SemaDecl.cpp revision c55b0b035289cd7702034bad930c71302bc80836
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        IIDecl = *Res;
89        break;
90      }
91    }
92
93    if (!IIDecl) {
94      // None of the entities we found is a type, so there is no way
95      // to even assume that the result is a type. In this case, don't
96      // complain about the ambiguity. The parser will either try to
97      // perform this lookup again (e.g., as an object name), which
98      // will produce the ambiguity, or will complain that it expected
99      // a type name.
100      Result.Destroy();
101      return 0;
102    }
103
104    // We found a type within the ambiguous lookup; diagnose the
105    // ambiguity and then return that type. This might be the right
106    // answer, or it might not be, but it suppresses any attempt to
107    // perform the name lookup again.
108    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
109    break;
110  }
111
112  case LookupResult::Found:
113    IIDecl = Result.getAsDecl();
114    break;
115  }
116
117  if (IIDecl) {
118    QualType T;
119
120    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
121      // Check whether we can use this type
122      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
123
124      T = Context.getTypeDeclType(TD);
125    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
126      // Check whether we can use this interface.
127      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
128
129      T = Context.getObjCInterfaceType(IDecl);
130    } else
131      return 0;
132
133    if (SS)
134      T = getQualifiedNameType(*SS, T);
135
136    return T.getAsOpaquePtr();
137  }
138
139  return 0;
140}
141
142DeclContext *Sema::getContainingDC(DeclContext *DC) {
143  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
144    // A C++ out-of-line method will return to the file declaration context.
145    if (MD->isOutOfLineDefinition())
146      return MD->getLexicalDeclContext();
147
148    // A C++ inline method is parsed *after* the topmost class it was declared
149    // in is fully parsed (it's "complete").
150    // The parsing of a C++ inline method happens at the declaration context of
151    // the topmost (non-nested) class it is lexically declared in.
152    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
153    DC = MD->getParent();
154    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
155      DC = RD;
156
157    // Return the declaration context of the topmost class the inline method is
158    // declared in.
159    return DC;
160  }
161
162  if (isa<ObjCMethodDecl>(DC))
163    return Context.getTranslationUnitDecl();
164
165  return DC->getLexicalParent();
166}
167
168void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
169  assert(getContainingDC(DC) == CurContext &&
170      "The next DeclContext should be lexically contained in the current one.");
171  CurContext = DC;
172  S->setEntity(DC);
173}
174
175void Sema::PopDeclContext() {
176  assert(CurContext && "DeclContext imbalance!");
177
178  CurContext = getContainingDC(CurContext);
179}
180
181/// \brief Determine whether we allow overloading of the function
182/// PrevDecl with another declaration.
183///
184/// This routine determines whether overloading is possible, not
185/// whether some new function is actually an overload. It will return
186/// true in C++ (where we can always provide overloads) or, as an
187/// extension, in C when the previous function is already an
188/// overloaded function declaration or has the "overloadable"
189/// attribute.
190static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
191  if (Context.getLangOptions().CPlusPlus)
192    return true;
193
194  if (isa<OverloadedFunctionDecl>(PrevDecl))
195    return true;
196
197  return PrevDecl->getAttr<OverloadableAttr>() != 0;
198}
199
200/// Add this decl to the scope shadowed decl chains.
201void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
202  // Move up the scope chain until we find the nearest enclosing
203  // non-transparent context. The declaration will be introduced into this
204  // scope.
205  while (S->getEntity() &&
206         ((DeclContext *)S->getEntity())->isTransparentContext())
207    S = S->getParent();
208
209  S->AddDecl(DeclPtrTy::make(D));
210
211  // Add scoped declarations into their context, so that they can be
212  // found later. Declarations without a context won't be inserted
213  // into any context.
214  CurContext->addDecl(Context, D);
215
216  // C++ [basic.scope]p4:
217  //   -- exactly one declaration shall declare a class name or
218  //   enumeration name that is not a typedef name and the other
219  //   declarations shall all refer to the same object or
220  //   enumerator, or all refer to functions and function templates;
221  //   in this case the class name or enumeration name is hidden.
222  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
223    // We are pushing the name of a tag (enum or class).
224    if (CurContext->getLookupContext()
225          == TD->getDeclContext()->getLookupContext()) {
226      // We're pushing the tag into the current context, which might
227      // require some reshuffling in the identifier resolver.
228      IdentifierResolver::iterator
229        I = IdResolver.begin(TD->getDeclName()),
230        IEnd = IdResolver.end();
231      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
232        NamedDecl *PrevDecl = *I;
233        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
234             PrevDecl = *I, ++I) {
235          if (TD->declarationReplaces(*I)) {
236            // This is a redeclaration. Remove it from the chain and
237            // break out, so that we'll add in the shadowed
238            // declaration.
239            S->RemoveDecl(DeclPtrTy::make(*I));
240            if (PrevDecl == *I) {
241              IdResolver.RemoveDecl(*I);
242              IdResolver.AddDecl(TD);
243              return;
244            } else {
245              IdResolver.RemoveDecl(*I);
246              break;
247            }
248          }
249        }
250
251        // There is already a declaration with the same name in the same
252        // scope, which is not a tag declaration. It must be found
253        // before we find the new declaration, so insert the new
254        // declaration at the end of the chain.
255        IdResolver.AddShadowedDecl(TD, PrevDecl);
256
257        return;
258      }
259    }
260  } else if (isa<FunctionDecl>(D) &&
261             AllowOverloadingOfFunction(D, Context)) {
262    // We are pushing the name of a function, which might be an
263    // overloaded name.
264    FunctionDecl *FD = cast<FunctionDecl>(D);
265    IdentifierResolver::iterator Redecl
266      = std::find_if(IdResolver.begin(FD->getDeclName()),
267                     IdResolver.end(),
268                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
269                                  FD));
270    if (Redecl != IdResolver.end() &&
271        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
272      // There is already a declaration of a function on our
273      // IdResolver chain. Replace it with this declaration.
274      S->RemoveDecl(DeclPtrTy::make(*Redecl));
275      IdResolver.RemoveDecl(*Redecl);
276    }
277  }
278
279  IdResolver.AddDecl(D);
280}
281
282void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
283  if (S->decl_empty()) return;
284  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
285	 "Scope shouldn't contain decls!");
286
287  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
288       I != E; ++I) {
289    Decl *TmpD = (*I).getAs<Decl>();
290    assert(TmpD && "This decl didn't get pushed??");
291
292    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
293    NamedDecl *D = cast<NamedDecl>(TmpD);
294
295    if (!D->getDeclName()) continue;
296
297    // Remove this name from our lexical scope.
298    IdResolver.RemoveDecl(D);
299  }
300}
301
302/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
303/// return 0 if one not found.
304ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
305  // The third "scope" argument is 0 since we aren't enabling lazy built-in
306  // creation from this context.
307  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
308
309  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
310}
311
312/// getNonFieldDeclScope - Retrieves the innermost scope, starting
313/// from S, where a non-field would be declared. This routine copes
314/// with the difference between C and C++ scoping rules in structs and
315/// unions. For example, the following code is well-formed in C but
316/// ill-formed in C++:
317/// @code
318/// struct S6 {
319///   enum { BAR } e;
320/// };
321///
322/// void test_S6() {
323///   struct S6 a;
324///   a.e = BAR;
325/// }
326/// @endcode
327/// For the declaration of BAR, this routine will return a different
328/// scope. The scope S will be the scope of the unnamed enumeration
329/// within S6. In C++, this routine will return the scope associated
330/// with S6, because the enumeration's scope is a transparent
331/// context but structures can contain non-field names. In C, this
332/// routine will return the translation unit scope, since the
333/// enumeration's scope is a transparent context and structures cannot
334/// contain non-field names.
335Scope *Sema::getNonFieldDeclScope(Scope *S) {
336  while (((S->getFlags() & Scope::DeclScope) == 0) ||
337         (S->getEntity() &&
338          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
339         (S->isClassScope() && !getLangOptions().CPlusPlus))
340    S = S->getParent();
341  return S;
342}
343
344void Sema::InitBuiltinVaListType() {
345  if (!Context.getBuiltinVaListType().isNull())
346    return;
347
348  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
349  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
350  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
351  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
352}
353
354/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
355/// file scope.  lazily create a decl for it. ForRedeclaration is true
356/// if we're creating this built-in in anticipation of redeclaring the
357/// built-in.
358NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
359                                     Scope *S, bool ForRedeclaration,
360                                     SourceLocation Loc) {
361  Builtin::ID BID = (Builtin::ID)bid;
362
363  if (Context.BuiltinInfo.hasVAListUse(BID))
364    InitBuiltinVaListType();
365
366  Builtin::Context::GetBuiltinTypeError Error;
367  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
368  switch (Error) {
369  case Builtin::Context::GE_None:
370    // Okay
371    break;
372
373  case Builtin::Context::GE_Missing_FILE:
374    if (ForRedeclaration)
375      Diag(Loc, diag::err_implicit_decl_requires_stdio)
376        << Context.BuiltinInfo.GetName(BID);
377    return 0;
378  }
379
380  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
381    Diag(Loc, diag::ext_implicit_lib_function_decl)
382      << Context.BuiltinInfo.GetName(BID)
383      << R;
384    if (Context.BuiltinInfo.getHeaderName(BID) &&
385        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
386          != diag::MAP_IGNORE)
387      Diag(Loc, diag::note_please_include_header)
388        << Context.BuiltinInfo.getHeaderName(BID)
389        << Context.BuiltinInfo.GetName(BID);
390  }
391
392  FunctionDecl *New = FunctionDecl::Create(Context,
393                                           Context.getTranslationUnitDecl(),
394                                           Loc, II, R,
395                                           FunctionDecl::Extern, false,
396                                           /*hasPrototype=*/true);
397  New->setImplicit();
398
399  // Create Decl objects for each parameter, adding them to the
400  // FunctionDecl.
401  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
402    llvm::SmallVector<ParmVarDecl*, 16> Params;
403    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
404      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
405                                           FT->getArgType(i), VarDecl::None, 0));
406    New->setParams(Context, &Params[0], Params.size());
407  }
408
409  AddKnownFunctionAttributes(New);
410
411  // TUScope is the translation-unit scope to insert this function into.
412  // FIXME: This is hideous. We need to teach PushOnScopeChains to
413  // relate Scopes to DeclContexts, and probably eliminate CurContext
414  // entirely, but we're not there yet.
415  DeclContext *SavedContext = CurContext;
416  CurContext = Context.getTranslationUnitDecl();
417  PushOnScopeChains(New, TUScope);
418  CurContext = SavedContext;
419  return New;
420}
421
422/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
423/// everything from the standard library is defined.
424NamespaceDecl *Sema::GetStdNamespace() {
425  if (!StdNamespace) {
426    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
427    DeclContext *Global = Context.getTranslationUnitDecl();
428    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
429    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
430  }
431  return StdNamespace;
432}
433
434/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
435/// same name and scope as a previous declaration 'Old'.  Figure out
436/// how to resolve this situation, merging decls or emitting
437/// diagnostics as appropriate. Returns true if there was an error,
438/// false otherwise.
439///
440bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
441  bool objc_types = false;
442  // Allow multiple definitions for ObjC built-in typedefs.
443  // FIXME: Verify the underlying types are equivalent!
444  if (getLangOptions().ObjC1) {
445    const IdentifierInfo *TypeID = New->getIdentifier();
446    switch (TypeID->getLength()) {
447    default: break;
448    case 2:
449      if (!TypeID->isStr("id"))
450        break;
451      Context.setObjCIdType(New);
452      objc_types = true;
453      break;
454    case 5:
455      if (!TypeID->isStr("Class"))
456        break;
457      Context.setObjCClassType(New);
458      objc_types = true;
459      return false;
460    case 3:
461      if (!TypeID->isStr("SEL"))
462        break;
463      Context.setObjCSelType(New);
464      objc_types = true;
465      return false;
466    case 8:
467      if (!TypeID->isStr("Protocol"))
468        break;
469      Context.setObjCProtoType(New->getUnderlyingType());
470      objc_types = true;
471      return false;
472    }
473    // Fall through - the typedef name was not a builtin type.
474  }
475  // Verify the old decl was also a type.
476  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
477  if (!Old) {
478    Diag(New->getLocation(), diag::err_redefinition_different_kind)
479      << New->getDeclName();
480    if (!objc_types)
481      Diag(OldD->getLocation(), diag::note_previous_definition);
482    return true;
483  }
484
485  // Determine the "old" type we'll use for checking and diagnostics.
486  QualType OldType;
487  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
488    OldType = OldTypedef->getUnderlyingType();
489  else
490    OldType = Context.getTypeDeclType(Old);
491
492  // If the typedef types are not identical, reject them in all languages and
493  // with any extensions enabled.
494
495  if (OldType != New->getUnderlyingType() &&
496      Context.getCanonicalType(OldType) !=
497      Context.getCanonicalType(New->getUnderlyingType())) {
498    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
499      << New->getUnderlyingType() << OldType;
500    if (!objc_types)
501      Diag(Old->getLocation(), diag::note_previous_definition);
502    return true;
503  }
504  if (objc_types) return false;
505  if (getLangOptions().Microsoft) return false;
506
507  // C++ [dcl.typedef]p2:
508  //   In a given non-class scope, a typedef specifier can be used to
509  //   redefine the name of any type declared in that scope to refer
510  //   to the type to which it already refers.
511  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
512    return false;
513
514  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
515  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
516  // *either* declaration is in a system header. The code below implements
517  // this adhoc compatibility rule. FIXME: The following code will not
518  // work properly when compiling ".i" files (containing preprocessed output).
519  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
520    SourceManager &SrcMgr = Context.getSourceManager();
521    if (SrcMgr.isInSystemHeader(Old->getLocation()))
522      return false;
523    if (SrcMgr.isInSystemHeader(New->getLocation()))
524      return false;
525  }
526
527  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
528  Diag(Old->getLocation(), diag::note_previous_definition);
529  return true;
530}
531
532/// DeclhasAttr - returns true if decl Declaration already has the target
533/// attribute.
534static bool DeclHasAttr(const Decl *decl, const Attr *target) {
535  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
536    if (attr->getKind() == target->getKind())
537      return true;
538
539  return false;
540}
541
542/// MergeAttributes - append attributes from the Old decl to the New one.
543static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
544  Attr *attr = const_cast<Attr*>(Old->getAttrs());
545
546  while (attr) {
547    Attr *tmp = attr;
548    attr = attr->getNext();
549
550    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
551      tmp->setInherited(true);
552      New->addAttr(tmp);
553    } else {
554      tmp->setNext(0);
555      tmp->Destroy(C);
556    }
557  }
558
559  Old->invalidateAttrs();
560}
561
562/// Used in MergeFunctionDecl to keep track of function parameters in
563/// C.
564struct GNUCompatibleParamWarning {
565  ParmVarDecl *OldParm;
566  ParmVarDecl *NewParm;
567  QualType PromotedType;
568};
569
570/// MergeFunctionDecl - We just parsed a function 'New' from
571/// declarator D which has the same name and scope as a previous
572/// declaration 'Old'.  Figure out how to resolve this situation,
573/// merging decls or emitting diagnostics as appropriate.
574///
575/// In C++, New and Old must be declarations that are not
576/// overloaded. Use IsOverload to determine whether New and Old are
577/// overloaded, and to select the Old declaration that New should be
578/// merged with.
579///
580/// Returns true if there was an error, false otherwise.
581bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
582  assert(!isa<OverloadedFunctionDecl>(OldD) &&
583         "Cannot merge with an overloaded function declaration");
584
585  // Verify the old decl was also a function.
586  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
587  if (!Old) {
588    Diag(New->getLocation(), diag::err_redefinition_different_kind)
589      << New->getDeclName();
590    Diag(OldD->getLocation(), diag::note_previous_definition);
591    return true;
592  }
593
594  // Determine whether the previous declaration was a definition,
595  // implicit declaration, or a declaration.
596  diag::kind PrevDiag;
597  if (Old->isThisDeclarationADefinition())
598    PrevDiag = diag::note_previous_definition;
599  else if (Old->isImplicit())
600    PrevDiag = diag::note_previous_implicit_declaration;
601  else
602    PrevDiag = diag::note_previous_declaration;
603
604  QualType OldQType = Context.getCanonicalType(Old->getType());
605  QualType NewQType = Context.getCanonicalType(New->getType());
606
607  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
608      New->getStorageClass() == FunctionDecl::Static &&
609      Old->getStorageClass() != FunctionDecl::Static) {
610    Diag(New->getLocation(), diag::err_static_non_static)
611      << New;
612    Diag(Old->getLocation(), PrevDiag);
613    return true;
614  }
615
616  if (getLangOptions().CPlusPlus) {
617    // (C++98 13.1p2):
618    //   Certain function declarations cannot be overloaded:
619    //     -- Function declarations that differ only in the return type
620    //        cannot be overloaded.
621    QualType OldReturnType
622      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
623    QualType NewReturnType
624      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
625    if (OldReturnType != NewReturnType) {
626      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
627      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
628      return true;
629    }
630
631    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
632    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
633    if (OldMethod && NewMethod &&
634        OldMethod->getLexicalDeclContext() ==
635          NewMethod->getLexicalDeclContext()) {
636      //    -- Member function declarations with the same name and the
637      //       same parameter types cannot be overloaded if any of them
638      //       is a static member function declaration.
639      if (OldMethod->isStatic() || NewMethod->isStatic()) {
640        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
641        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
642        return true;
643      }
644
645      // C++ [class.mem]p1:
646      //   [...] A member shall not be declared twice in the
647      //   member-specification, except that a nested class or member
648      //   class template can be declared and then later defined.
649      unsigned NewDiag;
650      if (isa<CXXConstructorDecl>(OldMethod))
651        NewDiag = diag::err_constructor_redeclared;
652      else if (isa<CXXDestructorDecl>(NewMethod))
653        NewDiag = diag::err_destructor_redeclared;
654      else if (isa<CXXConversionDecl>(NewMethod))
655        NewDiag = diag::err_conv_function_redeclared;
656      else
657        NewDiag = diag::err_member_redeclared;
658
659      Diag(New->getLocation(), NewDiag);
660      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
661    }
662
663    // (C++98 8.3.5p3):
664    //   All declarations for a function shall agree exactly in both the
665    //   return type and the parameter-type-list.
666    if (OldQType == NewQType)
667      return MergeCompatibleFunctionDecls(New, Old);
668
669    // Fall through for conflicting redeclarations and redefinitions.
670  }
671
672  // C: Function types need to be compatible, not identical. This handles
673  // duplicate function decls like "void f(int); void f(enum X);" properly.
674  if (!getLangOptions().CPlusPlus &&
675      Context.typesAreCompatible(OldQType, NewQType)) {
676    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
677    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
678    const FunctionProtoType *OldProto = 0;
679    if (isa<FunctionNoProtoType>(NewFuncType) &&
680        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
681      // The old declaration provided a function prototype, but the
682      // new declaration does not. Merge in the prototype.
683      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
684                                                 OldProto->arg_type_end());
685      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
686                                         &ParamTypes[0], ParamTypes.size(),
687                                         OldProto->isVariadic(),
688                                         OldProto->getTypeQuals());
689      New->setType(NewQType);
690      New->setInheritedPrototype();
691
692      // Synthesize a parameter for each argument type.
693      llvm::SmallVector<ParmVarDecl*, 16> Params;
694      for (FunctionProtoType::arg_type_iterator
695             ParamType = OldProto->arg_type_begin(),
696             ParamEnd = OldProto->arg_type_end();
697           ParamType != ParamEnd; ++ParamType) {
698        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
699                                                 SourceLocation(), 0,
700                                                 *ParamType, VarDecl::None,
701                                                 0);
702        Param->setImplicit();
703        Params.push_back(Param);
704      }
705
706      New->setParams(Context, &Params[0], Params.size());
707    }
708
709    return MergeCompatibleFunctionDecls(New, Old);
710  }
711
712  // GNU C permits a K&R definition to follow a prototype declaration
713  // if the declared types of the parameters in the K&R definition
714  // match the types in the prototype declaration, even when the
715  // promoted types of the parameters from the K&R definition differ
716  // from the types in the prototype. GCC then keeps the types from
717  // the prototype.
718  if (!getLangOptions().CPlusPlus &&
719      !getLangOptions().NoExtensions &&
720      Old->hasPrototype() && !New->hasPrototype() &&
721      New->getType()->getAsFunctionProtoType() &&
722      Old->getNumParams() == New->getNumParams()) {
723    llvm::SmallVector<QualType, 16> ArgTypes;
724    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
725    const FunctionProtoType *OldProto
726      = Old->getType()->getAsFunctionProtoType();
727    const FunctionProtoType *NewProto
728      = New->getType()->getAsFunctionProtoType();
729
730    // Determine whether this is the GNU C extension.
731    bool GNUCompatible =
732      Context.typesAreCompatible(OldProto->getResultType(),
733                                 NewProto->getResultType()) &&
734      (OldProto->isVariadic() == NewProto->isVariadic());
735    for (unsigned Idx = 0, End = Old->getNumParams();
736         GNUCompatible && Idx != End; ++Idx) {
737      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
738      ParmVarDecl *NewParm = New->getParamDecl(Idx);
739      if (Context.typesAreCompatible(OldParm->getType(),
740                                     NewProto->getArgType(Idx))) {
741        ArgTypes.push_back(NewParm->getType());
742      } else if (Context.typesAreCompatible(OldParm->getType(),
743                                            NewParm->getType())) {
744        GNUCompatibleParamWarning Warn
745          = { OldParm, NewParm, NewProto->getArgType(Idx) };
746        Warnings.push_back(Warn);
747        ArgTypes.push_back(NewParm->getType());
748      } else
749        GNUCompatible = false;
750    }
751
752    if (GNUCompatible) {
753      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
754        Diag(Warnings[Warn].NewParm->getLocation(),
755             diag::ext_param_promoted_not_compatible_with_prototype)
756          << Warnings[Warn].PromotedType
757          << Warnings[Warn].OldParm->getType();
758        Diag(Warnings[Warn].OldParm->getLocation(),
759             diag::note_previous_declaration);
760      }
761
762      New->setType(Context.getFunctionType(NewProto->getResultType(),
763                                           &ArgTypes[0], ArgTypes.size(),
764                                           NewProto->isVariadic(),
765                                           NewProto->getTypeQuals()));
766      return MergeCompatibleFunctionDecls(New, Old);
767    }
768
769    // Fall through to diagnose conflicting types.
770  }
771
772  // A function that has already been declared has been redeclared or defined
773  // with a different type- show appropriate diagnostic
774  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
775    // The user has declared a builtin function with an incompatible
776    // signature.
777    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
778      // The function the user is redeclaring is a library-defined
779      // function like 'malloc' or 'printf'. Warn about the
780      // redeclaration, then pretend that we don't know about this
781      // library built-in.
782      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
783      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
784        << Old << Old->getType();
785      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
786      Old->setInvalidDecl();
787      return false;
788    }
789
790    PrevDiag = diag::note_previous_builtin_declaration;
791  }
792
793  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
794  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
795  return true;
796}
797
798/// \brief Completes the merge of two function declarations that are
799/// known to be compatible.
800///
801/// This routine handles the merging of attributes and other
802/// properties of function declarations form the old declaration to
803/// the new declaration, once we know that New is in fact a
804/// redeclaration of Old.
805///
806/// \returns false
807bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
808  // Merge the attributes
809  MergeAttributes(New, Old, Context);
810
811  // Merge the storage class.
812  New->setStorageClass(Old->getStorageClass());
813
814  // FIXME: need to implement inline semantics
815
816  // Merge "pure" flag.
817  if (Old->isPure())
818    New->setPure();
819
820  // Merge the "deleted" flag.
821  if (Old->isDeleted())
822    New->setDeleted();
823
824  if (getLangOptions().CPlusPlus)
825    return MergeCXXFunctionDecl(New, Old);
826
827  return false;
828}
829
830/// MergeVarDecl - We just parsed a variable 'New' which has the same name
831/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
832/// situation, merging decls or emitting diagnostics as appropriate.
833///
834/// Tentative definition rules (C99 6.9.2p2) are checked by
835/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
836/// definitions here, since the initializer hasn't been attached.
837///
838bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
839  // Verify the old decl was also a variable.
840  VarDecl *Old = dyn_cast<VarDecl>(OldD);
841  if (!Old) {
842    Diag(New->getLocation(), diag::err_redefinition_different_kind)
843      << New->getDeclName();
844    Diag(OldD->getLocation(), diag::note_previous_definition);
845    return true;
846  }
847
848  MergeAttributes(New, Old, Context);
849
850  // Merge the types
851  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
852  if (MergedT.isNull()) {
853    Diag(New->getLocation(), diag::err_redefinition_different_type)
854      << New->getDeclName();
855    Diag(Old->getLocation(), diag::note_previous_definition);
856    return true;
857  }
858  New->setType(MergedT);
859
860  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
861  if (New->getStorageClass() == VarDecl::Static &&
862      (Old->getStorageClass() == VarDecl::None ||
863       Old->getStorageClass() == VarDecl::Extern)) {
864    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
865    Diag(Old->getLocation(), diag::note_previous_definition);
866    return true;
867  }
868  // C99 6.2.2p4:
869  //   For an identifier declared with the storage-class specifier
870  //   extern in a scope in which a prior declaration of that
871  //   identifier is visible,23) if the prior declaration specifies
872  //   internal or external linkage, the linkage of the identifier at
873  //   the later declaration is the same as the linkage specified at
874  //   the prior declaration. If no prior declaration is visible, or
875  //   if the prior declaration specifies no linkage, then the
876  //   identifier has external linkage.
877  if (New->hasExternalStorage() && Old->hasLinkage())
878    /* Okay */;
879  else if (New->getStorageClass() != VarDecl::Static &&
880           Old->getStorageClass() == VarDecl::Static) {
881    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
882    Diag(Old->getLocation(), diag::note_previous_definition);
883    return true;
884  }
885  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
886  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
887      // Don't complain about out-of-line definitions of static members.
888      !(Old->getLexicalDeclContext()->isRecord() &&
889        !New->getLexicalDeclContext()->isRecord())) {
890    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return true;
893  }
894
895  // Keep a chain of previous declarations.
896  New->setPreviousDeclaration(Old);
897
898  return false;
899}
900
901/// CheckParmsForFunctionDef - Check that the parameters of the given
902/// function are appropriate for the definition of a function. This
903/// takes care of any checks that cannot be performed on the
904/// declaration itself, e.g., that the types of each of the function
905/// parameters are complete.
906bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
907  bool HasInvalidParm = false;
908  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
909    ParmVarDecl *Param = FD->getParamDecl(p);
910
911    // C99 6.7.5.3p4: the parameters in a parameter type list in a
912    // function declarator that is part of a function definition of
913    // that function shall not have incomplete type.
914    //
915    // This is also C++ [dcl.fct]p6.
916    if (!Param->isInvalidDecl() &&
917        RequireCompleteType(Param->getLocation(), Param->getType(),
918                               diag::err_typecheck_decl_incomplete_type)) {
919      Param->setInvalidDecl();
920      HasInvalidParm = true;
921    }
922
923    // C99 6.9.1p5: If the declarator includes a parameter type list, the
924    // declaration of each parameter shall include an identifier.
925    if (Param->getIdentifier() == 0 &&
926        !Param->isImplicit() &&
927        !getLangOptions().CPlusPlus)
928      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
929  }
930
931  return HasInvalidParm;
932}
933
934/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
935/// no declarator (e.g. "struct foo;") is parsed.
936Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
937  // FIXME: Error on auto/register at file scope
938  // FIXME: Error on inline/virtual/explicit
939  // FIXME: Error on invalid restrict
940  // FIXME: Warn on useless const/volatile
941  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
942  // FIXME: Warn on useless attributes
943
944  TagDecl *Tag = 0;
945  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
946      DS.getTypeSpecType() == DeclSpec::TST_struct ||
947      DS.getTypeSpecType() == DeclSpec::TST_union ||
948      DS.getTypeSpecType() == DeclSpec::TST_enum)
949    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
950
951  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
952    if (!Record->getDeclName() && Record->isDefinition() &&
953        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
954      if (getLangOptions().CPlusPlus ||
955          Record->getDeclContext()->isRecord())
956        return BuildAnonymousStructOrUnion(S, DS, Record);
957
958      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
959        << DS.getSourceRange();
960    }
961
962    // Microsoft allows unnamed struct/union fields. Don't complain
963    // about them.
964    // FIXME: Should we support Microsoft's extensions in this area?
965    if (Record->getDeclName() && getLangOptions().Microsoft)
966      return DeclPtrTy::make(Tag);
967  }
968
969  if (!DS.isMissingDeclaratorOk() &&
970      DS.getTypeSpecType() != DeclSpec::TST_error) {
971    // Warn about typedefs of enums without names, since this is an
972    // extension in both Microsoft an GNU.
973    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
974        Tag && isa<EnumDecl>(Tag)) {
975      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
976        << DS.getSourceRange();
977      return DeclPtrTy::make(Tag);
978    }
979
980    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
981      << DS.getSourceRange();
982    return DeclPtrTy();
983  }
984
985  return DeclPtrTy::make(Tag);
986}
987
988/// InjectAnonymousStructOrUnionMembers - Inject the members of the
989/// anonymous struct or union AnonRecord into the owning context Owner
990/// and scope S. This routine will be invoked just after we realize
991/// that an unnamed union or struct is actually an anonymous union or
992/// struct, e.g.,
993///
994/// @code
995/// union {
996///   int i;
997///   float f;
998/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
999///    // f into the surrounding scope.x
1000/// @endcode
1001///
1002/// This routine is recursive, injecting the names of nested anonymous
1003/// structs/unions into the owning context and scope as well.
1004bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1005                                               RecordDecl *AnonRecord) {
1006  bool Invalid = false;
1007  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1008                               FEnd = AnonRecord->field_end(Context);
1009       F != FEnd; ++F) {
1010    if ((*F)->getDeclName()) {
1011      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1012                                                LookupOrdinaryName, true);
1013      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1014        // C++ [class.union]p2:
1015        //   The names of the members of an anonymous union shall be
1016        //   distinct from the names of any other entity in the
1017        //   scope in which the anonymous union is declared.
1018        unsigned diagKind
1019          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1020                                 : diag::err_anonymous_struct_member_redecl;
1021        Diag((*F)->getLocation(), diagKind)
1022          << (*F)->getDeclName();
1023        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1024        Invalid = true;
1025      } else {
1026        // C++ [class.union]p2:
1027        //   For the purpose of name lookup, after the anonymous union
1028        //   definition, the members of the anonymous union are
1029        //   considered to have been defined in the scope in which the
1030        //   anonymous union is declared.
1031        Owner->makeDeclVisibleInContext(Context, *F);
1032        S->AddDecl(DeclPtrTy::make(*F));
1033        IdResolver.AddDecl(*F);
1034      }
1035    } else if (const RecordType *InnerRecordType
1036                 = (*F)->getType()->getAsRecordType()) {
1037      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1038      if (InnerRecord->isAnonymousStructOrUnion())
1039        Invalid = Invalid ||
1040          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1041    }
1042  }
1043
1044  return Invalid;
1045}
1046
1047/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1048/// anonymous structure or union. Anonymous unions are a C++ feature
1049/// (C++ [class.union]) and a GNU C extension; anonymous structures
1050/// are a GNU C and GNU C++ extension.
1051Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1052                                                  RecordDecl *Record) {
1053  DeclContext *Owner = Record->getDeclContext();
1054
1055  // Diagnose whether this anonymous struct/union is an extension.
1056  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1057    Diag(Record->getLocation(), diag::ext_anonymous_union);
1058  else if (!Record->isUnion())
1059    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1060
1061  // C and C++ require different kinds of checks for anonymous
1062  // structs/unions.
1063  bool Invalid = false;
1064  if (getLangOptions().CPlusPlus) {
1065    const char* PrevSpec = 0;
1066    // C++ [class.union]p3:
1067    //   Anonymous unions declared in a named namespace or in the
1068    //   global namespace shall be declared static.
1069    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1070        (isa<TranslationUnitDecl>(Owner) ||
1071         (isa<NamespaceDecl>(Owner) &&
1072          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1073      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1074      Invalid = true;
1075
1076      // Recover by adding 'static'.
1077      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1078    }
1079    // C++ [class.union]p3:
1080    //   A storage class is not allowed in a declaration of an
1081    //   anonymous union in a class scope.
1082    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1083             isa<RecordDecl>(Owner)) {
1084      Diag(DS.getStorageClassSpecLoc(),
1085           diag::err_anonymous_union_with_storage_spec);
1086      Invalid = true;
1087
1088      // Recover by removing the storage specifier.
1089      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1090                             PrevSpec);
1091    }
1092
1093    // C++ [class.union]p2:
1094    //   The member-specification of an anonymous union shall only
1095    //   define non-static data members. [Note: nested types and
1096    //   functions cannot be declared within an anonymous union. ]
1097    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1098                                 MemEnd = Record->decls_end(Context);
1099         Mem != MemEnd; ++Mem) {
1100      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1101        // C++ [class.union]p3:
1102        //   An anonymous union shall not have private or protected
1103        //   members (clause 11).
1104        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1105          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1106            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1107          Invalid = true;
1108        }
1109      } else if ((*Mem)->isImplicit()) {
1110        // Any implicit members are fine.
1111      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1112        // This is a type that showed up in an
1113        // elaborated-type-specifier inside the anonymous struct or
1114        // union, but which actually declares a type outside of the
1115        // anonymous struct or union. It's okay.
1116      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1117        if (!MemRecord->isAnonymousStructOrUnion() &&
1118            MemRecord->getDeclName()) {
1119          // This is a nested type declaration.
1120          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1121            << (int)Record->isUnion();
1122          Invalid = true;
1123        }
1124      } else {
1125        // We have something that isn't a non-static data
1126        // member. Complain about it.
1127        unsigned DK = diag::err_anonymous_record_bad_member;
1128        if (isa<TypeDecl>(*Mem))
1129          DK = diag::err_anonymous_record_with_type;
1130        else if (isa<FunctionDecl>(*Mem))
1131          DK = diag::err_anonymous_record_with_function;
1132        else if (isa<VarDecl>(*Mem))
1133          DK = diag::err_anonymous_record_with_static;
1134        Diag((*Mem)->getLocation(), DK)
1135            << (int)Record->isUnion();
1136          Invalid = true;
1137      }
1138    }
1139  }
1140
1141  if (!Record->isUnion() && !Owner->isRecord()) {
1142    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1143      << (int)getLangOptions().CPlusPlus;
1144    Invalid = true;
1145  }
1146
1147  // Create a declaration for this anonymous struct/union.
1148  NamedDecl *Anon = 0;
1149  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1150    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1151                             /*IdentifierInfo=*/0,
1152                             Context.getTypeDeclType(Record),
1153                             /*BitWidth=*/0, /*Mutable=*/false);
1154    Anon->setAccess(AS_public);
1155    if (getLangOptions().CPlusPlus)
1156      FieldCollector->Add(cast<FieldDecl>(Anon));
1157  } else {
1158    VarDecl::StorageClass SC;
1159    switch (DS.getStorageClassSpec()) {
1160    default: assert(0 && "Unknown storage class!");
1161    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1162    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1163    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1164    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1165    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1166    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1167    case DeclSpec::SCS_mutable:
1168      // mutable can only appear on non-static class members, so it's always
1169      // an error here
1170      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1171      Invalid = true;
1172      SC = VarDecl::None;
1173      break;
1174    }
1175
1176    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1177                           /*IdentifierInfo=*/0,
1178                           Context.getTypeDeclType(Record),
1179                           SC, DS.getSourceRange().getBegin());
1180  }
1181  Anon->setImplicit();
1182
1183  // Add the anonymous struct/union object to the current
1184  // context. We'll be referencing this object when we refer to one of
1185  // its members.
1186  Owner->addDecl(Context, Anon);
1187
1188  // Inject the members of the anonymous struct/union into the owning
1189  // context and into the identifier resolver chain for name lookup
1190  // purposes.
1191  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1192    Invalid = true;
1193
1194  // Mark this as an anonymous struct/union type. Note that we do not
1195  // do this until after we have already checked and injected the
1196  // members of this anonymous struct/union type, because otherwise
1197  // the members could be injected twice: once by DeclContext when it
1198  // builds its lookup table, and once by
1199  // InjectAnonymousStructOrUnionMembers.
1200  Record->setAnonymousStructOrUnion(true);
1201
1202  if (Invalid)
1203    Anon->setInvalidDecl();
1204
1205  return DeclPtrTy::make(Anon);
1206}
1207
1208
1209/// GetNameForDeclarator - Determine the full declaration name for the
1210/// given Declarator.
1211DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1212  switch (D.getKind()) {
1213  case Declarator::DK_Abstract:
1214    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1215    return DeclarationName();
1216
1217  case Declarator::DK_Normal:
1218    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1219    return DeclarationName(D.getIdentifier());
1220
1221  case Declarator::DK_Constructor: {
1222    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1223    Ty = Context.getCanonicalType(Ty);
1224    return Context.DeclarationNames.getCXXConstructorName(Ty);
1225  }
1226
1227  case Declarator::DK_Destructor: {
1228    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1229    Ty = Context.getCanonicalType(Ty);
1230    return Context.DeclarationNames.getCXXDestructorName(Ty);
1231  }
1232
1233  case Declarator::DK_Conversion: {
1234    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1235    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1236    Ty = Context.getCanonicalType(Ty);
1237    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1238  }
1239
1240  case Declarator::DK_Operator:
1241    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1242    return Context.DeclarationNames.getCXXOperatorName(
1243                                                D.getOverloadedOperator());
1244  }
1245
1246  assert(false && "Unknown name kind");
1247  return DeclarationName();
1248}
1249
1250/// isNearlyMatchingFunction - Determine whether the C++ functions
1251/// Declaration and Definition are "nearly" matching. This heuristic
1252/// is used to improve diagnostics in the case where an out-of-line
1253/// function definition doesn't match any declaration within
1254/// the class or namespace.
1255static bool isNearlyMatchingFunction(ASTContext &Context,
1256                                     FunctionDecl *Declaration,
1257                                     FunctionDecl *Definition) {
1258  if (Declaration->param_size() != Definition->param_size())
1259    return false;
1260  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1261    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1262    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1263
1264    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1265    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1266    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1267      return false;
1268  }
1269
1270  return true;
1271}
1272
1273Sema::DeclPtrTy
1274Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1275  DeclarationName Name = GetNameForDeclarator(D);
1276
1277  // All of these full declarators require an identifier.  If it doesn't have
1278  // one, the ParsedFreeStandingDeclSpec action should be used.
1279  if (!Name) {
1280    if (!D.getInvalidType())  // Reject this if we think it is valid.
1281      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1282           diag::err_declarator_need_ident)
1283        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1284    return DeclPtrTy();
1285  }
1286
1287  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1288  // we find one that is.
1289  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1290         (S->getFlags() & Scope::TemplateParamScope) != 0)
1291    S = S->getParent();
1292
1293  DeclContext *DC;
1294  NamedDecl *PrevDecl;
1295  NamedDecl *New;
1296  bool InvalidDecl = false;
1297
1298  QualType R = GetTypeForDeclarator(D, S);
1299  if (R.isNull()) {
1300    InvalidDecl = true;
1301    R = Context.IntTy;
1302  }
1303
1304  // See if this is a redefinition of a variable in the same scope.
1305  if (D.getCXXScopeSpec().isInvalid()) {
1306    DC = CurContext;
1307    PrevDecl = 0;
1308    InvalidDecl = true;
1309  } else if (!D.getCXXScopeSpec().isSet()) {
1310    LookupNameKind NameKind = LookupOrdinaryName;
1311
1312    // If the declaration we're planning to build will be a function
1313    // or object with linkage, then look for another declaration with
1314    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1315    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1316      /* Do nothing*/;
1317    else if (R->isFunctionType()) {
1318      if (CurContext->isFunctionOrMethod())
1319        NameKind = LookupRedeclarationWithLinkage;
1320    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1321      NameKind = LookupRedeclarationWithLinkage;
1322
1323    DC = CurContext;
1324    PrevDecl = LookupName(S, Name, NameKind, true,
1325                          D.getDeclSpec().getStorageClassSpec() !=
1326                            DeclSpec::SCS_static,
1327                          D.getIdentifierLoc());
1328  } else { // Something like "int foo::x;"
1329    DC = computeDeclContext(D.getCXXScopeSpec());
1330    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1331    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1332
1333    // C++ 7.3.1.2p2:
1334    // Members (including explicit specializations of templates) of a named
1335    // namespace can also be defined outside that namespace by explicit
1336    // qualification of the name being defined, provided that the entity being
1337    // defined was already declared in the namespace and the definition appears
1338    // after the point of declaration in a namespace that encloses the
1339    // declarations namespace.
1340    //
1341    // Note that we only check the context at this point. We don't yet
1342    // have enough information to make sure that PrevDecl is actually
1343    // the declaration we want to match. For example, given:
1344    //
1345    //   class X {
1346    //     void f();
1347    //     void f(float);
1348    //   };
1349    //
1350    //   void X::f(int) { } // ill-formed
1351    //
1352    // In this case, PrevDecl will point to the overload set
1353    // containing the two f's declared in X, but neither of them
1354    // matches.
1355
1356    // First check whether we named the global scope.
1357    if (isa<TranslationUnitDecl>(DC)) {
1358      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1359        << Name << D.getCXXScopeSpec().getRange();
1360    } else if (!CurContext->Encloses(DC)) {
1361      // The qualifying scope doesn't enclose the original declaration.
1362      // Emit diagnostic based on current scope.
1363      SourceLocation L = D.getIdentifierLoc();
1364      SourceRange R = D.getCXXScopeSpec().getRange();
1365      if (isa<FunctionDecl>(CurContext))
1366        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1367      else
1368        Diag(L, diag::err_invalid_declarator_scope)
1369          << Name << cast<NamedDecl>(DC) << R;
1370      InvalidDecl = true;
1371    }
1372  }
1373
1374  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1375    // Maybe we will complain about the shadowed template parameter.
1376    InvalidDecl = InvalidDecl
1377      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1378    // Just pretend that we didn't see the previous declaration.
1379    PrevDecl = 0;
1380  }
1381
1382  // In C++, the previous declaration we find might be a tag type
1383  // (class or enum). In this case, the new declaration will hide the
1384  // tag type. Note that this does does not apply if we're declaring a
1385  // typedef (C++ [dcl.typedef]p4).
1386  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1387      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1388    PrevDecl = 0;
1389
1390  bool Redeclaration = false;
1391  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1392    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1393                                 InvalidDecl, Redeclaration);
1394  } else if (R->isFunctionType()) {
1395    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1396                                  IsFunctionDefinition, InvalidDecl,
1397                                  Redeclaration);
1398  } else {
1399    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1400                                  InvalidDecl, Redeclaration);
1401  }
1402
1403  if (New == 0)
1404    return DeclPtrTy();
1405
1406  // If this has an identifier and is not an invalid redeclaration,
1407  // add it to the scope stack.
1408  if (Name && !(Redeclaration && InvalidDecl))
1409    PushOnScopeChains(New, S);
1410  // If any semantic error occurred, mark the decl as invalid.
1411  if (D.getInvalidType() || InvalidDecl)
1412    New->setInvalidDecl();
1413
1414  return DeclPtrTy::make(New);
1415}
1416
1417/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1418/// types into constant array types in certain situations which would otherwise
1419/// be errors (for GCC compatibility).
1420static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1421                                                    ASTContext &Context,
1422                                                    bool &SizeIsNegative) {
1423  // This method tries to turn a variable array into a constant
1424  // array even when the size isn't an ICE.  This is necessary
1425  // for compatibility with code that depends on gcc's buggy
1426  // constant expression folding, like struct {char x[(int)(char*)2];}
1427  SizeIsNegative = false;
1428
1429  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1430    QualType Pointee = PTy->getPointeeType();
1431    QualType FixedType =
1432        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1433    if (FixedType.isNull()) return FixedType;
1434    FixedType = Context.getPointerType(FixedType);
1435    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1436    return FixedType;
1437  }
1438
1439  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1440  if (!VLATy)
1441    return QualType();
1442  // FIXME: We should probably handle this case
1443  if (VLATy->getElementType()->isVariablyModifiedType())
1444    return QualType();
1445
1446  Expr::EvalResult EvalResult;
1447  if (!VLATy->getSizeExpr() ||
1448      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1449      !EvalResult.Val.isInt())
1450    return QualType();
1451
1452  llvm::APSInt &Res = EvalResult.Val.getInt();
1453  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1454    return Context.getConstantArrayType(VLATy->getElementType(),
1455                                        Res, ArrayType::Normal, 0);
1456
1457  SizeIsNegative = true;
1458  return QualType();
1459}
1460
1461/// \brief Register the given locally-scoped external C declaration so
1462/// that it can be found later for redeclarations
1463void
1464Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1465                                       Scope *S) {
1466  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1467         "Decl is not a locally-scoped decl!");
1468  // Note that we have a locally-scoped external with this name.
1469  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1470
1471  if (!PrevDecl)
1472    return;
1473
1474  // If there was a previous declaration of this variable, it may be
1475  // in our identifier chain. Update the identifier chain with the new
1476  // declaration.
1477  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1478    // The previous declaration was found on the identifer resolver
1479    // chain, so remove it from its scope.
1480    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1481      S = S->getParent();
1482
1483    if (S)
1484      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1485  }
1486}
1487
1488/// \brief Diagnose function specifiers on a declaration of an identifier that
1489/// does not identify a function.
1490void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1491  // FIXME: We should probably indicate the identifier in question to avoid
1492  // confusion for constructs like "inline int a(), b;"
1493  if (D.getDeclSpec().isInlineSpecified())
1494    Diag(D.getDeclSpec().getInlineSpecLoc(),
1495         diag::err_inline_non_function);
1496
1497  if (D.getDeclSpec().isVirtualSpecified())
1498    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1499         diag::err_virtual_non_function);
1500
1501  if (D.getDeclSpec().isExplicitSpecified())
1502    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1503         diag::err_explicit_non_function);
1504}
1505
1506NamedDecl*
1507Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1508                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1509                             bool &Redeclaration) {
1510  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1511  if (D.getCXXScopeSpec().isSet()) {
1512    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1513      << D.getCXXScopeSpec().getRange();
1514    InvalidDecl = true;
1515    // Pretend we didn't see the scope specifier.
1516    DC = 0;
1517  }
1518
1519  if (getLangOptions().CPlusPlus) {
1520    // Check that there are no default arguments (C++ only).
1521    CheckExtraCXXDefaultArguments(D);
1522  }
1523
1524  DiagnoseFunctionSpecifiers(D);
1525
1526  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1527  if (!NewTD) return 0;
1528
1529  // Handle attributes prior to checking for duplicates in MergeVarDecl
1530  ProcessDeclAttributes(NewTD, D);
1531  // Merge the decl with the existing one if appropriate. If the decl is
1532  // in an outer scope, it isn't the same thing.
1533  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1534    Redeclaration = true;
1535    if (MergeTypeDefDecl(NewTD, PrevDecl))
1536      InvalidDecl = true;
1537  }
1538
1539  if (S->getFnParent() == 0) {
1540    QualType T = NewTD->getUnderlyingType();
1541    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1542    // then it shall have block scope.
1543    if (T->isVariablyModifiedType()) {
1544      bool SizeIsNegative;
1545      QualType FixedTy =
1546          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1547      if (!FixedTy.isNull()) {
1548        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1549        NewTD->setUnderlyingType(FixedTy);
1550      } else {
1551        if (SizeIsNegative)
1552          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1553        else if (T->isVariableArrayType())
1554          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1555        else
1556          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1557        InvalidDecl = true;
1558      }
1559    }
1560  }
1561  return NewTD;
1562}
1563
1564/// \brief Determines whether the given declaration is an out-of-scope
1565/// previous declaration.
1566///
1567/// This routine should be invoked when name lookup has found a
1568/// previous declaration (PrevDecl) that is not in the scope where a
1569/// new declaration by the same name is being introduced. If the new
1570/// declaration occurs in a local scope, previous declarations with
1571/// linkage may still be considered previous declarations (C99
1572/// 6.2.2p4-5, C++ [basic.link]p6).
1573///
1574/// \param PrevDecl the previous declaration found by name
1575/// lookup
1576///
1577/// \param DC the context in which the new declaration is being
1578/// declared.
1579///
1580/// \returns true if PrevDecl is an out-of-scope previous declaration
1581/// for a new delcaration with the same name.
1582static bool
1583isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1584                                ASTContext &Context) {
1585  if (!PrevDecl)
1586    return 0;
1587
1588  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1589  // case we need to check each of the overloaded functions.
1590  if (!PrevDecl->hasLinkage())
1591    return false;
1592
1593  if (Context.getLangOptions().CPlusPlus) {
1594    // C++ [basic.link]p6:
1595    //   If there is a visible declaration of an entity with linkage
1596    //   having the same name and type, ignoring entities declared
1597    //   outside the innermost enclosing namespace scope, the block
1598    //   scope declaration declares that same entity and receives the
1599    //   linkage of the previous declaration.
1600    DeclContext *OuterContext = DC->getLookupContext();
1601    if (!OuterContext->isFunctionOrMethod())
1602      // This rule only applies to block-scope declarations.
1603      return false;
1604    else {
1605      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1606      if (PrevOuterContext->isRecord())
1607        // We found a member function: ignore it.
1608        return false;
1609      else {
1610        // Find the innermost enclosing namespace for the new and
1611        // previous declarations.
1612        while (!OuterContext->isFileContext())
1613          OuterContext = OuterContext->getParent();
1614        while (!PrevOuterContext->isFileContext())
1615          PrevOuterContext = PrevOuterContext->getParent();
1616
1617        // The previous declaration is in a different namespace, so it
1618        // isn't the same function.
1619        if (OuterContext->getPrimaryContext() !=
1620            PrevOuterContext->getPrimaryContext())
1621          return false;
1622      }
1623    }
1624  }
1625
1626  return true;
1627}
1628
1629NamedDecl*
1630Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1631                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1632                              bool &Redeclaration) {
1633  DeclarationName Name = GetNameForDeclarator(D);
1634
1635  // Check that there are no default arguments (C++ only).
1636  if (getLangOptions().CPlusPlus)
1637    CheckExtraCXXDefaultArguments(D);
1638
1639  VarDecl *NewVD;
1640  VarDecl::StorageClass SC;
1641  switch (D.getDeclSpec().getStorageClassSpec()) {
1642  default: assert(0 && "Unknown storage class!");
1643  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1644  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1645  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1646  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1647  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1648  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1649  case DeclSpec::SCS_mutable:
1650    // mutable can only appear on non-static class members, so it's always
1651    // an error here
1652    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1653    InvalidDecl = true;
1654    SC = VarDecl::None;
1655    break;
1656  }
1657
1658  IdentifierInfo *II = Name.getAsIdentifierInfo();
1659  if (!II) {
1660    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1661      << Name.getAsString();
1662    return 0;
1663  }
1664
1665  DiagnoseFunctionSpecifiers(D);
1666
1667  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1668  if (!DC->isRecord() && S->getFnParent() == 0) {
1669    // C99 6.9p2: The storage-class specifiers auto and register shall not
1670    // appear in the declaration specifiers in an external declaration.
1671    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1672      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1673      InvalidDecl = true;
1674    }
1675  }
1676  if (DC->isRecord() && !CurContext->isRecord()) {
1677    // This is an out-of-line definition of a static data member.
1678    if (SC == VarDecl::Static) {
1679      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1680           diag::err_static_out_of_line)
1681        << CodeModificationHint::CreateRemoval(
1682                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1683    } else if (SC == VarDecl::None)
1684      SC = VarDecl::Static;
1685  }
1686
1687  // The variable can not
1688  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1689                          II, R, SC,
1690                          // FIXME: Move to DeclGroup...
1691                          D.getDeclSpec().getSourceRange().getBegin());
1692  NewVD->setThreadSpecified(ThreadSpecified);
1693
1694  // Set the lexical context. If the declarator has a C++ scope specifier, the
1695  // lexical context will be different from the semantic context.
1696  NewVD->setLexicalDeclContext(CurContext);
1697
1698  // Handle attributes prior to checking for duplicates in MergeVarDecl
1699  ProcessDeclAttributes(NewVD, D);
1700
1701  // Handle GNU asm-label extension (encoded as an attribute).
1702  if (Expr *E = (Expr*) D.getAsmLabel()) {
1703    // The parser guarantees this is a string.
1704    StringLiteral *SE = cast<StringLiteral>(E);
1705    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1706                                                        SE->getByteLength())));
1707  }
1708
1709  // If name lookup finds a previous declaration that is not in the
1710  // same scope as the new declaration, this may still be an
1711  // acceptable redeclaration.
1712  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1713      !(NewVD->hasLinkage() &&
1714        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1715    PrevDecl = 0;
1716
1717  // Merge the decl with the existing one if appropriate.
1718  if (PrevDecl) {
1719    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1720      // The user tried to define a non-static data member
1721      // out-of-line (C++ [dcl.meaning]p1).
1722      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1723        << D.getCXXScopeSpec().getRange();
1724      PrevDecl = 0;
1725      InvalidDecl = true;
1726    }
1727  } else if (D.getCXXScopeSpec().isSet()) {
1728    // No previous declaration in the qualifying scope.
1729    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1730      << Name << D.getCXXScopeSpec().getRange();
1731    InvalidDecl = true;
1732  }
1733
1734  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1735    InvalidDecl = true;
1736
1737  // If this is a locally-scoped extern C variable, update the map of
1738  // such variables.
1739  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1740      !InvalidDecl)
1741    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1742
1743  return NewVD;
1744}
1745
1746/// \brief Perform semantic checking on a newly-created variable
1747/// declaration.
1748///
1749/// This routine performs all of the type-checking required for a
1750/// variable declaration once it has been build. It is used both to
1751/// check variables after they have been parsed and their declarators
1752/// have been translated into a declaration, and to check
1753///
1754/// \returns true if an error was encountered, false otherwise.
1755bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1756                                    bool &Redeclaration) {
1757  bool Invalid = false;
1758
1759  QualType T = NewVD->getType();
1760
1761  if (T->isObjCInterfaceType()) {
1762    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1763    Invalid = true;
1764  }
1765
1766  // The variable can not have an abstract class type.
1767  if (RequireNonAbstractType(NewVD->getLocation(), T,
1768                             diag::err_abstract_type_in_decl,
1769                             AbstractVariableType))
1770    Invalid = true;
1771
1772  // Emit an error if an address space was applied to decl with local storage.
1773  // This includes arrays of objects with address space qualifiers, but not
1774  // automatic variables that point to other address spaces.
1775  // ISO/IEC TR 18037 S5.1.2
1776  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1777    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1778    Invalid = true;
1779  }
1780
1781  if (NewVD->hasLocalStorage() && T.isObjCGCWeak())
1782    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1783
1784  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1785  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1786  if (isIllegalVLA || isIllegalVM) {
1787    bool SizeIsNegative;
1788    QualType FixedTy =
1789        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1790    if (!FixedTy.isNull()) {
1791      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1792      NewVD->setType(FixedTy);
1793    } else if (T->isVariableArrayType()) {
1794      Invalid = true;
1795
1796      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1797      // FIXME: This won't give the correct result for
1798      // int a[10][n];
1799      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1800
1801      if (NewVD->isFileVarDecl())
1802        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1803          << SizeRange;
1804      else if (NewVD->getStorageClass() == VarDecl::Static)
1805        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1806          << SizeRange;
1807      else
1808        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1809            << SizeRange;
1810    } else {
1811      Invalid = true;
1812
1813      if (NewVD->isFileVarDecl())
1814        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1815      else
1816        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1817    }
1818  }
1819
1820  if (!PrevDecl && NewVD->isExternC(Context)) {
1821    // Since we did not find anything by this name and we're declaring
1822    // an extern "C" variable, look for a non-visible extern "C"
1823    // declaration with the same name.
1824    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1825      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1826    if (Pos != LocallyScopedExternalDecls.end())
1827      PrevDecl = Pos->second;
1828  }
1829
1830  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1831    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1832      << T;
1833    Invalid = true;
1834  }
1835
1836  if (PrevDecl) {
1837    Redeclaration = true;
1838    if (MergeVarDecl(NewVD, PrevDecl))
1839      Invalid = true;
1840  }
1841
1842  return NewVD->isInvalidDecl() || Invalid;
1843}
1844
1845NamedDecl*
1846Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1847                              QualType R, NamedDecl* PrevDecl,
1848                              bool IsFunctionDefinition,
1849                              bool& InvalidDecl, bool &Redeclaration) {
1850  assert(R.getTypePtr()->isFunctionType());
1851
1852  DeclarationName Name = GetNameForDeclarator(D);
1853  FunctionDecl::StorageClass SC = FunctionDecl::None;
1854  switch (D.getDeclSpec().getStorageClassSpec()) {
1855  default: assert(0 && "Unknown storage class!");
1856  case DeclSpec::SCS_auto:
1857  case DeclSpec::SCS_register:
1858  case DeclSpec::SCS_mutable:
1859    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1860         diag::err_typecheck_sclass_func);
1861    InvalidDecl = true;
1862    break;
1863  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1864  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1865  case DeclSpec::SCS_static: {
1866    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1867      // C99 6.7.1p5:
1868      //   The declaration of an identifier for a function that has
1869      //   block scope shall have no explicit storage-class specifier
1870      //   other than extern
1871      // See also (C++ [dcl.stc]p4).
1872      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1873           diag::err_static_block_func);
1874      SC = FunctionDecl::None;
1875    } else
1876      SC = FunctionDecl::Static;
1877    break;
1878  }
1879  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1880  }
1881
1882  bool isInline = D.getDeclSpec().isInlineSpecified();
1883  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1884  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1885
1886  // Check that the return type is not an abstract class type.
1887  // For record types, this is done by the AbstractClassUsageDiagnoser once
1888  // the class has been completely parsed.
1889  if (!DC->isRecord() &&
1890      RequireNonAbstractType(D.getIdentifierLoc(),
1891                             R->getAsFunctionType()->getResultType(),
1892                             diag::err_abstract_type_in_decl,
1893                             AbstractReturnType))
1894        InvalidDecl = true;
1895
1896  bool isVirtualOkay = false;
1897  FunctionDecl *NewFD;
1898  if (D.getKind() == Declarator::DK_Constructor) {
1899    // This is a C++ constructor declaration.
1900    assert(DC->isRecord() &&
1901           "Constructors can only be declared in a member context");
1902
1903    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1904
1905    // Create the new declaration
1906    NewFD = CXXConstructorDecl::Create(Context,
1907                                       cast<CXXRecordDecl>(DC),
1908                                       D.getIdentifierLoc(), Name, R,
1909                                       isExplicit, isInline,
1910                                       /*isImplicitlyDeclared=*/false);
1911
1912    if (InvalidDecl)
1913      NewFD->setInvalidDecl();
1914  } else if (D.getKind() == Declarator::DK_Destructor) {
1915    // This is a C++ destructor declaration.
1916    if (DC->isRecord()) {
1917      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1918
1919      NewFD = CXXDestructorDecl::Create(Context,
1920                                        cast<CXXRecordDecl>(DC),
1921                                        D.getIdentifierLoc(), Name, R,
1922                                        isInline,
1923                                        /*isImplicitlyDeclared=*/false);
1924
1925      if (InvalidDecl)
1926        NewFD->setInvalidDecl();
1927
1928      isVirtualOkay = true;
1929    } else {
1930      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1931
1932      // Create a FunctionDecl to satisfy the function definition parsing
1933      // code path.
1934      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1935                                   Name, R, SC, isInline,
1936                                   /*hasPrototype=*/true,
1937                                   // FIXME: Move to DeclGroup...
1938                                   D.getDeclSpec().getSourceRange().getBegin());
1939      InvalidDecl = true;
1940      NewFD->setInvalidDecl();
1941    }
1942  } else if (D.getKind() == Declarator::DK_Conversion) {
1943    if (!DC->isRecord()) {
1944      Diag(D.getIdentifierLoc(),
1945           diag::err_conv_function_not_member);
1946      return 0;
1947    } else {
1948      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1949
1950      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1951                                        D.getIdentifierLoc(), Name, R,
1952                                        isInline, isExplicit);
1953
1954      if (InvalidDecl)
1955        NewFD->setInvalidDecl();
1956
1957      isVirtualOkay = true;
1958    }
1959  } else if (DC->isRecord()) {
1960    // This is a C++ method declaration.
1961    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1962                                  D.getIdentifierLoc(), Name, R,
1963                                  (SC == FunctionDecl::Static), isInline);
1964
1965    isVirtualOkay = (SC != FunctionDecl::Static);
1966  } else {
1967    // Determine whether the function was written with a
1968    // prototype. This true when:
1969    //   - we're in C++ (where every function has a prototype),
1970    //   - there is a prototype in the declarator, or
1971    //   - the type R of the function is some kind of typedef or other reference
1972    //     to a type name (which eventually refers to a function type).
1973    bool HasPrototype =
1974       getLangOptions().CPlusPlus ||
1975       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1976       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1977
1978    NewFD = FunctionDecl::Create(Context, DC,
1979                                 D.getIdentifierLoc(),
1980                                 Name, R, SC, isInline, HasPrototype,
1981                                 // FIXME: Move to DeclGroup...
1982                                 D.getDeclSpec().getSourceRange().getBegin());
1983  }
1984
1985  // Set the lexical context. If the declarator has a C++
1986  // scope specifier, the lexical context will be different
1987  // from the semantic context.
1988  NewFD->setLexicalDeclContext(CurContext);
1989
1990  // C++ [dcl.fct.spec]p5:
1991  //   The virtual specifier shall only be used in declarations of
1992  //   nonstatic class member functions that appear within a
1993  //   member-specification of a class declaration; see 10.3.
1994  //
1995  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1996  // function is also virtual if it overrides an already virtual
1997  // function. This is important to do here because it's part of the
1998  // declaration.
1999  if (isVirtual && !InvalidDecl) {
2000    if (!isVirtualOkay) {
2001       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2002           diag::err_virtual_non_function);
2003    } else if (!CurContext->isRecord()) {
2004      // 'virtual' was specified outside of the class.
2005      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2006        << CodeModificationHint::CreateRemoval(
2007                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2008    } else {
2009      // Okay: Add virtual to the method.
2010      cast<CXXMethodDecl>(NewFD)->setVirtual();
2011      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2012      CurClass->setAggregate(false);
2013      CurClass->setPOD(false);
2014      CurClass->setPolymorphic(true);
2015    }
2016  }
2017
2018  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2019      !CurContext->isRecord()) {
2020    // C++ [class.static]p1:
2021    //   A data or function member of a class may be declared static
2022    //   in a class definition, in which case it is a static member of
2023    //   the class.
2024
2025    // Complain about the 'static' specifier if it's on an out-of-line
2026    // member function definition.
2027    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2028         diag::err_static_out_of_line)
2029      << CodeModificationHint::CreateRemoval(
2030                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2031  }
2032
2033  // Handle GNU asm-label extension (encoded as an attribute).
2034  if (Expr *E = (Expr*) D.getAsmLabel()) {
2035    // The parser guarantees this is a string.
2036    StringLiteral *SE = cast<StringLiteral>(E);
2037    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2038                                                        SE->getByteLength())));
2039  }
2040
2041  // Copy the parameter declarations from the declarator D to
2042  // the function declaration NewFD, if they are available.
2043  if (D.getNumTypeObjects() > 0) {
2044    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2045
2046    // Create Decl objects for each parameter, adding them to the
2047    // FunctionDecl.
2048    llvm::SmallVector<ParmVarDecl*, 16> Params;
2049
2050    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2051    // function that takes no arguments, not a function that takes a
2052    // single void argument.
2053    // We let through "const void" here because Sema::GetTypeForDeclarator
2054    // already checks for that case.
2055    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2056        FTI.ArgInfo[0].Param &&
2057        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2058      // empty arg list, don't push any params.
2059      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2060
2061      // In C++, the empty parameter-type-list must be spelled "void"; a
2062      // typedef of void is not permitted.
2063      if (getLangOptions().CPlusPlus &&
2064          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2065        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2066      }
2067    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2068      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2069        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2070    }
2071
2072    NewFD->setParams(Context, &Params[0], Params.size());
2073  } else if (R->getAsTypedefType()) {
2074    // When we're declaring a function with a typedef, as in the
2075    // following example, we'll need to synthesize (unnamed)
2076    // parameters for use in the declaration.
2077    //
2078    // @code
2079    // typedef void fn(int);
2080    // fn f;
2081    // @endcode
2082    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2083    if (!FT) {
2084      // This is a typedef of a function with no prototype, so we
2085      // don't need to do anything.
2086    } else if ((FT->getNumArgs() == 0) ||
2087               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2088                FT->getArgType(0)->isVoidType())) {
2089      // This is a zero-argument function. We don't need to do anything.
2090    } else {
2091      // Synthesize a parameter for each argument type.
2092      llvm::SmallVector<ParmVarDecl*, 16> Params;
2093      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2094           ArgType != FT->arg_type_end(); ++ArgType) {
2095        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2096                                                 SourceLocation(), 0,
2097                                                 *ArgType, VarDecl::None,
2098                                                 0);
2099        Param->setImplicit();
2100        Params.push_back(Param);
2101      }
2102
2103      NewFD->setParams(Context, &Params[0], Params.size());
2104    }
2105  }
2106
2107  // If name lookup finds a previous declaration that is not in the
2108  // same scope as the new declaration, this may still be an
2109  // acceptable redeclaration.
2110  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2111      !(NewFD->hasLinkage() &&
2112        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2113    PrevDecl = 0;
2114
2115  // Perform semantic checking on the function declaration.
2116  bool OverloadableAttrRequired = false; // FIXME: HACK!
2117  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2118                               /*FIXME:*/OverloadableAttrRequired))
2119    InvalidDecl = true;
2120
2121  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2122    // An out-of-line member function declaration must also be a
2123    // definition (C++ [dcl.meaning]p1).
2124    if (!IsFunctionDefinition) {
2125      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2126        << D.getCXXScopeSpec().getRange();
2127      InvalidDecl = true;
2128    } else if (!Redeclaration) {
2129      // The user tried to provide an out-of-line definition for a
2130      // function that is a member of a class or namespace, but there
2131      // was no such member function declared (C++ [class.mfct]p2,
2132      // C++ [namespace.memdef]p2). For example:
2133      //
2134      // class X {
2135      //   void f() const;
2136      // };
2137      //
2138      // void X::f() { } // ill-formed
2139      //
2140      // Complain about this problem, and attempt to suggest close
2141      // matches (e.g., those that differ only in cv-qualifiers and
2142      // whether the parameter types are references).
2143      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2144        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2145      InvalidDecl = true;
2146
2147      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2148                                              true);
2149      assert(!Prev.isAmbiguous() &&
2150             "Cannot have an ambiguity in previous-declaration lookup");
2151      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2152           Func != FuncEnd; ++Func) {
2153        if (isa<FunctionDecl>(*Func) &&
2154            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2155          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2156      }
2157
2158      PrevDecl = 0;
2159    }
2160  }
2161
2162  // Handle attributes. We need to have merged decls when handling attributes
2163  // (for example to check for conflicts, etc).
2164  // FIXME: This needs to happen before we merge declarations. Then,
2165  // let attribute merging cope with attribute conflicts.
2166  ProcessDeclAttributes(NewFD, D);
2167  AddKnownFunctionAttributes(NewFD);
2168
2169  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2170    // If a function name is overloadable in C, then every function
2171    // with that name must be marked "overloadable".
2172    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2173      << Redeclaration << NewFD;
2174    if (PrevDecl)
2175      Diag(PrevDecl->getLocation(),
2176           diag::note_attribute_overloadable_prev_overload);
2177    NewFD->addAttr(::new (Context) OverloadableAttr());
2178  }
2179
2180  // If this is a locally-scoped extern C function, update the
2181  // map of such names.
2182  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2183      && !InvalidDecl)
2184    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2185
2186  return NewFD;
2187}
2188
2189/// \brief Perform semantic checking of a new function declaration.
2190///
2191/// Performs semantic analysis of the new function declaration
2192/// NewFD. This routine performs all semantic checking that does not
2193/// require the actual declarator involved in the declaration, and is
2194/// used both for the declaration of functions as they are parsed
2195/// (called via ActOnDeclarator) and for the declaration of functions
2196/// that have been instantiated via C++ template instantiation (called
2197/// via InstantiateDecl).
2198///
2199/// \returns true if there was an error, false otherwise.
2200bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2201                                    bool &Redeclaration,
2202                                    bool &OverloadableAttrRequired) {
2203  bool InvalidDecl = false;
2204
2205  // Semantic checking for this function declaration (in isolation).
2206  if (getLangOptions().CPlusPlus) {
2207    // C++-specific checks.
2208    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2209      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2210    else if (isa<CXXDestructorDecl>(NewFD)) {
2211      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2212      Record->setUserDeclaredDestructor(true);
2213      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2214      // user-defined destructor.
2215      Record->setPOD(false);
2216    } else if (CXXConversionDecl *Conversion
2217               = dyn_cast<CXXConversionDecl>(NewFD))
2218      ActOnConversionDeclarator(Conversion);
2219
2220    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2221    if (NewFD->isOverloadedOperator() &&
2222        CheckOverloadedOperatorDeclaration(NewFD))
2223      InvalidDecl = true;
2224  }
2225
2226  // Check for a previous declaration of this name.
2227  if (!PrevDecl && NewFD->isExternC(Context)) {
2228    // Since we did not find anything by this name and we're declaring
2229    // an extern "C" function, look for a non-visible extern "C"
2230    // declaration with the same name.
2231    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2232      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2233    if (Pos != LocallyScopedExternalDecls.end())
2234      PrevDecl = Pos->second;
2235  }
2236
2237  // Merge or overload the declaration with an existing declaration of
2238  // the same name, if appropriate.
2239  if (PrevDecl) {
2240    // Determine whether NewFD is an overload of PrevDecl or
2241    // a declaration that requires merging. If it's an overload,
2242    // there's no more work to do here; we'll just add the new
2243    // function to the scope.
2244    OverloadedFunctionDecl::function_iterator MatchedDecl;
2245
2246    if (!getLangOptions().CPlusPlus &&
2247        AllowOverloadingOfFunction(PrevDecl, Context)) {
2248      OverloadableAttrRequired = true;
2249
2250      // Functions marked "overloadable" must have a prototype (that
2251      // we can't get through declaration merging).
2252      if (!NewFD->getType()->getAsFunctionProtoType()) {
2253        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2254          << NewFD;
2255        InvalidDecl = true;
2256        Redeclaration = true;
2257
2258        // Turn this into a variadic function with no parameters.
2259        QualType R = Context.getFunctionType(
2260                       NewFD->getType()->getAsFunctionType()->getResultType(),
2261                       0, 0, true, 0);
2262        NewFD->setType(R);
2263      }
2264    }
2265
2266    if (PrevDecl &&
2267        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2268         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2269      Redeclaration = true;
2270      Decl *OldDecl = PrevDecl;
2271
2272      // If PrevDecl was an overloaded function, extract the
2273      // FunctionDecl that matched.
2274      if (isa<OverloadedFunctionDecl>(PrevDecl))
2275        OldDecl = *MatchedDecl;
2276
2277      // NewFD and OldDecl represent declarations that need to be
2278      // merged.
2279      if (MergeFunctionDecl(NewFD, OldDecl))
2280        InvalidDecl = true;
2281
2282      if (!InvalidDecl)
2283        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2284    }
2285  }
2286
2287  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2288    // In C++, check default arguments now that we have merged decls. Unless
2289    // the lexical context is the class, because in this case this is done
2290    // during delayed parsing anyway.
2291    CheckCXXDefaultArguments(NewFD);
2292  }
2293
2294  return InvalidDecl || NewFD->isInvalidDecl();
2295}
2296
2297bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2298  // FIXME: Need strict checking.  In C89, we need to check for
2299  // any assignment, increment, decrement, function-calls, or
2300  // commas outside of a sizeof.  In C99, it's the same list,
2301  // except that the aforementioned are allowed in unevaluated
2302  // expressions.  Everything else falls under the
2303  // "may accept other forms of constant expressions" exception.
2304  // (We never end up here for C++, so the constant expression
2305  // rules there don't matter.)
2306  if (Init->isConstantInitializer(Context))
2307    return false;
2308  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2309    << Init->getSourceRange();
2310  return true;
2311}
2312
2313void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2314  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2315}
2316
2317/// AddInitializerToDecl - Adds the initializer Init to the
2318/// declaration dcl. If DirectInit is true, this is C++ direct
2319/// initialization rather than copy initialization.
2320void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2321  Decl *RealDecl = dcl.getAs<Decl>();
2322  // If there is no declaration, there was an error parsing it.  Just ignore
2323  // the initializer.
2324  if (RealDecl == 0)
2325    return;
2326
2327  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2328    // With declarators parsed the way they are, the parser cannot
2329    // distinguish between a normal initializer and a pure-specifier.
2330    // Thus this grotesque test.
2331    IntegerLiteral *IL;
2332    Expr *Init = static_cast<Expr *>(init.get());
2333    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2334        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2335      if (Method->isVirtual()) {
2336        Method->setPure();
2337
2338        // A class is abstract if at least one function is pure virtual.
2339        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2340      } else if (!Method->isInvalidDecl()) {
2341        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2342          << Method->getDeclName() << Init->getSourceRange();
2343        Method->setInvalidDecl();
2344      }
2345    } else {
2346      Diag(Method->getLocation(), diag::err_member_function_initialization)
2347        << Method->getDeclName() << Init->getSourceRange();
2348      Method->setInvalidDecl();
2349    }
2350    return;
2351  }
2352
2353  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2354  if (!VDecl) {
2355    if (getLangOptions().CPlusPlus &&
2356        RealDecl->getLexicalDeclContext()->isRecord() &&
2357        isa<NamedDecl>(RealDecl))
2358      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2359        << cast<NamedDecl>(RealDecl)->getDeclName();
2360    else
2361      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2362    RealDecl->setInvalidDecl();
2363    return;
2364  }
2365
2366  const VarDecl *Def = 0;
2367  if (VDecl->getDefinition(Def)) {
2368    Diag(VDecl->getLocation(), diag::err_redefinition)
2369      << VDecl->getDeclName();
2370    Diag(Def->getLocation(), diag::note_previous_definition);
2371    VDecl->setInvalidDecl();
2372    return;
2373  }
2374
2375  // Take ownership of the expression, now that we're sure we have somewhere
2376  // to put it.
2377  Expr *Init = static_cast<Expr *>(init.release());
2378  assert(Init && "missing initializer");
2379
2380  // Get the decls type and save a reference for later, since
2381  // CheckInitializerTypes may change it.
2382  QualType DclT = VDecl->getType(), SavT = DclT;
2383  if (VDecl->isBlockVarDecl()) {
2384    VarDecl::StorageClass SC = VDecl->getStorageClass();
2385    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2386      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2387      VDecl->setInvalidDecl();
2388    } else if (!VDecl->isInvalidDecl()) {
2389      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2390                                VDecl->getDeclName(), DirectInit))
2391        VDecl->setInvalidDecl();
2392
2393      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2394      // Don't check invalid declarations to avoid emitting useless diagnostics.
2395      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2396        if (SC == VarDecl::Static) // C99 6.7.8p4.
2397          CheckForConstantInitializer(Init, DclT);
2398      }
2399    }
2400  } else if (VDecl->isStaticDataMember() &&
2401             VDecl->getLexicalDeclContext()->isRecord()) {
2402    // This is an in-class initialization for a static data member, e.g.,
2403    //
2404    // struct S {
2405    //   static const int value = 17;
2406    // };
2407
2408    // Attach the initializer
2409    VDecl->setInit(Init);
2410
2411    // C++ [class.mem]p4:
2412    //   A member-declarator can contain a constant-initializer only
2413    //   if it declares a static member (9.4) of const integral or
2414    //   const enumeration type, see 9.4.2.
2415    QualType T = VDecl->getType();
2416    if (!T->isDependentType() &&
2417        (!Context.getCanonicalType(T).isConstQualified() ||
2418         !T->isIntegralType())) {
2419      Diag(VDecl->getLocation(), diag::err_member_initialization)
2420        << VDecl->getDeclName() << Init->getSourceRange();
2421      VDecl->setInvalidDecl();
2422    } else {
2423      // C++ [class.static.data]p4:
2424      //   If a static data member is of const integral or const
2425      //   enumeration type, its declaration in the class definition
2426      //   can specify a constant-initializer which shall be an
2427      //   integral constant expression (5.19).
2428      if (!Init->isTypeDependent() &&
2429          !Init->getType()->isIntegralType()) {
2430        // We have a non-dependent, non-integral or enumeration type.
2431        Diag(Init->getSourceRange().getBegin(),
2432             diag::err_in_class_initializer_non_integral_type)
2433          << Init->getType() << Init->getSourceRange();
2434        VDecl->setInvalidDecl();
2435      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2436        // Check whether the expression is a constant expression.
2437        llvm::APSInt Value;
2438        SourceLocation Loc;
2439        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2440          Diag(Loc, diag::err_in_class_initializer_non_constant)
2441            << Init->getSourceRange();
2442          VDecl->setInvalidDecl();
2443        } else if (!VDecl->getType()->isDependentType())
2444          ImpCastExprToType(Init, VDecl->getType());
2445      }
2446    }
2447  } else if (VDecl->isFileVarDecl()) {
2448    if (VDecl->getStorageClass() == VarDecl::Extern)
2449      Diag(VDecl->getLocation(), diag::warn_extern_init);
2450    if (!VDecl->isInvalidDecl())
2451      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2452                                VDecl->getDeclName(), DirectInit))
2453        VDecl->setInvalidDecl();
2454
2455    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2456    // Don't check invalid declarations to avoid emitting useless diagnostics.
2457    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2458      // C99 6.7.8p4. All file scoped initializers need to be constant.
2459      CheckForConstantInitializer(Init, DclT);
2460    }
2461  }
2462  // If the type changed, it means we had an incomplete type that was
2463  // completed by the initializer. For example:
2464  //   int ary[] = { 1, 3, 5 };
2465  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2466  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2467    VDecl->setType(DclT);
2468    Init->setType(DclT);
2469  }
2470
2471  // Attach the initializer to the decl.
2472  VDecl->setInit(Init);
2473  return;
2474}
2475
2476void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2477  Decl *RealDecl = dcl.getAs<Decl>();
2478
2479  // If there is no declaration, there was an error parsing it. Just ignore it.
2480  if (RealDecl == 0)
2481    return;
2482
2483  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2484    QualType Type = Var->getType();
2485    // C++ [dcl.init.ref]p3:
2486    //   The initializer can be omitted for a reference only in a
2487    //   parameter declaration (8.3.5), in the declaration of a
2488    //   function return type, in the declaration of a class member
2489    //   within its class declaration (9.2), and where the extern
2490    //   specifier is explicitly used.
2491    if (Type->isReferenceType() &&
2492        Var->getStorageClass() != VarDecl::Extern &&
2493        Var->getStorageClass() != VarDecl::PrivateExtern) {
2494      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2495        << Var->getDeclName()
2496        << SourceRange(Var->getLocation(), Var->getLocation());
2497      Var->setInvalidDecl();
2498      return;
2499    }
2500
2501    // C++ [dcl.init]p9:
2502    //
2503    //   If no initializer is specified for an object, and the object
2504    //   is of (possibly cv-qualified) non-POD class type (or array
2505    //   thereof), the object shall be default-initialized; if the
2506    //   object is of const-qualified type, the underlying class type
2507    //   shall have a user-declared default constructor.
2508    if (getLangOptions().CPlusPlus) {
2509      QualType InitType = Type;
2510      if (const ArrayType *Array = Context.getAsArrayType(Type))
2511        InitType = Array->getElementType();
2512      if (Var->getStorageClass() != VarDecl::Extern &&
2513          Var->getStorageClass() != VarDecl::PrivateExtern &&
2514          InitType->isRecordType()) {
2515        const CXXConstructorDecl *Constructor = 0;
2516        if (!RequireCompleteType(Var->getLocation(), InitType,
2517                                    diag::err_invalid_incomplete_type_use))
2518          Constructor
2519            = PerformInitializationByConstructor(InitType, 0, 0,
2520                                                 Var->getLocation(),
2521                                               SourceRange(Var->getLocation(),
2522                                                           Var->getLocation()),
2523                                                 Var->getDeclName(),
2524                                                 IK_Default);
2525        if (!Constructor)
2526          Var->setInvalidDecl();
2527      }
2528    }
2529
2530#if 0
2531    // FIXME: Temporarily disabled because we are not properly parsing
2532    // linkage specifications on declarations, e.g.,
2533    //
2534    //   extern "C" const CGPoint CGPointerZero;
2535    //
2536    // C++ [dcl.init]p9:
2537    //
2538    //     If no initializer is specified for an object, and the
2539    //     object is of (possibly cv-qualified) non-POD class type (or
2540    //     array thereof), the object shall be default-initialized; if
2541    //     the object is of const-qualified type, the underlying class
2542    //     type shall have a user-declared default
2543    //     constructor. Otherwise, if no initializer is specified for
2544    //     an object, the object and its subobjects, if any, have an
2545    //     indeterminate initial value; if the object or any of its
2546    //     subobjects are of const-qualified type, the program is
2547    //     ill-formed.
2548    //
2549    // This isn't technically an error in C, so we don't diagnose it.
2550    //
2551    // FIXME: Actually perform the POD/user-defined default
2552    // constructor check.
2553    if (getLangOptions().CPlusPlus &&
2554        Context.getCanonicalType(Type).isConstQualified() &&
2555        Var->getStorageClass() != VarDecl::Extern)
2556      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2557        << Var->getName()
2558        << SourceRange(Var->getLocation(), Var->getLocation());
2559#endif
2560  }
2561}
2562
2563Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2564                                                   unsigned NumDecls) {
2565  llvm::SmallVector<Decl*, 8> Decls;
2566
2567  for (unsigned i = 0; i != NumDecls; ++i)
2568    if (Decl *D = Group[i].getAs<Decl>())
2569      Decls.push_back(D);
2570
2571  // Perform semantic analysis that depends on having fully processed both
2572  // the declarator and initializer.
2573  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2574    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2575    if (!IDecl)
2576      continue;
2577    QualType T = IDecl->getType();
2578
2579    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2580    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2581    if (IDecl->isBlockVarDecl() &&
2582        IDecl->getStorageClass() != VarDecl::Extern) {
2583      if (!IDecl->isInvalidDecl() &&
2584          RequireCompleteType(IDecl->getLocation(), T,
2585                              diag::err_typecheck_decl_incomplete_type))
2586        IDecl->setInvalidDecl();
2587    }
2588    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2589    // object that has file scope without an initializer, and without a
2590    // storage-class specifier or with the storage-class specifier "static",
2591    // constitutes a tentative definition. Note: A tentative definition with
2592    // external linkage is valid (C99 6.2.2p5).
2593    if (IDecl->isTentativeDefinition(Context)) {
2594      QualType CheckType = T;
2595      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2596
2597      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2598      if (ArrayT) {
2599        CheckType = ArrayT->getElementType();
2600        DiagID = diag::err_illegal_decl_array_incomplete_type;
2601      }
2602
2603      if (IDecl->isInvalidDecl()) {
2604        // Do nothing with invalid declarations
2605      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2606                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2607        // C99 6.9.2p3: If the declaration of an identifier for an object is
2608        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2609        // declared type shall not be an incomplete type.
2610        IDecl->setInvalidDecl();
2611      }
2612    }
2613  }
2614  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2615                                                   &Decls[0], NumDecls));
2616}
2617
2618
2619/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2620/// to introduce parameters into function prototype scope.
2621Sema::DeclPtrTy
2622Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2623  const DeclSpec &DS = D.getDeclSpec();
2624
2625  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2626  VarDecl::StorageClass StorageClass = VarDecl::None;
2627  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2628    StorageClass = VarDecl::Register;
2629  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2630    Diag(DS.getStorageClassSpecLoc(),
2631         diag::err_invalid_storage_class_in_func_decl);
2632    D.getMutableDeclSpec().ClearStorageClassSpecs();
2633  }
2634  if (DS.isThreadSpecified()) {
2635    Diag(DS.getThreadSpecLoc(),
2636         diag::err_invalid_storage_class_in_func_decl);
2637    D.getMutableDeclSpec().ClearStorageClassSpecs();
2638  }
2639  DiagnoseFunctionSpecifiers(D);
2640
2641  // Check that there are no default arguments inside the type of this
2642  // parameter (C++ only).
2643  if (getLangOptions().CPlusPlus)
2644    CheckExtraCXXDefaultArguments(D);
2645
2646  // In this context, we *do not* check D.getInvalidType(). If the declarator
2647  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2648  // though it will not reflect the user specified type.
2649  QualType parmDeclType = GetTypeForDeclarator(D, S);
2650
2651  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2652
2653  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2654  // Can this happen for params?  We already checked that they don't conflict
2655  // among each other.  Here they can only shadow globals, which is ok.
2656  IdentifierInfo *II = D.getIdentifier();
2657  if (II) {
2658    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2659      if (PrevDecl->isTemplateParameter()) {
2660        // Maybe we will complain about the shadowed template parameter.
2661        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2662        // Just pretend that we didn't see the previous declaration.
2663        PrevDecl = 0;
2664      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2665        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2666
2667        // Recover by removing the name
2668        II = 0;
2669        D.SetIdentifier(0, D.getIdentifierLoc());
2670      }
2671    }
2672  }
2673
2674  // Parameters can not be abstract class types.
2675  // For record types, this is done by the AbstractClassUsageDiagnoser once
2676  // the class has been completely parsed.
2677  if (!CurContext->isRecord() &&
2678      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2679                             diag::err_abstract_type_in_decl,
2680                             AbstractParamType))
2681    D.setInvalidType(true);
2682
2683  QualType T = adjustParameterType(parmDeclType);
2684
2685  ParmVarDecl *New;
2686  if (T == parmDeclType) // parameter type did not need adjustment
2687    New = ParmVarDecl::Create(Context, CurContext,
2688                              D.getIdentifierLoc(), II,
2689                              parmDeclType, StorageClass,
2690                              0);
2691  else // keep track of both the adjusted and unadjusted types
2692    New = OriginalParmVarDecl::Create(Context, CurContext,
2693                                      D.getIdentifierLoc(), II, T,
2694                                      parmDeclType, StorageClass, 0);
2695
2696  if (D.getInvalidType())
2697    New->setInvalidDecl();
2698
2699  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2700  if (D.getCXXScopeSpec().isSet()) {
2701    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2702      << D.getCXXScopeSpec().getRange();
2703    New->setInvalidDecl();
2704  }
2705  // Parameter declarators cannot be interface types. All ObjC objects are
2706  // passed by reference.
2707  if (T->isObjCInterfaceType()) {
2708    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2709         << "passed";
2710    New->setInvalidDecl();
2711  }
2712
2713  // Add the parameter declaration into this scope.
2714  S->AddDecl(DeclPtrTy::make(New));
2715  if (II)
2716    IdResolver.AddDecl(New);
2717
2718  ProcessDeclAttributes(New, D);
2719  return DeclPtrTy::make(New);
2720}
2721
2722void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2723                                           SourceLocation LocAfterDecls) {
2724  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2725         "Not a function declarator!");
2726  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2727
2728  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2729  // for a K&R function.
2730  if (!FTI.hasPrototype) {
2731    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2732      --i;
2733      if (FTI.ArgInfo[i].Param == 0) {
2734        std::string Code = "  int ";
2735        Code += FTI.ArgInfo[i].Ident->getName();
2736        Code += ";\n";
2737        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2738          << FTI.ArgInfo[i].Ident
2739          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2740
2741        // Implicitly declare the argument as type 'int' for lack of a better
2742        // type.
2743        DeclSpec DS;
2744        const char* PrevSpec; // unused
2745        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2746                           PrevSpec);
2747        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2748        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2749        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2750      }
2751    }
2752  }
2753}
2754
2755Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2756                                              Declarator &D) {
2757  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2758  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2759         "Not a function declarator!");
2760  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2761
2762  if (FTI.hasPrototype) {
2763    // FIXME: Diagnose arguments without names in C.
2764  }
2765
2766  Scope *ParentScope = FnBodyScope->getParent();
2767
2768  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2769  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2770}
2771
2772Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2773  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2774
2775  // See if this is a redefinition.
2776  const FunctionDecl *Definition;
2777  if (FD->getBody(Definition)) {
2778    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2779    Diag(Definition->getLocation(), diag::note_previous_definition);
2780  }
2781
2782  // Builtin functions cannot be defined.
2783  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2784    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2785      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2786      FD->setInvalidDecl();
2787    }
2788  }
2789
2790  // The return type of a function definition must be complete
2791  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2792  QualType ResultType = FD->getResultType();
2793  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2794      RequireCompleteType(FD->getLocation(), ResultType,
2795                          diag::err_func_def_incomplete_result))
2796    FD->setInvalidDecl();
2797
2798  // GNU warning -Wmissing-prototypes:
2799  //   Warn if a global function is defined without a previous
2800  //   prototype declaration. This warning is issued even if the
2801  //   definition itself provides a prototype. The aim is to detect
2802  //   global functions that fail to be declared in header files.
2803  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2804      !FD->isMain()) {
2805    bool MissingPrototype = true;
2806    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2807         Prev; Prev = Prev->getPreviousDeclaration()) {
2808      // Ignore any declarations that occur in function or method
2809      // scope, because they aren't visible from the header.
2810      if (Prev->getDeclContext()->isFunctionOrMethod())
2811        continue;
2812
2813      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2814      break;
2815    }
2816
2817    if (MissingPrototype)
2818      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2819  }
2820
2821  PushDeclContext(FnBodyScope, FD);
2822
2823  // Check the validity of our function parameters
2824  CheckParmsForFunctionDef(FD);
2825
2826  // Introduce our parameters into the function scope
2827  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2828    ParmVarDecl *Param = FD->getParamDecl(p);
2829    Param->setOwningFunction(FD);
2830
2831    // If this has an identifier, add it to the scope stack.
2832    if (Param->getIdentifier())
2833      PushOnScopeChains(Param, FnBodyScope);
2834  }
2835
2836  // Checking attributes of current function definition
2837  // dllimport attribute.
2838  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2839    // dllimport attribute cannot be applied to definition.
2840    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2841      Diag(FD->getLocation(),
2842           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2843        << "dllimport";
2844      FD->setInvalidDecl();
2845      return DeclPtrTy::make(FD);
2846    } else {
2847      // If a symbol previously declared dllimport is later defined, the
2848      // attribute is ignored in subsequent references, and a warning is
2849      // emitted.
2850      Diag(FD->getLocation(),
2851           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2852        << FD->getNameAsCString() << "dllimport";
2853    }
2854  }
2855  return DeclPtrTy::make(FD);
2856}
2857
2858static bool StatementCreatesScope(Stmt* S) {
2859  bool result = false;
2860  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2861    for (DeclStmt::decl_iterator i = DS->decl_begin();
2862         i != DS->decl_end(); ++i) {
2863      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2864        result |= D->getType()->isVariablyModifiedType();
2865        result |= !!D->getAttr<CleanupAttr>();
2866      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2867        result |= D->getUnderlyingType()->isVariablyModifiedType();
2868      }
2869    }
2870  }
2871
2872  return result;
2873}
2874
2875void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2876                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2877                                    std::vector<void*>& ScopeStack,
2878                                    Stmt* CurStmt,
2879                                    Stmt* ParentCompoundStmt) {
2880  for (Stmt::child_iterator i = CurStmt->child_begin();
2881       i != CurStmt->child_end(); ++i) {
2882    if (!*i) continue;
2883    if (StatementCreatesScope(*i))  {
2884      ScopeStack.push_back(*i);
2885      PopScopeMap[*i] = ParentCompoundStmt;
2886    } else if (isa<LabelStmt>(CurStmt)) {
2887      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2888    }
2889    if (isa<DeclStmt>(*i)) continue;
2890    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2891    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2892                             *i, CurCompound);
2893  }
2894
2895  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2896    ScopeStack.pop_back();
2897  }
2898}
2899
2900void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2901                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2902                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2903                                   std::vector<void*>& ScopeStack,
2904                                   Stmt* CurStmt) {
2905  for (Stmt::child_iterator i = CurStmt->child_begin();
2906       i != CurStmt->child_end(); ++i) {
2907    if (!*i) continue;
2908    if (StatementCreatesScope(*i))  {
2909      ScopeStack.push_back(*i);
2910    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2911      void* LScope = LabelScopeMap[GS->getLabel()];
2912      if (LScope) {
2913        bool foundScopeInStack = false;
2914        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2915          if (LScope == ScopeStack[i-1]) {
2916            foundScopeInStack = true;
2917            break;
2918          }
2919        }
2920        if (!foundScopeInStack) {
2921          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2922        }
2923      }
2924    }
2925    if (isa<DeclStmt>(*i)) continue;
2926    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2927                            ScopeStack, *i);
2928  }
2929
2930  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2931    ScopeStack.pop_back();
2932  }
2933}
2934
2935Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2936  Decl *dcl = D.getAs<Decl>();
2937  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2938  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2939    FD->setBody(cast<CompoundStmt>(Body));
2940    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2941  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2942    assert(MD == getCurMethodDecl() && "Method parsing confused");
2943    MD->setBody(cast<CompoundStmt>(Body));
2944  } else {
2945    Body->Destroy(Context);
2946    return DeclPtrTy();
2947  }
2948  PopDeclContext();
2949  // Verify and clean out per-function state.
2950
2951  bool HaveLabels = !LabelMap.empty();
2952  // Check goto/label use.
2953  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2954       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2955    // Verify that we have no forward references left.  If so, there was a goto
2956    // or address of a label taken, but no definition of it.  Label fwd
2957    // definitions are indicated with a null substmt.
2958    if (I->second->getSubStmt() == 0) {
2959      LabelStmt *L = I->second;
2960      // Emit error.
2961      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2962
2963      // At this point, we have gotos that use the bogus label.  Stitch it into
2964      // the function body so that they aren't leaked and that the AST is well
2965      // formed.
2966      if (Body) {
2967#if 0
2968        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2969        // and the AST is malformed anyway.  We should just blow away 'L'.
2970        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2971        cast<CompoundStmt>(Body)->push_back(L);
2972#else
2973        L->Destroy(Context);
2974#endif
2975      } else {
2976        // The whole function wasn't parsed correctly, just delete this.
2977        L->Destroy(Context);
2978      }
2979    }
2980  }
2981  LabelMap.clear();
2982
2983  if (!Body) return D;
2984
2985  if (HaveLabels) {
2986    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2987    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2988    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2989    std::vector<void*> ScopeStack;
2990    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2991    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2992  }
2993
2994  return D;
2995}
2996
2997/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2998/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2999NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3000                                          IdentifierInfo &II, Scope *S) {
3001  // Before we produce a declaration for an implicitly defined
3002  // function, see whether there was a locally-scoped declaration of
3003  // this name as a function or variable. If so, use that
3004  // (non-visible) declaration, and complain about it.
3005  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3006    = LocallyScopedExternalDecls.find(&II);
3007  if (Pos != LocallyScopedExternalDecls.end()) {
3008    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3009    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3010    return Pos->second;
3011  }
3012
3013  // Extension in C99.  Legal in C90, but warn about it.
3014  if (getLangOptions().C99)
3015    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3016  else
3017    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3018
3019  // FIXME: handle stuff like:
3020  // void foo() { extern float X(); }
3021  // void bar() { X(); }  <-- implicit decl for X in another scope.
3022
3023  // Set a Declarator for the implicit definition: int foo();
3024  const char *Dummy;
3025  DeclSpec DS;
3026  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3027  Error = Error; // Silence warning.
3028  assert(!Error && "Error setting up implicit decl!");
3029  Declarator D(DS, Declarator::BlockContext);
3030  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3031                                             0, 0, 0, Loc, D),
3032                SourceLocation());
3033  D.SetIdentifier(&II, Loc);
3034
3035  // Insert this function into translation-unit scope.
3036
3037  DeclContext *PrevDC = CurContext;
3038  CurContext = Context.getTranslationUnitDecl();
3039
3040  FunctionDecl *FD =
3041 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3042  FD->setImplicit();
3043
3044  CurContext = PrevDC;
3045
3046  AddKnownFunctionAttributes(FD);
3047
3048  return FD;
3049}
3050
3051/// \brief Adds any function attributes that we know a priori based on
3052/// the declaration of this function.
3053///
3054/// These attributes can apply both to implicitly-declared builtins
3055/// (like __builtin___printf_chk) or to library-declared functions
3056/// like NSLog or printf.
3057void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3058  if (FD->isInvalidDecl())
3059    return;
3060
3061  // If this is a built-in function, map its builtin attributes to
3062  // actual attributes.
3063  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3064    // Handle printf-formatting attributes.
3065    unsigned FormatIdx;
3066    bool HasVAListArg;
3067    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3068      if (!FD->getAttr<FormatAttr>())
3069        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3070                                               FormatIdx + 2));
3071    }
3072
3073    // Mark const if we don't care about errno and that is the only
3074    // thing preventing the function from being const. This allows
3075    // IRgen to use LLVM intrinsics for such functions.
3076    if (!getLangOptions().MathErrno &&
3077        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3078      if (!FD->getAttr<ConstAttr>())
3079        FD->addAttr(::new (Context) ConstAttr());
3080    }
3081  }
3082
3083  IdentifierInfo *Name = FD->getIdentifier();
3084  if (!Name)
3085    return;
3086  if ((!getLangOptions().CPlusPlus &&
3087       FD->getDeclContext()->isTranslationUnit()) ||
3088      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3089       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3090       LinkageSpecDecl::lang_c)) {
3091    // Okay: this could be a libc/libm/Objective-C function we know
3092    // about.
3093  } else
3094    return;
3095
3096  unsigned KnownID;
3097  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3098    if (KnownFunctionIDs[KnownID] == Name)
3099      break;
3100
3101  switch (KnownID) {
3102  case id_NSLog:
3103  case id_NSLogv:
3104    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3105      // FIXME: We known better than our headers.
3106      const_cast<FormatAttr *>(Format)->setType("printf");
3107    } else
3108      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3109    break;
3110
3111  case id_asprintf:
3112  case id_vasprintf:
3113    if (!FD->getAttr<FormatAttr>())
3114      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3115    break;
3116
3117  default:
3118    // Unknown function or known function without any attributes to
3119    // add. Do nothing.
3120    break;
3121  }
3122}
3123
3124TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3125  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3126  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3127
3128  // Scope manipulation handled by caller.
3129  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3130                                           D.getIdentifierLoc(),
3131                                           D.getIdentifier(),
3132                                           T);
3133
3134  if (TagType *TT = dyn_cast<TagType>(T)) {
3135    TagDecl *TD = TT->getDecl();
3136
3137    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3138    // keep track of the TypedefDecl.
3139    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3140      TD->setTypedefForAnonDecl(NewTD);
3141  }
3142
3143  if (D.getInvalidType())
3144    NewTD->setInvalidDecl();
3145  return NewTD;
3146}
3147
3148/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3149/// former case, Name will be non-null.  In the later case, Name will be null.
3150/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3151/// reference/declaration/definition of a tag.
3152Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3153                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3154                               IdentifierInfo *Name, SourceLocation NameLoc,
3155                               AttributeList *Attr, AccessSpecifier AS) {
3156  // If this is not a definition, it must have a name.
3157  assert((Name != 0 || TK == TK_Definition) &&
3158         "Nameless record must be a definition!");
3159
3160  TagDecl::TagKind Kind;
3161  switch (TagSpec) {
3162  default: assert(0 && "Unknown tag type!");
3163  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3164  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3165  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3166  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3167  }
3168
3169  DeclContext *SearchDC = CurContext;
3170  DeclContext *DC = CurContext;
3171  NamedDecl *PrevDecl = 0;
3172
3173  bool Invalid = false;
3174
3175  if (Name && SS.isNotEmpty()) {
3176    // We have a nested-name tag ('struct foo::bar').
3177
3178    // Check for invalid 'foo::'.
3179    if (SS.isInvalid()) {
3180      Name = 0;
3181      goto CreateNewDecl;
3182    }
3183
3184    // FIXME: RequireCompleteDeclContext(SS)?
3185    DC = computeDeclContext(SS);
3186    SearchDC = DC;
3187    // Look-up name inside 'foo::'.
3188    PrevDecl = dyn_cast_or_null<TagDecl>(
3189                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3190
3191    // A tag 'foo::bar' must already exist.
3192    if (PrevDecl == 0) {
3193      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3194      Name = 0;
3195      goto CreateNewDecl;
3196    }
3197  } else if (Name) {
3198    // If this is a named struct, check to see if there was a previous forward
3199    // declaration or definition.
3200    // FIXME: We're looking into outer scopes here, even when we
3201    // shouldn't be. Doing so can result in ambiguities that we
3202    // shouldn't be diagnosing.
3203    LookupResult R = LookupName(S, Name, LookupTagName,
3204                                /*RedeclarationOnly=*/(TK != TK_Reference));
3205    if (R.isAmbiguous()) {
3206      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3207      // FIXME: This is not best way to recover from case like:
3208      //
3209      // struct S s;
3210      //
3211      // causes needless "incomplete type" error later.
3212      Name = 0;
3213      PrevDecl = 0;
3214      Invalid = true;
3215    }
3216    else
3217      PrevDecl = R;
3218
3219    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3220      // FIXME: This makes sure that we ignore the contexts associated
3221      // with C structs, unions, and enums when looking for a matching
3222      // tag declaration or definition. See the similar lookup tweak
3223      // in Sema::LookupName; is there a better way to deal with this?
3224      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3225        SearchDC = SearchDC->getParent();
3226    }
3227  }
3228
3229  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3230    // Maybe we will complain about the shadowed template parameter.
3231    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3232    // Just pretend that we didn't see the previous declaration.
3233    PrevDecl = 0;
3234  }
3235
3236  if (PrevDecl) {
3237    // Check whether the previous declaration is usable.
3238    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3239
3240    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3241      // If this is a use of a previous tag, or if the tag is already declared
3242      // in the same scope (so that the definition/declaration completes or
3243      // rementions the tag), reuse the decl.
3244      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3245        // Make sure that this wasn't declared as an enum and now used as a
3246        // struct or something similar.
3247        if (PrevTagDecl->getTagKind() != Kind) {
3248          bool SafeToContinue
3249            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3250               Kind != TagDecl::TK_enum);
3251          if (SafeToContinue)
3252            Diag(KWLoc, diag::err_use_with_wrong_tag)
3253              << Name
3254              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3255                                                  PrevTagDecl->getKindName());
3256          else
3257            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3258          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3259
3260          if (SafeToContinue)
3261            Kind = PrevTagDecl->getTagKind();
3262          else {
3263            // Recover by making this an anonymous redefinition.
3264            Name = 0;
3265            PrevDecl = 0;
3266            Invalid = true;
3267          }
3268        }
3269
3270        if (!Invalid) {
3271          // If this is a use, just return the declaration we found.
3272
3273          // FIXME: In the future, return a variant or some other clue
3274          // for the consumer of this Decl to know it doesn't own it.
3275          // For our current ASTs this shouldn't be a problem, but will
3276          // need to be changed with DeclGroups.
3277          if (TK == TK_Reference)
3278            return DeclPtrTy::make(PrevDecl);
3279
3280          // Diagnose attempts to redefine a tag.
3281          if (TK == TK_Definition) {
3282            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3283              Diag(NameLoc, diag::err_redefinition) << Name;
3284              Diag(Def->getLocation(), diag::note_previous_definition);
3285              // If this is a redefinition, recover by making this
3286              // struct be anonymous, which will make any later
3287              // references get the previous definition.
3288              Name = 0;
3289              PrevDecl = 0;
3290              Invalid = true;
3291            } else {
3292              // If the type is currently being defined, complain
3293              // about a nested redefinition.
3294              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3295              if (Tag->isBeingDefined()) {
3296                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3297                Diag(PrevTagDecl->getLocation(),
3298                     diag::note_previous_definition);
3299                Name = 0;
3300                PrevDecl = 0;
3301                Invalid = true;
3302              }
3303            }
3304
3305            // Okay, this is definition of a previously declared or referenced
3306            // tag PrevDecl. We're going to create a new Decl for it.
3307          }
3308        }
3309        // If we get here we have (another) forward declaration or we
3310        // have a definition.  Just create a new decl.
3311      } else {
3312        // If we get here, this is a definition of a new tag type in a nested
3313        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3314        // new decl/type.  We set PrevDecl to NULL so that the entities
3315        // have distinct types.
3316        PrevDecl = 0;
3317      }
3318      // If we get here, we're going to create a new Decl. If PrevDecl
3319      // is non-NULL, it's a definition of the tag declared by
3320      // PrevDecl. If it's NULL, we have a new definition.
3321    } else {
3322      // PrevDecl is a namespace, template, or anything else
3323      // that lives in the IDNS_Tag identifier namespace.
3324      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3325        // The tag name clashes with a namespace name, issue an error and
3326        // recover by making this tag be anonymous.
3327        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3328        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3329        Name = 0;
3330        PrevDecl = 0;
3331        Invalid = true;
3332      } else {
3333        // The existing declaration isn't relevant to us; we're in a
3334        // new scope, so clear out the previous declaration.
3335        PrevDecl = 0;
3336      }
3337    }
3338  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3339             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3340    // C.scope.pdecl]p5:
3341    //   -- for an elaborated-type-specifier of the form
3342    //
3343    //          class-key identifier
3344    //
3345    //      if the elaborated-type-specifier is used in the
3346    //      decl-specifier-seq or parameter-declaration-clause of a
3347    //      function defined in namespace scope, the identifier is
3348    //      declared as a class-name in the namespace that contains
3349    //      the declaration; otherwise, except as a friend
3350    //      declaration, the identifier is declared in the smallest
3351    //      non-class, non-function-prototype scope that contains the
3352    //      declaration.
3353    //
3354    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3355    // C structs and unions.
3356    //
3357    // GNU C also supports this behavior as part of its incomplete
3358    // enum types extension, while GNU C++ does not.
3359    //
3360    // Find the context where we'll be declaring the tag.
3361    // FIXME: We would like to maintain the current DeclContext as the
3362    // lexical context,
3363    while (SearchDC->isRecord())
3364      SearchDC = SearchDC->getParent();
3365
3366    // Find the scope where we'll be declaring the tag.
3367    while (S->isClassScope() ||
3368           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3369           ((S->getFlags() & Scope::DeclScope) == 0) ||
3370           (S->getEntity() &&
3371            ((DeclContext *)S->getEntity())->isTransparentContext()))
3372      S = S->getParent();
3373  }
3374
3375CreateNewDecl:
3376
3377  // If there is an identifier, use the location of the identifier as the
3378  // location of the decl, otherwise use the location of the struct/union
3379  // keyword.
3380  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3381
3382  // Otherwise, create a new declaration. If there is a previous
3383  // declaration of the same entity, the two will be linked via
3384  // PrevDecl.
3385  TagDecl *New;
3386
3387  if (Kind == TagDecl::TK_enum) {
3388    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3389    // enum X { A, B, C } D;    D should chain to X.
3390    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3391                           cast_or_null<EnumDecl>(PrevDecl));
3392    // If this is an undefined enum, warn.
3393    if (TK != TK_Definition && !Invalid)  {
3394      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3395                                              : diag::ext_forward_ref_enum;
3396      Diag(Loc, DK);
3397    }
3398  } else {
3399    // struct/union/class
3400
3401    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3402    // struct X { int A; } D;    D should chain to X.
3403    if (getLangOptions().CPlusPlus)
3404      // FIXME: Look for a way to use RecordDecl for simple structs.
3405      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3406                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3407    else
3408      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3409                               cast_or_null<RecordDecl>(PrevDecl));
3410  }
3411
3412  if (Kind != TagDecl::TK_enum) {
3413    // Handle #pragma pack: if the #pragma pack stack has non-default
3414    // alignment, make up a packed attribute for this decl. These
3415    // attributes are checked when the ASTContext lays out the
3416    // structure.
3417    //
3418    // It is important for implementing the correct semantics that this
3419    // happen here (in act on tag decl). The #pragma pack stack is
3420    // maintained as a result of parser callbacks which can occur at
3421    // many points during the parsing of a struct declaration (because
3422    // the #pragma tokens are effectively skipped over during the
3423    // parsing of the struct).
3424    if (unsigned Alignment = getPragmaPackAlignment())
3425      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3426  }
3427
3428  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3429    // C++ [dcl.typedef]p3:
3430    //   [...] Similarly, in a given scope, a class or enumeration
3431    //   shall not be declared with the same name as a typedef-name
3432    //   that is declared in that scope and refers to a type other
3433    //   than the class or enumeration itself.
3434    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3435    TypedefDecl *PrevTypedef = 0;
3436    if (Lookup.getKind() == LookupResult::Found)
3437      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3438
3439    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3440        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3441          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3442      Diag(Loc, diag::err_tag_definition_of_typedef)
3443        << Context.getTypeDeclType(New)
3444        << PrevTypedef->getUnderlyingType();
3445      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3446      Invalid = true;
3447    }
3448  }
3449
3450  if (Invalid)
3451    New->setInvalidDecl();
3452
3453  if (Attr)
3454    ProcessDeclAttributeList(New, Attr);
3455
3456  // If we're declaring or defining a tag in function prototype scope
3457  // in C, note that this type can only be used within the function.
3458  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3459    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3460
3461  // Set the lexical context. If the tag has a C++ scope specifier, the
3462  // lexical context will be different from the semantic context.
3463  New->setLexicalDeclContext(CurContext);
3464
3465  // Set the access specifier.
3466  SetMemberAccessSpecifier(New, PrevDecl, AS);
3467
3468  if (TK == TK_Definition)
3469    New->startDefinition();
3470
3471  // If this has an identifier, add it to the scope stack.
3472  if (Name) {
3473    S = getNonFieldDeclScope(S);
3474    PushOnScopeChains(New, S);
3475  } else {
3476    CurContext->addDecl(Context, New);
3477  }
3478
3479  return DeclPtrTy::make(New);
3480}
3481
3482void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3483  AdjustDeclIfTemplate(TagD);
3484  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3485
3486  // Enter the tag context.
3487  PushDeclContext(S, Tag);
3488
3489  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3490    FieldCollector->StartClass();
3491
3492    if (Record->getIdentifier()) {
3493      // C++ [class]p2:
3494      //   [...] The class-name is also inserted into the scope of the
3495      //   class itself; this is known as the injected-class-name. For
3496      //   purposes of access checking, the injected-class-name is treated
3497      //   as if it were a public member name.
3498      CXXRecordDecl *InjectedClassName
3499        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3500                                CurContext, Record->getLocation(),
3501                                Record->getIdentifier(), Record);
3502      InjectedClassName->setImplicit();
3503      InjectedClassName->setAccess(AS_public);
3504      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3505        InjectedClassName->setDescribedClassTemplate(Template);
3506      PushOnScopeChains(InjectedClassName, S);
3507      assert(InjectedClassName->isInjectedClassName() &&
3508             "Broken injected-class-name");
3509    }
3510  }
3511}
3512
3513void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3514  AdjustDeclIfTemplate(TagD);
3515  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3516
3517  if (isa<CXXRecordDecl>(Tag))
3518    FieldCollector->FinishClass();
3519
3520  // Exit this scope of this tag's definition.
3521  PopDeclContext();
3522
3523  // Notify the consumer that we've defined a tag.
3524  Consumer.HandleTagDeclDefinition(Tag);
3525}
3526
3527bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3528                          QualType FieldTy, const Expr *BitWidth) {
3529  // C99 6.7.2.1p4 - verify the field type.
3530  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3531  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3532    // Handle incomplete types with specific error.
3533    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3534      return true;
3535    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3536      << FieldName << FieldTy << BitWidth->getSourceRange();
3537  }
3538
3539  // If the bit-width is type- or value-dependent, don't try to check
3540  // it now.
3541  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3542    return false;
3543
3544  llvm::APSInt Value;
3545  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3546    return true;
3547
3548  // Zero-width bitfield is ok for anonymous field.
3549  if (Value == 0 && FieldName)
3550    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3551
3552  if (Value.isSigned() && Value.isNegative())
3553    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3554             << FieldName << Value.toString(10);
3555
3556  if (!FieldTy->isDependentType()) {
3557    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3558    // FIXME: We won't need the 0 size once we check that the field type is valid.
3559    if (TypeSize && Value.getZExtValue() > TypeSize)
3560      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3561        << FieldName << (unsigned)TypeSize;
3562  }
3563
3564  return false;
3565}
3566
3567/// ActOnField - Each field of a struct/union/class is passed into this in order
3568/// to create a FieldDecl object for it.
3569Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3570                                 SourceLocation DeclStart,
3571                                 Declarator &D, ExprTy *BitfieldWidth) {
3572  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3573                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3574                               AS_public);
3575  return DeclPtrTy::make(Res);
3576}
3577
3578/// HandleField - Analyze a field of a C struct or a C++ data member.
3579///
3580FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3581                             SourceLocation DeclStart,
3582                             Declarator &D, Expr *BitWidth,
3583                             AccessSpecifier AS) {
3584  IdentifierInfo *II = D.getIdentifier();
3585  SourceLocation Loc = DeclStart;
3586  if (II) Loc = D.getIdentifierLoc();
3587
3588  QualType T = GetTypeForDeclarator(D, S);
3589
3590  if (getLangOptions().CPlusPlus) {
3591    CheckExtraCXXDefaultArguments(D);
3592  }
3593
3594  DiagnoseFunctionSpecifiers(D);
3595
3596  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3597  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3598    PrevDecl = 0;
3599
3600  FieldDecl *NewFD
3601    = CheckFieldDecl(II, T, Record, Loc,
3602               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3603                     BitWidth, AS, PrevDecl, &D);
3604  if (NewFD->isInvalidDecl() && PrevDecl) {
3605    // Don't introduce NewFD into scope; there's already something
3606    // with the same name in the same scope.
3607  } else if (II) {
3608    PushOnScopeChains(NewFD, S);
3609  } else
3610    Record->addDecl(Context, NewFD);
3611
3612  return NewFD;
3613}
3614
3615/// \brief Build a new FieldDecl and check its well-formedness.
3616///
3617/// This routine builds a new FieldDecl given the fields name, type,
3618/// record, etc. \p PrevDecl should refer to any previous declaration
3619/// with the same name and in the same scope as the field to be
3620/// created.
3621///
3622/// \returns a new FieldDecl.
3623///
3624/// \todo The Declarator argument is a hack. It will be removed once
3625FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3626                                RecordDecl *Record, SourceLocation Loc,
3627                                bool Mutable, Expr *BitWidth,
3628                                AccessSpecifier AS, NamedDecl *PrevDecl,
3629                                Declarator *D) {
3630  IdentifierInfo *II = Name.getAsIdentifierInfo();
3631  bool InvalidDecl = false;
3632
3633  // If we receive a broken type, recover by assuming 'int' and
3634  // marking this declaration as invalid.
3635  if (T.isNull()) {
3636    InvalidDecl = true;
3637    T = Context.IntTy;
3638  }
3639
3640  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3641  // than a variably modified type.
3642  if (T->isVariablyModifiedType()) {
3643    bool SizeIsNegative;
3644    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3645                                                           SizeIsNegative);
3646    if (!FixedTy.isNull()) {
3647      Diag(Loc, diag::warn_illegal_constant_array_size);
3648      T = FixedTy;
3649    } else {
3650      if (SizeIsNegative)
3651        Diag(Loc, diag::err_typecheck_negative_array_size);
3652      else
3653        Diag(Loc, diag::err_typecheck_field_variable_size);
3654      T = Context.IntTy;
3655      InvalidDecl = true;
3656    }
3657  }
3658
3659  // Fields can not have abstract class types
3660  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3661                             AbstractFieldType))
3662    InvalidDecl = true;
3663
3664  // If this is declared as a bit-field, check the bit-field.
3665  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3666    InvalidDecl = true;
3667    DeleteExpr(BitWidth);
3668    BitWidth = 0;
3669  }
3670
3671  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3672                                       Mutable);
3673
3674  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3675    Diag(Loc, diag::err_duplicate_member) << II;
3676    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3677    NewFD->setInvalidDecl();
3678    Record->setInvalidDecl();
3679  }
3680
3681  if (getLangOptions().CPlusPlus && !T->isPODType())
3682    cast<CXXRecordDecl>(Record)->setPOD(false);
3683
3684  // FIXME: We need to pass in the attributes given an AST
3685  // representation, not a parser representation.
3686  if (D)
3687    ProcessDeclAttributes(NewFD, *D);
3688
3689  if (T.isObjCGCWeak())
3690    Diag(Loc, diag::warn_attribute_weak_on_field);
3691
3692  if (InvalidDecl)
3693    NewFD->setInvalidDecl();
3694
3695  NewFD->setAccess(AS);
3696
3697  // C++ [dcl.init.aggr]p1:
3698  //   An aggregate is an array or a class (clause 9) with [...] no
3699  //   private or protected non-static data members (clause 11).
3700  // A POD must be an aggregate.
3701  if (getLangOptions().CPlusPlus &&
3702      (AS == AS_private || AS == AS_protected)) {
3703    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3704    CXXRecord->setAggregate(false);
3705    CXXRecord->setPOD(false);
3706  }
3707
3708  return NewFD;
3709}
3710
3711/// TranslateIvarVisibility - Translate visibility from a token ID to an
3712///  AST enum value.
3713static ObjCIvarDecl::AccessControl
3714TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3715  switch (ivarVisibility) {
3716  default: assert(0 && "Unknown visitibility kind");
3717  case tok::objc_private: return ObjCIvarDecl::Private;
3718  case tok::objc_public: return ObjCIvarDecl::Public;
3719  case tok::objc_protected: return ObjCIvarDecl::Protected;
3720  case tok::objc_package: return ObjCIvarDecl::Package;
3721  }
3722}
3723
3724/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3725/// in order to create an IvarDecl object for it.
3726Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3727                                SourceLocation DeclStart,
3728                                Declarator &D, ExprTy *BitfieldWidth,
3729                                tok::ObjCKeywordKind Visibility) {
3730
3731  IdentifierInfo *II = D.getIdentifier();
3732  Expr *BitWidth = (Expr*)BitfieldWidth;
3733  SourceLocation Loc = DeclStart;
3734  if (II) Loc = D.getIdentifierLoc();
3735
3736  // FIXME: Unnamed fields can be handled in various different ways, for
3737  // example, unnamed unions inject all members into the struct namespace!
3738
3739  QualType T = GetTypeForDeclarator(D, S);
3740  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3741  bool InvalidDecl = false;
3742
3743  if (BitWidth) {
3744    // 6.7.2.1p3, 6.7.2.1p4
3745    if (VerifyBitField(Loc, II, T, BitWidth)) {
3746      InvalidDecl = true;
3747      DeleteExpr(BitWidth);
3748      BitWidth = 0;
3749    }
3750  } else {
3751    // Not a bitfield.
3752
3753    // validate II.
3754
3755  }
3756
3757  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3758  // than a variably modified type.
3759  if (T->isVariablyModifiedType()) {
3760    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3761    InvalidDecl = true;
3762  }
3763
3764  // Get the visibility (access control) for this ivar.
3765  ObjCIvarDecl::AccessControl ac =
3766    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3767                                        : ObjCIvarDecl::None;
3768
3769  // Construct the decl.
3770  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3771                                             (Expr *)BitfieldWidth);
3772
3773  if (II) {
3774    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3775    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3776        && !isa<TagDecl>(PrevDecl)) {
3777      Diag(Loc, diag::err_duplicate_member) << II;
3778      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3779      NewID->setInvalidDecl();
3780    }
3781  }
3782
3783  // Process attributes attached to the ivar.
3784  ProcessDeclAttributes(NewID, D);
3785
3786  if (D.getInvalidType() || InvalidDecl)
3787    NewID->setInvalidDecl();
3788
3789  if (II) {
3790    // FIXME: When interfaces are DeclContexts, we'll need to add
3791    // these to the interface.
3792    S->AddDecl(DeclPtrTy::make(NewID));
3793    IdResolver.AddDecl(NewID);
3794  }
3795
3796  return DeclPtrTy::make(NewID);
3797}
3798
3799void Sema::ActOnFields(Scope* S,
3800                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3801                       DeclPtrTy *Fields, unsigned NumFields,
3802                       SourceLocation LBrac, SourceLocation RBrac,
3803                       AttributeList *Attr) {
3804  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3805  assert(EnclosingDecl && "missing record or interface decl");
3806
3807  // If the decl this is being inserted into is invalid, then it may be a
3808  // redeclaration or some other bogus case.  Don't try to add fields to it.
3809  if (EnclosingDecl->isInvalidDecl()) {
3810    // FIXME: Deallocate fields?
3811    return;
3812  }
3813
3814
3815  // Verify that all the fields are okay.
3816  unsigned NumNamedMembers = 0;
3817  llvm::SmallVector<FieldDecl*, 32> RecFields;
3818
3819  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3820  for (unsigned i = 0; i != NumFields; ++i) {
3821    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3822
3823    // Get the type for the field.
3824    Type *FDTy = FD->getType().getTypePtr();
3825
3826    if (!FD->isAnonymousStructOrUnion()) {
3827      // Remember all fields written by the user.
3828      RecFields.push_back(FD);
3829    }
3830
3831    // If the field is already invalid for some reason, don't emit more
3832    // diagnostics about it.
3833    if (FD->isInvalidDecl())
3834      continue;
3835
3836    // C99 6.7.2.1p2:
3837    //   A structure or union shall not contain a member with
3838    //   incomplete or function type (hence, a structure shall not
3839    //   contain an instance of itself, but may contain a pointer to
3840    //   an instance of itself), except that the last member of a
3841    //   structure with more than one named member may have incomplete
3842    //   array type; such a structure (and any union containing,
3843    //   possibly recursively, a member that is such a structure)
3844    //   shall not be a member of a structure or an element of an
3845    //   array.
3846    if (FDTy->isFunctionType()) {
3847      // Field declared as a function.
3848      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3849        << FD->getDeclName();
3850      FD->setInvalidDecl();
3851      EnclosingDecl->setInvalidDecl();
3852      continue;
3853    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3854               Record && Record->isStruct()) {
3855      // Flexible array member.
3856      if (NumNamedMembers < 1) {
3857        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3858          << FD->getDeclName();
3859        FD->setInvalidDecl();
3860        EnclosingDecl->setInvalidDecl();
3861        continue;
3862      }
3863      // Okay, we have a legal flexible array member at the end of the struct.
3864      if (Record)
3865        Record->setHasFlexibleArrayMember(true);
3866    } else if (!FDTy->isDependentType() &&
3867               RequireCompleteType(FD->getLocation(), FD->getType(),
3868                                   diag::err_field_incomplete)) {
3869      // Incomplete type
3870      FD->setInvalidDecl();
3871      EnclosingDecl->setInvalidDecl();
3872      continue;
3873    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3874      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3875        // If this is a member of a union, then entire union becomes "flexible".
3876        if (Record && Record->isUnion()) {
3877          Record->setHasFlexibleArrayMember(true);
3878        } else {
3879          // If this is a struct/class and this is not the last element, reject
3880          // it.  Note that GCC supports variable sized arrays in the middle of
3881          // structures.
3882          if (i != NumFields-1)
3883            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3884              << FD->getDeclName();
3885          else {
3886            // We support flexible arrays at the end of structs in
3887            // other structs as an extension.
3888            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3889              << FD->getDeclName();
3890            if (Record)
3891              Record->setHasFlexibleArrayMember(true);
3892          }
3893        }
3894      }
3895    } else if (FDTy->isObjCInterfaceType()) {
3896      /// A field cannot be an Objective-c object
3897      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3898      FD->setInvalidDecl();
3899      EnclosingDecl->setInvalidDecl();
3900      continue;
3901    }
3902    // Keep track of the number of named members.
3903    if (FD->getIdentifier())
3904      ++NumNamedMembers;
3905  }
3906
3907  // Okay, we successfully defined 'Record'.
3908  if (Record) {
3909    Record->completeDefinition(Context);
3910  } else {
3911    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3912    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3913      ID->setIVarList(ClsFields, RecFields.size(), Context);
3914      ID->setLocEnd(RBrac);
3915
3916      // Must enforce the rule that ivars in the base classes may not be
3917      // duplicates.
3918      if (ID->getSuperClass()) {
3919        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3920             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3921          ObjCIvarDecl* Ivar = (*IVI);
3922          IdentifierInfo *II = Ivar->getIdentifier();
3923          ObjCIvarDecl* prevIvar =
3924            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3925          if (prevIvar) {
3926            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3927            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3928          }
3929        }
3930      }
3931    } else if (ObjCImplementationDecl *IMPDecl =
3932                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3933      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3934      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3935      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3936    }
3937  }
3938
3939  if (Attr)
3940    ProcessDeclAttributeList(Record, Attr);
3941}
3942
3943EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3944                                          EnumConstantDecl *LastEnumConst,
3945                                          SourceLocation IdLoc,
3946                                          IdentifierInfo *Id,
3947                                          ExprArg val) {
3948  Expr *Val = (Expr *)val.get();
3949
3950  llvm::APSInt EnumVal(32);
3951  QualType EltTy;
3952  if (Val && !Val->isTypeDependent()) {
3953    // Make sure to promote the operand type to int.
3954    UsualUnaryConversions(Val);
3955    if (Val != val.get()) {
3956      val.release();
3957      val = Val;
3958    }
3959
3960    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3961    SourceLocation ExpLoc;
3962    if (!Val->isValueDependent() &&
3963        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3964      Val = 0;
3965    } else {
3966      EltTy = Val->getType();
3967    }
3968  }
3969
3970  if (!Val) {
3971    if (LastEnumConst) {
3972      // Assign the last value + 1.
3973      EnumVal = LastEnumConst->getInitVal();
3974      ++EnumVal;
3975
3976      // Check for overflow on increment.
3977      if (EnumVal < LastEnumConst->getInitVal())
3978        Diag(IdLoc, diag::warn_enum_value_overflow);
3979
3980      EltTy = LastEnumConst->getType();
3981    } else {
3982      // First value, set to zero.
3983      EltTy = Context.IntTy;
3984      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3985    }
3986  }
3987
3988  val.release();
3989  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3990                                  Val, EnumVal);
3991}
3992
3993
3994Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
3995                                        DeclPtrTy lastEnumConst,
3996                                        SourceLocation IdLoc,
3997                                        IdentifierInfo *Id,
3998                                        SourceLocation EqualLoc, ExprTy *val) {
3999  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4000  EnumConstantDecl *LastEnumConst =
4001    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4002  Expr *Val = static_cast<Expr*>(val);
4003
4004  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4005  // we find one that is.
4006  S = getNonFieldDeclScope(S);
4007
4008  // Verify that there isn't already something declared with this name in this
4009  // scope.
4010  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4011  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4012    // Maybe we will complain about the shadowed template parameter.
4013    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4014    // Just pretend that we didn't see the previous declaration.
4015    PrevDecl = 0;
4016  }
4017
4018  if (PrevDecl) {
4019    // When in C++, we may get a TagDecl with the same name; in this case the
4020    // enum constant will 'hide' the tag.
4021    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4022           "Received TagDecl when not in C++!");
4023    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4024      if (isa<EnumConstantDecl>(PrevDecl))
4025        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4026      else
4027        Diag(IdLoc, diag::err_redefinition) << Id;
4028      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4029      if (Val) Val->Destroy(Context);
4030      return DeclPtrTy();
4031    }
4032  }
4033
4034  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4035                                            IdLoc, Id, Owned(Val));
4036
4037  // Register this decl in the current scope stack.
4038  if (New)
4039    PushOnScopeChains(New, S);
4040
4041  return DeclPtrTy::make(New);
4042}
4043
4044// FIXME: For consistency with ActOnFields(), we should have the parser
4045// pass in the source location for the left/right braces.
4046void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4047                         DeclPtrTy *Elements, unsigned NumElements) {
4048  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4049  QualType EnumType = Context.getTypeDeclType(Enum);
4050
4051  // TODO: If the result value doesn't fit in an int, it must be a long or long
4052  // long value.  ISO C does not support this, but GCC does as an extension,
4053  // emit a warning.
4054  unsigned IntWidth = Context.Target.getIntWidth();
4055
4056  // Verify that all the values are okay, compute the size of the values, and
4057  // reverse the list.
4058  unsigned NumNegativeBits = 0;
4059  unsigned NumPositiveBits = 0;
4060
4061  // Keep track of whether all elements have type int.
4062  bool AllElementsInt = true;
4063
4064  for (unsigned i = 0; i != NumElements; ++i) {
4065    EnumConstantDecl *ECD =
4066      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4067    if (!ECD) continue;  // Already issued a diagnostic.
4068
4069    // If the enum value doesn't fit in an int, emit an extension warning.
4070    const llvm::APSInt &InitVal = ECD->getInitVal();
4071    assert(InitVal.getBitWidth() >= IntWidth &&
4072           "Should have promoted value to int");
4073    if (InitVal.getBitWidth() > IntWidth) {
4074      llvm::APSInt V(InitVal);
4075      V.trunc(IntWidth);
4076      V.extend(InitVal.getBitWidth());
4077      if (V != InitVal)
4078        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4079          << InitVal.toString(10);
4080    }
4081
4082    // Keep track of the size of positive and negative values.
4083    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4084      NumPositiveBits = std::max(NumPositiveBits,
4085                                 (unsigned)InitVal.getActiveBits());
4086    else
4087      NumNegativeBits = std::max(NumNegativeBits,
4088                                 (unsigned)InitVal.getMinSignedBits());
4089
4090    // Keep track of whether every enum element has type int (very commmon).
4091    if (AllElementsInt)
4092      AllElementsInt = ECD->getType() == Context.IntTy;
4093  }
4094
4095  // Figure out the type that should be used for this enum.
4096  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4097  QualType BestType;
4098  unsigned BestWidth;
4099
4100  if (NumNegativeBits) {
4101    // If there is a negative value, figure out the smallest integer type (of
4102    // int/long/longlong) that fits.
4103    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4104      BestType = Context.IntTy;
4105      BestWidth = IntWidth;
4106    } else {
4107      BestWidth = Context.Target.getLongWidth();
4108
4109      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4110        BestType = Context.LongTy;
4111      else {
4112        BestWidth = Context.Target.getLongLongWidth();
4113
4114        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4115          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4116        BestType = Context.LongLongTy;
4117      }
4118    }
4119  } else {
4120    // If there is no negative value, figure out which of uint, ulong, ulonglong
4121    // fits.
4122    if (NumPositiveBits <= IntWidth) {
4123      BestType = Context.UnsignedIntTy;
4124      BestWidth = IntWidth;
4125    } else if (NumPositiveBits <=
4126               (BestWidth = Context.Target.getLongWidth())) {
4127      BestType = Context.UnsignedLongTy;
4128    } else {
4129      BestWidth = Context.Target.getLongLongWidth();
4130      assert(NumPositiveBits <= BestWidth &&
4131             "How could an initializer get larger than ULL?");
4132      BestType = Context.UnsignedLongLongTy;
4133    }
4134  }
4135
4136  // Loop over all of the enumerator constants, changing their types to match
4137  // the type of the enum if needed.
4138  for (unsigned i = 0; i != NumElements; ++i) {
4139    EnumConstantDecl *ECD =
4140      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4141    if (!ECD) continue;  // Already issued a diagnostic.
4142
4143    // Standard C says the enumerators have int type, but we allow, as an
4144    // extension, the enumerators to be larger than int size.  If each
4145    // enumerator value fits in an int, type it as an int, otherwise type it the
4146    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4147    // that X has type 'int', not 'unsigned'.
4148    if (ECD->getType() == Context.IntTy) {
4149      // Make sure the init value is signed.
4150      llvm::APSInt IV = ECD->getInitVal();
4151      IV.setIsSigned(true);
4152      ECD->setInitVal(IV);
4153
4154      if (getLangOptions().CPlusPlus)
4155        // C++ [dcl.enum]p4: Following the closing brace of an
4156        // enum-specifier, each enumerator has the type of its
4157        // enumeration.
4158        ECD->setType(EnumType);
4159      continue;  // Already int type.
4160    }
4161
4162    // Determine whether the value fits into an int.
4163    llvm::APSInt InitVal = ECD->getInitVal();
4164    bool FitsInInt;
4165    if (InitVal.isUnsigned() || !InitVal.isNegative())
4166      FitsInInt = InitVal.getActiveBits() < IntWidth;
4167    else
4168      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4169
4170    // If it fits into an integer type, force it.  Otherwise force it to match
4171    // the enum decl type.
4172    QualType NewTy;
4173    unsigned NewWidth;
4174    bool NewSign;
4175    if (FitsInInt) {
4176      NewTy = Context.IntTy;
4177      NewWidth = IntWidth;
4178      NewSign = true;
4179    } else if (ECD->getType() == BestType) {
4180      // Already the right type!
4181      if (getLangOptions().CPlusPlus)
4182        // C++ [dcl.enum]p4: Following the closing brace of an
4183        // enum-specifier, each enumerator has the type of its
4184        // enumeration.
4185        ECD->setType(EnumType);
4186      continue;
4187    } else {
4188      NewTy = BestType;
4189      NewWidth = BestWidth;
4190      NewSign = BestType->isSignedIntegerType();
4191    }
4192
4193    // Adjust the APSInt value.
4194    InitVal.extOrTrunc(NewWidth);
4195    InitVal.setIsSigned(NewSign);
4196    ECD->setInitVal(InitVal);
4197
4198    // Adjust the Expr initializer and type.
4199    if (ECD->getInitExpr())
4200      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4201                                                      /*isLvalue=*/false));
4202    if (getLangOptions().CPlusPlus)
4203      // C++ [dcl.enum]p4: Following the closing brace of an
4204      // enum-specifier, each enumerator has the type of its
4205      // enumeration.
4206      ECD->setType(EnumType);
4207    else
4208      ECD->setType(NewTy);
4209  }
4210
4211  Enum->completeDefinition(Context, BestType);
4212}
4213
4214Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4215                                            ExprArg expr) {
4216  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4217
4218  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4219                                                  Loc, AsmString));
4220}
4221
4222