SemaDecl.cpp revision c4a839101e883261d038a1d5ea718dd46abd1d2d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354/// cases in C where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Interface: return DeclSpec::TST_interface;
365      case TTK_Union:  return DeclSpec::TST_union;
366      case TTK_Class:  return DeclSpec::TST_class;
367      case TTK_Enum:   return DeclSpec::TST_enum;
368      }
369    }
370
371  return DeclSpec::TST_unspecified;
372}
373
374/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375/// if a CXXScopeSpec's type is equal to the type of one of the base classes
376/// then downgrade the missing typename error to a warning.
377/// This is needed for MSVC compatibility; Example:
378/// @code
379/// template<class T> class A {
380/// public:
381///   typedef int TYPE;
382/// };
383/// template<class T> class B : public A<T> {
384/// public:
385///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386/// };
387/// @endcode
388bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389  if (CurContext->isRecord()) {
390    const Type *Ty = SS->getScopeRep()->getAsType();
391
392    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396        return true;
397    return S->isFunctionPrototypeScope();
398  }
399  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400}
401
402bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                   SourceLocation IILoc,
404                                   Scope *S,
405                                   CXXScopeSpec *SS,
406                                   ParsedType &SuggestedType) {
407  // We don't have anything to suggest (yet).
408  SuggestedType = ParsedType();
409
410  // There may have been a typo in the name of the type. Look up typo
411  // results, in case we have something that we can suggest.
412  TypeNameValidatorCCC Validator(false);
413  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                             LookupOrdinaryName, S, SS,
415                                             Validator)) {
416    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419    if (Corrected.isKeyword()) {
420      // We corrected to a keyword.
421      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424      Diag(IILoc, diag::err_unknown_typename_suggest)
425        << II << CorrectedQuotedStr
426        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet())
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435      else if (DeclContext *DC = computeDeclContext(*SS, false))
436        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437          << II << DC << CorrectedQuotedStr << SS->getRange()
438          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
692
693        // Update the name, so that the caller has the new name.
694        Name = Corrected.getCorrectionAsIdentifierInfo();
695
696        // Typo correction corrected to a keyword.
697        if (Corrected.isKeyword())
698          return Corrected.getCorrectionAsIdentifierInfo();
699
700        // Also update the LookupResult...
701        // FIXME: This should probably go away at some point
702        Result.clear();
703        Result.setLookupName(Corrected.getCorrection());
704        if (FirstDecl) {
705          Result.addDecl(FirstDecl);
706          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
707            << CorrectedQuotedStr;
708        }
709
710        // If we found an Objective-C instance variable, let
711        // LookupInObjCMethod build the appropriate expression to
712        // reference the ivar.
713        // FIXME: This is a gross hack.
714        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
715          Result.clear();
716          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
717          return E;
718        }
719
720        goto Corrected;
721      }
722    }
723
724    // We failed to correct; just fall through and let the parser deal with it.
725    Result.suppressDiagnostics();
726    return NameClassification::Unknown();
727
728  case LookupResult::NotFoundInCurrentInstantiation: {
729    // We performed name lookup into the current instantiation, and there were
730    // dependent bases, so we treat this result the same way as any other
731    // dependent nested-name-specifier.
732
733    // C++ [temp.res]p2:
734    //   A name used in a template declaration or definition and that is
735    //   dependent on a template-parameter is assumed not to name a type
736    //   unless the applicable name lookup finds a type name or the name is
737    //   qualified by the keyword typename.
738    //
739    // FIXME: If the next token is '<', we might want to ask the parser to
740    // perform some heroics to see if we actually have a
741    // template-argument-list, which would indicate a missing 'template'
742    // keyword here.
743    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
744                                      NameInfo, IsAddressOfOperand,
745                                      /*TemplateArgs=*/0);
746  }
747
748  case LookupResult::Found:
749  case LookupResult::FoundOverloaded:
750  case LookupResult::FoundUnresolvedValue:
751    break;
752
753  case LookupResult::Ambiguous:
754    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
755        hasAnyAcceptableTemplateNames(Result)) {
756      // C++ [temp.local]p3:
757      //   A lookup that finds an injected-class-name (10.2) can result in an
758      //   ambiguity in certain cases (for example, if it is found in more than
759      //   one base class). If all of the injected-class-names that are found
760      //   refer to specializations of the same class template, and if the name
761      //   is followed by a template-argument-list, the reference refers to the
762      //   class template itself and not a specialization thereof, and is not
763      //   ambiguous.
764      //
765      // This filtering can make an ambiguous result into an unambiguous one,
766      // so try again after filtering out template names.
767      FilterAcceptableTemplateNames(Result);
768      if (!Result.isAmbiguous()) {
769        IsFilteredTemplateName = true;
770        break;
771      }
772    }
773
774    // Diagnose the ambiguity and return an error.
775    return NameClassification::Error();
776  }
777
778  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
779      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
780    // C++ [temp.names]p3:
781    //   After name lookup (3.4) finds that a name is a template-name or that
782    //   an operator-function-id or a literal- operator-id refers to a set of
783    //   overloaded functions any member of which is a function template if
784    //   this is followed by a <, the < is always taken as the delimiter of a
785    //   template-argument-list and never as the less-than operator.
786    if (!IsFilteredTemplateName)
787      FilterAcceptableTemplateNames(Result);
788
789    if (!Result.empty()) {
790      bool IsFunctionTemplate;
791      TemplateName Template;
792      if (Result.end() - Result.begin() > 1) {
793        IsFunctionTemplate = true;
794        Template = Context.getOverloadedTemplateName(Result.begin(),
795                                                     Result.end());
796      } else {
797        TemplateDecl *TD
798          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
799        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
800
801        if (SS.isSet() && !SS.isInvalid())
802          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
803                                                    /*TemplateKeyword=*/false,
804                                                      TD);
805        else
806          Template = TemplateName(TD);
807      }
808
809      if (IsFunctionTemplate) {
810        // Function templates always go through overload resolution, at which
811        // point we'll perform the various checks (e.g., accessibility) we need
812        // to based on which function we selected.
813        Result.suppressDiagnostics();
814
815        return NameClassification::FunctionTemplate(Template);
816      }
817
818      return NameClassification::TypeTemplate(Template);
819    }
820  }
821
822  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
823  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
824    DiagnoseUseOfDecl(Type, NameLoc);
825    QualType T = Context.getTypeDeclType(Type);
826    if (SS.isNotEmpty())
827      return buildNestedType(*this, SS, T, NameLoc);
828    return ParsedType::make(T);
829  }
830
831  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
832  if (!Class) {
833    // FIXME: It's unfortunate that we don't have a Type node for handling this.
834    if (ObjCCompatibleAliasDecl *Alias
835                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
836      Class = Alias->getClassInterface();
837  }
838
839  if (Class) {
840    DiagnoseUseOfDecl(Class, NameLoc);
841
842    if (NextToken.is(tok::period)) {
843      // Interface. <something> is parsed as a property reference expression.
844      // Just return "unknown" as a fall-through for now.
845      Result.suppressDiagnostics();
846      return NameClassification::Unknown();
847    }
848
849    QualType T = Context.getObjCInterfaceType(Class);
850    return ParsedType::make(T);
851  }
852
853  // We can have a type template here if we're classifying a template argument.
854  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
855    return NameClassification::TypeTemplate(
856        TemplateName(cast<TemplateDecl>(FirstDecl)));
857
858  // Check for a tag type hidden by a non-type decl in a few cases where it
859  // seems likely a type is wanted instead of the non-type that was found.
860  if (!getLangOpts().ObjC1) {
861    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862    if ((NextToken.is(tok::identifier) ||
863         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866      DiagnoseUseOfDecl(Type, NameLoc);
867      QualType T = Context.getTypeDeclType(Type);
868      if (SS.isNotEmpty())
869        return buildNestedType(*this, SS, T, NameLoc);
870      return ParsedType::make(T);
871    }
872  }
873
874  if (FirstDecl->isCXXClassMember())
875    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
876
877  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
878  return BuildDeclarationNameExpr(SS, Result, ADL);
879}
880
881// Determines the context to return to after temporarily entering a
882// context.  This depends in an unnecessarily complicated way on the
883// exact ordering of callbacks from the parser.
884DeclContext *Sema::getContainingDC(DeclContext *DC) {
885
886  // Functions defined inline within classes aren't parsed until we've
887  // finished parsing the top-level class, so the top-level class is
888  // the context we'll need to return to.
889  if (isa<FunctionDecl>(DC)) {
890    DC = DC->getLexicalParent();
891
892    // A function not defined within a class will always return to its
893    // lexical context.
894    if (!isa<CXXRecordDecl>(DC))
895      return DC;
896
897    // A C++ inline method/friend is parsed *after* the topmost class
898    // it was declared in is fully parsed ("complete");  the topmost
899    // class is the context we need to return to.
900    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
901      DC = RD;
902
903    // Return the declaration context of the topmost class the inline method is
904    // declared in.
905    return DC;
906  }
907
908  return DC->getLexicalParent();
909}
910
911void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
912  assert(getContainingDC(DC) == CurContext &&
913      "The next DeclContext should be lexically contained in the current one.");
914  CurContext = DC;
915  S->setEntity(DC);
916}
917
918void Sema::PopDeclContext() {
919  assert(CurContext && "DeclContext imbalance!");
920
921  CurContext = getContainingDC(CurContext);
922  assert(CurContext && "Popped translation unit!");
923}
924
925/// EnterDeclaratorContext - Used when we must lookup names in the context
926/// of a declarator's nested name specifier.
927///
928void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
929  // C++0x [basic.lookup.unqual]p13:
930  //   A name used in the definition of a static data member of class
931  //   X (after the qualified-id of the static member) is looked up as
932  //   if the name was used in a member function of X.
933  // C++0x [basic.lookup.unqual]p14:
934  //   If a variable member of a namespace is defined outside of the
935  //   scope of its namespace then any name used in the definition of
936  //   the variable member (after the declarator-id) is looked up as
937  //   if the definition of the variable member occurred in its
938  //   namespace.
939  // Both of these imply that we should push a scope whose context
940  // is the semantic context of the declaration.  We can't use
941  // PushDeclContext here because that context is not necessarily
942  // lexically contained in the current context.  Fortunately,
943  // the containing scope should have the appropriate information.
944
945  assert(!S->getEntity() && "scope already has entity");
946
947#ifndef NDEBUG
948  Scope *Ancestor = S->getParent();
949  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
950  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
951#endif
952
953  CurContext = DC;
954  S->setEntity(DC);
955}
956
957void Sema::ExitDeclaratorContext(Scope *S) {
958  assert(S->getEntity() == CurContext && "Context imbalance!");
959
960  // Switch back to the lexical context.  The safety of this is
961  // enforced by an assert in EnterDeclaratorContext.
962  Scope *Ancestor = S->getParent();
963  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
964  CurContext = (DeclContext*) Ancestor->getEntity();
965
966  // We don't need to do anything with the scope, which is going to
967  // disappear.
968}
969
970
971void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
972  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
973  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
974    // We assume that the caller has already called
975    // ActOnReenterTemplateScope
976    FD = TFD->getTemplatedDecl();
977  }
978  if (!FD)
979    return;
980
981  // Same implementation as PushDeclContext, but enters the context
982  // from the lexical parent, rather than the top-level class.
983  assert(CurContext == FD->getLexicalParent() &&
984    "The next DeclContext should be lexically contained in the current one.");
985  CurContext = FD;
986  S->setEntity(CurContext);
987
988  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
989    ParmVarDecl *Param = FD->getParamDecl(P);
990    // If the parameter has an identifier, then add it to the scope
991    if (Param->getIdentifier()) {
992      S->AddDecl(Param);
993      IdResolver.AddDecl(Param);
994    }
995  }
996}
997
998
999void Sema::ActOnExitFunctionContext() {
1000  // Same implementation as PopDeclContext, but returns to the lexical parent,
1001  // rather than the top-level class.
1002  assert(CurContext && "DeclContext imbalance!");
1003  CurContext = CurContext->getLexicalParent();
1004  assert(CurContext && "Popped translation unit!");
1005}
1006
1007
1008/// \brief Determine whether we allow overloading of the function
1009/// PrevDecl with another declaration.
1010///
1011/// This routine determines whether overloading is possible, not
1012/// whether some new function is actually an overload. It will return
1013/// true in C++ (where we can always provide overloads) or, as an
1014/// extension, in C when the previous function is already an
1015/// overloaded function declaration or has the "overloadable"
1016/// attribute.
1017static bool AllowOverloadingOfFunction(LookupResult &Previous,
1018                                       ASTContext &Context) {
1019  if (Context.getLangOpts().CPlusPlus)
1020    return true;
1021
1022  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1023    return true;
1024
1025  return (Previous.getResultKind() == LookupResult::Found
1026          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1027}
1028
1029/// Add this decl to the scope shadowed decl chains.
1030void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1031  // Move up the scope chain until we find the nearest enclosing
1032  // non-transparent context. The declaration will be introduced into this
1033  // scope.
1034  while (S->getEntity() &&
1035         ((DeclContext *)S->getEntity())->isTransparentContext())
1036    S = S->getParent();
1037
1038  // Add scoped declarations into their context, so that they can be
1039  // found later. Declarations without a context won't be inserted
1040  // into any context.
1041  if (AddToContext)
1042    CurContext->addDecl(D);
1043
1044  // Out-of-line definitions shouldn't be pushed into scope in C++.
1045  // Out-of-line variable and function definitions shouldn't even in C.
1046  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1047      D->isOutOfLine() &&
1048      !D->getDeclContext()->getRedeclContext()->Equals(
1049        D->getLexicalDeclContext()->getRedeclContext()))
1050    return;
1051
1052  // Template instantiations should also not be pushed into scope.
1053  if (isa<FunctionDecl>(D) &&
1054      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1055    return;
1056
1057  // If this replaces anything in the current scope,
1058  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1059                               IEnd = IdResolver.end();
1060  for (; I != IEnd; ++I) {
1061    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1062      S->RemoveDecl(*I);
1063      IdResolver.RemoveDecl(*I);
1064
1065      // Should only need to replace one decl.
1066      break;
1067    }
1068  }
1069
1070  S->AddDecl(D);
1071
1072  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1073    // Implicitly-generated labels may end up getting generated in an order that
1074    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1075    // the label at the appropriate place in the identifier chain.
1076    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1077      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1078      if (IDC == CurContext) {
1079        if (!S->isDeclScope(*I))
1080          continue;
1081      } else if (IDC->Encloses(CurContext))
1082        break;
1083    }
1084
1085    IdResolver.InsertDeclAfter(I, D);
1086  } else {
1087    IdResolver.AddDecl(D);
1088  }
1089}
1090
1091void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1092  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1093    TUScope->AddDecl(D);
1094}
1095
1096bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1097                         bool ExplicitInstantiationOrSpecialization) {
1098  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1099                                  ExplicitInstantiationOrSpecialization);
1100}
1101
1102Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1103  DeclContext *TargetDC = DC->getPrimaryContext();
1104  do {
1105    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1106      if (ScopeDC->getPrimaryContext() == TargetDC)
1107        return S;
1108  } while ((S = S->getParent()));
1109
1110  return 0;
1111}
1112
1113static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1114                                            DeclContext*,
1115                                            ASTContext&);
1116
1117/// Filters out lookup results that don't fall within the given scope
1118/// as determined by isDeclInScope.
1119void Sema::FilterLookupForScope(LookupResult &R,
1120                                DeclContext *Ctx, Scope *S,
1121                                bool ConsiderLinkage,
1122                                bool ExplicitInstantiationOrSpecialization) {
1123  LookupResult::Filter F = R.makeFilter();
1124  while (F.hasNext()) {
1125    NamedDecl *D = F.next();
1126
1127    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1128      continue;
1129
1130    if (ConsiderLinkage &&
1131        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1132      continue;
1133
1134    F.erase();
1135  }
1136
1137  F.done();
1138}
1139
1140static bool isUsingDecl(NamedDecl *D) {
1141  return isa<UsingShadowDecl>(D) ||
1142         isa<UnresolvedUsingTypenameDecl>(D) ||
1143         isa<UnresolvedUsingValueDecl>(D);
1144}
1145
1146/// Removes using shadow declarations from the lookup results.
1147static void RemoveUsingDecls(LookupResult &R) {
1148  LookupResult::Filter F = R.makeFilter();
1149  while (F.hasNext())
1150    if (isUsingDecl(F.next()))
1151      F.erase();
1152
1153  F.done();
1154}
1155
1156/// \brief Check for this common pattern:
1157/// @code
1158/// class S {
1159///   S(const S&); // DO NOT IMPLEMENT
1160///   void operator=(const S&); // DO NOT IMPLEMENT
1161/// };
1162/// @endcode
1163static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1164  // FIXME: Should check for private access too but access is set after we get
1165  // the decl here.
1166  if (D->doesThisDeclarationHaveABody())
1167    return false;
1168
1169  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1170    return CD->isCopyConstructor();
1171  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1172    return Method->isCopyAssignmentOperator();
1173  return false;
1174}
1175
1176bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1177  assert(D);
1178
1179  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1180    return false;
1181
1182  // Ignore class templates.
1183  if (D->getDeclContext()->isDependentContext() ||
1184      D->getLexicalDeclContext()->isDependentContext())
1185    return false;
1186
1187  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1188    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1189      return false;
1190
1191    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1192      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1193        return false;
1194    } else {
1195      // 'static inline' functions are used in headers; don't warn.
1196      if (FD->getStorageClass() == SC_Static &&
1197          FD->isInlineSpecified())
1198        return false;
1199    }
1200
1201    if (FD->doesThisDeclarationHaveABody() &&
1202        Context.DeclMustBeEmitted(FD))
1203      return false;
1204  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1205    if (!VD->isFileVarDecl() ||
1206        VD->getType().isConstant(Context) ||
1207        Context.DeclMustBeEmitted(VD))
1208      return false;
1209
1210    if (VD->isStaticDataMember() &&
1211        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1212      return false;
1213
1214  } else {
1215    return false;
1216  }
1217
1218  // Only warn for unused decls internal to the translation unit.
1219  if (D->getLinkage() == ExternalLinkage)
1220    return false;
1221
1222  return true;
1223}
1224
1225void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1226  if (!D)
1227    return;
1228
1229  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1230    const FunctionDecl *First = FD->getFirstDeclaration();
1231    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1232      return; // First should already be in the vector.
1233  }
1234
1235  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1236    const VarDecl *First = VD->getFirstDeclaration();
1237    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1238      return; // First should already be in the vector.
1239  }
1240
1241  if (ShouldWarnIfUnusedFileScopedDecl(D))
1242    UnusedFileScopedDecls.push_back(D);
1243}
1244
1245static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1246  if (D->isInvalidDecl())
1247    return false;
1248
1249  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1250    return false;
1251
1252  if (isa<LabelDecl>(D))
1253    return true;
1254
1255  // White-list anything that isn't a local variable.
1256  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1257      !D->getDeclContext()->isFunctionOrMethod())
1258    return false;
1259
1260  // Types of valid local variables should be complete, so this should succeed.
1261  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1262
1263    // White-list anything with an __attribute__((unused)) type.
1264    QualType Ty = VD->getType();
1265
1266    // Only look at the outermost level of typedef.
1267    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1268      if (TT->getDecl()->hasAttr<UnusedAttr>())
1269        return false;
1270    }
1271
1272    // If we failed to complete the type for some reason, or if the type is
1273    // dependent, don't diagnose the variable.
1274    if (Ty->isIncompleteType() || Ty->isDependentType())
1275      return false;
1276
1277    if (const TagType *TT = Ty->getAs<TagType>()) {
1278      const TagDecl *Tag = TT->getDecl();
1279      if (Tag->hasAttr<UnusedAttr>())
1280        return false;
1281
1282      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1283        if (!RD->hasTrivialDestructor())
1284          return false;
1285
1286        if (const Expr *Init = VD->getInit()) {
1287          const CXXConstructExpr *Construct =
1288            dyn_cast<CXXConstructExpr>(Init);
1289          if (Construct && !Construct->isElidable()) {
1290            CXXConstructorDecl *CD = Construct->getConstructor();
1291            if (!CD->isTrivial())
1292              return false;
1293          }
1294        }
1295      }
1296    }
1297
1298    // TODO: __attribute__((unused)) templates?
1299  }
1300
1301  return true;
1302}
1303
1304static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1305                                     FixItHint &Hint) {
1306  if (isa<LabelDecl>(D)) {
1307    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1308                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1309    if (AfterColon.isInvalid())
1310      return;
1311    Hint = FixItHint::CreateRemoval(CharSourceRange::
1312                                    getCharRange(D->getLocStart(), AfterColon));
1313  }
1314  return;
1315}
1316
1317/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1318/// unless they are marked attr(unused).
1319void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1320  FixItHint Hint;
1321  if (!ShouldDiagnoseUnusedDecl(D))
1322    return;
1323
1324  GenerateFixForUnusedDecl(D, Context, Hint);
1325
1326  unsigned DiagID;
1327  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1328    DiagID = diag::warn_unused_exception_param;
1329  else if (isa<LabelDecl>(D))
1330    DiagID = diag::warn_unused_label;
1331  else
1332    DiagID = diag::warn_unused_variable;
1333
1334  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1335}
1336
1337static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1338  // Verify that we have no forward references left.  If so, there was a goto
1339  // or address of a label taken, but no definition of it.  Label fwd
1340  // definitions are indicated with a null substmt.
1341  if (L->getStmt() == 0)
1342    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1343}
1344
1345void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1346  if (S->decl_empty()) return;
1347  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1348         "Scope shouldn't contain decls!");
1349
1350  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1351       I != E; ++I) {
1352    Decl *TmpD = (*I);
1353    assert(TmpD && "This decl didn't get pushed??");
1354
1355    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1356    NamedDecl *D = cast<NamedDecl>(TmpD);
1357
1358    if (!D->getDeclName()) continue;
1359
1360    // Diagnose unused variables in this scope.
1361    if (!S->hasErrorOccurred())
1362      DiagnoseUnusedDecl(D);
1363
1364    // If this was a forward reference to a label, verify it was defined.
1365    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1366      CheckPoppedLabel(LD, *this);
1367
1368    // Remove this name from our lexical scope.
1369    IdResolver.RemoveDecl(D);
1370  }
1371}
1372
1373void Sema::ActOnStartFunctionDeclarator() {
1374  ++InFunctionDeclarator;
1375}
1376
1377void Sema::ActOnEndFunctionDeclarator() {
1378  assert(InFunctionDeclarator);
1379  --InFunctionDeclarator;
1380}
1381
1382/// \brief Look for an Objective-C class in the translation unit.
1383///
1384/// \param Id The name of the Objective-C class we're looking for. If
1385/// typo-correction fixes this name, the Id will be updated
1386/// to the fixed name.
1387///
1388/// \param IdLoc The location of the name in the translation unit.
1389///
1390/// \param DoTypoCorrection If true, this routine will attempt typo correction
1391/// if there is no class with the given name.
1392///
1393/// \returns The declaration of the named Objective-C class, or NULL if the
1394/// class could not be found.
1395ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1396                                              SourceLocation IdLoc,
1397                                              bool DoTypoCorrection) {
1398  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1399  // creation from this context.
1400  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1401
1402  if (!IDecl && DoTypoCorrection) {
1403    // Perform typo correction at the given location, but only if we
1404    // find an Objective-C class name.
1405    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1406    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1407                                       LookupOrdinaryName, TUScope, NULL,
1408                                       Validator)) {
1409      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1410      Diag(IdLoc, diag::err_undef_interface_suggest)
1411        << Id << IDecl->getDeclName()
1412        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1413      Diag(IDecl->getLocation(), diag::note_previous_decl)
1414        << IDecl->getDeclName();
1415
1416      Id = IDecl->getIdentifier();
1417    }
1418  }
1419  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1420  // This routine must always return a class definition, if any.
1421  if (Def && Def->getDefinition())
1422      Def = Def->getDefinition();
1423  return Def;
1424}
1425
1426/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1427/// from S, where a non-field would be declared. This routine copes
1428/// with the difference between C and C++ scoping rules in structs and
1429/// unions. For example, the following code is well-formed in C but
1430/// ill-formed in C++:
1431/// @code
1432/// struct S6 {
1433///   enum { BAR } e;
1434/// };
1435///
1436/// void test_S6() {
1437///   struct S6 a;
1438///   a.e = BAR;
1439/// }
1440/// @endcode
1441/// For the declaration of BAR, this routine will return a different
1442/// scope. The scope S will be the scope of the unnamed enumeration
1443/// within S6. In C++, this routine will return the scope associated
1444/// with S6, because the enumeration's scope is a transparent
1445/// context but structures can contain non-field names. In C, this
1446/// routine will return the translation unit scope, since the
1447/// enumeration's scope is a transparent context and structures cannot
1448/// contain non-field names.
1449Scope *Sema::getNonFieldDeclScope(Scope *S) {
1450  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1451         (S->getEntity() &&
1452          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1453         (S->isClassScope() && !getLangOpts().CPlusPlus))
1454    S = S->getParent();
1455  return S;
1456}
1457
1458/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1459/// file scope.  lazily create a decl for it. ForRedeclaration is true
1460/// if we're creating this built-in in anticipation of redeclaring the
1461/// built-in.
1462NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1463                                     Scope *S, bool ForRedeclaration,
1464                                     SourceLocation Loc) {
1465  Builtin::ID BID = (Builtin::ID)bid;
1466
1467  ASTContext::GetBuiltinTypeError Error;
1468  QualType R = Context.GetBuiltinType(BID, Error);
1469  switch (Error) {
1470  case ASTContext::GE_None:
1471    // Okay
1472    break;
1473
1474  case ASTContext::GE_Missing_stdio:
1475    if (ForRedeclaration)
1476      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1477        << Context.BuiltinInfo.GetName(BID);
1478    return 0;
1479
1480  case ASTContext::GE_Missing_setjmp:
1481    if (ForRedeclaration)
1482      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1483        << Context.BuiltinInfo.GetName(BID);
1484    return 0;
1485
1486  case ASTContext::GE_Missing_ucontext:
1487    if (ForRedeclaration)
1488      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1489        << Context.BuiltinInfo.GetName(BID);
1490    return 0;
1491  }
1492
1493  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1494    Diag(Loc, diag::ext_implicit_lib_function_decl)
1495      << Context.BuiltinInfo.GetName(BID)
1496      << R;
1497    if (Context.BuiltinInfo.getHeaderName(BID) &&
1498        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1499          != DiagnosticsEngine::Ignored)
1500      Diag(Loc, diag::note_please_include_header)
1501        << Context.BuiltinInfo.getHeaderName(BID)
1502        << Context.BuiltinInfo.GetName(BID);
1503  }
1504
1505  FunctionDecl *New = FunctionDecl::Create(Context,
1506                                           Context.getTranslationUnitDecl(),
1507                                           Loc, Loc, II, R, /*TInfo=*/0,
1508                                           SC_Extern,
1509                                           SC_None, false,
1510                                           /*hasPrototype=*/true);
1511  New->setImplicit();
1512
1513  // Create Decl objects for each parameter, adding them to the
1514  // FunctionDecl.
1515  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1516    SmallVector<ParmVarDecl*, 16> Params;
1517    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1518      ParmVarDecl *parm =
1519        ParmVarDecl::Create(Context, New, SourceLocation(),
1520                            SourceLocation(), 0,
1521                            FT->getArgType(i), /*TInfo=*/0,
1522                            SC_None, SC_None, 0);
1523      parm->setScopeInfo(0, i);
1524      Params.push_back(parm);
1525    }
1526    New->setParams(Params);
1527  }
1528
1529  AddKnownFunctionAttributes(New);
1530
1531  // TUScope is the translation-unit scope to insert this function into.
1532  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1533  // relate Scopes to DeclContexts, and probably eliminate CurContext
1534  // entirely, but we're not there yet.
1535  DeclContext *SavedContext = CurContext;
1536  CurContext = Context.getTranslationUnitDecl();
1537  PushOnScopeChains(New, TUScope);
1538  CurContext = SavedContext;
1539  return New;
1540}
1541
1542bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1543  QualType OldType;
1544  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1545    OldType = OldTypedef->getUnderlyingType();
1546  else
1547    OldType = Context.getTypeDeclType(Old);
1548  QualType NewType = New->getUnderlyingType();
1549
1550  if (NewType->isVariablyModifiedType()) {
1551    // Must not redefine a typedef with a variably-modified type.
1552    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1553    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1554      << Kind << NewType;
1555    if (Old->getLocation().isValid())
1556      Diag(Old->getLocation(), diag::note_previous_definition);
1557    New->setInvalidDecl();
1558    return true;
1559  }
1560
1561  if (OldType != NewType &&
1562      !OldType->isDependentType() &&
1563      !NewType->isDependentType() &&
1564      !Context.hasSameType(OldType, NewType)) {
1565    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1566    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1567      << Kind << NewType << OldType;
1568    if (Old->getLocation().isValid())
1569      Diag(Old->getLocation(), diag::note_previous_definition);
1570    New->setInvalidDecl();
1571    return true;
1572  }
1573  return false;
1574}
1575
1576/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1577/// same name and scope as a previous declaration 'Old'.  Figure out
1578/// how to resolve this situation, merging decls or emitting
1579/// diagnostics as appropriate. If there was an error, set New to be invalid.
1580///
1581void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1582  // If the new decl is known invalid already, don't bother doing any
1583  // merging checks.
1584  if (New->isInvalidDecl()) return;
1585
1586  // Allow multiple definitions for ObjC built-in typedefs.
1587  // FIXME: Verify the underlying types are equivalent!
1588  if (getLangOpts().ObjC1) {
1589    const IdentifierInfo *TypeID = New->getIdentifier();
1590    switch (TypeID->getLength()) {
1591    default: break;
1592    case 2:
1593      {
1594        if (!TypeID->isStr("id"))
1595          break;
1596        QualType T = New->getUnderlyingType();
1597        if (!T->isPointerType())
1598          break;
1599        if (!T->isVoidPointerType()) {
1600          QualType PT = T->getAs<PointerType>()->getPointeeType();
1601          if (!PT->isStructureType())
1602            break;
1603        }
1604        Context.setObjCIdRedefinitionType(T);
1605        // Install the built-in type for 'id', ignoring the current definition.
1606        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1607        return;
1608      }
1609    case 5:
1610      if (!TypeID->isStr("Class"))
1611        break;
1612      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1613      // Install the built-in type for 'Class', ignoring the current definition.
1614      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1615      return;
1616    case 3:
1617      if (!TypeID->isStr("SEL"))
1618        break;
1619      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1620      // Install the built-in type for 'SEL', ignoring the current definition.
1621      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1622      return;
1623    }
1624    // Fall through - the typedef name was not a builtin type.
1625  }
1626
1627  // Verify the old decl was also a type.
1628  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1629  if (!Old) {
1630    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1631      << New->getDeclName();
1632
1633    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1634    if (OldD->getLocation().isValid())
1635      Diag(OldD->getLocation(), diag::note_previous_definition);
1636
1637    return New->setInvalidDecl();
1638  }
1639
1640  // If the old declaration is invalid, just give up here.
1641  if (Old->isInvalidDecl())
1642    return New->setInvalidDecl();
1643
1644  // If the typedef types are not identical, reject them in all languages and
1645  // with any extensions enabled.
1646  if (isIncompatibleTypedef(Old, New))
1647    return;
1648
1649  // The types match.  Link up the redeclaration chain if the old
1650  // declaration was a typedef.
1651  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1652    New->setPreviousDeclaration(Typedef);
1653
1654  if (getLangOpts().MicrosoftExt)
1655    return;
1656
1657  if (getLangOpts().CPlusPlus) {
1658    // C++ [dcl.typedef]p2:
1659    //   In a given non-class scope, a typedef specifier can be used to
1660    //   redefine the name of any type declared in that scope to refer
1661    //   to the type to which it already refers.
1662    if (!isa<CXXRecordDecl>(CurContext))
1663      return;
1664
1665    // C++0x [dcl.typedef]p4:
1666    //   In a given class scope, a typedef specifier can be used to redefine
1667    //   any class-name declared in that scope that is not also a typedef-name
1668    //   to refer to the type to which it already refers.
1669    //
1670    // This wording came in via DR424, which was a correction to the
1671    // wording in DR56, which accidentally banned code like:
1672    //
1673    //   struct S {
1674    //     typedef struct A { } A;
1675    //   };
1676    //
1677    // in the C++03 standard. We implement the C++0x semantics, which
1678    // allow the above but disallow
1679    //
1680    //   struct S {
1681    //     typedef int I;
1682    //     typedef int I;
1683    //   };
1684    //
1685    // since that was the intent of DR56.
1686    if (!isa<TypedefNameDecl>(Old))
1687      return;
1688
1689    Diag(New->getLocation(), diag::err_redefinition)
1690      << New->getDeclName();
1691    Diag(Old->getLocation(), diag::note_previous_definition);
1692    return New->setInvalidDecl();
1693  }
1694
1695  // Modules always permit redefinition of typedefs, as does C11.
1696  if (getLangOpts().Modules || getLangOpts().C11)
1697    return;
1698
1699  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1700  // is normally mapped to an error, but can be controlled with
1701  // -Wtypedef-redefinition.  If either the original or the redefinition is
1702  // in a system header, don't emit this for compatibility with GCC.
1703  if (getDiagnostics().getSuppressSystemWarnings() &&
1704      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1705       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1706    return;
1707
1708  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1709    << New->getDeclName();
1710  Diag(Old->getLocation(), diag::note_previous_definition);
1711  return;
1712}
1713
1714/// DeclhasAttr - returns true if decl Declaration already has the target
1715/// attribute.
1716static bool
1717DeclHasAttr(const Decl *D, const Attr *A) {
1718  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1719  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1720  // responsible for making sure they are consistent.
1721  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1722  if (AA)
1723    return false;
1724
1725  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1726  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1727  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1728    if ((*i)->getKind() == A->getKind()) {
1729      if (Ann) {
1730        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1731          return true;
1732        continue;
1733      }
1734      // FIXME: Don't hardcode this check
1735      if (OA && isa<OwnershipAttr>(*i))
1736        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1737      return true;
1738    }
1739
1740  return false;
1741}
1742
1743bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1744  InheritableAttr *NewAttr = NULL;
1745  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1746    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1747                                    AA->getIntroduced(), AA->getDeprecated(),
1748                                    AA->getObsoleted(), AA->getUnavailable(),
1749                                    AA->getMessage());
1750  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1751    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1752  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1753    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1754  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1755    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1756  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1757    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1758                              FA->getFormatIdx(), FA->getFirstArg());
1759  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1760    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1761  else if (!DeclHasAttr(D, Attr))
1762    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1763
1764  if (NewAttr) {
1765    NewAttr->setInherited(true);
1766    D->addAttr(NewAttr);
1767    return true;
1768  }
1769
1770  return false;
1771}
1772
1773static const Decl *getDefinition(const Decl *D) {
1774  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1775    return TD->getDefinition();
1776  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1777    return VD->getDefinition();
1778  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1779    const FunctionDecl* Def;
1780    if (FD->hasBody(Def))
1781      return Def;
1782  }
1783  return NULL;
1784}
1785
1786static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1787  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1788       I != E; ++I) {
1789    Attr *Attribute = *I;
1790    if (Attribute->getKind() == Kind)
1791      return true;
1792  }
1793  return false;
1794}
1795
1796/// checkNewAttributesAfterDef - If we already have a definition, check that
1797/// there are no new attributes in this declaration.
1798static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1799  if (!New->hasAttrs())
1800    return;
1801
1802  const Decl *Def = getDefinition(Old);
1803  if (!Def || Def == New)
1804    return;
1805
1806  AttrVec &NewAttributes = New->getAttrs();
1807  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1808    const Attr *NewAttribute = NewAttributes[I];
1809    if (hasAttribute(Def, NewAttribute->getKind())) {
1810      ++I;
1811      continue; // regular attr merging will take care of validating this.
1812    }
1813    S.Diag(NewAttribute->getLocation(),
1814           diag::warn_attribute_precede_definition);
1815    S.Diag(Def->getLocation(), diag::note_previous_definition);
1816    NewAttributes.erase(NewAttributes.begin() + I);
1817    --E;
1818  }
1819}
1820
1821/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1822void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1823                               bool MergeDeprecation) {
1824  // attributes declared post-definition are currently ignored
1825  checkNewAttributesAfterDef(*this, New, Old);
1826
1827  if (!Old->hasAttrs())
1828    return;
1829
1830  bool foundAny = New->hasAttrs();
1831
1832  // Ensure that any moving of objects within the allocated map is done before
1833  // we process them.
1834  if (!foundAny) New->setAttrs(AttrVec());
1835
1836  for (specific_attr_iterator<InheritableAttr>
1837         i = Old->specific_attr_begin<InheritableAttr>(),
1838         e = Old->specific_attr_end<InheritableAttr>();
1839       i != e; ++i) {
1840    // Ignore deprecated/unavailable/availability attributes if requested.
1841    if (!MergeDeprecation &&
1842        (isa<DeprecatedAttr>(*i) ||
1843         isa<UnavailableAttr>(*i) ||
1844         isa<AvailabilityAttr>(*i)))
1845      continue;
1846
1847    if (mergeDeclAttribute(New, *i))
1848      foundAny = true;
1849  }
1850
1851  if (!foundAny) New->dropAttrs();
1852}
1853
1854/// mergeParamDeclAttributes - Copy attributes from the old parameter
1855/// to the new one.
1856static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1857                                     const ParmVarDecl *oldDecl,
1858                                     ASTContext &C) {
1859  if (!oldDecl->hasAttrs())
1860    return;
1861
1862  bool foundAny = newDecl->hasAttrs();
1863
1864  // Ensure that any moving of objects within the allocated map is
1865  // done before we process them.
1866  if (!foundAny) newDecl->setAttrs(AttrVec());
1867
1868  for (specific_attr_iterator<InheritableParamAttr>
1869       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1870       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1871    if (!DeclHasAttr(newDecl, *i)) {
1872      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1873      newAttr->setInherited(true);
1874      newDecl->addAttr(newAttr);
1875      foundAny = true;
1876    }
1877  }
1878
1879  if (!foundAny) newDecl->dropAttrs();
1880}
1881
1882namespace {
1883
1884/// Used in MergeFunctionDecl to keep track of function parameters in
1885/// C.
1886struct GNUCompatibleParamWarning {
1887  ParmVarDecl *OldParm;
1888  ParmVarDecl *NewParm;
1889  QualType PromotedType;
1890};
1891
1892}
1893
1894/// getSpecialMember - get the special member enum for a method.
1895Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1896  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1897    if (Ctor->isDefaultConstructor())
1898      return Sema::CXXDefaultConstructor;
1899
1900    if (Ctor->isCopyConstructor())
1901      return Sema::CXXCopyConstructor;
1902
1903    if (Ctor->isMoveConstructor())
1904      return Sema::CXXMoveConstructor;
1905  } else if (isa<CXXDestructorDecl>(MD)) {
1906    return Sema::CXXDestructor;
1907  } else if (MD->isCopyAssignmentOperator()) {
1908    return Sema::CXXCopyAssignment;
1909  } else if (MD->isMoveAssignmentOperator()) {
1910    return Sema::CXXMoveAssignment;
1911  }
1912
1913  return Sema::CXXInvalid;
1914}
1915
1916/// canRedefineFunction - checks if a function can be redefined. Currently,
1917/// only extern inline functions can be redefined, and even then only in
1918/// GNU89 mode.
1919static bool canRedefineFunction(const FunctionDecl *FD,
1920                                const LangOptions& LangOpts) {
1921  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1922          !LangOpts.CPlusPlus &&
1923          FD->isInlineSpecified() &&
1924          FD->getStorageClass() == SC_Extern);
1925}
1926
1927/// Is the given calling convention the ABI default for the given
1928/// declaration?
1929static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1930  CallingConv ABIDefaultCC;
1931  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1932    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1933  } else {
1934    // Free C function or a static method.
1935    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1936  }
1937  return ABIDefaultCC == CC;
1938}
1939
1940/// MergeFunctionDecl - We just parsed a function 'New' from
1941/// declarator D which has the same name and scope as a previous
1942/// declaration 'Old'.  Figure out how to resolve this situation,
1943/// merging decls or emitting diagnostics as appropriate.
1944///
1945/// In C++, New and Old must be declarations that are not
1946/// overloaded. Use IsOverload to determine whether New and Old are
1947/// overloaded, and to select the Old declaration that New should be
1948/// merged with.
1949///
1950/// Returns true if there was an error, false otherwise.
1951bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1952  // Verify the old decl was also a function.
1953  FunctionDecl *Old = 0;
1954  if (FunctionTemplateDecl *OldFunctionTemplate
1955        = dyn_cast<FunctionTemplateDecl>(OldD))
1956    Old = OldFunctionTemplate->getTemplatedDecl();
1957  else
1958    Old = dyn_cast<FunctionDecl>(OldD);
1959  if (!Old) {
1960    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1961      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1962      Diag(Shadow->getTargetDecl()->getLocation(),
1963           diag::note_using_decl_target);
1964      Diag(Shadow->getUsingDecl()->getLocation(),
1965           diag::note_using_decl) << 0;
1966      return true;
1967    }
1968
1969    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1970      << New->getDeclName();
1971    Diag(OldD->getLocation(), diag::note_previous_definition);
1972    return true;
1973  }
1974
1975  // Determine whether the previous declaration was a definition,
1976  // implicit declaration, or a declaration.
1977  diag::kind PrevDiag;
1978  if (Old->isThisDeclarationADefinition())
1979    PrevDiag = diag::note_previous_definition;
1980  else if (Old->isImplicit())
1981    PrevDiag = diag::note_previous_implicit_declaration;
1982  else
1983    PrevDiag = diag::note_previous_declaration;
1984
1985  QualType OldQType = Context.getCanonicalType(Old->getType());
1986  QualType NewQType = Context.getCanonicalType(New->getType());
1987
1988  // Don't complain about this if we're in GNU89 mode and the old function
1989  // is an extern inline function.
1990  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1991      New->getStorageClass() == SC_Static &&
1992      Old->getStorageClass() != SC_Static &&
1993      !canRedefineFunction(Old, getLangOpts())) {
1994    if (getLangOpts().MicrosoftExt) {
1995      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1996      Diag(Old->getLocation(), PrevDiag);
1997    } else {
1998      Diag(New->getLocation(), diag::err_static_non_static) << New;
1999      Diag(Old->getLocation(), PrevDiag);
2000      return true;
2001    }
2002  }
2003
2004  // If a function is first declared with a calling convention, but is
2005  // later declared or defined without one, the second decl assumes the
2006  // calling convention of the first.
2007  //
2008  // It's OK if a function is first declared without a calling convention,
2009  // but is later declared or defined with the default calling convention.
2010  //
2011  // For the new decl, we have to look at the NON-canonical type to tell the
2012  // difference between a function that really doesn't have a calling
2013  // convention and one that is declared cdecl. That's because in
2014  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2015  // because it is the default calling convention.
2016  //
2017  // Note also that we DO NOT return at this point, because we still have
2018  // other tests to run.
2019  const FunctionType *OldType = cast<FunctionType>(OldQType);
2020  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2021  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2022  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2023  bool RequiresAdjustment = false;
2024  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2025    // Fast path: nothing to do.
2026
2027  // Inherit the CC from the previous declaration if it was specified
2028  // there but not here.
2029  } else if (NewTypeInfo.getCC() == CC_Default) {
2030    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2031    RequiresAdjustment = true;
2032
2033  // Don't complain about mismatches when the default CC is
2034  // effectively the same as the explict one.
2035  } else if (OldTypeInfo.getCC() == CC_Default &&
2036             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2037    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2038    RequiresAdjustment = true;
2039
2040  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2041                                     NewTypeInfo.getCC())) {
2042    // Calling conventions really aren't compatible, so complain.
2043    Diag(New->getLocation(), diag::err_cconv_change)
2044      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2045      << (OldTypeInfo.getCC() == CC_Default)
2046      << (OldTypeInfo.getCC() == CC_Default ? "" :
2047          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2048    Diag(Old->getLocation(), diag::note_previous_declaration);
2049    return true;
2050  }
2051
2052  // FIXME: diagnose the other way around?
2053  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2054    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2055    RequiresAdjustment = true;
2056  }
2057
2058  // Merge regparm attribute.
2059  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2060      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2061    if (NewTypeInfo.getHasRegParm()) {
2062      Diag(New->getLocation(), diag::err_regparm_mismatch)
2063        << NewType->getRegParmType()
2064        << OldType->getRegParmType();
2065      Diag(Old->getLocation(), diag::note_previous_declaration);
2066      return true;
2067    }
2068
2069    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2070    RequiresAdjustment = true;
2071  }
2072
2073  // Merge ns_returns_retained attribute.
2074  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2075    if (NewTypeInfo.getProducesResult()) {
2076      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2077      Diag(Old->getLocation(), diag::note_previous_declaration);
2078      return true;
2079    }
2080
2081    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2082    RequiresAdjustment = true;
2083  }
2084
2085  if (RequiresAdjustment) {
2086    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2087    New->setType(QualType(NewType, 0));
2088    NewQType = Context.getCanonicalType(New->getType());
2089  }
2090
2091  if (getLangOpts().CPlusPlus) {
2092    // (C++98 13.1p2):
2093    //   Certain function declarations cannot be overloaded:
2094    //     -- Function declarations that differ only in the return type
2095    //        cannot be overloaded.
2096    QualType OldReturnType = OldType->getResultType();
2097    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2098    QualType ResQT;
2099    if (OldReturnType != NewReturnType) {
2100      if (NewReturnType->isObjCObjectPointerType()
2101          && OldReturnType->isObjCObjectPointerType())
2102        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2103      if (ResQT.isNull()) {
2104        if (New->isCXXClassMember() && New->isOutOfLine())
2105          Diag(New->getLocation(),
2106               diag::err_member_def_does_not_match_ret_type) << New;
2107        else
2108          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2109        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2110        return true;
2111      }
2112      else
2113        NewQType = ResQT;
2114    }
2115
2116    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2117    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2118    if (OldMethod && NewMethod) {
2119      // Preserve triviality.
2120      NewMethod->setTrivial(OldMethod->isTrivial());
2121
2122      // MSVC allows explicit template specialization at class scope:
2123      // 2 CXMethodDecls referring to the same function will be injected.
2124      // We don't want a redeclartion error.
2125      bool IsClassScopeExplicitSpecialization =
2126                              OldMethod->isFunctionTemplateSpecialization() &&
2127                              NewMethod->isFunctionTemplateSpecialization();
2128      bool isFriend = NewMethod->getFriendObjectKind();
2129
2130      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2131          !IsClassScopeExplicitSpecialization) {
2132        //    -- Member function declarations with the same name and the
2133        //       same parameter types cannot be overloaded if any of them
2134        //       is a static member function declaration.
2135        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2136          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2137          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2138          return true;
2139        }
2140
2141        // C++ [class.mem]p1:
2142        //   [...] A member shall not be declared twice in the
2143        //   member-specification, except that a nested class or member
2144        //   class template can be declared and then later defined.
2145        if (ActiveTemplateInstantiations.empty()) {
2146          unsigned NewDiag;
2147          if (isa<CXXConstructorDecl>(OldMethod))
2148            NewDiag = diag::err_constructor_redeclared;
2149          else if (isa<CXXDestructorDecl>(NewMethod))
2150            NewDiag = diag::err_destructor_redeclared;
2151          else if (isa<CXXConversionDecl>(NewMethod))
2152            NewDiag = diag::err_conv_function_redeclared;
2153          else
2154            NewDiag = diag::err_member_redeclared;
2155
2156          Diag(New->getLocation(), NewDiag);
2157        } else {
2158          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2159            << New << New->getType();
2160        }
2161        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2162
2163      // Complain if this is an explicit declaration of a special
2164      // member that was initially declared implicitly.
2165      //
2166      // As an exception, it's okay to befriend such methods in order
2167      // to permit the implicit constructor/destructor/operator calls.
2168      } else if (OldMethod->isImplicit()) {
2169        if (isFriend) {
2170          NewMethod->setImplicit();
2171        } else {
2172          Diag(NewMethod->getLocation(),
2173               diag::err_definition_of_implicitly_declared_member)
2174            << New << getSpecialMember(OldMethod);
2175          return true;
2176        }
2177      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2178        Diag(NewMethod->getLocation(),
2179             diag::err_definition_of_explicitly_defaulted_member)
2180          << getSpecialMember(OldMethod);
2181        return true;
2182      }
2183    }
2184
2185    // (C++98 8.3.5p3):
2186    //   All declarations for a function shall agree exactly in both the
2187    //   return type and the parameter-type-list.
2188    // We also want to respect all the extended bits except noreturn.
2189
2190    // noreturn should now match unless the old type info didn't have it.
2191    QualType OldQTypeForComparison = OldQType;
2192    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2193      assert(OldQType == QualType(OldType, 0));
2194      const FunctionType *OldTypeForComparison
2195        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2196      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2197      assert(OldQTypeForComparison.isCanonical());
2198    }
2199
2200    if (OldQTypeForComparison == NewQType)
2201      return MergeCompatibleFunctionDecls(New, Old, S);
2202
2203    // Fall through for conflicting redeclarations and redefinitions.
2204  }
2205
2206  // C: Function types need to be compatible, not identical. This handles
2207  // duplicate function decls like "void f(int); void f(enum X);" properly.
2208  if (!getLangOpts().CPlusPlus &&
2209      Context.typesAreCompatible(OldQType, NewQType)) {
2210    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2211    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2212    const FunctionProtoType *OldProto = 0;
2213    if (isa<FunctionNoProtoType>(NewFuncType) &&
2214        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2215      // The old declaration provided a function prototype, but the
2216      // new declaration does not. Merge in the prototype.
2217      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2218      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2219                                                 OldProto->arg_type_end());
2220      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2221                                         ParamTypes.data(), ParamTypes.size(),
2222                                         OldProto->getExtProtoInfo());
2223      New->setType(NewQType);
2224      New->setHasInheritedPrototype();
2225
2226      // Synthesize a parameter for each argument type.
2227      SmallVector<ParmVarDecl*, 16> Params;
2228      for (FunctionProtoType::arg_type_iterator
2229             ParamType = OldProto->arg_type_begin(),
2230             ParamEnd = OldProto->arg_type_end();
2231           ParamType != ParamEnd; ++ParamType) {
2232        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2233                                                 SourceLocation(),
2234                                                 SourceLocation(), 0,
2235                                                 *ParamType, /*TInfo=*/0,
2236                                                 SC_None, SC_None,
2237                                                 0);
2238        Param->setScopeInfo(0, Params.size());
2239        Param->setImplicit();
2240        Params.push_back(Param);
2241      }
2242
2243      New->setParams(Params);
2244    }
2245
2246    return MergeCompatibleFunctionDecls(New, Old, S);
2247  }
2248
2249  // GNU C permits a K&R definition to follow a prototype declaration
2250  // if the declared types of the parameters in the K&R definition
2251  // match the types in the prototype declaration, even when the
2252  // promoted types of the parameters from the K&R definition differ
2253  // from the types in the prototype. GCC then keeps the types from
2254  // the prototype.
2255  //
2256  // If a variadic prototype is followed by a non-variadic K&R definition,
2257  // the K&R definition becomes variadic.  This is sort of an edge case, but
2258  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2259  // C99 6.9.1p8.
2260  if (!getLangOpts().CPlusPlus &&
2261      Old->hasPrototype() && !New->hasPrototype() &&
2262      New->getType()->getAs<FunctionProtoType>() &&
2263      Old->getNumParams() == New->getNumParams()) {
2264    SmallVector<QualType, 16> ArgTypes;
2265    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2266    const FunctionProtoType *OldProto
2267      = Old->getType()->getAs<FunctionProtoType>();
2268    const FunctionProtoType *NewProto
2269      = New->getType()->getAs<FunctionProtoType>();
2270
2271    // Determine whether this is the GNU C extension.
2272    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2273                                               NewProto->getResultType());
2274    bool LooseCompatible = !MergedReturn.isNull();
2275    for (unsigned Idx = 0, End = Old->getNumParams();
2276         LooseCompatible && Idx != End; ++Idx) {
2277      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2278      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2279      if (Context.typesAreCompatible(OldParm->getType(),
2280                                     NewProto->getArgType(Idx))) {
2281        ArgTypes.push_back(NewParm->getType());
2282      } else if (Context.typesAreCompatible(OldParm->getType(),
2283                                            NewParm->getType(),
2284                                            /*CompareUnqualified=*/true)) {
2285        GNUCompatibleParamWarning Warn
2286          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2287        Warnings.push_back(Warn);
2288        ArgTypes.push_back(NewParm->getType());
2289      } else
2290        LooseCompatible = false;
2291    }
2292
2293    if (LooseCompatible) {
2294      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2295        Diag(Warnings[Warn].NewParm->getLocation(),
2296             diag::ext_param_promoted_not_compatible_with_prototype)
2297          << Warnings[Warn].PromotedType
2298          << Warnings[Warn].OldParm->getType();
2299        if (Warnings[Warn].OldParm->getLocation().isValid())
2300          Diag(Warnings[Warn].OldParm->getLocation(),
2301               diag::note_previous_declaration);
2302      }
2303
2304      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2305                                           ArgTypes.size(),
2306                                           OldProto->getExtProtoInfo()));
2307      return MergeCompatibleFunctionDecls(New, Old, S);
2308    }
2309
2310    // Fall through to diagnose conflicting types.
2311  }
2312
2313  // A function that has already been declared has been redeclared or defined
2314  // with a different type- show appropriate diagnostic
2315  if (unsigned BuiltinID = Old->getBuiltinID()) {
2316    // The user has declared a builtin function with an incompatible
2317    // signature.
2318    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2319      // The function the user is redeclaring is a library-defined
2320      // function like 'malloc' or 'printf'. Warn about the
2321      // redeclaration, then pretend that we don't know about this
2322      // library built-in.
2323      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2324      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2325        << Old << Old->getType();
2326      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2327      Old->setInvalidDecl();
2328      return false;
2329    }
2330
2331    PrevDiag = diag::note_previous_builtin_declaration;
2332  }
2333
2334  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2335  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2336  return true;
2337}
2338
2339/// \brief Completes the merge of two function declarations that are
2340/// known to be compatible.
2341///
2342/// This routine handles the merging of attributes and other
2343/// properties of function declarations form the old declaration to
2344/// the new declaration, once we know that New is in fact a
2345/// redeclaration of Old.
2346///
2347/// \returns false
2348bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2349                                        Scope *S) {
2350  // Merge the attributes
2351  mergeDeclAttributes(New, Old);
2352
2353  // Merge the storage class.
2354  if (Old->getStorageClass() != SC_Extern &&
2355      Old->getStorageClass() != SC_None)
2356    New->setStorageClass(Old->getStorageClass());
2357
2358  // Merge "pure" flag.
2359  if (Old->isPure())
2360    New->setPure();
2361
2362  // Merge attributes from the parameters.  These can mismatch with K&R
2363  // declarations.
2364  if (New->getNumParams() == Old->getNumParams())
2365    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2366      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2367                               Context);
2368
2369  if (getLangOpts().CPlusPlus)
2370    return MergeCXXFunctionDecl(New, Old, S);
2371
2372  return false;
2373}
2374
2375
2376void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2377                                ObjCMethodDecl *oldMethod) {
2378
2379  // Merge the attributes, including deprecated/unavailable
2380  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2381
2382  // Merge attributes from the parameters.
2383  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2384                                       oe = oldMethod->param_end();
2385  for (ObjCMethodDecl::param_iterator
2386         ni = newMethod->param_begin(), ne = newMethod->param_end();
2387       ni != ne && oi != oe; ++ni, ++oi)
2388    mergeParamDeclAttributes(*ni, *oi, Context);
2389
2390  CheckObjCMethodOverride(newMethod, oldMethod, true);
2391}
2392
2393/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2394/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2395/// emitting diagnostics as appropriate.
2396///
2397/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2398/// to here in AddInitializerToDecl. We can't check them before the initializer
2399/// is attached.
2400void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2401  if (New->isInvalidDecl() || Old->isInvalidDecl())
2402    return;
2403
2404  QualType MergedT;
2405  if (getLangOpts().CPlusPlus) {
2406    AutoType *AT = New->getType()->getContainedAutoType();
2407    if (AT && !AT->isDeduced()) {
2408      // We don't know what the new type is until the initializer is attached.
2409      return;
2410    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2411      // These could still be something that needs exception specs checked.
2412      return MergeVarDeclExceptionSpecs(New, Old);
2413    }
2414    // C++ [basic.link]p10:
2415    //   [...] the types specified by all declarations referring to a given
2416    //   object or function shall be identical, except that declarations for an
2417    //   array object can specify array types that differ by the presence or
2418    //   absence of a major array bound (8.3.4).
2419    else if (Old->getType()->isIncompleteArrayType() &&
2420             New->getType()->isArrayType()) {
2421      CanQual<ArrayType> OldArray
2422        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2423      CanQual<ArrayType> NewArray
2424        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2425      if (OldArray->getElementType() == NewArray->getElementType())
2426        MergedT = New->getType();
2427    } else if (Old->getType()->isArrayType() &&
2428             New->getType()->isIncompleteArrayType()) {
2429      CanQual<ArrayType> OldArray
2430        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2431      CanQual<ArrayType> NewArray
2432        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2433      if (OldArray->getElementType() == NewArray->getElementType())
2434        MergedT = Old->getType();
2435    } else if (New->getType()->isObjCObjectPointerType()
2436               && Old->getType()->isObjCObjectPointerType()) {
2437        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2438                                                        Old->getType());
2439    }
2440  } else {
2441    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2442  }
2443  if (MergedT.isNull()) {
2444    Diag(New->getLocation(), diag::err_redefinition_different_type)
2445      << New->getDeclName() << New->getType() << Old->getType();
2446    Diag(Old->getLocation(), diag::note_previous_definition);
2447    return New->setInvalidDecl();
2448  }
2449  New->setType(MergedT);
2450}
2451
2452/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2453/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2454/// situation, merging decls or emitting diagnostics as appropriate.
2455///
2456/// Tentative definition rules (C99 6.9.2p2) are checked by
2457/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2458/// definitions here, since the initializer hasn't been attached.
2459///
2460void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2461  // If the new decl is already invalid, don't do any other checking.
2462  if (New->isInvalidDecl())
2463    return;
2464
2465  // Verify the old decl was also a variable.
2466  VarDecl *Old = 0;
2467  if (!Previous.isSingleResult() ||
2468      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2469    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2470      << New->getDeclName();
2471    Diag(Previous.getRepresentativeDecl()->getLocation(),
2472         diag::note_previous_definition);
2473    return New->setInvalidDecl();
2474  }
2475
2476  // C++ [class.mem]p1:
2477  //   A member shall not be declared twice in the member-specification [...]
2478  //
2479  // Here, we need only consider static data members.
2480  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2481    Diag(New->getLocation(), diag::err_duplicate_member)
2482      << New->getIdentifier();
2483    Diag(Old->getLocation(), diag::note_previous_declaration);
2484    New->setInvalidDecl();
2485  }
2486
2487  mergeDeclAttributes(New, Old);
2488  // Warn if an already-declared variable is made a weak_import in a subsequent
2489  // declaration
2490  if (New->getAttr<WeakImportAttr>() &&
2491      Old->getStorageClass() == SC_None &&
2492      !Old->getAttr<WeakImportAttr>()) {
2493    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2494    Diag(Old->getLocation(), diag::note_previous_definition);
2495    // Remove weak_import attribute on new declaration.
2496    New->dropAttr<WeakImportAttr>();
2497  }
2498
2499  // Merge the types.
2500  MergeVarDeclTypes(New, Old);
2501  if (New->isInvalidDecl())
2502    return;
2503
2504  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2505  if (New->getStorageClass() == SC_Static &&
2506      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2507    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2508    Diag(Old->getLocation(), diag::note_previous_definition);
2509    return New->setInvalidDecl();
2510  }
2511  // C99 6.2.2p4:
2512  //   For an identifier declared with the storage-class specifier
2513  //   extern in a scope in which a prior declaration of that
2514  //   identifier is visible,23) if the prior declaration specifies
2515  //   internal or external linkage, the linkage of the identifier at
2516  //   the later declaration is the same as the linkage specified at
2517  //   the prior declaration. If no prior declaration is visible, or
2518  //   if the prior declaration specifies no linkage, then the
2519  //   identifier has external linkage.
2520  if (New->hasExternalStorage() && Old->hasLinkage())
2521    /* Okay */;
2522  else if (New->getStorageClass() != SC_Static &&
2523           Old->getStorageClass() == SC_Static) {
2524    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2525    Diag(Old->getLocation(), diag::note_previous_definition);
2526    return New->setInvalidDecl();
2527  }
2528
2529  // Check if extern is followed by non-extern and vice-versa.
2530  if (New->hasExternalStorage() &&
2531      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2532    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2533    Diag(Old->getLocation(), diag::note_previous_definition);
2534    return New->setInvalidDecl();
2535  }
2536  if (Old->hasExternalStorage() &&
2537      !New->hasLinkage() && New->isLocalVarDecl()) {
2538    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2539    Diag(Old->getLocation(), diag::note_previous_definition);
2540    return New->setInvalidDecl();
2541  }
2542
2543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2544
2545  // FIXME: The test for external storage here seems wrong? We still
2546  // need to check for mismatches.
2547  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2548      // Don't complain about out-of-line definitions of static members.
2549      !(Old->getLexicalDeclContext()->isRecord() &&
2550        !New->getLexicalDeclContext()->isRecord())) {
2551    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2552    Diag(Old->getLocation(), diag::note_previous_definition);
2553    return New->setInvalidDecl();
2554  }
2555
2556  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2557    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2558    Diag(Old->getLocation(), diag::note_previous_definition);
2559  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2560    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2561    Diag(Old->getLocation(), diag::note_previous_definition);
2562  }
2563
2564  // C++ doesn't have tentative definitions, so go right ahead and check here.
2565  const VarDecl *Def;
2566  if (getLangOpts().CPlusPlus &&
2567      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2568      (Def = Old->getDefinition())) {
2569    Diag(New->getLocation(), diag::err_redefinition)
2570      << New->getDeclName();
2571    Diag(Def->getLocation(), diag::note_previous_definition);
2572    New->setInvalidDecl();
2573    return;
2574  }
2575  // c99 6.2.2 P4.
2576  // For an identifier declared with the storage-class specifier extern in a
2577  // scope in which a prior declaration of that identifier is visible, if
2578  // the prior declaration specifies internal or external linkage, the linkage
2579  // of the identifier at the later declaration is the same as the linkage
2580  // specified at the prior declaration.
2581  // FIXME. revisit this code.
2582  if (New->hasExternalStorage() &&
2583      Old->getLinkage() == InternalLinkage &&
2584      New->getDeclContext() == Old->getDeclContext())
2585    New->setStorageClass(Old->getStorageClass());
2586
2587  // Keep a chain of previous declarations.
2588  New->setPreviousDeclaration(Old);
2589
2590  // Inherit access appropriately.
2591  New->setAccess(Old->getAccess());
2592}
2593
2594/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2595/// no declarator (e.g. "struct foo;") is parsed.
2596Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2597                                       DeclSpec &DS) {
2598  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2599}
2600
2601/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2602/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2603/// parameters to cope with template friend declarations.
2604Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2605                                       DeclSpec &DS,
2606                                       MultiTemplateParamsArg TemplateParams) {
2607  Decl *TagD = 0;
2608  TagDecl *Tag = 0;
2609  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2610      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2611      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2612      DS.getTypeSpecType() == DeclSpec::TST_union ||
2613      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2614    TagD = DS.getRepAsDecl();
2615
2616    if (!TagD) // We probably had an error
2617      return 0;
2618
2619    // Note that the above type specs guarantee that the
2620    // type rep is a Decl, whereas in many of the others
2621    // it's a Type.
2622    if (isa<TagDecl>(TagD))
2623      Tag = cast<TagDecl>(TagD);
2624    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2625      Tag = CTD->getTemplatedDecl();
2626  }
2627
2628  if (Tag) {
2629    Tag->setFreeStanding();
2630    if (Tag->isInvalidDecl())
2631      return Tag;
2632  }
2633
2634  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2635    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2636    // or incomplete types shall not be restrict-qualified."
2637    if (TypeQuals & DeclSpec::TQ_restrict)
2638      Diag(DS.getRestrictSpecLoc(),
2639           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2640           << DS.getSourceRange();
2641  }
2642
2643  if (DS.isConstexprSpecified()) {
2644    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2645    // and definitions of functions and variables.
2646    if (Tag)
2647      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2648        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2649            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2650            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2651            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2652    else
2653      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2654    // Don't emit warnings after this error.
2655    return TagD;
2656  }
2657
2658  if (DS.isFriendSpecified()) {
2659    // If we're dealing with a decl but not a TagDecl, assume that
2660    // whatever routines created it handled the friendship aspect.
2661    if (TagD && !Tag)
2662      return 0;
2663    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2664  }
2665
2666  // Track whether we warned about the fact that there aren't any
2667  // declarators.
2668  bool emittedWarning = false;
2669
2670  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2671    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2672        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2673      if (getLangOpts().CPlusPlus ||
2674          Record->getDeclContext()->isRecord())
2675        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2676
2677      Diag(DS.getLocStart(), diag::ext_no_declarators)
2678        << DS.getSourceRange();
2679      emittedWarning = true;
2680    }
2681  }
2682
2683  // Check for Microsoft C extension: anonymous struct.
2684  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2685      CurContext->isRecord() &&
2686      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2687    // Handle 2 kinds of anonymous struct:
2688    //   struct STRUCT;
2689    // and
2690    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2691    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2692    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2693        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2694         DS.getRepAsType().get()->isStructureType())) {
2695      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2696        << DS.getSourceRange();
2697      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2698    }
2699  }
2700
2701  if (getLangOpts().CPlusPlus &&
2702      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2703    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2704      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2705          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2706        Diag(Enum->getLocation(), diag::ext_no_declarators)
2707          << DS.getSourceRange();
2708        emittedWarning = true;
2709      }
2710
2711  // Skip all the checks below if we have a type error.
2712  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2713
2714  if (!DS.isMissingDeclaratorOk()) {
2715    // Warn about typedefs of enums without names, since this is an
2716    // extension in both Microsoft and GNU.
2717    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2718        Tag && isa<EnumDecl>(Tag)) {
2719      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2720        << DS.getSourceRange();
2721      return Tag;
2722    }
2723
2724    Diag(DS.getLocStart(), diag::ext_no_declarators)
2725      << DS.getSourceRange();
2726    emittedWarning = true;
2727  }
2728
2729  // We're going to complain about a bunch of spurious specifiers;
2730  // only do this if we're declaring a tag, because otherwise we
2731  // should be getting diag::ext_no_declarators.
2732  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2733    return TagD;
2734
2735  // Note that a linkage-specification sets a storage class, but
2736  // 'extern "C" struct foo;' is actually valid and not theoretically
2737  // useless.
2738  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2739    if (!DS.isExternInLinkageSpec())
2740      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2741        << DeclSpec::getSpecifierName(scs);
2742
2743  if (DS.isThreadSpecified())
2744    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2745  if (DS.getTypeQualifiers()) {
2746    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2747      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2748    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2749      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2750    // Restrict is covered above.
2751  }
2752  if (DS.isInlineSpecified())
2753    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2754  if (DS.isVirtualSpecified())
2755    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2756  if (DS.isExplicitSpecified())
2757    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2758
2759  if (DS.isModulePrivateSpecified() &&
2760      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2761    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2762      << Tag->getTagKind()
2763      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2764
2765  // Warn about ignored type attributes, for example:
2766  // __attribute__((aligned)) struct A;
2767  // Attributes should be placed after tag to apply to type declaration.
2768  if (!DS.getAttributes().empty()) {
2769    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2770    if (TypeSpecType == DeclSpec::TST_class ||
2771        TypeSpecType == DeclSpec::TST_struct ||
2772        TypeSpecType == DeclSpec::TST_interface ||
2773        TypeSpecType == DeclSpec::TST_union ||
2774        TypeSpecType == DeclSpec::TST_enum) {
2775      AttributeList* attrs = DS.getAttributes().getList();
2776      while (attrs) {
2777        Diag(attrs->getScopeLoc(),
2778             diag::warn_declspec_attribute_ignored)
2779        << attrs->getName()
2780        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2781            TypeSpecType == DeclSpec::TST_struct ? 1 :
2782            TypeSpecType == DeclSpec::TST_union ? 2 :
2783            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2784        attrs = attrs->getNext();
2785      }
2786    }
2787  }
2788
2789  ActOnDocumentableDecl(TagD);
2790
2791  return TagD;
2792}
2793
2794/// We are trying to inject an anonymous member into the given scope;
2795/// check if there's an existing declaration that can't be overloaded.
2796///
2797/// \return true if this is a forbidden redeclaration
2798static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2799                                         Scope *S,
2800                                         DeclContext *Owner,
2801                                         DeclarationName Name,
2802                                         SourceLocation NameLoc,
2803                                         unsigned diagnostic) {
2804  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2805                 Sema::ForRedeclaration);
2806  if (!SemaRef.LookupName(R, S)) return false;
2807
2808  if (R.getAsSingle<TagDecl>())
2809    return false;
2810
2811  // Pick a representative declaration.
2812  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2813  assert(PrevDecl && "Expected a non-null Decl");
2814
2815  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2816    return false;
2817
2818  SemaRef.Diag(NameLoc, diagnostic) << Name;
2819  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2820
2821  return true;
2822}
2823
2824/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2825/// anonymous struct or union AnonRecord into the owning context Owner
2826/// and scope S. This routine will be invoked just after we realize
2827/// that an unnamed union or struct is actually an anonymous union or
2828/// struct, e.g.,
2829///
2830/// @code
2831/// union {
2832///   int i;
2833///   float f;
2834/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2835///    // f into the surrounding scope.x
2836/// @endcode
2837///
2838/// This routine is recursive, injecting the names of nested anonymous
2839/// structs/unions into the owning context and scope as well.
2840static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2841                                                DeclContext *Owner,
2842                                                RecordDecl *AnonRecord,
2843                                                AccessSpecifier AS,
2844                              SmallVector<NamedDecl*, 2> &Chaining,
2845                                                      bool MSAnonStruct) {
2846  unsigned diagKind
2847    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2848                            : diag::err_anonymous_struct_member_redecl;
2849
2850  bool Invalid = false;
2851
2852  // Look every FieldDecl and IndirectFieldDecl with a name.
2853  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2854                               DEnd = AnonRecord->decls_end();
2855       D != DEnd; ++D) {
2856    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2857        cast<NamedDecl>(*D)->getDeclName()) {
2858      ValueDecl *VD = cast<ValueDecl>(*D);
2859      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2860                                       VD->getLocation(), diagKind)) {
2861        // C++ [class.union]p2:
2862        //   The names of the members of an anonymous union shall be
2863        //   distinct from the names of any other entity in the
2864        //   scope in which the anonymous union is declared.
2865        Invalid = true;
2866      } else {
2867        // C++ [class.union]p2:
2868        //   For the purpose of name lookup, after the anonymous union
2869        //   definition, the members of the anonymous union are
2870        //   considered to have been defined in the scope in which the
2871        //   anonymous union is declared.
2872        unsigned OldChainingSize = Chaining.size();
2873        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2874          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2875               PE = IF->chain_end(); PI != PE; ++PI)
2876            Chaining.push_back(*PI);
2877        else
2878          Chaining.push_back(VD);
2879
2880        assert(Chaining.size() >= 2);
2881        NamedDecl **NamedChain =
2882          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2883        for (unsigned i = 0; i < Chaining.size(); i++)
2884          NamedChain[i] = Chaining[i];
2885
2886        IndirectFieldDecl* IndirectField =
2887          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2888                                    VD->getIdentifier(), VD->getType(),
2889                                    NamedChain, Chaining.size());
2890
2891        IndirectField->setAccess(AS);
2892        IndirectField->setImplicit();
2893        SemaRef.PushOnScopeChains(IndirectField, S);
2894
2895        // That includes picking up the appropriate access specifier.
2896        if (AS != AS_none) IndirectField->setAccess(AS);
2897
2898        Chaining.resize(OldChainingSize);
2899      }
2900    }
2901  }
2902
2903  return Invalid;
2904}
2905
2906/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2907/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2908/// illegal input values are mapped to SC_None.
2909static StorageClass
2910StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2911  switch (StorageClassSpec) {
2912  case DeclSpec::SCS_unspecified:    return SC_None;
2913  case DeclSpec::SCS_extern:         return SC_Extern;
2914  case DeclSpec::SCS_static:         return SC_Static;
2915  case DeclSpec::SCS_auto:           return SC_Auto;
2916  case DeclSpec::SCS_register:       return SC_Register;
2917  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2918    // Illegal SCSs map to None: error reporting is up to the caller.
2919  case DeclSpec::SCS_mutable:        // Fall through.
2920  case DeclSpec::SCS_typedef:        return SC_None;
2921  }
2922  llvm_unreachable("unknown storage class specifier");
2923}
2924
2925/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2926/// a StorageClass. Any error reporting is up to the caller:
2927/// illegal input values are mapped to SC_None.
2928static StorageClass
2929StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2930  switch (StorageClassSpec) {
2931  case DeclSpec::SCS_unspecified:    return SC_None;
2932  case DeclSpec::SCS_extern:         return SC_Extern;
2933  case DeclSpec::SCS_static:         return SC_Static;
2934  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2935    // Illegal SCSs map to None: error reporting is up to the caller.
2936  case DeclSpec::SCS_auto:           // Fall through.
2937  case DeclSpec::SCS_mutable:        // Fall through.
2938  case DeclSpec::SCS_register:       // Fall through.
2939  case DeclSpec::SCS_typedef:        return SC_None;
2940  }
2941  llvm_unreachable("unknown storage class specifier");
2942}
2943
2944/// BuildAnonymousStructOrUnion - Handle the declaration of an
2945/// anonymous structure or union. Anonymous unions are a C++ feature
2946/// (C++ [class.union]) and a C11 feature; anonymous structures
2947/// are a C11 feature and GNU C++ extension.
2948Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2949                                             AccessSpecifier AS,
2950                                             RecordDecl *Record) {
2951  DeclContext *Owner = Record->getDeclContext();
2952
2953  // Diagnose whether this anonymous struct/union is an extension.
2954  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2955    Diag(Record->getLocation(), diag::ext_anonymous_union);
2956  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2957    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2958  else if (!Record->isUnion() && !getLangOpts().C11)
2959    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2960
2961  // C and C++ require different kinds of checks for anonymous
2962  // structs/unions.
2963  bool Invalid = false;
2964  if (getLangOpts().CPlusPlus) {
2965    const char* PrevSpec = 0;
2966    unsigned DiagID;
2967    if (Record->isUnion()) {
2968      // C++ [class.union]p6:
2969      //   Anonymous unions declared in a named namespace or in the
2970      //   global namespace shall be declared static.
2971      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2972          (isa<TranslationUnitDecl>(Owner) ||
2973           (isa<NamespaceDecl>(Owner) &&
2974            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2975        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2976          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2977
2978        // Recover by adding 'static'.
2979        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2980                               PrevSpec, DiagID);
2981      }
2982      // C++ [class.union]p6:
2983      //   A storage class is not allowed in a declaration of an
2984      //   anonymous union in a class scope.
2985      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2986               isa<RecordDecl>(Owner)) {
2987        Diag(DS.getStorageClassSpecLoc(),
2988             diag::err_anonymous_union_with_storage_spec)
2989          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2990
2991        // Recover by removing the storage specifier.
2992        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2993                               SourceLocation(),
2994                               PrevSpec, DiagID);
2995      }
2996    }
2997
2998    // Ignore const/volatile/restrict qualifiers.
2999    if (DS.getTypeQualifiers()) {
3000      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3001        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3002          << Record->isUnion() << 0
3003          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3004      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3005        Diag(DS.getVolatileSpecLoc(),
3006             diag::ext_anonymous_struct_union_qualified)
3007          << Record->isUnion() << 1
3008          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3009      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3010        Diag(DS.getRestrictSpecLoc(),
3011             diag::ext_anonymous_struct_union_qualified)
3012          << Record->isUnion() << 2
3013          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3014
3015      DS.ClearTypeQualifiers();
3016    }
3017
3018    // C++ [class.union]p2:
3019    //   The member-specification of an anonymous union shall only
3020    //   define non-static data members. [Note: nested types and
3021    //   functions cannot be declared within an anonymous union. ]
3022    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3023                                 MemEnd = Record->decls_end();
3024         Mem != MemEnd; ++Mem) {
3025      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3026        // C++ [class.union]p3:
3027        //   An anonymous union shall not have private or protected
3028        //   members (clause 11).
3029        assert(FD->getAccess() != AS_none);
3030        if (FD->getAccess() != AS_public) {
3031          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3032            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3033          Invalid = true;
3034        }
3035
3036        // C++ [class.union]p1
3037        //   An object of a class with a non-trivial constructor, a non-trivial
3038        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3039        //   assignment operator cannot be a member of a union, nor can an
3040        //   array of such objects.
3041        if (CheckNontrivialField(FD))
3042          Invalid = true;
3043      } else if ((*Mem)->isImplicit()) {
3044        // Any implicit members are fine.
3045      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3046        // This is a type that showed up in an
3047        // elaborated-type-specifier inside the anonymous struct or
3048        // union, but which actually declares a type outside of the
3049        // anonymous struct or union. It's okay.
3050      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3051        if (!MemRecord->isAnonymousStructOrUnion() &&
3052            MemRecord->getDeclName()) {
3053          // Visual C++ allows type definition in anonymous struct or union.
3054          if (getLangOpts().MicrosoftExt)
3055            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3056              << (int)Record->isUnion();
3057          else {
3058            // This is a nested type declaration.
3059            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3060              << (int)Record->isUnion();
3061            Invalid = true;
3062          }
3063        }
3064      } else if (isa<AccessSpecDecl>(*Mem)) {
3065        // Any access specifier is fine.
3066      } else {
3067        // We have something that isn't a non-static data
3068        // member. Complain about it.
3069        unsigned DK = diag::err_anonymous_record_bad_member;
3070        if (isa<TypeDecl>(*Mem))
3071          DK = diag::err_anonymous_record_with_type;
3072        else if (isa<FunctionDecl>(*Mem))
3073          DK = diag::err_anonymous_record_with_function;
3074        else if (isa<VarDecl>(*Mem))
3075          DK = diag::err_anonymous_record_with_static;
3076
3077        // Visual C++ allows type definition in anonymous struct or union.
3078        if (getLangOpts().MicrosoftExt &&
3079            DK == diag::err_anonymous_record_with_type)
3080          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3081            << (int)Record->isUnion();
3082        else {
3083          Diag((*Mem)->getLocation(), DK)
3084              << (int)Record->isUnion();
3085          Invalid = true;
3086        }
3087      }
3088    }
3089  }
3090
3091  if (!Record->isUnion() && !Owner->isRecord()) {
3092    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3093      << (int)getLangOpts().CPlusPlus;
3094    Invalid = true;
3095  }
3096
3097  // Mock up a declarator.
3098  Declarator Dc(DS, Declarator::MemberContext);
3099  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3100  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3101
3102  // Create a declaration for this anonymous struct/union.
3103  NamedDecl *Anon = 0;
3104  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3105    Anon = FieldDecl::Create(Context, OwningClass,
3106                             DS.getLocStart(),
3107                             Record->getLocation(),
3108                             /*IdentifierInfo=*/0,
3109                             Context.getTypeDeclType(Record),
3110                             TInfo,
3111                             /*BitWidth=*/0, /*Mutable=*/false,
3112                             /*InitStyle=*/ICIS_NoInit);
3113    Anon->setAccess(AS);
3114    if (getLangOpts().CPlusPlus)
3115      FieldCollector->Add(cast<FieldDecl>(Anon));
3116  } else {
3117    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3118    assert(SCSpec != DeclSpec::SCS_typedef &&
3119           "Parser allowed 'typedef' as storage class VarDecl.");
3120    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3121    if (SCSpec == DeclSpec::SCS_mutable) {
3122      // mutable can only appear on non-static class members, so it's always
3123      // an error here
3124      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3125      Invalid = true;
3126      SC = SC_None;
3127    }
3128    SCSpec = DS.getStorageClassSpecAsWritten();
3129    VarDecl::StorageClass SCAsWritten
3130      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3131
3132    Anon = VarDecl::Create(Context, Owner,
3133                           DS.getLocStart(),
3134                           Record->getLocation(), /*IdentifierInfo=*/0,
3135                           Context.getTypeDeclType(Record),
3136                           TInfo, SC, SCAsWritten);
3137
3138    // Default-initialize the implicit variable. This initialization will be
3139    // trivial in almost all cases, except if a union member has an in-class
3140    // initializer:
3141    //   union { int n = 0; };
3142    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3143  }
3144  Anon->setImplicit();
3145
3146  // Add the anonymous struct/union object to the current
3147  // context. We'll be referencing this object when we refer to one of
3148  // its members.
3149  Owner->addDecl(Anon);
3150
3151  // Inject the members of the anonymous struct/union into the owning
3152  // context and into the identifier resolver chain for name lookup
3153  // purposes.
3154  SmallVector<NamedDecl*, 2> Chain;
3155  Chain.push_back(Anon);
3156
3157  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3158                                          Chain, false))
3159    Invalid = true;
3160
3161  // Mark this as an anonymous struct/union type. Note that we do not
3162  // do this until after we have already checked and injected the
3163  // members of this anonymous struct/union type, because otherwise
3164  // the members could be injected twice: once by DeclContext when it
3165  // builds its lookup table, and once by
3166  // InjectAnonymousStructOrUnionMembers.
3167  Record->setAnonymousStructOrUnion(true);
3168
3169  if (Invalid)
3170    Anon->setInvalidDecl();
3171
3172  return Anon;
3173}
3174
3175/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3176/// Microsoft C anonymous structure.
3177/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3178/// Example:
3179///
3180/// struct A { int a; };
3181/// struct B { struct A; int b; };
3182///
3183/// void foo() {
3184///   B var;
3185///   var.a = 3;
3186/// }
3187///
3188Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3189                                           RecordDecl *Record) {
3190
3191  // If there is no Record, get the record via the typedef.
3192  if (!Record)
3193    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3194
3195  // Mock up a declarator.
3196  Declarator Dc(DS, Declarator::TypeNameContext);
3197  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3198  assert(TInfo && "couldn't build declarator info for anonymous struct");
3199
3200  // Create a declaration for this anonymous struct.
3201  NamedDecl* Anon = FieldDecl::Create(Context,
3202                             cast<RecordDecl>(CurContext),
3203                             DS.getLocStart(),
3204                             DS.getLocStart(),
3205                             /*IdentifierInfo=*/0,
3206                             Context.getTypeDeclType(Record),
3207                             TInfo,
3208                             /*BitWidth=*/0, /*Mutable=*/false,
3209                             /*InitStyle=*/ICIS_NoInit);
3210  Anon->setImplicit();
3211
3212  // Add the anonymous struct object to the current context.
3213  CurContext->addDecl(Anon);
3214
3215  // Inject the members of the anonymous struct into the current
3216  // context and into the identifier resolver chain for name lookup
3217  // purposes.
3218  SmallVector<NamedDecl*, 2> Chain;
3219  Chain.push_back(Anon);
3220
3221  RecordDecl *RecordDef = Record->getDefinition();
3222  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3223                                                        RecordDef, AS_none,
3224                                                        Chain, true))
3225    Anon->setInvalidDecl();
3226
3227  return Anon;
3228}
3229
3230/// GetNameForDeclarator - Determine the full declaration name for the
3231/// given Declarator.
3232DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3233  return GetNameFromUnqualifiedId(D.getName());
3234}
3235
3236/// \brief Retrieves the declaration name from a parsed unqualified-id.
3237DeclarationNameInfo
3238Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3239  DeclarationNameInfo NameInfo;
3240  NameInfo.setLoc(Name.StartLocation);
3241
3242  switch (Name.getKind()) {
3243
3244  case UnqualifiedId::IK_ImplicitSelfParam:
3245  case UnqualifiedId::IK_Identifier:
3246    NameInfo.setName(Name.Identifier);
3247    NameInfo.setLoc(Name.StartLocation);
3248    return NameInfo;
3249
3250  case UnqualifiedId::IK_OperatorFunctionId:
3251    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3252                                           Name.OperatorFunctionId.Operator));
3253    NameInfo.setLoc(Name.StartLocation);
3254    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3255      = Name.OperatorFunctionId.SymbolLocations[0];
3256    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3257      = Name.EndLocation.getRawEncoding();
3258    return NameInfo;
3259
3260  case UnqualifiedId::IK_LiteralOperatorId:
3261    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3262                                                           Name.Identifier));
3263    NameInfo.setLoc(Name.StartLocation);
3264    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3265    return NameInfo;
3266
3267  case UnqualifiedId::IK_ConversionFunctionId: {
3268    TypeSourceInfo *TInfo;
3269    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3270    if (Ty.isNull())
3271      return DeclarationNameInfo();
3272    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3273                                               Context.getCanonicalType(Ty)));
3274    NameInfo.setLoc(Name.StartLocation);
3275    NameInfo.setNamedTypeInfo(TInfo);
3276    return NameInfo;
3277  }
3278
3279  case UnqualifiedId::IK_ConstructorName: {
3280    TypeSourceInfo *TInfo;
3281    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3282    if (Ty.isNull())
3283      return DeclarationNameInfo();
3284    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3285                                              Context.getCanonicalType(Ty)));
3286    NameInfo.setLoc(Name.StartLocation);
3287    NameInfo.setNamedTypeInfo(TInfo);
3288    return NameInfo;
3289  }
3290
3291  case UnqualifiedId::IK_ConstructorTemplateId: {
3292    // In well-formed code, we can only have a constructor
3293    // template-id that refers to the current context, so go there
3294    // to find the actual type being constructed.
3295    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3296    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3297      return DeclarationNameInfo();
3298
3299    // Determine the type of the class being constructed.
3300    QualType CurClassType = Context.getTypeDeclType(CurClass);
3301
3302    // FIXME: Check two things: that the template-id names the same type as
3303    // CurClassType, and that the template-id does not occur when the name
3304    // was qualified.
3305
3306    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3307                                    Context.getCanonicalType(CurClassType)));
3308    NameInfo.setLoc(Name.StartLocation);
3309    // FIXME: should we retrieve TypeSourceInfo?
3310    NameInfo.setNamedTypeInfo(0);
3311    return NameInfo;
3312  }
3313
3314  case UnqualifiedId::IK_DestructorName: {
3315    TypeSourceInfo *TInfo;
3316    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3317    if (Ty.isNull())
3318      return DeclarationNameInfo();
3319    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3320                                              Context.getCanonicalType(Ty)));
3321    NameInfo.setLoc(Name.StartLocation);
3322    NameInfo.setNamedTypeInfo(TInfo);
3323    return NameInfo;
3324  }
3325
3326  case UnqualifiedId::IK_TemplateId: {
3327    TemplateName TName = Name.TemplateId->Template.get();
3328    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3329    return Context.getNameForTemplate(TName, TNameLoc);
3330  }
3331
3332  } // switch (Name.getKind())
3333
3334  llvm_unreachable("Unknown name kind");
3335}
3336
3337static QualType getCoreType(QualType Ty) {
3338  do {
3339    if (Ty->isPointerType() || Ty->isReferenceType())
3340      Ty = Ty->getPointeeType();
3341    else if (Ty->isArrayType())
3342      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3343    else
3344      return Ty.withoutLocalFastQualifiers();
3345  } while (true);
3346}
3347
3348/// hasSimilarParameters - Determine whether the C++ functions Declaration
3349/// and Definition have "nearly" matching parameters. This heuristic is
3350/// used to improve diagnostics in the case where an out-of-line function
3351/// definition doesn't match any declaration within the class or namespace.
3352/// Also sets Params to the list of indices to the parameters that differ
3353/// between the declaration and the definition. If hasSimilarParameters
3354/// returns true and Params is empty, then all of the parameters match.
3355static bool hasSimilarParameters(ASTContext &Context,
3356                                     FunctionDecl *Declaration,
3357                                     FunctionDecl *Definition,
3358                                     llvm::SmallVectorImpl<unsigned> &Params) {
3359  Params.clear();
3360  if (Declaration->param_size() != Definition->param_size())
3361    return false;
3362  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3363    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3364    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3365
3366    // The parameter types are identical
3367    if (Context.hasSameType(DefParamTy, DeclParamTy))
3368      continue;
3369
3370    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3371    QualType DefParamBaseTy = getCoreType(DefParamTy);
3372    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3373    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3374
3375    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3376        (DeclTyName && DeclTyName == DefTyName))
3377      Params.push_back(Idx);
3378    else  // The two parameters aren't even close
3379      return false;
3380  }
3381
3382  return true;
3383}
3384
3385/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3386/// declarator needs to be rebuilt in the current instantiation.
3387/// Any bits of declarator which appear before the name are valid for
3388/// consideration here.  That's specifically the type in the decl spec
3389/// and the base type in any member-pointer chunks.
3390static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3391                                                    DeclarationName Name) {
3392  // The types we specifically need to rebuild are:
3393  //   - typenames, typeofs, and decltypes
3394  //   - types which will become injected class names
3395  // Of course, we also need to rebuild any type referencing such a
3396  // type.  It's safest to just say "dependent", but we call out a
3397  // few cases here.
3398
3399  DeclSpec &DS = D.getMutableDeclSpec();
3400  switch (DS.getTypeSpecType()) {
3401  case DeclSpec::TST_typename:
3402  case DeclSpec::TST_typeofType:
3403  case DeclSpec::TST_underlyingType:
3404  case DeclSpec::TST_atomic: {
3405    // Grab the type from the parser.
3406    TypeSourceInfo *TSI = 0;
3407    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3408    if (T.isNull() || !T->isDependentType()) break;
3409
3410    // Make sure there's a type source info.  This isn't really much
3411    // of a waste; most dependent types should have type source info
3412    // attached already.
3413    if (!TSI)
3414      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3415
3416    // Rebuild the type in the current instantiation.
3417    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3418    if (!TSI) return true;
3419
3420    // Store the new type back in the decl spec.
3421    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3422    DS.UpdateTypeRep(LocType);
3423    break;
3424  }
3425
3426  case DeclSpec::TST_decltype:
3427  case DeclSpec::TST_typeofExpr: {
3428    Expr *E = DS.getRepAsExpr();
3429    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3430    if (Result.isInvalid()) return true;
3431    DS.UpdateExprRep(Result.get());
3432    break;
3433  }
3434
3435  default:
3436    // Nothing to do for these decl specs.
3437    break;
3438  }
3439
3440  // It doesn't matter what order we do this in.
3441  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3442    DeclaratorChunk &Chunk = D.getTypeObject(I);
3443
3444    // The only type information in the declarator which can come
3445    // before the declaration name is the base type of a member
3446    // pointer.
3447    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3448      continue;
3449
3450    // Rebuild the scope specifier in-place.
3451    CXXScopeSpec &SS = Chunk.Mem.Scope();
3452    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3453      return true;
3454  }
3455
3456  return false;
3457}
3458
3459Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3460  D.setFunctionDefinitionKind(FDK_Declaration);
3461  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3462
3463  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3464      Dcl && Dcl->getDeclContext()->isFileContext())
3465    Dcl->setTopLevelDeclInObjCContainer();
3466
3467  return Dcl;
3468}
3469
3470/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3471///   If T is the name of a class, then each of the following shall have a
3472///   name different from T:
3473///     - every static data member of class T;
3474///     - every member function of class T
3475///     - every member of class T that is itself a type;
3476/// \returns true if the declaration name violates these rules.
3477bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3478                                   DeclarationNameInfo NameInfo) {
3479  DeclarationName Name = NameInfo.getName();
3480
3481  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3482    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3483      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3484      return true;
3485    }
3486
3487  return false;
3488}
3489
3490/// \brief Diagnose a declaration whose declarator-id has the given
3491/// nested-name-specifier.
3492///
3493/// \param SS The nested-name-specifier of the declarator-id.
3494///
3495/// \param DC The declaration context to which the nested-name-specifier
3496/// resolves.
3497///
3498/// \param Name The name of the entity being declared.
3499///
3500/// \param Loc The location of the name of the entity being declared.
3501///
3502/// \returns true if we cannot safely recover from this error, false otherwise.
3503bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3504                                        DeclarationName Name,
3505                                      SourceLocation Loc) {
3506  DeclContext *Cur = CurContext;
3507  while (isa<LinkageSpecDecl>(Cur))
3508    Cur = Cur->getParent();
3509
3510  // C++ [dcl.meaning]p1:
3511  //   A declarator-id shall not be qualified except for the definition
3512  //   of a member function (9.3) or static data member (9.4) outside of
3513  //   its class, the definition or explicit instantiation of a function
3514  //   or variable member of a namespace outside of its namespace, or the
3515  //   definition of an explicit specialization outside of its namespace,
3516  //   or the declaration of a friend function that is a member of
3517  //   another class or namespace (11.3). [...]
3518
3519  // The user provided a superfluous scope specifier that refers back to the
3520  // class or namespaces in which the entity is already declared.
3521  //
3522  // class X {
3523  //   void X::f();
3524  // };
3525  if (Cur->Equals(DC)) {
3526    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3527                                   : diag::err_member_extra_qualification)
3528      << Name << FixItHint::CreateRemoval(SS.getRange());
3529    SS.clear();
3530    return false;
3531  }
3532
3533  // Check whether the qualifying scope encloses the scope of the original
3534  // declaration.
3535  if (!Cur->Encloses(DC)) {
3536    if (Cur->isRecord())
3537      Diag(Loc, diag::err_member_qualification)
3538        << Name << SS.getRange();
3539    else if (isa<TranslationUnitDecl>(DC))
3540      Diag(Loc, diag::err_invalid_declarator_global_scope)
3541        << Name << SS.getRange();
3542    else if (isa<FunctionDecl>(Cur))
3543      Diag(Loc, diag::err_invalid_declarator_in_function)
3544        << Name << SS.getRange();
3545    else
3546      Diag(Loc, diag::err_invalid_declarator_scope)
3547      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3548
3549    return true;
3550  }
3551
3552  if (Cur->isRecord()) {
3553    // Cannot qualify members within a class.
3554    Diag(Loc, diag::err_member_qualification)
3555      << Name << SS.getRange();
3556    SS.clear();
3557
3558    // C++ constructors and destructors with incorrect scopes can break
3559    // our AST invariants by having the wrong underlying types. If
3560    // that's the case, then drop this declaration entirely.
3561    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3562         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3563        !Context.hasSameType(Name.getCXXNameType(),
3564                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3565      return true;
3566
3567    return false;
3568  }
3569
3570  // C++11 [dcl.meaning]p1:
3571  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3572  //   not begin with a decltype-specifer"
3573  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3574  while (SpecLoc.getPrefix())
3575    SpecLoc = SpecLoc.getPrefix();
3576  if (dyn_cast_or_null<DecltypeType>(
3577        SpecLoc.getNestedNameSpecifier()->getAsType()))
3578    Diag(Loc, diag::err_decltype_in_declarator)
3579      << SpecLoc.getTypeLoc().getSourceRange();
3580
3581  return false;
3582}
3583
3584Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3585                             MultiTemplateParamsArg TemplateParamLists) {
3586  // TODO: consider using NameInfo for diagnostic.
3587  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3588  DeclarationName Name = NameInfo.getName();
3589
3590  // All of these full declarators require an identifier.  If it doesn't have
3591  // one, the ParsedFreeStandingDeclSpec action should be used.
3592  if (!Name) {
3593    if (!D.isInvalidType())  // Reject this if we think it is valid.
3594      Diag(D.getDeclSpec().getLocStart(),
3595           diag::err_declarator_need_ident)
3596        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3597    return 0;
3598  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3599    return 0;
3600
3601  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3602  // we find one that is.
3603  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3604         (S->getFlags() & Scope::TemplateParamScope) != 0)
3605    S = S->getParent();
3606
3607  DeclContext *DC = CurContext;
3608  if (D.getCXXScopeSpec().isInvalid())
3609    D.setInvalidType();
3610  else if (D.getCXXScopeSpec().isSet()) {
3611    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3612                                        UPPC_DeclarationQualifier))
3613      return 0;
3614
3615    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3616    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3617    if (!DC) {
3618      // If we could not compute the declaration context, it's because the
3619      // declaration context is dependent but does not refer to a class,
3620      // class template, or class template partial specialization. Complain
3621      // and return early, to avoid the coming semantic disaster.
3622      Diag(D.getIdentifierLoc(),
3623           diag::err_template_qualified_declarator_no_match)
3624        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3625        << D.getCXXScopeSpec().getRange();
3626      return 0;
3627    }
3628    bool IsDependentContext = DC->isDependentContext();
3629
3630    if (!IsDependentContext &&
3631        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3632      return 0;
3633
3634    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3635      Diag(D.getIdentifierLoc(),
3636           diag::err_member_def_undefined_record)
3637        << Name << DC << D.getCXXScopeSpec().getRange();
3638      D.setInvalidType();
3639    } else if (!D.getDeclSpec().isFriendSpecified()) {
3640      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3641                                      Name, D.getIdentifierLoc())) {
3642        if (DC->isRecord())
3643          return 0;
3644
3645        D.setInvalidType();
3646      }
3647    }
3648
3649    // Check whether we need to rebuild the type of the given
3650    // declaration in the current instantiation.
3651    if (EnteringContext && IsDependentContext &&
3652        TemplateParamLists.size() != 0) {
3653      ContextRAII SavedContext(*this, DC);
3654      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3655        D.setInvalidType();
3656    }
3657  }
3658
3659  if (DiagnoseClassNameShadow(DC, NameInfo))
3660    // If this is a typedef, we'll end up spewing multiple diagnostics.
3661    // Just return early; it's safer.
3662    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3663      return 0;
3664
3665  NamedDecl *New;
3666
3667  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3668  QualType R = TInfo->getType();
3669
3670  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3671                                      UPPC_DeclarationType))
3672    D.setInvalidType();
3673
3674  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3675                        ForRedeclaration);
3676
3677  // See if this is a redefinition of a variable in the same scope.
3678  if (!D.getCXXScopeSpec().isSet()) {
3679    bool IsLinkageLookup = false;
3680
3681    // If the declaration we're planning to build will be a function
3682    // or object with linkage, then look for another declaration with
3683    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3684    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3685      /* Do nothing*/;
3686    else if (R->isFunctionType()) {
3687      if (CurContext->isFunctionOrMethod() ||
3688          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3689        IsLinkageLookup = true;
3690    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3691      IsLinkageLookup = true;
3692    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3693             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3694      IsLinkageLookup = true;
3695
3696    if (IsLinkageLookup)
3697      Previous.clear(LookupRedeclarationWithLinkage);
3698
3699    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3700  } else { // Something like "int foo::x;"
3701    LookupQualifiedName(Previous, DC);
3702
3703    // C++ [dcl.meaning]p1:
3704    //   When the declarator-id is qualified, the declaration shall refer to a
3705    //  previously declared member of the class or namespace to which the
3706    //  qualifier refers (or, in the case of a namespace, of an element of the
3707    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3708    //  thereof; [...]
3709    //
3710    // Note that we already checked the context above, and that we do not have
3711    // enough information to make sure that Previous contains the declaration
3712    // we want to match. For example, given:
3713    //
3714    //   class X {
3715    //     void f();
3716    //     void f(float);
3717    //   };
3718    //
3719    //   void X::f(int) { } // ill-formed
3720    //
3721    // In this case, Previous will point to the overload set
3722    // containing the two f's declared in X, but neither of them
3723    // matches.
3724
3725    // C++ [dcl.meaning]p1:
3726    //   [...] the member shall not merely have been introduced by a
3727    //   using-declaration in the scope of the class or namespace nominated by
3728    //   the nested-name-specifier of the declarator-id.
3729    RemoveUsingDecls(Previous);
3730  }
3731
3732  if (Previous.isSingleResult() &&
3733      Previous.getFoundDecl()->isTemplateParameter()) {
3734    // Maybe we will complain about the shadowed template parameter.
3735    if (!D.isInvalidType())
3736      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3737                                      Previous.getFoundDecl());
3738
3739    // Just pretend that we didn't see the previous declaration.
3740    Previous.clear();
3741  }
3742
3743  // In C++, the previous declaration we find might be a tag type
3744  // (class or enum). In this case, the new declaration will hide the
3745  // tag type. Note that this does does not apply if we're declaring a
3746  // typedef (C++ [dcl.typedef]p4).
3747  if (Previous.isSingleTagDecl() &&
3748      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3749    Previous.clear();
3750
3751  bool AddToScope = true;
3752  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3753    if (TemplateParamLists.size()) {
3754      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3755      return 0;
3756    }
3757
3758    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3759  } else if (R->isFunctionType()) {
3760    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3761                                  TemplateParamLists,
3762                                  AddToScope);
3763  } else {
3764    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3765                                  TemplateParamLists);
3766  }
3767
3768  if (New == 0)
3769    return 0;
3770
3771  // If this has an identifier and is not an invalid redeclaration or
3772  // function template specialization, add it to the scope stack.
3773  if (New->getDeclName() && AddToScope &&
3774       !(D.isRedeclaration() && New->isInvalidDecl()))
3775    PushOnScopeChains(New, S);
3776
3777  return New;
3778}
3779
3780/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3781/// types into constant array types in certain situations which would otherwise
3782/// be errors (for GCC compatibility).
3783static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3784                                                    ASTContext &Context,
3785                                                    bool &SizeIsNegative,
3786                                                    llvm::APSInt &Oversized) {
3787  // This method tries to turn a variable array into a constant
3788  // array even when the size isn't an ICE.  This is necessary
3789  // for compatibility with code that depends on gcc's buggy
3790  // constant expression folding, like struct {char x[(int)(char*)2];}
3791  SizeIsNegative = false;
3792  Oversized = 0;
3793
3794  if (T->isDependentType())
3795    return QualType();
3796
3797  QualifierCollector Qs;
3798  const Type *Ty = Qs.strip(T);
3799
3800  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3801    QualType Pointee = PTy->getPointeeType();
3802    QualType FixedType =
3803        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3804                                            Oversized);
3805    if (FixedType.isNull()) return FixedType;
3806    FixedType = Context.getPointerType(FixedType);
3807    return Qs.apply(Context, FixedType);
3808  }
3809  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3810    QualType Inner = PTy->getInnerType();
3811    QualType FixedType =
3812        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3813                                            Oversized);
3814    if (FixedType.isNull()) return FixedType;
3815    FixedType = Context.getParenType(FixedType);
3816    return Qs.apply(Context, FixedType);
3817  }
3818
3819  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3820  if (!VLATy)
3821    return QualType();
3822  // FIXME: We should probably handle this case
3823  if (VLATy->getElementType()->isVariablyModifiedType())
3824    return QualType();
3825
3826  llvm::APSInt Res;
3827  if (!VLATy->getSizeExpr() ||
3828      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3829    return QualType();
3830
3831  // Check whether the array size is negative.
3832  if (Res.isSigned() && Res.isNegative()) {
3833    SizeIsNegative = true;
3834    return QualType();
3835  }
3836
3837  // Check whether the array is too large to be addressed.
3838  unsigned ActiveSizeBits
3839    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3840                                              Res);
3841  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3842    Oversized = Res;
3843    return QualType();
3844  }
3845
3846  return Context.getConstantArrayType(VLATy->getElementType(),
3847                                      Res, ArrayType::Normal, 0);
3848}
3849
3850/// \brief Register the given locally-scoped external C declaration so
3851/// that it can be found later for redeclarations
3852void
3853Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3854                                       const LookupResult &Previous,
3855                                       Scope *S) {
3856  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3857         "Decl is not a locally-scoped decl!");
3858  // Note that we have a locally-scoped external with this name.
3859  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3860
3861  if (!Previous.isSingleResult())
3862    return;
3863
3864  NamedDecl *PrevDecl = Previous.getFoundDecl();
3865
3866  // If there was a previous declaration of this variable, it may be
3867  // in our identifier chain. Update the identifier chain with the new
3868  // declaration.
3869  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3870    // The previous declaration was found on the identifer resolver
3871    // chain, so remove it from its scope.
3872
3873    if (S->isDeclScope(PrevDecl)) {
3874      // Special case for redeclarations in the SAME scope.
3875      // Because this declaration is going to be added to the identifier chain
3876      // later, we should temporarily take it OFF the chain.
3877      IdResolver.RemoveDecl(ND);
3878
3879    } else {
3880      // Find the scope for the original declaration.
3881      while (S && !S->isDeclScope(PrevDecl))
3882        S = S->getParent();
3883    }
3884
3885    if (S)
3886      S->RemoveDecl(PrevDecl);
3887  }
3888}
3889
3890llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3891Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3892  if (ExternalSource) {
3893    // Load locally-scoped external decls from the external source.
3894    SmallVector<NamedDecl *, 4> Decls;
3895    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3896    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3897      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3898        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3899      if (Pos == LocallyScopedExternalDecls.end())
3900        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3901    }
3902  }
3903
3904  return LocallyScopedExternalDecls.find(Name);
3905}
3906
3907/// \brief Diagnose function specifiers on a declaration of an identifier that
3908/// does not identify a function.
3909void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3910  // FIXME: We should probably indicate the identifier in question to avoid
3911  // confusion for constructs like "inline int a(), b;"
3912  if (D.getDeclSpec().isInlineSpecified())
3913    Diag(D.getDeclSpec().getInlineSpecLoc(),
3914         diag::err_inline_non_function);
3915
3916  if (D.getDeclSpec().isVirtualSpecified())
3917    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3918         diag::err_virtual_non_function);
3919
3920  if (D.getDeclSpec().isExplicitSpecified())
3921    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3922         diag::err_explicit_non_function);
3923}
3924
3925NamedDecl*
3926Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3927                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3928  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3929  if (D.getCXXScopeSpec().isSet()) {
3930    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3931      << D.getCXXScopeSpec().getRange();
3932    D.setInvalidType();
3933    // Pretend we didn't see the scope specifier.
3934    DC = CurContext;
3935    Previous.clear();
3936  }
3937
3938  if (getLangOpts().CPlusPlus) {
3939    // Check that there are no default arguments (C++ only).
3940    CheckExtraCXXDefaultArguments(D);
3941  }
3942
3943  DiagnoseFunctionSpecifiers(D);
3944
3945  if (D.getDeclSpec().isThreadSpecified())
3946    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3947  if (D.getDeclSpec().isConstexprSpecified())
3948    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3949      << 1;
3950
3951  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3952    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3953      << D.getName().getSourceRange();
3954    return 0;
3955  }
3956
3957  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3958  if (!NewTD) return 0;
3959
3960  // Handle attributes prior to checking for duplicates in MergeVarDecl
3961  ProcessDeclAttributes(S, NewTD, D);
3962
3963  CheckTypedefForVariablyModifiedType(S, NewTD);
3964
3965  bool Redeclaration = D.isRedeclaration();
3966  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3967  D.setRedeclaration(Redeclaration);
3968  return ND;
3969}
3970
3971void
3972Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3973  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3974  // then it shall have block scope.
3975  // Note that variably modified types must be fixed before merging the decl so
3976  // that redeclarations will match.
3977  QualType T = NewTD->getUnderlyingType();
3978  if (T->isVariablyModifiedType()) {
3979    getCurFunction()->setHasBranchProtectedScope();
3980
3981    if (S->getFnParent() == 0) {
3982      bool SizeIsNegative;
3983      llvm::APSInt Oversized;
3984      QualType FixedTy =
3985          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3986                                              Oversized);
3987      if (!FixedTy.isNull()) {
3988        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3989        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3990      } else {
3991        if (SizeIsNegative)
3992          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3993        else if (T->isVariableArrayType())
3994          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3995        else if (Oversized.getBoolValue())
3996          Diag(NewTD->getLocation(), diag::err_array_too_large)
3997            << Oversized.toString(10);
3998        else
3999          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4000        NewTD->setInvalidDecl();
4001      }
4002    }
4003  }
4004}
4005
4006
4007/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4008/// declares a typedef-name, either using the 'typedef' type specifier or via
4009/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4010NamedDecl*
4011Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4012                           LookupResult &Previous, bool &Redeclaration) {
4013  // Merge the decl with the existing one if appropriate. If the decl is
4014  // in an outer scope, it isn't the same thing.
4015  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4016                       /*ExplicitInstantiationOrSpecialization=*/false);
4017  if (!Previous.empty()) {
4018    Redeclaration = true;
4019    MergeTypedefNameDecl(NewTD, Previous);
4020  }
4021
4022  // If this is the C FILE type, notify the AST context.
4023  if (IdentifierInfo *II = NewTD->getIdentifier())
4024    if (!NewTD->isInvalidDecl() &&
4025        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4026      if (II->isStr("FILE"))
4027        Context.setFILEDecl(NewTD);
4028      else if (II->isStr("jmp_buf"))
4029        Context.setjmp_bufDecl(NewTD);
4030      else if (II->isStr("sigjmp_buf"))
4031        Context.setsigjmp_bufDecl(NewTD);
4032      else if (II->isStr("ucontext_t"))
4033        Context.setucontext_tDecl(NewTD);
4034    }
4035
4036  return NewTD;
4037}
4038
4039/// \brief Determines whether the given declaration is an out-of-scope
4040/// previous declaration.
4041///
4042/// This routine should be invoked when name lookup has found a
4043/// previous declaration (PrevDecl) that is not in the scope where a
4044/// new declaration by the same name is being introduced. If the new
4045/// declaration occurs in a local scope, previous declarations with
4046/// linkage may still be considered previous declarations (C99
4047/// 6.2.2p4-5, C++ [basic.link]p6).
4048///
4049/// \param PrevDecl the previous declaration found by name
4050/// lookup
4051///
4052/// \param DC the context in which the new declaration is being
4053/// declared.
4054///
4055/// \returns true if PrevDecl is an out-of-scope previous declaration
4056/// for a new delcaration with the same name.
4057static bool
4058isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4059                                ASTContext &Context) {
4060  if (!PrevDecl)
4061    return false;
4062
4063  if (!PrevDecl->hasLinkage())
4064    return false;
4065
4066  if (Context.getLangOpts().CPlusPlus) {
4067    // C++ [basic.link]p6:
4068    //   If there is a visible declaration of an entity with linkage
4069    //   having the same name and type, ignoring entities declared
4070    //   outside the innermost enclosing namespace scope, the block
4071    //   scope declaration declares that same entity and receives the
4072    //   linkage of the previous declaration.
4073    DeclContext *OuterContext = DC->getRedeclContext();
4074    if (!OuterContext->isFunctionOrMethod())
4075      // This rule only applies to block-scope declarations.
4076      return false;
4077
4078    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4079    if (PrevOuterContext->isRecord())
4080      // We found a member function: ignore it.
4081      return false;
4082
4083    // Find the innermost enclosing namespace for the new and
4084    // previous declarations.
4085    OuterContext = OuterContext->getEnclosingNamespaceContext();
4086    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4087
4088    // The previous declaration is in a different namespace, so it
4089    // isn't the same function.
4090    if (!OuterContext->Equals(PrevOuterContext))
4091      return false;
4092  }
4093
4094  return true;
4095}
4096
4097static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4098  CXXScopeSpec &SS = D.getCXXScopeSpec();
4099  if (!SS.isSet()) return;
4100  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4101}
4102
4103bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4104  QualType type = decl->getType();
4105  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4106  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4107    // Various kinds of declaration aren't allowed to be __autoreleasing.
4108    unsigned kind = -1U;
4109    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4110      if (var->hasAttr<BlocksAttr>())
4111        kind = 0; // __block
4112      else if (!var->hasLocalStorage())
4113        kind = 1; // global
4114    } else if (isa<ObjCIvarDecl>(decl)) {
4115      kind = 3; // ivar
4116    } else if (isa<FieldDecl>(decl)) {
4117      kind = 2; // field
4118    }
4119
4120    if (kind != -1U) {
4121      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4122        << kind;
4123    }
4124  } else if (lifetime == Qualifiers::OCL_None) {
4125    // Try to infer lifetime.
4126    if (!type->isObjCLifetimeType())
4127      return false;
4128
4129    lifetime = type->getObjCARCImplicitLifetime();
4130    type = Context.getLifetimeQualifiedType(type, lifetime);
4131    decl->setType(type);
4132  }
4133
4134  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4135    // Thread-local variables cannot have lifetime.
4136    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4137        var->isThreadSpecified()) {
4138      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4139        << var->getType();
4140      return true;
4141    }
4142  }
4143
4144  return false;
4145}
4146
4147NamedDecl*
4148Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4149                              TypeSourceInfo *TInfo, LookupResult &Previous,
4150                              MultiTemplateParamsArg TemplateParamLists) {
4151  QualType R = TInfo->getType();
4152  DeclarationName Name = GetNameForDeclarator(D).getName();
4153
4154  // Check that there are no default arguments (C++ only).
4155  if (getLangOpts().CPlusPlus)
4156    CheckExtraCXXDefaultArguments(D);
4157
4158  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4159  assert(SCSpec != DeclSpec::SCS_typedef &&
4160         "Parser allowed 'typedef' as storage class VarDecl.");
4161  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4162  if (SCSpec == DeclSpec::SCS_mutable) {
4163    // mutable can only appear on non-static class members, so it's always
4164    // an error here
4165    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4166    D.setInvalidType();
4167    SC = SC_None;
4168  }
4169  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4170  VarDecl::StorageClass SCAsWritten
4171    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4172
4173  IdentifierInfo *II = Name.getAsIdentifierInfo();
4174  if (!II) {
4175    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4176      << Name;
4177    return 0;
4178  }
4179
4180  DiagnoseFunctionSpecifiers(D);
4181
4182  if (!DC->isRecord() && S->getFnParent() == 0) {
4183    // C99 6.9p2: The storage-class specifiers auto and register shall not
4184    // appear in the declaration specifiers in an external declaration.
4185    if (SC == SC_Auto || SC == SC_Register) {
4186
4187      // If this is a register variable with an asm label specified, then this
4188      // is a GNU extension.
4189      if (SC == SC_Register && D.getAsmLabel())
4190        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4191      else
4192        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4193      D.setInvalidType();
4194    }
4195  }
4196
4197  if (getLangOpts().OpenCL) {
4198    // Set up the special work-group-local storage class for variables in the
4199    // OpenCL __local address space.
4200    if (R.getAddressSpace() == LangAS::opencl_local)
4201      SC = SC_OpenCLWorkGroupLocal;
4202  }
4203
4204  bool isExplicitSpecialization = false;
4205  VarDecl *NewVD;
4206  if (!getLangOpts().CPlusPlus) {
4207    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4208                            D.getIdentifierLoc(), II,
4209                            R, TInfo, SC, SCAsWritten);
4210
4211    if (D.isInvalidType())
4212      NewVD->setInvalidDecl();
4213  } else {
4214    if (DC->isRecord() && !CurContext->isRecord()) {
4215      // This is an out-of-line definition of a static data member.
4216      if (SC == SC_Static) {
4217        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4218             diag::err_static_out_of_line)
4219          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4220      } else if (SC == SC_None)
4221        SC = SC_Static;
4222    }
4223    if (SC == SC_Static && CurContext->isRecord()) {
4224      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4225        if (RD->isLocalClass())
4226          Diag(D.getIdentifierLoc(),
4227               diag::err_static_data_member_not_allowed_in_local_class)
4228            << Name << RD->getDeclName();
4229
4230        // C++98 [class.union]p1: If a union contains a static data member,
4231        // the program is ill-formed. C++11 drops this restriction.
4232        if (RD->isUnion())
4233          Diag(D.getIdentifierLoc(),
4234               getLangOpts().CPlusPlus0x
4235                 ? diag::warn_cxx98_compat_static_data_member_in_union
4236                 : diag::ext_static_data_member_in_union) << Name;
4237        // We conservatively disallow static data members in anonymous structs.
4238        else if (!RD->getDeclName())
4239          Diag(D.getIdentifierLoc(),
4240               diag::err_static_data_member_not_allowed_in_anon_struct)
4241            << Name << RD->isUnion();
4242      }
4243    }
4244
4245    // Match up the template parameter lists with the scope specifier, then
4246    // determine whether we have a template or a template specialization.
4247    isExplicitSpecialization = false;
4248    bool Invalid = false;
4249    if (TemplateParameterList *TemplateParams
4250        = MatchTemplateParametersToScopeSpecifier(
4251                                  D.getDeclSpec().getLocStart(),
4252                                                  D.getIdentifierLoc(),
4253                                                  D.getCXXScopeSpec(),
4254                                                  TemplateParamLists.data(),
4255                                                  TemplateParamLists.size(),
4256                                                  /*never a friend*/ false,
4257                                                  isExplicitSpecialization,
4258                                                  Invalid)) {
4259      if (TemplateParams->size() > 0) {
4260        // There is no such thing as a variable template.
4261        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4262          << II
4263          << SourceRange(TemplateParams->getTemplateLoc(),
4264                         TemplateParams->getRAngleLoc());
4265        return 0;
4266      } else {
4267        // There is an extraneous 'template<>' for this variable. Complain
4268        // about it, but allow the declaration of the variable.
4269        Diag(TemplateParams->getTemplateLoc(),
4270             diag::err_template_variable_noparams)
4271          << II
4272          << SourceRange(TemplateParams->getTemplateLoc(),
4273                         TemplateParams->getRAngleLoc());
4274      }
4275    }
4276
4277    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4278                            D.getIdentifierLoc(), II,
4279                            R, TInfo, SC, SCAsWritten);
4280
4281    // If this decl has an auto type in need of deduction, make a note of the
4282    // Decl so we can diagnose uses of it in its own initializer.
4283    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4284        R->getContainedAutoType())
4285      ParsingInitForAutoVars.insert(NewVD);
4286
4287    if (D.isInvalidType() || Invalid)
4288      NewVD->setInvalidDecl();
4289
4290    SetNestedNameSpecifier(NewVD, D);
4291
4292    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4293      NewVD->setTemplateParameterListsInfo(Context,
4294                                           TemplateParamLists.size(),
4295                                           TemplateParamLists.data());
4296    }
4297
4298    if (D.getDeclSpec().isConstexprSpecified())
4299      NewVD->setConstexpr(true);
4300  }
4301
4302  // Set the lexical context. If the declarator has a C++ scope specifier, the
4303  // lexical context will be different from the semantic context.
4304  NewVD->setLexicalDeclContext(CurContext);
4305
4306  if (D.getDeclSpec().isThreadSpecified()) {
4307    if (NewVD->hasLocalStorage())
4308      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4309    else if (!Context.getTargetInfo().isTLSSupported())
4310      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4311    else
4312      NewVD->setThreadSpecified(true);
4313  }
4314
4315  if (D.getDeclSpec().isModulePrivateSpecified()) {
4316    if (isExplicitSpecialization)
4317      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4318        << 2
4319        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4320    else if (NewVD->hasLocalStorage())
4321      Diag(NewVD->getLocation(), diag::err_module_private_local)
4322        << 0 << NewVD->getDeclName()
4323        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4324        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4325    else
4326      NewVD->setModulePrivate();
4327  }
4328
4329  // Handle attributes prior to checking for duplicates in MergeVarDecl
4330  ProcessDeclAttributes(S, NewVD, D);
4331
4332  if (getLangOpts().CUDA) {
4333    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4334    // storage [duration]."
4335    if (SC == SC_None && S->getFnParent() != 0 &&
4336       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4337      NewVD->setStorageClass(SC_Static);
4338  }
4339
4340  // In auto-retain/release, infer strong retension for variables of
4341  // retainable type.
4342  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4343    NewVD->setInvalidDecl();
4344
4345  // Handle GNU asm-label extension (encoded as an attribute).
4346  if (Expr *E = (Expr*)D.getAsmLabel()) {
4347    // The parser guarantees this is a string.
4348    StringLiteral *SE = cast<StringLiteral>(E);
4349    StringRef Label = SE->getString();
4350    if (S->getFnParent() != 0) {
4351      switch (SC) {
4352      case SC_None:
4353      case SC_Auto:
4354        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4355        break;
4356      case SC_Register:
4357        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4358          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4359        break;
4360      case SC_Static:
4361      case SC_Extern:
4362      case SC_PrivateExtern:
4363      case SC_OpenCLWorkGroupLocal:
4364        break;
4365      }
4366    }
4367
4368    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4369                                                Context, Label));
4370  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4371    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4372      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4373    if (I != ExtnameUndeclaredIdentifiers.end()) {
4374      NewVD->addAttr(I->second);
4375      ExtnameUndeclaredIdentifiers.erase(I);
4376    }
4377  }
4378
4379  // Diagnose shadowed variables before filtering for scope.
4380  if (!D.getCXXScopeSpec().isSet())
4381    CheckShadow(S, NewVD, Previous);
4382
4383  // Don't consider existing declarations that are in a different
4384  // scope and are out-of-semantic-context declarations (if the new
4385  // declaration has linkage).
4386  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4387                       isExplicitSpecialization);
4388
4389  if (!getLangOpts().CPlusPlus) {
4390    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4391  } else {
4392    // Merge the decl with the existing one if appropriate.
4393    if (!Previous.empty()) {
4394      if (Previous.isSingleResult() &&
4395          isa<FieldDecl>(Previous.getFoundDecl()) &&
4396          D.getCXXScopeSpec().isSet()) {
4397        // The user tried to define a non-static data member
4398        // out-of-line (C++ [dcl.meaning]p1).
4399        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4400          << D.getCXXScopeSpec().getRange();
4401        Previous.clear();
4402        NewVD->setInvalidDecl();
4403      }
4404    } else if (D.getCXXScopeSpec().isSet()) {
4405      // No previous declaration in the qualifying scope.
4406      Diag(D.getIdentifierLoc(), diag::err_no_member)
4407        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4408        << D.getCXXScopeSpec().getRange();
4409      NewVD->setInvalidDecl();
4410    }
4411
4412    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4413
4414    // This is an explicit specialization of a static data member. Check it.
4415    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4416        CheckMemberSpecialization(NewVD, Previous))
4417      NewVD->setInvalidDecl();
4418  }
4419
4420  // If this is a locally-scoped extern C variable, update the map of
4421  // such variables.
4422  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4423      !NewVD->isInvalidDecl())
4424    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4425
4426  // If there's a #pragma GCC visibility in scope, and this isn't a class
4427  // member, set the visibility of this variable.
4428  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4429    AddPushedVisibilityAttribute(NewVD);
4430
4431  MarkUnusedFileScopedDecl(NewVD);
4432
4433  return NewVD;
4434}
4435
4436/// \brief Diagnose variable or built-in function shadowing.  Implements
4437/// -Wshadow.
4438///
4439/// This method is called whenever a VarDecl is added to a "useful"
4440/// scope.
4441///
4442/// \param S the scope in which the shadowing name is being declared
4443/// \param R the lookup of the name
4444///
4445void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4446  // Return if warning is ignored.
4447  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4448        DiagnosticsEngine::Ignored)
4449    return;
4450
4451  // Don't diagnose declarations at file scope.
4452  if (D->hasGlobalStorage())
4453    return;
4454
4455  DeclContext *NewDC = D->getDeclContext();
4456
4457  // Only diagnose if we're shadowing an unambiguous field or variable.
4458  if (R.getResultKind() != LookupResult::Found)
4459    return;
4460
4461  NamedDecl* ShadowedDecl = R.getFoundDecl();
4462  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4463    return;
4464
4465  // Fields are not shadowed by variables in C++ static methods.
4466  if (isa<FieldDecl>(ShadowedDecl))
4467    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4468      if (MD->isStatic())
4469        return;
4470
4471  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4472    if (shadowedVar->isExternC()) {
4473      // For shadowing external vars, make sure that we point to the global
4474      // declaration, not a locally scoped extern declaration.
4475      for (VarDecl::redecl_iterator
4476             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4477           I != E; ++I)
4478        if (I->isFileVarDecl()) {
4479          ShadowedDecl = *I;
4480          break;
4481        }
4482    }
4483
4484  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4485
4486  // Only warn about certain kinds of shadowing for class members.
4487  if (NewDC && NewDC->isRecord()) {
4488    // In particular, don't warn about shadowing non-class members.
4489    if (!OldDC->isRecord())
4490      return;
4491
4492    // TODO: should we warn about static data members shadowing
4493    // static data members from base classes?
4494
4495    // TODO: don't diagnose for inaccessible shadowed members.
4496    // This is hard to do perfectly because we might friend the
4497    // shadowing context, but that's just a false negative.
4498  }
4499
4500  // Determine what kind of declaration we're shadowing.
4501  unsigned Kind;
4502  if (isa<RecordDecl>(OldDC)) {
4503    if (isa<FieldDecl>(ShadowedDecl))
4504      Kind = 3; // field
4505    else
4506      Kind = 2; // static data member
4507  } else if (OldDC->isFileContext())
4508    Kind = 1; // global
4509  else
4510    Kind = 0; // local
4511
4512  DeclarationName Name = R.getLookupName();
4513
4514  // Emit warning and note.
4515  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4516  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4517}
4518
4519/// \brief Check -Wshadow without the advantage of a previous lookup.
4520void Sema::CheckShadow(Scope *S, VarDecl *D) {
4521  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4522        DiagnosticsEngine::Ignored)
4523    return;
4524
4525  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4526                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4527  LookupName(R, S);
4528  CheckShadow(S, D, R);
4529}
4530
4531/// \brief Perform semantic checking on a newly-created variable
4532/// declaration.
4533///
4534/// This routine performs all of the type-checking required for a
4535/// variable declaration once it has been built. It is used both to
4536/// check variables after they have been parsed and their declarators
4537/// have been translated into a declaration, and to check variables
4538/// that have been instantiated from a template.
4539///
4540/// Sets NewVD->isInvalidDecl() if an error was encountered.
4541///
4542/// Returns true if the variable declaration is a redeclaration.
4543bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4544                                    LookupResult &Previous) {
4545  // If the decl is already known invalid, don't check it.
4546  if (NewVD->isInvalidDecl())
4547    return false;
4548
4549  QualType T = NewVD->getType();
4550
4551  if (T->isObjCObjectType()) {
4552    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4553      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4554    T = Context.getObjCObjectPointerType(T);
4555    NewVD->setType(T);
4556  }
4557
4558  // Emit an error if an address space was applied to decl with local storage.
4559  // This includes arrays of objects with address space qualifiers, but not
4560  // automatic variables that point to other address spaces.
4561  // ISO/IEC TR 18037 S5.1.2
4562  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4563    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4564    NewVD->setInvalidDecl();
4565    return false;
4566  }
4567
4568  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4569  // scope.
4570  if ((getLangOpts().OpenCLVersion >= 120)
4571      && NewVD->isStaticLocal()) {
4572    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4573    NewVD->setInvalidDecl();
4574    return false;
4575  }
4576
4577  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4578      && !NewVD->hasAttr<BlocksAttr>()) {
4579    if (getLangOpts().getGC() != LangOptions::NonGC)
4580      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4581    else
4582      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4583  }
4584
4585  bool isVM = T->isVariablyModifiedType();
4586  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4587      NewVD->hasAttr<BlocksAttr>())
4588    getCurFunction()->setHasBranchProtectedScope();
4589
4590  if ((isVM && NewVD->hasLinkage()) ||
4591      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4592    bool SizeIsNegative;
4593    llvm::APSInt Oversized;
4594    QualType FixedTy =
4595        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4596                                            Oversized);
4597
4598    if (FixedTy.isNull() && T->isVariableArrayType()) {
4599      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4600      // FIXME: This won't give the correct result for
4601      // int a[10][n];
4602      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4603
4604      if (NewVD->isFileVarDecl())
4605        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4606        << SizeRange;
4607      else if (NewVD->getStorageClass() == SC_Static)
4608        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4609        << SizeRange;
4610      else
4611        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4612        << SizeRange;
4613      NewVD->setInvalidDecl();
4614      return false;
4615    }
4616
4617    if (FixedTy.isNull()) {
4618      if (NewVD->isFileVarDecl())
4619        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4620      else
4621        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4622      NewVD->setInvalidDecl();
4623      return false;
4624    }
4625
4626    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4627    NewVD->setType(FixedTy);
4628  }
4629
4630  if (Previous.empty() && NewVD->isExternC()) {
4631    // Since we did not find anything by this name and we're declaring
4632    // an extern "C" variable, look for a non-visible extern "C"
4633    // declaration with the same name.
4634    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4635      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4636    if (Pos != LocallyScopedExternalDecls.end())
4637      Previous.addDecl(Pos->second);
4638  }
4639
4640  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4641    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4642      << T;
4643    NewVD->setInvalidDecl();
4644    return false;
4645  }
4646
4647  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4648    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4649    NewVD->setInvalidDecl();
4650    return false;
4651  }
4652
4653  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4654    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4655    NewVD->setInvalidDecl();
4656    return false;
4657  }
4658
4659  if (NewVD->isConstexpr() && !T->isDependentType() &&
4660      RequireLiteralType(NewVD->getLocation(), T,
4661                         diag::err_constexpr_var_non_literal)) {
4662    NewVD->setInvalidDecl();
4663    return false;
4664  }
4665
4666  if (!Previous.empty()) {
4667    MergeVarDecl(NewVD, Previous);
4668    return true;
4669  }
4670  return false;
4671}
4672
4673/// \brief Data used with FindOverriddenMethod
4674struct FindOverriddenMethodData {
4675  Sema *S;
4676  CXXMethodDecl *Method;
4677};
4678
4679/// \brief Member lookup function that determines whether a given C++
4680/// method overrides a method in a base class, to be used with
4681/// CXXRecordDecl::lookupInBases().
4682static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4683                                 CXXBasePath &Path,
4684                                 void *UserData) {
4685  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4686
4687  FindOverriddenMethodData *Data
4688    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4689
4690  DeclarationName Name = Data->Method->getDeclName();
4691
4692  // FIXME: Do we care about other names here too?
4693  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4694    // We really want to find the base class destructor here.
4695    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4696    CanQualType CT = Data->S->Context.getCanonicalType(T);
4697
4698    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4699  }
4700
4701  for (Path.Decls = BaseRecord->lookup(Name);
4702       Path.Decls.first != Path.Decls.second;
4703       ++Path.Decls.first) {
4704    NamedDecl *D = *Path.Decls.first;
4705    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4706      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4707        return true;
4708    }
4709  }
4710
4711  return false;
4712}
4713
4714/// AddOverriddenMethods - See if a method overrides any in the base classes,
4715/// and if so, check that it's a valid override and remember it.
4716bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4717  // Look for virtual methods in base classes that this method might override.
4718  CXXBasePaths Paths;
4719  FindOverriddenMethodData Data;
4720  Data.Method = MD;
4721  Data.S = this;
4722  bool AddedAny = false;
4723  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4724    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4725         E = Paths.found_decls_end(); I != E; ++I) {
4726      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4727        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4728        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4729            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4730            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4731          AddedAny = true;
4732        }
4733      }
4734    }
4735  }
4736
4737  return AddedAny;
4738}
4739
4740namespace {
4741  // Struct for holding all of the extra arguments needed by
4742  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4743  struct ActOnFDArgs {
4744    Scope *S;
4745    Declarator &D;
4746    MultiTemplateParamsArg TemplateParamLists;
4747    bool AddToScope;
4748  };
4749}
4750
4751namespace {
4752
4753// Callback to only accept typo corrections that have a non-zero edit distance.
4754// Also only accept corrections that have the same parent decl.
4755class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4756 public:
4757  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4758                            CXXRecordDecl *Parent)
4759      : Context(Context), OriginalFD(TypoFD),
4760        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4761
4762  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4763    if (candidate.getEditDistance() == 0)
4764      return false;
4765
4766    llvm::SmallVector<unsigned, 1> MismatchedParams;
4767    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4768                                          CDeclEnd = candidate.end();
4769         CDecl != CDeclEnd; ++CDecl) {
4770      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4771
4772      if (FD && !FD->hasBody() &&
4773          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4774        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4775          CXXRecordDecl *Parent = MD->getParent();
4776          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4777            return true;
4778        } else if (!ExpectedParent) {
4779          return true;
4780        }
4781      }
4782    }
4783
4784    return false;
4785  }
4786
4787 private:
4788  ASTContext &Context;
4789  FunctionDecl *OriginalFD;
4790  CXXRecordDecl *ExpectedParent;
4791};
4792
4793}
4794
4795/// \brief Generate diagnostics for an invalid function redeclaration.
4796///
4797/// This routine handles generating the diagnostic messages for an invalid
4798/// function redeclaration, including finding possible similar declarations
4799/// or performing typo correction if there are no previous declarations with
4800/// the same name.
4801///
4802/// Returns a NamedDecl iff typo correction was performed and substituting in
4803/// the new declaration name does not cause new errors.
4804static NamedDecl* DiagnoseInvalidRedeclaration(
4805    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4806    ActOnFDArgs &ExtraArgs) {
4807  NamedDecl *Result = NULL;
4808  DeclarationName Name = NewFD->getDeclName();
4809  DeclContext *NewDC = NewFD->getDeclContext();
4810  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4811                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4812  llvm::SmallVector<unsigned, 1> MismatchedParams;
4813  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4814  TypoCorrection Correction;
4815  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4816                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4817  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4818                                  : diag::err_member_def_does_not_match;
4819
4820  NewFD->setInvalidDecl();
4821  SemaRef.LookupQualifiedName(Prev, NewDC);
4822  assert(!Prev.isAmbiguous() &&
4823         "Cannot have an ambiguity in previous-declaration lookup");
4824  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4825  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4826                                      MD ? MD->getParent() : 0);
4827  if (!Prev.empty()) {
4828    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4829         Func != FuncEnd; ++Func) {
4830      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4831      if (FD &&
4832          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4833        // Add 1 to the index so that 0 can mean the mismatch didn't
4834        // involve a parameter
4835        unsigned ParamNum =
4836            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4837        NearMatches.push_back(std::make_pair(FD, ParamNum));
4838      }
4839    }
4840  // If the qualified name lookup yielded nothing, try typo correction
4841  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4842                                         Prev.getLookupKind(), 0, 0,
4843                                         Validator, NewDC))) {
4844    // Trap errors.
4845    Sema::SFINAETrap Trap(SemaRef);
4846
4847    // Set up everything for the call to ActOnFunctionDeclarator
4848    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4849                              ExtraArgs.D.getIdentifierLoc());
4850    Previous.clear();
4851    Previous.setLookupName(Correction.getCorrection());
4852    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4853                                    CDeclEnd = Correction.end();
4854         CDecl != CDeclEnd; ++CDecl) {
4855      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4856      if (FD && !FD->hasBody() &&
4857          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4858        Previous.addDecl(FD);
4859      }
4860    }
4861    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4862    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4863    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4864    // eliminate the need for the parameter pack ExtraArgs.
4865    Result = SemaRef.ActOnFunctionDeclarator(
4866        ExtraArgs.S, ExtraArgs.D,
4867        Correction.getCorrectionDecl()->getDeclContext(),
4868        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4869        ExtraArgs.AddToScope);
4870    if (Trap.hasErrorOccurred()) {
4871      // Pretend the typo correction never occurred
4872      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4873                                ExtraArgs.D.getIdentifierLoc());
4874      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4875      Previous.clear();
4876      Previous.setLookupName(Name);
4877      Result = NULL;
4878    } else {
4879      for (LookupResult::iterator Func = Previous.begin(),
4880                               FuncEnd = Previous.end();
4881           Func != FuncEnd; ++Func) {
4882        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4883          NearMatches.push_back(std::make_pair(FD, 0));
4884      }
4885    }
4886    if (NearMatches.empty()) {
4887      // Ignore the correction if it didn't yield any close FunctionDecl matches
4888      Correction = TypoCorrection();
4889    } else {
4890      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4891                             : diag::err_member_def_does_not_match_suggest;
4892    }
4893  }
4894
4895  if (Correction) {
4896    SourceRange FixItLoc(NewFD->getLocation());
4897    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4898    if (Correction.getCorrectionSpecifier() && SS.isValid())
4899      FixItLoc.setBegin(SS.getBeginLoc());
4900    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4901        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4902        << FixItHint::CreateReplacement(
4903            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4904  } else {
4905    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4906        << Name << NewDC << NewFD->getLocation();
4907  }
4908
4909  bool NewFDisConst = false;
4910  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4911    NewFDisConst = NewMD->isConst();
4912
4913  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4914       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4915       NearMatch != NearMatchEnd; ++NearMatch) {
4916    FunctionDecl *FD = NearMatch->first;
4917    bool FDisConst = false;
4918    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4919      FDisConst = MD->isConst();
4920
4921    if (unsigned Idx = NearMatch->second) {
4922      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4923      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4924      if (Loc.isInvalid()) Loc = FD->getLocation();
4925      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4926          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4927    } else if (Correction) {
4928      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4929          << Correction.getQuoted(SemaRef.getLangOpts());
4930    } else if (FDisConst != NewFDisConst) {
4931      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4932          << NewFDisConst << FD->getSourceRange().getEnd();
4933    } else
4934      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4935  }
4936  return Result;
4937}
4938
4939static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4940                                                          Declarator &D) {
4941  switch (D.getDeclSpec().getStorageClassSpec()) {
4942  default: llvm_unreachable("Unknown storage class!");
4943  case DeclSpec::SCS_auto:
4944  case DeclSpec::SCS_register:
4945  case DeclSpec::SCS_mutable:
4946    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4947                 diag::err_typecheck_sclass_func);
4948    D.setInvalidType();
4949    break;
4950  case DeclSpec::SCS_unspecified: break;
4951  case DeclSpec::SCS_extern: return SC_Extern;
4952  case DeclSpec::SCS_static: {
4953    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4954      // C99 6.7.1p5:
4955      //   The declaration of an identifier for a function that has
4956      //   block scope shall have no explicit storage-class specifier
4957      //   other than extern
4958      // See also (C++ [dcl.stc]p4).
4959      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4960                   diag::err_static_block_func);
4961      break;
4962    } else
4963      return SC_Static;
4964  }
4965  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4966  }
4967
4968  // No explicit storage class has already been returned
4969  return SC_None;
4970}
4971
4972static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4973                                           DeclContext *DC, QualType &R,
4974                                           TypeSourceInfo *TInfo,
4975                                           FunctionDecl::StorageClass SC,
4976                                           bool &IsVirtualOkay) {
4977  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4978  DeclarationName Name = NameInfo.getName();
4979
4980  FunctionDecl *NewFD = 0;
4981  bool isInline = D.getDeclSpec().isInlineSpecified();
4982  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4983  FunctionDecl::StorageClass SCAsWritten
4984    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4985
4986  if (!SemaRef.getLangOpts().CPlusPlus) {
4987    // Determine whether the function was written with a
4988    // prototype. This true when:
4989    //   - there is a prototype in the declarator, or
4990    //   - the type R of the function is some kind of typedef or other reference
4991    //     to a type name (which eventually refers to a function type).
4992    bool HasPrototype =
4993      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4994      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4995
4996    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4997                                 D.getLocStart(), NameInfo, R,
4998                                 TInfo, SC, SCAsWritten, isInline,
4999                                 HasPrototype);
5000    if (D.isInvalidType())
5001      NewFD->setInvalidDecl();
5002
5003    // Set the lexical context.
5004    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5005
5006    return NewFD;
5007  }
5008
5009  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5010  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5011
5012  // Check that the return type is not an abstract class type.
5013  // For record types, this is done by the AbstractClassUsageDiagnoser once
5014  // the class has been completely parsed.
5015  if (!DC->isRecord() &&
5016      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5017                                     R->getAs<FunctionType>()->getResultType(),
5018                                     diag::err_abstract_type_in_decl,
5019                                     SemaRef.AbstractReturnType))
5020    D.setInvalidType();
5021
5022  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5023    // This is a C++ constructor declaration.
5024    assert(DC->isRecord() &&
5025           "Constructors can only be declared in a member context");
5026
5027    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5028    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5029                                      D.getLocStart(), NameInfo,
5030                                      R, TInfo, isExplicit, isInline,
5031                                      /*isImplicitlyDeclared=*/false,
5032                                      isConstexpr);
5033
5034  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5035    // This is a C++ destructor declaration.
5036    if (DC->isRecord()) {
5037      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5038      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5039      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5040                                        SemaRef.Context, Record,
5041                                        D.getLocStart(),
5042                                        NameInfo, R, TInfo, isInline,
5043                                        /*isImplicitlyDeclared=*/false);
5044
5045      // If the class is complete, then we now create the implicit exception
5046      // specification. If the class is incomplete or dependent, we can't do
5047      // it yet.
5048      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5049          Record->getDefinition() && !Record->isBeingDefined() &&
5050          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5051        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5052      }
5053
5054      IsVirtualOkay = true;
5055      return NewDD;
5056
5057    } else {
5058      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5059      D.setInvalidType();
5060
5061      // Create a FunctionDecl to satisfy the function definition parsing
5062      // code path.
5063      return FunctionDecl::Create(SemaRef.Context, DC,
5064                                  D.getLocStart(),
5065                                  D.getIdentifierLoc(), Name, R, TInfo,
5066                                  SC, SCAsWritten, isInline,
5067                                  /*hasPrototype=*/true, isConstexpr);
5068    }
5069
5070  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5071    if (!DC->isRecord()) {
5072      SemaRef.Diag(D.getIdentifierLoc(),
5073           diag::err_conv_function_not_member);
5074      return 0;
5075    }
5076
5077    SemaRef.CheckConversionDeclarator(D, R, SC);
5078    IsVirtualOkay = true;
5079    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5080                                     D.getLocStart(), NameInfo,
5081                                     R, TInfo, isInline, isExplicit,
5082                                     isConstexpr, SourceLocation());
5083
5084  } else if (DC->isRecord()) {
5085    // If the name of the function is the same as the name of the record,
5086    // then this must be an invalid constructor that has a return type.
5087    // (The parser checks for a return type and makes the declarator a
5088    // constructor if it has no return type).
5089    if (Name.getAsIdentifierInfo() &&
5090        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5091      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5092        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5093        << SourceRange(D.getIdentifierLoc());
5094      return 0;
5095    }
5096
5097    bool isStatic = SC == SC_Static;
5098
5099    // [class.free]p1:
5100    // Any allocation function for a class T is a static member
5101    // (even if not explicitly declared static).
5102    if (Name.getCXXOverloadedOperator() == OO_New ||
5103        Name.getCXXOverloadedOperator() == OO_Array_New)
5104      isStatic = true;
5105
5106    // [class.free]p6 Any deallocation function for a class X is a static member
5107    // (even if not explicitly declared static).
5108    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5109        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5110      isStatic = true;
5111
5112    IsVirtualOkay = !isStatic;
5113
5114    // This is a C++ method declaration.
5115    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5116                                 D.getLocStart(), NameInfo, R,
5117                                 TInfo, isStatic, SCAsWritten, isInline,
5118                                 isConstexpr, SourceLocation());
5119
5120  } else {
5121    // Determine whether the function was written with a
5122    // prototype. This true when:
5123    //   - we're in C++ (where every function has a prototype),
5124    return FunctionDecl::Create(SemaRef.Context, DC,
5125                                D.getLocStart(),
5126                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5127                                true/*HasPrototype*/, isConstexpr);
5128  }
5129}
5130
5131void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5132  // In C++, the empty parameter-type-list must be spelled "void"; a
5133  // typedef of void is not permitted.
5134  if (getLangOpts().CPlusPlus &&
5135      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5136    bool IsTypeAlias = false;
5137    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5138      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5139    else if (const TemplateSpecializationType *TST =
5140               Param->getType()->getAs<TemplateSpecializationType>())
5141      IsTypeAlias = TST->isTypeAlias();
5142    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5143      << IsTypeAlias;
5144  }
5145}
5146
5147NamedDecl*
5148Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5149                              TypeSourceInfo *TInfo, LookupResult &Previous,
5150                              MultiTemplateParamsArg TemplateParamLists,
5151                              bool &AddToScope) {
5152  QualType R = TInfo->getType();
5153
5154  assert(R.getTypePtr()->isFunctionType());
5155
5156  // TODO: consider using NameInfo for diagnostic.
5157  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5158  DeclarationName Name = NameInfo.getName();
5159  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5160
5161  if (D.getDeclSpec().isThreadSpecified())
5162    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5163
5164  // Do not allow returning a objc interface by-value.
5165  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5166    Diag(D.getIdentifierLoc(),
5167         diag::err_object_cannot_be_passed_returned_by_value) << 0
5168    << R->getAs<FunctionType>()->getResultType()
5169    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5170
5171    QualType T = R->getAs<FunctionType>()->getResultType();
5172    T = Context.getObjCObjectPointerType(T);
5173    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5174      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5175      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5176                                  FPT->getNumArgs(), EPI);
5177    }
5178    else if (isa<FunctionNoProtoType>(R))
5179      R = Context.getFunctionNoProtoType(T);
5180  }
5181
5182  bool isFriend = false;
5183  FunctionTemplateDecl *FunctionTemplate = 0;
5184  bool isExplicitSpecialization = false;
5185  bool isFunctionTemplateSpecialization = false;
5186
5187  bool isDependentClassScopeExplicitSpecialization = false;
5188  bool HasExplicitTemplateArgs = false;
5189  TemplateArgumentListInfo TemplateArgs;
5190
5191  bool isVirtualOkay = false;
5192
5193  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5194                                              isVirtualOkay);
5195  if (!NewFD) return 0;
5196
5197  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5198    NewFD->setTopLevelDeclInObjCContainer();
5199
5200  if (getLangOpts().CPlusPlus) {
5201    bool isInline = D.getDeclSpec().isInlineSpecified();
5202    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5203    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5204    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5205    isFriend = D.getDeclSpec().isFriendSpecified();
5206    if (isFriend && !isInline && D.isFunctionDefinition()) {
5207      // C++ [class.friend]p5
5208      //   A function can be defined in a friend declaration of a
5209      //   class . . . . Such a function is implicitly inline.
5210      NewFD->setImplicitlyInline();
5211    }
5212
5213    // If this is a method defined in an __interface, and is not a constructor
5214    // or an overloaded operator, then set the pure flag (isVirtual will already
5215    // return true).
5216    if (const CXXRecordDecl *Parent =
5217          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5218      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5219        NewFD->setPure(true);
5220    }
5221
5222    SetNestedNameSpecifier(NewFD, D);
5223    isExplicitSpecialization = false;
5224    isFunctionTemplateSpecialization = false;
5225    if (D.isInvalidType())
5226      NewFD->setInvalidDecl();
5227
5228    // Set the lexical context. If the declarator has a C++
5229    // scope specifier, or is the object of a friend declaration, the
5230    // lexical context will be different from the semantic context.
5231    NewFD->setLexicalDeclContext(CurContext);
5232
5233    // Match up the template parameter lists with the scope specifier, then
5234    // determine whether we have a template or a template specialization.
5235    bool Invalid = false;
5236    if (TemplateParameterList *TemplateParams
5237          = MatchTemplateParametersToScopeSpecifier(
5238                                  D.getDeclSpec().getLocStart(),
5239                                  D.getIdentifierLoc(),
5240                                  D.getCXXScopeSpec(),
5241                                  TemplateParamLists.data(),
5242                                  TemplateParamLists.size(),
5243                                  isFriend,
5244                                  isExplicitSpecialization,
5245                                  Invalid)) {
5246      if (TemplateParams->size() > 0) {
5247        // This is a function template
5248
5249        // Check that we can declare a template here.
5250        if (CheckTemplateDeclScope(S, TemplateParams))
5251          return 0;
5252
5253        // A destructor cannot be a template.
5254        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5255          Diag(NewFD->getLocation(), diag::err_destructor_template);
5256          return 0;
5257        }
5258
5259        // If we're adding a template to a dependent context, we may need to
5260        // rebuilding some of the types used within the template parameter list,
5261        // now that we know what the current instantiation is.
5262        if (DC->isDependentContext()) {
5263          ContextRAII SavedContext(*this, DC);
5264          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5265            Invalid = true;
5266        }
5267
5268
5269        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5270                                                        NewFD->getLocation(),
5271                                                        Name, TemplateParams,
5272                                                        NewFD);
5273        FunctionTemplate->setLexicalDeclContext(CurContext);
5274        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5275
5276        // For source fidelity, store the other template param lists.
5277        if (TemplateParamLists.size() > 1) {
5278          NewFD->setTemplateParameterListsInfo(Context,
5279                                               TemplateParamLists.size() - 1,
5280                                               TemplateParamLists.data());
5281        }
5282      } else {
5283        // This is a function template specialization.
5284        isFunctionTemplateSpecialization = true;
5285        // For source fidelity, store all the template param lists.
5286        NewFD->setTemplateParameterListsInfo(Context,
5287                                             TemplateParamLists.size(),
5288                                             TemplateParamLists.data());
5289
5290        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5291        if (isFriend) {
5292          // We want to remove the "template<>", found here.
5293          SourceRange RemoveRange = TemplateParams->getSourceRange();
5294
5295          // If we remove the template<> and the name is not a
5296          // template-id, we're actually silently creating a problem:
5297          // the friend declaration will refer to an untemplated decl,
5298          // and clearly the user wants a template specialization.  So
5299          // we need to insert '<>' after the name.
5300          SourceLocation InsertLoc;
5301          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5302            InsertLoc = D.getName().getSourceRange().getEnd();
5303            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5304          }
5305
5306          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5307            << Name << RemoveRange
5308            << FixItHint::CreateRemoval(RemoveRange)
5309            << FixItHint::CreateInsertion(InsertLoc, "<>");
5310        }
5311      }
5312    }
5313    else {
5314      // All template param lists were matched against the scope specifier:
5315      // this is NOT (an explicit specialization of) a template.
5316      if (TemplateParamLists.size() > 0)
5317        // For source fidelity, store all the template param lists.
5318        NewFD->setTemplateParameterListsInfo(Context,
5319                                             TemplateParamLists.size(),
5320                                             TemplateParamLists.data());
5321    }
5322
5323    if (Invalid) {
5324      NewFD->setInvalidDecl();
5325      if (FunctionTemplate)
5326        FunctionTemplate->setInvalidDecl();
5327    }
5328
5329    // C++ [dcl.fct.spec]p5:
5330    //   The virtual specifier shall only be used in declarations of
5331    //   nonstatic class member functions that appear within a
5332    //   member-specification of a class declaration; see 10.3.
5333    //
5334    if (isVirtual && !NewFD->isInvalidDecl()) {
5335      if (!isVirtualOkay) {
5336        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5337             diag::err_virtual_non_function);
5338      } else if (!CurContext->isRecord()) {
5339        // 'virtual' was specified outside of the class.
5340        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5341             diag::err_virtual_out_of_class)
5342          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5343      } else if (NewFD->getDescribedFunctionTemplate()) {
5344        // C++ [temp.mem]p3:
5345        //  A member function template shall not be virtual.
5346        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5347             diag::err_virtual_member_function_template)
5348          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5349      } else {
5350        // Okay: Add virtual to the method.
5351        NewFD->setVirtualAsWritten(true);
5352      }
5353    }
5354
5355    // C++ [dcl.fct.spec]p3:
5356    //  The inline specifier shall not appear on a block scope function
5357    //  declaration.
5358    if (isInline && !NewFD->isInvalidDecl()) {
5359      if (CurContext->isFunctionOrMethod()) {
5360        // 'inline' is not allowed on block scope function declaration.
5361        Diag(D.getDeclSpec().getInlineSpecLoc(),
5362             diag::err_inline_declaration_block_scope) << Name
5363          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5364      }
5365    }
5366
5367    // C++ [dcl.fct.spec]p6:
5368    //  The explicit specifier shall be used only in the declaration of a
5369    //  constructor or conversion function within its class definition;
5370    //  see 12.3.1 and 12.3.2.
5371    if (isExplicit && !NewFD->isInvalidDecl()) {
5372      if (!CurContext->isRecord()) {
5373        // 'explicit' was specified outside of the class.
5374        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5375             diag::err_explicit_out_of_class)
5376          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5377      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5378                 !isa<CXXConversionDecl>(NewFD)) {
5379        // 'explicit' was specified on a function that wasn't a constructor
5380        // or conversion function.
5381        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5382             diag::err_explicit_non_ctor_or_conv_function)
5383          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5384      }
5385    }
5386
5387    if (isConstexpr) {
5388      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5389      // are implicitly inline.
5390      NewFD->setImplicitlyInline();
5391
5392      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5393      // be either constructors or to return a literal type. Therefore,
5394      // destructors cannot be declared constexpr.
5395      if (isa<CXXDestructorDecl>(NewFD))
5396        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5397    }
5398
5399    // If __module_private__ was specified, mark the function accordingly.
5400    if (D.getDeclSpec().isModulePrivateSpecified()) {
5401      if (isFunctionTemplateSpecialization) {
5402        SourceLocation ModulePrivateLoc
5403          = D.getDeclSpec().getModulePrivateSpecLoc();
5404        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5405          << 0
5406          << FixItHint::CreateRemoval(ModulePrivateLoc);
5407      } else {
5408        NewFD->setModulePrivate();
5409        if (FunctionTemplate)
5410          FunctionTemplate->setModulePrivate();
5411      }
5412    }
5413
5414    if (isFriend) {
5415      // For now, claim that the objects have no previous declaration.
5416      if (FunctionTemplate) {
5417        FunctionTemplate->setObjectOfFriendDecl(false);
5418        FunctionTemplate->setAccess(AS_public);
5419      }
5420      NewFD->setObjectOfFriendDecl(false);
5421      NewFD->setAccess(AS_public);
5422    }
5423
5424    // If a function is defined as defaulted or deleted, mark it as such now.
5425    switch (D.getFunctionDefinitionKind()) {
5426      case FDK_Declaration:
5427      case FDK_Definition:
5428        break;
5429
5430      case FDK_Defaulted:
5431        NewFD->setDefaulted();
5432        break;
5433
5434      case FDK_Deleted:
5435        NewFD->setDeletedAsWritten();
5436        break;
5437    }
5438
5439    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5440        D.isFunctionDefinition()) {
5441      // C++ [class.mfct]p2:
5442      //   A member function may be defined (8.4) in its class definition, in
5443      //   which case it is an inline member function (7.1.2)
5444      NewFD->setImplicitlyInline();
5445    }
5446
5447    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5448        !CurContext->isRecord()) {
5449      // C++ [class.static]p1:
5450      //   A data or function member of a class may be declared static
5451      //   in a class definition, in which case it is a static member of
5452      //   the class.
5453
5454      // Complain about the 'static' specifier if it's on an out-of-line
5455      // member function definition.
5456      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5457           diag::err_static_out_of_line)
5458        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5459    }
5460  }
5461
5462  // Filter out previous declarations that don't match the scope.
5463  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5464                       isExplicitSpecialization ||
5465                       isFunctionTemplateSpecialization);
5466
5467  // Handle GNU asm-label extension (encoded as an attribute).
5468  if (Expr *E = (Expr*) D.getAsmLabel()) {
5469    // The parser guarantees this is a string.
5470    StringLiteral *SE = cast<StringLiteral>(E);
5471    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5472                                                SE->getString()));
5473  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5474    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5475      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5476    if (I != ExtnameUndeclaredIdentifiers.end()) {
5477      NewFD->addAttr(I->second);
5478      ExtnameUndeclaredIdentifiers.erase(I);
5479    }
5480  }
5481
5482  // Copy the parameter declarations from the declarator D to the function
5483  // declaration NewFD, if they are available.  First scavenge them into Params.
5484  SmallVector<ParmVarDecl*, 16> Params;
5485  if (D.isFunctionDeclarator()) {
5486    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5487
5488    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5489    // function that takes no arguments, not a function that takes a
5490    // single void argument.
5491    // We let through "const void" here because Sema::GetTypeForDeclarator
5492    // already checks for that case.
5493    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5494        FTI.ArgInfo[0].Param &&
5495        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5496      // Empty arg list, don't push any params.
5497      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5498    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5499      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5500        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5501        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5502        Param->setDeclContext(NewFD);
5503        Params.push_back(Param);
5504
5505        if (Param->isInvalidDecl())
5506          NewFD->setInvalidDecl();
5507      }
5508    }
5509
5510  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5511    // When we're declaring a function with a typedef, typeof, etc as in the
5512    // following example, we'll need to synthesize (unnamed)
5513    // parameters for use in the declaration.
5514    //
5515    // @code
5516    // typedef void fn(int);
5517    // fn f;
5518    // @endcode
5519
5520    // Synthesize a parameter for each argument type.
5521    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5522         AE = FT->arg_type_end(); AI != AE; ++AI) {
5523      ParmVarDecl *Param =
5524        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5525      Param->setScopeInfo(0, Params.size());
5526      Params.push_back(Param);
5527    }
5528  } else {
5529    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5530           "Should not need args for typedef of non-prototype fn");
5531  }
5532
5533  // Finally, we know we have the right number of parameters, install them.
5534  NewFD->setParams(Params);
5535
5536  // Find all anonymous symbols defined during the declaration of this function
5537  // and add to NewFD. This lets us track decls such 'enum Y' in:
5538  //
5539  //   void f(enum Y {AA} x) {}
5540  //
5541  // which would otherwise incorrectly end up in the translation unit scope.
5542  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5543  DeclsInPrototypeScope.clear();
5544
5545  // Process the non-inheritable attributes on this declaration.
5546  ProcessDeclAttributes(S, NewFD, D,
5547                        /*NonInheritable=*/true, /*Inheritable=*/false);
5548
5549  // Functions returning a variably modified type violate C99 6.7.5.2p2
5550  // because all functions have linkage.
5551  if (!NewFD->isInvalidDecl() &&
5552      NewFD->getResultType()->isVariablyModifiedType()) {
5553    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5554    NewFD->setInvalidDecl();
5555  }
5556
5557  // Handle attributes.
5558  ProcessDeclAttributes(S, NewFD, D,
5559                        /*NonInheritable=*/false, /*Inheritable=*/true);
5560
5561  if (!getLangOpts().CPlusPlus) {
5562    // Perform semantic checking on the function declaration.
5563    bool isExplicitSpecialization=false;
5564    if (!NewFD->isInvalidDecl()) {
5565      if (NewFD->isMain())
5566        CheckMain(NewFD, D.getDeclSpec());
5567      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5568                                                  isExplicitSpecialization));
5569    }
5570    // Make graceful recovery from an invalid redeclaration.
5571    else if (!Previous.empty())
5572           D.setRedeclaration(true);
5573    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5574            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5575           "previous declaration set still overloaded");
5576  } else {
5577    // If the declarator is a template-id, translate the parser's template
5578    // argument list into our AST format.
5579    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5580      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5581      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5582      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5583      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5584                                         TemplateId->NumArgs);
5585      translateTemplateArguments(TemplateArgsPtr,
5586                                 TemplateArgs);
5587
5588      HasExplicitTemplateArgs = true;
5589
5590      if (NewFD->isInvalidDecl()) {
5591        HasExplicitTemplateArgs = false;
5592      } else if (FunctionTemplate) {
5593        // Function template with explicit template arguments.
5594        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5595          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5596
5597        HasExplicitTemplateArgs = false;
5598      } else if (!isFunctionTemplateSpecialization &&
5599                 !D.getDeclSpec().isFriendSpecified()) {
5600        // We have encountered something that the user meant to be a
5601        // specialization (because it has explicitly-specified template
5602        // arguments) but that was not introduced with a "template<>" (or had
5603        // too few of them).
5604        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5605          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5606          << FixItHint::CreateInsertion(
5607                                    D.getDeclSpec().getLocStart(),
5608                                        "template<> ");
5609        isFunctionTemplateSpecialization = true;
5610      } else {
5611        // "friend void foo<>(int);" is an implicit specialization decl.
5612        isFunctionTemplateSpecialization = true;
5613      }
5614    } else if (isFriend && isFunctionTemplateSpecialization) {
5615      // This combination is only possible in a recovery case;  the user
5616      // wrote something like:
5617      //   template <> friend void foo(int);
5618      // which we're recovering from as if the user had written:
5619      //   friend void foo<>(int);
5620      // Go ahead and fake up a template id.
5621      HasExplicitTemplateArgs = true;
5622        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5623      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5624    }
5625
5626    // If it's a friend (and only if it's a friend), it's possible
5627    // that either the specialized function type or the specialized
5628    // template is dependent, and therefore matching will fail.  In
5629    // this case, don't check the specialization yet.
5630    bool InstantiationDependent = false;
5631    if (isFunctionTemplateSpecialization && isFriend &&
5632        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5633         TemplateSpecializationType::anyDependentTemplateArguments(
5634            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5635            InstantiationDependent))) {
5636      assert(HasExplicitTemplateArgs &&
5637             "friend function specialization without template args");
5638      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5639                                                       Previous))
5640        NewFD->setInvalidDecl();
5641    } else if (isFunctionTemplateSpecialization) {
5642      if (CurContext->isDependentContext() && CurContext->isRecord()
5643          && !isFriend) {
5644        isDependentClassScopeExplicitSpecialization = true;
5645        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5646          diag::ext_function_specialization_in_class :
5647          diag::err_function_specialization_in_class)
5648          << NewFD->getDeclName();
5649      } else if (CheckFunctionTemplateSpecialization(NewFD,
5650                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5651                                                     Previous))
5652        NewFD->setInvalidDecl();
5653
5654      // C++ [dcl.stc]p1:
5655      //   A storage-class-specifier shall not be specified in an explicit
5656      //   specialization (14.7.3)
5657      if (SC != SC_None) {
5658        if (SC != NewFD->getStorageClass())
5659          Diag(NewFD->getLocation(),
5660               diag::err_explicit_specialization_inconsistent_storage_class)
5661            << SC
5662            << FixItHint::CreateRemoval(
5663                                      D.getDeclSpec().getStorageClassSpecLoc());
5664
5665        else
5666          Diag(NewFD->getLocation(),
5667               diag::ext_explicit_specialization_storage_class)
5668            << FixItHint::CreateRemoval(
5669                                      D.getDeclSpec().getStorageClassSpecLoc());
5670      }
5671
5672    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5673      if (CheckMemberSpecialization(NewFD, Previous))
5674          NewFD->setInvalidDecl();
5675    }
5676
5677    // Perform semantic checking on the function declaration.
5678    if (!isDependentClassScopeExplicitSpecialization) {
5679      if (NewFD->isInvalidDecl()) {
5680        // If this is a class member, mark the class invalid immediately.
5681        // This avoids some consistency errors later.
5682        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5683          methodDecl->getParent()->setInvalidDecl();
5684      } else {
5685        if (NewFD->isMain())
5686          CheckMain(NewFD, D.getDeclSpec());
5687        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5688                                                    isExplicitSpecialization));
5689      }
5690    }
5691
5692    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5693            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5694           "previous declaration set still overloaded");
5695
5696    NamedDecl *PrincipalDecl = (FunctionTemplate
5697                                ? cast<NamedDecl>(FunctionTemplate)
5698                                : NewFD);
5699
5700    if (isFriend && D.isRedeclaration()) {
5701      AccessSpecifier Access = AS_public;
5702      if (!NewFD->isInvalidDecl())
5703        Access = NewFD->getPreviousDecl()->getAccess();
5704
5705      NewFD->setAccess(Access);
5706      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5707
5708      PrincipalDecl->setObjectOfFriendDecl(true);
5709    }
5710
5711    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5712        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5713      PrincipalDecl->setNonMemberOperator();
5714
5715    // If we have a function template, check the template parameter
5716    // list. This will check and merge default template arguments.
5717    if (FunctionTemplate) {
5718      FunctionTemplateDecl *PrevTemplate =
5719                                     FunctionTemplate->getPreviousDecl();
5720      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5721                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5722                            D.getDeclSpec().isFriendSpecified()
5723                              ? (D.isFunctionDefinition()
5724                                   ? TPC_FriendFunctionTemplateDefinition
5725                                   : TPC_FriendFunctionTemplate)
5726                              : (D.getCXXScopeSpec().isSet() &&
5727                                 DC && DC->isRecord() &&
5728                                 DC->isDependentContext())
5729                                  ? TPC_ClassTemplateMember
5730                                  : TPC_FunctionTemplate);
5731    }
5732
5733    if (NewFD->isInvalidDecl()) {
5734      // Ignore all the rest of this.
5735    } else if (!D.isRedeclaration()) {
5736      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5737                                       AddToScope };
5738      // Fake up an access specifier if it's supposed to be a class member.
5739      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5740        NewFD->setAccess(AS_public);
5741
5742      // Qualified decls generally require a previous declaration.
5743      if (D.getCXXScopeSpec().isSet()) {
5744        // ...with the major exception of templated-scope or
5745        // dependent-scope friend declarations.
5746
5747        // TODO: we currently also suppress this check in dependent
5748        // contexts because (1) the parameter depth will be off when
5749        // matching friend templates and (2) we might actually be
5750        // selecting a friend based on a dependent factor.  But there
5751        // are situations where these conditions don't apply and we
5752        // can actually do this check immediately.
5753        if (isFriend &&
5754            (TemplateParamLists.size() ||
5755             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5756             CurContext->isDependentContext())) {
5757          // ignore these
5758        } else {
5759          // The user tried to provide an out-of-line definition for a
5760          // function that is a member of a class or namespace, but there
5761          // was no such member function declared (C++ [class.mfct]p2,
5762          // C++ [namespace.memdef]p2). For example:
5763          //
5764          // class X {
5765          //   void f() const;
5766          // };
5767          //
5768          // void X::f() { } // ill-formed
5769          //
5770          // Complain about this problem, and attempt to suggest close
5771          // matches (e.g., those that differ only in cv-qualifiers and
5772          // whether the parameter types are references).
5773
5774          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5775                                                               NewFD,
5776                                                               ExtraArgs)) {
5777            AddToScope = ExtraArgs.AddToScope;
5778            return Result;
5779          }
5780        }
5781
5782        // Unqualified local friend declarations are required to resolve
5783        // to something.
5784      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5785        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5786                                                             NewFD,
5787                                                             ExtraArgs)) {
5788          AddToScope = ExtraArgs.AddToScope;
5789          return Result;
5790        }
5791      }
5792
5793    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5794               !isFriend && !isFunctionTemplateSpecialization &&
5795               !isExplicitSpecialization) {
5796      // An out-of-line member function declaration must also be a
5797      // definition (C++ [dcl.meaning]p1).
5798      // Note that this is not the case for explicit specializations of
5799      // function templates or member functions of class templates, per
5800      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5801      // extension for compatibility with old SWIG code which likes to
5802      // generate them.
5803      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5804        << D.getCXXScopeSpec().getRange();
5805    }
5806  }
5807
5808  AddKnownFunctionAttributes(NewFD);
5809
5810  if (NewFD->hasAttr<OverloadableAttr>() &&
5811      !NewFD->getType()->getAs<FunctionProtoType>()) {
5812    Diag(NewFD->getLocation(),
5813         diag::err_attribute_overloadable_no_prototype)
5814      << NewFD;
5815
5816    // Turn this into a variadic function with no parameters.
5817    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5818    FunctionProtoType::ExtProtoInfo EPI;
5819    EPI.Variadic = true;
5820    EPI.ExtInfo = FT->getExtInfo();
5821
5822    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5823    NewFD->setType(R);
5824  }
5825
5826  // If there's a #pragma GCC visibility in scope, and this isn't a class
5827  // member, set the visibility of this function.
5828  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5829    AddPushedVisibilityAttribute(NewFD);
5830
5831  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5832  // marking the function.
5833  AddCFAuditedAttribute(NewFD);
5834
5835  // If this is a locally-scoped extern C function, update the
5836  // map of such names.
5837  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5838      && !NewFD->isInvalidDecl())
5839    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5840
5841  // Set this FunctionDecl's range up to the right paren.
5842  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5843
5844  if (getLangOpts().CPlusPlus) {
5845    if (FunctionTemplate) {
5846      if (NewFD->isInvalidDecl())
5847        FunctionTemplate->setInvalidDecl();
5848      return FunctionTemplate;
5849    }
5850  }
5851
5852  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5853  if ((getLangOpts().OpenCLVersion >= 120)
5854      && NewFD->hasAttr<OpenCLKernelAttr>()
5855      && (SC == SC_Static)) {
5856    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5857    D.setInvalidType();
5858  }
5859
5860  MarkUnusedFileScopedDecl(NewFD);
5861
5862  if (getLangOpts().CUDA)
5863    if (IdentifierInfo *II = NewFD->getIdentifier())
5864      if (!NewFD->isInvalidDecl() &&
5865          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5866        if (II->isStr("cudaConfigureCall")) {
5867          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5868            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5869
5870          Context.setcudaConfigureCallDecl(NewFD);
5871        }
5872      }
5873
5874  // Here we have an function template explicit specialization at class scope.
5875  // The actually specialization will be postponed to template instatiation
5876  // time via the ClassScopeFunctionSpecializationDecl node.
5877  if (isDependentClassScopeExplicitSpecialization) {
5878    ClassScopeFunctionSpecializationDecl *NewSpec =
5879                         ClassScopeFunctionSpecializationDecl::Create(
5880                                Context, CurContext, SourceLocation(),
5881                                cast<CXXMethodDecl>(NewFD),
5882                                HasExplicitTemplateArgs, TemplateArgs);
5883    CurContext->addDecl(NewSpec);
5884    AddToScope = false;
5885  }
5886
5887  return NewFD;
5888}
5889
5890/// \brief Perform semantic checking of a new function declaration.
5891///
5892/// Performs semantic analysis of the new function declaration
5893/// NewFD. This routine performs all semantic checking that does not
5894/// require the actual declarator involved in the declaration, and is
5895/// used both for the declaration of functions as they are parsed
5896/// (called via ActOnDeclarator) and for the declaration of functions
5897/// that have been instantiated via C++ template instantiation (called
5898/// via InstantiateDecl).
5899///
5900/// \param IsExplicitSpecialization whether this new function declaration is
5901/// an explicit specialization of the previous declaration.
5902///
5903/// This sets NewFD->isInvalidDecl() to true if there was an error.
5904///
5905/// \returns true if the function declaration is a redeclaration.
5906bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5907                                    LookupResult &Previous,
5908                                    bool IsExplicitSpecialization) {
5909  assert(!NewFD->getResultType()->isVariablyModifiedType()
5910         && "Variably modified return types are not handled here");
5911
5912  // Check for a previous declaration of this name.
5913  if (Previous.empty() && NewFD->isExternC()) {
5914    // Since we did not find anything by this name and we're declaring
5915    // an extern "C" function, look for a non-visible extern "C"
5916    // declaration with the same name.
5917    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5918      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5919    if (Pos != LocallyScopedExternalDecls.end())
5920      Previous.addDecl(Pos->second);
5921  }
5922
5923  bool Redeclaration = false;
5924
5925  // Merge or overload the declaration with an existing declaration of
5926  // the same name, if appropriate.
5927  if (!Previous.empty()) {
5928    // Determine whether NewFD is an overload of PrevDecl or
5929    // a declaration that requires merging. If it's an overload,
5930    // there's no more work to do here; we'll just add the new
5931    // function to the scope.
5932
5933    NamedDecl *OldDecl = 0;
5934    if (!AllowOverloadingOfFunction(Previous, Context)) {
5935      Redeclaration = true;
5936      OldDecl = Previous.getFoundDecl();
5937    } else {
5938      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5939                            /*NewIsUsingDecl*/ false)) {
5940      case Ovl_Match:
5941        Redeclaration = true;
5942        break;
5943
5944      case Ovl_NonFunction:
5945        Redeclaration = true;
5946        break;
5947
5948      case Ovl_Overload:
5949        Redeclaration = false;
5950        break;
5951      }
5952
5953      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5954        // If a function name is overloadable in C, then every function
5955        // with that name must be marked "overloadable".
5956        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5957          << Redeclaration << NewFD;
5958        NamedDecl *OverloadedDecl = 0;
5959        if (Redeclaration)
5960          OverloadedDecl = OldDecl;
5961        else if (!Previous.empty())
5962          OverloadedDecl = Previous.getRepresentativeDecl();
5963        if (OverloadedDecl)
5964          Diag(OverloadedDecl->getLocation(),
5965               diag::note_attribute_overloadable_prev_overload);
5966        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5967                                                        Context));
5968      }
5969    }
5970
5971    if (Redeclaration) {
5972      // NewFD and OldDecl represent declarations that need to be
5973      // merged.
5974      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5975        NewFD->setInvalidDecl();
5976        return Redeclaration;
5977      }
5978
5979      Previous.clear();
5980      Previous.addDecl(OldDecl);
5981
5982      if (FunctionTemplateDecl *OldTemplateDecl
5983                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5984        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5985        FunctionTemplateDecl *NewTemplateDecl
5986          = NewFD->getDescribedFunctionTemplate();
5987        assert(NewTemplateDecl && "Template/non-template mismatch");
5988        if (CXXMethodDecl *Method
5989              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5990          Method->setAccess(OldTemplateDecl->getAccess());
5991          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5992        }
5993
5994        // If this is an explicit specialization of a member that is a function
5995        // template, mark it as a member specialization.
5996        if (IsExplicitSpecialization &&
5997            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5998          NewTemplateDecl->setMemberSpecialization();
5999          assert(OldTemplateDecl->isMemberSpecialization());
6000        }
6001
6002      } else {
6003        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6004          NewFD->setAccess(OldDecl->getAccess());
6005        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6006      }
6007    }
6008  }
6009
6010  // Semantic checking for this function declaration (in isolation).
6011  if (getLangOpts().CPlusPlus) {
6012    // C++-specific checks.
6013    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6014      CheckConstructor(Constructor);
6015    } else if (CXXDestructorDecl *Destructor =
6016                dyn_cast<CXXDestructorDecl>(NewFD)) {
6017      CXXRecordDecl *Record = Destructor->getParent();
6018      QualType ClassType = Context.getTypeDeclType(Record);
6019
6020      // FIXME: Shouldn't we be able to perform this check even when the class
6021      // type is dependent? Both gcc and edg can handle that.
6022      if (!ClassType->isDependentType()) {
6023        DeclarationName Name
6024          = Context.DeclarationNames.getCXXDestructorName(
6025                                        Context.getCanonicalType(ClassType));
6026        if (NewFD->getDeclName() != Name) {
6027          Diag(NewFD->getLocation(), diag::err_destructor_name);
6028          NewFD->setInvalidDecl();
6029          return Redeclaration;
6030        }
6031      }
6032    } else if (CXXConversionDecl *Conversion
6033               = dyn_cast<CXXConversionDecl>(NewFD)) {
6034      ActOnConversionDeclarator(Conversion);
6035    }
6036
6037    // Find any virtual functions that this function overrides.
6038    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6039      if (!Method->isFunctionTemplateSpecialization() &&
6040          !Method->getDescribedFunctionTemplate()) {
6041        if (AddOverriddenMethods(Method->getParent(), Method)) {
6042          // If the function was marked as "static", we have a problem.
6043          if (NewFD->getStorageClass() == SC_Static) {
6044            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
6045              << NewFD->getDeclName();
6046            for (CXXMethodDecl::method_iterator
6047                      Overridden = Method->begin_overridden_methods(),
6048                   OverriddenEnd = Method->end_overridden_methods();
6049                 Overridden != OverriddenEnd;
6050                 ++Overridden) {
6051              Diag((*Overridden)->getLocation(),
6052                   diag::note_overridden_virtual_function);
6053            }
6054          }
6055        }
6056      }
6057
6058      if (Method->isStatic())
6059        checkThisInStaticMemberFunctionType(Method);
6060    }
6061
6062    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6063    if (NewFD->isOverloadedOperator() &&
6064        CheckOverloadedOperatorDeclaration(NewFD)) {
6065      NewFD->setInvalidDecl();
6066      return Redeclaration;
6067    }
6068
6069    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6070    if (NewFD->getLiteralIdentifier() &&
6071        CheckLiteralOperatorDeclaration(NewFD)) {
6072      NewFD->setInvalidDecl();
6073      return Redeclaration;
6074    }
6075
6076    // In C++, check default arguments now that we have merged decls. Unless
6077    // the lexical context is the class, because in this case this is done
6078    // during delayed parsing anyway.
6079    if (!CurContext->isRecord())
6080      CheckCXXDefaultArguments(NewFD);
6081
6082    // If this function declares a builtin function, check the type of this
6083    // declaration against the expected type for the builtin.
6084    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6085      ASTContext::GetBuiltinTypeError Error;
6086      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6087      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6088        // The type of this function differs from the type of the builtin,
6089        // so forget about the builtin entirely.
6090        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6091      }
6092    }
6093
6094    // If this function is declared as being extern "C", then check to see if
6095    // the function returns a UDT (class, struct, or union type) that is not C
6096    // compatible, and if it does, warn the user.
6097    if (NewFD->isExternC()) {
6098      QualType R = NewFD->getResultType();
6099      if (R->isIncompleteType() && !R->isVoidType())
6100        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6101            << NewFD << R;
6102      else if (!R.isPODType(Context) && !R->isVoidType() &&
6103               !R->isObjCObjectPointerType())
6104        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6105    }
6106  }
6107  return Redeclaration;
6108}
6109
6110void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6111  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6112  //   static or constexpr is ill-formed.
6113  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6114  //   shall not appear in a declaration of main.
6115  // static main is not an error under C99, but we should warn about it.
6116  if (FD->getStorageClass() == SC_Static)
6117    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6118         ? diag::err_static_main : diag::warn_static_main)
6119      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6120  if (FD->isInlineSpecified())
6121    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6122      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6123  if (FD->isConstexpr()) {
6124    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6125      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6126    FD->setConstexpr(false);
6127  }
6128
6129  QualType T = FD->getType();
6130  assert(T->isFunctionType() && "function decl is not of function type");
6131  const FunctionType* FT = T->castAs<FunctionType>();
6132
6133  // All the standards say that main() should should return 'int'.
6134  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6135    // In C and C++, main magically returns 0 if you fall off the end;
6136    // set the flag which tells us that.
6137    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6138    FD->setHasImplicitReturnZero(true);
6139
6140  // In C with GNU extensions we allow main() to have non-integer return
6141  // type, but we should warn about the extension, and we disable the
6142  // implicit-return-zero rule.
6143  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6144    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6145
6146  // Otherwise, this is just a flat-out error.
6147  } else {
6148    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6149    FD->setInvalidDecl(true);
6150  }
6151
6152  // Treat protoless main() as nullary.
6153  if (isa<FunctionNoProtoType>(FT)) return;
6154
6155  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6156  unsigned nparams = FTP->getNumArgs();
6157  assert(FD->getNumParams() == nparams);
6158
6159  bool HasExtraParameters = (nparams > 3);
6160
6161  // Darwin passes an undocumented fourth argument of type char**.  If
6162  // other platforms start sprouting these, the logic below will start
6163  // getting shifty.
6164  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6165    HasExtraParameters = false;
6166
6167  if (HasExtraParameters) {
6168    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6169    FD->setInvalidDecl(true);
6170    nparams = 3;
6171  }
6172
6173  // FIXME: a lot of the following diagnostics would be improved
6174  // if we had some location information about types.
6175
6176  QualType CharPP =
6177    Context.getPointerType(Context.getPointerType(Context.CharTy));
6178  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6179
6180  for (unsigned i = 0; i < nparams; ++i) {
6181    QualType AT = FTP->getArgType(i);
6182
6183    bool mismatch = true;
6184
6185    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6186      mismatch = false;
6187    else if (Expected[i] == CharPP) {
6188      // As an extension, the following forms are okay:
6189      //   char const **
6190      //   char const * const *
6191      //   char * const *
6192
6193      QualifierCollector qs;
6194      const PointerType* PT;
6195      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6196          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6197          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6198        qs.removeConst();
6199        mismatch = !qs.empty();
6200      }
6201    }
6202
6203    if (mismatch) {
6204      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6205      // TODO: suggest replacing given type with expected type
6206      FD->setInvalidDecl(true);
6207    }
6208  }
6209
6210  if (nparams == 1 && !FD->isInvalidDecl()) {
6211    Diag(FD->getLocation(), diag::warn_main_one_arg);
6212  }
6213
6214  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6215    Diag(FD->getLocation(), diag::err_main_template_decl);
6216    FD->setInvalidDecl();
6217  }
6218}
6219
6220bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6221  // FIXME: Need strict checking.  In C89, we need to check for
6222  // any assignment, increment, decrement, function-calls, or
6223  // commas outside of a sizeof.  In C99, it's the same list,
6224  // except that the aforementioned are allowed in unevaluated
6225  // expressions.  Everything else falls under the
6226  // "may accept other forms of constant expressions" exception.
6227  // (We never end up here for C++, so the constant expression
6228  // rules there don't matter.)
6229  if (Init->isConstantInitializer(Context, false))
6230    return false;
6231  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6232    << Init->getSourceRange();
6233  return true;
6234}
6235
6236namespace {
6237  // Visits an initialization expression to see if OrigDecl is evaluated in
6238  // its own initialization and throws a warning if it does.
6239  class SelfReferenceChecker
6240      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6241    Sema &S;
6242    Decl *OrigDecl;
6243    bool isRecordType;
6244    bool isPODType;
6245    bool isReferenceType;
6246
6247  public:
6248    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6249
6250    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6251                                                    S(S), OrigDecl(OrigDecl) {
6252      isPODType = false;
6253      isRecordType = false;
6254      isReferenceType = false;
6255      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6256        isPODType = VD->getType().isPODType(S.Context);
6257        isRecordType = VD->getType()->isRecordType();
6258        isReferenceType = VD->getType()->isReferenceType();
6259      }
6260    }
6261
6262    // For most expressions, the cast is directly above the DeclRefExpr.
6263    // For conditional operators, the cast can be outside the conditional
6264    // operator if both expressions are DeclRefExpr's.
6265    void HandleValue(Expr *E) {
6266      if (isReferenceType)
6267        return;
6268      E = E->IgnoreParenImpCasts();
6269      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6270        HandleDeclRefExpr(DRE);
6271        return;
6272      }
6273
6274      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6275        HandleValue(CO->getTrueExpr());
6276        HandleValue(CO->getFalseExpr());
6277      }
6278    }
6279
6280    // Reference types are handled here since all uses of references are
6281    // bad, not just r-value uses.
6282    void VisitDeclRefExpr(DeclRefExpr *E) {
6283      if (isReferenceType)
6284        HandleDeclRefExpr(E);
6285    }
6286
6287    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6288      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6289          (isRecordType && E->getCastKind() == CK_NoOp))
6290        HandleValue(E->getSubExpr());
6291
6292      Inherited::VisitImplicitCastExpr(E);
6293    }
6294
6295    void VisitMemberExpr(MemberExpr *E) {
6296      // Don't warn on arrays since they can be treated as pointers.
6297      if (E->getType()->canDecayToPointerType()) return;
6298
6299      ValueDecl *VD = E->getMemberDecl();
6300      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6301      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6302        if (DeclRefExpr *DRE
6303              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6304          HandleDeclRefExpr(DRE);
6305          return;
6306        }
6307
6308      Inherited::VisitMemberExpr(E);
6309    }
6310
6311    void VisitUnaryOperator(UnaryOperator *E) {
6312      // For POD record types, addresses of its own members are well-defined.
6313      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6314          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6315      Inherited::VisitUnaryOperator(E);
6316    }
6317
6318    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6319
6320    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6321      Decl* ReferenceDecl = DRE->getDecl();
6322      if (OrigDecl != ReferenceDecl) return;
6323      unsigned diag = isReferenceType
6324          ? diag::warn_uninit_self_reference_in_reference_init
6325          : diag::warn_uninit_self_reference_in_init;
6326      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6327                            S.PDiag(diag)
6328                              << DRE->getNameInfo().getName()
6329                              << OrigDecl->getLocation()
6330                              << DRE->getSourceRange());
6331    }
6332  };
6333
6334  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6335  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6336                                 bool DirectInit) {
6337    // Parameters arguments are occassionially constructed with itself,
6338    // for instance, in recursive functions.  Skip them.
6339    if (isa<ParmVarDecl>(OrigDecl))
6340      return;
6341
6342    E = E->IgnoreParens();
6343
6344    // Skip checking T a = a where T is not a record or reference type.
6345    // Doing so is a way to silence uninitialized warnings.
6346    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6347      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6348        if (ICE->getCastKind() == CK_LValueToRValue)
6349          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6350            if (DRE->getDecl() == OrigDecl)
6351              return;
6352
6353    SelfReferenceChecker(S, OrigDecl).Visit(E);
6354  }
6355}
6356
6357/// AddInitializerToDecl - Adds the initializer Init to the
6358/// declaration dcl. If DirectInit is true, this is C++ direct
6359/// initialization rather than copy initialization.
6360void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6361                                bool DirectInit, bool TypeMayContainAuto) {
6362  // If there is no declaration, there was an error parsing it.  Just ignore
6363  // the initializer.
6364  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6365    return;
6366
6367  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6368    // With declarators parsed the way they are, the parser cannot
6369    // distinguish between a normal initializer and a pure-specifier.
6370    // Thus this grotesque test.
6371    IntegerLiteral *IL;
6372    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6373        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6374      CheckPureMethod(Method, Init->getSourceRange());
6375    else {
6376      Diag(Method->getLocation(), diag::err_member_function_initialization)
6377        << Method->getDeclName() << Init->getSourceRange();
6378      Method->setInvalidDecl();
6379    }
6380    return;
6381  }
6382
6383  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6384  if (!VDecl) {
6385    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6386    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6387    RealDecl->setInvalidDecl();
6388    return;
6389  }
6390
6391  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6392
6393  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6394  AutoType *Auto = 0;
6395  if (TypeMayContainAuto &&
6396      (Auto = VDecl->getType()->getContainedAutoType()) &&
6397      !Auto->isDeduced()) {
6398    Expr *DeduceInit = Init;
6399    // Initializer could be a C++ direct-initializer. Deduction only works if it
6400    // contains exactly one expression.
6401    if (CXXDirectInit) {
6402      if (CXXDirectInit->getNumExprs() == 0) {
6403        // It isn't possible to write this directly, but it is possible to
6404        // end up in this situation with "auto x(some_pack...);"
6405        Diag(CXXDirectInit->getLocStart(),
6406             diag::err_auto_var_init_no_expression)
6407          << VDecl->getDeclName() << VDecl->getType()
6408          << VDecl->getSourceRange();
6409        RealDecl->setInvalidDecl();
6410        return;
6411      } else if (CXXDirectInit->getNumExprs() > 1) {
6412        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6413             diag::err_auto_var_init_multiple_expressions)
6414          << VDecl->getDeclName() << VDecl->getType()
6415          << VDecl->getSourceRange();
6416        RealDecl->setInvalidDecl();
6417        return;
6418      } else {
6419        DeduceInit = CXXDirectInit->getExpr(0);
6420      }
6421    }
6422    TypeSourceInfo *DeducedType = 0;
6423    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6424            DAR_Failed)
6425      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6426    if (!DeducedType) {
6427      RealDecl->setInvalidDecl();
6428      return;
6429    }
6430    VDecl->setTypeSourceInfo(DeducedType);
6431    VDecl->setType(DeducedType->getType());
6432    VDecl->ClearLinkageCache();
6433
6434    // In ARC, infer lifetime.
6435    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6436      VDecl->setInvalidDecl();
6437
6438    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6439    // 'id' instead of a specific object type prevents most of our usual checks.
6440    // We only want to warn outside of template instantiations, though:
6441    // inside a template, the 'id' could have come from a parameter.
6442    if (ActiveTemplateInstantiations.empty() &&
6443        DeducedType->getType()->isObjCIdType()) {
6444      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6445      Diag(Loc, diag::warn_auto_var_is_id)
6446        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6447    }
6448
6449    // If this is a redeclaration, check that the type we just deduced matches
6450    // the previously declared type.
6451    if (VarDecl *Old = VDecl->getPreviousDecl())
6452      MergeVarDeclTypes(VDecl, Old);
6453  }
6454
6455  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6456    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6457    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6458    VDecl->setInvalidDecl();
6459    return;
6460  }
6461
6462  if (!VDecl->getType()->isDependentType()) {
6463    // A definition must end up with a complete type, which means it must be
6464    // complete with the restriction that an array type might be completed by
6465    // the initializer; note that later code assumes this restriction.
6466    QualType BaseDeclType = VDecl->getType();
6467    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6468      BaseDeclType = Array->getElementType();
6469    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6470                            diag::err_typecheck_decl_incomplete_type)) {
6471      RealDecl->setInvalidDecl();
6472      return;
6473    }
6474
6475    // The variable can not have an abstract class type.
6476    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6477                               diag::err_abstract_type_in_decl,
6478                               AbstractVariableType))
6479      VDecl->setInvalidDecl();
6480  }
6481
6482  const VarDecl *Def;
6483  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6484    Diag(VDecl->getLocation(), diag::err_redefinition)
6485      << VDecl->getDeclName();
6486    Diag(Def->getLocation(), diag::note_previous_definition);
6487    VDecl->setInvalidDecl();
6488    return;
6489  }
6490
6491  const VarDecl* PrevInit = 0;
6492  if (getLangOpts().CPlusPlus) {
6493    // C++ [class.static.data]p4
6494    //   If a static data member is of const integral or const
6495    //   enumeration type, its declaration in the class definition can
6496    //   specify a constant-initializer which shall be an integral
6497    //   constant expression (5.19). In that case, the member can appear
6498    //   in integral constant expressions. The member shall still be
6499    //   defined in a namespace scope if it is used in the program and the
6500    //   namespace scope definition shall not contain an initializer.
6501    //
6502    // We already performed a redefinition check above, but for static
6503    // data members we also need to check whether there was an in-class
6504    // declaration with an initializer.
6505    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6506      Diag(VDecl->getLocation(), diag::err_redefinition)
6507        << VDecl->getDeclName();
6508      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6509      return;
6510    }
6511
6512    if (VDecl->hasLocalStorage())
6513      getCurFunction()->setHasBranchProtectedScope();
6514
6515    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6516      VDecl->setInvalidDecl();
6517      return;
6518    }
6519  }
6520
6521  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6522  // a kernel function cannot be initialized."
6523  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6524    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6525    VDecl->setInvalidDecl();
6526    return;
6527  }
6528
6529  // Get the decls type and save a reference for later, since
6530  // CheckInitializerTypes may change it.
6531  QualType DclT = VDecl->getType(), SavT = DclT;
6532
6533  // Top-level message sends default to 'id' when we're in a debugger
6534  // and we are assigning it to a variable of 'id' type.
6535  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6536    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6537      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6538      if (Result.isInvalid()) {
6539        VDecl->setInvalidDecl();
6540        return;
6541      }
6542      Init = Result.take();
6543    }
6544
6545  // Perform the initialization.
6546  if (!VDecl->isInvalidDecl()) {
6547    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6548    InitializationKind Kind
6549      = DirectInit ?
6550          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6551                                                           Init->getLocStart(),
6552                                                           Init->getLocEnd())
6553                        : InitializationKind::CreateDirectList(
6554                                                          VDecl->getLocation())
6555                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6556                                                    Init->getLocStart());
6557
6558    Expr **Args = &Init;
6559    unsigned NumArgs = 1;
6560    if (CXXDirectInit) {
6561      Args = CXXDirectInit->getExprs();
6562      NumArgs = CXXDirectInit->getNumExprs();
6563    }
6564    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6565    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6566                                        MultiExprArg(Args, NumArgs), &DclT);
6567    if (Result.isInvalid()) {
6568      VDecl->setInvalidDecl();
6569      return;
6570    }
6571
6572    Init = Result.takeAs<Expr>();
6573  }
6574
6575  // Check for self-references within variable initializers.
6576  // Variables declared within a function/method body (except for references)
6577  // are handled by a dataflow analysis.
6578  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
6579      VDecl->getType()->isReferenceType()) {
6580    CheckSelfReference(*this, RealDecl, Init, DirectInit);
6581  }
6582
6583  // If the type changed, it means we had an incomplete type that was
6584  // completed by the initializer. For example:
6585  //   int ary[] = { 1, 3, 5 };
6586  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6587  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6588    VDecl->setType(DclT);
6589
6590  // Check any implicit conversions within the expression.
6591  CheckImplicitConversions(Init, VDecl->getLocation());
6592
6593  if (!VDecl->isInvalidDecl()) {
6594    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6595
6596    if (VDecl->hasAttr<BlocksAttr>())
6597      checkRetainCycles(VDecl, Init);
6598
6599    // It is safe to assign a weak reference into a strong variable.
6600    // Although this code can still have problems:
6601    //   id x = self.weakProp;
6602    //   id y = self.weakProp;
6603    // we do not warn to warn spuriously when 'x' and 'y' are on separate
6604    // paths through the function. This should be revisited if
6605    // -Wrepeated-use-of-weak is made flow-sensitive.
6606    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
6607      DiagnosticsEngine::Level Level =
6608        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
6609                                 Init->getLocStart());
6610      if (Level != DiagnosticsEngine::Ignored)
6611        getCurFunction()->markSafeWeakUse(Init);
6612    }
6613  }
6614
6615  Init = MaybeCreateExprWithCleanups(Init);
6616  // Attach the initializer to the decl.
6617  VDecl->setInit(Init);
6618
6619  if (VDecl->isLocalVarDecl()) {
6620    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6621    // static storage duration shall be constant expressions or string literals.
6622    // C++ does not have this restriction.
6623    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6624        VDecl->getStorageClass() == SC_Static)
6625      CheckForConstantInitializer(Init, DclT);
6626  } else if (VDecl->isStaticDataMember() &&
6627             VDecl->getLexicalDeclContext()->isRecord()) {
6628    // This is an in-class initialization for a static data member, e.g.,
6629    //
6630    // struct S {
6631    //   static const int value = 17;
6632    // };
6633
6634    // C++ [class.mem]p4:
6635    //   A member-declarator can contain a constant-initializer only
6636    //   if it declares a static member (9.4) of const integral or
6637    //   const enumeration type, see 9.4.2.
6638    //
6639    // C++11 [class.static.data]p3:
6640    //   If a non-volatile const static data member is of integral or
6641    //   enumeration type, its declaration in the class definition can
6642    //   specify a brace-or-equal-initializer in which every initalizer-clause
6643    //   that is an assignment-expression is a constant expression. A static
6644    //   data member of literal type can be declared in the class definition
6645    //   with the constexpr specifier; if so, its declaration shall specify a
6646    //   brace-or-equal-initializer in which every initializer-clause that is
6647    //   an assignment-expression is a constant expression.
6648
6649    // Do nothing on dependent types.
6650    if (DclT->isDependentType()) {
6651
6652    // Allow any 'static constexpr' members, whether or not they are of literal
6653    // type. We separately check that every constexpr variable is of literal
6654    // type.
6655    } else if (VDecl->isConstexpr()) {
6656
6657    // Require constness.
6658    } else if (!DclT.isConstQualified()) {
6659      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6660        << Init->getSourceRange();
6661      VDecl->setInvalidDecl();
6662
6663    // We allow integer constant expressions in all cases.
6664    } else if (DclT->isIntegralOrEnumerationType()) {
6665      // Check whether the expression is a constant expression.
6666      SourceLocation Loc;
6667      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6668        // In C++11, a non-constexpr const static data member with an
6669        // in-class initializer cannot be volatile.
6670        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6671      else if (Init->isValueDependent())
6672        ; // Nothing to check.
6673      else if (Init->isIntegerConstantExpr(Context, &Loc))
6674        ; // Ok, it's an ICE!
6675      else if (Init->isEvaluatable(Context)) {
6676        // If we can constant fold the initializer through heroics, accept it,
6677        // but report this as a use of an extension for -pedantic.
6678        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6679          << Init->getSourceRange();
6680      } else {
6681        // Otherwise, this is some crazy unknown case.  Report the issue at the
6682        // location provided by the isIntegerConstantExpr failed check.
6683        Diag(Loc, diag::err_in_class_initializer_non_constant)
6684          << Init->getSourceRange();
6685        VDecl->setInvalidDecl();
6686      }
6687
6688    // We allow foldable floating-point constants as an extension.
6689    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6690      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6691        << DclT << Init->getSourceRange();
6692      if (getLangOpts().CPlusPlus0x)
6693        Diag(VDecl->getLocation(),
6694             diag::note_in_class_initializer_float_type_constexpr)
6695          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6696
6697      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6698        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6699          << Init->getSourceRange();
6700        VDecl->setInvalidDecl();
6701      }
6702
6703    // Suggest adding 'constexpr' in C++11 for literal types.
6704    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6705      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6706        << DclT << Init->getSourceRange()
6707        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6708      VDecl->setConstexpr(true);
6709
6710    } else {
6711      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6712        << DclT << Init->getSourceRange();
6713      VDecl->setInvalidDecl();
6714    }
6715  } else if (VDecl->isFileVarDecl()) {
6716    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6717        (!getLangOpts().CPlusPlus ||
6718         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6719      Diag(VDecl->getLocation(), diag::warn_extern_init);
6720
6721    // C99 6.7.8p4. All file scoped initializers need to be constant.
6722    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6723      CheckForConstantInitializer(Init, DclT);
6724  }
6725
6726  // We will represent direct-initialization similarly to copy-initialization:
6727  //    int x(1);  -as-> int x = 1;
6728  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6729  //
6730  // Clients that want to distinguish between the two forms, can check for
6731  // direct initializer using VarDecl::getInitStyle().
6732  // A major benefit is that clients that don't particularly care about which
6733  // exactly form was it (like the CodeGen) can handle both cases without
6734  // special case code.
6735
6736  // C++ 8.5p11:
6737  // The form of initialization (using parentheses or '=') is generally
6738  // insignificant, but does matter when the entity being initialized has a
6739  // class type.
6740  if (CXXDirectInit) {
6741    assert(DirectInit && "Call-style initializer must be direct init.");
6742    VDecl->setInitStyle(VarDecl::CallInit);
6743  } else if (DirectInit) {
6744    // This must be list-initialization. No other way is direct-initialization.
6745    VDecl->setInitStyle(VarDecl::ListInit);
6746  }
6747
6748  CheckCompleteVariableDeclaration(VDecl);
6749}
6750
6751/// ActOnInitializerError - Given that there was an error parsing an
6752/// initializer for the given declaration, try to return to some form
6753/// of sanity.
6754void Sema::ActOnInitializerError(Decl *D) {
6755  // Our main concern here is re-establishing invariants like "a
6756  // variable's type is either dependent or complete".
6757  if (!D || D->isInvalidDecl()) return;
6758
6759  VarDecl *VD = dyn_cast<VarDecl>(D);
6760  if (!VD) return;
6761
6762  // Auto types are meaningless if we can't make sense of the initializer.
6763  if (ParsingInitForAutoVars.count(D)) {
6764    D->setInvalidDecl();
6765    return;
6766  }
6767
6768  QualType Ty = VD->getType();
6769  if (Ty->isDependentType()) return;
6770
6771  // Require a complete type.
6772  if (RequireCompleteType(VD->getLocation(),
6773                          Context.getBaseElementType(Ty),
6774                          diag::err_typecheck_decl_incomplete_type)) {
6775    VD->setInvalidDecl();
6776    return;
6777  }
6778
6779  // Require an abstract type.
6780  if (RequireNonAbstractType(VD->getLocation(), Ty,
6781                             diag::err_abstract_type_in_decl,
6782                             AbstractVariableType)) {
6783    VD->setInvalidDecl();
6784    return;
6785  }
6786
6787  // Don't bother complaining about constructors or destructors,
6788  // though.
6789}
6790
6791void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6792                                  bool TypeMayContainAuto) {
6793  // If there is no declaration, there was an error parsing it. Just ignore it.
6794  if (RealDecl == 0)
6795    return;
6796
6797  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6798    QualType Type = Var->getType();
6799
6800    // C++11 [dcl.spec.auto]p3
6801    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6802      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6803        << Var->getDeclName() << Type;
6804      Var->setInvalidDecl();
6805      return;
6806    }
6807
6808    // C++11 [class.static.data]p3: A static data member can be declared with
6809    // the constexpr specifier; if so, its declaration shall specify
6810    // a brace-or-equal-initializer.
6811    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6812    // the definition of a variable [...] or the declaration of a static data
6813    // member.
6814    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6815      if (Var->isStaticDataMember())
6816        Diag(Var->getLocation(),
6817             diag::err_constexpr_static_mem_var_requires_init)
6818          << Var->getDeclName();
6819      else
6820        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6821      Var->setInvalidDecl();
6822      return;
6823    }
6824
6825    switch (Var->isThisDeclarationADefinition()) {
6826    case VarDecl::Definition:
6827      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6828        break;
6829
6830      // We have an out-of-line definition of a static data member
6831      // that has an in-class initializer, so we type-check this like
6832      // a declaration.
6833      //
6834      // Fall through
6835
6836    case VarDecl::DeclarationOnly:
6837      // It's only a declaration.
6838
6839      // Block scope. C99 6.7p7: If an identifier for an object is
6840      // declared with no linkage (C99 6.2.2p6), the type for the
6841      // object shall be complete.
6842      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6843          !Var->getLinkage() && !Var->isInvalidDecl() &&
6844          RequireCompleteType(Var->getLocation(), Type,
6845                              diag::err_typecheck_decl_incomplete_type))
6846        Var->setInvalidDecl();
6847
6848      // Make sure that the type is not abstract.
6849      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6850          RequireNonAbstractType(Var->getLocation(), Type,
6851                                 diag::err_abstract_type_in_decl,
6852                                 AbstractVariableType))
6853        Var->setInvalidDecl();
6854      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6855          Var->getStorageClass() == SC_PrivateExtern) {
6856        Diag(Var->getLocation(), diag::warn_private_extern);
6857        Diag(Var->getLocation(), diag::note_private_extern);
6858      }
6859
6860      return;
6861
6862    case VarDecl::TentativeDefinition:
6863      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6864      // object that has file scope without an initializer, and without a
6865      // storage-class specifier or with the storage-class specifier "static",
6866      // constitutes a tentative definition. Note: A tentative definition with
6867      // external linkage is valid (C99 6.2.2p5).
6868      if (!Var->isInvalidDecl()) {
6869        if (const IncompleteArrayType *ArrayT
6870                                    = Context.getAsIncompleteArrayType(Type)) {
6871          if (RequireCompleteType(Var->getLocation(),
6872                                  ArrayT->getElementType(),
6873                                  diag::err_illegal_decl_array_incomplete_type))
6874            Var->setInvalidDecl();
6875        } else if (Var->getStorageClass() == SC_Static) {
6876          // C99 6.9.2p3: If the declaration of an identifier for an object is
6877          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6878          // declared type shall not be an incomplete type.
6879          // NOTE: code such as the following
6880          //     static struct s;
6881          //     struct s { int a; };
6882          // is accepted by gcc. Hence here we issue a warning instead of
6883          // an error and we do not invalidate the static declaration.
6884          // NOTE: to avoid multiple warnings, only check the first declaration.
6885          if (Var->getPreviousDecl() == 0)
6886            RequireCompleteType(Var->getLocation(), Type,
6887                                diag::ext_typecheck_decl_incomplete_type);
6888        }
6889      }
6890
6891      // Record the tentative definition; we're done.
6892      if (!Var->isInvalidDecl())
6893        TentativeDefinitions.push_back(Var);
6894      return;
6895    }
6896
6897    // Provide a specific diagnostic for uninitialized variable
6898    // definitions with incomplete array type.
6899    if (Type->isIncompleteArrayType()) {
6900      Diag(Var->getLocation(),
6901           diag::err_typecheck_incomplete_array_needs_initializer);
6902      Var->setInvalidDecl();
6903      return;
6904    }
6905
6906    // Provide a specific diagnostic for uninitialized variable
6907    // definitions with reference type.
6908    if (Type->isReferenceType()) {
6909      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6910        << Var->getDeclName()
6911        << SourceRange(Var->getLocation(), Var->getLocation());
6912      Var->setInvalidDecl();
6913      return;
6914    }
6915
6916    // Do not attempt to type-check the default initializer for a
6917    // variable with dependent type.
6918    if (Type->isDependentType())
6919      return;
6920
6921    if (Var->isInvalidDecl())
6922      return;
6923
6924    if (RequireCompleteType(Var->getLocation(),
6925                            Context.getBaseElementType(Type),
6926                            diag::err_typecheck_decl_incomplete_type)) {
6927      Var->setInvalidDecl();
6928      return;
6929    }
6930
6931    // The variable can not have an abstract class type.
6932    if (RequireNonAbstractType(Var->getLocation(), Type,
6933                               diag::err_abstract_type_in_decl,
6934                               AbstractVariableType)) {
6935      Var->setInvalidDecl();
6936      return;
6937    }
6938
6939    // Check for jumps past the implicit initializer.  C++0x
6940    // clarifies that this applies to a "variable with automatic
6941    // storage duration", not a "local variable".
6942    // C++11 [stmt.dcl]p3
6943    //   A program that jumps from a point where a variable with automatic
6944    //   storage duration is not in scope to a point where it is in scope is
6945    //   ill-formed unless the variable has scalar type, class type with a
6946    //   trivial default constructor and a trivial destructor, a cv-qualified
6947    //   version of one of these types, or an array of one of the preceding
6948    //   types and is declared without an initializer.
6949    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6950      if (const RecordType *Record
6951            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6952        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6953        // Mark the function for further checking even if the looser rules of
6954        // C++11 do not require such checks, so that we can diagnose
6955        // incompatibilities with C++98.
6956        if (!CXXRecord->isPOD())
6957          getCurFunction()->setHasBranchProtectedScope();
6958      }
6959    }
6960
6961    // C++03 [dcl.init]p9:
6962    //   If no initializer is specified for an object, and the
6963    //   object is of (possibly cv-qualified) non-POD class type (or
6964    //   array thereof), the object shall be default-initialized; if
6965    //   the object is of const-qualified type, the underlying class
6966    //   type shall have a user-declared default
6967    //   constructor. Otherwise, if no initializer is specified for
6968    //   a non- static object, the object and its subobjects, if
6969    //   any, have an indeterminate initial value); if the object
6970    //   or any of its subobjects are of const-qualified type, the
6971    //   program is ill-formed.
6972    // C++0x [dcl.init]p11:
6973    //   If no initializer is specified for an object, the object is
6974    //   default-initialized; [...].
6975    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6976    InitializationKind Kind
6977      = InitializationKind::CreateDefault(Var->getLocation());
6978
6979    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6980    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
6981    if (Init.isInvalid())
6982      Var->setInvalidDecl();
6983    else if (Init.get()) {
6984      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6985      // This is important for template substitution.
6986      Var->setInitStyle(VarDecl::CallInit);
6987    }
6988
6989    CheckCompleteVariableDeclaration(Var);
6990  }
6991}
6992
6993void Sema::ActOnCXXForRangeDecl(Decl *D) {
6994  VarDecl *VD = dyn_cast<VarDecl>(D);
6995  if (!VD) {
6996    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6997    D->setInvalidDecl();
6998    return;
6999  }
7000
7001  VD->setCXXForRangeDecl(true);
7002
7003  // for-range-declaration cannot be given a storage class specifier.
7004  int Error = -1;
7005  switch (VD->getStorageClassAsWritten()) {
7006  case SC_None:
7007    break;
7008  case SC_Extern:
7009    Error = 0;
7010    break;
7011  case SC_Static:
7012    Error = 1;
7013    break;
7014  case SC_PrivateExtern:
7015    Error = 2;
7016    break;
7017  case SC_Auto:
7018    Error = 3;
7019    break;
7020  case SC_Register:
7021    Error = 4;
7022    break;
7023  case SC_OpenCLWorkGroupLocal:
7024    llvm_unreachable("Unexpected storage class");
7025  }
7026  if (VD->isConstexpr())
7027    Error = 5;
7028  if (Error != -1) {
7029    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7030      << VD->getDeclName() << Error;
7031    D->setInvalidDecl();
7032  }
7033}
7034
7035void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7036  if (var->isInvalidDecl()) return;
7037
7038  // In ARC, don't allow jumps past the implicit initialization of a
7039  // local retaining variable.
7040  if (getLangOpts().ObjCAutoRefCount &&
7041      var->hasLocalStorage()) {
7042    switch (var->getType().getObjCLifetime()) {
7043    case Qualifiers::OCL_None:
7044    case Qualifiers::OCL_ExplicitNone:
7045    case Qualifiers::OCL_Autoreleasing:
7046      break;
7047
7048    case Qualifiers::OCL_Weak:
7049    case Qualifiers::OCL_Strong:
7050      getCurFunction()->setHasBranchProtectedScope();
7051      break;
7052    }
7053  }
7054
7055  // All the following checks are C++ only.
7056  if (!getLangOpts().CPlusPlus) return;
7057
7058  QualType baseType = Context.getBaseElementType(var->getType());
7059  if (baseType->isDependentType()) return;
7060
7061  // __block variables might require us to capture a copy-initializer.
7062  if (var->hasAttr<BlocksAttr>()) {
7063    // It's currently invalid to ever have a __block variable with an
7064    // array type; should we diagnose that here?
7065
7066    // Regardless, we don't want to ignore array nesting when
7067    // constructing this copy.
7068    QualType type = var->getType();
7069
7070    if (type->isStructureOrClassType()) {
7071      SourceLocation poi = var->getLocation();
7072      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7073      ExprResult result =
7074        PerformCopyInitialization(
7075                        InitializedEntity::InitializeBlock(poi, type, false),
7076                                  poi, Owned(varRef));
7077      if (!result.isInvalid()) {
7078        result = MaybeCreateExprWithCleanups(result);
7079        Expr *init = result.takeAs<Expr>();
7080        Context.setBlockVarCopyInits(var, init);
7081      }
7082    }
7083  }
7084
7085  Expr *Init = var->getInit();
7086  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7087
7088  if (!var->getDeclContext()->isDependentContext() && Init) {
7089    if (IsGlobal && !var->isConstexpr() &&
7090        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7091                                            var->getLocation())
7092          != DiagnosticsEngine::Ignored &&
7093        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7094      Diag(var->getLocation(), diag::warn_global_constructor)
7095        << Init->getSourceRange();
7096
7097    if (var->isConstexpr()) {
7098      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7099      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7100        SourceLocation DiagLoc = var->getLocation();
7101        // If the note doesn't add any useful information other than a source
7102        // location, fold it into the primary diagnostic.
7103        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7104              diag::note_invalid_subexpr_in_const_expr) {
7105          DiagLoc = Notes[0].first;
7106          Notes.clear();
7107        }
7108        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7109          << var << Init->getSourceRange();
7110        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7111          Diag(Notes[I].first, Notes[I].second);
7112      }
7113    } else if (var->isUsableInConstantExpressions(Context)) {
7114      // Check whether the initializer of a const variable of integral or
7115      // enumeration type is an ICE now, since we can't tell whether it was
7116      // initialized by a constant expression if we check later.
7117      var->checkInitIsICE();
7118    }
7119  }
7120
7121  // Require the destructor.
7122  if (const RecordType *recordType = baseType->getAs<RecordType>())
7123    FinalizeVarWithDestructor(var, recordType);
7124}
7125
7126/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7127/// any semantic actions necessary after any initializer has been attached.
7128void
7129Sema::FinalizeDeclaration(Decl *ThisDecl) {
7130  // Note that we are no longer parsing the initializer for this declaration.
7131  ParsingInitForAutoVars.erase(ThisDecl);
7132
7133  // Now we have parsed the initializer and can update the table of magic
7134  // tag values.
7135  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7136    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7137    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7138      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7139               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7140               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7141           I != E; ++I) {
7142        const Expr *MagicValueExpr = VD->getInit();
7143        if (!MagicValueExpr) {
7144          continue;
7145        }
7146        llvm::APSInt MagicValueInt;
7147        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7148          Diag(I->getRange().getBegin(),
7149               diag::err_type_tag_for_datatype_not_ice)
7150            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7151          continue;
7152        }
7153        if (MagicValueInt.getActiveBits() > 64) {
7154          Diag(I->getRange().getBegin(),
7155               diag::err_type_tag_for_datatype_too_large)
7156            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7157          continue;
7158        }
7159        uint64_t MagicValue = MagicValueInt.getZExtValue();
7160        RegisterTypeTagForDatatype(I->getArgumentKind(),
7161                                   MagicValue,
7162                                   I->getMatchingCType(),
7163                                   I->getLayoutCompatible(),
7164                                   I->getMustBeNull());
7165      }
7166    }
7167  }
7168}
7169
7170Sema::DeclGroupPtrTy
7171Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7172                              Decl **Group, unsigned NumDecls) {
7173  SmallVector<Decl*, 8> Decls;
7174
7175  if (DS.isTypeSpecOwned())
7176    Decls.push_back(DS.getRepAsDecl());
7177
7178  for (unsigned i = 0; i != NumDecls; ++i)
7179    if (Decl *D = Group[i])
7180      Decls.push_back(D);
7181
7182  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7183                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7184}
7185
7186/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7187/// group, performing any necessary semantic checking.
7188Sema::DeclGroupPtrTy
7189Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7190                           bool TypeMayContainAuto) {
7191  // C++0x [dcl.spec.auto]p7:
7192  //   If the type deduced for the template parameter U is not the same in each
7193  //   deduction, the program is ill-formed.
7194  // FIXME: When initializer-list support is added, a distinction is needed
7195  // between the deduced type U and the deduced type which 'auto' stands for.
7196  //   auto a = 0, b = { 1, 2, 3 };
7197  // is legal because the deduced type U is 'int' in both cases.
7198  if (TypeMayContainAuto && NumDecls > 1) {
7199    QualType Deduced;
7200    CanQualType DeducedCanon;
7201    VarDecl *DeducedDecl = 0;
7202    for (unsigned i = 0; i != NumDecls; ++i) {
7203      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7204        AutoType *AT = D->getType()->getContainedAutoType();
7205        // Don't reissue diagnostics when instantiating a template.
7206        if (AT && D->isInvalidDecl())
7207          break;
7208        if (AT && AT->isDeduced()) {
7209          QualType U = AT->getDeducedType();
7210          CanQualType UCanon = Context.getCanonicalType(U);
7211          if (Deduced.isNull()) {
7212            Deduced = U;
7213            DeducedCanon = UCanon;
7214            DeducedDecl = D;
7215          } else if (DeducedCanon != UCanon) {
7216            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7217                 diag::err_auto_different_deductions)
7218              << Deduced << DeducedDecl->getDeclName()
7219              << U << D->getDeclName()
7220              << DeducedDecl->getInit()->getSourceRange()
7221              << D->getInit()->getSourceRange();
7222            D->setInvalidDecl();
7223            break;
7224          }
7225        }
7226      }
7227    }
7228  }
7229
7230  ActOnDocumentableDecls(Group, NumDecls);
7231
7232  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7233}
7234
7235void Sema::ActOnDocumentableDecl(Decl *D) {
7236  ActOnDocumentableDecls(&D, 1);
7237}
7238
7239void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7240  // Don't parse the comment if Doxygen diagnostics are ignored.
7241  if (NumDecls == 0 || !Group[0])
7242   return;
7243
7244  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7245                               Group[0]->getLocation())
7246        == DiagnosticsEngine::Ignored)
7247    return;
7248
7249  if (NumDecls >= 2) {
7250    // This is a decl group.  Normally it will contain only declarations
7251    // procuded from declarator list.  But in case we have any definitions or
7252    // additional declaration references:
7253    //   'typedef struct S {} S;'
7254    //   'typedef struct S *S;'
7255    //   'struct S *pS;'
7256    // FinalizeDeclaratorGroup adds these as separate declarations.
7257    Decl *MaybeTagDecl = Group[0];
7258    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7259      Group++;
7260      NumDecls--;
7261    }
7262  }
7263
7264  // See if there are any new comments that are not attached to a decl.
7265  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7266  if (!Comments.empty() &&
7267      !Comments.back()->isAttached()) {
7268    // There is at least one comment that not attached to a decl.
7269    // Maybe it should be attached to one of these decls?
7270    //
7271    // Note that this way we pick up not only comments that precede the
7272    // declaration, but also comments that *follow* the declaration -- thanks to
7273    // the lookahead in the lexer: we've consumed the semicolon and looked
7274    // ahead through comments.
7275    for (unsigned i = 0; i != NumDecls; ++i)
7276      Context.getCommentForDecl(Group[i], &PP);
7277  }
7278}
7279
7280/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7281/// to introduce parameters into function prototype scope.
7282Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7283  const DeclSpec &DS = D.getDeclSpec();
7284
7285  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7286  // C++03 [dcl.stc]p2 also permits 'auto'.
7287  VarDecl::StorageClass StorageClass = SC_None;
7288  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7289  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7290    StorageClass = SC_Register;
7291    StorageClassAsWritten = SC_Register;
7292  } else if (getLangOpts().CPlusPlus &&
7293             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7294    StorageClass = SC_Auto;
7295    StorageClassAsWritten = SC_Auto;
7296  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7297    Diag(DS.getStorageClassSpecLoc(),
7298         diag::err_invalid_storage_class_in_func_decl);
7299    D.getMutableDeclSpec().ClearStorageClassSpecs();
7300  }
7301
7302  if (D.getDeclSpec().isThreadSpecified())
7303    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7304  if (D.getDeclSpec().isConstexprSpecified())
7305    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7306      << 0;
7307
7308  DiagnoseFunctionSpecifiers(D);
7309
7310  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7311  QualType parmDeclType = TInfo->getType();
7312
7313  if (getLangOpts().CPlusPlus) {
7314    // Check that there are no default arguments inside the type of this
7315    // parameter.
7316    CheckExtraCXXDefaultArguments(D);
7317
7318    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7319    if (D.getCXXScopeSpec().isSet()) {
7320      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7321        << D.getCXXScopeSpec().getRange();
7322      D.getCXXScopeSpec().clear();
7323    }
7324  }
7325
7326  // Ensure we have a valid name
7327  IdentifierInfo *II = 0;
7328  if (D.hasName()) {
7329    II = D.getIdentifier();
7330    if (!II) {
7331      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7332        << GetNameForDeclarator(D).getName().getAsString();
7333      D.setInvalidType(true);
7334    }
7335  }
7336
7337  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7338  if (II) {
7339    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7340                   ForRedeclaration);
7341    LookupName(R, S);
7342    if (R.isSingleResult()) {
7343      NamedDecl *PrevDecl = R.getFoundDecl();
7344      if (PrevDecl->isTemplateParameter()) {
7345        // Maybe we will complain about the shadowed template parameter.
7346        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7347        // Just pretend that we didn't see the previous declaration.
7348        PrevDecl = 0;
7349      } else if (S->isDeclScope(PrevDecl)) {
7350        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7351        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7352
7353        // Recover by removing the name
7354        II = 0;
7355        D.SetIdentifier(0, D.getIdentifierLoc());
7356        D.setInvalidType(true);
7357      }
7358    }
7359  }
7360
7361  // Temporarily put parameter variables in the translation unit, not
7362  // the enclosing context.  This prevents them from accidentally
7363  // looking like class members in C++.
7364  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7365                                    D.getLocStart(),
7366                                    D.getIdentifierLoc(), II,
7367                                    parmDeclType, TInfo,
7368                                    StorageClass, StorageClassAsWritten);
7369
7370  if (D.isInvalidType())
7371    New->setInvalidDecl();
7372
7373  assert(S->isFunctionPrototypeScope());
7374  assert(S->getFunctionPrototypeDepth() >= 1);
7375  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7376                    S->getNextFunctionPrototypeIndex());
7377
7378  // Add the parameter declaration into this scope.
7379  S->AddDecl(New);
7380  if (II)
7381    IdResolver.AddDecl(New);
7382
7383  ProcessDeclAttributes(S, New, D);
7384
7385  if (D.getDeclSpec().isModulePrivateSpecified())
7386    Diag(New->getLocation(), diag::err_module_private_local)
7387      << 1 << New->getDeclName()
7388      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7389      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7390
7391  if (New->hasAttr<BlocksAttr>()) {
7392    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7393  }
7394  return New;
7395}
7396
7397/// \brief Synthesizes a variable for a parameter arising from a
7398/// typedef.
7399ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7400                                              SourceLocation Loc,
7401                                              QualType T) {
7402  /* FIXME: setting StartLoc == Loc.
7403     Would it be worth to modify callers so as to provide proper source
7404     location for the unnamed parameters, embedding the parameter's type? */
7405  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7406                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7407                                           SC_None, SC_None, 0);
7408  Param->setImplicit();
7409  return Param;
7410}
7411
7412void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7413                                    ParmVarDecl * const *ParamEnd) {
7414  // Don't diagnose unused-parameter errors in template instantiations; we
7415  // will already have done so in the template itself.
7416  if (!ActiveTemplateInstantiations.empty())
7417    return;
7418
7419  for (; Param != ParamEnd; ++Param) {
7420    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7421        !(*Param)->hasAttr<UnusedAttr>()) {
7422      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7423        << (*Param)->getDeclName();
7424    }
7425  }
7426}
7427
7428void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7429                                                  ParmVarDecl * const *ParamEnd,
7430                                                  QualType ReturnTy,
7431                                                  NamedDecl *D) {
7432  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7433    return;
7434
7435  // Warn if the return value is pass-by-value and larger than the specified
7436  // threshold.
7437  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7438    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7439    if (Size > LangOpts.NumLargeByValueCopy)
7440      Diag(D->getLocation(), diag::warn_return_value_size)
7441          << D->getDeclName() << Size;
7442  }
7443
7444  // Warn if any parameter is pass-by-value and larger than the specified
7445  // threshold.
7446  for (; Param != ParamEnd; ++Param) {
7447    QualType T = (*Param)->getType();
7448    if (T->isDependentType() || !T.isPODType(Context))
7449      continue;
7450    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7451    if (Size > LangOpts.NumLargeByValueCopy)
7452      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7453          << (*Param)->getDeclName() << Size;
7454  }
7455}
7456
7457ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7458                                  SourceLocation NameLoc, IdentifierInfo *Name,
7459                                  QualType T, TypeSourceInfo *TSInfo,
7460                                  VarDecl::StorageClass StorageClass,
7461                                  VarDecl::StorageClass StorageClassAsWritten) {
7462  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7463  if (getLangOpts().ObjCAutoRefCount &&
7464      T.getObjCLifetime() == Qualifiers::OCL_None &&
7465      T->isObjCLifetimeType()) {
7466
7467    Qualifiers::ObjCLifetime lifetime;
7468
7469    // Special cases for arrays:
7470    //   - if it's const, use __unsafe_unretained
7471    //   - otherwise, it's an error
7472    if (T->isArrayType()) {
7473      if (!T.isConstQualified()) {
7474        DelayedDiagnostics.add(
7475            sema::DelayedDiagnostic::makeForbiddenType(
7476            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7477      }
7478      lifetime = Qualifiers::OCL_ExplicitNone;
7479    } else {
7480      lifetime = T->getObjCARCImplicitLifetime();
7481    }
7482    T = Context.getLifetimeQualifiedType(T, lifetime);
7483  }
7484
7485  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7486                                         Context.getAdjustedParameterType(T),
7487                                         TSInfo,
7488                                         StorageClass, StorageClassAsWritten,
7489                                         0);
7490
7491  // Parameters can not be abstract class types.
7492  // For record types, this is done by the AbstractClassUsageDiagnoser once
7493  // the class has been completely parsed.
7494  if (!CurContext->isRecord() &&
7495      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7496                             AbstractParamType))
7497    New->setInvalidDecl();
7498
7499  // Parameter declarators cannot be interface types. All ObjC objects are
7500  // passed by reference.
7501  if (T->isObjCObjectType()) {
7502    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7503    Diag(NameLoc,
7504         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7505      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7506    T = Context.getObjCObjectPointerType(T);
7507    New->setType(T);
7508  }
7509
7510  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7511  // duration shall not be qualified by an address-space qualifier."
7512  // Since all parameters have automatic store duration, they can not have
7513  // an address space.
7514  if (T.getAddressSpace() != 0) {
7515    Diag(NameLoc, diag::err_arg_with_address_space);
7516    New->setInvalidDecl();
7517  }
7518
7519  return New;
7520}
7521
7522void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7523                                           SourceLocation LocAfterDecls) {
7524  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7525
7526  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7527  // for a K&R function.
7528  if (!FTI.hasPrototype) {
7529    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7530      --i;
7531      if (FTI.ArgInfo[i].Param == 0) {
7532        SmallString<256> Code;
7533        llvm::raw_svector_ostream(Code) << "  int "
7534                                        << FTI.ArgInfo[i].Ident->getName()
7535                                        << ";\n";
7536        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7537          << FTI.ArgInfo[i].Ident
7538          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7539
7540        // Implicitly declare the argument as type 'int' for lack of a better
7541        // type.
7542        AttributeFactory attrs;
7543        DeclSpec DS(attrs);
7544        const char* PrevSpec; // unused
7545        unsigned DiagID; // unused
7546        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7547                           PrevSpec, DiagID);
7548        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7549        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7550        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7551      }
7552    }
7553  }
7554}
7555
7556Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7557  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7558  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7559  Scope *ParentScope = FnBodyScope->getParent();
7560
7561  D.setFunctionDefinitionKind(FDK_Definition);
7562  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7563  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7564}
7565
7566static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7567  // Don't warn about invalid declarations.
7568  if (FD->isInvalidDecl())
7569    return false;
7570
7571  // Or declarations that aren't global.
7572  if (!FD->isGlobal())
7573    return false;
7574
7575  // Don't warn about C++ member functions.
7576  if (isa<CXXMethodDecl>(FD))
7577    return false;
7578
7579  // Don't warn about 'main'.
7580  if (FD->isMain())
7581    return false;
7582
7583  // Don't warn about inline functions.
7584  if (FD->isInlined())
7585    return false;
7586
7587  // Don't warn about function templates.
7588  if (FD->getDescribedFunctionTemplate())
7589    return false;
7590
7591  // Don't warn about function template specializations.
7592  if (FD->isFunctionTemplateSpecialization())
7593    return false;
7594
7595  // Don't warn for OpenCL kernels.
7596  if (FD->hasAttr<OpenCLKernelAttr>())
7597    return false;
7598
7599  bool MissingPrototype = true;
7600  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7601       Prev; Prev = Prev->getPreviousDecl()) {
7602    // Ignore any declarations that occur in function or method
7603    // scope, because they aren't visible from the header.
7604    if (Prev->getDeclContext()->isFunctionOrMethod())
7605      continue;
7606
7607    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7608    break;
7609  }
7610
7611  return MissingPrototype;
7612}
7613
7614void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7615  // Don't complain if we're in GNU89 mode and the previous definition
7616  // was an extern inline function.
7617  const FunctionDecl *Definition;
7618  if (FD->isDefined(Definition) &&
7619      !canRedefineFunction(Definition, getLangOpts())) {
7620    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7621        Definition->getStorageClass() == SC_Extern)
7622      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7623        << FD->getDeclName() << getLangOpts().CPlusPlus;
7624    else
7625      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7626    Diag(Definition->getLocation(), diag::note_previous_definition);
7627    FD->setInvalidDecl();
7628  }
7629}
7630
7631Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7632  // Clear the last template instantiation error context.
7633  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7634
7635  if (!D)
7636    return D;
7637  FunctionDecl *FD = 0;
7638
7639  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7640    FD = FunTmpl->getTemplatedDecl();
7641  else
7642    FD = cast<FunctionDecl>(D);
7643
7644  // Enter a new function scope
7645  PushFunctionScope();
7646
7647  // See if this is a redefinition.
7648  if (!FD->isLateTemplateParsed())
7649    CheckForFunctionRedefinition(FD);
7650
7651  // Builtin functions cannot be defined.
7652  if (unsigned BuiltinID = FD->getBuiltinID()) {
7653    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7654      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7655      FD->setInvalidDecl();
7656    }
7657  }
7658
7659  // The return type of a function definition must be complete
7660  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7661  QualType ResultType = FD->getResultType();
7662  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7663      !FD->isInvalidDecl() &&
7664      RequireCompleteType(FD->getLocation(), ResultType,
7665                          diag::err_func_def_incomplete_result))
7666    FD->setInvalidDecl();
7667
7668  // GNU warning -Wmissing-prototypes:
7669  //   Warn if a global function is defined without a previous
7670  //   prototype declaration. This warning is issued even if the
7671  //   definition itself provides a prototype. The aim is to detect
7672  //   global functions that fail to be declared in header files.
7673  if (ShouldWarnAboutMissingPrototype(FD))
7674    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7675
7676  if (FnBodyScope)
7677    PushDeclContext(FnBodyScope, FD);
7678
7679  // Check the validity of our function parameters
7680  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7681                           /*CheckParameterNames=*/true);
7682
7683  // Introduce our parameters into the function scope
7684  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7685    ParmVarDecl *Param = FD->getParamDecl(p);
7686    Param->setOwningFunction(FD);
7687
7688    // If this has an identifier, add it to the scope stack.
7689    if (Param->getIdentifier() && FnBodyScope) {
7690      CheckShadow(FnBodyScope, Param);
7691
7692      PushOnScopeChains(Param, FnBodyScope);
7693    }
7694  }
7695
7696  // If we had any tags defined in the function prototype,
7697  // introduce them into the function scope.
7698  if (FnBodyScope) {
7699    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7700           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7701      NamedDecl *D = *I;
7702
7703      // Some of these decls (like enums) may have been pinned to the translation unit
7704      // for lack of a real context earlier. If so, remove from the translation unit
7705      // and reattach to the current context.
7706      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7707        // Is the decl actually in the context?
7708        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7709               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7710          if (*DI == D) {
7711            Context.getTranslationUnitDecl()->removeDecl(D);
7712            break;
7713          }
7714        }
7715        // Either way, reassign the lexical decl context to our FunctionDecl.
7716        D->setLexicalDeclContext(CurContext);
7717      }
7718
7719      // If the decl has a non-null name, make accessible in the current scope.
7720      if (!D->getName().empty())
7721        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7722
7723      // Similarly, dive into enums and fish their constants out, making them
7724      // accessible in this scope.
7725      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7726        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7727               EE = ED->enumerator_end(); EI != EE; ++EI)
7728          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7729      }
7730    }
7731  }
7732
7733  // Ensure that the function's exception specification is instantiated.
7734  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7735    ResolveExceptionSpec(D->getLocation(), FPT);
7736
7737  // Checking attributes of current function definition
7738  // dllimport attribute.
7739  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7740  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7741    // dllimport attribute cannot be directly applied to definition.
7742    // Microsoft accepts dllimport for functions defined within class scope.
7743    if (!DA->isInherited() &&
7744        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7745      Diag(FD->getLocation(),
7746           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7747        << "dllimport";
7748      FD->setInvalidDecl();
7749      return FD;
7750    }
7751
7752    // Visual C++ appears to not think this is an issue, so only issue
7753    // a warning when Microsoft extensions are disabled.
7754    if (!LangOpts.MicrosoftExt) {
7755      // If a symbol previously declared dllimport is later defined, the
7756      // attribute is ignored in subsequent references, and a warning is
7757      // emitted.
7758      Diag(FD->getLocation(),
7759           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7760        << FD->getName() << "dllimport";
7761    }
7762  }
7763  // We want to attach documentation to original Decl (which might be
7764  // a function template).
7765  ActOnDocumentableDecl(D);
7766  return FD;
7767}
7768
7769/// \brief Given the set of return statements within a function body,
7770/// compute the variables that are subject to the named return value
7771/// optimization.
7772///
7773/// Each of the variables that is subject to the named return value
7774/// optimization will be marked as NRVO variables in the AST, and any
7775/// return statement that has a marked NRVO variable as its NRVO candidate can
7776/// use the named return value optimization.
7777///
7778/// This function applies a very simplistic algorithm for NRVO: if every return
7779/// statement in the function has the same NRVO candidate, that candidate is
7780/// the NRVO variable.
7781///
7782/// FIXME: Employ a smarter algorithm that accounts for multiple return
7783/// statements and the lifetimes of the NRVO candidates. We should be able to
7784/// find a maximal set of NRVO variables.
7785void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7786  ReturnStmt **Returns = Scope->Returns.data();
7787
7788  const VarDecl *NRVOCandidate = 0;
7789  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7790    if (!Returns[I]->getNRVOCandidate())
7791      return;
7792
7793    if (!NRVOCandidate)
7794      NRVOCandidate = Returns[I]->getNRVOCandidate();
7795    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7796      return;
7797  }
7798
7799  if (NRVOCandidate)
7800    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7801}
7802
7803Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7804  return ActOnFinishFunctionBody(D, BodyArg, false);
7805}
7806
7807Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7808                                    bool IsInstantiation) {
7809  FunctionDecl *FD = 0;
7810  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7811  if (FunTmpl)
7812    FD = FunTmpl->getTemplatedDecl();
7813  else
7814    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7815
7816  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7817  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7818
7819  if (FD) {
7820    FD->setBody(Body);
7821
7822    // If the function implicitly returns zero (like 'main') or is naked,
7823    // don't complain about missing return statements.
7824    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7825      WP.disableCheckFallThrough();
7826
7827    // MSVC permits the use of pure specifier (=0) on function definition,
7828    // defined at class scope, warn about this non standard construct.
7829    if (getLangOpts().MicrosoftExt && FD->isPure())
7830      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7831
7832    if (!FD->isInvalidDecl()) {
7833      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7834      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7835                                             FD->getResultType(), FD);
7836
7837      // If this is a constructor, we need a vtable.
7838      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7839        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7840
7841      // Try to apply the named return value optimization. We have to check
7842      // if we can do this here because lambdas keep return statements around
7843      // to deduce an implicit return type.
7844      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7845          !FD->isDependentContext())
7846        computeNRVO(Body, getCurFunction());
7847    }
7848
7849    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7850           "Function parsing confused");
7851  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7852    assert(MD == getCurMethodDecl() && "Method parsing confused");
7853    MD->setBody(Body);
7854    if (!MD->isInvalidDecl()) {
7855      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7856      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7857                                             MD->getResultType(), MD);
7858
7859      if (Body)
7860        computeNRVO(Body, getCurFunction());
7861    }
7862    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7863      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
7864        << MD->getSelector().getAsString();
7865      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7866    }
7867    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7868      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7869      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7870    }
7871  } else {
7872    return 0;
7873  }
7874
7875  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7876         "This should only be set for ObjC methods, which should have been "
7877         "handled in the block above.");
7878  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7879         "This should only be set for ObjC methods, which should have been "
7880         "handled in the block above.");
7881
7882  // Verify and clean out per-function state.
7883  if (Body) {
7884    // C++ constructors that have function-try-blocks can't have return
7885    // statements in the handlers of that block. (C++ [except.handle]p14)
7886    // Verify this.
7887    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7888      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7889
7890    // Verify that gotos and switch cases don't jump into scopes illegally.
7891    if (getCurFunction()->NeedsScopeChecking() &&
7892        !dcl->isInvalidDecl() &&
7893        !hasAnyUnrecoverableErrorsInThisFunction() &&
7894        !PP.isCodeCompletionEnabled())
7895      DiagnoseInvalidJumps(Body);
7896
7897    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7898      if (!Destructor->getParent()->isDependentType())
7899        CheckDestructor(Destructor);
7900
7901      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7902                                             Destructor->getParent());
7903    }
7904
7905    // If any errors have occurred, clear out any temporaries that may have
7906    // been leftover. This ensures that these temporaries won't be picked up for
7907    // deletion in some later function.
7908    if (PP.getDiagnostics().hasErrorOccurred() ||
7909        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7910      DiscardCleanupsInEvaluationContext();
7911    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7912      // Since the body is valid, issue any analysis-based warnings that are
7913      // enabled.
7914      ActivePolicy = &WP;
7915    }
7916
7917    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7918        (!CheckConstexprFunctionDecl(FD) ||
7919         !CheckConstexprFunctionBody(FD, Body)))
7920      FD->setInvalidDecl();
7921
7922    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7923    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7924    assert(MaybeODRUseExprs.empty() &&
7925           "Leftover expressions for odr-use checking");
7926  }
7927
7928  if (!IsInstantiation)
7929    PopDeclContext();
7930
7931  PopFunctionScopeInfo(ActivePolicy, dcl);
7932
7933  // If any errors have occurred, clear out any temporaries that may have
7934  // been leftover. This ensures that these temporaries won't be picked up for
7935  // deletion in some later function.
7936  if (getDiagnostics().hasErrorOccurred()) {
7937    DiscardCleanupsInEvaluationContext();
7938  }
7939
7940  return dcl;
7941}
7942
7943
7944/// When we finish delayed parsing of an attribute, we must attach it to the
7945/// relevant Decl.
7946void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7947                                       ParsedAttributes &Attrs) {
7948  // Always attach attributes to the underlying decl.
7949  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7950    D = TD->getTemplatedDecl();
7951  ProcessDeclAttributeList(S, D, Attrs.getList());
7952
7953  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7954    if (Method->isStatic())
7955      checkThisInStaticMemberFunctionAttributes(Method);
7956}
7957
7958
7959/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7960/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7961NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7962                                          IdentifierInfo &II, Scope *S) {
7963  // Before we produce a declaration for an implicitly defined
7964  // function, see whether there was a locally-scoped declaration of
7965  // this name as a function or variable. If so, use that
7966  // (non-visible) declaration, and complain about it.
7967  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7968    = findLocallyScopedExternalDecl(&II);
7969  if (Pos != LocallyScopedExternalDecls.end()) {
7970    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7971    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7972    return Pos->second;
7973  }
7974
7975  // Extension in C99.  Legal in C90, but warn about it.
7976  unsigned diag_id;
7977  if (II.getName().startswith("__builtin_"))
7978    diag_id = diag::warn_builtin_unknown;
7979  else if (getLangOpts().C99)
7980    diag_id = diag::ext_implicit_function_decl;
7981  else
7982    diag_id = diag::warn_implicit_function_decl;
7983  Diag(Loc, diag_id) << &II;
7984
7985  // Because typo correction is expensive, only do it if the implicit
7986  // function declaration is going to be treated as an error.
7987  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7988    TypoCorrection Corrected;
7989    DeclFilterCCC<FunctionDecl> Validator;
7990    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7991                                      LookupOrdinaryName, S, 0, Validator))) {
7992      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7993      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7994      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7995
7996      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7997          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7998
7999      if (Func->getLocation().isValid()
8000          && !II.getName().startswith("__builtin_"))
8001        Diag(Func->getLocation(), diag::note_previous_decl)
8002            << CorrectedQuotedStr;
8003    }
8004  }
8005
8006  // Set a Declarator for the implicit definition: int foo();
8007  const char *Dummy;
8008  AttributeFactory attrFactory;
8009  DeclSpec DS(attrFactory);
8010  unsigned DiagID;
8011  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8012  (void)Error; // Silence warning.
8013  assert(!Error && "Error setting up implicit decl!");
8014  Declarator D(DS, Declarator::BlockContext);
8015  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
8016                                             SourceLocation(), 0, 0, 0, true,
8017                                             SourceLocation(), SourceLocation(),
8018                                             SourceLocation(), SourceLocation(),
8019                                             EST_None, SourceLocation(),
8020                                             0, 0, 0, 0, Loc, Loc, D),
8021                DS.getAttributes(),
8022                SourceLocation());
8023  D.SetIdentifier(&II, Loc);
8024
8025  // Insert this function into translation-unit scope.
8026
8027  DeclContext *PrevDC = CurContext;
8028  CurContext = Context.getTranslationUnitDecl();
8029
8030  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8031  FD->setImplicit();
8032
8033  CurContext = PrevDC;
8034
8035  AddKnownFunctionAttributes(FD);
8036
8037  return FD;
8038}
8039
8040/// \brief Adds any function attributes that we know a priori based on
8041/// the declaration of this function.
8042///
8043/// These attributes can apply both to implicitly-declared builtins
8044/// (like __builtin___printf_chk) or to library-declared functions
8045/// like NSLog or printf.
8046///
8047/// We need to check for duplicate attributes both here and where user-written
8048/// attributes are applied to declarations.
8049void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8050  if (FD->isInvalidDecl())
8051    return;
8052
8053  // If this is a built-in function, map its builtin attributes to
8054  // actual attributes.
8055  if (unsigned BuiltinID = FD->getBuiltinID()) {
8056    // Handle printf-formatting attributes.
8057    unsigned FormatIdx;
8058    bool HasVAListArg;
8059    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8060      if (!FD->getAttr<FormatAttr>()) {
8061        const char *fmt = "printf";
8062        unsigned int NumParams = FD->getNumParams();
8063        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8064            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8065          fmt = "NSString";
8066        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8067                                               fmt, FormatIdx+1,
8068                                               HasVAListArg ? 0 : FormatIdx+2));
8069      }
8070    }
8071    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8072                                             HasVAListArg)) {
8073     if (!FD->getAttr<FormatAttr>())
8074       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8075                                              "scanf", FormatIdx+1,
8076                                              HasVAListArg ? 0 : FormatIdx+2));
8077    }
8078
8079    // Mark const if we don't care about errno and that is the only
8080    // thing preventing the function from being const. This allows
8081    // IRgen to use LLVM intrinsics for such functions.
8082    if (!getLangOpts().MathErrno &&
8083        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8084      if (!FD->getAttr<ConstAttr>())
8085        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8086    }
8087
8088    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8089        !FD->getAttr<ReturnsTwiceAttr>())
8090      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8091    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8092      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8093    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8094      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8095  }
8096
8097  IdentifierInfo *Name = FD->getIdentifier();
8098  if (!Name)
8099    return;
8100  if ((!getLangOpts().CPlusPlus &&
8101       FD->getDeclContext()->isTranslationUnit()) ||
8102      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8103       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8104       LinkageSpecDecl::lang_c)) {
8105    // Okay: this could be a libc/libm/Objective-C function we know
8106    // about.
8107  } else
8108    return;
8109
8110  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8111    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8112    // target-specific builtins, perhaps?
8113    if (!FD->getAttr<FormatAttr>())
8114      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8115                                             "printf", 2,
8116                                             Name->isStr("vasprintf") ? 0 : 3));
8117  }
8118
8119  if (Name->isStr("__CFStringMakeConstantString")) {
8120    // We already have a __builtin___CFStringMakeConstantString,
8121    // but builds that use -fno-constant-cfstrings don't go through that.
8122    if (!FD->getAttr<FormatArgAttr>())
8123      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8124  }
8125}
8126
8127TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8128                                    TypeSourceInfo *TInfo) {
8129  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8130  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8131
8132  if (!TInfo) {
8133    assert(D.isInvalidType() && "no declarator info for valid type");
8134    TInfo = Context.getTrivialTypeSourceInfo(T);
8135  }
8136
8137  // Scope manipulation handled by caller.
8138  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8139                                           D.getLocStart(),
8140                                           D.getIdentifierLoc(),
8141                                           D.getIdentifier(),
8142                                           TInfo);
8143
8144  // Bail out immediately if we have an invalid declaration.
8145  if (D.isInvalidType()) {
8146    NewTD->setInvalidDecl();
8147    return NewTD;
8148  }
8149
8150  if (D.getDeclSpec().isModulePrivateSpecified()) {
8151    if (CurContext->isFunctionOrMethod())
8152      Diag(NewTD->getLocation(), diag::err_module_private_local)
8153        << 2 << NewTD->getDeclName()
8154        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8155        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8156    else
8157      NewTD->setModulePrivate();
8158  }
8159
8160  // C++ [dcl.typedef]p8:
8161  //   If the typedef declaration defines an unnamed class (or
8162  //   enum), the first typedef-name declared by the declaration
8163  //   to be that class type (or enum type) is used to denote the
8164  //   class type (or enum type) for linkage purposes only.
8165  // We need to check whether the type was declared in the declaration.
8166  switch (D.getDeclSpec().getTypeSpecType()) {
8167  case TST_enum:
8168  case TST_struct:
8169  case TST_interface:
8170  case TST_union:
8171  case TST_class: {
8172    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8173
8174    // Do nothing if the tag is not anonymous or already has an
8175    // associated typedef (from an earlier typedef in this decl group).
8176    if (tagFromDeclSpec->getIdentifier()) break;
8177    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8178
8179    // A well-formed anonymous tag must always be a TUK_Definition.
8180    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8181
8182    // The type must match the tag exactly;  no qualifiers allowed.
8183    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8184      break;
8185
8186    // Otherwise, set this is the anon-decl typedef for the tag.
8187    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8188    break;
8189  }
8190
8191  default:
8192    break;
8193  }
8194
8195  return NewTD;
8196}
8197
8198
8199/// \brief Check that this is a valid underlying type for an enum declaration.
8200bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8201  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8202  QualType T = TI->getType();
8203
8204  if (T->isDependentType() || T->isIntegralType(Context))
8205    return false;
8206
8207  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8208  return true;
8209}
8210
8211/// Check whether this is a valid redeclaration of a previous enumeration.
8212/// \return true if the redeclaration was invalid.
8213bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8214                                  QualType EnumUnderlyingTy,
8215                                  const EnumDecl *Prev) {
8216  bool IsFixed = !EnumUnderlyingTy.isNull();
8217
8218  if (IsScoped != Prev->isScoped()) {
8219    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8220      << Prev->isScoped();
8221    Diag(Prev->getLocation(), diag::note_previous_use);
8222    return true;
8223  }
8224
8225  if (IsFixed && Prev->isFixed()) {
8226    if (!EnumUnderlyingTy->isDependentType() &&
8227        !Prev->getIntegerType()->isDependentType() &&
8228        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8229                                        Prev->getIntegerType())) {
8230      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8231        << EnumUnderlyingTy << Prev->getIntegerType();
8232      Diag(Prev->getLocation(), diag::note_previous_use);
8233      return true;
8234    }
8235  } else if (IsFixed != Prev->isFixed()) {
8236    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8237      << Prev->isFixed();
8238    Diag(Prev->getLocation(), diag::note_previous_use);
8239    return true;
8240  }
8241
8242  return false;
8243}
8244
8245/// \brief Get diagnostic %select index for tag kind for
8246/// redeclaration diagnostic message.
8247/// WARNING: Indexes apply to particular diagnostics only!
8248///
8249/// \returns diagnostic %select index.
8250static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8251  switch (Tag) {
8252  case TTK_Struct: return 0;
8253  case TTK_Interface: return 1;
8254  case TTK_Class:  return 2;
8255  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8256  }
8257}
8258
8259/// \brief Determine if tag kind is a class-key compatible with
8260/// class for redeclaration (class, struct, or __interface).
8261///
8262/// \returns true iff the tag kind is compatible.
8263static bool isClassCompatTagKind(TagTypeKind Tag)
8264{
8265  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8266}
8267
8268/// \brief Determine whether a tag with a given kind is acceptable
8269/// as a redeclaration of the given tag declaration.
8270///
8271/// \returns true if the new tag kind is acceptable, false otherwise.
8272bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8273                                        TagTypeKind NewTag, bool isDefinition,
8274                                        SourceLocation NewTagLoc,
8275                                        const IdentifierInfo &Name) {
8276  // C++ [dcl.type.elab]p3:
8277  //   The class-key or enum keyword present in the
8278  //   elaborated-type-specifier shall agree in kind with the
8279  //   declaration to which the name in the elaborated-type-specifier
8280  //   refers. This rule also applies to the form of
8281  //   elaborated-type-specifier that declares a class-name or
8282  //   friend class since it can be construed as referring to the
8283  //   definition of the class. Thus, in any
8284  //   elaborated-type-specifier, the enum keyword shall be used to
8285  //   refer to an enumeration (7.2), the union class-key shall be
8286  //   used to refer to a union (clause 9), and either the class or
8287  //   struct class-key shall be used to refer to a class (clause 9)
8288  //   declared using the class or struct class-key.
8289  TagTypeKind OldTag = Previous->getTagKind();
8290  if (!isDefinition || !isClassCompatTagKind(NewTag))
8291    if (OldTag == NewTag)
8292      return true;
8293
8294  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8295    // Warn about the struct/class tag mismatch.
8296    bool isTemplate = false;
8297    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8298      isTemplate = Record->getDescribedClassTemplate();
8299
8300    if (!ActiveTemplateInstantiations.empty()) {
8301      // In a template instantiation, do not offer fix-its for tag mismatches
8302      // since they usually mess up the template instead of fixing the problem.
8303      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8304        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8305        << getRedeclDiagFromTagKind(OldTag);
8306      return true;
8307    }
8308
8309    if (isDefinition) {
8310      // On definitions, check previous tags and issue a fix-it for each
8311      // one that doesn't match the current tag.
8312      if (Previous->getDefinition()) {
8313        // Don't suggest fix-its for redefinitions.
8314        return true;
8315      }
8316
8317      bool previousMismatch = false;
8318      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8319           E(Previous->redecls_end()); I != E; ++I) {
8320        if (I->getTagKind() != NewTag) {
8321          if (!previousMismatch) {
8322            previousMismatch = true;
8323            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8324              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8325              << getRedeclDiagFromTagKind(I->getTagKind());
8326          }
8327          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8328            << getRedeclDiagFromTagKind(NewTag)
8329            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8330                 TypeWithKeyword::getTagTypeKindName(NewTag));
8331        }
8332      }
8333      return true;
8334    }
8335
8336    // Check for a previous definition.  If current tag and definition
8337    // are same type, do nothing.  If no definition, but disagree with
8338    // with previous tag type, give a warning, but no fix-it.
8339    const TagDecl *Redecl = Previous->getDefinition() ?
8340                            Previous->getDefinition() : Previous;
8341    if (Redecl->getTagKind() == NewTag) {
8342      return true;
8343    }
8344
8345    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8346      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8347      << getRedeclDiagFromTagKind(OldTag);
8348    Diag(Redecl->getLocation(), diag::note_previous_use);
8349
8350    // If there is a previous defintion, suggest a fix-it.
8351    if (Previous->getDefinition()) {
8352        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8353          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8354          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8355               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8356    }
8357
8358    return true;
8359  }
8360  return false;
8361}
8362
8363/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8364/// former case, Name will be non-null.  In the later case, Name will be null.
8365/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8366/// reference/declaration/definition of a tag.
8367Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8368                     SourceLocation KWLoc, CXXScopeSpec &SS,
8369                     IdentifierInfo *Name, SourceLocation NameLoc,
8370                     AttributeList *Attr, AccessSpecifier AS,
8371                     SourceLocation ModulePrivateLoc,
8372                     MultiTemplateParamsArg TemplateParameterLists,
8373                     bool &OwnedDecl, bool &IsDependent,
8374                     SourceLocation ScopedEnumKWLoc,
8375                     bool ScopedEnumUsesClassTag,
8376                     TypeResult UnderlyingType) {
8377  // If this is not a definition, it must have a name.
8378  IdentifierInfo *OrigName = Name;
8379  assert((Name != 0 || TUK == TUK_Definition) &&
8380         "Nameless record must be a definition!");
8381  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8382
8383  OwnedDecl = false;
8384  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8385  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8386
8387  // FIXME: Check explicit specializations more carefully.
8388  bool isExplicitSpecialization = false;
8389  bool Invalid = false;
8390
8391  // We only need to do this matching if we have template parameters
8392  // or a scope specifier, which also conveniently avoids this work
8393  // for non-C++ cases.
8394  if (TemplateParameterLists.size() > 0 ||
8395      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8396    if (TemplateParameterList *TemplateParams
8397          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8398                                                TemplateParameterLists.data(),
8399                                                TemplateParameterLists.size(),
8400                                                    TUK == TUK_Friend,
8401                                                    isExplicitSpecialization,
8402                                                    Invalid)) {
8403      if (TemplateParams->size() > 0) {
8404        // This is a declaration or definition of a class template (which may
8405        // be a member of another template).
8406
8407        if (Invalid)
8408          return 0;
8409
8410        OwnedDecl = false;
8411        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8412                                               SS, Name, NameLoc, Attr,
8413                                               TemplateParams, AS,
8414                                               ModulePrivateLoc,
8415                                               TemplateParameterLists.size()-1,
8416                                               TemplateParameterLists.data());
8417        return Result.get();
8418      } else {
8419        // The "template<>" header is extraneous.
8420        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8421          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8422        isExplicitSpecialization = true;
8423      }
8424    }
8425  }
8426
8427  // Figure out the underlying type if this a enum declaration. We need to do
8428  // this early, because it's needed to detect if this is an incompatible
8429  // redeclaration.
8430  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8431
8432  if (Kind == TTK_Enum) {
8433    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8434      // No underlying type explicitly specified, or we failed to parse the
8435      // type, default to int.
8436      EnumUnderlying = Context.IntTy.getTypePtr();
8437    else if (UnderlyingType.get()) {
8438      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8439      // integral type; any cv-qualification is ignored.
8440      TypeSourceInfo *TI = 0;
8441      GetTypeFromParser(UnderlyingType.get(), &TI);
8442      EnumUnderlying = TI;
8443
8444      if (CheckEnumUnderlyingType(TI))
8445        // Recover by falling back to int.
8446        EnumUnderlying = Context.IntTy.getTypePtr();
8447
8448      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8449                                          UPPC_FixedUnderlyingType))
8450        EnumUnderlying = Context.IntTy.getTypePtr();
8451
8452    } else if (getLangOpts().MicrosoftMode)
8453      // Microsoft enums are always of int type.
8454      EnumUnderlying = Context.IntTy.getTypePtr();
8455  }
8456
8457  DeclContext *SearchDC = CurContext;
8458  DeclContext *DC = CurContext;
8459  bool isStdBadAlloc = false;
8460
8461  RedeclarationKind Redecl = ForRedeclaration;
8462  if (TUK == TUK_Friend || TUK == TUK_Reference)
8463    Redecl = NotForRedeclaration;
8464
8465  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8466
8467  if (Name && SS.isNotEmpty()) {
8468    // We have a nested-name tag ('struct foo::bar').
8469
8470    // Check for invalid 'foo::'.
8471    if (SS.isInvalid()) {
8472      Name = 0;
8473      goto CreateNewDecl;
8474    }
8475
8476    // If this is a friend or a reference to a class in a dependent
8477    // context, don't try to make a decl for it.
8478    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8479      DC = computeDeclContext(SS, false);
8480      if (!DC) {
8481        IsDependent = true;
8482        return 0;
8483      }
8484    } else {
8485      DC = computeDeclContext(SS, true);
8486      if (!DC) {
8487        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8488          << SS.getRange();
8489        return 0;
8490      }
8491    }
8492
8493    if (RequireCompleteDeclContext(SS, DC))
8494      return 0;
8495
8496    SearchDC = DC;
8497    // Look-up name inside 'foo::'.
8498    LookupQualifiedName(Previous, DC);
8499
8500    if (Previous.isAmbiguous())
8501      return 0;
8502
8503    if (Previous.empty()) {
8504      // Name lookup did not find anything. However, if the
8505      // nested-name-specifier refers to the current instantiation,
8506      // and that current instantiation has any dependent base
8507      // classes, we might find something at instantiation time: treat
8508      // this as a dependent elaborated-type-specifier.
8509      // But this only makes any sense for reference-like lookups.
8510      if (Previous.wasNotFoundInCurrentInstantiation() &&
8511          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8512        IsDependent = true;
8513        return 0;
8514      }
8515
8516      // A tag 'foo::bar' must already exist.
8517      Diag(NameLoc, diag::err_not_tag_in_scope)
8518        << Kind << Name << DC << SS.getRange();
8519      Name = 0;
8520      Invalid = true;
8521      goto CreateNewDecl;
8522    }
8523  } else if (Name) {
8524    // If this is a named struct, check to see if there was a previous forward
8525    // declaration or definition.
8526    // FIXME: We're looking into outer scopes here, even when we
8527    // shouldn't be. Doing so can result in ambiguities that we
8528    // shouldn't be diagnosing.
8529    LookupName(Previous, S);
8530
8531    if (Previous.isAmbiguous() &&
8532        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8533      LookupResult::Filter F = Previous.makeFilter();
8534      while (F.hasNext()) {
8535        NamedDecl *ND = F.next();
8536        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8537          F.erase();
8538      }
8539      F.done();
8540    }
8541
8542    // Note:  there used to be some attempt at recovery here.
8543    if (Previous.isAmbiguous())
8544      return 0;
8545
8546    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8547      // FIXME: This makes sure that we ignore the contexts associated
8548      // with C structs, unions, and enums when looking for a matching
8549      // tag declaration or definition. See the similar lookup tweak
8550      // in Sema::LookupName; is there a better way to deal with this?
8551      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8552        SearchDC = SearchDC->getParent();
8553    }
8554  } else if (S->isFunctionPrototypeScope()) {
8555    // If this is an enum declaration in function prototype scope, set its
8556    // initial context to the translation unit.
8557    // FIXME: [citation needed]
8558    SearchDC = Context.getTranslationUnitDecl();
8559  }
8560
8561  if (Previous.isSingleResult() &&
8562      Previous.getFoundDecl()->isTemplateParameter()) {
8563    // Maybe we will complain about the shadowed template parameter.
8564    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8565    // Just pretend that we didn't see the previous declaration.
8566    Previous.clear();
8567  }
8568
8569  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8570      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8571    // This is a declaration of or a reference to "std::bad_alloc".
8572    isStdBadAlloc = true;
8573
8574    if (Previous.empty() && StdBadAlloc) {
8575      // std::bad_alloc has been implicitly declared (but made invisible to
8576      // name lookup). Fill in this implicit declaration as the previous
8577      // declaration, so that the declarations get chained appropriately.
8578      Previous.addDecl(getStdBadAlloc());
8579    }
8580  }
8581
8582  // If we didn't find a previous declaration, and this is a reference
8583  // (or friend reference), move to the correct scope.  In C++, we
8584  // also need to do a redeclaration lookup there, just in case
8585  // there's a shadow friend decl.
8586  if (Name && Previous.empty() &&
8587      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8588    if (Invalid) goto CreateNewDecl;
8589    assert(SS.isEmpty());
8590
8591    if (TUK == TUK_Reference) {
8592      // C++ [basic.scope.pdecl]p5:
8593      //   -- for an elaborated-type-specifier of the form
8594      //
8595      //          class-key identifier
8596      //
8597      //      if the elaborated-type-specifier is used in the
8598      //      decl-specifier-seq or parameter-declaration-clause of a
8599      //      function defined in namespace scope, the identifier is
8600      //      declared as a class-name in the namespace that contains
8601      //      the declaration; otherwise, except as a friend
8602      //      declaration, the identifier is declared in the smallest
8603      //      non-class, non-function-prototype scope that contains the
8604      //      declaration.
8605      //
8606      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8607      // C structs and unions.
8608      //
8609      // It is an error in C++ to declare (rather than define) an enum
8610      // type, including via an elaborated type specifier.  We'll
8611      // diagnose that later; for now, declare the enum in the same
8612      // scope as we would have picked for any other tag type.
8613      //
8614      // GNU C also supports this behavior as part of its incomplete
8615      // enum types extension, while GNU C++ does not.
8616      //
8617      // Find the context where we'll be declaring the tag.
8618      // FIXME: We would like to maintain the current DeclContext as the
8619      // lexical context,
8620      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8621        SearchDC = SearchDC->getParent();
8622
8623      // Find the scope where we'll be declaring the tag.
8624      while (S->isClassScope() ||
8625             (getLangOpts().CPlusPlus &&
8626              S->isFunctionPrototypeScope()) ||
8627             ((S->getFlags() & Scope::DeclScope) == 0) ||
8628             (S->getEntity() &&
8629              ((DeclContext *)S->getEntity())->isTransparentContext()))
8630        S = S->getParent();
8631    } else {
8632      assert(TUK == TUK_Friend);
8633      // C++ [namespace.memdef]p3:
8634      //   If a friend declaration in a non-local class first declares a
8635      //   class or function, the friend class or function is a member of
8636      //   the innermost enclosing namespace.
8637      SearchDC = SearchDC->getEnclosingNamespaceContext();
8638    }
8639
8640    // In C++, we need to do a redeclaration lookup to properly
8641    // diagnose some problems.
8642    if (getLangOpts().CPlusPlus) {
8643      Previous.setRedeclarationKind(ForRedeclaration);
8644      LookupQualifiedName(Previous, SearchDC);
8645    }
8646  }
8647
8648  if (!Previous.empty()) {
8649    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8650
8651    // It's okay to have a tag decl in the same scope as a typedef
8652    // which hides a tag decl in the same scope.  Finding this
8653    // insanity with a redeclaration lookup can only actually happen
8654    // in C++.
8655    //
8656    // This is also okay for elaborated-type-specifiers, which is
8657    // technically forbidden by the current standard but which is
8658    // okay according to the likely resolution of an open issue;
8659    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8660    if (getLangOpts().CPlusPlus) {
8661      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8662        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8663          TagDecl *Tag = TT->getDecl();
8664          if (Tag->getDeclName() == Name &&
8665              Tag->getDeclContext()->getRedeclContext()
8666                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8667            PrevDecl = Tag;
8668            Previous.clear();
8669            Previous.addDecl(Tag);
8670            Previous.resolveKind();
8671          }
8672        }
8673      }
8674    }
8675
8676    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8677      // If this is a use of a previous tag, or if the tag is already declared
8678      // in the same scope (so that the definition/declaration completes or
8679      // rementions the tag), reuse the decl.
8680      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8681          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8682        // Make sure that this wasn't declared as an enum and now used as a
8683        // struct or something similar.
8684        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8685                                          TUK == TUK_Definition, KWLoc,
8686                                          *Name)) {
8687          bool SafeToContinue
8688            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8689               Kind != TTK_Enum);
8690          if (SafeToContinue)
8691            Diag(KWLoc, diag::err_use_with_wrong_tag)
8692              << Name
8693              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8694                                              PrevTagDecl->getKindName());
8695          else
8696            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8697          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8698
8699          if (SafeToContinue)
8700            Kind = PrevTagDecl->getTagKind();
8701          else {
8702            // Recover by making this an anonymous redefinition.
8703            Name = 0;
8704            Previous.clear();
8705            Invalid = true;
8706          }
8707        }
8708
8709        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8710          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8711
8712          // If this is an elaborated-type-specifier for a scoped enumeration,
8713          // the 'class' keyword is not necessary and not permitted.
8714          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8715            if (ScopedEnum)
8716              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8717                << PrevEnum->isScoped()
8718                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8719            return PrevTagDecl;
8720          }
8721
8722          QualType EnumUnderlyingTy;
8723          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8724            EnumUnderlyingTy = TI->getType();
8725          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8726            EnumUnderlyingTy = QualType(T, 0);
8727
8728          // All conflicts with previous declarations are recovered by
8729          // returning the previous declaration, unless this is a definition,
8730          // in which case we want the caller to bail out.
8731          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8732                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8733            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8734        }
8735
8736        if (!Invalid) {
8737          // If this is a use, just return the declaration we found.
8738
8739          // FIXME: In the future, return a variant or some other clue
8740          // for the consumer of this Decl to know it doesn't own it.
8741          // For our current ASTs this shouldn't be a problem, but will
8742          // need to be changed with DeclGroups.
8743          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8744               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8745            return PrevTagDecl;
8746
8747          // Diagnose attempts to redefine a tag.
8748          if (TUK == TUK_Definition) {
8749            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8750              // If we're defining a specialization and the previous definition
8751              // is from an implicit instantiation, don't emit an error
8752              // here; we'll catch this in the general case below.
8753              bool IsExplicitSpecializationAfterInstantiation = false;
8754              if (isExplicitSpecialization) {
8755                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8756                  IsExplicitSpecializationAfterInstantiation =
8757                    RD->getTemplateSpecializationKind() !=
8758                    TSK_ExplicitSpecialization;
8759                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8760                  IsExplicitSpecializationAfterInstantiation =
8761                    ED->getTemplateSpecializationKind() !=
8762                    TSK_ExplicitSpecialization;
8763              }
8764
8765              if (!IsExplicitSpecializationAfterInstantiation) {
8766                // A redeclaration in function prototype scope in C isn't
8767                // visible elsewhere, so merely issue a warning.
8768                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8769                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8770                else
8771                  Diag(NameLoc, diag::err_redefinition) << Name;
8772                Diag(Def->getLocation(), diag::note_previous_definition);
8773                // If this is a redefinition, recover by making this
8774                // struct be anonymous, which will make any later
8775                // references get the previous definition.
8776                Name = 0;
8777                Previous.clear();
8778                Invalid = true;
8779              }
8780            } else {
8781              // If the type is currently being defined, complain
8782              // about a nested redefinition.
8783              const TagType *Tag
8784                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8785              if (Tag->isBeingDefined()) {
8786                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8787                Diag(PrevTagDecl->getLocation(),
8788                     diag::note_previous_definition);
8789                Name = 0;
8790                Previous.clear();
8791                Invalid = true;
8792              }
8793            }
8794
8795            // Okay, this is definition of a previously declared or referenced
8796            // tag PrevDecl. We're going to create a new Decl for it.
8797          }
8798        }
8799        // If we get here we have (another) forward declaration or we
8800        // have a definition.  Just create a new decl.
8801
8802      } else {
8803        // If we get here, this is a definition of a new tag type in a nested
8804        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8805        // new decl/type.  We set PrevDecl to NULL so that the entities
8806        // have distinct types.
8807        Previous.clear();
8808      }
8809      // If we get here, we're going to create a new Decl. If PrevDecl
8810      // is non-NULL, it's a definition of the tag declared by
8811      // PrevDecl. If it's NULL, we have a new definition.
8812
8813
8814    // Otherwise, PrevDecl is not a tag, but was found with tag
8815    // lookup.  This is only actually possible in C++, where a few
8816    // things like templates still live in the tag namespace.
8817    } else {
8818      // Use a better diagnostic if an elaborated-type-specifier
8819      // found the wrong kind of type on the first
8820      // (non-redeclaration) lookup.
8821      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8822          !Previous.isForRedeclaration()) {
8823        unsigned Kind = 0;
8824        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8825        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8826        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8827        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8828        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8829        Invalid = true;
8830
8831      // Otherwise, only diagnose if the declaration is in scope.
8832      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8833                                isExplicitSpecialization)) {
8834        // do nothing
8835
8836      // Diagnose implicit declarations introduced by elaborated types.
8837      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8838        unsigned Kind = 0;
8839        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8840        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8841        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8842        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8843        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8844        Invalid = true;
8845
8846      // Otherwise it's a declaration.  Call out a particularly common
8847      // case here.
8848      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8849        unsigned Kind = 0;
8850        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8851        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8852          << Name << Kind << TND->getUnderlyingType();
8853        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8854        Invalid = true;
8855
8856      // Otherwise, diagnose.
8857      } else {
8858        // The tag name clashes with something else in the target scope,
8859        // issue an error and recover by making this tag be anonymous.
8860        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8861        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8862        Name = 0;
8863        Invalid = true;
8864      }
8865
8866      // The existing declaration isn't relevant to us; we're in a
8867      // new scope, so clear out the previous declaration.
8868      Previous.clear();
8869    }
8870  }
8871
8872CreateNewDecl:
8873
8874  TagDecl *PrevDecl = 0;
8875  if (Previous.isSingleResult())
8876    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8877
8878  // If there is an identifier, use the location of the identifier as the
8879  // location of the decl, otherwise use the location of the struct/union
8880  // keyword.
8881  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8882
8883  // Otherwise, create a new declaration. If there is a previous
8884  // declaration of the same entity, the two will be linked via
8885  // PrevDecl.
8886  TagDecl *New;
8887
8888  bool IsForwardReference = false;
8889  if (Kind == TTK_Enum) {
8890    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8891    // enum X { A, B, C } D;    D should chain to X.
8892    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8893                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8894                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8895    // If this is an undefined enum, warn.
8896    if (TUK != TUK_Definition && !Invalid) {
8897      TagDecl *Def;
8898      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8899        // C++0x: 7.2p2: opaque-enum-declaration.
8900        // Conflicts are diagnosed above. Do nothing.
8901      }
8902      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8903        Diag(Loc, diag::ext_forward_ref_enum_def)
8904          << New;
8905        Diag(Def->getLocation(), diag::note_previous_definition);
8906      } else {
8907        unsigned DiagID = diag::ext_forward_ref_enum;
8908        if (getLangOpts().MicrosoftMode)
8909          DiagID = diag::ext_ms_forward_ref_enum;
8910        else if (getLangOpts().CPlusPlus)
8911          DiagID = diag::err_forward_ref_enum;
8912        Diag(Loc, DiagID);
8913
8914        // If this is a forward-declared reference to an enumeration, make a
8915        // note of it; we won't actually be introducing the declaration into
8916        // the declaration context.
8917        if (TUK == TUK_Reference)
8918          IsForwardReference = true;
8919      }
8920    }
8921
8922    if (EnumUnderlying) {
8923      EnumDecl *ED = cast<EnumDecl>(New);
8924      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8925        ED->setIntegerTypeSourceInfo(TI);
8926      else
8927        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8928      ED->setPromotionType(ED->getIntegerType());
8929    }
8930
8931  } else {
8932    // struct/union/class
8933
8934    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8935    // struct X { int A; } D;    D should chain to X.
8936    if (getLangOpts().CPlusPlus) {
8937      // FIXME: Look for a way to use RecordDecl for simple structs.
8938      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8939                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8940
8941      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8942        StdBadAlloc = cast<CXXRecordDecl>(New);
8943    } else
8944      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8945                               cast_or_null<RecordDecl>(PrevDecl));
8946  }
8947
8948  // Maybe add qualifier info.
8949  if (SS.isNotEmpty()) {
8950    if (SS.isSet()) {
8951      // If this is either a declaration or a definition, check the
8952      // nested-name-specifier against the current context. We don't do this
8953      // for explicit specializations, because they have similar checking
8954      // (with more specific diagnostics) in the call to
8955      // CheckMemberSpecialization, below.
8956      if (!isExplicitSpecialization &&
8957          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8958          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8959        Invalid = true;
8960
8961      New->setQualifierInfo(SS.getWithLocInContext(Context));
8962      if (TemplateParameterLists.size() > 0) {
8963        New->setTemplateParameterListsInfo(Context,
8964                                           TemplateParameterLists.size(),
8965                                           TemplateParameterLists.data());
8966      }
8967    }
8968    else
8969      Invalid = true;
8970  }
8971
8972  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8973    // Add alignment attributes if necessary; these attributes are checked when
8974    // the ASTContext lays out the structure.
8975    //
8976    // It is important for implementing the correct semantics that this
8977    // happen here (in act on tag decl). The #pragma pack stack is
8978    // maintained as a result of parser callbacks which can occur at
8979    // many points during the parsing of a struct declaration (because
8980    // the #pragma tokens are effectively skipped over during the
8981    // parsing of the struct).
8982    if (TUK == TUK_Definition) {
8983      AddAlignmentAttributesForRecord(RD);
8984      AddMsStructLayoutForRecord(RD);
8985    }
8986  }
8987
8988  if (ModulePrivateLoc.isValid()) {
8989    if (isExplicitSpecialization)
8990      Diag(New->getLocation(), diag::err_module_private_specialization)
8991        << 2
8992        << FixItHint::CreateRemoval(ModulePrivateLoc);
8993    // __module_private__ does not apply to local classes. However, we only
8994    // diagnose this as an error when the declaration specifiers are
8995    // freestanding. Here, we just ignore the __module_private__.
8996    else if (!SearchDC->isFunctionOrMethod())
8997      New->setModulePrivate();
8998  }
8999
9000  // If this is a specialization of a member class (of a class template),
9001  // check the specialization.
9002  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9003    Invalid = true;
9004
9005  if (Invalid)
9006    New->setInvalidDecl();
9007
9008  if (Attr)
9009    ProcessDeclAttributeList(S, New, Attr);
9010
9011  // If we're declaring or defining a tag in function prototype scope
9012  // in C, note that this type can only be used within the function.
9013  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9014    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9015
9016  // Set the lexical context. If the tag has a C++ scope specifier, the
9017  // lexical context will be different from the semantic context.
9018  New->setLexicalDeclContext(CurContext);
9019
9020  // Mark this as a friend decl if applicable.
9021  // In Microsoft mode, a friend declaration also acts as a forward
9022  // declaration so we always pass true to setObjectOfFriendDecl to make
9023  // the tag name visible.
9024  if (TUK == TUK_Friend)
9025    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9026                               getLangOpts().MicrosoftExt);
9027
9028  // Set the access specifier.
9029  if (!Invalid && SearchDC->isRecord())
9030    SetMemberAccessSpecifier(New, PrevDecl, AS);
9031
9032  if (TUK == TUK_Definition)
9033    New->startDefinition();
9034
9035  // If this has an identifier, add it to the scope stack.
9036  if (TUK == TUK_Friend) {
9037    // We might be replacing an existing declaration in the lookup tables;
9038    // if so, borrow its access specifier.
9039    if (PrevDecl)
9040      New->setAccess(PrevDecl->getAccess());
9041
9042    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9043    DC->makeDeclVisibleInContext(New);
9044    if (Name) // can be null along some error paths
9045      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9046        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9047  } else if (Name) {
9048    S = getNonFieldDeclScope(S);
9049    PushOnScopeChains(New, S, !IsForwardReference);
9050    if (IsForwardReference)
9051      SearchDC->makeDeclVisibleInContext(New);
9052
9053  } else {
9054    CurContext->addDecl(New);
9055  }
9056
9057  // If this is the C FILE type, notify the AST context.
9058  if (IdentifierInfo *II = New->getIdentifier())
9059    if (!New->isInvalidDecl() &&
9060        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9061        II->isStr("FILE"))
9062      Context.setFILEDecl(New);
9063
9064  // If we were in function prototype scope (and not in C++ mode), add this
9065  // tag to the list of decls to inject into the function definition scope.
9066  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9067      InFunctionDeclarator && Name)
9068    DeclsInPrototypeScope.push_back(New);
9069
9070  if (PrevDecl)
9071    mergeDeclAttributes(New, PrevDecl);
9072
9073  // If there's a #pragma GCC visibility in scope, set the visibility of this
9074  // record.
9075  AddPushedVisibilityAttribute(New);
9076
9077  OwnedDecl = true;
9078  return New;
9079}
9080
9081void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9082  AdjustDeclIfTemplate(TagD);
9083  TagDecl *Tag = cast<TagDecl>(TagD);
9084
9085  // Enter the tag context.
9086  PushDeclContext(S, Tag);
9087
9088  ActOnDocumentableDecl(TagD);
9089
9090  // If there's a #pragma GCC visibility in scope, set the visibility of this
9091  // record.
9092  AddPushedVisibilityAttribute(Tag);
9093}
9094
9095Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9096  assert(isa<ObjCContainerDecl>(IDecl) &&
9097         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9098  DeclContext *OCD = cast<DeclContext>(IDecl);
9099  assert(getContainingDC(OCD) == CurContext &&
9100      "The next DeclContext should be lexically contained in the current one.");
9101  CurContext = OCD;
9102  return IDecl;
9103}
9104
9105void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9106                                           SourceLocation FinalLoc,
9107                                           SourceLocation LBraceLoc) {
9108  AdjustDeclIfTemplate(TagD);
9109  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9110
9111  FieldCollector->StartClass();
9112
9113  if (!Record->getIdentifier())
9114    return;
9115
9116  if (FinalLoc.isValid())
9117    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9118
9119  // C++ [class]p2:
9120  //   [...] The class-name is also inserted into the scope of the
9121  //   class itself; this is known as the injected-class-name. For
9122  //   purposes of access checking, the injected-class-name is treated
9123  //   as if it were a public member name.
9124  CXXRecordDecl *InjectedClassName
9125    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9126                            Record->getLocStart(), Record->getLocation(),
9127                            Record->getIdentifier(),
9128                            /*PrevDecl=*/0,
9129                            /*DelayTypeCreation=*/true);
9130  Context.getTypeDeclType(InjectedClassName, Record);
9131  InjectedClassName->setImplicit();
9132  InjectedClassName->setAccess(AS_public);
9133  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9134      InjectedClassName->setDescribedClassTemplate(Template);
9135  PushOnScopeChains(InjectedClassName, S);
9136  assert(InjectedClassName->isInjectedClassName() &&
9137         "Broken injected-class-name");
9138}
9139
9140void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9141                                    SourceLocation RBraceLoc) {
9142  AdjustDeclIfTemplate(TagD);
9143  TagDecl *Tag = cast<TagDecl>(TagD);
9144  Tag->setRBraceLoc(RBraceLoc);
9145
9146  // Make sure we "complete" the definition even it is invalid.
9147  if (Tag->isBeingDefined()) {
9148    assert(Tag->isInvalidDecl() && "We should already have completed it");
9149    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9150      RD->completeDefinition();
9151  }
9152
9153  if (isa<CXXRecordDecl>(Tag))
9154    FieldCollector->FinishClass();
9155
9156  // Exit this scope of this tag's definition.
9157  PopDeclContext();
9158
9159  // Notify the consumer that we've defined a tag.
9160  Consumer.HandleTagDeclDefinition(Tag);
9161}
9162
9163void Sema::ActOnObjCContainerFinishDefinition() {
9164  // Exit this scope of this interface definition.
9165  PopDeclContext();
9166}
9167
9168void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9169  assert(DC == CurContext && "Mismatch of container contexts");
9170  OriginalLexicalContext = DC;
9171  ActOnObjCContainerFinishDefinition();
9172}
9173
9174void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9175  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9176  OriginalLexicalContext = 0;
9177}
9178
9179void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9180  AdjustDeclIfTemplate(TagD);
9181  TagDecl *Tag = cast<TagDecl>(TagD);
9182  Tag->setInvalidDecl();
9183
9184  // Make sure we "complete" the definition even it is invalid.
9185  if (Tag->isBeingDefined()) {
9186    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9187      RD->completeDefinition();
9188  }
9189
9190  // We're undoing ActOnTagStartDefinition here, not
9191  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9192  // the FieldCollector.
9193
9194  PopDeclContext();
9195}
9196
9197// Note that FieldName may be null for anonymous bitfields.
9198ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9199                                IdentifierInfo *FieldName,
9200                                QualType FieldTy, Expr *BitWidth,
9201                                bool *ZeroWidth) {
9202  // Default to true; that shouldn't confuse checks for emptiness
9203  if (ZeroWidth)
9204    *ZeroWidth = true;
9205
9206  // C99 6.7.2.1p4 - verify the field type.
9207  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9208  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9209    // Handle incomplete types with specific error.
9210    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9211      return ExprError();
9212    if (FieldName)
9213      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9214        << FieldName << FieldTy << BitWidth->getSourceRange();
9215    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9216      << FieldTy << BitWidth->getSourceRange();
9217  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9218                                             UPPC_BitFieldWidth))
9219    return ExprError();
9220
9221  // If the bit-width is type- or value-dependent, don't try to check
9222  // it now.
9223  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9224    return Owned(BitWidth);
9225
9226  llvm::APSInt Value;
9227  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9228  if (ICE.isInvalid())
9229    return ICE;
9230  BitWidth = ICE.take();
9231
9232  if (Value != 0 && ZeroWidth)
9233    *ZeroWidth = false;
9234
9235  // Zero-width bitfield is ok for anonymous field.
9236  if (Value == 0 && FieldName)
9237    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9238
9239  if (Value.isSigned() && Value.isNegative()) {
9240    if (FieldName)
9241      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9242               << FieldName << Value.toString(10);
9243    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9244      << Value.toString(10);
9245  }
9246
9247  if (!FieldTy->isDependentType()) {
9248    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9249    if (Value.getZExtValue() > TypeSize) {
9250      if (!getLangOpts().CPlusPlus) {
9251        if (FieldName)
9252          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9253            << FieldName << (unsigned)Value.getZExtValue()
9254            << (unsigned)TypeSize;
9255
9256        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9257          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9258      }
9259
9260      if (FieldName)
9261        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9262          << FieldName << (unsigned)Value.getZExtValue()
9263          << (unsigned)TypeSize;
9264      else
9265        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9266          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9267    }
9268  }
9269
9270  return Owned(BitWidth);
9271}
9272
9273/// ActOnField - Each field of a C struct/union is passed into this in order
9274/// to create a FieldDecl object for it.
9275Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9276                       Declarator &D, Expr *BitfieldWidth) {
9277  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9278                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9279                               /*InitStyle=*/ICIS_NoInit, AS_public);
9280  return Res;
9281}
9282
9283/// HandleField - Analyze a field of a C struct or a C++ data member.
9284///
9285FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9286                             SourceLocation DeclStart,
9287                             Declarator &D, Expr *BitWidth,
9288                             InClassInitStyle InitStyle,
9289                             AccessSpecifier AS) {
9290  IdentifierInfo *II = D.getIdentifier();
9291  SourceLocation Loc = DeclStart;
9292  if (II) Loc = D.getIdentifierLoc();
9293
9294  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9295  QualType T = TInfo->getType();
9296  if (getLangOpts().CPlusPlus) {
9297    CheckExtraCXXDefaultArguments(D);
9298
9299    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9300                                        UPPC_DataMemberType)) {
9301      D.setInvalidType();
9302      T = Context.IntTy;
9303      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9304    }
9305  }
9306
9307  DiagnoseFunctionSpecifiers(D);
9308
9309  if (D.getDeclSpec().isThreadSpecified())
9310    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9311  if (D.getDeclSpec().isConstexprSpecified())
9312    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9313      << 2;
9314
9315  // Check to see if this name was declared as a member previously
9316  NamedDecl *PrevDecl = 0;
9317  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9318  LookupName(Previous, S);
9319  switch (Previous.getResultKind()) {
9320    case LookupResult::Found:
9321    case LookupResult::FoundUnresolvedValue:
9322      PrevDecl = Previous.getAsSingle<NamedDecl>();
9323      break;
9324
9325    case LookupResult::FoundOverloaded:
9326      PrevDecl = Previous.getRepresentativeDecl();
9327      break;
9328
9329    case LookupResult::NotFound:
9330    case LookupResult::NotFoundInCurrentInstantiation:
9331    case LookupResult::Ambiguous:
9332      break;
9333  }
9334  Previous.suppressDiagnostics();
9335
9336  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9337    // Maybe we will complain about the shadowed template parameter.
9338    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9339    // Just pretend that we didn't see the previous declaration.
9340    PrevDecl = 0;
9341  }
9342
9343  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9344    PrevDecl = 0;
9345
9346  bool Mutable
9347    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9348  SourceLocation TSSL = D.getLocStart();
9349  FieldDecl *NewFD
9350    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9351                     TSSL, AS, PrevDecl, &D);
9352
9353  if (NewFD->isInvalidDecl())
9354    Record->setInvalidDecl();
9355
9356  if (D.getDeclSpec().isModulePrivateSpecified())
9357    NewFD->setModulePrivate();
9358
9359  if (NewFD->isInvalidDecl() && PrevDecl) {
9360    // Don't introduce NewFD into scope; there's already something
9361    // with the same name in the same scope.
9362  } else if (II) {
9363    PushOnScopeChains(NewFD, S);
9364  } else
9365    Record->addDecl(NewFD);
9366
9367  return NewFD;
9368}
9369
9370/// \brief Build a new FieldDecl and check its well-formedness.
9371///
9372/// This routine builds a new FieldDecl given the fields name, type,
9373/// record, etc. \p PrevDecl should refer to any previous declaration
9374/// with the same name and in the same scope as the field to be
9375/// created.
9376///
9377/// \returns a new FieldDecl.
9378///
9379/// \todo The Declarator argument is a hack. It will be removed once
9380FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9381                                TypeSourceInfo *TInfo,
9382                                RecordDecl *Record, SourceLocation Loc,
9383                                bool Mutable, Expr *BitWidth,
9384                                InClassInitStyle InitStyle,
9385                                SourceLocation TSSL,
9386                                AccessSpecifier AS, NamedDecl *PrevDecl,
9387                                Declarator *D) {
9388  IdentifierInfo *II = Name.getAsIdentifierInfo();
9389  bool InvalidDecl = false;
9390  if (D) InvalidDecl = D->isInvalidType();
9391
9392  // If we receive a broken type, recover by assuming 'int' and
9393  // marking this declaration as invalid.
9394  if (T.isNull()) {
9395    InvalidDecl = true;
9396    T = Context.IntTy;
9397  }
9398
9399  QualType EltTy = Context.getBaseElementType(T);
9400  if (!EltTy->isDependentType()) {
9401    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9402      // Fields of incomplete type force their record to be invalid.
9403      Record->setInvalidDecl();
9404      InvalidDecl = true;
9405    } else {
9406      NamedDecl *Def;
9407      EltTy->isIncompleteType(&Def);
9408      if (Def && Def->isInvalidDecl()) {
9409        Record->setInvalidDecl();
9410        InvalidDecl = true;
9411      }
9412    }
9413  }
9414
9415  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9416  // than a variably modified type.
9417  if (!InvalidDecl && T->isVariablyModifiedType()) {
9418    bool SizeIsNegative;
9419    llvm::APSInt Oversized;
9420    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9421                                                           SizeIsNegative,
9422                                                           Oversized);
9423    if (!FixedTy.isNull()) {
9424      Diag(Loc, diag::warn_illegal_constant_array_size);
9425      T = FixedTy;
9426    } else {
9427      if (SizeIsNegative)
9428        Diag(Loc, diag::err_typecheck_negative_array_size);
9429      else if (Oversized.getBoolValue())
9430        Diag(Loc, diag::err_array_too_large)
9431          << Oversized.toString(10);
9432      else
9433        Diag(Loc, diag::err_typecheck_field_variable_size);
9434      InvalidDecl = true;
9435    }
9436  }
9437
9438  // Fields can not have abstract class types
9439  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9440                                             diag::err_abstract_type_in_decl,
9441                                             AbstractFieldType))
9442    InvalidDecl = true;
9443
9444  bool ZeroWidth = false;
9445  // If this is declared as a bit-field, check the bit-field.
9446  if (!InvalidDecl && BitWidth) {
9447    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9448    if (!BitWidth) {
9449      InvalidDecl = true;
9450      BitWidth = 0;
9451      ZeroWidth = false;
9452    }
9453  }
9454
9455  // Check that 'mutable' is consistent with the type of the declaration.
9456  if (!InvalidDecl && Mutable) {
9457    unsigned DiagID = 0;
9458    if (T->isReferenceType())
9459      DiagID = diag::err_mutable_reference;
9460    else if (T.isConstQualified())
9461      DiagID = diag::err_mutable_const;
9462
9463    if (DiagID) {
9464      SourceLocation ErrLoc = Loc;
9465      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9466        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9467      Diag(ErrLoc, DiagID);
9468      Mutable = false;
9469      InvalidDecl = true;
9470    }
9471  }
9472
9473  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9474                                       BitWidth, Mutable, InitStyle);
9475  if (InvalidDecl)
9476    NewFD->setInvalidDecl();
9477
9478  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9479    Diag(Loc, diag::err_duplicate_member) << II;
9480    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9481    NewFD->setInvalidDecl();
9482  }
9483
9484  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9485    if (Record->isUnion()) {
9486      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9487        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9488        if (RDecl->getDefinition()) {
9489          // C++ [class.union]p1: An object of a class with a non-trivial
9490          // constructor, a non-trivial copy constructor, a non-trivial
9491          // destructor, or a non-trivial copy assignment operator
9492          // cannot be a member of a union, nor can an array of such
9493          // objects.
9494          if (CheckNontrivialField(NewFD))
9495            NewFD->setInvalidDecl();
9496        }
9497      }
9498
9499      // C++ [class.union]p1: If a union contains a member of reference type,
9500      // the program is ill-formed.
9501      if (EltTy->isReferenceType()) {
9502        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9503          << NewFD->getDeclName() << EltTy;
9504        NewFD->setInvalidDecl();
9505      }
9506    }
9507  }
9508
9509  // FIXME: We need to pass in the attributes given an AST
9510  // representation, not a parser representation.
9511  if (D)
9512    // FIXME: What to pass instead of TUScope?
9513    ProcessDeclAttributes(TUScope, NewFD, *D);
9514
9515  // In auto-retain/release, infer strong retension for fields of
9516  // retainable type.
9517  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9518    NewFD->setInvalidDecl();
9519
9520  if (T.isObjCGCWeak())
9521    Diag(Loc, diag::warn_attribute_weak_on_field);
9522
9523  NewFD->setAccess(AS);
9524  return NewFD;
9525}
9526
9527bool Sema::CheckNontrivialField(FieldDecl *FD) {
9528  assert(FD);
9529  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9530
9531  if (FD->isInvalidDecl())
9532    return true;
9533
9534  QualType EltTy = Context.getBaseElementType(FD->getType());
9535  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9536    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9537    if (RDecl->getDefinition()) {
9538      // We check for copy constructors before constructors
9539      // because otherwise we'll never get complaints about
9540      // copy constructors.
9541
9542      CXXSpecialMember member = CXXInvalid;
9543      if (!RDecl->hasTrivialCopyConstructor())
9544        member = CXXCopyConstructor;
9545      else if (!RDecl->hasTrivialDefaultConstructor())
9546        member = CXXDefaultConstructor;
9547      else if (!RDecl->hasTrivialCopyAssignment())
9548        member = CXXCopyAssignment;
9549      else if (!RDecl->hasTrivialDestructor())
9550        member = CXXDestructor;
9551
9552      if (member != CXXInvalid) {
9553        if (!getLangOpts().CPlusPlus0x &&
9554            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9555          // Objective-C++ ARC: it is an error to have a non-trivial field of
9556          // a union. However, system headers in Objective-C programs
9557          // occasionally have Objective-C lifetime objects within unions,
9558          // and rather than cause the program to fail, we make those
9559          // members unavailable.
9560          SourceLocation Loc = FD->getLocation();
9561          if (getSourceManager().isInSystemHeader(Loc)) {
9562            if (!FD->hasAttr<UnavailableAttr>())
9563              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9564                                  "this system field has retaining ownership"));
9565            return false;
9566          }
9567        }
9568
9569        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9570               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9571               diag::err_illegal_union_or_anon_struct_member)
9572          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9573        DiagnoseNontrivial(RT, member);
9574        return !getLangOpts().CPlusPlus0x;
9575      }
9576    }
9577  }
9578
9579  return false;
9580}
9581
9582/// If the given constructor is user-declared, produce a diagnostic explaining
9583/// that it makes the class non-trivial.
9584static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9585                                               CXXConstructorDecl *CD,
9586                                               Sema::CXXSpecialMember CSM) {
9587  if (CD->isImplicit())
9588    return false;
9589
9590  SourceLocation CtorLoc = CD->getLocation();
9591  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9592  return true;
9593}
9594
9595/// DiagnoseNontrivial - Given that a class has a non-trivial
9596/// special member, figure out why.
9597void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9598  QualType QT(T, 0U);
9599  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9600
9601  // Check whether the member was user-declared.
9602  switch (member) {
9603  case CXXInvalid:
9604    break;
9605
9606  case CXXDefaultConstructor:
9607    if (RD->hasUserDeclaredConstructor()) {
9608      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9609      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9610        if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9611          return;
9612
9613      // No user-delcared constructors; look for constructor templates.
9614      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9615          tmpl_iter;
9616      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9617           TI != TE; ++TI) {
9618        CXXConstructorDecl *CD =
9619            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9620        if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9621          return;
9622      }
9623    }
9624    break;
9625
9626  case CXXCopyConstructor:
9627    if (RD->hasUserDeclaredCopyConstructor()) {
9628      SourceLocation CtorLoc =
9629        RD->getCopyConstructor(0)->getLocation();
9630      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9631      return;
9632    }
9633    break;
9634
9635  case CXXMoveConstructor:
9636    if (RD->hasUserDeclaredMoveConstructor()) {
9637      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9638      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9639      return;
9640    }
9641    break;
9642
9643  case CXXCopyAssignment:
9644    if (RD->hasUserDeclaredCopyAssignment()) {
9645      SourceLocation AssignLoc =
9646        RD->getCopyAssignmentOperator(0)->getLocation();
9647      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9648      return;
9649    }
9650    break;
9651
9652  case CXXMoveAssignment:
9653    if (RD->hasUserDeclaredMoveAssignment()) {
9654      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9655      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9656      return;
9657    }
9658    break;
9659
9660  case CXXDestructor:
9661    if (RD->hasUserDeclaredDestructor()) {
9662      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9663      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9664      return;
9665    }
9666    break;
9667  }
9668
9669  typedef CXXRecordDecl::base_class_iterator base_iter;
9670
9671  // Virtual bases and members inhibit trivial copying/construction,
9672  // but not trivial destruction.
9673  if (member != CXXDestructor) {
9674    // Check for virtual bases.  vbases includes indirect virtual bases,
9675    // so we just iterate through the direct bases.
9676    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9677      if (bi->isVirtual()) {
9678        SourceLocation BaseLoc = bi->getLocStart();
9679        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9680        return;
9681      }
9682
9683    // Check for virtual methods.
9684    typedef CXXRecordDecl::method_iterator meth_iter;
9685    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9686         ++mi) {
9687      if (mi->isVirtual()) {
9688        SourceLocation MLoc = mi->getLocStart();
9689        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9690        return;
9691      }
9692    }
9693  }
9694
9695  bool (CXXRecordDecl::*hasTrivial)() const;
9696  switch (member) {
9697  case CXXDefaultConstructor:
9698    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9699  case CXXCopyConstructor:
9700    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9701  case CXXCopyAssignment:
9702    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9703  case CXXDestructor:
9704    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9705  default:
9706    llvm_unreachable("unexpected special member");
9707  }
9708
9709  // Check for nontrivial bases (and recurse).
9710  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9711    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9712    assert(BaseRT && "Don't know how to handle dependent bases");
9713    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9714    if (!(BaseRecTy->*hasTrivial)()) {
9715      SourceLocation BaseLoc = bi->getLocStart();
9716      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9717      DiagnoseNontrivial(BaseRT, member);
9718      return;
9719    }
9720  }
9721
9722  // Check for nontrivial members (and recurse).
9723  typedef RecordDecl::field_iterator field_iter;
9724  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9725       ++fi) {
9726    QualType EltTy = Context.getBaseElementType(fi->getType());
9727    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9728      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9729
9730      if (!(EltRD->*hasTrivial)()) {
9731        SourceLocation FLoc = fi->getLocation();
9732        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9733        DiagnoseNontrivial(EltRT, member);
9734        return;
9735      }
9736    }
9737
9738    if (EltTy->isObjCLifetimeType()) {
9739      switch (EltTy.getObjCLifetime()) {
9740      case Qualifiers::OCL_None:
9741      case Qualifiers::OCL_ExplicitNone:
9742        break;
9743
9744      case Qualifiers::OCL_Autoreleasing:
9745      case Qualifiers::OCL_Weak:
9746      case Qualifiers::OCL_Strong:
9747        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9748          << QT << EltTy.getObjCLifetime();
9749        return;
9750      }
9751    }
9752  }
9753
9754  llvm_unreachable("found no explanation for non-trivial member");
9755}
9756
9757/// TranslateIvarVisibility - Translate visibility from a token ID to an
9758///  AST enum value.
9759static ObjCIvarDecl::AccessControl
9760TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9761  switch (ivarVisibility) {
9762  default: llvm_unreachable("Unknown visitibility kind");
9763  case tok::objc_private: return ObjCIvarDecl::Private;
9764  case tok::objc_public: return ObjCIvarDecl::Public;
9765  case tok::objc_protected: return ObjCIvarDecl::Protected;
9766  case tok::objc_package: return ObjCIvarDecl::Package;
9767  }
9768}
9769
9770/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9771/// in order to create an IvarDecl object for it.
9772Decl *Sema::ActOnIvar(Scope *S,
9773                                SourceLocation DeclStart,
9774                                Declarator &D, Expr *BitfieldWidth,
9775                                tok::ObjCKeywordKind Visibility) {
9776
9777  IdentifierInfo *II = D.getIdentifier();
9778  Expr *BitWidth = (Expr*)BitfieldWidth;
9779  SourceLocation Loc = DeclStart;
9780  if (II) Loc = D.getIdentifierLoc();
9781
9782  // FIXME: Unnamed fields can be handled in various different ways, for
9783  // example, unnamed unions inject all members into the struct namespace!
9784
9785  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9786  QualType T = TInfo->getType();
9787
9788  if (BitWidth) {
9789    // 6.7.2.1p3, 6.7.2.1p4
9790    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9791    if (!BitWidth)
9792      D.setInvalidType();
9793  } else {
9794    // Not a bitfield.
9795
9796    // validate II.
9797
9798  }
9799  if (T->isReferenceType()) {
9800    Diag(Loc, diag::err_ivar_reference_type);
9801    D.setInvalidType();
9802  }
9803  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9804  // than a variably modified type.
9805  else if (T->isVariablyModifiedType()) {
9806    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9807    D.setInvalidType();
9808  }
9809
9810  // Get the visibility (access control) for this ivar.
9811  ObjCIvarDecl::AccessControl ac =
9812    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9813                                        : ObjCIvarDecl::None;
9814  // Must set ivar's DeclContext to its enclosing interface.
9815  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9816  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9817    return 0;
9818  ObjCContainerDecl *EnclosingContext;
9819  if (ObjCImplementationDecl *IMPDecl =
9820      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9821    if (LangOpts.ObjCRuntime.isFragile()) {
9822    // Case of ivar declared in an implementation. Context is that of its class.
9823      EnclosingContext = IMPDecl->getClassInterface();
9824      assert(EnclosingContext && "Implementation has no class interface!");
9825    }
9826    else
9827      EnclosingContext = EnclosingDecl;
9828  } else {
9829    if (ObjCCategoryDecl *CDecl =
9830        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9831      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9832        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9833        return 0;
9834      }
9835    }
9836    EnclosingContext = EnclosingDecl;
9837  }
9838
9839  // Construct the decl.
9840  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9841                                             DeclStart, Loc, II, T,
9842                                             TInfo, ac, (Expr *)BitfieldWidth);
9843
9844  if (II) {
9845    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9846                                           ForRedeclaration);
9847    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9848        && !isa<TagDecl>(PrevDecl)) {
9849      Diag(Loc, diag::err_duplicate_member) << II;
9850      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9851      NewID->setInvalidDecl();
9852    }
9853  }
9854
9855  // Process attributes attached to the ivar.
9856  ProcessDeclAttributes(S, NewID, D);
9857
9858  if (D.isInvalidType())
9859    NewID->setInvalidDecl();
9860
9861  // In ARC, infer 'retaining' for ivars of retainable type.
9862  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9863    NewID->setInvalidDecl();
9864
9865  if (D.getDeclSpec().isModulePrivateSpecified())
9866    NewID->setModulePrivate();
9867
9868  if (II) {
9869    // FIXME: When interfaces are DeclContexts, we'll need to add
9870    // these to the interface.
9871    S->AddDecl(NewID);
9872    IdResolver.AddDecl(NewID);
9873  }
9874
9875  if (LangOpts.ObjCRuntime.isNonFragile() &&
9876      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9877    Diag(Loc, diag::warn_ivars_in_interface);
9878
9879  return NewID;
9880}
9881
9882/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9883/// class and class extensions. For every class @interface and class
9884/// extension @interface, if the last ivar is a bitfield of any type,
9885/// then add an implicit `char :0` ivar to the end of that interface.
9886void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9887                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9888  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9889    return;
9890
9891  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9892  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9893
9894  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9895    return;
9896  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9897  if (!ID) {
9898    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9899      if (!CD->IsClassExtension())
9900        return;
9901    }
9902    // No need to add this to end of @implementation.
9903    else
9904      return;
9905  }
9906  // All conditions are met. Add a new bitfield to the tail end of ivars.
9907  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9908  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9909
9910  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9911                              DeclLoc, DeclLoc, 0,
9912                              Context.CharTy,
9913                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9914                                                               DeclLoc),
9915                              ObjCIvarDecl::Private, BW,
9916                              true);
9917  AllIvarDecls.push_back(Ivar);
9918}
9919
9920void Sema::ActOnFields(Scope* S,
9921                       SourceLocation RecLoc, Decl *EnclosingDecl,
9922                       llvm::ArrayRef<Decl *> Fields,
9923                       SourceLocation LBrac, SourceLocation RBrac,
9924                       AttributeList *Attr) {
9925  assert(EnclosingDecl && "missing record or interface decl");
9926
9927  // If this is an Objective-C @implementation or category and we have
9928  // new fields here we should reset the layout of the interface since
9929  // it will now change.
9930  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9931    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9932    switch (DC->getKind()) {
9933    default: break;
9934    case Decl::ObjCCategory:
9935      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9936      break;
9937    case Decl::ObjCImplementation:
9938      Context.
9939        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9940      break;
9941    }
9942  }
9943
9944  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9945
9946  // Start counting up the number of named members; make sure to include
9947  // members of anonymous structs and unions in the total.
9948  unsigned NumNamedMembers = 0;
9949  if (Record) {
9950    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9951                                   e = Record->decls_end(); i != e; i++) {
9952      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9953        if (IFD->getDeclName())
9954          ++NumNamedMembers;
9955    }
9956  }
9957
9958  // Verify that all the fields are okay.
9959  SmallVector<FieldDecl*, 32> RecFields;
9960
9961  bool ARCErrReported = false;
9962  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9963       i != end; ++i) {
9964    FieldDecl *FD = cast<FieldDecl>(*i);
9965
9966    // Get the type for the field.
9967    const Type *FDTy = FD->getType().getTypePtr();
9968
9969    if (!FD->isAnonymousStructOrUnion()) {
9970      // Remember all fields written by the user.
9971      RecFields.push_back(FD);
9972    }
9973
9974    // If the field is already invalid for some reason, don't emit more
9975    // diagnostics about it.
9976    if (FD->isInvalidDecl()) {
9977      EnclosingDecl->setInvalidDecl();
9978      continue;
9979    }
9980
9981    // C99 6.7.2.1p2:
9982    //   A structure or union shall not contain a member with
9983    //   incomplete or function type (hence, a structure shall not
9984    //   contain an instance of itself, but may contain a pointer to
9985    //   an instance of itself), except that the last member of a
9986    //   structure with more than one named member may have incomplete
9987    //   array type; such a structure (and any union containing,
9988    //   possibly recursively, a member that is such a structure)
9989    //   shall not be a member of a structure or an element of an
9990    //   array.
9991    if (FDTy->isFunctionType()) {
9992      // Field declared as a function.
9993      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9994        << FD->getDeclName();
9995      FD->setInvalidDecl();
9996      EnclosingDecl->setInvalidDecl();
9997      continue;
9998    } else if (FDTy->isIncompleteArrayType() && Record &&
9999               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10000                ((getLangOpts().MicrosoftExt ||
10001                  getLangOpts().CPlusPlus) &&
10002                 (i + 1 == Fields.end() || Record->isUnion())))) {
10003      // Flexible array member.
10004      // Microsoft and g++ is more permissive regarding flexible array.
10005      // It will accept flexible array in union and also
10006      // as the sole element of a struct/class.
10007      if (getLangOpts().MicrosoftExt) {
10008        if (Record->isUnion())
10009          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10010            << FD->getDeclName();
10011        else if (Fields.size() == 1)
10012          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10013            << FD->getDeclName() << Record->getTagKind();
10014      } else if (getLangOpts().CPlusPlus) {
10015        if (Record->isUnion())
10016          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10017            << FD->getDeclName();
10018        else if (Fields.size() == 1)
10019          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10020            << FD->getDeclName() << Record->getTagKind();
10021      } else if (!getLangOpts().C99) {
10022      if (Record->isUnion())
10023        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10024          << FD->getDeclName();
10025      else
10026        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10027          << FD->getDeclName() << Record->getTagKind();
10028      } else if (NumNamedMembers < 1) {
10029        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10030          << FD->getDeclName();
10031        FD->setInvalidDecl();
10032        EnclosingDecl->setInvalidDecl();
10033        continue;
10034      }
10035      if (!FD->getType()->isDependentType() &&
10036          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10037        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10038          << FD->getDeclName() << FD->getType();
10039        FD->setInvalidDecl();
10040        EnclosingDecl->setInvalidDecl();
10041        continue;
10042      }
10043      // Okay, we have a legal flexible array member at the end of the struct.
10044      if (Record)
10045        Record->setHasFlexibleArrayMember(true);
10046    } else if (!FDTy->isDependentType() &&
10047               RequireCompleteType(FD->getLocation(), FD->getType(),
10048                                   diag::err_field_incomplete)) {
10049      // Incomplete type
10050      FD->setInvalidDecl();
10051      EnclosingDecl->setInvalidDecl();
10052      continue;
10053    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10054      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10055        // If this is a member of a union, then entire union becomes "flexible".
10056        if (Record && Record->isUnion()) {
10057          Record->setHasFlexibleArrayMember(true);
10058        } else {
10059          // If this is a struct/class and this is not the last element, reject
10060          // it.  Note that GCC supports variable sized arrays in the middle of
10061          // structures.
10062          if (i + 1 != Fields.end())
10063            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10064              << FD->getDeclName() << FD->getType();
10065          else {
10066            // We support flexible arrays at the end of structs in
10067            // other structs as an extension.
10068            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10069              << FD->getDeclName();
10070            if (Record)
10071              Record->setHasFlexibleArrayMember(true);
10072          }
10073        }
10074      }
10075      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10076          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10077                                 diag::err_abstract_type_in_decl,
10078                                 AbstractIvarType)) {
10079        // Ivars can not have abstract class types
10080        FD->setInvalidDecl();
10081      }
10082      if (Record && FDTTy->getDecl()->hasObjectMember())
10083        Record->setHasObjectMember(true);
10084    } else if (FDTy->isObjCObjectType()) {
10085      /// A field cannot be an Objective-c object
10086      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10087        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10088      QualType T = Context.getObjCObjectPointerType(FD->getType());
10089      FD->setType(T);
10090    } else if (!getLangOpts().CPlusPlus) {
10091      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10092        // It's an error in ARC if a field has lifetime.
10093        // We don't want to report this in a system header, though,
10094        // so we just make the field unavailable.
10095        // FIXME: that's really not sufficient; we need to make the type
10096        // itself invalid to, say, initialize or copy.
10097        QualType T = FD->getType();
10098        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10099        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10100          SourceLocation loc = FD->getLocation();
10101          if (getSourceManager().isInSystemHeader(loc)) {
10102            if (!FD->hasAttr<UnavailableAttr>()) {
10103              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10104                                "this system field has retaining ownership"));
10105            }
10106          } else {
10107            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10108              << T->isBlockPointerType();
10109          }
10110          ARCErrReported = true;
10111        }
10112      }
10113      else if (getLangOpts().ObjC1 &&
10114               getLangOpts().getGC() != LangOptions::NonGC &&
10115               Record && !Record->hasObjectMember()) {
10116        if (FD->getType()->isObjCObjectPointerType() ||
10117            FD->getType().isObjCGCStrong())
10118          Record->setHasObjectMember(true);
10119        else if (Context.getAsArrayType(FD->getType())) {
10120          QualType BaseType = Context.getBaseElementType(FD->getType());
10121          if (BaseType->isRecordType() &&
10122              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10123            Record->setHasObjectMember(true);
10124          else if (BaseType->isObjCObjectPointerType() ||
10125                   BaseType.isObjCGCStrong())
10126                 Record->setHasObjectMember(true);
10127        }
10128      }
10129    }
10130    // Keep track of the number of named members.
10131    if (FD->getIdentifier())
10132      ++NumNamedMembers;
10133  }
10134
10135  // Okay, we successfully defined 'Record'.
10136  if (Record) {
10137    bool Completed = false;
10138    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10139      if (!CXXRecord->isInvalidDecl()) {
10140        // Set access bits correctly on the directly-declared conversions.
10141        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10142        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10143             I != E; ++I)
10144          Convs->setAccess(I, (*I)->getAccess());
10145
10146        if (!CXXRecord->isDependentType()) {
10147          // Adjust user-defined destructor exception spec.
10148          if (getLangOpts().CPlusPlus0x &&
10149              CXXRecord->hasUserDeclaredDestructor())
10150            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10151
10152          // Add any implicitly-declared members to this class.
10153          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10154
10155          // If we have virtual base classes, we may end up finding multiple
10156          // final overriders for a given virtual function. Check for this
10157          // problem now.
10158          if (CXXRecord->getNumVBases()) {
10159            CXXFinalOverriderMap FinalOverriders;
10160            CXXRecord->getFinalOverriders(FinalOverriders);
10161
10162            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10163                                             MEnd = FinalOverriders.end();
10164                 M != MEnd; ++M) {
10165              for (OverridingMethods::iterator SO = M->second.begin(),
10166                                            SOEnd = M->second.end();
10167                   SO != SOEnd; ++SO) {
10168                assert(SO->second.size() > 0 &&
10169                       "Virtual function without overridding functions?");
10170                if (SO->second.size() == 1)
10171                  continue;
10172
10173                // C++ [class.virtual]p2:
10174                //   In a derived class, if a virtual member function of a base
10175                //   class subobject has more than one final overrider the
10176                //   program is ill-formed.
10177                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10178                  << (const NamedDecl *)M->first << Record;
10179                Diag(M->first->getLocation(),
10180                     diag::note_overridden_virtual_function);
10181                for (OverridingMethods::overriding_iterator
10182                          OM = SO->second.begin(),
10183                       OMEnd = SO->second.end();
10184                     OM != OMEnd; ++OM)
10185                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10186                    << (const NamedDecl *)M->first << OM->Method->getParent();
10187
10188                Record->setInvalidDecl();
10189              }
10190            }
10191            CXXRecord->completeDefinition(&FinalOverriders);
10192            Completed = true;
10193          }
10194        }
10195      }
10196    }
10197
10198    if (!Completed)
10199      Record->completeDefinition();
10200
10201  } else {
10202    ObjCIvarDecl **ClsFields =
10203      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10204    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10205      ID->setEndOfDefinitionLoc(RBrac);
10206      // Add ivar's to class's DeclContext.
10207      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10208        ClsFields[i]->setLexicalDeclContext(ID);
10209        ID->addDecl(ClsFields[i]);
10210      }
10211      // Must enforce the rule that ivars in the base classes may not be
10212      // duplicates.
10213      if (ID->getSuperClass())
10214        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10215    } else if (ObjCImplementationDecl *IMPDecl =
10216                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10217      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10218      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10219        // Ivar declared in @implementation never belongs to the implementation.
10220        // Only it is in implementation's lexical context.
10221        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10222      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10223      IMPDecl->setIvarLBraceLoc(LBrac);
10224      IMPDecl->setIvarRBraceLoc(RBrac);
10225    } else if (ObjCCategoryDecl *CDecl =
10226                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10227      // case of ivars in class extension; all other cases have been
10228      // reported as errors elsewhere.
10229      // FIXME. Class extension does not have a LocEnd field.
10230      // CDecl->setLocEnd(RBrac);
10231      // Add ivar's to class extension's DeclContext.
10232      // Diagnose redeclaration of private ivars.
10233      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10234      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10235        if (IDecl) {
10236          if (const ObjCIvarDecl *ClsIvar =
10237              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10238            Diag(ClsFields[i]->getLocation(),
10239                 diag::err_duplicate_ivar_declaration);
10240            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10241            continue;
10242          }
10243          for (const ObjCCategoryDecl *ClsExtDecl =
10244                IDecl->getFirstClassExtension();
10245               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10246            if (const ObjCIvarDecl *ClsExtIvar =
10247                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10248              Diag(ClsFields[i]->getLocation(),
10249                   diag::err_duplicate_ivar_declaration);
10250              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10251              continue;
10252            }
10253          }
10254        }
10255        ClsFields[i]->setLexicalDeclContext(CDecl);
10256        CDecl->addDecl(ClsFields[i]);
10257      }
10258      CDecl->setIvarLBraceLoc(LBrac);
10259      CDecl->setIvarRBraceLoc(RBrac);
10260    }
10261  }
10262
10263  if (Attr)
10264    ProcessDeclAttributeList(S, Record, Attr);
10265}
10266
10267/// \brief Determine whether the given integral value is representable within
10268/// the given type T.
10269static bool isRepresentableIntegerValue(ASTContext &Context,
10270                                        llvm::APSInt &Value,
10271                                        QualType T) {
10272  assert(T->isIntegralType(Context) && "Integral type required!");
10273  unsigned BitWidth = Context.getIntWidth(T);
10274
10275  if (Value.isUnsigned() || Value.isNonNegative()) {
10276    if (T->isSignedIntegerOrEnumerationType())
10277      --BitWidth;
10278    return Value.getActiveBits() <= BitWidth;
10279  }
10280  return Value.getMinSignedBits() <= BitWidth;
10281}
10282
10283// \brief Given an integral type, return the next larger integral type
10284// (or a NULL type of no such type exists).
10285static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10286  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10287  // enum checking below.
10288  assert(T->isIntegralType(Context) && "Integral type required!");
10289  const unsigned NumTypes = 4;
10290  QualType SignedIntegralTypes[NumTypes] = {
10291    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10292  };
10293  QualType UnsignedIntegralTypes[NumTypes] = {
10294    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10295    Context.UnsignedLongLongTy
10296  };
10297
10298  unsigned BitWidth = Context.getTypeSize(T);
10299  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10300                                                        : UnsignedIntegralTypes;
10301  for (unsigned I = 0; I != NumTypes; ++I)
10302    if (Context.getTypeSize(Types[I]) > BitWidth)
10303      return Types[I];
10304
10305  return QualType();
10306}
10307
10308EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10309                                          EnumConstantDecl *LastEnumConst,
10310                                          SourceLocation IdLoc,
10311                                          IdentifierInfo *Id,
10312                                          Expr *Val) {
10313  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10314  llvm::APSInt EnumVal(IntWidth);
10315  QualType EltTy;
10316
10317  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10318    Val = 0;
10319
10320  if (Val)
10321    Val = DefaultLvalueConversion(Val).take();
10322
10323  if (Val) {
10324    if (Enum->isDependentType() || Val->isTypeDependent())
10325      EltTy = Context.DependentTy;
10326    else {
10327      SourceLocation ExpLoc;
10328      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10329          !getLangOpts().MicrosoftMode) {
10330        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10331        // constant-expression in the enumerator-definition shall be a converted
10332        // constant expression of the underlying type.
10333        EltTy = Enum->getIntegerType();
10334        ExprResult Converted =
10335          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10336                                           CCEK_Enumerator);
10337        if (Converted.isInvalid())
10338          Val = 0;
10339        else
10340          Val = Converted.take();
10341      } else if (!Val->isValueDependent() &&
10342                 !(Val = VerifyIntegerConstantExpression(Val,
10343                                                         &EnumVal).take())) {
10344        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10345      } else {
10346        if (Enum->isFixed()) {
10347          EltTy = Enum->getIntegerType();
10348
10349          // In Obj-C and Microsoft mode, require the enumeration value to be
10350          // representable in the underlying type of the enumeration. In C++11,
10351          // we perform a non-narrowing conversion as part of converted constant
10352          // expression checking.
10353          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10354            if (getLangOpts().MicrosoftMode) {
10355              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10356              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10357            } else
10358              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10359          } else
10360            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10361        } else if (getLangOpts().CPlusPlus) {
10362          // C++11 [dcl.enum]p5:
10363          //   If the underlying type is not fixed, the type of each enumerator
10364          //   is the type of its initializing value:
10365          //     - If an initializer is specified for an enumerator, the
10366          //       initializing value has the same type as the expression.
10367          EltTy = Val->getType();
10368        } else {
10369          // C99 6.7.2.2p2:
10370          //   The expression that defines the value of an enumeration constant
10371          //   shall be an integer constant expression that has a value
10372          //   representable as an int.
10373
10374          // Complain if the value is not representable in an int.
10375          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10376            Diag(IdLoc, diag::ext_enum_value_not_int)
10377              << EnumVal.toString(10) << Val->getSourceRange()
10378              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10379          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10380            // Force the type of the expression to 'int'.
10381            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10382          }
10383          EltTy = Val->getType();
10384        }
10385      }
10386    }
10387  }
10388
10389  if (!Val) {
10390    if (Enum->isDependentType())
10391      EltTy = Context.DependentTy;
10392    else if (!LastEnumConst) {
10393      // C++0x [dcl.enum]p5:
10394      //   If the underlying type is not fixed, the type of each enumerator
10395      //   is the type of its initializing value:
10396      //     - If no initializer is specified for the first enumerator, the
10397      //       initializing value has an unspecified integral type.
10398      //
10399      // GCC uses 'int' for its unspecified integral type, as does
10400      // C99 6.7.2.2p3.
10401      if (Enum->isFixed()) {
10402        EltTy = Enum->getIntegerType();
10403      }
10404      else {
10405        EltTy = Context.IntTy;
10406      }
10407    } else {
10408      // Assign the last value + 1.
10409      EnumVal = LastEnumConst->getInitVal();
10410      ++EnumVal;
10411      EltTy = LastEnumConst->getType();
10412
10413      // Check for overflow on increment.
10414      if (EnumVal < LastEnumConst->getInitVal()) {
10415        // C++0x [dcl.enum]p5:
10416        //   If the underlying type is not fixed, the type of each enumerator
10417        //   is the type of its initializing value:
10418        //
10419        //     - Otherwise the type of the initializing value is the same as
10420        //       the type of the initializing value of the preceding enumerator
10421        //       unless the incremented value is not representable in that type,
10422        //       in which case the type is an unspecified integral type
10423        //       sufficient to contain the incremented value. If no such type
10424        //       exists, the program is ill-formed.
10425        QualType T = getNextLargerIntegralType(Context, EltTy);
10426        if (T.isNull() || Enum->isFixed()) {
10427          // There is no integral type larger enough to represent this
10428          // value. Complain, then allow the value to wrap around.
10429          EnumVal = LastEnumConst->getInitVal();
10430          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10431          ++EnumVal;
10432          if (Enum->isFixed())
10433            // When the underlying type is fixed, this is ill-formed.
10434            Diag(IdLoc, diag::err_enumerator_wrapped)
10435              << EnumVal.toString(10)
10436              << EltTy;
10437          else
10438            Diag(IdLoc, diag::warn_enumerator_too_large)
10439              << EnumVal.toString(10);
10440        } else {
10441          EltTy = T;
10442        }
10443
10444        // Retrieve the last enumerator's value, extent that type to the
10445        // type that is supposed to be large enough to represent the incremented
10446        // value, then increment.
10447        EnumVal = LastEnumConst->getInitVal();
10448        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10449        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10450        ++EnumVal;
10451
10452        // If we're not in C++, diagnose the overflow of enumerator values,
10453        // which in C99 means that the enumerator value is not representable in
10454        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10455        // permits enumerator values that are representable in some larger
10456        // integral type.
10457        if (!getLangOpts().CPlusPlus && !T.isNull())
10458          Diag(IdLoc, diag::warn_enum_value_overflow);
10459      } else if (!getLangOpts().CPlusPlus &&
10460                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10461        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10462        Diag(IdLoc, diag::ext_enum_value_not_int)
10463          << EnumVal.toString(10) << 1;
10464      }
10465    }
10466  }
10467
10468  if (!EltTy->isDependentType()) {
10469    // Make the enumerator value match the signedness and size of the
10470    // enumerator's type.
10471    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10472    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10473  }
10474
10475  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10476                                  Val, EnumVal);
10477}
10478
10479
10480Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10481                              SourceLocation IdLoc, IdentifierInfo *Id,
10482                              AttributeList *Attr,
10483                              SourceLocation EqualLoc, Expr *Val) {
10484  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10485  EnumConstantDecl *LastEnumConst =
10486    cast_or_null<EnumConstantDecl>(lastEnumConst);
10487
10488  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10489  // we find one that is.
10490  S = getNonFieldDeclScope(S);
10491
10492  // Verify that there isn't already something declared with this name in this
10493  // scope.
10494  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10495                                         ForRedeclaration);
10496  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10497    // Maybe we will complain about the shadowed template parameter.
10498    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10499    // Just pretend that we didn't see the previous declaration.
10500    PrevDecl = 0;
10501  }
10502
10503  if (PrevDecl) {
10504    // When in C++, we may get a TagDecl with the same name; in this case the
10505    // enum constant will 'hide' the tag.
10506    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10507           "Received TagDecl when not in C++!");
10508    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10509      if (isa<EnumConstantDecl>(PrevDecl))
10510        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10511      else
10512        Diag(IdLoc, diag::err_redefinition) << Id;
10513      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10514      return 0;
10515    }
10516  }
10517
10518  // C++ [class.mem]p15:
10519  // If T is the name of a class, then each of the following shall have a name
10520  // different from T:
10521  // - every enumerator of every member of class T that is an unscoped
10522  // enumerated type
10523  if (CXXRecordDecl *Record
10524                      = dyn_cast<CXXRecordDecl>(
10525                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10526    if (!TheEnumDecl->isScoped() &&
10527        Record->getIdentifier() && Record->getIdentifier() == Id)
10528      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10529
10530  EnumConstantDecl *New =
10531    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10532
10533  if (New) {
10534    // Process attributes.
10535    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10536
10537    // Register this decl in the current scope stack.
10538    New->setAccess(TheEnumDecl->getAccess());
10539    PushOnScopeChains(New, S);
10540  }
10541
10542  ActOnDocumentableDecl(New);
10543
10544  return New;
10545}
10546
10547void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10548                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10549                         Decl **Elements, unsigned NumElements,
10550                         Scope *S, AttributeList *Attr) {
10551  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10552  QualType EnumType = Context.getTypeDeclType(Enum);
10553
10554  if (Attr)
10555    ProcessDeclAttributeList(S, Enum, Attr);
10556
10557  if (Enum->isDependentType()) {
10558    for (unsigned i = 0; i != NumElements; ++i) {
10559      EnumConstantDecl *ECD =
10560        cast_or_null<EnumConstantDecl>(Elements[i]);
10561      if (!ECD) continue;
10562
10563      ECD->setType(EnumType);
10564    }
10565
10566    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10567    return;
10568  }
10569
10570  // TODO: If the result value doesn't fit in an int, it must be a long or long
10571  // long value.  ISO C does not support this, but GCC does as an extension,
10572  // emit a warning.
10573  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10574  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10575  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10576
10577  // Verify that all the values are okay, compute the size of the values, and
10578  // reverse the list.
10579  unsigned NumNegativeBits = 0;
10580  unsigned NumPositiveBits = 0;
10581
10582  // Keep track of whether all elements have type int.
10583  bool AllElementsInt = true;
10584
10585  for (unsigned i = 0; i != NumElements; ++i) {
10586    EnumConstantDecl *ECD =
10587      cast_or_null<EnumConstantDecl>(Elements[i]);
10588    if (!ECD) continue;  // Already issued a diagnostic.
10589
10590    const llvm::APSInt &InitVal = ECD->getInitVal();
10591
10592    // Keep track of the size of positive and negative values.
10593    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10594      NumPositiveBits = std::max(NumPositiveBits,
10595                                 (unsigned)InitVal.getActiveBits());
10596    else
10597      NumNegativeBits = std::max(NumNegativeBits,
10598                                 (unsigned)InitVal.getMinSignedBits());
10599
10600    // Keep track of whether every enum element has type int (very commmon).
10601    if (AllElementsInt)
10602      AllElementsInt = ECD->getType() == Context.IntTy;
10603  }
10604
10605  // Figure out the type that should be used for this enum.
10606  QualType BestType;
10607  unsigned BestWidth;
10608
10609  // C++0x N3000 [conv.prom]p3:
10610  //   An rvalue of an unscoped enumeration type whose underlying
10611  //   type is not fixed can be converted to an rvalue of the first
10612  //   of the following types that can represent all the values of
10613  //   the enumeration: int, unsigned int, long int, unsigned long
10614  //   int, long long int, or unsigned long long int.
10615  // C99 6.4.4.3p2:
10616  //   An identifier declared as an enumeration constant has type int.
10617  // The C99 rule is modified by a gcc extension
10618  QualType BestPromotionType;
10619
10620  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10621  // -fshort-enums is the equivalent to specifying the packed attribute on all
10622  // enum definitions.
10623  if (LangOpts.ShortEnums)
10624    Packed = true;
10625
10626  if (Enum->isFixed()) {
10627    BestType = Enum->getIntegerType();
10628    if (BestType->isPromotableIntegerType())
10629      BestPromotionType = Context.getPromotedIntegerType(BestType);
10630    else
10631      BestPromotionType = BestType;
10632    // We don't need to set BestWidth, because BestType is going to be the type
10633    // of the enumerators, but we do anyway because otherwise some compilers
10634    // warn that it might be used uninitialized.
10635    BestWidth = CharWidth;
10636  }
10637  else if (NumNegativeBits) {
10638    // If there is a negative value, figure out the smallest integer type (of
10639    // int/long/longlong) that fits.
10640    // If it's packed, check also if it fits a char or a short.
10641    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10642      BestType = Context.SignedCharTy;
10643      BestWidth = CharWidth;
10644    } else if (Packed && NumNegativeBits <= ShortWidth &&
10645               NumPositiveBits < ShortWidth) {
10646      BestType = Context.ShortTy;
10647      BestWidth = ShortWidth;
10648    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10649      BestType = Context.IntTy;
10650      BestWidth = IntWidth;
10651    } else {
10652      BestWidth = Context.getTargetInfo().getLongWidth();
10653
10654      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10655        BestType = Context.LongTy;
10656      } else {
10657        BestWidth = Context.getTargetInfo().getLongLongWidth();
10658
10659        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10660          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10661        BestType = Context.LongLongTy;
10662      }
10663    }
10664    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10665  } else {
10666    // If there is no negative value, figure out the smallest type that fits
10667    // all of the enumerator values.
10668    // If it's packed, check also if it fits a char or a short.
10669    if (Packed && NumPositiveBits <= CharWidth) {
10670      BestType = Context.UnsignedCharTy;
10671      BestPromotionType = Context.IntTy;
10672      BestWidth = CharWidth;
10673    } else if (Packed && NumPositiveBits <= ShortWidth) {
10674      BestType = Context.UnsignedShortTy;
10675      BestPromotionType = Context.IntTy;
10676      BestWidth = ShortWidth;
10677    } else if (NumPositiveBits <= IntWidth) {
10678      BestType = Context.UnsignedIntTy;
10679      BestWidth = IntWidth;
10680      BestPromotionType
10681        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10682                           ? Context.UnsignedIntTy : Context.IntTy;
10683    } else if (NumPositiveBits <=
10684               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10685      BestType = Context.UnsignedLongTy;
10686      BestPromotionType
10687        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10688                           ? Context.UnsignedLongTy : Context.LongTy;
10689    } else {
10690      BestWidth = Context.getTargetInfo().getLongLongWidth();
10691      assert(NumPositiveBits <= BestWidth &&
10692             "How could an initializer get larger than ULL?");
10693      BestType = Context.UnsignedLongLongTy;
10694      BestPromotionType
10695        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10696                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10697    }
10698  }
10699
10700  // Loop over all of the enumerator constants, changing their types to match
10701  // the type of the enum if needed.
10702  for (unsigned i = 0; i != NumElements; ++i) {
10703    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10704    if (!ECD) continue;  // Already issued a diagnostic.
10705
10706    // Standard C says the enumerators have int type, but we allow, as an
10707    // extension, the enumerators to be larger than int size.  If each
10708    // enumerator value fits in an int, type it as an int, otherwise type it the
10709    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10710    // that X has type 'int', not 'unsigned'.
10711
10712    // Determine whether the value fits into an int.
10713    llvm::APSInt InitVal = ECD->getInitVal();
10714
10715    // If it fits into an integer type, force it.  Otherwise force it to match
10716    // the enum decl type.
10717    QualType NewTy;
10718    unsigned NewWidth;
10719    bool NewSign;
10720    if (!getLangOpts().CPlusPlus &&
10721        !Enum->isFixed() &&
10722        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10723      NewTy = Context.IntTy;
10724      NewWidth = IntWidth;
10725      NewSign = true;
10726    } else if (ECD->getType() == BestType) {
10727      // Already the right type!
10728      if (getLangOpts().CPlusPlus)
10729        // C++ [dcl.enum]p4: Following the closing brace of an
10730        // enum-specifier, each enumerator has the type of its
10731        // enumeration.
10732        ECD->setType(EnumType);
10733      continue;
10734    } else {
10735      NewTy = BestType;
10736      NewWidth = BestWidth;
10737      NewSign = BestType->isSignedIntegerOrEnumerationType();
10738    }
10739
10740    // Adjust the APSInt value.
10741    InitVal = InitVal.extOrTrunc(NewWidth);
10742    InitVal.setIsSigned(NewSign);
10743    ECD->setInitVal(InitVal);
10744
10745    // Adjust the Expr initializer and type.
10746    if (ECD->getInitExpr() &&
10747        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10748      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10749                                                CK_IntegralCast,
10750                                                ECD->getInitExpr(),
10751                                                /*base paths*/ 0,
10752                                                VK_RValue));
10753    if (getLangOpts().CPlusPlus)
10754      // C++ [dcl.enum]p4: Following the closing brace of an
10755      // enum-specifier, each enumerator has the type of its
10756      // enumeration.
10757      ECD->setType(EnumType);
10758    else
10759      ECD->setType(NewTy);
10760  }
10761
10762  Enum->completeDefinition(BestType, BestPromotionType,
10763                           NumPositiveBits, NumNegativeBits);
10764
10765  // If we're declaring a function, ensure this decl isn't forgotten about -
10766  // it needs to go into the function scope.
10767  if (InFunctionDeclarator)
10768    DeclsInPrototypeScope.push_back(Enum);
10769}
10770
10771Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10772                                  SourceLocation StartLoc,
10773                                  SourceLocation EndLoc) {
10774  StringLiteral *AsmString = cast<StringLiteral>(expr);
10775
10776  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10777                                                   AsmString, StartLoc,
10778                                                   EndLoc);
10779  CurContext->addDecl(New);
10780  return New;
10781}
10782
10783DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10784                                   SourceLocation ImportLoc,
10785                                   ModuleIdPath Path) {
10786  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10787                                                Module::AllVisible,
10788                                                /*IsIncludeDirective=*/false);
10789  if (!Mod)
10790    return true;
10791
10792  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10793  Module *ModCheck = Mod;
10794  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10795    // If we've run out of module parents, just drop the remaining identifiers.
10796    // We need the length to be consistent.
10797    if (!ModCheck)
10798      break;
10799    ModCheck = ModCheck->Parent;
10800
10801    IdentifierLocs.push_back(Path[I].second);
10802  }
10803
10804  ImportDecl *Import = ImportDecl::Create(Context,
10805                                          Context.getTranslationUnitDecl(),
10806                                          AtLoc.isValid()? AtLoc : ImportLoc,
10807                                          Mod, IdentifierLocs);
10808  Context.getTranslationUnitDecl()->addDecl(Import);
10809  return Import;
10810}
10811
10812void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10813                                      IdentifierInfo* AliasName,
10814                                      SourceLocation PragmaLoc,
10815                                      SourceLocation NameLoc,
10816                                      SourceLocation AliasNameLoc) {
10817  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10818                                    LookupOrdinaryName);
10819  AsmLabelAttr *Attr =
10820     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10821
10822  if (PrevDecl)
10823    PrevDecl->addAttr(Attr);
10824  else
10825    (void)ExtnameUndeclaredIdentifiers.insert(
10826      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10827}
10828
10829void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10830                             SourceLocation PragmaLoc,
10831                             SourceLocation NameLoc) {
10832  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10833
10834  if (PrevDecl) {
10835    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10836  } else {
10837    (void)WeakUndeclaredIdentifiers.insert(
10838      std::pair<IdentifierInfo*,WeakInfo>
10839        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10840  }
10841}
10842
10843void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10844                                IdentifierInfo* AliasName,
10845                                SourceLocation PragmaLoc,
10846                                SourceLocation NameLoc,
10847                                SourceLocation AliasNameLoc) {
10848  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10849                                    LookupOrdinaryName);
10850  WeakInfo W = WeakInfo(Name, NameLoc);
10851
10852  if (PrevDecl) {
10853    if (!PrevDecl->hasAttr<AliasAttr>())
10854      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10855        DeclApplyPragmaWeak(TUScope, ND, W);
10856  } else {
10857    (void)WeakUndeclaredIdentifiers.insert(
10858      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10859  }
10860}
10861
10862Decl *Sema::getObjCDeclContext() const {
10863  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10864}
10865
10866AvailabilityResult Sema::getCurContextAvailability() const {
10867  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
10868  return D->getAvailability();
10869}
10870