVisible())
6746    AddPushedVisibilityAttribute(NewFD);
6747
6748  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6749  // marking the function.
6750  AddCFAuditedAttribute(NewFD);
6751
6752  // If this is the first declaration of an extern C variable, update
6753  // the map of such variables.
6754  if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
6755      isIncompleteDeclExternC(*this, NewFD))
6756    RegisterLocallyScopedExternCDecl(NewFD, S);
6757
6758  // Set this FunctionDecl's range up to the right paren.
6759  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6760
6761  if (getLangOpts().CPlusPlus) {
6762    if (FunctionTemplate) {
6763      if (NewFD->isInvalidDecl())
6764        FunctionTemplate->setInvalidDecl();
6765      return FunctionTemplate;
6766    }
6767  }
6768
6769  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6770    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6771    if ((getLangOpts().OpenCLVersion >= 120)
6772        && (SC == SC_Static)) {
6773      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6774      D.setInvalidType();
6775    }
6776
6777    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6778    if (!NewFD->getResultType()->isVoidType()) {
6779      Diag(D.getIdentifierLoc(),
6780           diag::err_expected_kernel_void_return_type);
6781      D.setInvalidType();
6782    }
6783
6784    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6785         PE = NewFD->param_end(); PI != PE; ++PI) {
6786      ParmVarDecl *Param = *PI;
6787      QualType PT = Param->getType();
6788
6789      // OpenCL v1.2 s6.9.a:
6790      // A kernel function argument cannot be declared as a
6791      // pointer to a pointer type.
6792      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6793        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6794        D.setInvalidType();
6795      }
6796
6797      // OpenCL v1.2 s6.8 n:
6798      // A kernel function argument cannot be declared
6799      // of event_t type.
6800      if (PT->isEventT()) {
6801        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6802        D.setInvalidType();
6803      }
6804    }
6805  }
6806
6807  MarkUnusedFileScopedDecl(NewFD);
6808
6809  if (getLangOpts().CUDA)
6810    if (IdentifierInfo *II = NewFD->getIdentifier())
6811      if (!NewFD->isInvalidDecl() &&
6812          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6813        if (II->isStr("cudaConfigureCall")) {
6814          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6815            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6816
6817          Context.setcudaConfigureCallDecl(NewFD);
6818        }
6819      }
6820
6821  // Here we have an function template explicit specialization at class scope.
6822  // The actually specialization will be postponed to template instatiation
6823  // time via the ClassScopeFunctionSpecializationDecl node.
6824  if (isDependentClassScopeExplicitSpecialization) {
6825    ClassScopeFunctionSpecializationDecl *NewSpec =
6826                         ClassScopeFunctionSpecializationDecl::Create(
6827                                Context, CurContext, SourceLocation(),
6828                                cast<CXXMethodDecl>(NewFD),
6829                                HasExplicitTemplateArgs, TemplateArgs);
6830    CurContext->addDecl(NewSpec);
6831    AddToScope = false;
6832  }
6833
6834  return NewFD;
6835}
6836
6837/// \brief Perform semantic checking of a new function declaration.
6838///
6839/// Performs semantic analysis of the new function declaration
6840/// NewFD. This routine performs all semantic checking that does not
6841/// require the actual declarator involved in the declaration, and is
6842/// used both for the declaration of functions as they are parsed
6843/// (called via ActOnDeclarator) and for the declaration of functions
6844/// that have been instantiated via C++ template instantiation (called
6845/// via InstantiateDecl).
6846///
6847/// \param IsExplicitSpecialization whether this new function declaration is
6848/// an explicit specialization of the previous declaration.
6849///
6850/// This sets NewFD->isInvalidDecl() to true if there was an error.
6851///
6852/// \returns true if the function declaration is a redeclaration.
6853bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6854                                    LookupResult &Previous,
6855                                    bool IsExplicitSpecialization) {
6856  assert(!NewFD->getResultType()->isVariablyModifiedType()
6857         && "Variably modified return types are not handled here");
6858
6859  // Filter out any non-conflicting previous declarations.
6860  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6861
6862  bool Redeclaration = false;
6863  NamedDecl *OldDecl = 0;
6864
6865  // Merge or overload the declaration with an existing declaration of
6866  // the same name, if appropriate.
6867  if (!Previous.empty()) {
6868    // Determine whether NewFD is an overload of PrevDecl or
6869    // a declaration that requires merging. If it's an overload,
6870    // there's no more work to do here; we'll just add the new
6871    // function to the scope.
6872    if (!AllowOverloadingOfFunction(Previous, Context)) {
6873      NamedDecl *Candidate = Previous.getFoundDecl();
6874      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
6875        Redeclaration = true;
6876        OldDecl = Candidate;
6877      }
6878    } else {
6879      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6880                            /*NewIsUsingDecl*/ false)) {
6881      case Ovl_Match:
6882        Redeclaration = true;
6883        break;
6884
6885      case Ovl_NonFunction:
6886        Redeclaration = true;
6887        break;
6888
6889      case Ovl_Overload:
6890        Redeclaration = false;
6891        break;
6892      }
6893
6894      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6895        // If a function name is overloadable in C, then every function
6896        // with that name must be marked "overloadable".
6897        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6898          << Redeclaration << NewFD;
6899        NamedDecl *OverloadedDecl = 0;
6900        if (Redeclaration)
6901          OverloadedDecl = OldDecl;
6902        else if (!Previous.empty())
6903          OverloadedDecl = Previous.getRepresentativeDecl();
6904        if (OverloadedDecl)
6905          Diag(OverloadedDecl->getLocation(),
6906               diag::note_attribute_overloadable_prev_overload);
6907        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6908                                                        Context));
6909      }
6910    }
6911  }
6912
6913  // Check for a previous extern "C" declaration with this name.
6914  if (!Redeclaration &&
6915      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
6916    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6917    if (!Previous.empty()) {
6918      // This is an extern "C" declaration with the same name as a previous
6919      // declaration, and thus redeclares that entity...
6920      Redeclaration = true;
6921      OldDecl = Previous.getFoundDecl();
6922
6923      // ... except in the presence of __attribute__((overloadable)).
6924      if (OldDecl->hasAttr<OverloadableAttr>()) {
6925        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6926          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6927            << Redeclaration << NewFD;
6928          Diag(Previous.getFoundDecl()->getLocation(),
6929               diag::note_attribute_overloadable_prev_overload);
6930          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6931                                                          Context));
6932        }
6933        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
6934          Redeclaration = false;
6935          OldDecl = 0;
6936        }
6937      }
6938    }
6939  }
6940
6941  // C++11 [dcl.constexpr]p8:
6942  //   A constexpr specifier for a non-static member function that is not
6943  //   a constructor declares that member function to be const.
6944  //
6945  // This needs to be delayed until we know whether this is an out-of-line
6946  // definition of a static member function.
6947  //
6948  // This rule is not present in C++1y, so we produce a backwards
6949  // compatibility warning whenever it happens in C++11.
6950  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6951  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
6952      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
6953      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6954    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6955    if (FunctionTemplateDecl *OldTD =
6956          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6957      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6958    if (!OldMD || !OldMD->isStatic()) {
6959      const FunctionProtoType *FPT =
6960        MD->getType()->castAs<FunctionProtoType>();
6961      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6962      EPI.TypeQuals |= Qualifiers::Const;
6963      MD->setType(Context.getFunctionType(FPT->getResultType(),
6964                                          FPT->getArgTypes(), EPI));
6965
6966      // Warn that we did this, if we're not performing template instantiation.
6967      // In that case, we'll have warned already when the template was defined.
6968      if (ActiveTemplateInstantiations.empty()) {
6969        SourceLocation AddConstLoc;
6970        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
6971                .IgnoreParens().getAs<FunctionTypeLoc>())
6972          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
6973
6974        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
6975          << FixItHint::CreateInsertion(AddConstLoc, " const");
6976      }
6977    }
6978  }
6979
6980  if (Redeclaration) {
6981    // NewFD and OldDecl represent declarations that need to be
6982    // merged.
6983    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6984      NewFD->setInvalidDecl();
6985      return Redeclaration;
6986    }
6987
6988    Previous.clear();
6989    Previous.addDecl(OldDecl);
6990
6991    if (FunctionTemplateDecl *OldTemplateDecl
6992                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6993      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6994      FunctionTemplateDecl *NewTemplateDecl
6995        = NewFD->getDescribedFunctionTemplate();
6996      assert(NewTemplateDecl && "Template/non-template mismatch");
6997      if (CXXMethodDecl *Method
6998            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6999        Method->setAccess(OldTemplateDecl->getAccess());
7000        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7001      }
7002
7003      // If this is an explicit specialization of a member that is a function
7004      // template, mark it as a member specialization.
7005      if (IsExplicitSpecialization &&
7006          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7007        NewTemplateDecl->setMemberSpecialization();
7008        assert(OldTemplateDecl->isMemberSpecialization());
7009      }
7010
7011    } else {
7012      // This needs to happen first so that 'inline' propagates.
7013      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7014
7015      if (isa<CXXMethodDecl>(NewFD)) {
7016        // A valid redeclaration of a C++ method must be out-of-line,
7017        // but (unfortunately) it's not necessarily a definition
7018        // because of templates, which means that the previous
7019        // declaration is not necessarily from the class definition.
7020
7021        // For just setting the access, that doesn't matter.
7022        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7023        NewFD->setAccess(oldMethod->getAccess());
7024
7025        // Update the key-function state if necessary for this ABI.
7026        if (NewFD->isInlined() &&
7027            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7028          // setNonKeyFunction needs to work with the original
7029          // declaration from the class definition, and isVirtual() is
7030          // just faster in that case, so map back to that now.
7031          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7032          if (oldMethod->isVirtual()) {
7033            Context.setNonKeyFunction(oldMethod);
7034          }
7035        }
7036      }
7037    }
7038  }
7039
7040  // Semantic checking for this function declaration (in isolation).
7041  if (getLangOpts().CPlusPlus) {
7042    // C++-specific checks.
7043    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7044      CheckConstructor(Constructor);
7045    } else if (CXXDestructorDecl *Destructor =
7046                dyn_cast<CXXDestructorDecl>(NewFD)) {
7047      CXXRecordDecl *Record = Destructor->getParent();
7048      QualType ClassType = Context.getTypeDeclType(Record);
7049
7050      // FIXME: Shouldn't we be able to perform this check even when the class
7051      // type is dependent? Both gcc and edg can handle that.
7052      if (!ClassType->isDependentType()) {
7053        DeclarationName Name
7054          = Context.DeclarationNames.getCXXDestructorName(
7055                                        Context.getCanonicalType(ClassType));
7056        if (NewFD->getDeclName() != Name) {
7057          Diag(NewFD->getLocation(), diag::err_destructor_name);
7058          NewFD->setInvalidDecl();
7059          return Redeclaration;
7060        }
7061      }
7062    } else if (CXXConversionDecl *Conversion
7063               = dyn_cast<CXXConversionDecl>(NewFD)) {
7064      ActOnConversionDeclarator(Conversion);
7065    }
7066
7067    // Find any virtual functions that this function overrides.
7068    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7069      if (!Method->isFunctionTemplateSpecialization() &&
7070          !Method->getDescribedFunctionTemplate() &&
7071          Method->isCanonicalDecl()) {
7072        if (AddOverriddenMethods(Method->getParent(), Method)) {
7073          // If the function was marked as "static", we have a problem.
7074          if (NewFD->getStorageClass() == SC_Static) {
7075            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7076          }
7077        }
7078      }
7079
7080      if (Method->isStatic())
7081        checkThisInStaticMemberFunctionType(Method);
7082    }
7083
7084    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7085    if (NewFD->isOverloadedOperator() &&
7086        CheckOverloadedOperatorDeclaration(NewFD)) {
7087      NewFD->setInvalidDecl();
7088      return Redeclaration;
7089    }
7090
7091    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7092    if (NewFD->getLiteralIdentifier() &&
7093        CheckLiteralOperatorDeclaration(NewFD)) {
7094      NewFD->setInvalidDecl();
7095      return Redeclaration;
7096    }
7097
7098    // In C++, check default arguments now that we have merged decls. Unless
7099    // the lexical context is the class, because in this case this is done
7100    // during delayed parsing anyway.
7101    if (!CurContext->isRecord())
7102      CheckCXXDefaultArguments(NewFD);
7103
7104    // If this function declares a builtin function, check the type of this
7105    // declaration against the expected type for the builtin.
7106    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7107      ASTContext::GetBuiltinTypeError Error;
7108      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7109      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7110      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7111        // The type of this function differs from the type of the builtin,
7112        // so forget about the builtin entirely.
7113        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7114      }
7115    }
7116
7117    // If this function is declared as being extern "C", then check to see if
7118    // the function returns a UDT (class, struct, or union type) that is not C
7119    // compatible, and if it does, warn the user.
7120    // But, issue any diagnostic on the first declaration only.
7121    if (NewFD->isExternC() && Previous.empty()) {
7122      QualType R = NewFD->getResultType();
7123      if (R->isIncompleteType() && !R->isVoidType())
7124        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7125            << NewFD << R;
7126      else if (!R.isPODType(Context) && !R->isVoidType() &&
7127               !R->isObjCObjectPointerType())
7128        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7129    }
7130  }
7131  return Redeclaration;
7132}
7133
7134static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7135  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7136  if (!TSI)
7137    return SourceRange();
7138
7139  TypeLoc TL = TSI->getTypeLoc();
7140  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7141  if (!FunctionTL)
7142    return SourceRange();
7143
7144  TypeLoc ResultTL = FunctionTL.getResultLoc();
7145  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7146    return ResultTL.getSourceRange();
7147
7148  return SourceRange();
7149}
7150
7151void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7152  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7153  //   static or constexpr is ill-formed.
7154  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7155  //   appear in a declaration of main.
7156  // static main is not an error under C99, but we should warn about it.
7157  // We accept _Noreturn main as an extension.
7158  if (FD->getStorageClass() == SC_Static)
7159    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7160         ? diag::err_static_main : diag::warn_static_main)
7161      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7162  if (FD->isInlineSpecified())
7163    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7164      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7165  if (DS.isNoreturnSpecified()) {
7166    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7167    SourceRange NoreturnRange(NoreturnLoc,
7168                              PP.getLocForEndOfToken(NoreturnLoc));
7169    Diag(NoreturnLoc, diag::ext_noreturn_main);
7170    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7171      << FixItHint::CreateRemoval(NoreturnRange);
7172  }
7173  if (FD->isConstexpr()) {
7174    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7175      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7176    FD->setConstexpr(false);
7177  }
7178
7179  QualType T = FD->getType();
7180  assert(T->isFunctionType() && "function decl is not of function type");
7181  const FunctionType* FT = T->castAs<FunctionType>();
7182
7183  // All the standards say that main() should should return 'int'.
7184  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7185    // In C and C++, main magically returns 0 if you fall off the end;
7186    // set the flag which tells us that.
7187    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7188    FD->setHasImplicitReturnZero(true);
7189
7190  // In C with GNU extensions we allow main() to have non-integer return
7191  // type, but we should warn about the extension, and we disable the
7192  // implicit-return-zero rule.
7193  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7194    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7195
7196    SourceRange ResultRange = getResultSourceRange(FD);
7197    if (ResultRange.isValid())
7198      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7199          << FixItHint::CreateReplacement(ResultRange, "int");
7200
7201  // Otherwise, this is just a flat-out error.
7202  } else {
7203    SourceRange ResultRange = getResultSourceRange(FD);
7204    if (ResultRange.isValid())
7205      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7206          << FixItHint::CreateReplacement(ResultRange, "int");
7207    else
7208      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7209
7210    FD->setInvalidDecl(true);
7211  }
7212
7213  // Treat protoless main() as nullary.
7214  if (isa<FunctionNoProtoType>(FT)) return;
7215
7216  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7217  unsigned nparams = FTP->getNumArgs();
7218  assert(FD->getNumParams() == nparams);
7219
7220  bool HasExtraParameters = (nparams > 3);
7221
7222  // Darwin passes an undocumented fourth argument of type char**.  If
7223  // other platforms start sprouting these, the logic below will start
7224  // getting shifty.
7225  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7226    HasExtraParameters = false;
7227
7228  if (HasExtraParameters) {
7229    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7230    FD->setInvalidDecl(true);
7231    nparams = 3;
7232  }
7233
7234  // FIXME: a lot of the following diagnostics would be improved
7235  // if we had some location information about types.
7236
7237  QualType CharPP =
7238    Context.getPointerType(Context.getPointerType(Context.CharTy));
7239  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7240
7241  for (unsigned i = 0; i < nparams; ++i) {
7242    QualType AT = FTP->getArgType(i);
7243
7244    bool mismatch = true;
7245
7246    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7247      mismatch = false;
7248    else if (Expected[i] == CharPP) {
7249      // As an extension, the following forms are okay:
7250      //   char const **
7251      //   char const * const *
7252      //   char * const *
7253
7254      QualifierCollector qs;
7255      const PointerType* PT;
7256      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7257          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7258          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7259                              Context.CharTy)) {
7260        qs.removeConst();
7261        mismatch = !qs.empty();
7262      }
7263    }
7264
7265    if (mismatch) {
7266      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7267      // TODO: suggest replacing given type with expected type
7268      FD->setInvalidDecl(true);
7269    }
7270  }
7271
7272  if (nparams == 1 && !FD->isInvalidDecl()) {
7273    Diag(FD->getLocation(), diag::warn_main_one_arg);
7274  }
7275
7276  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7277    Diag(FD->getLocation(), diag::err_main_template_decl);
7278    FD->setInvalidDecl();
7279  }
7280}
7281
7282bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7283  // FIXME: Need strict checking.  In C89, we need to check for
7284  // any assignment, increment, decrement, function-calls, or
7285  // commas outside of a sizeof.  In C99, it's the same list,
7286  // except that the aforementioned are allowed in unevaluated
7287  // expressions.  Everything else falls under the
7288  // "may accept other forms of constant expressions" exception.
7289  // (We never end up here for C++, so the constant expression
7290  // rules there don't matter.)
7291  if (Init->isConstantInitializer(Context, false))
7292    return false;
7293  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7294    << Init->getSourceRange();
7295  return true;
7296}
7297
7298namespace {
7299  // Visits an initialization expression to see if OrigDecl is evaluated in
7300  // its own initialization and throws a warning if it does.
7301  class SelfReferenceChecker
7302      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7303    Sema &S;
7304    Decl *OrigDecl;
7305    bool isRecordType;
7306    bool isPODType;
7307    bool isReferenceType;
7308
7309  public:
7310    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7311
7312    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7313                                                    S(S), OrigDecl(OrigDecl) {
7314      isPODType = false;
7315      isRecordType = false;
7316      isReferenceType = false;
7317      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7318        isPODType = VD->getType().isPODType(S.Context);
7319        isRecordType = VD->getType()->isRecordType();
7320        isReferenceType = VD->getType()->isReferenceType();
7321      }
7322    }
7323
7324    // For most expressions, the cast is directly above the DeclRefExpr.
7325    // For conditional operators, the cast can be outside the conditional
7326    // operator if both expressions are DeclRefExpr's.
7327    void HandleValue(Expr *E) {
7328      if (isReferenceType)
7329        return;
7330      E = E->IgnoreParenImpCasts();
7331      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7332        HandleDeclRefExpr(DRE);
7333        return;
7334      }
7335
7336      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7337        HandleValue(CO->getTrueExpr());
7338        HandleValue(CO->getFalseExpr());
7339        return;
7340      }
7341
7342      if (isa<MemberExpr>(E)) {
7343        Expr *Base = E->IgnoreParenImpCasts();
7344        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7345          // Check for static member variables and don't warn on them.
7346          if (!isa<FieldDecl>(ME->getMemberDecl()))
7347            return;
7348          Base = ME->getBase()->IgnoreParenImpCasts();
7349        }
7350        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7351          HandleDeclRefExpr(DRE);
7352        return;
7353      }
7354    }
7355
7356    // Reference types are handled here since all uses of references are
7357    // bad, not just r-value uses.
7358    void VisitDeclRefExpr(DeclRefExpr *E) {
7359      if (isReferenceType)
7360        HandleDeclRefExpr(E);
7361    }
7362
7363    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7364      if (E->getCastKind() == CK_LValueToRValue ||
7365          (isRecordType && E->getCastKind() == CK_NoOp))
7366        HandleValue(E->getSubExpr());
7367
7368      Inherited::VisitImplicitCastExpr(E);
7369    }
7370
7371    void VisitMemberExpr(MemberExpr *E) {
7372      // Don't warn on arrays since they can be treated as pointers.
7373      if (E->getType()->canDecayToPointerType()) return;
7374
7375      // Warn when a non-static method call is followed by non-static member
7376      // field accesses, which is followed by a DeclRefExpr.
7377      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7378      bool Warn = (MD && !MD->isStatic());
7379      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7380      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7381        if (!isa<FieldDecl>(ME->getMemberDecl()))
7382          Warn = false;
7383        Base = ME->getBase()->IgnoreParenImpCasts();
7384      }
7385
7386      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7387        if (Warn)
7388          HandleDeclRefExpr(DRE);
7389        return;
7390      }
7391
7392      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7393      // Visit that expression.
7394      Visit(Base);
7395    }
7396
7397    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7398      if (E->getNumArgs() > 0)
7399        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7400          HandleDeclRefExpr(DRE);
7401
7402      Inherited::VisitCXXOperatorCallExpr(E);
7403    }
7404
7405    void VisitUnaryOperator(UnaryOperator *E) {
7406      // For POD record types, addresses of its own members are well-defined.
7407      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7408          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7409        if (!isPODType)
7410          HandleValue(E->getSubExpr());
7411        return;
7412      }
7413      Inherited::VisitUnaryOperator(E);
7414    }
7415
7416    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7417
7418    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7419      Decl* ReferenceDecl = DRE->getDecl();
7420      if (OrigDecl != ReferenceDecl) return;
7421      unsigned diag;
7422      if (isReferenceType) {
7423        diag = diag::warn_uninit_self_reference_in_reference_init;
7424      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7425        diag = diag::warn_static_self_reference_in_init;
7426      } else {
7427        diag = diag::warn_uninit_self_reference_in_init;
7428      }
7429
7430      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7431                            S.PDiag(diag)
7432                              << DRE->getNameInfo().getName()
7433                              << OrigDecl->getLocation()
7434                              << DRE->getSourceRange());
7435    }
7436  };
7437
7438  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7439  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7440                                 bool DirectInit) {
7441    // Parameters arguments are occassionially constructed with itself,
7442    // for instance, in recursive functions.  Skip them.
7443    if (isa<ParmVarDecl>(OrigDecl))
7444      return;
7445
7446    E = E->IgnoreParens();
7447
7448    // Skip checking T a = a where T is not a record or reference type.
7449    // Doing so is a way to silence uninitialized warnings.
7450    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7451      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7452        if (ICE->getCastKind() == CK_LValueToRValue)
7453          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7454            if (DRE->getDecl() == OrigDecl)
7455              return;
7456
7457    SelfReferenceChecker(S, OrigDecl).Visit(E);
7458  }
7459}
7460
7461/// AddInitializerToDecl - Adds the initializer Init to the
7462/// declaration dcl. If DirectInit is true, this is C++ direct
7463/// initialization rather than copy initialization.
7464void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7465                                bool DirectInit, bool TypeMayContainAuto) {
7466  // If there is no declaration, there was an error parsing it.  Just ignore
7467  // the initializer.
7468  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7469    return;
7470
7471  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7472    // With declarators parsed the way they are, the parser cannot
7473    // distinguish between a normal initializer and a pure-specifier.
7474    // Thus this grotesque test.
7475    IntegerLiteral *IL;
7476    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7477        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7478      CheckPureMethod(Method, Init->getSourceRange());
7479    else {
7480      Diag(Method->getLocation(), diag::err_member_function_initialization)
7481        << Method->getDeclName() << Init->getSourceRange();
7482      Method->setInvalidDecl();
7483    }
7484    return;
7485  }
7486
7487  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7488  if (!VDecl) {
7489    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7490    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7491    RealDecl->setInvalidDecl();
7492    return;
7493  }
7494
7495  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7496
7497  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7498  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7499    Expr *DeduceInit = Init;
7500    // Initializer could be a C++ direct-initializer. Deduction only works if it
7501    // contains exactly one expression.
7502    if (CXXDirectInit) {
7503      if (CXXDirectInit->getNumExprs() == 0) {
7504        // It isn't possible to write this directly, but it is possible to
7505        // end up in this situation with "auto x(some_pack...);"
7506        Diag(CXXDirectInit->getLocStart(),
7507             diag::err_auto_var_init_no_expression)
7508          << VDecl->getDeclName() << VDecl->getType()
7509          << VDecl->getSourceRange();
7510        RealDecl->setInvalidDecl();
7511        return;
7512      } else if (CXXDirectInit->getNumExprs() > 1) {
7513        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7514             diag::err_auto_var_init_multiple_expressions)
7515          << VDecl->getDeclName() << VDecl->getType()
7516          << VDecl->getSourceRange();
7517        RealDecl->setInvalidDecl();
7518        return;
7519      } else {
7520        DeduceInit = CXXDirectInit->getExpr(0);
7521      }
7522    }
7523
7524    // Expressions default to 'id' when we're in a debugger.
7525    bool DefaultedToAuto = false;
7526    if (getLangOpts().DebuggerCastResultToId &&
7527        Init->getType() == Context.UnknownAnyTy) {
7528      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7529      if (Result.isInvalid()) {
7530        VDecl->setInvalidDecl();
7531        return;
7532      }
7533      Init = Result.take();
7534      DefaultedToAuto = true;
7535    }
7536
7537    QualType DeducedType;
7538    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7539            DAR_Failed)
7540      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7541    if (DeducedType.isNull()) {
7542      RealDecl->setInvalidDecl();
7543      return;
7544    }
7545    VDecl->setType(DeducedType);
7546    assert(VDecl->isLinkageValid());
7547
7548    // In ARC, infer lifetime.
7549    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7550      VDecl->setInvalidDecl();
7551
7552    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7553    // 'id' instead of a specific object type prevents most of our usual checks.
7554    // We only want to warn outside of template instantiations, though:
7555    // inside a template, the 'id' could have come from a parameter.
7556    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7557        DeducedType->isObjCIdType()) {
7558      SourceLocation Loc =
7559          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7560      Diag(Loc, diag::warn_auto_var_is_id)
7561        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7562    }
7563
7564    // If this is a redeclaration, check that the type we just deduced matches
7565    // the previously declared type.
7566    if (VarDecl *Old = VDecl->getPreviousDecl())
7567      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7568
7569    // Check the deduced type is valid for a variable declaration.
7570    CheckVariableDeclarationType(VDecl);
7571    if (VDecl->isInvalidDecl())
7572      return;
7573  }
7574
7575  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7576    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7577    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7578    VDecl->setInvalidDecl();
7579    return;
7580  }
7581
7582  if (!VDecl->getType()->isDependentType()) {
7583    // A definition must end up with a complete type, which means it must be
7584    // complete with the restriction that an array type might be completed by
7585    // the initializer; note that later code assumes this restriction.
7586    QualType BaseDeclType = VDecl->getType();
7587    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7588      BaseDeclType = Array->getElementType();
7589    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7590                            diag::err_typecheck_decl_incomplete_type)) {
7591      RealDecl->setInvalidDecl();
7592      return;
7593    }
7594
7595    // The variable can not have an abstract class type.
7596    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7597                               diag::err_abstract_type_in_decl,
7598                               AbstractVariableType))
7599      VDecl->setInvalidDecl();
7600  }
7601
7602  const VarDecl *Def;
7603  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7604    Diag(VDecl->getLocation(), diag::err_redefinition)
7605      << VDecl->getDeclName();
7606    Diag(Def->getLocation(), diag::note_previous_definition);
7607    VDecl->setInvalidDecl();
7608    return;
7609  }
7610
7611  const VarDecl* PrevInit = 0;
7612  if (getLangOpts().CPlusPlus) {
7613    // C++ [class.static.data]p4
7614    //   If a static data member is of const integral or const
7615    //   enumeration type, its declaration in the class definition can
7616    //   specify a constant-initializer which shall be an integral
7617    //   constant expression (5.19). In that case, the member can appear
7618    //   in integral constant expressions. The member shall still be
7619    //   defined in a namespace scope if it is used in the program and the
7620    //   namespace scope definition shall not contain an initializer.
7621    //
7622    // We already performed a redefinition check above, but for static
7623    // data members we also need to check whether there was an in-class
7624    // declaration with an initializer.
7625    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7626      Diag(VDecl->getLocation(), diag::err_redefinition)
7627        << VDecl->getDeclName();
7628      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7629      return;
7630    }
7631
7632    if (VDecl->hasLocalStorage())
7633      getCurFunction()->setHasBranchProtectedScope();
7634
7635    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7636      VDecl->setInvalidDecl();
7637      return;
7638    }
7639  }
7640
7641  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7642  // a kernel function cannot be initialized."
7643  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7644    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7645    VDecl->setInvalidDecl();
7646    return;
7647  }
7648
7649  // Get the decls type and save a reference for later, since
7650  // CheckInitializerTypes may change it.
7651  QualType DclT = VDecl->getType(), SavT = DclT;
7652
7653  // Expressions default to 'id' when we're in a debugger
7654  // and we are assigning it to a variable of Objective-C pointer type.
7655  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7656      Init->getType() == Context.UnknownAnyTy) {
7657    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7658    if (Result.isInvalid()) {
7659      VDecl->setInvalidDecl();
7660      return;
7661    }
7662    Init = Result.take();
7663  }
7664
7665  // Perform the initialization.
7666  if (!VDecl->isInvalidDecl()) {
7667    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7668    InitializationKind Kind
7669      = DirectInit ?
7670          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7671                                                           Init->getLocStart(),
7672                                                           Init->getLocEnd())
7673                        : InitializationKind::CreateDirectList(
7674                                                          VDecl->getLocation())
7675                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7676                                                    Init->getLocStart());
7677
7678    MultiExprArg Args = Init;
7679    if (CXXDirectInit)
7680      Args = MultiExprArg(CXXDirectInit->getExprs(),
7681                          CXXDirectInit->getNumExprs());
7682
7683    InitializationSequence InitSeq(*this, Entity, Kind, Args);
7684    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
7685    if (Result.isInvalid()) {
7686      VDecl->setInvalidDecl();
7687      return;
7688    }
7689
7690    Init = Result.takeAs<Expr>();
7691  }
7692
7693  // Check for self-references within variable initializers.
7694  // Variables declared within a function/method body (except for references)
7695  // are handled by a dataflow analysis.
7696  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7697      VDecl->getType()->isReferenceType()) {
7698    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7699  }
7700
7701  // If the type changed, it means we had an incomplete type that was
7702  // completed by the initializer. For example:
7703  //   int ary[] = { 1, 3, 5 };
7704  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7705  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7706    VDecl->setType(DclT);
7707
7708  if (!VDecl->isInvalidDecl()) {
7709    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7710
7711    if (VDecl->hasAttr<BlocksAttr>())
7712      checkRetainCycles(VDecl, Init);
7713
7714    // It is safe to assign a weak reference into a strong variable.
7715    // Although this code can still have problems:
7716    //   id x = self.weakProp;
7717    //   id y = self.weakProp;
7718    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7719    // paths through the function. This should be revisited if
7720    // -Wrepeated-use-of-weak is made flow-sensitive.
7721    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7722      DiagnosticsEngine::Level Level =
7723        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7724                                 Init->getLocStart());
7725      if (Level != DiagnosticsEngine::Ignored)
7726        getCurFunction()->markSafeWeakUse(Init);
7727    }
7728  }
7729
7730  // The initialization is usually a full-expression.
7731  //
7732  // FIXME: If this is a braced initialization of an aggregate, it is not
7733  // an expression, and each individual field initializer is a separate
7734  // full-expression. For instance, in:
7735  //
7736  //   struct Temp { ~Temp(); };
7737  //   struct S { S(Temp); };
7738  //   struct T { S a, b; } t = { Temp(), Temp() }
7739  //
7740  // we should destroy the first Temp before constructing the second.
7741  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7742                                          false,
7743                                          VDecl->isConstexpr());
7744  if (Result.isInvalid()) {
7745    VDecl->setInvalidDecl();
7746    return;
7747  }
7748  Init = Result.take();
7749
7750  // Attach the initializer to the decl.
7751  VDecl->setInit(Init);
7752
7753  if (VDecl->isLocalVarDecl()) {
7754    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7755    // static storage duration shall be constant expressions or string literals.
7756    // C++ does not have this restriction.
7757    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7758        VDecl->getStorageClass() == SC_Static)
7759      CheckForConstantInitializer(Init, DclT);
7760  } else if (VDecl->isStaticDataMember() &&
7761             VDecl->getLexicalDeclContext()->isRecord()) {
7762    // This is an in-class initialization for a static data member, e.g.,
7763    //
7764    // struct S {
7765    //   static const int value = 17;
7766    // };
7767
7768    // C++ [class.mem]p4:
7769    //   A member-declarator can contain a constant-initializer only
7770    //   if it declares a static member (9.4) of const integral or
7771    //   const enumeration type, see 9.4.2.
7772    //
7773    // C++11 [class.static.data]p3:
7774    //   If a non-volatile const static data member is of integral or
7775    //   enumeration type, its declaration in the class definition can
7776    //   specify a brace-or-equal-initializer in which every initalizer-clause
7777    //   that is an assignment-expression is a constant expression. A static
7778    //   data member of literal type can be declared in the class definition
7779    //   with the constexpr specifier; if so, its declaration shall specify a
7780    //   brace-or-equal-initializer in which every initializer-clause that is
7781    //   an assignment-expression is a constant expression.
7782
7783    // Do nothing on dependent types.
7784    if (DclT->isDependentType()) {
7785
7786    // Allow any 'static constexpr' members, whether or not they are of literal
7787    // type. We separately check that every constexpr variable is of literal
7788    // type.
7789    } else if (VDecl->isConstexpr()) {
7790
7791    // Require constness.
7792    } else if (!DclT.isConstQualified()) {
7793      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7794        << Init->getSourceRange();
7795      VDecl->setInvalidDecl();
7796
7797    // We allow integer constant expressions in all cases.
7798    } else if (DclT->isIntegralOrEnumerationType()) {
7799      // Check whether the expression is a constant expression.
7800      SourceLocation Loc;
7801      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7802        // In C++11, a non-constexpr const static data member with an
7803        // in-class initializer cannot be volatile.
7804        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7805      else if (Init->isValueDependent())
7806        ; // Nothing to check.
7807      else if (Init->isIntegerConstantExpr(Context, &Loc))
7808        ; // Ok, it's an ICE!
7809      else if (Init->isEvaluatable(Context)) {
7810        // If we can constant fold the initializer through heroics, accept it,
7811        // but report this as a use of an extension for -pedantic.
7812        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7813          << Init->getSourceRange();
7814      } else {
7815        // Otherwise, this is some crazy unknown case.  Report the issue at the
7816        // location provided by the isIntegerConstantExpr failed check.
7817        Diag(Loc, diag::err_in_class_initializer_non_constant)
7818          << Init->getSourceRange();
7819        VDecl->setInvalidDecl();
7820      }
7821
7822    // We allow foldable floating-point constants as an extension.
7823    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7824      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7825      // it anyway and provide a fixit to add the 'constexpr'.
7826      if (getLangOpts().CPlusPlus11) {
7827        Diag(VDecl->getLocation(),
7828             diag::ext_in_class_initializer_float_type_cxx11)
7829            << DclT << Init->getSourceRange();
7830        Diag(VDecl->getLocStart(),
7831             diag::note_in_class_initializer_float_type_cxx11)
7832            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7833      } else {
7834        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7835          << DclT << Init->getSourceRange();
7836
7837        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7838          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7839            << Init->getSourceRange();
7840          VDecl->setInvalidDecl();
7841        }
7842      }
7843
7844    // Suggest adding 'constexpr' in C++11 for literal types.
7845    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
7846      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7847        << DclT << Init->getSourceRange()
7848        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7849      VDecl->setConstexpr(true);
7850
7851    } else {
7852      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7853        << DclT << Init->getSourceRange();
7854      VDecl->setInvalidDecl();
7855    }
7856  } else if (VDecl->isFileVarDecl()) {
7857    if (VDecl->getStorageClass() == SC_Extern &&
7858        (!getLangOpts().CPlusPlus ||
7859         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7860           VDecl->isExternC())))
7861      Diag(VDecl->getLocation(), diag::warn_extern_init);
7862
7863    // C99 6.7.8p4. All file scoped initializers need to be constant.
7864    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7865      CheckForConstantInitializer(Init, DclT);
7866    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
7867             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
7868             !Init->isValueDependent() && !VDecl->isConstexpr() &&
7869             !Init->isConstantInitializer(
7870                 Context, VDecl->getType()->isReferenceType())) {
7871      // GNU C++98 edits for __thread, [basic.start.init]p4:
7872      //   An object of thread storage duration shall not require dynamic
7873      //   initialization.
7874      // FIXME: Need strict checking here.
7875      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
7876      if (getLangOpts().CPlusPlus11)
7877        Diag(VDecl->getLocation(), diag::note_use_thread_local);
7878    }
7879  }
7880
7881  // We will represent direct-initialization similarly to copy-initialization:
7882  //    int x(1);  -as-> int x = 1;
7883  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7884  //
7885  // Clients that want to distinguish between the two forms, can check for
7886  // direct initializer using VarDecl::getInitStyle().
7887  // A major benefit is that clients that don't particularly care about which
7888  // exactly form was it (like the CodeGen) can handle both cases without
7889  // special case code.
7890
7891  // C++ 8.5p11:
7892  // The form of initialization (using parentheses or '=') is generally
7893  // insignificant, but does matter when the entity being initialized has a
7894  // class type.
7895  if (CXXDirectInit) {
7896    assert(DirectInit && "Call-style initializer must be direct init.");
7897    VDecl->setInitStyle(VarDecl::CallInit);
7898  } else if (DirectInit) {
7899    // This must be list-initialization. No other way is direct-initialization.
7900    VDecl->setInitStyle(VarDecl::ListInit);
7901  }
7902
7903  CheckCompleteVariableDeclaration(VDecl);
7904}
7905
7906/// ActOnInitializerError - Given that there was an error parsing an
7907/// initializer for the given declaration, try to return to some form
7908/// of sanity.
7909void Sema::ActOnInitializerError(Decl *D) {
7910  // Our main concern here is re-establishing invariants like "a
7911  // variable's type is either dependent or complete".
7912  if (!D || D->isInvalidDecl()) return;
7913
7914  VarDecl *VD = dyn_cast<VarDecl>(D);
7915  if (!VD) return;
7916
7917  // Auto types are meaningless if we can't make sense of the initializer.
7918  if (ParsingInitForAutoVars.count(D)) {
7919    D->setInvalidDecl();
7920    return;
7921  }
7922
7923  QualType Ty = VD->getType();
7924  if (Ty->isDependentType()) return;
7925
7926  // Require a complete type.
7927  if (RequireCompleteType(VD->getLocation(),
7928                          Context.getBaseElementType(Ty),
7929                          diag::err_typecheck_decl_incomplete_type)) {
7930    VD->setInvalidDecl();
7931    return;
7932  }
7933
7934  // Require an abstract type.
7935  if (RequireNonAbstractType(VD->getLocation(), Ty,
7936                             diag::err_abstract_type_in_decl,
7937                             AbstractVariableType)) {
7938    VD->setInvalidDecl();
7939    return;
7940  }
7941
7942  // Don't bother complaining about constructors or destructors,
7943  // though.
7944}
7945
7946void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7947                                  bool TypeMayContainAuto) {
7948  // If there is no declaration, there was an error parsing it. Just ignore it.
7949  if (RealDecl == 0)
7950    return;
7951
7952  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7953    QualType Type = Var->getType();
7954
7955    // C++11 [dcl.spec.auto]p3
7956    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7957      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7958        << Var->getDeclName() << Type;
7959      Var->setInvalidDecl();
7960      return;
7961    }
7962
7963    // C++11 [class.static.data]p3: A static data member can be declared with
7964    // the constexpr specifier; if so, its declaration shall specify
7965    // a brace-or-equal-initializer.
7966    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7967    // the definition of a variable [...] or the declaration of a static data
7968    // member.
7969    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7970      if (Var->isStaticDataMember())
7971        Diag(Var->getLocation(),
7972             diag::err_constexpr_static_mem_var_requires_init)
7973          << Var->getDeclName();
7974      else
7975        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7976      Var->setInvalidDecl();
7977      return;
7978    }
7979
7980    switch (Var->isThisDeclarationADefinition()) {
7981    case VarDecl::Definition:
7982      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7983        break;
7984
7985      // We have an out-of-line definition of a static data member
7986      // that has an in-class initializer, so we type-check this like
7987      // a declaration.
7988      //
7989      // Fall through
7990
7991    case VarDecl::DeclarationOnly:
7992      // It's only a declaration.
7993
7994      // Block scope. C99 6.7p7: If an identifier for an object is
7995      // declared with no linkage (C99 6.2.2p6), the type for the
7996      // object shall be complete.
7997      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7998          !Var->hasLinkage() && !Var->isInvalidDecl() &&
7999          RequireCompleteType(Var->getLocation(), Type,
8000                              diag::err_typecheck_decl_incomplete_type))
8001        Var->setInvalidDecl();
8002
8003      // Make sure that the type is not abstract.
8004      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8005          RequireNonAbstractType(Var->getLocation(), Type,
8006                                 diag::err_abstract_type_in_decl,
8007                                 AbstractVariableType))
8008        Var->setInvalidDecl();
8009      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8010          Var->getStorageClass() == SC_PrivateExtern) {
8011        Diag(Var->getLocation(), diag::warn_private_extern);
8012        Diag(Var->getLocation(), diag::note_private_extern);
8013      }
8014
8015      return;
8016
8017    case VarDecl::TentativeDefinition:
8018      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8019      // object that has file scope without an initializer, and without a
8020      // storage-class specifier or with the storage-class specifier "static",
8021      // constitutes a tentative definition. Note: A tentative definition with
8022      // external linkage is valid (C99 6.2.2p5).
8023      if (!Var->isInvalidDecl()) {
8024        if (const IncompleteArrayType *ArrayT
8025                                    = Context.getAsIncompleteArrayType(Type)) {
8026          if (RequireCompleteType(Var->getLocation(),
8027                                  ArrayT->getElementType(),
8028                                  diag::err_illegal_decl_array_incomplete_type))
8029            Var->setInvalidDecl();
8030        } else if (Var->getStorageClass() == SC_Static) {
8031          // C99 6.9.2p3: If the declaration of an identifier for an object is
8032          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8033          // declared type shall not be an incomplete type.
8034          // NOTE: code such as the following
8035          //     static struct s;
8036          //     struct s { int a; };
8037          // is accepted by gcc. Hence here we issue a warning instead of
8038          // an error and we do not invalidate the static declaration.
8039          // NOTE: to avoid multiple warnings, only check the first declaration.
8040          if (Var->getPreviousDecl() == 0)
8041            RequireCompleteType(Var->getLocation(), Type,
8042                                diag::ext_typecheck_decl_incomplete_type);
8043        }
8044      }
8045
8046      // Record the tentative definition; we're done.
8047      if (!Var->isInvalidDecl())
8048        TentativeDefinitions.push_back(Var);
8049      return;
8050    }
8051
8052    // Provide a specific diagnostic for uninitialized variable
8053    // definitions with incomplete array type.
8054    if (Type->isIncompleteArrayType()) {
8055      Diag(Var->getLocation(),
8056           diag::err_typecheck_incomplete_array_needs_initializer);
8057      Var->setInvalidDecl();
8058      return;
8059    }
8060
8061    // Provide a specific diagnostic for uninitialized variable
8062    // definitions with reference type.
8063    if (Type->isReferenceType()) {
8064      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8065        << Var->getDeclName()
8066        << SourceRange(Var->getLocation(), Var->getLocation());
8067      Var->setInvalidDecl();
8068      return;
8069    }
8070
8071    // Do not attempt to type-check the default initializer for a
8072    // variable with dependent type.
8073    if (Type->isDependentType())
8074      return;
8075
8076    if (Var->isInvalidDecl())
8077      return;
8078
8079    if (RequireCompleteType(Var->getLocation(),
8080                            Context.getBaseElementType(Type),
8081                            diag::err_typecheck_decl_incomplete_type)) {
8082      Var->setInvalidDecl();
8083      return;
8084    }
8085
8086    // The variable can not have an abstract class type.
8087    if (RequireNonAbstractType(Var->getLocation(), Type,
8088                               diag::err_abstract_type_in_decl,
8089                               AbstractVariableType)) {
8090      Var->setInvalidDecl();
8091      return;
8092    }
8093
8094    // Check for jumps past the implicit initializer.  C++0x
8095    // clarifies that this applies to a "variable with automatic
8096    // storage duration", not a "local variable".
8097    // C++11 [stmt.dcl]p3
8098    //   A program that jumps from a point where a variable with automatic
8099    //   storage duration is not in scope to a point where it is in scope is
8100    //   ill-formed unless the variable has scalar type, class type with a
8101    //   trivial default constructor and a trivial destructor, a cv-qualified
8102    //   version of one of these types, or an array of one of the preceding
8103    //   types and is declared without an initializer.
8104    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8105      if (const RecordType *Record
8106            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8107        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8108        // Mark the function for further checking even if the looser rules of
8109        // C++11 do not require such checks, so that we can diagnose
8110        // incompatibilities with C++98.
8111        if (!CXXRecord->isPOD())
8112          getCurFunction()->setHasBranchProtectedScope();
8113      }
8114    }
8115
8116    // C++03 [dcl.init]p9:
8117    //   If no initializer is specified for an object, and the
8118    //   object is of (possibly cv-qualified) non-POD class type (or
8119    //   array thereof), the object shall be default-initialized; if
8120    //   the object is of const-qualified type, the underlying class
8121    //   type shall have a user-declared default
8122    //   constructor. Otherwise, if no initializer is specified for
8123    //   a non- static object, the object and its subobjects, if
8124    //   any, have an indeterminate initial value); if the object
8125    //   or any of its subobjects are of const-qualified type, the
8126    //   program is ill-formed.
8127    // C++0x [dcl.init]p11:
8128    //   If no initializer is specified for an object, the object is
8129    //   default-initialized; [...].
8130    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8131    InitializationKind Kind
8132      = InitializationKind::CreateDefault(Var->getLocation());
8133
8134    InitializationSequence InitSeq(*this, Entity, Kind, None);
8135    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8136    if (Init.isInvalid())
8137      Var->setInvalidDecl();
8138    else if (Init.get()) {
8139      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8140      // This is important for template substitution.
8141      Var->setInitStyle(VarDecl::CallInit);
8142    }
8143
8144    CheckCompleteVariableDeclaration(Var);
8145  }
8146}
8147
8148void Sema::ActOnCXXForRangeDecl(Decl *D) {
8149  VarDecl *VD = dyn_cast<VarDecl>(D);
8150  if (!VD) {
8151    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8152    D->setInvalidDecl();
8153    return;
8154  }
8155
8156  VD->setCXXForRangeDecl(true);
8157
8158  // for-range-declaration cannot be given a storage class specifier.
8159  int Error = -1;
8160  switch (VD->getStorageClass()) {
8161  case SC_None:
8162    break;
8163  case SC_Extern:
8164    Error = 0;
8165    break;
8166  case SC_Static:
8167    Error = 1;
8168    break;
8169  case SC_PrivateExtern:
8170    Error = 2;
8171    break;
8172  case SC_Auto:
8173    Error = 3;
8174    break;
8175  case SC_Register:
8176    Error = 4;
8177    break;
8178  case SC_OpenCLWorkGroupLocal:
8179    llvm_unreachable("Unexpected storage class");
8180  }
8181  if (VD->isConstexpr())
8182    Error = 5;
8183  if (Error != -1) {
8184    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8185      << VD->getDeclName() << Error;
8186    D->setInvalidDecl();
8187  }
8188}
8189
8190void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8191  if (var->isInvalidDecl()) return;
8192
8193  // In ARC, don't allow jumps past the implicit initialization of a
8194  // local retaining variable.
8195  if (getLangOpts().ObjCAutoRefCount &&
8196      var->hasLocalStorage()) {
8197    switch (var->getType().getObjCLifetime()) {
8198    case Qualifiers::OCL_None:
8199    case Qualifiers::OCL_ExplicitNone:
8200    case Qualifiers::OCL_Autoreleasing:
8201      break;
8202
8203    case Qualifiers::OCL_Weak:
8204    case Qualifiers::OCL_Strong:
8205      getCurFunction()->setHasBranchProtectedScope();
8206      break;
8207    }
8208  }
8209
8210  if (var->isThisDeclarationADefinition() &&
8211      var->isExternallyVisible() &&
8212      getDiagnostics().getDiagnosticLevel(
8213                       diag::warn_missing_variable_declarations,
8214                       var->getLocation())) {
8215    // Find a previous declaration that's not a definition.
8216    VarDecl *prev = var->getPreviousDecl();
8217    while (prev && prev->isThisDeclarationADefinition())
8218      prev = prev->getPreviousDecl();
8219
8220    if (!prev)
8221      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8222  }
8223
8224  if (var->getTLSKind() == VarDecl::TLS_Static &&
8225      var->getType().isDestructedType()) {
8226    // GNU C++98 edits for __thread, [basic.start.term]p3:
8227    //   The type of an object with thread storage duration shall not
8228    //   have a non-trivial destructor.
8229    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8230    if (getLangOpts().CPlusPlus11)
8231      Diag(var->getLocation(), diag::note_use_thread_local);
8232  }
8233
8234  // All the following checks are C++ only.
8235  if (!getLangOpts().CPlusPlus) return;
8236
8237  QualType type = var->getType();
8238  if (type->isDependentType()) return;
8239
8240  // __block variables might require us to capture a copy-initializer.
8241  if (var->hasAttr<BlocksAttr>()) {
8242    // It's currently invalid to ever have a __block variable with an
8243    // array type; should we diagnose that here?
8244
8245    // Regardless, we don't want to ignore array nesting when
8246    // constructing this copy.
8247    if (type->isStructureOrClassType()) {
8248      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8249      SourceLocation poi = var->getLocation();
8250      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8251      ExprResult result
8252        = PerformMoveOrCopyInitialization(
8253            InitializedEntity::InitializeBlock(poi, type, false),
8254            var, var->getType(), varRef, /*AllowNRVO=*/true);
8255      if (!result.isInvalid()) {
8256        result = MaybeCreateExprWithCleanups(result);
8257        Expr *init = result.takeAs<Expr>();
8258        Context.setBlockVarCopyInits(var, init);
8259      }
8260    }
8261  }
8262
8263  Expr *Init = var->getInit();
8264  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8265  QualType baseType = Context.getBaseElementType(type);
8266
8267  if (!var->getDeclContext()->isDependentContext() &&
8268      Init && !Init->isValueDependent()) {
8269    if (IsGlobal && !var->isConstexpr() &&
8270        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8271                                            var->getLocation())
8272          != DiagnosticsEngine::Ignored &&
8273        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8274      Diag(var->getLocation(), diag::warn_global_constructor)
8275        << Init->getSourceRange();
8276
8277    if (var->isConstexpr()) {
8278      SmallVector<PartialDiagnosticAt, 8> Notes;
8279      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8280        SourceLocation DiagLoc = var->getLocation();
8281        // If the note doesn't add any useful information other than a source
8282        // location, fold it into the primary diagnostic.
8283        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8284              diag::note_invalid_subexpr_in_const_expr) {
8285          DiagLoc = Notes[0].first;
8286          Notes.clear();
8287        }
8288        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8289          << var << Init->getSourceRange();
8290        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8291          Diag(Notes[I].first, Notes[I].second);
8292      }
8293    } else if (var->isUsableInConstantExpressions(Context)) {
8294      // Check whether the initializer of a const variable of integral or
8295      // enumeration type is an ICE now, since we can't tell whether it was
8296      // initialized by a constant expression if we check later.
8297      var->checkInitIsICE();
8298    }
8299  }
8300
8301  // Require the destructor.
8302  if (const RecordType *recordType = baseType->getAs<RecordType>())
8303    FinalizeVarWithDestructor(var, recordType);
8304}
8305
8306/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8307/// any semantic actions necessary after any initializer has been attached.
8308void
8309Sema::FinalizeDeclaration(Decl *ThisDecl) {
8310  // Note that we are no longer parsing the initializer for this declaration.
8311  ParsingInitForAutoVars.erase(ThisDecl);
8312
8313  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8314  if (!VD)
8315    return;
8316
8317  const DeclContext *DC = VD->getDeclContext();
8318  // If there's a #pragma GCC visibility in scope, and this isn't a class
8319  // member, set the visibility of this variable.
8320  if (!DC->isRecord() && VD->isExternallyVisible())
8321    AddPushedVisibilityAttribute(VD);
8322
8323  if (VD->isFileVarDecl())
8324    MarkUnusedFileScopedDecl(VD);
8325
8326  // Now we have parsed the initializer and can update the table of magic
8327  // tag values.
8328  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8329      !VD->getType()->isIntegralOrEnumerationType())
8330    return;
8331
8332  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8333         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8334         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8335       I != E; ++I) {
8336    const Expr *MagicValueExpr = VD->getInit();
8337    if (!MagicValueExpr) {
8338      continue;
8339    }
8340    llvm::APSInt MagicValueInt;
8341    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8342      Diag(I->getRange().getBegin(),
8343           diag::err_type_tag_for_datatype_not_ice)
8344        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8345      continue;
8346    }
8347    if (MagicValueInt.getActiveBits() > 64) {
8348      Diag(I->getRange().getBegin(),
8349           diag::err_type_tag_for_datatype_too_large)
8350        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8351      continue;
8352    }
8353    uint64_t MagicValue = MagicValueInt.getZExtValue();
8354    RegisterTypeTagForDatatype(I->getArgumentKind(),
8355                               MagicValue,
8356                               I->getMatchingCType(),
8357                               I->getLayoutCompatible(),
8358                               I->getMustBeNull());
8359  }
8360}
8361
8362Sema::DeclGroupPtrTy
8363Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8364                              Decl **Group, unsigned NumDecls) {
8365  SmallVector<Decl*, 8> Decls;
8366
8367  if (DS.isTypeSpecOwned())
8368    Decls.push_back(DS.getRepAsDecl());
8369
8370  for (unsigned i = 0; i != NumDecls; ++i)
8371    if (Decl *D = Group[i])
8372      Decls.push_back(D);
8373
8374  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8375    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8376      getASTContext().addUnnamedTag(Tag);
8377
8378  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8379                              DS.containsPlaceholderType());
8380}
8381
8382/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8383/// group, performing any necessary semantic checking.
8384Sema::DeclGroupPtrTy
8385Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8386                           bool TypeMayContainAuto) {
8387  // C++0x [dcl.spec.auto]p7:
8388  //   If the type deduced for the template parameter U is not the same in each
8389  //   deduction, the program is ill-formed.
8390  // FIXME: When initializer-list support is added, a distinction is needed
8391  // between the deduced type U and the deduced type which 'auto' stands for.
8392  //   auto a = 0, b = { 1, 2, 3 };
8393  // is legal because the deduced type U is 'int' in both cases.
8394  if (TypeMayContainAuto && NumDecls > 1) {
8395    QualType Deduced;
8396    CanQualType DeducedCanon;
8397    VarDecl *DeducedDecl = 0;
8398    for (unsigned i = 0; i != NumDecls; ++i) {
8399      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8400        AutoType *AT = D->getType()->getContainedAutoType();
8401        // Don't reissue diagnostics when instantiating a template.
8402        if (AT && D->isInvalidDecl())
8403          break;
8404        QualType U = AT ? AT->getDeducedType() : QualType();
8405        if (!U.isNull()) {
8406          CanQualType UCanon = Context.getCanonicalType(U);
8407          if (Deduced.isNull()) {
8408            Deduced = U;
8409            DeducedCanon = UCanon;
8410            DeducedDecl = D;
8411          } else if (DeducedCanon != UCanon) {
8412            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8413                 diag::err_auto_different_deductions)
8414              << (AT->isDecltypeAuto() ? 1 : 0)
8415              << Deduced << DeducedDecl->getDeclName()
8416              << U << D->getDeclName()
8417              << DeducedDecl->getInit()->getSourceRange()
8418              << D->getInit()->getSourceRange();
8419            D->setInvalidDecl();
8420            break;
8421          }
8422        }
8423      }
8424    }
8425  }
8426
8427  ActOnDocumentableDecls(Group, NumDecls);
8428
8429  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8430}
8431
8432void Sema::ActOnDocumentableDecl(Decl *D) {
8433  ActOnDocumentableDecls(&D, 1);
8434}
8435
8436void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8437  // Don't parse the comment if Doxygen diagnostics are ignored.
8438  if (NumDecls == 0 || !Group[0])
8439   return;
8440
8441  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8442                               Group[0]->getLocation())
8443        == DiagnosticsEngine::Ignored)
8444    return;
8445
8446  if (NumDecls >= 2) {
8447    // This is a decl group.  Normally it will contain only declarations
8448    // procuded from declarator list.  But in case we have any definitions or
8449    // additional declaration references:
8450    //   'typedef struct S {} S;'
8451    //   'typedef struct S *S;'
8452    //   'struct S *pS;'
8453    // FinalizeDeclaratorGroup adds these as separate declarations.
8454    Decl *MaybeTagDecl = Group[0];
8455    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8456      Group++;
8457      NumDecls--;
8458    }
8459  }
8460
8461  // See if there are any new comments that are not attached to a decl.
8462  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8463  if (!Comments.empty() &&
8464      !Comments.back()->isAttached()) {
8465    // There is at least one comment that not attached to a decl.
8466    // Maybe it should be attached to one of these decls?
8467    //
8468    // Note that this way we pick up not only comments that precede the
8469    // declaration, but also comments that *follow* the declaration -- thanks to
8470    // the lookahead in the lexer: we've consumed the semicolon and looked
8471    // ahead through comments.
8472    for (unsigned i = 0; i != NumDecls; ++i)
8473      Context.getCommentForDecl(Group[i], &PP);
8474  }
8475}
8476
8477/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8478/// to introduce parameters into function prototype scope.
8479Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8480  const DeclSpec &DS = D.getDeclSpec();
8481
8482  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8483  // C++03 [dcl.stc]p2 also permits 'auto'.
8484  VarDecl::StorageClass StorageClass = SC_None;
8485  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8486    StorageClass = SC_Register;
8487  } else if (getLangOpts().CPlusPlus &&
8488             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8489    StorageClass = SC_Auto;
8490  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8491    Diag(DS.getStorageClassSpecLoc(),
8492         diag::err_invalid_storage_class_in_func_decl);
8493    D.getMutableDeclSpec().ClearStorageClassSpecs();
8494  }
8495
8496  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8497    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8498      << DeclSpec::getSpecifierName(TSCS);
8499  if (DS.isConstexprSpecified())
8500    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8501      << 0;
8502
8503  DiagnoseFunctionSpecifiers(DS);
8504
8505  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8506  QualType parmDeclType = TInfo->getType();
8507
8508  if (getLangOpts().CPlusPlus) {
8509    // Check that there are no default arguments inside the type of this
8510    // parameter.
8511    CheckExtraCXXDefaultArguments(D);
8512
8513    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8514    if (D.getCXXScopeSpec().isSet()) {
8515      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8516        << D.getCXXScopeSpec().getRange();
8517      D.getCXXScopeSpec().clear();
8518    }
8519  }
8520
8521  // Ensure we have a valid name
8522  IdentifierInfo *II = 0;
8523  if (D.hasName()) {
8524    II = D.getIdentifier();
8525    if (!II) {
8526      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8527        << GetNameForDeclarator(D).getName().getAsString();
8528      D.setInvalidType(true);
8529    }
8530  }
8531
8532  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8533  if (II) {
8534    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8535                   ForRedeclaration);
8536    LookupName(R, S);
8537    if (R.isSingleResult()) {
8538      NamedDecl *PrevDecl = R.getFoundDecl();
8539      if (PrevDecl->isTemplateParameter()) {
8540        // Maybe we will complain about the shadowed template parameter.
8541        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8542        // Just pretend that we didn't see the previous declaration.
8543        PrevDecl = 0;
8544      } else if (S->isDeclScope(PrevDecl)) {
8545        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8546        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8547
8548        // Recover by removing the name
8549        II = 0;
8550        D.SetIdentifier(0, D.getIdentifierLoc());
8551        D.setInvalidType(true);
8552      }
8553    }
8554  }
8555
8556  // Temporarily put parameter variables in the translation unit, not
8557  // the enclosing context.  This prevents them from accidentally
8558  // looking like class members in C++.
8559  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8560                                    D.getLocStart(),
8561                                    D.getIdentifierLoc(), II,
8562                                    parmDeclType, TInfo,
8563                                    StorageClass);
8564
8565  if (D.isInvalidType())
8566    New->setInvalidDecl();
8567
8568  assert(S->isFunctionPrototypeScope());
8569  assert(S->getFunctionPrototypeDepth() >= 1);
8570  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8571                    S->getNextFunctionPrototypeIndex());
8572
8573  // Add the parameter declaration into this scope.
8574  S->AddDecl(New);
8575  if (II)
8576    IdResolver.AddDecl(New);
8577
8578  ProcessDeclAttributes(S, New, D);
8579
8580  if (D.getDeclSpec().isModulePrivateSpecified())
8581    Diag(New->getLocation(), diag::err_module_private_local)
8582      << 1 << New->getDeclName()
8583      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8584      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8585
8586  if (New->hasAttr<BlocksAttr>()) {
8587    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8588  }
8589  return New;
8590}
8591
8592/// \brief Synthesizes a variable for a parameter arising from a
8593/// typedef.
8594ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8595                                              SourceLocation Loc,
8596                                              QualType T) {
8597  /* FIXME: setting StartLoc == Loc.
8598     Would it be worth to modify callers so as to provide proper source
8599     location for the unnamed parameters, embedding the parameter's type? */
8600  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8601                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8602                                           SC_None, 0);
8603  Param->setImplicit();
8604  return Param;
8605}
8606
8607void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8608                                    ParmVarDecl * const *ParamEnd) {
8609  // Don't diagnose unused-parameter errors in template instantiations; we
8610  // will already have done so in the template itself.
8611  if (!ActiveTemplateInstantiations.empty())
8612    return;
8613
8614  for (; Param != ParamEnd; ++Param) {
8615    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8616        !(*Param)->hasAttr<UnusedAttr>()) {
8617      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8618        << (*Param)->getDeclName();
8619    }
8620  }
8621}
8622
8623void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8624                                                  ParmVarDecl * const *ParamEnd,
8625                                                  QualType ReturnTy,
8626                                                  NamedDecl *D) {
8627  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8628    return;
8629
8630  // Warn if the return value is pass-by-value and larger than the specified
8631  // threshold.
8632  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8633    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8634    if (Size > LangOpts.NumLargeByValueCopy)
8635      Diag(D->getLocation(), diag::warn_return_value_size)
8636          << D->getDeclName() << Size;
8637  }
8638
8639  // Warn if any parameter is pass-by-value and larger than the specified
8640  // threshold.
8641  for (; Param != ParamEnd; ++Param) {
8642    QualType T = (*Param)->getType();
8643    if (T->isDependentType() || !T.isPODType(Context))
8644      continue;
8645    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8646    if (Size > LangOpts.NumLargeByValueCopy)
8647      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8648          << (*Param)->getDeclName() << Size;
8649  }
8650}
8651
8652ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8653                                  SourceLocation NameLoc, IdentifierInfo *Name,
8654                                  QualType T, TypeSourceInfo *TSInfo,
8655                                  VarDecl::StorageClass StorageClass) {
8656  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8657  if (getLangOpts().ObjCAutoRefCount &&
8658      T.getObjCLifetime() == Qualifiers::OCL_None &&
8659      T->isObjCLifetimeType()) {
8660
8661    Qualifiers::ObjCLifetime lifetime;
8662
8663    // Special cases for arrays:
8664    //   - if it's const, use __unsafe_unretained
8665    //   - otherwise, it's an error
8666    if (T->isArrayType()) {
8667      if (!T.isConstQualified()) {
8668        DelayedDiagnostics.add(
8669            sema::DelayedDiagnostic::makeForbiddenType(
8670            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8671      }
8672      lifetime = Qualifiers::OCL_ExplicitNone;
8673    } else {
8674      lifetime = T->getObjCARCImplicitLifetime();
8675    }
8676    T = Context.getLifetimeQualifiedType(T, lifetime);
8677  }
8678
8679  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8680                                         Context.getAdjustedParameterType(T),
8681                                         TSInfo,
8682                                         StorageClass, 0);
8683
8684  // Parameters can not be abstract class types.
8685  // For record types, this is done by the AbstractClassUsageDiagnoser once
8686  // the class has been completely parsed.
8687  if (!CurContext->isRecord() &&
8688      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8689                             AbstractParamType))
8690    New->setInvalidDecl();
8691
8692  // Parameter declarators cannot be interface types. All ObjC objects are
8693  // passed by reference.
8694  if (T->isObjCObjectType()) {
8695    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8696    Diag(NameLoc,
8697         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8698      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8699    T = Context.getObjCObjectPointerType(T);
8700    New->setType(T);
8701  }
8702
8703  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8704  // duration shall not be qualified by an address-space qualifier."
8705  // Since all parameters have automatic store duration, they can not have
8706  // an address space.
8707  if (T.getAddressSpace() != 0) {
8708    Diag(NameLoc, diag::err_arg_with_address_space);
8709    New->setInvalidDecl();
8710  }
8711
8712  return New;
8713}
8714
8715void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8716                                           SourceLocation LocAfterDecls) {
8717  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8718
8719  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8720  // for a K&R function.
8721  if (!FTI.hasPrototype) {
8722    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8723      --i;
8724      if (FTI.ArgInfo[i].Param == 0) {
8725        SmallString<256> Code;
8726        llvm::raw_svector_ostream(Code) << "  int "
8727                                        << FTI.ArgInfo[i].Ident->getName()
8728                                        << ";\n";
8729        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8730          << FTI.ArgInfo[i].Ident
8731          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8732
8733        // Implicitly declare the argument as type 'int' for lack of a better
8734        // type.
8735        AttributeFactory attrs;
8736        DeclSpec DS(attrs);
8737        const char* PrevSpec; // unused
8738        unsigned DiagID; // unused
8739        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8740                           PrevSpec, DiagID);
8741        // Use the identifier location for the type source range.
8742        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8743        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8744        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8745        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8746        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8747      }
8748    }
8749  }
8750}
8751
8752Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8753  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8754  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8755  Scope *ParentScope = FnBodyScope->getParent();
8756
8757  D.setFunctionDefinitionKind(FDK_Definition);
8758  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8759  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8760}
8761
8762static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8763                             const FunctionDecl*& PossibleZeroParamPrototype) {
8764  // Don't warn about invalid declarations.
8765  if (FD->isInvalidDecl())
8766    return false;
8767
8768  // Or declarations that aren't global.
8769  if (!FD->isGlobal())
8770    return false;
8771
8772  // Don't warn about C++ member functions.
8773  if (isa<CXXMethodDecl>(FD))
8774    return false;
8775
8776  // Don't warn about 'main'.
8777  if (FD->isMain())
8778    return false;
8779
8780  // Don't warn about inline functions.
8781  if (FD->isInlined())
8782    return false;
8783
8784  // Don't warn about function templates.
8785  if (FD->getDescribedFunctionTemplate())
8786    return false;
8787
8788  // Don't warn about function template specializations.
8789  if (FD->isFunctionTemplateSpecialization())
8790    return false;
8791
8792  // Don't warn for OpenCL kernels.
8793  if (FD->hasAttr<OpenCLKernelAttr>())
8794    return false;
8795
8796  bool MissingPrototype = true;
8797  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8798       Prev; Prev = Prev->getPreviousDecl()) {
8799    // Ignore any declarations that occur in function or method
8800    // scope, because they aren't visible from the header.
8801    if (Prev->getDeclContext()->isFunctionOrMethod())
8802      continue;
8803
8804    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8805    if (FD->getNumParams() == 0)
8806      PossibleZeroParamPrototype = Prev;
8807    break;
8808  }
8809
8810  return MissingPrototype;
8811}
8812
8813void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8814  // Don't complain if we're in GNU89 mode and the previous definition
8815  // was an extern inline function.
8816  const FunctionDecl *Definition;
8817  if (FD->isDefined(Definition) &&
8818      !canRedefineFunction(Definition, getLangOpts())) {
8819    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8820        Definition->getStorageClass() == SC_Extern)
8821      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8822        << FD->getDeclName() << getLangOpts().CPlusPlus;
8823    else
8824      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8825    Diag(Definition->getLocation(), diag::note_previous_definition);
8826    FD->setInvalidDecl();
8827  }
8828}
8829
8830Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8831  // Clear the last template instantiation error context.
8832  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8833
8834  if (!D)
8835    return D;
8836  FunctionDecl *FD = 0;
8837
8838  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8839    FD = FunTmpl->getTemplatedDecl();
8840  else
8841    FD = cast<FunctionDecl>(D);
8842
8843  // Enter a new function scope
8844  PushFunctionScope();
8845
8846  // See if this is a redefinition.
8847  if (!FD->isLateTemplateParsed())
8848    CheckForFunctionRedefinition(FD);
8849
8850  // Builtin functions cannot be defined.
8851  if (unsigned BuiltinID = FD->getBuiltinID()) {
8852    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
8853        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
8854      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8855      FD->setInvalidDecl();
8856    }
8857  }
8858
8859  // The return type of a function definition must be complete
8860  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8861  QualType ResultType = FD->getResultType();
8862  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8863      !FD->isInvalidDecl() &&
8864      RequireCompleteType(FD->getLocation(), ResultType,
8865                          diag::err_func_def_incomplete_result))
8866    FD->setInvalidDecl();
8867
8868  // GNU warning -Wmissing-prototypes:
8869  //   Warn if a global function is defined without a previous
8870  //   prototype declaration. This warning is issued even if the
8871  //   definition itself provides a prototype. The aim is to detect
8872  //   global functions that fail to be declared in header files.
8873  const FunctionDecl *PossibleZeroParamPrototype = 0;
8874  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8875    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8876
8877    if (PossibleZeroParamPrototype) {
8878      // We found a declaration that is not a prototype,
8879      // but that could be a zero-parameter prototype
8880      if (TypeSourceInfo *TI =
8881              PossibleZeroParamPrototype->getTypeSourceInfo()) {
8882        TypeLoc TL = TI->getTypeLoc();
8883        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8884          Diag(PossibleZeroParamPrototype->getLocation(),
8885               diag::note_declaration_not_a_prototype)
8886            << PossibleZeroParamPrototype
8887            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8888      }
8889    }
8890  }
8891
8892  if (FnBodyScope)
8893    PushDeclContext(FnBodyScope, FD);
8894
8895  // Check the validity of our function parameters
8896  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8897                           /*CheckParameterNames=*/true);
8898
8899  // Introduce our parameters into the function scope
8900  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8901    ParmVarDecl *Param = FD->getParamDecl(p);
8902    Param->setOwningFunction(FD);
8903
8904    // If this has an identifier, add it to the scope stack.
8905    if (Param->getIdentifier() && FnBodyScope) {
8906      CheckShadow(FnBodyScope, Param);
8907
8908      PushOnScopeChains(Param, FnBodyScope);
8909    }
8910  }
8911
8912  // If we had any tags defined in the function prototype,
8913  // introduce them into the function scope.
8914  if (FnBodyScope) {
8915    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8916           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8917      NamedDecl *D = *I;
8918
8919      // Some of these decls (like enums) may have been pinned to the translation unit
8920      // for lack of a real context earlier. If so, remove from the translation unit
8921      // and reattach to the current context.
8922      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8923        // Is the decl actually in the context?
8924        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8925               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8926          if (*DI == D) {
8927            Context.getTranslationUnitDecl()->removeDecl(D);
8928            break;
8929          }
8930        }
8931        // Either way, reassign the lexical decl context to our FunctionDecl.
8932        D->setLexicalDeclContext(CurContext);
8933      }
8934
8935      // If the decl has a non-null name, make accessible in the current scope.
8936      if (!D->getName().empty())
8937        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8938
8939      // Similarly, dive into enums and fish their constants out, making them
8940      // accessible in this scope.
8941      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8942        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8943               EE = ED->enumerator_end(); EI != EE; ++EI)
8944          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8945      }
8946    }
8947  }
8948
8949  // Ensure that the function's exception specification is instantiated.
8950  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8951    ResolveExceptionSpec(D->getLocation(), FPT);
8952
8953  // Checking attributes of current function definition
8954  // dllimport attribute.
8955  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8956  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8957    // dllimport attribute cannot be directly applied to definition.
8958    // Microsoft accepts dllimport for functions defined within class scope.
8959    if (!DA->isInherited() &&
8960        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8961      Diag(FD->getLocation(),
8962           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8963        << "dllimport";
8964      FD->setInvalidDecl();
8965      return D;
8966    }
8967
8968    // Visual C++ appears to not think this is an issue, so only issue
8969    // a warning when Microsoft extensions are disabled.
8970    if (!LangOpts.MicrosoftExt) {
8971      // If a symbol previously declared dllimport is later defined, the
8972      // attribute is ignored in subsequent references, and a warning is
8973      // emitted.
8974      Diag(FD->getLocation(),
8975           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8976        << FD->getName() << "dllimport";
8977    }
8978  }
8979  // We want to attach documentation to original Decl (which might be
8980  // a function template).
8981  ActOnDocumentableDecl(D);
8982  return D;
8983}
8984
8985/// \brief Given the set of return statements within a function body,
8986/// compute the variables that are subject to the named return value
8987/// optimization.
8988///
8989/// Each of the variables that is subject to the named return value
8990/// optimization will be marked as NRVO variables in the AST, and any
8991/// return statement that has a marked NRVO variable as its NRVO candidate can
8992/// use the named return value optimization.
8993///
8994/// This function applies a very simplistic algorithm for NRVO: if every return
8995/// statement in the function has the same NRVO candidate, that candidate is
8996/// the NRVO variable.
8997///
8998/// FIXME: Employ a smarter algorithm that accounts for multiple return
8999/// statements and the lifetimes of the NRVO candidates. We should be able to
9000/// find a maximal set of NRVO variables.
9001void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9002  ReturnStmt **Returns = Scope->Returns.data();
9003
9004  const VarDecl *NRVOCandidate = 0;
9005  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9006    if (!Returns[I]->getNRVOCandidate())
9007      return;
9008
9009    if (!NRVOCandidate)
9010      NRVOCandidate = Returns[I]->getNRVOCandidate();
9011    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9012      return;
9013  }
9014
9015  if (NRVOCandidate)
9016    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9017}
9018
9019bool Sema::canSkipFunctionBody(Decl *D) {
9020  if (!Consumer.shouldSkipFunctionBody(D))
9021    return false;
9022
9023  if (isa<ObjCMethodDecl>(D))
9024    return true;
9025
9026  FunctionDecl *FD = 0;
9027  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9028    FD = FTD->getTemplatedDecl();
9029  else
9030    FD = cast<FunctionDecl>(D);
9031
9032  // We cannot skip the body of a function (or function template) which is
9033  // constexpr, since we may need to evaluate its body in order to parse the
9034  // rest of the file.
9035  // We cannot skip the body of a function with an undeduced return type,
9036  // because any callers of that function need to know the type.
9037  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9038}
9039
9040Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9041  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9042    FD->setHasSkippedBody();
9043  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9044    MD->setHasSkippedBody();
9045  return ActOnFinishFunctionBody(Decl, 0);
9046}
9047
9048Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9049  return ActOnFinishFunctionBody(D, BodyArg, false);
9050}
9051
9052Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9053                                    bool IsInstantiation) {
9054  FunctionDecl *FD = 0;
9055  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9056  if (FunTmpl)
9057    FD = FunTmpl->getTemplatedDecl();
9058  else
9059    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9060
9061  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9062  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9063
9064  if (FD) {
9065    FD->setBody(Body);
9066
9067    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9068        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9069      // If the function has a deduced result type but contains no 'return'
9070      // statements, the result type as written must be exactly 'auto', and
9071      // the deduced result type is 'void'.
9072      if (!FD->getResultType()->getAs<AutoType>()) {
9073        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9074          << FD->getResultType();
9075        FD->setInvalidDecl();
9076      } else {
9077        // Substitute 'void' for the 'auto' in the type.
9078        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9079            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9080        Context.adjustDeducedFunctionResultType(
9081            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9082      }
9083    }
9084
9085    // The only way to be included in UndefinedButUsed is if there is an
9086    // ODR use before the definition. Avoid the expensive map lookup if this
9087    // is the first declaration.
9088    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9089      if (!FD->isExternallyVisible())
9090        UndefinedButUsed.erase(FD);
9091      else if (FD->isInlined() &&
9092               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9093               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9094        UndefinedButUsed.erase(FD);
9095    }
9096
9097    // If the function implicitly returns zero (like 'main') or is naked,
9098    // don't complain about missing return statements.
9099    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9100      WP.disableCheckFallThrough();
9101
9102    // MSVC permits the use of pure specifier (=0) on function definition,
9103    // defined at class scope, warn about this non standard construct.
9104    if (getLangOpts().MicrosoftExt && FD->isPure())
9105      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9106
9107    if (!FD->isInvalidDecl()) {
9108      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9109      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9110                                             FD->getResultType(), FD);
9111
9112      // If this is a constructor, we need a vtable.
9113      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9114        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9115
9116      // Try to apply the named return value optimization. We have to check
9117      // if we can do this here because lambdas keep return statements around
9118      // to deduce an implicit return type.
9119      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9120          !FD->isDependentContext())
9121        computeNRVO(Body, getCurFunction());
9122    }
9123
9124    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9125           "Function parsing confused");
9126  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9127    assert(MD == getCurMethodDecl() && "Method parsing confused");
9128    MD->setBody(Body);
9129    if (!MD->isInvalidDecl()) {
9130      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9131      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9132                                             MD->getResultType(), MD);
9133
9134      if (Body)
9135        computeNRVO(Body, getCurFunction());
9136    }
9137    if (getCurFunction()->ObjCShouldCallSuper) {
9138      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9139        << MD->getSelector().getAsString();
9140      getCurFunction()->ObjCShouldCallSuper = false;
9141    }
9142  } else {
9143    return 0;
9144  }
9145
9146  assert(!getCurFunction()->ObjCShouldCallSuper &&
9147         "This should only be set for ObjC methods, which should have been "
9148         "handled in the block above.");
9149
9150  // Verify and clean out per-function state.
9151  if (Body) {
9152    // C++ constructors that have function-try-blocks can't have return
9153    // statements in the handlers of that block. (C++ [except.handle]p14)
9154    // Verify this.
9155    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9156      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9157
9158    // Verify that gotos and switch cases don't jump into scopes illegally.
9159    if (getCurFunction()->NeedsScopeChecking() &&
9160        !dcl->isInvalidDecl() &&
9161        !hasAnyUnrecoverableErrorsInThisFunction() &&
9162        !PP.isCodeCompletionEnabled())
9163      DiagnoseInvalidJumps(Body);
9164
9165    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9166      if (!Destructor->getParent()->isDependentType())
9167        CheckDestructor(Destructor);
9168
9169      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9170                                             Destructor->getParent());
9171    }
9172
9173    // If any errors have occurred, clear out any temporaries that may have
9174    // been leftover. This ensures that these temporaries won't be picked up for
9175    // deletion in some later function.
9176    if (PP.getDiagnostics().hasErrorOccurred() ||
9177        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9178      DiscardCleanupsInEvaluationContext();
9179    }
9180    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9181        !isa<FunctionTemplateDecl>(dcl)) {
9182      // Since the body is valid, issue any analysis-based warnings that are
9183      // enabled.
9184      ActivePolicy = &WP;
9185    }
9186
9187    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9188        (!CheckConstexprFunctionDecl(FD) ||
9189         !CheckConstexprFunctionBody(FD, Body)))
9190      FD->setInvalidDecl();
9191
9192    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9193    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9194    assert(MaybeODRUseExprs.empty() &&
9195           "Leftover expressions for odr-use checking");
9196  }
9197
9198  if (!IsInstantiation)
9199    PopDeclContext();
9200
9201  PopFunctionScopeInfo(ActivePolicy, dcl);
9202
9203  // If any errors have occurred, clear out any temporaries that may have
9204  // been leftover. This ensures that these temporaries won't be picked up for
9205  // deletion in some later function.
9206  if (getDiagnostics().hasErrorOccurred()) {
9207    DiscardCleanupsInEvaluationContext();
9208  }
9209
9210  return dcl;
9211}
9212
9213
9214/// When we finish delayed parsing of an attribute, we must attach it to the
9215/// relevant Decl.
9216void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9217                                       ParsedAttributes &Attrs) {
9218  // Always attach attributes to the underlying decl.
9219  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9220    D = TD->getTemplatedDecl();
9221  ProcessDeclAttributeList(S, D, Attrs.getList());
9222
9223  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9224    if (Method->isStatic())
9225      checkThisInStaticMemberFunctionAttributes(Method);
9226}
9227
9228
9229/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9230/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9231NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9232                                          IdentifierInfo &II, Scope *S) {
9233  // Before we produce a declaration for an implicitly defined
9234  // function, see whether there was a locally-scoped declaration of
9235  // this name as a function or variable. If so, use that
9236  // (non-visible) declaration, and complain about it.
9237  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9238    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9239    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9240    return ExternCPrev;
9241  }
9242
9243  // Extension in C99.  Legal in C90, but warn about it.
9244  unsigned diag_id;
9245  if (II.getName().startswith("__builtin_"))
9246    diag_id = diag::warn_builtin_unknown;
9247  else if (getLangOpts().C99)
9248    diag_id = diag::ext_implicit_function_decl;
9249  else
9250    diag_id = diag::warn_implicit_function_decl;
9251  Diag(Loc, diag_id) << &II;
9252
9253  // Because typo correction is expensive, only do it if the implicit
9254  // function declaration is going to be treated as an error.
9255  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9256    TypoCorrection Corrected;
9257    DeclFilterCCC<FunctionDecl> Validator;
9258    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9259                                      LookupOrdinaryName, S, 0, Validator))) {
9260      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9261      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9262      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9263
9264      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9265          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9266
9267      if (Func->getLocation().isValid()
9268          && !II.getName().startswith("__builtin_"))
9269        Diag(Func->getLocation(), diag::note_previous_decl)
9270            << CorrectedQuotedStr;
9271    }
9272  }
9273
9274  // Set a Declarator for the implicit definition: int foo();
9275  const char *Dummy;
9276  AttributeFactory attrFactory;
9277  DeclSpec DS(attrFactory);
9278  unsigned DiagID;
9279  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9280  (void)Error; // Silence warning.
9281  assert(!Error && "Error setting up implicit decl!");
9282  SourceLocation NoLoc;
9283  Declarator D(DS, Declarator::BlockContext);
9284  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9285                                             /*IsAmbiguous=*/false,
9286                                             /*RParenLoc=*/NoLoc,
9287                                             /*ArgInfo=*/0,
9288                                             /*NumArgs=*/0,
9289                                             /*EllipsisLoc=*/NoLoc,
9290                                             /*RParenLoc=*/NoLoc,
9291                                             /*TypeQuals=*/0,
9292                                             /*RefQualifierIsLvalueRef=*/true,
9293                                             /*RefQualifierLoc=*/NoLoc,
9294                                             /*ConstQualifierLoc=*/NoLoc,
9295                                             /*VolatileQualifierLoc=*/NoLoc,
9296                                             /*MutableLoc=*/NoLoc,
9297                                             EST_None,
9298                                             /*ESpecLoc=*/NoLoc,
9299                                             /*Exceptions=*/0,
9300                                             /*ExceptionRanges=*/0,
9301                                             /*NumExceptions=*/0,
9302                                             /*NoexceptExpr=*/0,
9303                                             Loc, Loc, D),
9304                DS.getAttributes(),
9305                SourceLocation());
9306  D.SetIdentifier(&II, Loc);
9307
9308  // Insert this function into translation-unit scope.
9309
9310  DeclContext *PrevDC = CurContext;
9311  CurContext = Context.getTranslationUnitDecl();
9312
9313  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9314  FD->setImplicit();
9315
9316  CurContext = PrevDC;
9317
9318  AddKnownFunctionAttributes(FD);
9319
9320  return FD;
9321}
9322
9323/// \brief Adds any function attributes that we know a priori based on
9324/// the declaration of this function.
9325///
9326/// These attributes can apply both to implicitly-declared builtins
9327/// (like __builtin___printf_chk) or to library-declared functions
9328/// like NSLog or printf.
9329///
9330/// We need to check for duplicate attributes both here and where user-written
9331/// attributes are applied to declarations.
9332void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9333  if (FD->isInvalidDecl())
9334    return;
9335
9336  // If this is a built-in function, map its builtin attributes to
9337  // actual attributes.
9338  if (unsigned BuiltinID = FD->getBuiltinID()) {
9339    // Handle printf-formatting attributes.
9340    unsigned FormatIdx;
9341    bool HasVAListArg;
9342    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9343      if (!FD->getAttr<FormatAttr>()) {
9344        const char *fmt = "printf";
9345        unsigned int NumParams = FD->getNumParams();
9346        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9347            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9348          fmt = "NSString";
9349        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9350                                               fmt, FormatIdx+1,
9351                                               HasVAListArg ? 0 : FormatIdx+2));
9352      }
9353    }
9354    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9355                                             HasVAListArg)) {
9356     if (!FD->getAttr<FormatAttr>())
9357       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9358                                              "scanf", FormatIdx+1,
9359                                              HasVAListArg ? 0 : FormatIdx+2));
9360    }
9361
9362    // Mark const if we don't care about errno and that is the only
9363    // thing preventing the function from being const. This allows
9364    // IRgen to use LLVM intrinsics for such functions.
9365    if (!getLangOpts().MathErrno &&
9366        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9367      if (!FD->getAttr<ConstAttr>())
9368        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9369    }
9370
9371    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9372        !FD->getAttr<ReturnsTwiceAttr>())
9373      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9374    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9375      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9376    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9377      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9378  }
9379
9380  IdentifierInfo *Name = FD->getIdentifier();
9381  if (!Name)
9382    return;
9383  if ((!getLangOpts().CPlusPlus &&
9384       FD->getDeclContext()->isTranslationUnit()) ||
9385      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9386       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9387       LinkageSpecDecl::lang_c)) {
9388    // Okay: this could be a libc/libm/Objective-C function we know
9389    // about.
9390  } else
9391    return;
9392
9393  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9394    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9395    // target-specific builtins, perhaps?
9396    if (!FD->getAttr<FormatAttr>())
9397      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9398                                             "printf", 2,
9399                                             Name->isStr("vasprintf") ? 0 : 3));
9400  }
9401
9402  if (Name->isStr("__CFStringMakeConstantString")) {
9403    // We already have a __builtin___CFStringMakeConstantString,
9404    // but builds that use -fno-constant-cfstrings don't go through that.
9405    if (!FD->getAttr<FormatArgAttr>())
9406      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9407  }
9408}
9409
9410TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9411                                    TypeSourceInfo *TInfo) {
9412  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9413  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9414
9415  if (!TInfo) {
9416    assert(D.isInvalidType() && "no declarator info for valid type");
9417    TInfo = Context.getTrivialTypeSourceInfo(T);
9418  }
9419
9420  // Scope manipulation handled by caller.
9421  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9422                                           D.getLocStart(),
9423                                           D.getIdentifierLoc(),
9424                                           D.getIdentifier(),
9425                                           TInfo);
9426
9427  // Bail out immediately if we have an invalid declaration.
9428  if (D.isInvalidType()) {
9429    NewTD->setInvalidDecl();
9430    return NewTD;
9431  }
9432
9433  if (D.getDeclSpec().isModulePrivateSpecified()) {
9434    if (CurContext->isFunctionOrMethod())
9435      Diag(NewTD->getLocation(), diag::err_module_private_local)
9436        << 2 << NewTD->getDeclName()
9437        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9438        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9439    else
9440      NewTD->setModulePrivate();
9441  }
9442
9443  // C++ [dcl.typedef]p8:
9444  //   If the typedef declaration defines an unnamed class (or
9445  //   enum), the first typedef-name declared by the declaration
9446  //   to be that class type (or enum type) is used to denote the
9447  //   class type (or enum type) for linkage purposes only.
9448  // We need to check whether the type was declared in the declaration.
9449  switch (D.getDeclSpec().getTypeSpecType()) {
9450  case TST_enum:
9451  case TST_struct:
9452  case TST_interface:
9453  case TST_union:
9454  case TST_class: {
9455    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9456
9457    // Do nothing if the tag is not anonymous or already has an
9458    // associated typedef (from an earlier typedef in this decl group).
9459    if (tagFromDeclSpec->getIdentifier()) break;
9460    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9461
9462    // A well-formed anonymous tag must always be a TUK_Definition.
9463    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9464
9465    // The type must match the tag exactly;  no qualifiers allowed.
9466    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9467      break;
9468
9469    // Otherwise, set this is the anon-decl typedef for the tag.
9470    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9471    break;
9472  }
9473
9474  default:
9475    break;
9476  }
9477
9478  return NewTD;
9479}
9480
9481
9482/// \brief Check that this is a valid underlying type for an enum declaration.
9483bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9484  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9485  QualType T = TI->getType();
9486
9487  if (T->isDependentType())
9488    return false;
9489
9490  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9491    if (BT->isInteger())
9492      return false;
9493
9494  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9495  return true;
9496}
9497
9498/// Check whether this is a valid redeclaration of a previous enumeration.
9499/// \return true if the redeclaration was invalid.
9500bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9501                                  QualType EnumUnderlyingTy,
9502                                  const EnumDecl *Prev) {
9503  bool IsFixed = !EnumUnderlyingTy.isNull();
9504
9505  if (IsScoped != Prev->isScoped()) {
9506    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9507      << Prev->isScoped();
9508    Diag(Prev->getLocation(), diag::note_previous_use);
9509    return true;
9510  }
9511
9512  if (IsFixed && Prev->isFixed()) {
9513    if (!EnumUnderlyingTy->isDependentType() &&
9514        !Prev->getIntegerType()->isDependentType() &&
9515        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9516                                        Prev->getIntegerType())) {
9517      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9518        << EnumUnderlyingTy << Prev->getIntegerType();
9519      Diag(Prev->getLocation(), diag::note_previous_use);
9520      return true;
9521    }
9522  } else if (IsFixed != Prev->isFixed()) {
9523    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9524      << Prev->isFixed();
9525    Diag(Prev->getLocation(), diag::note_previous_use);
9526    return true;
9527  }
9528
9529  return false;
9530}
9531
9532/// \brief Get diagnostic %select index for tag kind for
9533/// redeclaration diagnostic message.
9534/// WARNING: Indexes apply to particular diagnostics only!
9535///
9536/// \returns diagnostic %select index.
9537static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9538  switch (Tag) {
9539  case TTK_Struct: return 0;
9540  case TTK_Interface: return 1;
9541  case TTK_Class:  return 2;
9542  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9543  }
9544}
9545
9546/// \brief Determine if tag kind is a class-key compatible with
9547/// class for redeclaration (class, struct, or __interface).
9548///
9549/// \returns true iff the tag kind is compatible.
9550static bool isClassCompatTagKind(TagTypeKind Tag)
9551{
9552  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9553}
9554
9555/// \brief Determine whether a tag with a given kind is acceptable
9556/// as a redeclaration of the given tag declaration.
9557///
9558/// \returns true if the new tag kind is acceptable, false otherwise.
9559bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9560                                        TagTypeKind NewTag, bool isDefinition,
9561                                        SourceLocation NewTagLoc,
9562                                        const IdentifierInfo &Name) {
9563  // C++ [dcl.type.elab]p3:
9564  //   The class-key or enum keyword present in the
9565  //   elaborated-type-specifier shall agree in kind with the
9566  //   declaration to which the name in the elaborated-type-specifier
9567  //   refers. This rule also applies to the form of
9568  //   elaborated-type-specifier that declares a class-name or
9569  //   friend class since it can be construed as referring to the
9570  //   definition of the class. Thus, in any
9571  //   elaborated-type-specifier, the enum keyword shall be used to
9572  //   refer to an enumeration (7.2), the union class-key shall be
9573  //   used to refer to a union (clause 9), and either the class or
9574  //   struct class-key shall be used to refer to a class (clause 9)
9575  //   declared using the class or struct class-key.
9576  TagTypeKind OldTag = Previous->getTagKind();
9577  if (!isDefinition || !isClassCompatTagKind(NewTag))
9578    if (OldTag == NewTag)
9579      return true;
9580
9581  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9582    // Warn about the struct/class tag mismatch.
9583    bool isTemplate = false;
9584    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9585      isTemplate = Record->getDescribedClassTemplate();
9586
9587    if (!ActiveTemplateInstantiations.empty()) {
9588      // In a template instantiation, do not offer fix-its for tag mismatches
9589      // since they usually mess up the template instead of fixing the problem.
9590      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9591        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9592        << getRedeclDiagFromTagKind(OldTag);
9593      return true;
9594    }
9595
9596    if (isDefinition) {
9597      // On definitions, check previous tags and issue a fix-it for each
9598      // one that doesn't match the current tag.
9599      if (Previous->getDefinition()) {
9600        // Don't suggest fix-its for redefinitions.
9601        return true;
9602      }
9603
9604      bool previousMismatch = false;
9605      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9606           E(Previous->redecls_end()); I != E; ++I) {
9607        if (I->getTagKind() != NewTag) {
9608          if (!previousMismatch) {
9609            previousMismatch = true;
9610            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9611              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9612              << getRedeclDiagFromTagKind(I->getTagKind());
9613          }
9614          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9615            << getRedeclDiagFromTagKind(NewTag)
9616            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9617                 TypeWithKeyword::getTagTypeKindName(NewTag));
9618        }
9619      }
9620      return true;
9621    }
9622
9623    // Check for a previous definition.  If current tag and definition
9624    // are same type, do nothing.  If no definition, but disagree with
9625    // with previous tag type, give a warning, but no fix-it.
9626    const TagDecl *Redecl = Previous->getDefinition() ?
9627                            Previous->getDefinition() : Previous;
9628    if (Redecl->getTagKind() == NewTag) {
9629      return true;
9630    }
9631
9632    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9633      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9634      << getRedeclDiagFromTagKind(OldTag);
9635    Diag(Redecl->getLocation(), diag::note_previous_use);
9636
9637    // If there is a previous defintion, suggest a fix-it.
9638    if (Previous->getDefinition()) {
9639        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9640          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9641          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9642               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9643    }
9644
9645    return true;
9646  }
9647  return false;
9648}
9649
9650/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9651/// former case, Name will be non-null.  In the later case, Name will be null.
9652/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9653/// reference/declaration/definition of a tag.
9654Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9655                     SourceLocation KWLoc, CXXScopeSpec &SS,
9656                     IdentifierInfo *Name, SourceLocation NameLoc,
9657                     AttributeList *Attr, AccessSpecifier AS,
9658                     SourceLocation ModulePrivateLoc,
9659                     MultiTemplateParamsArg TemplateParameterLists,
9660                     bool &OwnedDecl, bool &IsDependent,
9661                     SourceLocation ScopedEnumKWLoc,
9662                     bool ScopedEnumUsesClassTag,
9663                     TypeResult UnderlyingType) {
9664  // If this is not a definition, it must have a name.
9665  IdentifierInfo *OrigName = Name;
9666  assert((Name != 0 || TUK == TUK_Definition) &&
9667         "Nameless record must be a definition!");
9668  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9669
9670  OwnedDecl = false;
9671  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9672  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9673
9674  // FIXME: Check explicit specializations more carefully.
9675  bool isExplicitSpecialization = false;
9676  bool Invalid = false;
9677
9678  // We only need to do this matching if we have template parameters
9679  // or a scope specifier, which also conveniently avoids this work
9680  // for non-C++ cases.
9681  if (TemplateParameterLists.size() > 0 ||
9682      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9683    if (TemplateParameterList *TemplateParams
9684          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9685                                                TemplateParameterLists.data(),
9686                                                TemplateParameterLists.size(),
9687                                                    TUK == TUK_Friend,
9688                                                    isExplicitSpecialization,
9689                                                    Invalid)) {
9690      if (Kind == TTK_Enum) {
9691        Diag(KWLoc, diag::err_enum_template);
9692        return 0;
9693      }
9694
9695      if (TemplateParams->size() > 0) {
9696        // This is a declaration or definition of a class template (which may
9697        // be a member of another template).
9698
9699        if (Invalid)
9700          return 0;
9701
9702        OwnedDecl = false;
9703        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9704                                               SS, Name, NameLoc, Attr,
9705                                               TemplateParams, AS,
9706                                               ModulePrivateLoc,
9707                                               TemplateParameterLists.size()-1,
9708                                               TemplateParameterLists.data());
9709        return Result.get();
9710      } else {
9711        // The "template<>" header is extraneous.
9712        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9713          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9714        isExplicitSpecialization = true;
9715      }
9716    }
9717  }
9718
9719  // Figure out the underlying type if this a enum declaration. We need to do
9720  // this early, because it's needed to detect if this is an incompatible
9721  // redeclaration.
9722  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9723
9724  if (Kind == TTK_Enum) {
9725    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9726      // No underlying type explicitly specified, or we failed to parse the
9727      // type, default to int.
9728      EnumUnderlying = Context.IntTy.getTypePtr();
9729    else if (UnderlyingType.get()) {
9730      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9731      // integral type; any cv-qualification is ignored.
9732      TypeSourceInfo *TI = 0;
9733      GetTypeFromParser(UnderlyingType.get(), &TI);
9734      EnumUnderlying = TI;
9735
9736      if (CheckEnumUnderlyingType(TI))
9737        // Recover by falling back to int.
9738        EnumUnderlying = Context.IntTy.getTypePtr();
9739
9740      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9741                                          UPPC_FixedUnderlyingType))
9742        EnumUnderlying = Context.IntTy.getTypePtr();
9743
9744    } else if (getLangOpts().MicrosoftMode)
9745      // Microsoft enums are always of int type.
9746      EnumUnderlying = Context.IntTy.getTypePtr();
9747  }
9748
9749  DeclContext *SearchDC = CurContext;
9750  DeclContext *DC = CurContext;
9751  bool isStdBadAlloc = false;
9752
9753  RedeclarationKind Redecl = ForRedeclaration;
9754  if (TUK == TUK_Friend || TUK == TUK_Reference)
9755    Redecl = NotForRedeclaration;
9756
9757  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9758  bool FriendSawTagOutsideEnclosingNamespace = false;
9759  if (Name && SS.isNotEmpty()) {
9760    // We have a nested-name tag ('struct foo::bar').
9761
9762    // Check for invalid 'foo::'.
9763    if (SS.isInvalid()) {
9764      Name = 0;
9765      goto CreateNewDecl;
9766    }
9767
9768    // If this is a friend or a reference to a class in a dependent
9769    // context, don't try to make a decl for it.
9770    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9771      DC = computeDeclContext(SS, false);
9772      if (!DC) {
9773        IsDependent = true;
9774        return 0;
9775      }
9776    } else {
9777      DC = computeDeclContext(SS, true);
9778      if (!DC) {
9779        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9780          << SS.getRange();
9781        return 0;
9782      }
9783    }
9784
9785    if (RequireCompleteDeclContext(SS, DC))
9786      return 0;
9787
9788    SearchDC = DC;
9789    // Look-up name inside 'foo::'.
9790    LookupQualifiedName(Previous, DC);
9791
9792    if (Previous.isAmbiguous())
9793      return 0;
9794
9795    if (Previous.empty()) {
9796      // Name lookup did not find anything. However, if the
9797      // nested-name-specifier refers to the current instantiation,
9798      // and that current instantiation has any dependent base
9799      // classes, we might find something at instantiation time: treat
9800      // this as a dependent elaborated-type-specifier.
9801      // But this only makes any sense for reference-like lookups.
9802      if (Previous.wasNotFoundInCurrentInstantiation() &&
9803          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9804        IsDependent = true;
9805        return 0;
9806      }
9807
9808      // A tag 'foo::bar' must already exist.
9809      Diag(NameLoc, diag::err_not_tag_in_scope)
9810        << Kind << Name << DC << SS.getRange();
9811      Name = 0;
9812      Invalid = true;
9813      goto CreateNewDecl;
9814    }
9815  } else if (Name) {
9816    // If this is a named struct, check to see if there was a previous forward
9817    // declaration or definition.
9818    // FIXME: We're looking into outer scopes here, even when we
9819    // shouldn't be. Doing so can result in ambiguities that we
9820    // shouldn't be diagnosing.
9821    LookupName(Previous, S);
9822
9823    // When declaring or defining a tag, ignore ambiguities introduced
9824    // by types using'ed into this scope.
9825    if (Previous.isAmbiguous() &&
9826        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9827      LookupResult::Filter F = Previous.makeFilter();
9828      while (F.hasNext()) {
9829        NamedDecl *ND = F.next();
9830        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9831          F.erase();
9832      }
9833      F.done();
9834    }
9835
9836    // C++11 [namespace.memdef]p3:
9837    //   If the name in a friend declaration is neither qualified nor
9838    //   a template-id and the declaration is a function or an
9839    //   elaborated-type-specifier, the lookup to determine whether
9840    //   the entity has been previously declared shall not consider
9841    //   any scopes outside the innermost enclosing namespace.
9842    //
9843    // Does it matter that this should be by scope instead of by
9844    // semantic context?
9845    if (!Previous.empty() && TUK == TUK_Friend) {
9846      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9847      LookupResult::Filter F = Previous.makeFilter();
9848      while (F.hasNext()) {
9849        NamedDecl *ND = F.next();
9850        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9851        if (DC->isFileContext() &&
9852            !EnclosingNS->Encloses(ND->getDeclContext())) {
9853          F.erase();
9854          FriendSawTagOutsideEnclosingNamespace = true;
9855        }
9856      }
9857      F.done();
9858    }
9859
9860    // Note:  there used to be some attempt at recovery here.
9861    if (Previous.isAmbiguous())
9862      return 0;
9863
9864    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9865      // FIXME: This makes sure that we ignore the contexts associated
9866      // with C structs, unions, and enums when looking for a matching
9867      // tag declaration or definition. See the similar lookup tweak
9868      // in Sema::LookupName; is there a better way to deal with this?
9869      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9870        SearchDC = SearchDC->getParent();
9871    }
9872  } else if (S->isFunctionPrototypeScope()) {
9873    // If this is an enum declaration in function prototype scope, set its
9874    // initial context to the translation unit.
9875    // FIXME: [citation needed]
9876    SearchDC = Context.getTranslationUnitDecl();
9877  }
9878
9879  if (Previous.isSingleResult() &&
9880      Previous.getFoundDecl()->isTemplateParameter()) {
9881    // Maybe we will complain about the shadowed template parameter.
9882    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9883    // Just pretend that we didn't see the previous declaration.
9884    Previous.clear();
9885  }
9886
9887  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9888      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9889    // This is a declaration of or a reference to "std::bad_alloc".
9890    isStdBadAlloc = true;
9891
9892    if (Previous.empty() && StdBadAlloc) {
9893      // std::bad_alloc has been implicitly declared (but made invisible to
9894      // name lookup). Fill in this implicit declaration as the previous
9895      // declaration, so that the declarations get chained appropriately.
9896      Previous.addDecl(getStdBadAlloc());
9897    }
9898  }
9899
9900  // If we didn't find a previous declaration, and this is a reference
9901  // (or friend reference), move to the correct scope.  In C++, we
9902  // also need to do a redeclaration lookup there, just in case
9903  // there's a shadow friend decl.
9904  if (Name && Previous.empty() &&
9905      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9906    if (Invalid) goto CreateNewDecl;
9907    assert(SS.isEmpty());
9908
9909    if (TUK == TUK_Reference) {
9910      // C++ [basic.scope.pdecl]p5:
9911      //   -- for an elaborated-type-specifier of the form
9912      //
9913      //          class-key identifier
9914      //
9915      //      if the elaborated-type-specifier is used in the
9916      //      decl-specifier-seq or parameter-declaration-clause of a
9917      //      function defined in namespace scope, the identifier is
9918      //      declared as a class-name in the namespace that contains
9919      //      the declaration; otherwise, except as a friend
9920      //      declaration, the identifier is declared in the smallest
9921      //      non-class, non-function-prototype scope that contains the
9922      //      declaration.
9923      //
9924      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9925      // C structs and unions.
9926      //
9927      // It is an error in C++ to declare (rather than define) an enum
9928      // type, including via an elaborated type specifier.  We'll
9929      // diagnose that later; for now, declare the enum in the same
9930      // scope as we would have picked for any other tag type.
9931      //
9932      // GNU C also supports this behavior as part of its incomplete
9933      // enum types extension, while GNU C++ does not.
9934      //
9935      // Find the context where we'll be declaring the tag.
9936      // FIXME: We would like to maintain the current DeclContext as the
9937      // lexical context,
9938      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9939        SearchDC = SearchDC->getParent();
9940
9941      // Find the scope where we'll be declaring the tag.
9942      while (S->isClassScope() ||
9943             (getLangOpts().CPlusPlus &&
9944              S->isFunctionPrototypeScope()) ||
9945             ((S->getFlags() & Scope::DeclScope) == 0) ||
9946             (S->getEntity() &&
9947              ((DeclContext *)S->getEntity())->isTransparentContext()))
9948        S = S->getParent();
9949    } else {
9950      assert(TUK == TUK_Friend);
9951      // C++ [namespace.memdef]p3:
9952      //   If a friend declaration in a non-local class first declares a
9953      //   class or function, the friend class or function is a member of
9954      //   the innermost enclosing namespace.
9955      SearchDC = SearchDC->getEnclosingNamespaceContext();
9956    }
9957
9958    // In C++, we need to do a redeclaration lookup to properly
9959    // diagnose some problems.
9960    if (getLangOpts().CPlusPlus) {
9961      Previous.setRedeclarationKind(ForRedeclaration);
9962      LookupQualifiedName(Previous, SearchDC);
9963    }
9964  }
9965
9966  if (!Previous.empty()) {
9967    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9968
9969    // It's okay to have a tag decl in the same scope as a typedef
9970    // which hides a tag decl in the same scope.  Finding this
9971    // insanity with a redeclaration lookup can only actually happen
9972    // in C++.
9973    //
9974    // This is also okay for elaborated-type-specifiers, which is
9975    // technically forbidden by the current standard but which is
9976    // okay according to the likely resolution of an open issue;
9977    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9978    if (getLangOpts().CPlusPlus) {
9979      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9980        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9981          TagDecl *Tag = TT->getDecl();
9982          if (Tag->getDeclName() == Name &&
9983              Tag->getDeclContext()->getRedeclContext()
9984                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9985            PrevDecl = Tag;
9986            Previous.clear();
9987            Previous.addDecl(Tag);
9988            Previous.resolveKind();
9989          }
9990        }
9991      }
9992    }
9993
9994    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9995      // If this is a use of a previous tag, or if the tag is already declared
9996      // in the same scope (so that the definition/declaration completes or
9997      // rementions the tag), reuse the decl.
9998      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9999          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10000        // Make sure that this wasn't declared as an enum and now used as a
10001        // struct or something similar.
10002        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10003                                          TUK == TUK_Definition, KWLoc,
10004                                          *Name)) {
10005          bool SafeToContinue
10006            = (PrevTagDecl->getTagKind() != TTK_Enum &&
10007               Kind != TTK_Enum);
10008          if (SafeToContinue)
10009            Diag(KWLoc, diag::err_use_with_wrong_tag)
10010              << Name
10011              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10012                                              PrevTagDecl->getKindName());
10013          else
10014            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10015          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10016
10017          if (SafeToContinue)
10018            Kind = PrevTagDecl->getTagKind();
10019          else {
10020            // Recover by making this an anonymous redefinition.
10021            Name = 0;
10022            Previous.clear();
10023            Invalid = true;
10024          }
10025        }
10026
10027        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10028          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10029
10030          // If this is an elaborated-type-specifier for a scoped enumeration,
10031          // the 'class' keyword is not necessary and not permitted.
10032          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10033            if (ScopedEnum)
10034              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10035                << PrevEnum->isScoped()
10036                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10037            return PrevTagDecl;
10038          }
10039
10040          QualType EnumUnderlyingTy;
10041          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10042            EnumUnderlyingTy = TI->getType();
10043          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10044            EnumUnderlyingTy = QualType(T, 0);
10045
10046          // All conflicts with previous declarations are recovered by
10047          // returning the previous declaration, unless this is a definition,
10048          // in which case we want the caller to bail out.
10049          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10050                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10051            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10052        }
10053
10054        // C++11 [class.mem]p1:
10055        //   A member shall not be declared twice in the member-specification,
10056        //   except that a nested class or member class template can be declared
10057        //   and then later defined.
10058        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10059            S->isDeclScope(PrevDecl)) {
10060          Diag(NameLoc, diag::ext_member_redeclared);
10061          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10062        }
10063
10064        if (!Invalid) {
10065          // If this is a use, just return the declaration we found.
10066
10067          // FIXME: In the future, return a variant or some other clue
10068          // for the consumer of this Decl to know it doesn't own it.
10069          // For our current ASTs this shouldn't be a problem, but will
10070          // need to be changed with DeclGroups.
10071          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10072               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10073            return PrevTagDecl;
10074
10075          // Diagnose attempts to redefine a tag.
10076          if (TUK == TUK_Definition) {
10077            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10078              // If we're defining a specialization and the previous definition
10079              // is from an implicit instantiation, don't emit an error
10080              // here; we'll catch this in the general case below.
10081              bool IsExplicitSpecializationAfterInstantiation = false;
10082              if (isExplicitSpecialization) {
10083                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10084                  IsExplicitSpecializationAfterInstantiation =
10085                    RD->getTemplateSpecializationKind() !=
10086                    TSK_ExplicitSpecialization;
10087                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10088                  IsExplicitSpecializationAfterInstantiation =
10089                    ED->getTemplateSpecializationKind() !=
10090                    TSK_ExplicitSpecialization;
10091              }
10092
10093              if (!IsExplicitSpecializationAfterInstantiation) {
10094                // A redeclaration in function prototype scope in C isn't
10095                // visible elsewhere, so merely issue a warning.
10096                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10097                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10098                else
10099                  Diag(NameLoc, diag::err_redefinition) << Name;
10100                Diag(Def->getLocation(), diag::note_previous_definition);
10101                // If this is a redefinition, recover by making this
10102                // struct be anonymous, which will make any later
10103                // references get the previous definition.
10104                Name = 0;
10105                Previous.clear();
10106                Invalid = true;
10107              }
10108            } else {
10109              // If the type is currently being defined, complain
10110              // about a nested redefinition.
10111              const TagType *Tag
10112                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10113              if (Tag->isBeingDefined()) {
10114                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10115                Diag(PrevTagDecl->getLocation(),
10116                     diag::note_previous_definition);
10117                Name = 0;
10118                Previous.clear();
10119                Invalid = true;
10120              }
10121            }
10122
10123            // Okay, this is definition of a previously declared or referenced
10124            // tag PrevDecl. We're going to create a new Decl for it.
10125          }
10126        }
10127        // If we get here we have (another) forward declaration or we
10128        // have a definition.  Just create a new decl.
10129
10130      } else {
10131        // If we get here, this is a definition of a new tag type in a nested
10132        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10133        // new decl/type.  We set PrevDecl to NULL so that the entities
10134        // have distinct types.
10135        Previous.clear();
10136      }
10137      // If we get here, we're going to create a new Decl. If PrevDecl
10138      // is non-NULL, it's a definition of the tag declared by
10139      // PrevDecl. If it's NULL, we have a new definition.
10140
10141
10142    // Otherwise, PrevDecl is not a tag, but was found with tag
10143    // lookup.  This is only actually possible in C++, where a few
10144    // things like templates still live in the tag namespace.
10145    } else {
10146      // Use a better diagnostic if an elaborated-type-specifier
10147      // found the wrong kind of type on the first
10148      // (non-redeclaration) lookup.
10149      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10150          !Previous.isForRedeclaration()) {
10151        unsigned Kind = 0;
10152        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10153        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10154        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10155        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10156        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10157        Invalid = true;
10158
10159      // Otherwise, only diagnose if the declaration is in scope.
10160      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10161                                isExplicitSpecialization)) {
10162        // do nothing
10163
10164      // Diagnose implicit declarations introduced by elaborated types.
10165      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10166        unsigned Kind = 0;
10167        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10168        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10169        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10170        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10171        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10172        Invalid = true;
10173
10174      // Otherwise it's a declaration.  Call out a particularly common
10175      // case here.
10176      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10177        unsigned Kind = 0;
10178        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10179        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10180          << Name << Kind << TND->getUnderlyingType();
10181        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10182        Invalid = true;
10183
10184      // Otherwise, diagnose.
10185      } else {
10186        // The tag name clashes with something else in the target scope,
10187        // issue an error and recover by making this tag be anonymous.
10188        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10189        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10190        Name = 0;
10191        Invalid = true;
10192      }
10193
10194      // The existing declaration isn't relevant to us; we're in a
10195      // new scope, so clear out the previous declaration.
10196      Previous.clear();
10197    }
10198  }
10199
10200CreateNewDecl:
10201
10202  TagDecl *PrevDecl = 0;
10203  if (Previous.isSingleResult())
10204    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10205
10206  // If there is an identifier, use the location of the identifier as the
10207  // location of the decl, otherwise use the location of the struct/union
10208  // keyword.
10209  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10210
10211  // Otherwise, create a new declaration. If there is a previous
10212  // declaration of the same entity, the two will be linked via
10213  // PrevDecl.
10214  TagDecl *New;
10215
10216  bool IsForwardReference = false;
10217  if (Kind == TTK_Enum) {
10218    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10219    // enum X { A, B, C } D;    D should chain to X.
10220    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10221                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10222                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10223    // If this is an undefined enum, warn.
10224    if (TUK != TUK_Definition && !Invalid) {
10225      TagDecl *Def;
10226      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10227          cast<EnumDecl>(New)->isFixed()) {
10228        // C++0x: 7.2p2: opaque-enum-declaration.
10229        // Conflicts are diagnosed above. Do nothing.
10230      }
10231      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10232        Diag(Loc, diag::ext_forward_ref_enum_def)
10233          << New;
10234        Diag(Def->getLocation(), diag::note_previous_definition);
10235      } else {
10236        unsigned DiagID = diag::ext_forward_ref_enum;
10237        if (getLangOpts().MicrosoftMode)
10238          DiagID = diag::ext_ms_forward_ref_enum;
10239        else if (getLangOpts().CPlusPlus)
10240          DiagID = diag::err_forward_ref_enum;
10241        Diag(Loc, DiagID);
10242
10243        // If this is a forward-declared reference to an enumeration, make a
10244        // note of it; we won't actually be introducing the declaration into
10245        // the declaration context.
10246        if (TUK == TUK_Reference)
10247          IsForwardReference = true;
10248      }
10249    }
10250
10251    if (EnumUnderlying) {
10252      EnumDecl *ED = cast<EnumDecl>(New);
10253      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10254        ED->setIntegerTypeSourceInfo(TI);
10255      else
10256        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10257      ED->setPromotionType(ED->getIntegerType());
10258    }
10259
10260  } else {
10261    // struct/union/class
10262
10263    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10264    // struct X { int A; } D;    D should chain to X.
10265    if (getLangOpts().CPlusPlus) {
10266      // FIXME: Look for a way to use RecordDecl for simple structs.
10267      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10268                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10269
10270      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10271        StdBadAlloc = cast<CXXRecordDecl>(New);
10272    } else
10273      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10274                               cast_or_null<RecordDecl>(PrevDecl));
10275  }
10276
10277  // Maybe add qualifier info.
10278  if (SS.isNotEmpty()) {
10279    if (SS.isSet()) {
10280      // If this is either a declaration or a definition, check the
10281      // nested-name-specifier against the current context. We don't do this
10282      // for explicit specializations, because they have similar checking
10283      // (with more specific diagnostics) in the call to
10284      // CheckMemberSpecialization, below.
10285      if (!isExplicitSpecialization &&
10286          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10287          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10288        Invalid = true;
10289
10290      New->setQualifierInfo(SS.getWithLocInContext(Context));
10291      if (TemplateParameterLists.size() > 0) {
10292        New->setTemplateParameterListsInfo(Context,
10293                                           TemplateParameterLists.size(),
10294                                           TemplateParameterLists.data());
10295      }
10296    }
10297    else
10298      Invalid = true;
10299  }
10300
10301  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10302    // Add alignment attributes if necessary; these attributes are checked when
10303    // the ASTContext lays out the structure.
10304    //
10305    // It is important for implementing the correct semantics that this
10306    // happen here (in act on tag decl). The #pragma pack stack is
10307    // maintained as a result of parser callbacks which can occur at
10308    // many points during the parsing of a struct declaration (because
10309    // the #pragma tokens are effectively skipped over during the
10310    // parsing of the struct).
10311    if (TUK == TUK_Definition) {
10312      AddAlignmentAttributesForRecord(RD);
10313      AddMsStructLayoutForRecord(RD);
10314    }
10315  }
10316
10317  if (ModulePrivateLoc.isValid()) {
10318    if (isExplicitSpecialization)
10319      Diag(New->getLocation(), diag::err_module_private_specialization)
10320        << 2
10321        << FixItHint::CreateRemoval(ModulePrivateLoc);
10322    // __module_private__ does not apply to local classes. However, we only
10323    // diagnose this as an error when the declaration specifiers are
10324    // freestanding. Here, we just ignore the __module_private__.
10325    else if (!SearchDC->isFunctionOrMethod())
10326      New->setModulePrivate();
10327  }
10328
10329  // If this is a specialization of a member class (of a class template),
10330  // check the specialization.
10331  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10332    Invalid = true;
10333
10334  if (Invalid)
10335    New->setInvalidDecl();
10336
10337  if (Attr)
10338    ProcessDeclAttributeList(S, New, Attr);
10339
10340  // If we're declaring or defining a tag in function prototype scope
10341  // in C, note that this type can only be used within the function.
10342  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10343    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10344
10345  // Set the lexical context. If the tag has a C++ scope specifier, the
10346  // lexical context will be different from the semantic context.
10347  New->setLexicalDeclContext(CurContext);
10348
10349  // Mark this as a friend decl if applicable.
10350  // In Microsoft mode, a friend declaration also acts as a forward
10351  // declaration so we always pass true to setObjectOfFriendDecl to make
10352  // the tag name visible.
10353  if (TUK == TUK_Friend)
10354    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10355                               (!FriendSawTagOutsideEnclosingNamespace &&
10356                                getLangOpts().MicrosoftExt));
10357
10358  // Set the access specifier.
10359  if (!Invalid && SearchDC->isRecord())
10360    SetMemberAccessSpecifier(New, PrevDecl, AS);
10361
10362  if (TUK == TUK_Definition)
10363    New->startDefinition();
10364
10365  // If this has an identifier, add it to the scope stack.
10366  if (TUK == TUK_Friend) {
10367    // We might be replacing an existing declaration in the lookup tables;
10368    // if so, borrow its access specifier.
10369    if (PrevDecl)
10370      New->setAccess(PrevDecl->getAccess());
10371
10372    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10373    DC->makeDeclVisibleInContext(New);
10374    if (Name) // can be null along some error paths
10375      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10376        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10377  } else if (Name) {
10378    S = getNonFieldDeclScope(S);
10379    PushOnScopeChains(New, S, !IsForwardReference);
10380    if (IsForwardReference)
10381      SearchDC->makeDeclVisibleInContext(New);
10382
10383  } else {
10384    CurContext->addDecl(New);
10385  }
10386
10387  // If this is the C FILE type, notify the AST context.
10388  if (IdentifierInfo *II = New->getIdentifier())
10389    if (!New->isInvalidDecl() &&
10390        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10391        II->isStr("FILE"))
10392      Context.setFILEDecl(New);
10393
10394  // If we were in function prototype scope (and not in C++ mode), add this
10395  // tag to the list of decls to inject into the function definition scope.
10396  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10397      InFunctionDeclarator && Name)
10398    DeclsInPrototypeScope.push_back(New);
10399
10400  if (PrevDecl)
10401    mergeDeclAttributes(New, PrevDecl);
10402
10403  // If there's a #pragma GCC visibility in scope, set the visibility of this
10404  // record.
10405  AddPushedVisibilityAttribute(New);
10406
10407  OwnedDecl = true;
10408  // In C++, don't return an invalid declaration. We can't recover well from
10409  // the cases where we make the type anonymous.
10410  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10411}
10412
10413void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10414  AdjustDeclIfTemplate(TagD);
10415  TagDecl *Tag = cast<TagDecl>(TagD);
10416
10417  // Enter the tag context.
10418  PushDeclContext(S, Tag);
10419
10420  ActOnDocumentableDecl(TagD);
10421
10422  // If there's a #pragma GCC visibility in scope, set the visibility of this
10423  // record.
10424  AddPushedVisibilityAttribute(Tag);
10425}
10426
10427Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10428  assert(isa<ObjCContainerDecl>(IDecl) &&
10429         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10430  DeclContext *OCD = cast<DeclContext>(IDecl);
10431  assert(getContainingDC(OCD) == CurContext &&
10432      "The next DeclContext should be lexically contained in the current one.");
10433  CurContext = OCD;
10434  return IDecl;
10435}
10436
10437void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10438                                           SourceLocation FinalLoc,
10439                                           SourceLocation LBraceLoc) {
10440  AdjustDeclIfTemplate(TagD);
10441  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10442
10443  FieldCollector->StartClass();
10444
10445  if (!Record->getIdentifier())
10446    return;
10447
10448  if (FinalLoc.isValid())
10449    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10450
10451  // C++ [class]p2:
10452  //   [...] The class-name is also inserted into the scope of the
10453  //   class itself; this is known as the injected-class-name. For
10454  //   purposes of access checking, the injected-class-name is treated
10455  //   as if it were a public member name.
10456  CXXRecordDecl *InjectedClassName
10457    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10458                            Record->getLocStart(), Record->getLocation(),
10459                            Record->getIdentifier(),
10460                            /*PrevDecl=*/0,
10461                            /*DelayTypeCreation=*/true);
10462  Context.getTypeDeclType(InjectedClassName, Record);
10463  InjectedClassName->setImplicit();
10464  InjectedClassName->setAccess(AS_public);
10465  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10466      InjectedClassName->setDescribedClassTemplate(Template);
10467  PushOnScopeChains(InjectedClassName, S);
10468  assert(InjectedClassName->isInjectedClassName() &&
10469         "Broken injected-class-name");
10470}
10471
10472void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10473                                    SourceLocation RBraceLoc) {
10474  AdjustDeclIfTemplate(TagD);
10475  TagDecl *Tag = cast<TagDecl>(TagD);
10476  Tag->setRBraceLoc(RBraceLoc);
10477
10478  // Make sure we "complete" the definition even it is invalid.
10479  if (Tag->isBeingDefined()) {
10480    assert(Tag->isInvalidDecl() && "We should already have completed it");
10481    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10482      RD->completeDefinition();
10483  }
10484
10485  if (isa<CXXRecordDecl>(Tag))
10486    FieldCollector->FinishClass();
10487
10488  // Exit this scope of this tag's definition.
10489  PopDeclContext();
10490
10491  if (getCurLexicalContext()->isObjCContainer() &&
10492      Tag->getDeclContext()->isFileContext())
10493    Tag->setTopLevelDeclInObjCContainer();
10494
10495  // Notify the consumer that we've defined a tag.
10496  if (!Tag->isInvalidDecl())
10497    Consumer.HandleTagDeclDefinition(Tag);
10498}
10499
10500void Sema::ActOnObjCContainerFinishDefinition() {
10501  // Exit this scope of this interface definition.
10502  PopDeclContext();
10503}
10504
10505void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10506  assert(DC == CurContext && "Mismatch of container contexts");
10507  OriginalLexicalContext = DC;
10508  ActOnObjCContainerFinishDefinition();
10509}
10510
10511void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10512  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10513  OriginalLexicalContext = 0;
10514}
10515
10516void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10517  AdjustDeclIfTemplate(TagD);
10518  TagDecl *Tag = cast<TagDecl>(TagD);
10519  Tag->setInvalidDecl();
10520
10521  // Make sure we "complete" the definition even it is invalid.
10522  if (Tag->isBeingDefined()) {
10523    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10524      RD->completeDefinition();
10525  }
10526
10527  // We're undoing ActOnTagStartDefinition here, not
10528  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10529  // the FieldCollector.
10530
10531  PopDeclContext();
10532}
10533
10534// Note that FieldName may be null for anonymous bitfields.
10535ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10536                                IdentifierInfo *FieldName,
10537                                QualType FieldTy, Expr *BitWidth,
10538                                bool *ZeroWidth) {
10539  // Default to true; that shouldn't confuse checks for emptiness
10540  if (ZeroWidth)
10541    *ZeroWidth = true;
10542
10543  // C99 6.7.2.1p4 - verify the field type.
10544  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10545  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10546    // Handle incomplete types with specific error.
10547    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10548      return ExprError();
10549    if (FieldName)
10550      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10551        << FieldName << FieldTy << BitWidth->getSourceRange();
10552    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10553      << FieldTy << BitWidth->getSourceRange();
10554  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10555                                             UPPC_BitFieldWidth))
10556    return ExprError();
10557
10558  // If the bit-width is type- or value-dependent, don't try to check
10559  // it now.
10560  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10561    return Owned(BitWidth);
10562
10563  llvm::APSInt Value;
10564  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10565  if (ICE.isInvalid())
10566    return ICE;
10567  BitWidth = ICE.take();
10568
10569  if (Value != 0 && ZeroWidth)
10570    *ZeroWidth = false;
10571
10572  // Zero-width bitfield is ok for anonymous field.
10573  if (Value == 0 && FieldName)
10574    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10575
10576  if (Value.isSigned() && Value.isNegative()) {
10577    if (FieldName)
10578      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10579               << FieldName << Value.toString(10);
10580    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10581      << Value.toString(10);
10582  }
10583
10584  if (!FieldTy->isDependentType()) {
10585    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10586    if (Value.getZExtValue() > TypeSize) {
10587      if (!getLangOpts().CPlusPlus) {
10588        if (FieldName)
10589          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10590            << FieldName << (unsigned)Value.getZExtValue()
10591            << (unsigned)TypeSize;
10592
10593        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10594          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10595      }
10596
10597      if (FieldName)
10598        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10599          << FieldName << (unsigned)Value.getZExtValue()
10600          << (unsigned)TypeSize;
10601      else
10602        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10603          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10604    }
10605  }
10606
10607  return Owned(BitWidth);
10608}
10609
10610/// ActOnField - Each field of a C struct/union is passed into this in order
10611/// to create a FieldDecl object for it.
10612Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10613                       Declarator &D, Expr *BitfieldWidth) {
10614  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10615                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10616                               /*InitStyle=*/ICIS_NoInit, AS_public);
10617  return Res;
10618}
10619
10620/// HandleField - Analyze a field of a C struct or a C++ data member.
10621///
10622FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10623                             SourceLocation DeclStart,
10624                             Declarator &D, Expr *BitWidth,
10625                             InClassInitStyle InitStyle,
10626                             AccessSpecifier AS) {
10627  IdentifierInfo *II = D.getIdentifier();
10628  SourceLocation Loc = DeclStart;
10629  if (II) Loc = D.getIdentifierLoc();
10630
10631  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10632  QualType T = TInfo->getType();
10633  if (getLangOpts().CPlusPlus) {
10634    CheckExtraCXXDefaultArguments(D);
10635
10636    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10637                                        UPPC_DataMemberType)) {
10638      D.setInvalidType();
10639      T = Context.IntTy;
10640      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10641    }
10642  }
10643
10644  // TR 18037 does not allow fields to be declared with address spaces.
10645  if (T.getQualifiers().hasAddressSpace()) {
10646    Diag(Loc, diag::err_field_with_address_space);
10647    D.setInvalidType();
10648  }
10649
10650  // OpenCL 1.2 spec, s6.9 r:
10651  // The event type cannot be used to declare a structure or union field.
10652  if (LangOpts.OpenCL && T->isEventT()) {
10653    Diag(Loc, diag::err_event_t_struct_field);
10654    D.setInvalidType();
10655  }
10656
10657  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10658
10659  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10660    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
10661         diag::err_invalid_thread)
10662      << DeclSpec::getSpecifierName(TSCS);
10663
10664  // Check to see if this name was declared as a member previously
10665  NamedDecl *PrevDecl = 0;
10666  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10667  LookupName(Previous, S);
10668  switch (Previous.getResultKind()) {
10669    case LookupResult::Found:
10670    case LookupResult::FoundUnresolvedValue:
10671      PrevDecl = Previous.getAsSingle<NamedDecl>();
10672      break;
10673
10674    case LookupResult::FoundOverloaded:
10675      PrevDecl = Previous.getRepresentativeDecl();
10676      break;
10677
10678    case LookupResult::NotFound:
10679    case LookupResult::NotFoundInCurrentInstantiation:
10680    case LookupResult::Ambiguous:
10681      break;
10682  }
10683  Previous.suppressDiagnostics();
10684
10685  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10686    // Maybe we will complain about the shadowed template parameter.
10687    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10688    // Just pretend that we didn't see the previous declaration.
10689    PrevDecl = 0;
10690  }
10691
10692  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10693    PrevDecl = 0;
10694
10695  bool Mutable
10696    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10697  SourceLocation TSSL = D.getLocStart();
10698  FieldDecl *NewFD
10699    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10700                     TSSL, AS, PrevDecl, &D);
10701
10702  if (NewFD->isInvalidDecl())
10703    Record->setInvalidDecl();
10704
10705  if (D.getDeclSpec().isModulePrivateSpecified())
10706    NewFD->setModulePrivate();
10707
10708  if (NewFD->isInvalidDecl() && PrevDecl) {
10709    // Don't introduce NewFD into scope; there's already something
10710    // with the same name in the same scope.
10711  } else if (II) {
10712    PushOnScopeChains(NewFD, S);
10713  } else
10714    Record->addDecl(NewFD);
10715
10716  return NewFD;
10717}
10718
10719/// \brief Build a new FieldDecl and check its well-formedness.
10720///
10721/// This routine builds a new FieldDecl given the fields name, type,
10722/// record, etc. \p PrevDecl should refer to any previous declaration
10723/// with the same name and in the same scope as the field to be
10724/// created.
10725///
10726/// \returns a new FieldDecl.
10727///
10728/// \todo The Declarator argument is a hack. It will be removed once
10729FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10730                                TypeSourceInfo *TInfo,
10731                                RecordDecl *Record, SourceLocation Loc,
10732                                bool Mutable, Expr *BitWidth,
10733                                InClassInitStyle InitStyle,
10734                                SourceLocation TSSL,
10735                                AccessSpecifier AS, NamedDecl *PrevDecl,
10736                                Declarator *D) {
10737  IdentifierInfo *II = Name.getAsIdentifierInfo();
10738  bool InvalidDecl = false;
10739  if (D) InvalidDecl = D->isInvalidType();
10740
10741  // If we receive a broken type, recover by assuming 'int' and
10742  // marking this declaration as invalid.
10743  if (T.isNull()) {
10744    InvalidDecl = true;
10745    T = Context.IntTy;
10746  }
10747
10748  QualType EltTy = Context.getBaseElementType(T);
10749  if (!EltTy->isDependentType()) {
10750    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10751      // Fields of incomplete type force their record to be invalid.
10752      Record->setInvalidDecl();
10753      InvalidDecl = true;
10754    } else {
10755      NamedDecl *Def;
10756      EltTy->isIncompleteType(&Def);
10757      if (Def && Def->isInvalidDecl()) {
10758        Record->setInvalidDecl();
10759        InvalidDecl = true;
10760      }
10761    }
10762  }
10763
10764  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10765  if (BitWidth && getLangOpts().OpenCL) {
10766    Diag(Loc, diag::err_opencl_bitfields);
10767    InvalidDecl = true;
10768  }
10769
10770  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10771  // than a variably modified type.
10772  if (!InvalidDecl && T->isVariablyModifiedType()) {
10773    bool SizeIsNegative;
10774    llvm::APSInt Oversized;
10775
10776    TypeSourceInfo *FixedTInfo =
10777      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10778                                                    SizeIsNegative,
10779                                                    Oversized);
10780    if (FixedTInfo) {
10781      Diag(Loc, diag::warn_illegal_constant_array_size);
10782      TInfo = FixedTInfo;
10783      T = FixedTInfo->getType();
10784    } else {
10785      if (SizeIsNegative)
10786        Diag(Loc, diag::err_typecheck_negative_array_size);
10787      else if (Oversized.getBoolValue())
10788        Diag(Loc, diag::err_array_too_large)
10789          << Oversized.toString(10);
10790      else
10791        Diag(Loc, diag::err_typecheck_field_variable_size);
10792      InvalidDecl = true;
10793    }
10794  }
10795
10796  // Fields can not have abstract class types
10797  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10798                                             diag::err_abstract_type_in_decl,
10799                                             AbstractFieldType))
10800    InvalidDecl = true;
10801
10802  bool ZeroWidth = false;
10803  // If this is declared as a bit-field, check the bit-field.
10804  if (!InvalidDecl && BitWidth) {
10805    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10806    if (!BitWidth) {
10807      InvalidDecl = true;
10808      BitWidth = 0;
10809      ZeroWidth = false;
10810    }
10811  }
10812
10813  // Check that 'mutable' is consistent with the type of the declaration.
10814  if (!InvalidDecl && Mutable) {
10815    unsigned DiagID = 0;
10816    if (T->isReferenceType())
10817      DiagID = diag::err_mutable_reference;
10818    else if (T.isConstQualified())
10819      DiagID = diag::err_mutable_const;
10820
10821    if (DiagID) {
10822      SourceLocation ErrLoc = Loc;
10823      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10824        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10825      Diag(ErrLoc, DiagID);
10826      Mutable = false;
10827      InvalidDecl = true;
10828    }
10829  }
10830
10831  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10832                                       BitWidth, Mutable, InitStyle);
10833  if (InvalidDecl)
10834    NewFD->setInvalidDecl();
10835
10836  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10837    Diag(Loc, diag::err_duplicate_member) << II;
10838    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10839    NewFD->setInvalidDecl();
10840  }
10841
10842  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10843    if (Record->isUnion()) {
10844      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10845        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10846        if (RDecl->getDefinition()) {
10847          // C++ [class.union]p1: An object of a class with a non-trivial
10848          // constructor, a non-trivial copy constructor, a non-trivial
10849          // destructor, or a non-trivial copy assignment operator
10850          // cannot be a member of a union, nor can an array of such
10851          // objects.
10852          if (CheckNontrivialField(NewFD))
10853            NewFD->setInvalidDecl();
10854        }
10855      }
10856
10857      // C++ [class.union]p1: If a union contains a member of reference type,
10858      // the program is ill-formed, except when compiling with MSVC extensions
10859      // enabled.
10860      if (EltTy->isReferenceType()) {
10861        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
10862                                    diag::ext_union_member_of_reference_type :
10863                                    diag::err_union_member_of_reference_type)
10864          << NewFD->getDeclName() << EltTy;
10865        if (!getLangOpts().MicrosoftExt)
10866          NewFD->setInvalidDecl();
10867      }
10868    }
10869  }
10870
10871  // FIXME: We need to pass in the attributes given an AST
10872  // representation, not a parser representation.
10873  if (D) {
10874    // FIXME: The current scope is almost... but not entirely... correct here.
10875    ProcessDeclAttributes(getCurScope(), NewFD, *D);
10876
10877    if (NewFD->hasAttrs())
10878      CheckAlignasUnderalignment(NewFD);
10879  }
10880
10881  // In auto-retain/release, infer strong retension for fields of
10882  // retainable type.
10883  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10884    NewFD->setInvalidDecl();
10885
10886  if (T.isObjCGCWeak())
10887    Diag(Loc, diag::warn_attribute_weak_on_field);
10888
10889  NewFD->setAccess(AS);
10890  return NewFD;
10891}
10892
10893bool Sema::CheckNontrivialField(FieldDecl *FD) {
10894  assert(FD);
10895  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10896
10897  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
10898    return false;
10899
10900  QualType EltTy = Context.getBaseElementType(FD->getType());
10901  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10902    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10903    if (RDecl->getDefinition()) {
10904      // We check for copy constructors before constructors
10905      // because otherwise we'll never get complaints about
10906      // copy constructors.
10907
10908      CXXSpecialMember member = CXXInvalid;
10909      // We're required to check for any non-trivial constructors. Since the
10910      // implicit default constructor is suppressed if there are any
10911      // user-declared constructors, we just need to check that there is a
10912      // trivial default constructor and a trivial copy constructor. (We don't
10913      // worry about move constructors here, since this is a C++98 check.)
10914      if (RDecl->hasNonTrivialCopyConstructor())
10915        member = CXXCopyConstructor;
10916      else if (!RDecl->hasTrivialDefaultConstructor())
10917        member = CXXDefaultConstructor;
10918      else if (RDecl->hasNonTrivialCopyAssignment())
10919        member = CXXCopyAssignment;
10920      else if (RDecl->hasNonTrivialDestructor())
10921        member = CXXDestructor;
10922
10923      if (member != CXXInvalid) {
10924        if (!getLangOpts().CPlusPlus11 &&
10925            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10926          // Objective-C++ ARC: it is an error to have a non-trivial field of
10927          // a union. However, system headers in Objective-C programs
10928          // occasionally have Objective-C lifetime objects within unions,
10929          // and rather than cause the program to fail, we make those
10930          // members unavailable.
10931          SourceLocation Loc = FD->getLocation();
10932          if (getSourceManager().isInSystemHeader(Loc)) {
10933            if (!FD->hasAttr<UnavailableAttr>())
10934              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10935                                  "this system field has retaining ownership"));
10936            return false;
10937          }
10938        }
10939
10940        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10941               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10942               diag::err_illegal_union_or_anon_struct_member)
10943          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10944        DiagnoseNontrivial(RDecl, member);
10945        return !getLangOpts().CPlusPlus11;
10946      }
10947    }
10948  }
10949
10950  return false;
10951}
10952
10953/// TranslateIvarVisibility - Translate visibility from a token ID to an
10954///  AST enum value.
10955static ObjCIvarDecl::AccessControl
10956TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10957  switch (ivarVisibility) {
10958  default: llvm_unreachable("Unknown visitibility kind");
10959  case tok::objc_private: return ObjCIvarDecl::Private;
10960  case tok::objc_public: return ObjCIvarDecl::Public;
10961  case tok::objc_protected: return ObjCIvarDecl::Protected;
10962  case tok::objc_package: return ObjCIvarDecl::Package;
10963  }
10964}
10965
10966/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10967/// in order to create an IvarDecl object for it.
10968Decl *Sema::ActOnIvar(Scope *S,
10969                                SourceLocation DeclStart,
10970                                Declarator &D, Expr *BitfieldWidth,
10971                                tok::ObjCKeywordKind Visibility) {
10972
10973  IdentifierInfo *II = D.getIdentifier();
10974  Expr *BitWidth = (Expr*)BitfieldWidth;
10975  SourceLocation Loc = DeclStart;
10976  if (II) Loc = D.getIdentifierLoc();
10977
10978  // FIXME: Unnamed fields can be handled in various different ways, for
10979  // example, unnamed unions inject all members into the struct namespace!
10980
10981  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10982  QualType T = TInfo->getType();
10983
10984  if (BitWidth) {
10985    // 6.7.2.1p3, 6.7.2.1p4
10986    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10987    if (!BitWidth)
10988      D.setInvalidType();
10989  } else {
10990    // Not a bitfield.
10991
10992    // validate II.
10993
10994  }
10995  if (T->isReferenceType()) {
10996    Diag(Loc, diag::err_ivar_reference_type);
10997    D.setInvalidType();
10998  }
10999  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11000  // than a variably modified type.
11001  else if (T->isVariablyModifiedType()) {
11002    Diag(Loc, diag::err_typecheck_ivar_variable_size);
11003    D.setInvalidType();
11004  }
11005
11006  // Get the visibility (access control) for this ivar.
11007  ObjCIvarDecl::AccessControl ac =
11008    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11009                                        : ObjCIvarDecl::None;
11010  // Must set ivar's DeclContext to its enclosing interface.
11011  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11012  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11013    return 0;
11014  ObjCContainerDecl *EnclosingContext;
11015  if (ObjCImplementationDecl *IMPDecl =
11016      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11017    if (LangOpts.ObjCRuntime.isFragile()) {
11018    // Case of ivar declared in an implementation. Context is that of its class.
11019      EnclosingContext = IMPDecl->getClassInterface();
11020      assert(EnclosingContext && "Implementation has no class interface!");
11021    }
11022    else
11023      EnclosingContext = EnclosingDecl;
11024  } else {
11025    if (ObjCCategoryDecl *CDecl =
11026        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11027      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11028        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11029        return 0;
11030      }
11031    }
11032    EnclosingContext = EnclosingDecl;
11033  }
11034
11035  // Construct the decl.
11036  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11037                                             DeclStart, Loc, II, T,
11038                                             TInfo, ac, (Expr *)BitfieldWidth);
11039
11040  if (II) {
11041    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11042                                           ForRedeclaration);
11043    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11044        && !isa<TagDecl>(PrevDecl)) {
11045      Diag(Loc, diag::err_duplicate_member) << II;
11046      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11047      NewID->setInvalidDecl();
11048    }
11049  }
11050
11051  // Process attributes attached to the ivar.
11052  ProcessDeclAttributes(S, NewID, D);
11053
11054  if (D.isInvalidType())
11055    NewID->setInvalidDecl();
11056
11057  // In ARC, infer 'retaining' for ivars of retainable type.
11058  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11059    NewID->setInvalidDecl();
11060
11061  if (D.getDeclSpec().isModulePrivateSpecified())
11062    NewID->setModulePrivate();
11063
11064  if (II) {
11065    // FIXME: When interfaces are DeclContexts, we'll need to add
11066    // these to the interface.
11067    S->AddDecl(NewID);
11068    IdResolver.AddDecl(NewID);
11069  }
11070
11071  if (LangOpts.ObjCRuntime.isNonFragile() &&
11072      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11073    Diag(Loc, diag::warn_ivars_in_interface);
11074
11075  return NewID;
11076}
11077
11078/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11079/// class and class extensions. For every class \@interface and class
11080/// extension \@interface, if the last ivar is a bitfield of any type,
11081/// then add an implicit `char :0` ivar to the end of that interface.
11082void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11083                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11084  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11085    return;
11086
11087  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11088  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11089
11090  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11091    return;
11092  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11093  if (!ID) {
11094    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11095      if (!CD->IsClassExtension())
11096        return;
11097    }
11098    // No need to add this to end of @implementation.
11099    else
11100      return;
11101  }
11102  // All conditions are met. Add a new bitfield to the tail end of ivars.
11103  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11104  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11105
11106  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11107                              DeclLoc, DeclLoc, 0,
11108                              Context.CharTy,
11109                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11110                                                               DeclLoc),
11111                              ObjCIvarDecl::Private, BW,
11112                              true);
11113  AllIvarDecls.push_back(Ivar);
11114}
11115
11116void Sema::ActOnFields(Scope* S,
11117                       SourceLocation RecLoc, Decl *EnclosingDecl,
11118                       llvm::ArrayRef<Decl *> Fields,
11119                       SourceLocation LBrac, SourceLocation RBrac,
11120                       AttributeList *Attr) {
11121  assert(EnclosingDecl && "missing record or interface decl");
11122
11123  // If this is an Objective-C @implementation or category and we have
11124  // new fields here we should reset the layout of the interface since
11125  // it will now change.
11126  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11127    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11128    switch (DC->getKind()) {
11129    default: break;
11130    case Decl::ObjCCategory:
11131      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11132      break;
11133    case Decl::ObjCImplementation:
11134      Context.
11135        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11136      break;
11137    }
11138  }
11139
11140  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11141
11142  // Start counting up the number of named members; make sure to include
11143  // members of anonymous structs and unions in the total.
11144  unsigned NumNamedMembers = 0;
11145  if (Record) {
11146    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11147                                   e = Record->decls_end(); i != e; i++) {
11148      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11149        if (IFD->getDeclName())
11150          ++NumNamedMembers;
11151    }
11152  }
11153
11154  // Verify that all the fields are okay.
11155  SmallVector<FieldDecl*, 32> RecFields;
11156
11157  bool ARCErrReported = false;
11158  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11159       i != end; ++i) {
11160    FieldDecl *FD = cast<FieldDecl>(*i);
11161
11162    // Get the type for the field.
11163    const Type *FDTy = FD->getType().getTypePtr();
11164
11165    if (!FD->isAnonymousStructOrUnion()) {
11166      // Remember all fields written by the user.
11167      RecFields.push_back(FD);
11168    }
11169
11170    // If the field is already invalid for some reason, don't emit more
11171    // diagnostics about it.
11172    if (FD->isInvalidDecl()) {
11173      EnclosingDecl->setInvalidDecl();
11174      continue;
11175    }
11176
11177    // C99 6.7.2.1p2:
11178    //   A structure or union shall not contain a member with
11179    //   incomplete or function type (hence, a structure shall not
11180    //   contain an instance of itself, but may contain a pointer to
11181    //   an instance of itself), except that the last member of a
11182    //   structure with more than one named member may have incomplete
11183    //   array type; such a structure (and any union containing,
11184    //   possibly recursively, a member that is such a structure)
11185    //   shall not be a member of a structure or an element of an
11186    //   array.
11187    if (FDTy->isFunctionType()) {
11188      // Field declared as a function.
11189      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11190        << FD->getDeclName();
11191      FD->setInvalidDecl();
11192      EnclosingDecl->setInvalidDecl();
11193      continue;
11194    } else if (FDTy->isIncompleteArrayType() && Record &&
11195               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11196                ((getLangOpts().MicrosoftExt ||
11197                  getLangOpts().CPlusPlus) &&
11198                 (i + 1 == Fields.end() || Record->isUnion())))) {
11199      // Flexible array member.
11200      // Microsoft and g++ is more permissive regarding flexible array.
11201      // It will accept flexible array in union and also
11202      // as the sole element of a struct/class.
11203      if (getLangOpts().MicrosoftExt) {
11204        if (Record->isUnion())
11205          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11206            << FD->getDeclName();
11207        else if (Fields.size() == 1)
11208          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11209            << FD->getDeclName() << Record->getTagKind();
11210      } else if (getLangOpts().CPlusPlus) {
11211        if (Record->isUnion())
11212          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11213            << FD->getDeclName();
11214        else if (Fields.size() == 1)
11215          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11216            << FD->getDeclName() << Record->getTagKind();
11217      } else if (!getLangOpts().C99) {
11218      if (Record->isUnion())
11219        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11220          << FD->getDeclName();
11221      else
11222        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11223          << FD->getDeclName() << Record->getTagKind();
11224      } else if (NumNamedMembers < 1) {
11225        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11226          << FD->getDeclName();
11227        FD->setInvalidDecl();
11228        EnclosingDecl->setInvalidDecl();
11229        continue;
11230      }
11231      if (!FD->getType()->isDependentType() &&
11232          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11233        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11234          << FD->getDeclName() << FD->getType();
11235        FD->setInvalidDecl();
11236        EnclosingDecl->setInvalidDecl();
11237        continue;
11238      }
11239      // Okay, we have a legal flexible array member at the end of the struct.
11240      if (Record)
11241        Record->setHasFlexibleArrayMember(true);
11242    } else if (!FDTy->isDependentType() &&
11243               RequireCompleteType(FD->getLocation(), FD->getType(),
11244                                   diag::err_field_incomplete)) {
11245      // Incomplete type
11246      FD->setInvalidDecl();
11247      EnclosingDecl->setInvalidDecl();
11248      continue;
11249    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11250      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11251        // If this is a member of a union, then entire union becomes "flexible".
11252        if (Record && Record->isUnion()) {
11253          Record->setHasFlexibleArrayMember(true);
11254        } else {
11255          // If this is a struct/class and this is not the last element, reject
11256          // it.  Note that GCC supports variable sized arrays in the middle of
11257          // structures.
11258          if (i + 1 != Fields.end())
11259            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11260              << FD->getDeclName() << FD->getType();
11261          else {
11262            // We support flexible arrays at the end of structs in
11263            // other structs as an extension.
11264            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11265              << FD->getDeclName();
11266            if (Record)
11267              Record->setHasFlexibleArrayMember(true);
11268          }
11269        }
11270      }
11271      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11272          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11273                                 diag::err_abstract_type_in_decl,
11274                                 AbstractIvarType)) {
11275        // Ivars can not have abstract class types
11276        FD->setInvalidDecl();
11277      }
11278      if (Record && FDTTy->getDecl()->hasObjectMember())
11279        Record->setHasObjectMember(true);
11280      if (Record && FDTTy->getDecl()->hasVolatileMember())
11281        Record->setHasVolatileMember(true);
11282    } else if (FDTy->isObjCObjectType()) {
11283      /// A field cannot be an Objective-c object
11284      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11285        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11286      QualType T = Context.getObjCObjectPointerType(FD->getType());
11287      FD->setType(T);
11288    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11289               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11290      // It's an error in ARC if a field has lifetime.
11291      // We don't want to report this in a system header, though,
11292      // so we just make the field unavailable.
11293      // FIXME: that's really not sufficient; we need to make the type
11294      // itself invalid to, say, initialize or copy.
11295      QualType T = FD->getType();
11296      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11297      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11298        SourceLocation loc = FD->getLocation();
11299        if (getSourceManager().isInSystemHeader(loc)) {
11300          if (!FD->hasAttr<UnavailableAttr>()) {
11301            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11302                              "this system field has retaining ownership"));
11303          }
11304        } else {
11305          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11306            << T->isBlockPointerType() << Record->getTagKind();
11307        }
11308        ARCErrReported = true;
11309      }
11310    } else if (getLangOpts().ObjC1 &&
11311               getLangOpts().getGC() != LangOptions::NonGC &&
11312               Record && !Record->hasObjectMember()) {
11313      if (FD->getType()->isObjCObjectPointerType() ||
11314          FD->getType().isObjCGCStrong())
11315        Record->setHasObjectMember(true);
11316      else if (Context.getAsArrayType(FD->getType())) {
11317        QualType BaseType = Context.getBaseElementType(FD->getType());
11318        if (BaseType->isRecordType() &&
11319            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11320          Record->setHasObjectMember(true);
11321        else if (BaseType->isObjCObjectPointerType() ||
11322                 BaseType.isObjCGCStrong())
11323               Record->setHasObjectMember(true);
11324      }
11325    }
11326    if (Record && FD->getType().isVolatileQualified())
11327      Record->setHasVolatileMember(true);
11328    // Keep track of the number of named members.
11329    if (FD->getIdentifier())
11330      ++NumNamedMembers;
11331  }
11332
11333  // Okay, we successfully defined 'Record'.
11334  if (Record) {
11335    bool Completed = false;
11336    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11337      if (!CXXRecord->isInvalidDecl()) {
11338        // Set access bits correctly on the directly-declared conversions.
11339        for (CXXRecordDecl::conversion_iterator
11340               I = CXXRecord->conversion_begin(),
11341               E = CXXRecord->conversion_end(); I != E; ++I)
11342          I.setAccess((*I)->getAccess());
11343
11344        if (!CXXRecord->isDependentType()) {
11345          if (CXXRecord->hasUserDeclaredDestructor()) {
11346            // Adjust user-defined destructor exception spec.
11347            if (getLangOpts().CPlusPlus11)
11348              AdjustDestructorExceptionSpec(CXXRecord,
11349                                            CXXRecord->getDestructor());
11350
11351            // The Microsoft ABI requires that we perform the destructor body
11352            // checks (i.e. operator delete() lookup) at every declaration, as
11353            // any translation unit may need to emit a deleting destructor.
11354            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11355              CheckDestructor(CXXRecord->getDestructor());
11356          }
11357
11358          // Add any implicitly-declared members to this class.
11359          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11360
11361          // If we have virtual base classes, we may end up finding multiple
11362          // final overriders for a given virtual function. Check for this
11363          // problem now.
11364          if (CXXRecord->getNumVBases()) {
11365            CXXFinalOverriderMap FinalOverriders;
11366            CXXRecord->getFinalOverriders(FinalOverriders);
11367
11368            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11369                                             MEnd = FinalOverriders.end();
11370                 M != MEnd; ++M) {
11371              for (OverridingMethods::iterator SO = M->second.begin(),
11372                                            SOEnd = M->second.end();
11373                   SO != SOEnd; ++SO) {
11374                assert(SO->second.size() > 0 &&
11375                       "Virtual function without overridding functions?");
11376                if (SO->second.size() == 1)
11377                  continue;
11378
11379                // C++ [class.virtual]p2:
11380                //   In a derived class, if a virtual member function of a base
11381                //   class subobject has more than one final overrider the
11382                //   program is ill-formed.
11383                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11384                  << (const NamedDecl *)M->first << Record;
11385                Diag(M->first->getLocation(),
11386                     diag::note_overridden_virtual_function);
11387                for (OverridingMethods::overriding_iterator
11388                          OM = SO->second.begin(),
11389                       OMEnd = SO->second.end();
11390                     OM != OMEnd; ++OM)
11391                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11392                    << (const NamedDecl *)M->first << OM->Method->getParent();
11393
11394                Record->setInvalidDecl();
11395              }
11396            }
11397            CXXRecord->completeDefinition(&FinalOverriders);
11398            Completed = true;
11399          }
11400        }
11401      }
11402    }
11403
11404    if (!Completed)
11405      Record->completeDefinition();
11406
11407    if (Record->hasAttrs())
11408      CheckAlignasUnderalignment(Record);
11409
11410    // Check if the structure/union declaration is a language extension.
11411    if (!getLangOpts().CPlusPlus) {
11412      bool ZeroSize = true;
11413      bool IsEmpty = true;
11414      unsigned NonBitFields = 0;
11415      for (RecordDecl::field_iterator I = Record->field_begin(),
11416                                      E = Record->field_end();
11417           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11418        IsEmpty = false;
11419        if (I->isUnnamedBitfield()) {
11420          if (I->getBitWidthValue(Context) > 0)
11421            ZeroSize = false;
11422        } else {
11423          ++NonBitFields;
11424          QualType FieldType = I->getType();
11425          if (FieldType->isIncompleteType() ||
11426              !Context.getTypeSizeInChars(FieldType).isZero())
11427            ZeroSize = false;
11428        }
11429      }
11430
11431      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11432      // C++.
11433      if (ZeroSize)
11434        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11435            << Record->isUnion() << (NonBitFields > 1);
11436
11437      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11438      // are accepted by GCC.
11439      if (NonBitFields == 0) {
11440        if (IsEmpty)
11441          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11442        else
11443          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11444      }
11445    }
11446  } else {
11447    ObjCIvarDecl **ClsFields =
11448      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11449    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11450      ID->setEndOfDefinitionLoc(RBrac);
11451      // Add ivar's to class's DeclContext.
11452      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11453        ClsFields[i]->setLexicalDeclContext(ID);
11454        ID->addDecl(ClsFields[i]);
11455      }
11456      // Must enforce the rule that ivars in the base classes may not be
11457      // duplicates.
11458      if (ID->getSuperClass())
11459        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11460    } else if (ObjCImplementationDecl *IMPDecl =
11461                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11462      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11463      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11464        // Ivar declared in @implementation never belongs to the implementation.
11465        // Only it is in implementation's lexical context.
11466        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11467      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11468      IMPDecl->setIvarLBraceLoc(LBrac);
11469      IMPDecl->setIvarRBraceLoc(RBrac);
11470    } else if (ObjCCategoryDecl *CDecl =
11471                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11472      // case of ivars in class extension; all other cases have been
11473      // reported as errors elsewhere.
11474      // FIXME. Class extension does not have a LocEnd field.
11475      // CDecl->setLocEnd(RBrac);
11476      // Add ivar's to class extension's DeclContext.
11477      // Diagnose redeclaration of private ivars.
11478      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11479      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11480        if (IDecl) {
11481          if (const ObjCIvarDecl *ClsIvar =
11482              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11483            Diag(ClsFields[i]->getLocation(),
11484                 diag::err_duplicate_ivar_declaration);
11485            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11486            continue;
11487          }
11488          for (ObjCInterfaceDecl::known_extensions_iterator
11489                 Ext = IDecl->known_extensions_begin(),
11490                 ExtEnd = IDecl->known_extensions_end();
11491               Ext != ExtEnd; ++Ext) {
11492            if (const ObjCIvarDecl *ClsExtIvar
11493                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11494              Diag(ClsFields[i]->getLocation(),
11495                   diag::err_duplicate_ivar_declaration);
11496              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11497              continue;
11498            }
11499          }
11500        }
11501        ClsFields[i]->setLexicalDeclContext(CDecl);
11502        CDecl->addDecl(ClsFields[i]);
11503      }
11504      CDecl->setIvarLBraceLoc(LBrac);
11505      CDecl->setIvarRBraceLoc(RBrac);
11506    }
11507  }
11508
11509  if (Attr)
11510    ProcessDeclAttributeList(S, Record, Attr);
11511}
11512
11513/// \brief Determine whether the given integral value is representable within
11514/// the given type T.
11515static bool isRepresentableIntegerValue(ASTContext &Context,
11516                                        llvm::APSInt &Value,
11517                                        QualType T) {
11518  assert(T->isIntegralType(Context) && "Integral type required!");
11519  unsigned BitWidth = Context.getIntWidth(T);
11520
11521  if (Value.isUnsigned() || Value.isNonNegative()) {
11522    if (T->isSignedIntegerOrEnumerationType())
11523      --BitWidth;
11524    return Value.getActiveBits() <= BitWidth;
11525  }
11526  return Value.getMinSignedBits() <= BitWidth;
11527}
11528
11529// \brief Given an integral type, return the next larger integral type
11530// (or a NULL type of no such type exists).
11531static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11532  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11533  // enum checking below.
11534  assert(T->isIntegralType(Context) && "Integral type required!");
11535  const unsigned NumTypes = 4;
11536  QualType SignedIntegralTypes[NumTypes] = {
11537    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11538  };
11539  QualType UnsignedIntegralTypes[NumTypes] = {
11540    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11541    Context.UnsignedLongLongTy
11542  };
11543
11544  unsigned BitWidth = Context.getTypeSize(T);
11545  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11546                                                        : UnsignedIntegralTypes;
11547  for (unsigned I = 0; I != NumTypes; ++I)
11548    if (Context.getTypeSize(Types[I]) > BitWidth)
11549      return Types[I];
11550
11551  return QualType();
11552}
11553
11554EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11555                                          EnumConstantDecl *LastEnumConst,
11556                                          SourceLocation IdLoc,
11557                                          IdentifierInfo *Id,
11558                                          Expr *Val) {
11559  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11560  llvm::APSInt EnumVal(IntWidth);
11561  QualType EltTy;
11562
11563  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11564    Val = 0;
11565
11566  if (Val)
11567    Val = DefaultLvalueConversion(Val).take();
11568
11569  if (Val) {
11570    if (Enum->isDependentType() || Val->isTypeDependent())
11571      EltTy = Context.DependentTy;
11572    else {
11573      SourceLocation ExpLoc;
11574      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11575          !getLangOpts().MicrosoftMode) {
11576        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11577        // constant-expression in the enumerator-definition shall be a converted
11578        // constant expression of the underlying type.
11579        EltTy = Enum->getIntegerType();
11580        ExprResult Converted =
11581          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11582                                           CCEK_Enumerator);
11583        if (Converted.isInvalid())
11584          Val = 0;
11585        else
11586          Val = Converted.take();
11587      } else if (!Val->isValueDependent() &&
11588                 !(Val = VerifyIntegerConstantExpression(Val,
11589                                                         &EnumVal).take())) {
11590        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11591      } else {
11592        if (Enum->isFixed()) {
11593          EltTy = Enum->getIntegerType();
11594
11595          // In Obj-C and Microsoft mode, require the enumeration value to be
11596          // representable in the underlying type of the enumeration. In C++11,
11597          // we perform a non-narrowing conversion as part of converted constant
11598          // expression checking.
11599          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11600            if (getLangOpts().MicrosoftMode) {
11601              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11602              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11603            } else
11604              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11605          } else
11606            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11607        } else if (getLangOpts().CPlusPlus) {
11608          // C++11 [dcl.enum]p5:
11609          //   If the underlying type is not fixed, the type of each enumerator
11610          //   is the type of its initializing value:
11611          //     - If an initializer is specified for an enumerator, the
11612          //       initializing value has the same type as the expression.
11613          EltTy = Val->getType();
11614        } else {
11615          // C99 6.7.2.2p2:
11616          //   The expression that defines the value of an enumeration constant
11617          //   shall be an integer constant expression that has a value
11618          //   representable as an int.
11619
11620          // Complain if the value is not representable in an int.
11621          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11622            Diag(IdLoc, diag::ext_enum_value_not_int)
11623              << EnumVal.toString(10) << Val->getSourceRange()
11624              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11625          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11626            // Force the type of the expression to 'int'.
11627            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11628          }
11629          EltTy = Val->getType();
11630        }
11631      }
11632    }
11633  }
11634
11635  if (!Val) {
11636    if (Enum->isDependentType())
11637      EltTy = Context.DependentTy;
11638    else if (!LastEnumConst) {
11639      // C++0x [dcl.enum]p5:
11640      //   If the underlying type is not fixed, the type of each enumerator
11641      //   is the type of its initializing value:
11642      //     - If no initializer is specified for the first enumerator, the
11643      //       initializing value has an unspecified integral type.
11644      //
11645      // GCC uses 'int' for its unspecified integral type, as does
11646      // C99 6.7.2.2p3.
11647      if (Enum->isFixed()) {
11648        EltTy = Enum->getIntegerType();
11649      }
11650      else {
11651        EltTy = Context.IntTy;
11652      }
11653    } else {
11654      // Assign the last value + 1.
11655      EnumVal = LastEnumConst->getInitVal();
11656      ++EnumVal;
11657      EltTy = LastEnumConst->getType();
11658
11659      // Check for overflow on increment.
11660      if (EnumVal < LastEnumConst->getInitVal()) {
11661        // C++0x [dcl.enum]p5:
11662        //   If the underlying type is not fixed, the type of each enumerator
11663        //   is the type of its initializing value:
11664        //
11665        //     - Otherwise the type of the initializing value is the same as
11666        //       the type of the initializing value of the preceding enumerator
11667        //       unless the incremented value is not representable in that type,
11668        //       in which case the type is an unspecified integral type
11669        //       sufficient to contain the incremented value. If no such type
11670        //       exists, the program is ill-formed.
11671        QualType T = getNextLargerIntegralType(Context, EltTy);
11672        if (T.isNull() || Enum->isFixed()) {
11673          // There is no integral type larger enough to represent this
11674          // value. Complain, then allow the value to wrap around.
11675          EnumVal = LastEnumConst->getInitVal();
11676          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11677          ++EnumVal;
11678          if (Enum->isFixed())
11679            // When the underlying type is fixed, this is ill-formed.
11680            Diag(IdLoc, diag::err_enumerator_wrapped)
11681              << EnumVal.toString(10)
11682              << EltTy;
11683          else
11684            Diag(IdLoc, diag::warn_enumerator_too_large)
11685              << EnumVal.toString(10);
11686        } else {
11687          EltTy = T;
11688        }
11689
11690        // Retrieve the last enumerator's value, extent that type to the
11691        // type that is supposed to be large enough to represent the incremented
11692        // value, then increment.
11693        EnumVal = LastEnumConst->getInitVal();
11694        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11695        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11696        ++EnumVal;
11697
11698        // If we're not in C++, diagnose the overflow of enumerator values,
11699        // which in C99 means that the enumerator value is not representable in
11700        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11701        // permits enumerator values that are representable in some larger
11702        // integral type.
11703        if (!getLangOpts().CPlusPlus && !T.isNull())
11704          Diag(IdLoc, diag::warn_enum_value_overflow);
11705      } else if (!getLangOpts().CPlusPlus &&
11706                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11707        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11708        Diag(IdLoc, diag::ext_enum_value_not_int)
11709          << EnumVal.toString(10) << 1;
11710      }
11711    }
11712  }
11713
11714  if (!EltTy->isDependentType()) {
11715    // Make the enumerator value match the signedness and size of the
11716    // enumerator's type.
11717    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11718    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11719  }
11720
11721  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11722                                  Val, EnumVal);
11723}
11724
11725
11726Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11727                              SourceLocation IdLoc, IdentifierInfo *Id,
11728                              AttributeList *Attr,
11729                              SourceLocation EqualLoc, Expr *Val) {
11730  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11731  EnumConstantDecl *LastEnumConst =
11732    cast_or_null<EnumConstantDecl>(lastEnumConst);
11733
11734  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11735  // we find one that is.
11736  S = getNonFieldDeclScope(S);
11737
11738  // Verify that there isn't already something declared with this name in this
11739  // scope.
11740  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11741                                         ForRedeclaration);
11742  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11743    // Maybe we will complain about the shadowed template parameter.
11744    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11745    // Just pretend that we didn't see the previous declaration.
11746    PrevDecl = 0;
11747  }
11748
11749  if (PrevDecl) {
11750    // When in C++, we may get a TagDecl with the same name; in this case the
11751    // enum constant will 'hide' the tag.
11752    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11753           "Received TagDecl when not in C++!");
11754    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11755      if (isa<EnumConstantDecl>(PrevDecl))
11756        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11757      else
11758        Diag(IdLoc, diag::err_redefinition) << Id;
11759      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11760      return 0;
11761    }
11762  }
11763
11764  // C++ [class.mem]p15:
11765  // If T is the name of a class, then each of the following shall have a name
11766  // different from T:
11767  // - every enumerator of every member of class T that is an unscoped
11768  // enumerated type
11769  if (CXXRecordDecl *Record
11770                      = dyn_cast<CXXRecordDecl>(
11771                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11772    if (!TheEnumDecl->isScoped() &&
11773        Record->getIdentifier() && Record->getIdentifier() == Id)
11774      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11775
11776  EnumConstantDecl *New =
11777    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11778
11779  if (New) {
11780    // Process attributes.
11781    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11782
11783    // Register this decl in the current scope stack.
11784    New->setAccess(TheEnumDecl->getAccess());
11785    PushOnScopeChains(New, S);
11786  }
11787
11788  ActOnDocumentableDecl(New);
11789
11790  return New;
11791}
11792
11793// Returns true when the enum initial expression does not trigger the
11794// duplicate enum warning.  A few common cases are exempted as follows:
11795// Element2 = Element1
11796// Element2 = Element1 + 1
11797// Element2 = Element1 - 1
11798// Where Element2 and Element1 are from the same enum.
11799static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11800  Expr *InitExpr = ECD->getInitExpr();
11801  if (!InitExpr)
11802    return true;
11803  InitExpr = InitExpr->IgnoreImpCasts();
11804
11805  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11806    if (!BO->isAdditiveOp())
11807      return true;
11808    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11809    if (!IL)
11810      return true;
11811    if (IL->getValue() != 1)
11812      return true;
11813
11814    InitExpr = BO->getLHS();
11815  }
11816
11817  // This checks if the elements are from the same enum.
11818  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11819  if (!DRE)
11820    return true;
11821
11822  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11823  if (!EnumConstant)
11824    return true;
11825
11826  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11827      Enum)
11828    return true;
11829
11830  return false;
11831}
11832
11833struct DupKey {
11834  int64_t val;
11835  bool isTombstoneOrEmptyKey;
11836  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11837    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11838};
11839
11840static DupKey GetDupKey(const llvm::APSInt& Val) {
11841  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11842                false);
11843}
11844
11845struct DenseMapInfoDupKey {
11846  static DupKey getEmptyKey() { return DupKey(0, true); }
11847  static DupKey getTombstoneKey() { return DupKey(1, true); }
11848  static unsigned getHashValue(const DupKey Key) {
11849    return (unsigned)(Key.val * 37);
11850  }
11851  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11852    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11853           LHS.val == RHS.val;
11854  }
11855};
11856
11857// Emits a warning when an element is implicitly set a value that
11858// a previous element has already been set to.
11859static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
11860                                        EnumDecl *Enum,
11861                                        QualType EnumType) {
11862  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11863                                 Enum->getLocation()) ==
11864      DiagnosticsEngine::Ignored)
11865    return;
11866  // Avoid anonymous enums
11867  if (!Enum->getIdentifier())
11868    return;
11869
11870  // Only check for small enums.
11871  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11872    return;
11873
11874  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11875  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11876
11877  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11878  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11879          ValueToVectorMap;
11880
11881  DuplicatesVector DupVector;
11882  ValueToVectorMap EnumMap;
11883
11884  // Populate the EnumMap with all values represented by enum constants without
11885  // an initialier.
11886  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11887    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11888
11889    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11890    // this constant.  Skip this enum since it may be ill-formed.
11891    if (!ECD) {
11892      return;
11893    }
11894
11895    if (ECD->getInitExpr())
11896      continue;
11897
11898    DupKey Key = GetDupKey(ECD->getInitVal());
11899    DeclOrVector &Entry = EnumMap[Key];
11900
11901    // First time encountering this value.
11902    if (Entry.isNull())
11903      Entry = ECD;
11904  }
11905
11906  // Create vectors for any values that has duplicates.
11907  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11908    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11909    if (!ValidDuplicateEnum(ECD, Enum))
11910      continue;
11911
11912    DupKey Key = GetDupKey(ECD->getInitVal());
11913
11914    DeclOrVector& Entry = EnumMap[Key];
11915    if (Entry.isNull())
11916      continue;
11917
11918    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11919      // Ensure constants are different.
11920      if (D == ECD)
11921        continue;
11922
11923      // Create new vector and push values onto it.
11924      ECDVector *Vec = new ECDVector();
11925      Vec->push_back(D);
11926      Vec->push_back(ECD);
11927
11928      // Update entry to point to the duplicates vector.
11929      Entry = Vec;
11930
11931      // Store the vector somewhere we can consult later for quick emission of
11932      // diagnostics.
11933      DupVector.push_back(Vec);
11934      continue;
11935    }
11936
11937    ECDVector *Vec = Entry.get<ECDVector*>();
11938    // Make sure constants are not added more than once.
11939    if (*Vec->begin() == ECD)
11940      continue;
11941
11942    Vec->push_back(ECD);
11943  }
11944
11945  // Emit diagnostics.
11946  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11947                                  DupVectorEnd = DupVector.end();
11948       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11949    ECDVector *Vec = *DupVectorIter;
11950    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11951
11952    // Emit warning for one enum constant.
11953    ECDVector::iterator I = Vec->begin();
11954    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11955      << (*I)->getName() << (*I)->getInitVal().toString(10)
11956      << (*I)->getSourceRange();
11957    ++I;
11958
11959    // Emit one note for each of the remaining enum constants with
11960    // the same value.
11961    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11962      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11963        << (*I)->getName() << (*I)->getInitVal().toString(10)
11964        << (*I)->getSourceRange();
11965    delete Vec;
11966  }
11967}
11968
11969void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11970                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11971                         ArrayRef<Decl *> Elements,
11972                         Scope *S, AttributeList *Attr) {
11973  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11974  QualType EnumType = Context.getTypeDeclType(Enum);
11975
11976  if (Attr)
11977    ProcessDeclAttributeList(S, Enum, Attr);
11978
11979  if (Enum->isDependentType()) {
11980    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11981      EnumConstantDecl *ECD =
11982        cast_or_null<EnumConstantDecl>(Elements[i]);
11983      if (!ECD) continue;
11984
11985      ECD->setType(EnumType);
11986    }
11987
11988    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11989    return;
11990  }
11991
11992  // TODO: If the result value doesn't fit in an int, it must be a long or long
11993  // long value.  ISO C does not support this, but GCC does as an extension,
11994  // emit a warning.
11995  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11996  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11997  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11998
11999  // Verify that all the values are okay, compute the size of the values, and
12000  // reverse the list.
12001  unsigned NumNegativeBits = 0;
12002  unsigned NumPositiveBits = 0;
12003
12004  // Keep track of whether all elements have type int.
12005  bool AllElementsInt = true;
12006
12007  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12008    EnumConstantDecl *ECD =
12009      cast_or_null<EnumConstantDecl>(Elements[i]);
12010    if (!ECD) continue;  // Already issued a diagnostic.
12011
12012    const llvm::APSInt &InitVal = ECD->getInitVal();
12013
12014    // Keep track of the size of positive and negative values.
12015    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12016      NumPositiveBits = std::max(NumPositiveBits,
12017                                 (unsigned)InitVal.getActiveBits());
12018    else
12019      NumNegativeBits = std::max(NumNegativeBits,
12020                                 (unsigned)InitVal.getMinSignedBits());
12021
12022    // Keep track of whether every enum element has type int (very commmon).
12023    if (AllElementsInt)
12024      AllElementsInt = ECD->getType() == Context.IntTy;
12025  }
12026
12027  // Figure out the type that should be used for this enum.
12028  QualType BestType;
12029  unsigned BestWidth;
12030
12031  // C++0x N3000 [conv.prom]p3:
12032  //   An rvalue of an unscoped enumeration type whose underlying
12033  //   type is not fixed can be converted to an rvalue of the first
12034  //   of the following types that can represent all the values of
12035  //   the enumeration: int, unsigned int, long int, unsigned long
12036  //   int, long long int, or unsigned long long int.
12037  // C99 6.4.4.3p2:
12038  //   An identifier declared as an enumeration constant has type int.
12039  // The C99 rule is modified by a gcc extension
12040  QualType BestPromotionType;
12041
12042  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12043  // -fshort-enums is the equivalent to specifying the packed attribute on all
12044  // enum definitions.
12045  if (LangOpts.ShortEnums)
12046    Packed = true;
12047
12048  if (Enum->isFixed()) {
12049    BestType = Enum->getIntegerType();
12050    if (BestType->isPromotableIntegerType())
12051      BestPromotionType = Context.getPromotedIntegerType(BestType);
12052    else
12053      BestPromotionType = BestType;
12054    // We don't need to set BestWidth, because BestType is going to be the type
12055    // of the enumerators, but we do anyway because otherwise some compilers
12056    // warn that it might be used uninitialized.
12057    BestWidth = CharWidth;
12058  }
12059  else if (NumNegativeBits) {
12060    // If there is a negative value, figure out the smallest integer type (of
12061    // int/long/longlong) that fits.
12062    // If it's packed, check also if it fits a char or a short.
12063    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12064      BestType = Context.SignedCharTy;
12065      BestWidth = CharWidth;
12066    } else if (Packed && NumNegativeBits <= ShortWidth &&
12067               NumPositiveBits < ShortWidth) {
12068      BestType = Context.ShortTy;
12069      BestWidth = ShortWidth;
12070    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12071      BestType = Context.IntTy;
12072      BestWidth = IntWidth;
12073    } else {
12074      BestWidth = Context.getTargetInfo().getLongWidth();
12075
12076      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12077        BestType = Context.LongTy;
12078      } else {
12079        BestWidth = Context.getTargetInfo().getLongLongWidth();
12080
12081        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12082          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12083        BestType = Context.LongLongTy;
12084      }
12085    }
12086    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12087  } else {
12088    // If there is no negative value, figure out the smallest type that fits
12089    // all of the enumerator values.
12090    // If it's packed, check also if it fits a char or a short.
12091    if (Packed && NumPositiveBits <= CharWidth) {
12092      BestType = Context.UnsignedCharTy;
12093      BestPromotionType = Context.IntTy;
12094      BestWidth = CharWidth;
12095    } else if (Packed && NumPositiveBits <= ShortWidth) {
12096      BestType = Context.UnsignedShortTy;
12097      BestPromotionType = Context.IntTy;
12098      BestWidth = ShortWidth;
12099    } else if (NumPositiveBits <= IntWidth) {
12100      BestType = Context.UnsignedIntTy;
12101      BestWidth = IntWidth;
12102      BestPromotionType
12103        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12104                           ? Context.UnsignedIntTy : Context.IntTy;
12105    } else if (NumPositiveBits <=
12106               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12107      BestType = Context.UnsignedLongTy;
12108      BestPromotionType
12109        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12110                           ? Context.UnsignedLongTy : Context.LongTy;
12111    } else {
12112      BestWidth = Context.getTargetInfo().getLongLongWidth();
12113      assert(NumPositiveBits <= BestWidth &&
12114             "How could an initializer get larger than ULL?");
12115      BestType = Context.UnsignedLongLongTy;
12116      BestPromotionType
12117        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12118                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12119    }
12120  }
12121
12122  // Loop over all of the enumerator constants, changing their types to match
12123  // the type of the enum if needed.
12124  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12125    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12126    if (!ECD) continue;  // Already issued a diagnostic.
12127
12128    // Standard C says the enumerators have int type, but we allow, as an
12129    // extension, the enumerators to be larger than int size.  If each
12130    // enumerator value fits in an int, type it as an int, otherwise type it the
12131    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12132    // that X has type 'int', not 'unsigned'.
12133
12134    // Determine whether the value fits into an int.
12135    llvm::APSInt InitVal = ECD->getInitVal();
12136
12137    // If it fits into an integer type, force it.  Otherwise force it to match
12138    // the enum decl type.
12139    QualType NewTy;
12140    unsigned NewWidth;
12141    bool NewSign;
12142    if (!getLangOpts().CPlusPlus &&
12143        !Enum->isFixed() &&
12144        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12145      NewTy = Context.IntTy;
12146      NewWidth = IntWidth;
12147      NewSign = true;
12148    } else if (ECD->getType() == BestType) {
12149      // Already the right type!
12150      if (getLangOpts().CPlusPlus)
12151        // C++ [dcl.enum]p4: Following the closing brace of an
12152        // enum-specifier, each enumerator has the type of its
12153        // enumeration.
12154        ECD->setType(EnumType);
12155      continue;
12156    } else {
12157      NewTy = BestType;
12158      NewWidth = BestWidth;
12159      NewSign = BestType->isSignedIntegerOrEnumerationType();
12160    }
12161
12162    // Adjust the APSInt value.
12163    InitVal = InitVal.extOrTrunc(NewWidth);
12164    InitVal.setIsSigned(NewSign);
12165    ECD->setInitVal(InitVal);
12166
12167    // Adjust the Expr initializer and type.
12168    if (ECD->getInitExpr() &&
12169        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12170      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12171                                                CK_IntegralCast,
12172                                                ECD->getInitExpr(),
12173                                                /*base paths*/ 0,
12174                                                VK_RValue));
12175    if (getLangOpts().CPlusPlus)
12176      // C++ [dcl.enum]p4: Following the closing brace of an
12177      // enum-specifier, each enumerator has the type of its
12178      // enumeration.
12179      ECD->setType(EnumType);
12180    else
12181      ECD->setType(NewTy);
12182  }
12183
12184  Enum->completeDefinition(BestType, BestPromotionType,
12185                           NumPositiveBits, NumNegativeBits);
12186
12187  // If we're declaring a function, ensure this decl isn't forgotten about -
12188  // it needs to go into the function scope.
12189  if (InFunctionDeclarator)
12190    DeclsInPrototypeScope.push_back(Enum);
12191
12192  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12193
12194  // Now that the enum type is defined, ensure it's not been underaligned.
12195  if (Enum->hasAttrs())
12196    CheckAlignasUnderalignment(Enum);
12197}
12198
12199Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12200                                  SourceLocation StartLoc,
12201                                  SourceLocation EndLoc) {
12202  StringLiteral *AsmString = cast<StringLiteral>(expr);
12203
12204  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12205                                                   AsmString, StartLoc,
12206                                                   EndLoc);
12207  CurContext->addDecl(New);
12208  return New;
12209}
12210
12211DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12212                                   SourceLocation ImportLoc,
12213                                   ModuleIdPath Path) {
12214  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12215                                                Module::AllVisible,
12216                                                /*IsIncludeDirective=*/false);
12217  if (!Mod)
12218    return true;
12219
12220  SmallVector<SourceLocation, 2> IdentifierLocs;
12221  Module *ModCheck = Mod;
12222  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12223    // If we've run out of module parents, just drop the remaining identifiers.
12224    // We need the length to be consistent.
12225    if (!ModCheck)
12226      break;
12227    ModCheck = ModCheck->Parent;
12228
12229    IdentifierLocs.push_back(Path[I].second);
12230  }
12231
12232  ImportDecl *Import = ImportDecl::Create(Context,
12233                                          Context.getTranslationUnitDecl(),
12234                                          AtLoc.isValid()? AtLoc : ImportLoc,
12235                                          Mod, IdentifierLocs);
12236  Context.getTranslationUnitDecl()->addDecl(Import);
12237  return Import;
12238}
12239
12240void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12241  // Create the implicit import declaration.
12242  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12243  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12244                                                   Loc, Mod, Loc);
12245  TU->addDecl(ImportD);
12246  Consumer.HandleImplicitImportDecl(ImportD);
12247
12248  // Make the module visible.
12249  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12250                                         /*Complain=*/false);
12251}
12252
12253void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12254                                      IdentifierInfo* AliasName,
12255                                      SourceLocation PragmaLoc,
12256                                      SourceLocation NameLoc,
12257                                      SourceLocation AliasNameLoc) {
12258  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12259                                    LookupOrdinaryName);
12260  AsmLabelAttr *Attr =
12261     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12262
12263  if (PrevDecl)
12264    PrevDecl->addAttr(Attr);
12265  else
12266    (void)ExtnameUndeclaredIdentifiers.insert(
12267      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12268}
12269
12270void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12271                             SourceLocation PragmaLoc,
12272                             SourceLocation NameLoc) {
12273  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12274
12275  if (PrevDecl) {
12276    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12277  } else {
12278    (void)WeakUndeclaredIdentifiers.insert(
12279      std::pair<IdentifierInfo*,WeakInfo>
12280        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12281  }
12282}
12283
12284void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12285                                IdentifierInfo* AliasName,
12286                                SourceLocation PragmaLoc,
12287                                SourceLocation NameLoc,
12288                                SourceLocation AliasNameLoc) {
12289  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12290                                    LookupOrdinaryName);
12291  WeakInfo W = WeakInfo(Name, NameLoc);
12292
12293  if (PrevDecl) {
12294    if (!PrevDecl->hasAttr<AliasAttr>())
12295      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12296        DeclApplyPragmaWeak(TUScope, ND, W);
12297  } else {
12298    (void)WeakUndeclaredIdentifiers.insert(
12299      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12300  }
12301}
12302
12303Decl *Sema::getObjCDeclContext() const {
12304  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12305}
12306
12307AvailabilityResult Sema::getCurContextAvailability() const {
12308  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12309  return D->getAvailability();
12310}
12311