SemaDecl.cpp revision c5be7b0fc804d8e6f87298ec03c94d8cccd74f29
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774void Sema::InitBuiltinVaListType() {
775  if (!Context.getBuiltinVaListType().isNull())
776    return;
777
778  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
779  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
780                                       LookupOrdinaryName, ForRedeclaration);
781  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
782  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
783}
784
785/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
786/// file scope.  lazily create a decl for it. ForRedeclaration is true
787/// if we're creating this built-in in anticipation of redeclaring the
788/// built-in.
789NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
790                                     Scope *S, bool ForRedeclaration,
791                                     SourceLocation Loc) {
792  Builtin::ID BID = (Builtin::ID)bid;
793
794  if (Context.BuiltinInfo.hasVAListUse(BID))
795    InitBuiltinVaListType();
796
797  ASTContext::GetBuiltinTypeError Error;
798  QualType R = Context.GetBuiltinType(BID, Error);
799  switch (Error) {
800  case ASTContext::GE_None:
801    // Okay
802    break;
803
804  case ASTContext::GE_Missing_stdio:
805    if (ForRedeclaration)
806      Diag(Loc, diag::err_implicit_decl_requires_stdio)
807        << Context.BuiltinInfo.GetName(BID);
808    return 0;
809
810  case ASTContext::GE_Missing_setjmp:
811    if (ForRedeclaration)
812      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
813        << Context.BuiltinInfo.GetName(BID);
814    return 0;
815  }
816
817  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
818    Diag(Loc, diag::ext_implicit_lib_function_decl)
819      << Context.BuiltinInfo.GetName(BID)
820      << R;
821    if (Context.BuiltinInfo.getHeaderName(BID) &&
822        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
823          != Diagnostic::Ignored)
824      Diag(Loc, diag::note_please_include_header)
825        << Context.BuiltinInfo.getHeaderName(BID)
826        << Context.BuiltinInfo.GetName(BID);
827  }
828
829  FunctionDecl *New = FunctionDecl::Create(Context,
830                                           Context.getTranslationUnitDecl(),
831                                           Loc, II, R, /*TInfo=*/0,
832                                           SC_Extern,
833                                           SC_None, false,
834                                           /*hasPrototype=*/true);
835  New->setImplicit();
836
837  // Create Decl objects for each parameter, adding them to the
838  // FunctionDecl.
839  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
840    llvm::SmallVector<ParmVarDecl*, 16> Params;
841    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
842      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
843                                           FT->getArgType(i), /*TInfo=*/0,
844                                           SC_None, SC_None, 0));
845    New->setParams(Params.data(), Params.size());
846  }
847
848  AddKnownFunctionAttributes(New);
849
850  // TUScope is the translation-unit scope to insert this function into.
851  // FIXME: This is hideous. We need to teach PushOnScopeChains to
852  // relate Scopes to DeclContexts, and probably eliminate CurContext
853  // entirely, but we're not there yet.
854  DeclContext *SavedContext = CurContext;
855  CurContext = Context.getTranslationUnitDecl();
856  PushOnScopeChains(New, TUScope);
857  CurContext = SavedContext;
858  return New;
859}
860
861/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
862/// same name and scope as a previous declaration 'Old'.  Figure out
863/// how to resolve this situation, merging decls or emitting
864/// diagnostics as appropriate. If there was an error, set New to be invalid.
865///
866void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
867  // If the new decl is known invalid already, don't bother doing any
868  // merging checks.
869  if (New->isInvalidDecl()) return;
870
871  // Allow multiple definitions for ObjC built-in typedefs.
872  // FIXME: Verify the underlying types are equivalent!
873  if (getLangOptions().ObjC1) {
874    const IdentifierInfo *TypeID = New->getIdentifier();
875    switch (TypeID->getLength()) {
876    default: break;
877    case 2:
878      if (!TypeID->isStr("id"))
879        break;
880      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'id', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
883      return;
884    case 5:
885      if (!TypeID->isStr("Class"))
886        break;
887      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
888      // Install the built-in type for 'Class', ignoring the current definition.
889      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
890      return;
891    case 3:
892      if (!TypeID->isStr("SEL"))
893        break;
894      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
895      // Install the built-in type for 'SEL', ignoring the current definition.
896      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
897      return;
898    case 8:
899      if (!TypeID->isStr("Protocol"))
900        break;
901      Context.setObjCProtoType(New->getUnderlyingType());
902      return;
903    }
904    // Fall through - the typedef name was not a builtin type.
905  }
906
907  // Verify the old decl was also a type.
908  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
909  if (!Old) {
910    Diag(New->getLocation(), diag::err_redefinition_different_kind)
911      << New->getDeclName();
912
913    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
914    if (OldD->getLocation().isValid())
915      Diag(OldD->getLocation(), diag::note_previous_definition);
916
917    return New->setInvalidDecl();
918  }
919
920  // If the old declaration is invalid, just give up here.
921  if (Old->isInvalidDecl())
922    return New->setInvalidDecl();
923
924  // Determine the "old" type we'll use for checking and diagnostics.
925  QualType OldType;
926  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
927    OldType = OldTypedef->getUnderlyingType();
928  else
929    OldType = Context.getTypeDeclType(Old);
930
931  // If the typedef types are not identical, reject them in all languages and
932  // with any extensions enabled.
933
934  if (OldType != New->getUnderlyingType() &&
935      Context.getCanonicalType(OldType) !=
936      Context.getCanonicalType(New->getUnderlyingType())) {
937    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
938      << New->getUnderlyingType() << OldType;
939    if (Old->getLocation().isValid())
940      Diag(Old->getLocation(), diag::note_previous_definition);
941    return New->setInvalidDecl();
942  }
943
944  // The types match.  Link up the redeclaration chain if the old
945  // declaration was a typedef.
946  // FIXME: this is a potential source of wierdness if the type
947  // spellings don't match exactly.
948  if (isa<TypedefDecl>(Old))
949    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
950
951  if (getLangOptions().Microsoft)
952    return;
953
954  if (getLangOptions().CPlusPlus) {
955    // C++ [dcl.typedef]p2:
956    //   In a given non-class scope, a typedef specifier can be used to
957    //   redefine the name of any type declared in that scope to refer
958    //   to the type to which it already refers.
959    if (!isa<CXXRecordDecl>(CurContext))
960      return;
961
962    // C++0x [dcl.typedef]p4:
963    //   In a given class scope, a typedef specifier can be used to redefine
964    //   any class-name declared in that scope that is not also a typedef-name
965    //   to refer to the type to which it already refers.
966    //
967    // This wording came in via DR424, which was a correction to the
968    // wording in DR56, which accidentally banned code like:
969    //
970    //   struct S {
971    //     typedef struct A { } A;
972    //   };
973    //
974    // in the C++03 standard. We implement the C++0x semantics, which
975    // allow the above but disallow
976    //
977    //   struct S {
978    //     typedef int I;
979    //     typedef int I;
980    //   };
981    //
982    // since that was the intent of DR56.
983    if (!isa<TypedefDecl >(Old))
984      return;
985
986    Diag(New->getLocation(), diag::err_redefinition)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991
992  // If we have a redefinition of a typedef in C, emit a warning.  This warning
993  // is normally mapped to an error, but can be controlled with
994  // -Wtypedef-redefinition.  If either the original or the redefinition is
995  // in a system header, don't emit this for compatibility with GCC.
996  if (getDiagnostics().getSuppressSystemWarnings() &&
997      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
998       Context.getSourceManager().isInSystemHeader(New->getLocation())))
999    return;
1000
1001  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1002    << New->getDeclName();
1003  Diag(Old->getLocation(), diag::note_previous_definition);
1004  return;
1005}
1006
1007/// DeclhasAttr - returns true if decl Declaration already has the target
1008/// attribute.
1009static bool
1010DeclHasAttr(const Decl *D, const Attr *A) {
1011  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1012  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1013    if ((*i)->getKind() == A->getKind()) {
1014      // FIXME: Don't hardcode this check
1015      if (OA && isa<OwnershipAttr>(*i))
1016        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1017      return true;
1018    }
1019
1020  return false;
1021}
1022
1023/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1024static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1025  if (!Old->hasAttrs())
1026    return;
1027  // Ensure that any moving of objects within the allocated map is done before
1028  // we process them.
1029  if (!New->hasAttrs())
1030    New->setAttrs(AttrVec());
1031  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1032       ++i) {
1033    // FIXME: Make this more general than just checking for Overloadable.
1034    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1035      Attr *NewAttr = (*i)->clone(C);
1036      NewAttr->setInherited(true);
1037      New->addAttr(NewAttr);
1038    }
1039  }
1040}
1041
1042namespace {
1043
1044/// Used in MergeFunctionDecl to keep track of function parameters in
1045/// C.
1046struct GNUCompatibleParamWarning {
1047  ParmVarDecl *OldParm;
1048  ParmVarDecl *NewParm;
1049  QualType PromotedType;
1050};
1051
1052}
1053
1054/// getSpecialMember - get the special member enum for a method.
1055Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1056  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1057    if (Ctor->isCopyConstructor())
1058      return Sema::CXXCopyConstructor;
1059
1060    return Sema::CXXConstructor;
1061  }
1062
1063  if (isa<CXXDestructorDecl>(MD))
1064    return Sema::CXXDestructor;
1065
1066  assert(MD->isCopyAssignmentOperator() &&
1067         "Must have copy assignment operator");
1068  return Sema::CXXCopyAssignment;
1069}
1070
1071/// canRedefineFunction - checks if a function can be redefined. Currently,
1072/// only extern inline functions can be redefined, and even then only in
1073/// GNU89 mode.
1074static bool canRedefineFunction(const FunctionDecl *FD,
1075                                const LangOptions& LangOpts) {
1076  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1077          FD->isInlineSpecified() &&
1078          FD->getStorageClass() == SC_Extern);
1079}
1080
1081/// MergeFunctionDecl - We just parsed a function 'New' from
1082/// declarator D which has the same name and scope as a previous
1083/// declaration 'Old'.  Figure out how to resolve this situation,
1084/// merging decls or emitting diagnostics as appropriate.
1085///
1086/// In C++, New and Old must be declarations that are not
1087/// overloaded. Use IsOverload to determine whether New and Old are
1088/// overloaded, and to select the Old declaration that New should be
1089/// merged with.
1090///
1091/// Returns true if there was an error, false otherwise.
1092bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1093  // Verify the old decl was also a function.
1094  FunctionDecl *Old = 0;
1095  if (FunctionTemplateDecl *OldFunctionTemplate
1096        = dyn_cast<FunctionTemplateDecl>(OldD))
1097    Old = OldFunctionTemplate->getTemplatedDecl();
1098  else
1099    Old = dyn_cast<FunctionDecl>(OldD);
1100  if (!Old) {
1101    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1102      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1103      Diag(Shadow->getTargetDecl()->getLocation(),
1104           diag::note_using_decl_target);
1105      Diag(Shadow->getUsingDecl()->getLocation(),
1106           diag::note_using_decl) << 0;
1107      return true;
1108    }
1109
1110    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1111      << New->getDeclName();
1112    Diag(OldD->getLocation(), diag::note_previous_definition);
1113    return true;
1114  }
1115
1116  // Determine whether the previous declaration was a definition,
1117  // implicit declaration, or a declaration.
1118  diag::kind PrevDiag;
1119  if (Old->isThisDeclarationADefinition())
1120    PrevDiag = diag::note_previous_definition;
1121  else if (Old->isImplicit())
1122    PrevDiag = diag::note_previous_implicit_declaration;
1123  else
1124    PrevDiag = diag::note_previous_declaration;
1125
1126  QualType OldQType = Context.getCanonicalType(Old->getType());
1127  QualType NewQType = Context.getCanonicalType(New->getType());
1128
1129  // Don't complain about this if we're in GNU89 mode and the old function
1130  // is an extern inline function.
1131  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1132      New->getStorageClass() == SC_Static &&
1133      Old->getStorageClass() != SC_Static &&
1134      !canRedefineFunction(Old, getLangOptions())) {
1135    Diag(New->getLocation(), diag::err_static_non_static)
1136      << New;
1137    Diag(Old->getLocation(), PrevDiag);
1138    return true;
1139  }
1140
1141  // If a function is first declared with a calling convention, but is
1142  // later declared or defined without one, the second decl assumes the
1143  // calling convention of the first.
1144  //
1145  // For the new decl, we have to look at the NON-canonical type to tell the
1146  // difference between a function that really doesn't have a calling
1147  // convention and one that is declared cdecl. That's because in
1148  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1149  // because it is the default calling convention.
1150  //
1151  // Note also that we DO NOT return at this point, because we still have
1152  // other tests to run.
1153  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1154  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1155  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1156  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1157  if (OldTypeInfo.getCC() != CC_Default &&
1158      NewTypeInfo.getCC() == CC_Default) {
1159    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1160    New->setType(NewQType);
1161    NewQType = Context.getCanonicalType(NewQType);
1162  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1163                                     NewTypeInfo.getCC())) {
1164    // Calling conventions really aren't compatible, so complain.
1165    Diag(New->getLocation(), diag::err_cconv_change)
1166      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1167      << (OldTypeInfo.getCC() == CC_Default)
1168      << (OldTypeInfo.getCC() == CC_Default ? "" :
1169          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1170    Diag(Old->getLocation(), diag::note_previous_declaration);
1171    return true;
1172  }
1173
1174  // FIXME: diagnose the other way around?
1175  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1176    NewQType = Context.getNoReturnType(NewQType);
1177    New->setType(NewQType);
1178    assert(NewQType.isCanonical());
1179  }
1180
1181  // Merge regparm attribute.
1182  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1183    if (NewType->getRegParmType()) {
1184      Diag(New->getLocation(), diag::err_regparm_mismatch)
1185        << NewType->getRegParmType()
1186        << OldType->getRegParmType();
1187      Diag(Old->getLocation(), diag::note_previous_declaration);
1188      return true;
1189    }
1190
1191    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1192    New->setType(NewQType);
1193    assert(NewQType.isCanonical());
1194  }
1195
1196  if (getLangOptions().CPlusPlus) {
1197    // (C++98 13.1p2):
1198    //   Certain function declarations cannot be overloaded:
1199    //     -- Function declarations that differ only in the return type
1200    //        cannot be overloaded.
1201    QualType OldReturnType
1202      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1203    QualType NewReturnType
1204      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1205    QualType ResQT;
1206    if (OldReturnType != NewReturnType) {
1207      if (NewReturnType->isObjCObjectPointerType()
1208          && OldReturnType->isObjCObjectPointerType())
1209        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1210      if (ResQT.isNull()) {
1211        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1212        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1213        return true;
1214      }
1215      else
1216        NewQType = ResQT;
1217    }
1218
1219    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1220    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1221    if (OldMethod && NewMethod) {
1222      // Preserve triviality.
1223      NewMethod->setTrivial(OldMethod->isTrivial());
1224
1225      bool isFriend = NewMethod->getFriendObjectKind();
1226
1227      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1228        //    -- Member function declarations with the same name and the
1229        //       same parameter types cannot be overloaded if any of them
1230        //       is a static member function declaration.
1231        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1232          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1233          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1234          return true;
1235        }
1236
1237        // C++ [class.mem]p1:
1238        //   [...] A member shall not be declared twice in the
1239        //   member-specification, except that a nested class or member
1240        //   class template can be declared and then later defined.
1241        unsigned NewDiag;
1242        if (isa<CXXConstructorDecl>(OldMethod))
1243          NewDiag = diag::err_constructor_redeclared;
1244        else if (isa<CXXDestructorDecl>(NewMethod))
1245          NewDiag = diag::err_destructor_redeclared;
1246        else if (isa<CXXConversionDecl>(NewMethod))
1247          NewDiag = diag::err_conv_function_redeclared;
1248        else
1249          NewDiag = diag::err_member_redeclared;
1250
1251        Diag(New->getLocation(), NewDiag);
1252        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1253
1254      // Complain if this is an explicit declaration of a special
1255      // member that was initially declared implicitly.
1256      //
1257      // As an exception, it's okay to befriend such methods in order
1258      // to permit the implicit constructor/destructor/operator calls.
1259      } else if (OldMethod->isImplicit()) {
1260        if (isFriend) {
1261          NewMethod->setImplicit();
1262        } else {
1263          Diag(NewMethod->getLocation(),
1264               diag::err_definition_of_implicitly_declared_member)
1265            << New << getSpecialMember(OldMethod);
1266          return true;
1267        }
1268      }
1269    }
1270
1271    // (C++98 8.3.5p3):
1272    //   All declarations for a function shall agree exactly in both the
1273    //   return type and the parameter-type-list.
1274    // attributes should be ignored when comparing.
1275    if (Context.getNoReturnType(OldQType, false) ==
1276        Context.getNoReturnType(NewQType, false))
1277      return MergeCompatibleFunctionDecls(New, Old);
1278
1279    // Fall through for conflicting redeclarations and redefinitions.
1280  }
1281
1282  // C: Function types need to be compatible, not identical. This handles
1283  // duplicate function decls like "void f(int); void f(enum X);" properly.
1284  if (!getLangOptions().CPlusPlus &&
1285      Context.typesAreCompatible(OldQType, NewQType)) {
1286    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1287    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1288    const FunctionProtoType *OldProto = 0;
1289    if (isa<FunctionNoProtoType>(NewFuncType) &&
1290        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1291      // The old declaration provided a function prototype, but the
1292      // new declaration does not. Merge in the prototype.
1293      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1294      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1295                                                 OldProto->arg_type_end());
1296      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1297                                         ParamTypes.data(), ParamTypes.size(),
1298                                         OldProto->isVariadic(),
1299                                         OldProto->getTypeQuals(),
1300                                         false, false, 0, 0,
1301                                         OldProto->getExtInfo());
1302      New->setType(NewQType);
1303      New->setHasInheritedPrototype();
1304
1305      // Synthesize a parameter for each argument type.
1306      llvm::SmallVector<ParmVarDecl*, 16> Params;
1307      for (FunctionProtoType::arg_type_iterator
1308             ParamType = OldProto->arg_type_begin(),
1309             ParamEnd = OldProto->arg_type_end();
1310           ParamType != ParamEnd; ++ParamType) {
1311        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1312                                                 SourceLocation(), 0,
1313                                                 *ParamType, /*TInfo=*/0,
1314                                                 SC_None, SC_None,
1315                                                 0);
1316        Param->setImplicit();
1317        Params.push_back(Param);
1318      }
1319
1320      New->setParams(Params.data(), Params.size());
1321    }
1322
1323    return MergeCompatibleFunctionDecls(New, Old);
1324  }
1325
1326  // GNU C permits a K&R definition to follow a prototype declaration
1327  // if the declared types of the parameters in the K&R definition
1328  // match the types in the prototype declaration, even when the
1329  // promoted types of the parameters from the K&R definition differ
1330  // from the types in the prototype. GCC then keeps the types from
1331  // the prototype.
1332  //
1333  // If a variadic prototype is followed by a non-variadic K&R definition,
1334  // the K&R definition becomes variadic.  This is sort of an edge case, but
1335  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1336  // C99 6.9.1p8.
1337  if (!getLangOptions().CPlusPlus &&
1338      Old->hasPrototype() && !New->hasPrototype() &&
1339      New->getType()->getAs<FunctionProtoType>() &&
1340      Old->getNumParams() == New->getNumParams()) {
1341    llvm::SmallVector<QualType, 16> ArgTypes;
1342    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1343    const FunctionProtoType *OldProto
1344      = Old->getType()->getAs<FunctionProtoType>();
1345    const FunctionProtoType *NewProto
1346      = New->getType()->getAs<FunctionProtoType>();
1347
1348    // Determine whether this is the GNU C extension.
1349    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1350                                               NewProto->getResultType());
1351    bool LooseCompatible = !MergedReturn.isNull();
1352    for (unsigned Idx = 0, End = Old->getNumParams();
1353         LooseCompatible && Idx != End; ++Idx) {
1354      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1355      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1356      if (Context.typesAreCompatible(OldParm->getType(),
1357                                     NewProto->getArgType(Idx))) {
1358        ArgTypes.push_back(NewParm->getType());
1359      } else if (Context.typesAreCompatible(OldParm->getType(),
1360                                            NewParm->getType(),
1361                                            /*CompareUnqualified=*/true)) {
1362        GNUCompatibleParamWarning Warn
1363          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1364        Warnings.push_back(Warn);
1365        ArgTypes.push_back(NewParm->getType());
1366      } else
1367        LooseCompatible = false;
1368    }
1369
1370    if (LooseCompatible) {
1371      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1372        Diag(Warnings[Warn].NewParm->getLocation(),
1373             diag::ext_param_promoted_not_compatible_with_prototype)
1374          << Warnings[Warn].PromotedType
1375          << Warnings[Warn].OldParm->getType();
1376        if (Warnings[Warn].OldParm->getLocation().isValid())
1377          Diag(Warnings[Warn].OldParm->getLocation(),
1378               diag::note_previous_declaration);
1379      }
1380
1381      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1382                                           ArgTypes.size(),
1383                                           OldProto->isVariadic(), 0,
1384                                           false, false, 0, 0,
1385                                           OldProto->getExtInfo()));
1386      return MergeCompatibleFunctionDecls(New, Old);
1387    }
1388
1389    // Fall through to diagnose conflicting types.
1390  }
1391
1392  // A function that has already been declared has been redeclared or defined
1393  // with a different type- show appropriate diagnostic
1394  if (unsigned BuiltinID = Old->getBuiltinID()) {
1395    // The user has declared a builtin function with an incompatible
1396    // signature.
1397    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1398      // The function the user is redeclaring is a library-defined
1399      // function like 'malloc' or 'printf'. Warn about the
1400      // redeclaration, then pretend that we don't know about this
1401      // library built-in.
1402      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1403      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1404        << Old << Old->getType();
1405      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1406      Old->setInvalidDecl();
1407      return false;
1408    }
1409
1410    PrevDiag = diag::note_previous_builtin_declaration;
1411  }
1412
1413  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1414  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1415  return true;
1416}
1417
1418/// \brief Completes the merge of two function declarations that are
1419/// known to be compatible.
1420///
1421/// This routine handles the merging of attributes and other
1422/// properties of function declarations form the old declaration to
1423/// the new declaration, once we know that New is in fact a
1424/// redeclaration of Old.
1425///
1426/// \returns false
1427bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1428  // Merge the attributes
1429  MergeDeclAttributes(New, Old, Context);
1430
1431  // Merge the storage class.
1432  if (Old->getStorageClass() != SC_Extern &&
1433      Old->getStorageClass() != SC_None)
1434    New->setStorageClass(Old->getStorageClass());
1435
1436  // Merge "pure" flag.
1437  if (Old->isPure())
1438    New->setPure();
1439
1440  // Merge the "deleted" flag.
1441  if (Old->isDeleted())
1442    New->setDeleted();
1443
1444  if (getLangOptions().CPlusPlus)
1445    return MergeCXXFunctionDecl(New, Old);
1446
1447  return false;
1448}
1449
1450/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1451/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1452/// situation, merging decls or emitting diagnostics as appropriate.
1453///
1454/// Tentative definition rules (C99 6.9.2p2) are checked by
1455/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1456/// definitions here, since the initializer hasn't been attached.
1457///
1458void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1459  // If the new decl is already invalid, don't do any other checking.
1460  if (New->isInvalidDecl())
1461    return;
1462
1463  // Verify the old decl was also a variable.
1464  VarDecl *Old = 0;
1465  if (!Previous.isSingleResult() ||
1466      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1467    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1468      << New->getDeclName();
1469    Diag(Previous.getRepresentativeDecl()->getLocation(),
1470         diag::note_previous_definition);
1471    return New->setInvalidDecl();
1472  }
1473
1474  // C++ [class.mem]p1:
1475  //   A member shall not be declared twice in the member-specification [...]
1476  //
1477  // Here, we need only consider static data members.
1478  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1479    Diag(New->getLocation(), diag::err_duplicate_member)
1480      << New->getIdentifier();
1481    Diag(Old->getLocation(), diag::note_previous_declaration);
1482    New->setInvalidDecl();
1483  }
1484
1485  MergeDeclAttributes(New, Old, Context);
1486
1487  // Merge the types
1488  QualType MergedT;
1489  if (getLangOptions().CPlusPlus) {
1490    if (Context.hasSameType(New->getType(), Old->getType()))
1491      MergedT = New->getType();
1492    // C++ [basic.link]p10:
1493    //   [...] the types specified by all declarations referring to a given
1494    //   object or function shall be identical, except that declarations for an
1495    //   array object can specify array types that differ by the presence or
1496    //   absence of a major array bound (8.3.4).
1497    else if (Old->getType()->isIncompleteArrayType() &&
1498             New->getType()->isArrayType()) {
1499      CanQual<ArrayType> OldArray
1500        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1501      CanQual<ArrayType> NewArray
1502        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1503      if (OldArray->getElementType() == NewArray->getElementType())
1504        MergedT = New->getType();
1505    } else if (Old->getType()->isArrayType() &&
1506             New->getType()->isIncompleteArrayType()) {
1507      CanQual<ArrayType> OldArray
1508        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1509      CanQual<ArrayType> NewArray
1510        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1511      if (OldArray->getElementType() == NewArray->getElementType())
1512        MergedT = Old->getType();
1513    } else if (New->getType()->isObjCObjectPointerType()
1514               && Old->getType()->isObjCObjectPointerType()) {
1515        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1516    }
1517  } else {
1518    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1519  }
1520  if (MergedT.isNull()) {
1521    Diag(New->getLocation(), diag::err_redefinition_different_type)
1522      << New->getDeclName();
1523    Diag(Old->getLocation(), diag::note_previous_definition);
1524    return New->setInvalidDecl();
1525  }
1526  New->setType(MergedT);
1527
1528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1529  if (New->getStorageClass() == SC_Static &&
1530      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1531    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1532    Diag(Old->getLocation(), diag::note_previous_definition);
1533    return New->setInvalidDecl();
1534  }
1535  // C99 6.2.2p4:
1536  //   For an identifier declared with the storage-class specifier
1537  //   extern in a scope in which a prior declaration of that
1538  //   identifier is visible,23) if the prior declaration specifies
1539  //   internal or external linkage, the linkage of the identifier at
1540  //   the later declaration is the same as the linkage specified at
1541  //   the prior declaration. If no prior declaration is visible, or
1542  //   if the prior declaration specifies no linkage, then the
1543  //   identifier has external linkage.
1544  if (New->hasExternalStorage() && Old->hasLinkage())
1545    /* Okay */;
1546  else if (New->getStorageClass() != SC_Static &&
1547           Old->getStorageClass() == SC_Static) {
1548    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1549    Diag(Old->getLocation(), diag::note_previous_definition);
1550    return New->setInvalidDecl();
1551  }
1552
1553  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1554
1555  // FIXME: The test for external storage here seems wrong? We still
1556  // need to check for mismatches.
1557  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1558      // Don't complain about out-of-line definitions of static members.
1559      !(Old->getLexicalDeclContext()->isRecord() &&
1560        !New->getLexicalDeclContext()->isRecord())) {
1561    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1562    Diag(Old->getLocation(), diag::note_previous_definition);
1563    return New->setInvalidDecl();
1564  }
1565
1566  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1567    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1568    Diag(Old->getLocation(), diag::note_previous_definition);
1569  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1570    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1571    Diag(Old->getLocation(), diag::note_previous_definition);
1572  }
1573
1574  // C++ doesn't have tentative definitions, so go right ahead and check here.
1575  const VarDecl *Def;
1576  if (getLangOptions().CPlusPlus &&
1577      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1578      (Def = Old->getDefinition())) {
1579    Diag(New->getLocation(), diag::err_redefinition)
1580      << New->getDeclName();
1581    Diag(Def->getLocation(), diag::note_previous_definition);
1582    New->setInvalidDecl();
1583    return;
1584  }
1585  // c99 6.2.2 P4.
1586  // For an identifier declared with the storage-class specifier extern in a
1587  // scope in which a prior declaration of that identifier is visible, if
1588  // the prior declaration specifies internal or external linkage, the linkage
1589  // of the identifier at the later declaration is the same as the linkage
1590  // specified at the prior declaration.
1591  // FIXME. revisit this code.
1592  if (New->hasExternalStorage() &&
1593      Old->getLinkage() == InternalLinkage &&
1594      New->getDeclContext() == Old->getDeclContext())
1595    New->setStorageClass(Old->getStorageClass());
1596
1597  // Keep a chain of previous declarations.
1598  New->setPreviousDeclaration(Old);
1599
1600  // Inherit access appropriately.
1601  New->setAccess(Old->getAccess());
1602}
1603
1604/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1605/// no declarator (e.g. "struct foo;") is parsed.
1606Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1607                                            DeclSpec &DS) {
1608  // FIXME: Error on auto/register at file scope
1609  // FIXME: Error on inline/virtual/explicit
1610  // FIXME: Warn on useless __thread
1611  // FIXME: Warn on useless const/volatile
1612  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1613  // FIXME: Warn on useless attributes
1614  Decl *TagD = 0;
1615  TagDecl *Tag = 0;
1616  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1617      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1618      DS.getTypeSpecType() == DeclSpec::TST_union ||
1619      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1620    TagD = DS.getRepAsDecl();
1621
1622    if (!TagD) // We probably had an error
1623      return 0;
1624
1625    // Note that the above type specs guarantee that the
1626    // type rep is a Decl, whereas in many of the others
1627    // it's a Type.
1628    Tag = dyn_cast<TagDecl>(TagD);
1629  }
1630
1631  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1632    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1633    // or incomplete types shall not be restrict-qualified."
1634    if (TypeQuals & DeclSpec::TQ_restrict)
1635      Diag(DS.getRestrictSpecLoc(),
1636           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1637           << DS.getSourceRange();
1638  }
1639
1640  if (DS.isFriendSpecified()) {
1641    // If we're dealing with a class template decl, assume that the
1642    // template routines are handling it.
1643    if (TagD && isa<ClassTemplateDecl>(TagD))
1644      return 0;
1645    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1646  }
1647
1648  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1649    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1650
1651    if (!Record->getDeclName() && Record->isDefinition() &&
1652        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1653      if (getLangOptions().CPlusPlus ||
1654          Record->getDeclContext()->isRecord())
1655        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1656
1657      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1658        << DS.getSourceRange();
1659    }
1660
1661    // Microsoft allows unnamed struct/union fields. Don't complain
1662    // about them.
1663    // FIXME: Should we support Microsoft's extensions in this area?
1664    if (Record->getDeclName() && getLangOptions().Microsoft)
1665      return Tag;
1666  }
1667
1668  if (getLangOptions().CPlusPlus &&
1669      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1670    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1671      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1672          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1673        Diag(Enum->getLocation(), diag::ext_no_declarators)
1674          << DS.getSourceRange();
1675
1676  if (!DS.isMissingDeclaratorOk() &&
1677      DS.getTypeSpecType() != DeclSpec::TST_error) {
1678    // Warn about typedefs of enums without names, since this is an
1679    // extension in both Microsoft and GNU.
1680    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1681        Tag && isa<EnumDecl>(Tag)) {
1682      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1683        << DS.getSourceRange();
1684      return Tag;
1685    }
1686
1687    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1688      << DS.getSourceRange();
1689  }
1690
1691  return TagD;
1692}
1693
1694/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1695/// builds a statement for it and returns it so it is evaluated.
1696StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1697  StmtResult R;
1698  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1699    Expr *Exp = DS.getRepAsExpr();
1700    QualType Ty = Exp->getType();
1701    if (Ty->isPointerType()) {
1702      do
1703        Ty = Ty->getAs<PointerType>()->getPointeeType();
1704      while (Ty->isPointerType());
1705    }
1706    if (Ty->isVariableArrayType()) {
1707      R = ActOnExprStmt(MakeFullExpr(Exp));
1708    }
1709  }
1710  return R;
1711}
1712
1713/// We are trying to inject an anonymous member into the given scope;
1714/// check if there's an existing declaration that can't be overloaded.
1715///
1716/// \return true if this is a forbidden redeclaration
1717static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1718                                         Scope *S,
1719                                         DeclContext *Owner,
1720                                         DeclarationName Name,
1721                                         SourceLocation NameLoc,
1722                                         unsigned diagnostic) {
1723  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1724                 Sema::ForRedeclaration);
1725  if (!SemaRef.LookupName(R, S)) return false;
1726
1727  if (R.getAsSingle<TagDecl>())
1728    return false;
1729
1730  // Pick a representative declaration.
1731  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1732  assert(PrevDecl && "Expected a non-null Decl");
1733
1734  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1735    return false;
1736
1737  SemaRef.Diag(NameLoc, diagnostic) << Name;
1738  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1739
1740  return true;
1741}
1742
1743/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1744/// anonymous struct or union AnonRecord into the owning context Owner
1745/// and scope S. This routine will be invoked just after we realize
1746/// that an unnamed union or struct is actually an anonymous union or
1747/// struct, e.g.,
1748///
1749/// @code
1750/// union {
1751///   int i;
1752///   float f;
1753/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1754///    // f into the surrounding scope.x
1755/// @endcode
1756///
1757/// This routine is recursive, injecting the names of nested anonymous
1758/// structs/unions into the owning context and scope as well.
1759static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1760                                                DeclContext *Owner,
1761                                                RecordDecl *AnonRecord,
1762                                                AccessSpecifier AS) {
1763  unsigned diagKind
1764    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1765                            : diag::err_anonymous_struct_member_redecl;
1766
1767  bool Invalid = false;
1768  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1769                               FEnd = AnonRecord->field_end();
1770       F != FEnd; ++F) {
1771    if ((*F)->getDeclName()) {
1772      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1773                                       (*F)->getLocation(), diagKind)) {
1774        // C++ [class.union]p2:
1775        //   The names of the members of an anonymous union shall be
1776        //   distinct from the names of any other entity in the
1777        //   scope in which the anonymous union is declared.
1778        Invalid = true;
1779      } else {
1780        // C++ [class.union]p2:
1781        //   For the purpose of name lookup, after the anonymous union
1782        //   definition, the members of the anonymous union are
1783        //   considered to have been defined in the scope in which the
1784        //   anonymous union is declared.
1785        Owner->makeDeclVisibleInContext(*F);
1786        S->AddDecl(*F);
1787        SemaRef.IdResolver.AddDecl(*F);
1788
1789        // That includes picking up the appropriate access specifier.
1790        if (AS != AS_none) (*F)->setAccess(AS);
1791      }
1792    } else if (const RecordType *InnerRecordType
1793                 = (*F)->getType()->getAs<RecordType>()) {
1794      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1795      if (InnerRecord->isAnonymousStructOrUnion())
1796        Invalid = Invalid ||
1797          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1798                                              InnerRecord, AS);
1799    }
1800  }
1801
1802  return Invalid;
1803}
1804
1805/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1806/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1807/// illegal input values are mapped to SC_None.
1808static StorageClass
1809StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1810  switch (StorageClassSpec) {
1811  case DeclSpec::SCS_unspecified:    return SC_None;
1812  case DeclSpec::SCS_extern:         return SC_Extern;
1813  case DeclSpec::SCS_static:         return SC_Static;
1814  case DeclSpec::SCS_auto:           return SC_Auto;
1815  case DeclSpec::SCS_register:       return SC_Register;
1816  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1817    // Illegal SCSs map to None: error reporting is up to the caller.
1818  case DeclSpec::SCS_mutable:        // Fall through.
1819  case DeclSpec::SCS_typedef:        return SC_None;
1820  }
1821  llvm_unreachable("unknown storage class specifier");
1822}
1823
1824/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1825/// a StorageClass. Any error reporting is up to the caller:
1826/// illegal input values are mapped to SC_None.
1827static StorageClass
1828StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1829  switch (StorageClassSpec) {
1830  case DeclSpec::SCS_unspecified:    return SC_None;
1831  case DeclSpec::SCS_extern:         return SC_Extern;
1832  case DeclSpec::SCS_static:         return SC_Static;
1833  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1834    // Illegal SCSs map to None: error reporting is up to the caller.
1835  case DeclSpec::SCS_auto:           // Fall through.
1836  case DeclSpec::SCS_mutable:        // Fall through.
1837  case DeclSpec::SCS_register:       // Fall through.
1838  case DeclSpec::SCS_typedef:        return SC_None;
1839  }
1840  llvm_unreachable("unknown storage class specifier");
1841}
1842
1843/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1844/// anonymous structure or union. Anonymous unions are a C++ feature
1845/// (C++ [class.union]) and a GNU C extension; anonymous structures
1846/// are a GNU C and GNU C++ extension.
1847Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1848                                             AccessSpecifier AS,
1849                                             RecordDecl *Record) {
1850  DeclContext *Owner = Record->getDeclContext();
1851
1852  // Diagnose whether this anonymous struct/union is an extension.
1853  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1854    Diag(Record->getLocation(), diag::ext_anonymous_union);
1855  else if (!Record->isUnion())
1856    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1857
1858  // C and C++ require different kinds of checks for anonymous
1859  // structs/unions.
1860  bool Invalid = false;
1861  if (getLangOptions().CPlusPlus) {
1862    const char* PrevSpec = 0;
1863    unsigned DiagID;
1864    // C++ [class.union]p3:
1865    //   Anonymous unions declared in a named namespace or in the
1866    //   global namespace shall be declared static.
1867    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1868        (isa<TranslationUnitDecl>(Owner) ||
1869         (isa<NamespaceDecl>(Owner) &&
1870          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1871      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1872      Invalid = true;
1873
1874      // Recover by adding 'static'.
1875      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1876                             PrevSpec, DiagID);
1877    }
1878    // C++ [class.union]p3:
1879    //   A storage class is not allowed in a declaration of an
1880    //   anonymous union in a class scope.
1881    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1882             isa<RecordDecl>(Owner)) {
1883      Diag(DS.getStorageClassSpecLoc(),
1884           diag::err_anonymous_union_with_storage_spec);
1885      Invalid = true;
1886
1887      // Recover by removing the storage specifier.
1888      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1889                             PrevSpec, DiagID);
1890    }
1891
1892    // C++ [class.union]p2:
1893    //   The member-specification of an anonymous union shall only
1894    //   define non-static data members. [Note: nested types and
1895    //   functions cannot be declared within an anonymous union. ]
1896    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1897                                 MemEnd = Record->decls_end();
1898         Mem != MemEnd; ++Mem) {
1899      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1900        // C++ [class.union]p3:
1901        //   An anonymous union shall not have private or protected
1902        //   members (clause 11).
1903        assert(FD->getAccess() != AS_none);
1904        if (FD->getAccess() != AS_public) {
1905          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1906            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1907          Invalid = true;
1908        }
1909
1910        if (CheckNontrivialField(FD))
1911          Invalid = true;
1912      } else if ((*Mem)->isImplicit()) {
1913        // Any implicit members are fine.
1914      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1915        // This is a type that showed up in an
1916        // elaborated-type-specifier inside the anonymous struct or
1917        // union, but which actually declares a type outside of the
1918        // anonymous struct or union. It's okay.
1919      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1920        if (!MemRecord->isAnonymousStructOrUnion() &&
1921            MemRecord->getDeclName()) {
1922          // Visual C++ allows type definition in anonymous struct or union.
1923          if (getLangOptions().Microsoft)
1924            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1925              << (int)Record->isUnion();
1926          else {
1927            // This is a nested type declaration.
1928            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1929              << (int)Record->isUnion();
1930            Invalid = true;
1931          }
1932        }
1933      } else if (isa<AccessSpecDecl>(*Mem)) {
1934        // Any access specifier is fine.
1935      } else {
1936        // We have something that isn't a non-static data
1937        // member. Complain about it.
1938        unsigned DK = diag::err_anonymous_record_bad_member;
1939        if (isa<TypeDecl>(*Mem))
1940          DK = diag::err_anonymous_record_with_type;
1941        else if (isa<FunctionDecl>(*Mem))
1942          DK = diag::err_anonymous_record_with_function;
1943        else if (isa<VarDecl>(*Mem))
1944          DK = diag::err_anonymous_record_with_static;
1945
1946        // Visual C++ allows type definition in anonymous struct or union.
1947        if (getLangOptions().Microsoft &&
1948            DK == diag::err_anonymous_record_with_type)
1949          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1950            << (int)Record->isUnion();
1951        else {
1952          Diag((*Mem)->getLocation(), DK)
1953              << (int)Record->isUnion();
1954          Invalid = true;
1955        }
1956      }
1957    }
1958  }
1959
1960  if (!Record->isUnion() && !Owner->isRecord()) {
1961    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1962      << (int)getLangOptions().CPlusPlus;
1963    Invalid = true;
1964  }
1965
1966  // Mock up a declarator.
1967  Declarator Dc(DS, Declarator::TypeNameContext);
1968  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1969  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1970
1971  // Create a declaration for this anonymous struct/union.
1972  NamedDecl *Anon = 0;
1973  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1974    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1975                             /*IdentifierInfo=*/0,
1976                             Context.getTypeDeclType(Record),
1977                             TInfo,
1978                             /*BitWidth=*/0, /*Mutable=*/false);
1979    Anon->setAccess(AS);
1980    if (getLangOptions().CPlusPlus)
1981      FieldCollector->Add(cast<FieldDecl>(Anon));
1982  } else {
1983    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1984    assert(SCSpec != DeclSpec::SCS_typedef &&
1985           "Parser allowed 'typedef' as storage class VarDecl.");
1986    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1987    if (SCSpec == DeclSpec::SCS_mutable) {
1988      // mutable can only appear on non-static class members, so it's always
1989      // an error here
1990      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1991      Invalid = true;
1992      SC = SC_None;
1993    }
1994    SCSpec = DS.getStorageClassSpecAsWritten();
1995    VarDecl::StorageClass SCAsWritten
1996      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1997
1998    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1999                           /*IdentifierInfo=*/0,
2000                           Context.getTypeDeclType(Record),
2001                           TInfo, SC, SCAsWritten);
2002  }
2003  Anon->setImplicit();
2004
2005  // Add the anonymous struct/union object to the current
2006  // context. We'll be referencing this object when we refer to one of
2007  // its members.
2008  Owner->addDecl(Anon);
2009
2010  // Inject the members of the anonymous struct/union into the owning
2011  // context and into the identifier resolver chain for name lookup
2012  // purposes.
2013  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
2014    Invalid = true;
2015
2016  // Mark this as an anonymous struct/union type. Note that we do not
2017  // do this until after we have already checked and injected the
2018  // members of this anonymous struct/union type, because otherwise
2019  // the members could be injected twice: once by DeclContext when it
2020  // builds its lookup table, and once by
2021  // InjectAnonymousStructOrUnionMembers.
2022  Record->setAnonymousStructOrUnion(true);
2023
2024  if (Invalid)
2025    Anon->setInvalidDecl();
2026
2027  return Anon;
2028}
2029
2030
2031/// GetNameForDeclarator - Determine the full declaration name for the
2032/// given Declarator.
2033DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2034  return GetNameFromUnqualifiedId(D.getName());
2035}
2036
2037/// \brief Retrieves the declaration name from a parsed unqualified-id.
2038DeclarationNameInfo
2039Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2040  DeclarationNameInfo NameInfo;
2041  NameInfo.setLoc(Name.StartLocation);
2042
2043  switch (Name.getKind()) {
2044
2045  case UnqualifiedId::IK_Identifier:
2046    NameInfo.setName(Name.Identifier);
2047    NameInfo.setLoc(Name.StartLocation);
2048    return NameInfo;
2049
2050  case UnqualifiedId::IK_OperatorFunctionId:
2051    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2052                                           Name.OperatorFunctionId.Operator));
2053    NameInfo.setLoc(Name.StartLocation);
2054    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2055      = Name.OperatorFunctionId.SymbolLocations[0];
2056    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2057      = Name.EndLocation.getRawEncoding();
2058    return NameInfo;
2059
2060  case UnqualifiedId::IK_LiteralOperatorId:
2061    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2062                                                           Name.Identifier));
2063    NameInfo.setLoc(Name.StartLocation);
2064    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2065    return NameInfo;
2066
2067  case UnqualifiedId::IK_ConversionFunctionId: {
2068    TypeSourceInfo *TInfo;
2069    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2070    if (Ty.isNull())
2071      return DeclarationNameInfo();
2072    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2073                                               Context.getCanonicalType(Ty)));
2074    NameInfo.setLoc(Name.StartLocation);
2075    NameInfo.setNamedTypeInfo(TInfo);
2076    return NameInfo;
2077  }
2078
2079  case UnqualifiedId::IK_ConstructorName: {
2080    TypeSourceInfo *TInfo;
2081    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2082    if (Ty.isNull())
2083      return DeclarationNameInfo();
2084    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2085                                              Context.getCanonicalType(Ty)));
2086    NameInfo.setLoc(Name.StartLocation);
2087    NameInfo.setNamedTypeInfo(TInfo);
2088    return NameInfo;
2089  }
2090
2091  case UnqualifiedId::IK_ConstructorTemplateId: {
2092    // In well-formed code, we can only have a constructor
2093    // template-id that refers to the current context, so go there
2094    // to find the actual type being constructed.
2095    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2096    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2097      return DeclarationNameInfo();
2098
2099    // Determine the type of the class being constructed.
2100    QualType CurClassType = Context.getTypeDeclType(CurClass);
2101
2102    // FIXME: Check two things: that the template-id names the same type as
2103    // CurClassType, and that the template-id does not occur when the name
2104    // was qualified.
2105
2106    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2107                                    Context.getCanonicalType(CurClassType)));
2108    NameInfo.setLoc(Name.StartLocation);
2109    // FIXME: should we retrieve TypeSourceInfo?
2110    NameInfo.setNamedTypeInfo(0);
2111    return NameInfo;
2112  }
2113
2114  case UnqualifiedId::IK_DestructorName: {
2115    TypeSourceInfo *TInfo;
2116    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2117    if (Ty.isNull())
2118      return DeclarationNameInfo();
2119    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2120                                              Context.getCanonicalType(Ty)));
2121    NameInfo.setLoc(Name.StartLocation);
2122    NameInfo.setNamedTypeInfo(TInfo);
2123    return NameInfo;
2124  }
2125
2126  case UnqualifiedId::IK_TemplateId: {
2127    TemplateName TName = Name.TemplateId->Template.get();
2128    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2129    return Context.getNameForTemplate(TName, TNameLoc);
2130  }
2131
2132  } // switch (Name.getKind())
2133
2134  assert(false && "Unknown name kind");
2135  return DeclarationNameInfo();
2136}
2137
2138/// isNearlyMatchingFunction - Determine whether the C++ functions
2139/// Declaration and Definition are "nearly" matching. This heuristic
2140/// is used to improve diagnostics in the case where an out-of-line
2141/// function definition doesn't match any declaration within
2142/// the class or namespace.
2143static bool isNearlyMatchingFunction(ASTContext &Context,
2144                                     FunctionDecl *Declaration,
2145                                     FunctionDecl *Definition) {
2146  if (Declaration->param_size() != Definition->param_size())
2147    return false;
2148  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2149    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2150    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2151
2152    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2153                                        DefParamTy.getNonReferenceType()))
2154      return false;
2155  }
2156
2157  return true;
2158}
2159
2160/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2161/// declarator needs to be rebuilt in the current instantiation.
2162/// Any bits of declarator which appear before the name are valid for
2163/// consideration here.  That's specifically the type in the decl spec
2164/// and the base type in any member-pointer chunks.
2165static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2166                                                    DeclarationName Name) {
2167  // The types we specifically need to rebuild are:
2168  //   - typenames, typeofs, and decltypes
2169  //   - types which will become injected class names
2170  // Of course, we also need to rebuild any type referencing such a
2171  // type.  It's safest to just say "dependent", but we call out a
2172  // few cases here.
2173
2174  DeclSpec &DS = D.getMutableDeclSpec();
2175  switch (DS.getTypeSpecType()) {
2176  case DeclSpec::TST_typename:
2177  case DeclSpec::TST_typeofType:
2178  case DeclSpec::TST_decltype: {
2179    // Grab the type from the parser.
2180    TypeSourceInfo *TSI = 0;
2181    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2182    if (T.isNull() || !T->isDependentType()) break;
2183
2184    // Make sure there's a type source info.  This isn't really much
2185    // of a waste; most dependent types should have type source info
2186    // attached already.
2187    if (!TSI)
2188      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2189
2190    // Rebuild the type in the current instantiation.
2191    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2192    if (!TSI) return true;
2193
2194    // Store the new type back in the decl spec.
2195    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2196    DS.UpdateTypeRep(LocType);
2197    break;
2198  }
2199
2200  case DeclSpec::TST_typeofExpr: {
2201    Expr *E = DS.getRepAsExpr();
2202    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2203    if (Result.isInvalid()) return true;
2204    DS.UpdateExprRep(Result.get());
2205    break;
2206  }
2207
2208  default:
2209    // Nothing to do for these decl specs.
2210    break;
2211  }
2212
2213  // It doesn't matter what order we do this in.
2214  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2215    DeclaratorChunk &Chunk = D.getTypeObject(I);
2216
2217    // The only type information in the declarator which can come
2218    // before the declaration name is the base type of a member
2219    // pointer.
2220    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2221      continue;
2222
2223    // Rebuild the scope specifier in-place.
2224    CXXScopeSpec &SS = Chunk.Mem.Scope();
2225    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2226      return true;
2227  }
2228
2229  return false;
2230}
2231
2232Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2233  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2234}
2235
2236Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2237                             MultiTemplateParamsArg TemplateParamLists,
2238                             bool IsFunctionDefinition) {
2239  // TODO: consider using NameInfo for diagnostic.
2240  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2241  DeclarationName Name = NameInfo.getName();
2242
2243  // All of these full declarators require an identifier.  If it doesn't have
2244  // one, the ParsedFreeStandingDeclSpec action should be used.
2245  if (!Name) {
2246    if (!D.isInvalidType())  // Reject this if we think it is valid.
2247      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2248           diag::err_declarator_need_ident)
2249        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2250    return 0;
2251  }
2252
2253  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2254  // we find one that is.
2255  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2256         (S->getFlags() & Scope::TemplateParamScope) != 0)
2257    S = S->getParent();
2258
2259  DeclContext *DC = CurContext;
2260  if (D.getCXXScopeSpec().isInvalid())
2261    D.setInvalidType();
2262  else if (D.getCXXScopeSpec().isSet()) {
2263    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2264    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2265    if (!DC) {
2266      // If we could not compute the declaration context, it's because the
2267      // declaration context is dependent but does not refer to a class,
2268      // class template, or class template partial specialization. Complain
2269      // and return early, to avoid the coming semantic disaster.
2270      Diag(D.getIdentifierLoc(),
2271           diag::err_template_qualified_declarator_no_match)
2272        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2273        << D.getCXXScopeSpec().getRange();
2274      return 0;
2275    }
2276
2277    bool IsDependentContext = DC->isDependentContext();
2278
2279    if (!IsDependentContext &&
2280        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2281      return 0;
2282
2283    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2284      Diag(D.getIdentifierLoc(),
2285           diag::err_member_def_undefined_record)
2286        << Name << DC << D.getCXXScopeSpec().getRange();
2287      D.setInvalidType();
2288    }
2289
2290    // Check whether we need to rebuild the type of the given
2291    // declaration in the current instantiation.
2292    if (EnteringContext && IsDependentContext &&
2293        TemplateParamLists.size() != 0) {
2294      ContextRAII SavedContext(*this, DC);
2295      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2296        D.setInvalidType();
2297    }
2298  }
2299
2300  NamedDecl *New;
2301
2302  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2303  QualType R = TInfo->getType();
2304
2305  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2306                        ForRedeclaration);
2307
2308  // See if this is a redefinition of a variable in the same scope.
2309  if (!D.getCXXScopeSpec().isSet()) {
2310    bool IsLinkageLookup = false;
2311
2312    // If the declaration we're planning to build will be a function
2313    // or object with linkage, then look for another declaration with
2314    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2315    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2316      /* Do nothing*/;
2317    else if (R->isFunctionType()) {
2318      if (CurContext->isFunctionOrMethod() ||
2319          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2320        IsLinkageLookup = true;
2321    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2322      IsLinkageLookup = true;
2323    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2324             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2325      IsLinkageLookup = true;
2326
2327    if (IsLinkageLookup)
2328      Previous.clear(LookupRedeclarationWithLinkage);
2329
2330    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2331  } else { // Something like "int foo::x;"
2332    LookupQualifiedName(Previous, DC);
2333
2334    // Don't consider using declarations as previous declarations for
2335    // out-of-line members.
2336    RemoveUsingDecls(Previous);
2337
2338    // C++ 7.3.1.2p2:
2339    // Members (including explicit specializations of templates) of a named
2340    // namespace can also be defined outside that namespace by explicit
2341    // qualification of the name being defined, provided that the entity being
2342    // defined was already declared in the namespace and the definition appears
2343    // after the point of declaration in a namespace that encloses the
2344    // declarations namespace.
2345    //
2346    // Note that we only check the context at this point. We don't yet
2347    // have enough information to make sure that PrevDecl is actually
2348    // the declaration we want to match. For example, given:
2349    //
2350    //   class X {
2351    //     void f();
2352    //     void f(float);
2353    //   };
2354    //
2355    //   void X::f(int) { } // ill-formed
2356    //
2357    // In this case, PrevDecl will point to the overload set
2358    // containing the two f's declared in X, but neither of them
2359    // matches.
2360
2361    // First check whether we named the global scope.
2362    if (isa<TranslationUnitDecl>(DC)) {
2363      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2364        << Name << D.getCXXScopeSpec().getRange();
2365    } else {
2366      DeclContext *Cur = CurContext;
2367      while (isa<LinkageSpecDecl>(Cur))
2368        Cur = Cur->getParent();
2369      if (!Cur->Encloses(DC)) {
2370        // The qualifying scope doesn't enclose the original declaration.
2371        // Emit diagnostic based on current scope.
2372        SourceLocation L = D.getIdentifierLoc();
2373        SourceRange R = D.getCXXScopeSpec().getRange();
2374        if (isa<FunctionDecl>(Cur))
2375          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2376        else
2377          Diag(L, diag::err_invalid_declarator_scope)
2378            << Name << cast<NamedDecl>(DC) << R;
2379        D.setInvalidType();
2380      }
2381    }
2382  }
2383
2384  if (Previous.isSingleResult() &&
2385      Previous.getFoundDecl()->isTemplateParameter()) {
2386    // Maybe we will complain about the shadowed template parameter.
2387    if (!D.isInvalidType())
2388      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2389                                          Previous.getFoundDecl()))
2390        D.setInvalidType();
2391
2392    // Just pretend that we didn't see the previous declaration.
2393    Previous.clear();
2394  }
2395
2396  // In C++, the previous declaration we find might be a tag type
2397  // (class or enum). In this case, the new declaration will hide the
2398  // tag type. Note that this does does not apply if we're declaring a
2399  // typedef (C++ [dcl.typedef]p4).
2400  if (Previous.isSingleTagDecl() &&
2401      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2402    Previous.clear();
2403
2404  bool Redeclaration = false;
2405  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2406    if (TemplateParamLists.size()) {
2407      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2408      return 0;
2409    }
2410
2411    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2412  } else if (R->isFunctionType()) {
2413    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2414                                  move(TemplateParamLists),
2415                                  IsFunctionDefinition, Redeclaration);
2416  } else {
2417    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2418                                  move(TemplateParamLists),
2419                                  Redeclaration);
2420  }
2421
2422  if (New == 0)
2423    return 0;
2424
2425  // If this has an identifier and is not an invalid redeclaration or
2426  // function template specialization, add it to the scope stack.
2427  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2428    PushOnScopeChains(New, S);
2429
2430  return New;
2431}
2432
2433/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2434/// types into constant array types in certain situations which would otherwise
2435/// be errors (for GCC compatibility).
2436static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2437                                                    ASTContext &Context,
2438                                                    bool &SizeIsNegative,
2439                                                    llvm::APSInt &Oversized) {
2440  // This method tries to turn a variable array into a constant
2441  // array even when the size isn't an ICE.  This is necessary
2442  // for compatibility with code that depends on gcc's buggy
2443  // constant expression folding, like struct {char x[(int)(char*)2];}
2444  SizeIsNegative = false;
2445  Oversized = 0;
2446
2447  if (T->isDependentType())
2448    return QualType();
2449
2450  QualifierCollector Qs;
2451  const Type *Ty = Qs.strip(T);
2452
2453  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2454    QualType Pointee = PTy->getPointeeType();
2455    QualType FixedType =
2456        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2457                                            Oversized);
2458    if (FixedType.isNull()) return FixedType;
2459    FixedType = Context.getPointerType(FixedType);
2460    return Qs.apply(FixedType);
2461  }
2462
2463  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2464  if (!VLATy)
2465    return QualType();
2466  // FIXME: We should probably handle this case
2467  if (VLATy->getElementType()->isVariablyModifiedType())
2468    return QualType();
2469
2470  Expr::EvalResult EvalResult;
2471  if (!VLATy->getSizeExpr() ||
2472      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2473      !EvalResult.Val.isInt())
2474    return QualType();
2475
2476  // Check whether the array size is negative.
2477  llvm::APSInt &Res = EvalResult.Val.getInt();
2478  if (Res.isSigned() && Res.isNegative()) {
2479    SizeIsNegative = true;
2480    return QualType();
2481  }
2482
2483  // Check whether the array is too large to be addressed.
2484  unsigned ActiveSizeBits
2485    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2486                                              Res);
2487  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2488    Oversized = Res;
2489    return QualType();
2490  }
2491
2492  return Context.getConstantArrayType(VLATy->getElementType(),
2493                                      Res, ArrayType::Normal, 0);
2494}
2495
2496/// \brief Register the given locally-scoped external C declaration so
2497/// that it can be found later for redeclarations
2498void
2499Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2500                                       const LookupResult &Previous,
2501                                       Scope *S) {
2502  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2503         "Decl is not a locally-scoped decl!");
2504  // Note that we have a locally-scoped external with this name.
2505  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2506
2507  if (!Previous.isSingleResult())
2508    return;
2509
2510  NamedDecl *PrevDecl = Previous.getFoundDecl();
2511
2512  // If there was a previous declaration of this variable, it may be
2513  // in our identifier chain. Update the identifier chain with the new
2514  // declaration.
2515  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2516    // The previous declaration was found on the identifer resolver
2517    // chain, so remove it from its scope.
2518    while (S && !S->isDeclScope(PrevDecl))
2519      S = S->getParent();
2520
2521    if (S)
2522      S->RemoveDecl(PrevDecl);
2523  }
2524}
2525
2526/// \brief Diagnose function specifiers on a declaration of an identifier that
2527/// does not identify a function.
2528void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2529  // FIXME: We should probably indicate the identifier in question to avoid
2530  // confusion for constructs like "inline int a(), b;"
2531  if (D.getDeclSpec().isInlineSpecified())
2532    Diag(D.getDeclSpec().getInlineSpecLoc(),
2533         diag::err_inline_non_function);
2534
2535  if (D.getDeclSpec().isVirtualSpecified())
2536    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2537         diag::err_virtual_non_function);
2538
2539  if (D.getDeclSpec().isExplicitSpecified())
2540    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2541         diag::err_explicit_non_function);
2542}
2543
2544NamedDecl*
2545Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2546                             QualType R,  TypeSourceInfo *TInfo,
2547                             LookupResult &Previous, bool &Redeclaration) {
2548  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2549  if (D.getCXXScopeSpec().isSet()) {
2550    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2551      << D.getCXXScopeSpec().getRange();
2552    D.setInvalidType();
2553    // Pretend we didn't see the scope specifier.
2554    DC = CurContext;
2555    Previous.clear();
2556  }
2557
2558  if (getLangOptions().CPlusPlus) {
2559    // Check that there are no default arguments (C++ only).
2560    CheckExtraCXXDefaultArguments(D);
2561  }
2562
2563  DiagnoseFunctionSpecifiers(D);
2564
2565  if (D.getDeclSpec().isThreadSpecified())
2566    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2567
2568  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2569    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2570      << D.getName().getSourceRange();
2571    return 0;
2572  }
2573
2574  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2575  if (!NewTD) return 0;
2576
2577  // Handle attributes prior to checking for duplicates in MergeVarDecl
2578  ProcessDeclAttributes(S, NewTD, D);
2579
2580  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2581  // then it shall have block scope.
2582  // Note that variably modified types must be fixed before merging the decl so
2583  // that redeclarations will match.
2584  QualType T = NewTD->getUnderlyingType();
2585  if (T->isVariablyModifiedType()) {
2586    getCurFunction()->setHasBranchProtectedScope();
2587
2588    if (S->getFnParent() == 0) {
2589      bool SizeIsNegative;
2590      llvm::APSInt Oversized;
2591      QualType FixedTy =
2592          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2593                                              Oversized);
2594      if (!FixedTy.isNull()) {
2595        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2596        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2597      } else {
2598        if (SizeIsNegative)
2599          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2600        else if (T->isVariableArrayType())
2601          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2602        else if (Oversized.getBoolValue())
2603          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2604            << Oversized.toString(10);
2605        else
2606          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2607        NewTD->setInvalidDecl();
2608      }
2609    }
2610  }
2611
2612  // Merge the decl with the existing one if appropriate. If the decl is
2613  // in an outer scope, it isn't the same thing.
2614  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2615  if (!Previous.empty()) {
2616    Redeclaration = true;
2617    MergeTypeDefDecl(NewTD, Previous);
2618  }
2619
2620  // If this is the C FILE type, notify the AST context.
2621  if (IdentifierInfo *II = NewTD->getIdentifier())
2622    if (!NewTD->isInvalidDecl() &&
2623        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2624      if (II->isStr("FILE"))
2625        Context.setFILEDecl(NewTD);
2626      else if (II->isStr("jmp_buf"))
2627        Context.setjmp_bufDecl(NewTD);
2628      else if (II->isStr("sigjmp_buf"))
2629        Context.setsigjmp_bufDecl(NewTD);
2630    }
2631
2632  return NewTD;
2633}
2634
2635/// \brief Determines whether the given declaration is an out-of-scope
2636/// previous declaration.
2637///
2638/// This routine should be invoked when name lookup has found a
2639/// previous declaration (PrevDecl) that is not in the scope where a
2640/// new declaration by the same name is being introduced. If the new
2641/// declaration occurs in a local scope, previous declarations with
2642/// linkage may still be considered previous declarations (C99
2643/// 6.2.2p4-5, C++ [basic.link]p6).
2644///
2645/// \param PrevDecl the previous declaration found by name
2646/// lookup
2647///
2648/// \param DC the context in which the new declaration is being
2649/// declared.
2650///
2651/// \returns true if PrevDecl is an out-of-scope previous declaration
2652/// for a new delcaration with the same name.
2653static bool
2654isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2655                                ASTContext &Context) {
2656  if (!PrevDecl)
2657    return false;
2658
2659  if (!PrevDecl->hasLinkage())
2660    return false;
2661
2662  if (Context.getLangOptions().CPlusPlus) {
2663    // C++ [basic.link]p6:
2664    //   If there is a visible declaration of an entity with linkage
2665    //   having the same name and type, ignoring entities declared
2666    //   outside the innermost enclosing namespace scope, the block
2667    //   scope declaration declares that same entity and receives the
2668    //   linkage of the previous declaration.
2669    DeclContext *OuterContext = DC->getRedeclContext();
2670    if (!OuterContext->isFunctionOrMethod())
2671      // This rule only applies to block-scope declarations.
2672      return false;
2673
2674    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2675    if (PrevOuterContext->isRecord())
2676      // We found a member function: ignore it.
2677      return false;
2678
2679    // Find the innermost enclosing namespace for the new and
2680    // previous declarations.
2681    OuterContext = OuterContext->getEnclosingNamespaceContext();
2682    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2683
2684    // The previous declaration is in a different namespace, so it
2685    // isn't the same function.
2686    if (!OuterContext->Equals(PrevOuterContext))
2687      return false;
2688  }
2689
2690  return true;
2691}
2692
2693static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2694  CXXScopeSpec &SS = D.getCXXScopeSpec();
2695  if (!SS.isSet()) return;
2696  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2697                       SS.getRange());
2698}
2699
2700NamedDecl*
2701Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2702                              QualType R, TypeSourceInfo *TInfo,
2703                              LookupResult &Previous,
2704                              MultiTemplateParamsArg TemplateParamLists,
2705                              bool &Redeclaration) {
2706  DeclarationName Name = GetNameForDeclarator(D).getName();
2707
2708  // Check that there are no default arguments (C++ only).
2709  if (getLangOptions().CPlusPlus)
2710    CheckExtraCXXDefaultArguments(D);
2711
2712  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2713  assert(SCSpec != DeclSpec::SCS_typedef &&
2714         "Parser allowed 'typedef' as storage class VarDecl.");
2715  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2716  if (SCSpec == DeclSpec::SCS_mutable) {
2717    // mutable can only appear on non-static class members, so it's always
2718    // an error here
2719    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2720    D.setInvalidType();
2721    SC = SC_None;
2722  }
2723  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2724  VarDecl::StorageClass SCAsWritten
2725    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2726
2727  IdentifierInfo *II = Name.getAsIdentifierInfo();
2728  if (!II) {
2729    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2730      << Name.getAsString();
2731    return 0;
2732  }
2733
2734  DiagnoseFunctionSpecifiers(D);
2735
2736  if (!DC->isRecord() && S->getFnParent() == 0) {
2737    // C99 6.9p2: The storage-class specifiers auto and register shall not
2738    // appear in the declaration specifiers in an external declaration.
2739    if (SC == SC_Auto || SC == SC_Register) {
2740
2741      // If this is a register variable with an asm label specified, then this
2742      // is a GNU extension.
2743      if (SC == SC_Register && D.getAsmLabel())
2744        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2745      else
2746        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2747      D.setInvalidType();
2748    }
2749  }
2750  if (DC->isRecord() && !CurContext->isRecord()) {
2751    // This is an out-of-line definition of a static data member.
2752    if (SC == SC_Static) {
2753      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2754           diag::err_static_out_of_line)
2755        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2756    } else if (SC == SC_None)
2757      SC = SC_Static;
2758  }
2759  if (SC == SC_Static) {
2760    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2761      if (RD->isLocalClass())
2762        Diag(D.getIdentifierLoc(),
2763             diag::err_static_data_member_not_allowed_in_local_class)
2764          << Name << RD->getDeclName();
2765    }
2766  }
2767
2768  // Match up the template parameter lists with the scope specifier, then
2769  // determine whether we have a template or a template specialization.
2770  bool isExplicitSpecialization = false;
2771  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2772  bool Invalid = false;
2773  if (TemplateParameterList *TemplateParams
2774        = MatchTemplateParametersToScopeSpecifier(
2775                                  D.getDeclSpec().getSourceRange().getBegin(),
2776                                                  D.getCXXScopeSpec(),
2777                        (TemplateParameterList**)TemplateParamLists.get(),
2778                                                   TemplateParamLists.size(),
2779                                                  /*never a friend*/ false,
2780                                                  isExplicitSpecialization,
2781                                                  Invalid)) {
2782    // All but one template parameter lists have been matching.
2783    --NumMatchedTemplateParamLists;
2784
2785    if (TemplateParams->size() > 0) {
2786      // There is no such thing as a variable template.
2787      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2788        << II
2789        << SourceRange(TemplateParams->getTemplateLoc(),
2790                       TemplateParams->getRAngleLoc());
2791      return 0;
2792    } else {
2793      // There is an extraneous 'template<>' for this variable. Complain
2794      // about it, but allow the declaration of the variable.
2795      Diag(TemplateParams->getTemplateLoc(),
2796           diag::err_template_variable_noparams)
2797        << II
2798        << SourceRange(TemplateParams->getTemplateLoc(),
2799                       TemplateParams->getRAngleLoc());
2800
2801      isExplicitSpecialization = true;
2802    }
2803  }
2804
2805  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2806                                   II, R, TInfo, SC, SCAsWritten);
2807
2808  if (D.isInvalidType() || Invalid)
2809    NewVD->setInvalidDecl();
2810
2811  SetNestedNameSpecifier(NewVD, D);
2812
2813  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2814    NewVD->setTemplateParameterListsInfo(Context,
2815                                         NumMatchedTemplateParamLists,
2816                        (TemplateParameterList**)TemplateParamLists.release());
2817  }
2818
2819  if (D.getDeclSpec().isThreadSpecified()) {
2820    if (NewVD->hasLocalStorage())
2821      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2822    else if (!Context.Target.isTLSSupported())
2823      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2824    else
2825      NewVD->setThreadSpecified(true);
2826  }
2827
2828  // Set the lexical context. If the declarator has a C++ scope specifier, the
2829  // lexical context will be different from the semantic context.
2830  NewVD->setLexicalDeclContext(CurContext);
2831
2832  // Handle attributes prior to checking for duplicates in MergeVarDecl
2833  ProcessDeclAttributes(S, NewVD, D);
2834
2835  // Handle GNU asm-label extension (encoded as an attribute).
2836  if (Expr *E = (Expr*) D.getAsmLabel()) {
2837    // The parser guarantees this is a string.
2838    StringLiteral *SE = cast<StringLiteral>(E);
2839    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2840                                                Context, SE->getString()));
2841  }
2842
2843  // Diagnose shadowed variables before filtering for scope.
2844  if (!D.getCXXScopeSpec().isSet())
2845    CheckShadow(S, NewVD, Previous);
2846
2847  // Don't consider existing declarations that are in a different
2848  // scope and are out-of-semantic-context declarations (if the new
2849  // declaration has linkage).
2850  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2851
2852  // Merge the decl with the existing one if appropriate.
2853  if (!Previous.empty()) {
2854    if (Previous.isSingleResult() &&
2855        isa<FieldDecl>(Previous.getFoundDecl()) &&
2856        D.getCXXScopeSpec().isSet()) {
2857      // The user tried to define a non-static data member
2858      // out-of-line (C++ [dcl.meaning]p1).
2859      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2860        << D.getCXXScopeSpec().getRange();
2861      Previous.clear();
2862      NewVD->setInvalidDecl();
2863    }
2864  } else if (D.getCXXScopeSpec().isSet()) {
2865    // No previous declaration in the qualifying scope.
2866    Diag(D.getIdentifierLoc(), diag::err_no_member)
2867      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2868      << D.getCXXScopeSpec().getRange();
2869    NewVD->setInvalidDecl();
2870  }
2871
2872  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2873
2874  // This is an explicit specialization of a static data member. Check it.
2875  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2876      CheckMemberSpecialization(NewVD, Previous))
2877    NewVD->setInvalidDecl();
2878
2879  // attributes declared post-definition are currently ignored
2880  // FIXME: This should be handled in attribute merging, not
2881  // here.
2882  if (Previous.isSingleResult()) {
2883    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2884    if (Def && (Def = Def->getDefinition()) &&
2885        Def != NewVD && D.hasAttributes()) {
2886      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2887      Diag(Def->getLocation(), diag::note_previous_definition);
2888    }
2889  }
2890
2891  // If this is a locally-scoped extern C variable, update the map of
2892  // such variables.
2893  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2894      !NewVD->isInvalidDecl())
2895    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2896
2897  // If there's a #pragma GCC visibility in scope, and this isn't a class
2898  // member, set the visibility of this variable.
2899  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2900    AddPushedVisibilityAttribute(NewVD);
2901
2902  MarkUnusedFileScopedDecl(NewVD);
2903
2904  return NewVD;
2905}
2906
2907/// \brief Diagnose variable or built-in function shadowing.  Implements
2908/// -Wshadow.
2909///
2910/// This method is called whenever a VarDecl is added to a "useful"
2911/// scope.
2912///
2913/// \param S the scope in which the shadowing name is being declared
2914/// \param R the lookup of the name
2915///
2916void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2917  // Return if warning is ignored.
2918  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2919    return;
2920
2921  // Don't diagnose declarations at file scope.  The scope might not
2922  // have a DeclContext if (e.g.) we're parsing a function prototype.
2923  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2924  if (NewDC && NewDC->isFileContext())
2925    return;
2926
2927  // Only diagnose if we're shadowing an unambiguous field or variable.
2928  if (R.getResultKind() != LookupResult::Found)
2929    return;
2930
2931  NamedDecl* ShadowedDecl = R.getFoundDecl();
2932  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2933    return;
2934
2935  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2936
2937  // Only warn about certain kinds of shadowing for class members.
2938  if (NewDC && NewDC->isRecord()) {
2939    // In particular, don't warn about shadowing non-class members.
2940    if (!OldDC->isRecord())
2941      return;
2942
2943    // TODO: should we warn about static data members shadowing
2944    // static data members from base classes?
2945
2946    // TODO: don't diagnose for inaccessible shadowed members.
2947    // This is hard to do perfectly because we might friend the
2948    // shadowing context, but that's just a false negative.
2949  }
2950
2951  // Determine what kind of declaration we're shadowing.
2952  unsigned Kind;
2953  if (isa<RecordDecl>(OldDC)) {
2954    if (isa<FieldDecl>(ShadowedDecl))
2955      Kind = 3; // field
2956    else
2957      Kind = 2; // static data member
2958  } else if (OldDC->isFileContext())
2959    Kind = 1; // global
2960  else
2961    Kind = 0; // local
2962
2963  DeclarationName Name = R.getLookupName();
2964
2965  // Emit warning and note.
2966  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2967  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2968}
2969
2970/// \brief Check -Wshadow without the advantage of a previous lookup.
2971void Sema::CheckShadow(Scope *S, VarDecl *D) {
2972  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2973                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2974  LookupName(R, S);
2975  CheckShadow(S, D, R);
2976}
2977
2978/// \brief Perform semantic checking on a newly-created variable
2979/// declaration.
2980///
2981/// This routine performs all of the type-checking required for a
2982/// variable declaration once it has been built. It is used both to
2983/// check variables after they have been parsed and their declarators
2984/// have been translated into a declaration, and to check variables
2985/// that have been instantiated from a template.
2986///
2987/// Sets NewVD->isInvalidDecl() if an error was encountered.
2988void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2989                                    LookupResult &Previous,
2990                                    bool &Redeclaration) {
2991  // If the decl is already known invalid, don't check it.
2992  if (NewVD->isInvalidDecl())
2993    return;
2994
2995  QualType T = NewVD->getType();
2996
2997  if (T->isObjCObjectType()) {
2998    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2999    return NewVD->setInvalidDecl();
3000  }
3001
3002  // Emit an error if an address space was applied to decl with local storage.
3003  // This includes arrays of objects with address space qualifiers, but not
3004  // automatic variables that point to other address spaces.
3005  // ISO/IEC TR 18037 S5.1.2
3006  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
3007    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3008    return NewVD->setInvalidDecl();
3009  }
3010
3011  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3012      && !NewVD->hasAttr<BlocksAttr>())
3013    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3014
3015  bool isVM = T->isVariablyModifiedType();
3016  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3017      NewVD->hasAttr<BlocksAttr>())
3018    getCurFunction()->setHasBranchProtectedScope();
3019
3020  if ((isVM && NewVD->hasLinkage()) ||
3021      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3022    bool SizeIsNegative;
3023    llvm::APSInt Oversized;
3024    QualType FixedTy =
3025        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3026                                            Oversized);
3027
3028    if (FixedTy.isNull() && T->isVariableArrayType()) {
3029      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3030      // FIXME: This won't give the correct result for
3031      // int a[10][n];
3032      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3033
3034      if (NewVD->isFileVarDecl())
3035        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3036        << SizeRange;
3037      else if (NewVD->getStorageClass() == SC_Static)
3038        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3039        << SizeRange;
3040      else
3041        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3042        << SizeRange;
3043      return NewVD->setInvalidDecl();
3044    }
3045
3046    if (FixedTy.isNull()) {
3047      if (NewVD->isFileVarDecl())
3048        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3049      else
3050        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3051      return NewVD->setInvalidDecl();
3052    }
3053
3054    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3055    NewVD->setType(FixedTy);
3056  }
3057
3058  if (Previous.empty() && NewVD->isExternC()) {
3059    // Since we did not find anything by this name and we're declaring
3060    // an extern "C" variable, look for a non-visible extern "C"
3061    // declaration with the same name.
3062    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3063      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3064    if (Pos != LocallyScopedExternalDecls.end())
3065      Previous.addDecl(Pos->second);
3066  }
3067
3068  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3069    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3070      << T;
3071    return NewVD->setInvalidDecl();
3072  }
3073
3074  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3075    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3076    return NewVD->setInvalidDecl();
3077  }
3078
3079  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3080    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3081    return NewVD->setInvalidDecl();
3082  }
3083
3084  // Function pointers and references cannot have qualified function type, only
3085  // function pointer-to-members can do that.
3086  QualType Pointee;
3087  unsigned PtrOrRef = 0;
3088  if (const PointerType *Ptr = T->getAs<PointerType>())
3089    Pointee = Ptr->getPointeeType();
3090  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3091    Pointee = Ref->getPointeeType();
3092    PtrOrRef = 1;
3093  }
3094  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3095      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3096    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3097        << PtrOrRef;
3098    return NewVD->setInvalidDecl();
3099  }
3100
3101  if (!Previous.empty()) {
3102    Redeclaration = true;
3103    MergeVarDecl(NewVD, Previous);
3104  }
3105}
3106
3107/// \brief Data used with FindOverriddenMethod
3108struct FindOverriddenMethodData {
3109  Sema *S;
3110  CXXMethodDecl *Method;
3111};
3112
3113/// \brief Member lookup function that determines whether a given C++
3114/// method overrides a method in a base class, to be used with
3115/// CXXRecordDecl::lookupInBases().
3116static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3117                                 CXXBasePath &Path,
3118                                 void *UserData) {
3119  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3120
3121  FindOverriddenMethodData *Data
3122    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3123
3124  DeclarationName Name = Data->Method->getDeclName();
3125
3126  // FIXME: Do we care about other names here too?
3127  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3128    // We really want to find the base class destructor here.
3129    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3130    CanQualType CT = Data->S->Context.getCanonicalType(T);
3131
3132    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3133  }
3134
3135  for (Path.Decls = BaseRecord->lookup(Name);
3136       Path.Decls.first != Path.Decls.second;
3137       ++Path.Decls.first) {
3138    NamedDecl *D = *Path.Decls.first;
3139    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3140      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3141        return true;
3142    }
3143  }
3144
3145  return false;
3146}
3147
3148/// AddOverriddenMethods - See if a method overrides any in the base classes,
3149/// and if so, check that it's a valid override and remember it.
3150void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3151  // Look for virtual methods in base classes that this method might override.
3152  CXXBasePaths Paths;
3153  FindOverriddenMethodData Data;
3154  Data.Method = MD;
3155  Data.S = this;
3156  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3157    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3158         E = Paths.found_decls_end(); I != E; ++I) {
3159      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3160        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3161            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3162            !CheckOverridingFunctionAttributes(MD, OldMD))
3163          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3164      }
3165    }
3166  }
3167}
3168
3169NamedDecl*
3170Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3171                              QualType R, TypeSourceInfo *TInfo,
3172                              LookupResult &Previous,
3173                              MultiTemplateParamsArg TemplateParamLists,
3174                              bool IsFunctionDefinition, bool &Redeclaration) {
3175  assert(R.getTypePtr()->isFunctionType());
3176
3177  // TODO: consider using NameInfo for diagnostic.
3178  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3179  DeclarationName Name = NameInfo.getName();
3180  FunctionDecl::StorageClass SC = SC_None;
3181  switch (D.getDeclSpec().getStorageClassSpec()) {
3182  default: assert(0 && "Unknown storage class!");
3183  case DeclSpec::SCS_auto:
3184  case DeclSpec::SCS_register:
3185  case DeclSpec::SCS_mutable:
3186    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3187         diag::err_typecheck_sclass_func);
3188    D.setInvalidType();
3189    break;
3190  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3191  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3192  case DeclSpec::SCS_static: {
3193    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3194      // C99 6.7.1p5:
3195      //   The declaration of an identifier for a function that has
3196      //   block scope shall have no explicit storage-class specifier
3197      //   other than extern
3198      // See also (C++ [dcl.stc]p4).
3199      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3200           diag::err_static_block_func);
3201      SC = SC_None;
3202    } else
3203      SC = SC_Static;
3204    break;
3205  }
3206  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3207  }
3208
3209  if (D.getDeclSpec().isThreadSpecified())
3210    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3211
3212  bool isFriend = D.getDeclSpec().isFriendSpecified();
3213  bool isInline = D.getDeclSpec().isInlineSpecified();
3214  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3215  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3216
3217  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3218  FunctionDecl::StorageClass SCAsWritten
3219    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3220
3221  // Check that the return type is not an abstract class type.
3222  // For record types, this is done by the AbstractClassUsageDiagnoser once
3223  // the class has been completely parsed.
3224  if (!DC->isRecord() &&
3225      RequireNonAbstractType(D.getIdentifierLoc(),
3226                             R->getAs<FunctionType>()->getResultType(),
3227                             diag::err_abstract_type_in_decl,
3228                             AbstractReturnType))
3229    D.setInvalidType();
3230
3231  // Do not allow returning a objc interface by-value.
3232  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3233    Diag(D.getIdentifierLoc(),
3234         diag::err_object_cannot_be_passed_returned_by_value) << 0
3235      << R->getAs<FunctionType>()->getResultType();
3236    D.setInvalidType();
3237  }
3238
3239  bool isVirtualOkay = false;
3240  FunctionDecl *NewFD;
3241
3242  if (isFriend) {
3243    // C++ [class.friend]p5
3244    //   A function can be defined in a friend declaration of a
3245    //   class . . . . Such a function is implicitly inline.
3246    isInline |= IsFunctionDefinition;
3247  }
3248
3249  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3250    // This is a C++ constructor declaration.
3251    assert(DC->isRecord() &&
3252           "Constructors can only be declared in a member context");
3253
3254    R = CheckConstructorDeclarator(D, R, SC);
3255
3256    // Create the new declaration
3257    NewFD = CXXConstructorDecl::Create(Context,
3258                                       cast<CXXRecordDecl>(DC),
3259                                       NameInfo, R, TInfo,
3260                                       isExplicit, isInline,
3261                                       /*isImplicitlyDeclared=*/false);
3262  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3263    // This is a C++ destructor declaration.
3264    if (DC->isRecord()) {
3265      R = CheckDestructorDeclarator(D, R, SC);
3266
3267      NewFD = CXXDestructorDecl::Create(Context,
3268                                        cast<CXXRecordDecl>(DC),
3269                                        NameInfo, R,
3270                                        isInline,
3271                                        /*isImplicitlyDeclared=*/false);
3272      NewFD->setTypeSourceInfo(TInfo);
3273
3274      isVirtualOkay = true;
3275    } else {
3276      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3277
3278      // Create a FunctionDecl to satisfy the function definition parsing
3279      // code path.
3280      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3281                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3282                                   /*hasPrototype=*/true);
3283      D.setInvalidType();
3284    }
3285  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3286    if (!DC->isRecord()) {
3287      Diag(D.getIdentifierLoc(),
3288           diag::err_conv_function_not_member);
3289      return 0;
3290    }
3291
3292    CheckConversionDeclarator(D, R, SC);
3293    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3294                                      NameInfo, R, TInfo,
3295                                      isInline, isExplicit);
3296
3297    isVirtualOkay = true;
3298  } else if (DC->isRecord()) {
3299    // If the of the function is the same as the name of the record, then this
3300    // must be an invalid constructor that has a return type.
3301    // (The parser checks for a return type and makes the declarator a
3302    // constructor if it has no return type).
3303    // must have an invalid constructor that has a return type
3304    if (Name.getAsIdentifierInfo() &&
3305        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3306      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3307        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3308        << SourceRange(D.getIdentifierLoc());
3309      return 0;
3310    }
3311
3312    bool isStatic = SC == SC_Static;
3313
3314    // [class.free]p1:
3315    // Any allocation function for a class T is a static member
3316    // (even if not explicitly declared static).
3317    if (Name.getCXXOverloadedOperator() == OO_New ||
3318        Name.getCXXOverloadedOperator() == OO_Array_New)
3319      isStatic = true;
3320
3321    // [class.free]p6 Any deallocation function for a class X is a static member
3322    // (even if not explicitly declared static).
3323    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3324        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3325      isStatic = true;
3326
3327    // This is a C++ method declaration.
3328    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3329                                  NameInfo, R, TInfo,
3330                                  isStatic, SCAsWritten, isInline);
3331
3332    isVirtualOkay = !isStatic;
3333  } else {
3334    // Determine whether the function was written with a
3335    // prototype. This true when:
3336    //   - we're in C++ (where every function has a prototype),
3337    //   - there is a prototype in the declarator, or
3338    //   - the type R of the function is some kind of typedef or other reference
3339    //     to a type name (which eventually refers to a function type).
3340    bool HasPrototype =
3341       getLangOptions().CPlusPlus ||
3342       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3343       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3344
3345    NewFD = FunctionDecl::Create(Context, DC,
3346                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3347                                 HasPrototype);
3348  }
3349
3350  if (D.isInvalidType())
3351    NewFD->setInvalidDecl();
3352
3353  SetNestedNameSpecifier(NewFD, D);
3354
3355  // Set the lexical context. If the declarator has a C++
3356  // scope specifier, or is the object of a friend declaration, the
3357  // lexical context will be different from the semantic context.
3358  NewFD->setLexicalDeclContext(CurContext);
3359
3360  // Match up the template parameter lists with the scope specifier, then
3361  // determine whether we have a template or a template specialization.
3362  FunctionTemplateDecl *FunctionTemplate = 0;
3363  bool isExplicitSpecialization = false;
3364  bool isFunctionTemplateSpecialization = false;
3365  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3366  bool Invalid = false;
3367  if (TemplateParameterList *TemplateParams
3368        = MatchTemplateParametersToScopeSpecifier(
3369                                  D.getDeclSpec().getSourceRange().getBegin(),
3370                                  D.getCXXScopeSpec(),
3371                           (TemplateParameterList**)TemplateParamLists.get(),
3372                                                  TemplateParamLists.size(),
3373                                                  isFriend,
3374                                                  isExplicitSpecialization,
3375                                                  Invalid)) {
3376    // All but one template parameter lists have been matching.
3377    --NumMatchedTemplateParamLists;
3378
3379    if (TemplateParams->size() > 0) {
3380      // This is a function template
3381
3382      // Check that we can declare a template here.
3383      if (CheckTemplateDeclScope(S, TemplateParams))
3384        return 0;
3385
3386      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3387                                                      NewFD->getLocation(),
3388                                                      Name, TemplateParams,
3389                                                      NewFD);
3390      FunctionTemplate->setLexicalDeclContext(CurContext);
3391      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3392    } else {
3393      // This is a function template specialization.
3394      isFunctionTemplateSpecialization = true;
3395
3396      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3397      if (isFriend && isFunctionTemplateSpecialization) {
3398        // We want to remove the "template<>", found here.
3399        SourceRange RemoveRange = TemplateParams->getSourceRange();
3400
3401        // If we remove the template<> and the name is not a
3402        // template-id, we're actually silently creating a problem:
3403        // the friend declaration will refer to an untemplated decl,
3404        // and clearly the user wants a template specialization.  So
3405        // we need to insert '<>' after the name.
3406        SourceLocation InsertLoc;
3407        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3408          InsertLoc = D.getName().getSourceRange().getEnd();
3409          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3410        }
3411
3412        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3413          << Name << RemoveRange
3414          << FixItHint::CreateRemoval(RemoveRange)
3415          << FixItHint::CreateInsertion(InsertLoc, "<>");
3416      }
3417    }
3418  }
3419
3420  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3421    NewFD->setTemplateParameterListsInfo(Context,
3422                                         NumMatchedTemplateParamLists,
3423                        (TemplateParameterList**)TemplateParamLists.release());
3424  }
3425
3426  if (Invalid) {
3427    NewFD->setInvalidDecl();
3428    if (FunctionTemplate)
3429      FunctionTemplate->setInvalidDecl();
3430  }
3431
3432  // C++ [dcl.fct.spec]p5:
3433  //   The virtual specifier shall only be used in declarations of
3434  //   nonstatic class member functions that appear within a
3435  //   member-specification of a class declaration; see 10.3.
3436  //
3437  if (isVirtual && !NewFD->isInvalidDecl()) {
3438    if (!isVirtualOkay) {
3439       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3440           diag::err_virtual_non_function);
3441    } else if (!CurContext->isRecord()) {
3442      // 'virtual' was specified outside of the class.
3443      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3444        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3445    } else {
3446      // Okay: Add virtual to the method.
3447      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3448      CurClass->setMethodAsVirtual(NewFD);
3449    }
3450  }
3451
3452  // C++ [dcl.fct.spec]p3:
3453  //  The inline specifier shall not appear on a block scope function declaration.
3454  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3455    if (CurContext->isFunctionOrMethod()) {
3456      // 'inline' is not allowed on block scope function declaration.
3457      Diag(D.getDeclSpec().getInlineSpecLoc(),
3458           diag::err_inline_declaration_block_scope) << Name
3459        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3460    }
3461  }
3462
3463  // C++ [dcl.fct.spec]p6:
3464  //  The explicit specifier shall be used only in the declaration of a
3465  //  constructor or conversion function within its class definition; see 12.3.1
3466  //  and 12.3.2.
3467  if (isExplicit && !NewFD->isInvalidDecl()) {
3468    if (!CurContext->isRecord()) {
3469      // 'explicit' was specified outside of the class.
3470      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3471           diag::err_explicit_out_of_class)
3472        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3473    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3474               !isa<CXXConversionDecl>(NewFD)) {
3475      // 'explicit' was specified on a function that wasn't a constructor
3476      // or conversion function.
3477      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3478           diag::err_explicit_non_ctor_or_conv_function)
3479        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3480    }
3481  }
3482
3483  // Filter out previous declarations that don't match the scope.
3484  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3485
3486  if (isFriend) {
3487    // DC is the namespace in which the function is being declared.
3488    assert((DC->isFileContext() || !Previous.empty()) &&
3489           "previously-undeclared friend function being created "
3490           "in a non-namespace context");
3491
3492    // For now, claim that the objects have no previous declaration.
3493    if (FunctionTemplate) {
3494      FunctionTemplate->setObjectOfFriendDecl(false);
3495      FunctionTemplate->setAccess(AS_public);
3496    }
3497    NewFD->setObjectOfFriendDecl(false);
3498    NewFD->setAccess(AS_public);
3499  }
3500
3501  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3502      !CurContext->isRecord()) {
3503    // C++ [class.static]p1:
3504    //   A data or function member of a class may be declared static
3505    //   in a class definition, in which case it is a static member of
3506    //   the class.
3507
3508    // Complain about the 'static' specifier if it's on an out-of-line
3509    // member function definition.
3510    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3511         diag::err_static_out_of_line)
3512      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3513  }
3514
3515  // Handle GNU asm-label extension (encoded as an attribute).
3516  if (Expr *E = (Expr*) D.getAsmLabel()) {
3517    // The parser guarantees this is a string.
3518    StringLiteral *SE = cast<StringLiteral>(E);
3519    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3520                                                SE->getString()));
3521  }
3522
3523  // Copy the parameter declarations from the declarator D to the function
3524  // declaration NewFD, if they are available.  First scavenge them into Params.
3525  llvm::SmallVector<ParmVarDecl*, 16> Params;
3526  if (D.getNumTypeObjects() > 0) {
3527    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3528
3529    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3530    // function that takes no arguments, not a function that takes a
3531    // single void argument.
3532    // We let through "const void" here because Sema::GetTypeForDeclarator
3533    // already checks for that case.
3534    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3535        FTI.ArgInfo[0].Param &&
3536        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3537      // Empty arg list, don't push any params.
3538      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3539
3540      // In C++, the empty parameter-type-list must be spelled "void"; a
3541      // typedef of void is not permitted.
3542      if (getLangOptions().CPlusPlus &&
3543          Param->getType().getUnqualifiedType() != Context.VoidTy)
3544        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3545      // FIXME: Leaks decl?
3546    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3547      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3548        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3549        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3550        Param->setDeclContext(NewFD);
3551        Params.push_back(Param);
3552
3553        if (Param->isInvalidDecl())
3554          NewFD->setInvalidDecl();
3555      }
3556    }
3557
3558  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3559    // When we're declaring a function with a typedef, typeof, etc as in the
3560    // following example, we'll need to synthesize (unnamed)
3561    // parameters for use in the declaration.
3562    //
3563    // @code
3564    // typedef void fn(int);
3565    // fn f;
3566    // @endcode
3567
3568    // Synthesize a parameter for each argument type.
3569    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3570         AE = FT->arg_type_end(); AI != AE; ++AI) {
3571      ParmVarDecl *Param =
3572        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3573      Params.push_back(Param);
3574    }
3575  } else {
3576    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3577           "Should not need args for typedef of non-prototype fn");
3578  }
3579  // Finally, we know we have the right number of parameters, install them.
3580  NewFD->setParams(Params.data(), Params.size());
3581
3582  // If the declarator is a template-id, translate the parser's template
3583  // argument list into our AST format.
3584  bool HasExplicitTemplateArgs = false;
3585  TemplateArgumentListInfo TemplateArgs;
3586  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3587    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3588    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3589    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3590    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3591                                       TemplateId->getTemplateArgs(),
3592                                       TemplateId->NumArgs);
3593    translateTemplateArguments(TemplateArgsPtr,
3594                               TemplateArgs);
3595    TemplateArgsPtr.release();
3596
3597    HasExplicitTemplateArgs = true;
3598
3599    if (FunctionTemplate) {
3600      // FIXME: Diagnose function template with explicit template
3601      // arguments.
3602      HasExplicitTemplateArgs = false;
3603    } else if (!isFunctionTemplateSpecialization &&
3604               !D.getDeclSpec().isFriendSpecified()) {
3605      // We have encountered something that the user meant to be a
3606      // specialization (because it has explicitly-specified template
3607      // arguments) but that was not introduced with a "template<>" (or had
3608      // too few of them).
3609      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3610        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3611        << FixItHint::CreateInsertion(
3612                                   D.getDeclSpec().getSourceRange().getBegin(),
3613                                                 "template<> ");
3614      isFunctionTemplateSpecialization = true;
3615    } else {
3616      // "friend void foo<>(int);" is an implicit specialization decl.
3617      isFunctionTemplateSpecialization = true;
3618    }
3619  } else if (isFriend && isFunctionTemplateSpecialization) {
3620    // This combination is only possible in a recovery case;  the user
3621    // wrote something like:
3622    //   template <> friend void foo(int);
3623    // which we're recovering from as if the user had written:
3624    //   friend void foo<>(int);
3625    // Go ahead and fake up a template id.
3626    HasExplicitTemplateArgs = true;
3627    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3628    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3629  }
3630
3631  // If it's a friend (and only if it's a friend), it's possible
3632  // that either the specialized function type or the specialized
3633  // template is dependent, and therefore matching will fail.  In
3634  // this case, don't check the specialization yet.
3635  if (isFunctionTemplateSpecialization && isFriend &&
3636      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3637    assert(HasExplicitTemplateArgs &&
3638           "friend function specialization without template args");
3639    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3640                                                     Previous))
3641      NewFD->setInvalidDecl();
3642  } else if (isFunctionTemplateSpecialization) {
3643    if (CheckFunctionTemplateSpecialization(NewFD,
3644                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3645                                            Previous))
3646      NewFD->setInvalidDecl();
3647  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3648    if (CheckMemberSpecialization(NewFD, Previous))
3649      NewFD->setInvalidDecl();
3650  }
3651
3652  // Perform semantic checking on the function declaration.
3653  bool OverloadableAttrRequired = false; // FIXME: HACK!
3654  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3655                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3656
3657  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3658          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3659         "previous declaration set still overloaded");
3660
3661  NamedDecl *PrincipalDecl = (FunctionTemplate
3662                              ? cast<NamedDecl>(FunctionTemplate)
3663                              : NewFD);
3664
3665  if (isFriend && Redeclaration) {
3666    AccessSpecifier Access = AS_public;
3667    if (!NewFD->isInvalidDecl())
3668      Access = NewFD->getPreviousDeclaration()->getAccess();
3669
3670    NewFD->setAccess(Access);
3671    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3672
3673    PrincipalDecl->setObjectOfFriendDecl(true);
3674  }
3675
3676  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3677      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3678    PrincipalDecl->setNonMemberOperator();
3679
3680  // If we have a function template, check the template parameter
3681  // list. This will check and merge default template arguments.
3682  if (FunctionTemplate) {
3683    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3684    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3685                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3686             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3687                                                : TPC_FunctionTemplate);
3688  }
3689
3690  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3691    // Fake up an access specifier if it's supposed to be a class member.
3692    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3693      NewFD->setAccess(AS_public);
3694
3695    // An out-of-line member function declaration must also be a
3696    // definition (C++ [dcl.meaning]p1).
3697    // Note that this is not the case for explicit specializations of
3698    // function templates or member functions of class templates, per
3699    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3700    // for compatibility with old SWIG code which likes to generate them.
3701    if (!IsFunctionDefinition && !isFriend &&
3702        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3703      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3704        << D.getCXXScopeSpec().getRange();
3705    }
3706    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3707      // The user tried to provide an out-of-line definition for a
3708      // function that is a member of a class or namespace, but there
3709      // was no such member function declared (C++ [class.mfct]p2,
3710      // C++ [namespace.memdef]p2). For example:
3711      //
3712      // class X {
3713      //   void f() const;
3714      // };
3715      //
3716      // void X::f() { } // ill-formed
3717      //
3718      // Complain about this problem, and attempt to suggest close
3719      // matches (e.g., those that differ only in cv-qualifiers and
3720      // whether the parameter types are references).
3721      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3722        << Name << DC << D.getCXXScopeSpec().getRange();
3723      NewFD->setInvalidDecl();
3724
3725      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3726                        ForRedeclaration);
3727      LookupQualifiedName(Prev, DC);
3728      assert(!Prev.isAmbiguous() &&
3729             "Cannot have an ambiguity in previous-declaration lookup");
3730      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3731           Func != FuncEnd; ++Func) {
3732        if (isa<FunctionDecl>(*Func) &&
3733            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3734          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3735      }
3736    }
3737  }
3738
3739  // Handle attributes. We need to have merged decls when handling attributes
3740  // (for example to check for conflicts, etc).
3741  // FIXME: This needs to happen before we merge declarations. Then,
3742  // let attribute merging cope with attribute conflicts.
3743  ProcessDeclAttributes(S, NewFD, D);
3744
3745  // attributes declared post-definition are currently ignored
3746  // FIXME: This should happen during attribute merging
3747  if (Redeclaration && Previous.isSingleResult()) {
3748    const FunctionDecl *Def;
3749    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3750    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3751      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3752      Diag(Def->getLocation(), diag::note_previous_definition);
3753    }
3754  }
3755
3756  AddKnownFunctionAttributes(NewFD);
3757
3758  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3759    // If a function name is overloadable in C, then every function
3760    // with that name must be marked "overloadable".
3761    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3762      << Redeclaration << NewFD;
3763    if (!Previous.empty())
3764      Diag(Previous.getRepresentativeDecl()->getLocation(),
3765           diag::note_attribute_overloadable_prev_overload);
3766    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3767  }
3768
3769  if (NewFD->hasAttr<OverloadableAttr>() &&
3770      !NewFD->getType()->getAs<FunctionProtoType>()) {
3771    Diag(NewFD->getLocation(),
3772         diag::err_attribute_overloadable_no_prototype)
3773      << NewFD;
3774
3775    // Turn this into a variadic function with no parameters.
3776    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3777    QualType R = Context.getFunctionType(FT->getResultType(),
3778                                         0, 0, true, 0, false, false, 0, 0,
3779                                         FT->getExtInfo());
3780    NewFD->setType(R);
3781  }
3782
3783  // If there's a #pragma GCC visibility in scope, and this isn't a class
3784  // member, set the visibility of this function.
3785  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3786    AddPushedVisibilityAttribute(NewFD);
3787
3788  // If this is a locally-scoped extern C function, update the
3789  // map of such names.
3790  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3791      && !NewFD->isInvalidDecl())
3792    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3793
3794  // Set this FunctionDecl's range up to the right paren.
3795  NewFD->setLocEnd(D.getSourceRange().getEnd());
3796
3797  if (FunctionTemplate && NewFD->isInvalidDecl())
3798    FunctionTemplate->setInvalidDecl();
3799
3800  if (FunctionTemplate)
3801    return FunctionTemplate;
3802
3803  MarkUnusedFileScopedDecl(NewFD);
3804
3805  return NewFD;
3806}
3807
3808/// \brief Perform semantic checking of a new function declaration.
3809///
3810/// Performs semantic analysis of the new function declaration
3811/// NewFD. This routine performs all semantic checking that does not
3812/// require the actual declarator involved in the declaration, and is
3813/// used both for the declaration of functions as they are parsed
3814/// (called via ActOnDeclarator) and for the declaration of functions
3815/// that have been instantiated via C++ template instantiation (called
3816/// via InstantiateDecl).
3817///
3818/// \param IsExplicitSpecialiation whether this new function declaration is
3819/// an explicit specialization of the previous declaration.
3820///
3821/// This sets NewFD->isInvalidDecl() to true if there was an error.
3822void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3823                                    LookupResult &Previous,
3824                                    bool IsExplicitSpecialization,
3825                                    bool &Redeclaration,
3826                                    bool &OverloadableAttrRequired) {
3827  // If NewFD is already known erroneous, don't do any of this checking.
3828  if (NewFD->isInvalidDecl()) {
3829    // If this is a class member, mark the class invalid immediately.
3830    // This avoids some consistency errors later.
3831    if (isa<CXXMethodDecl>(NewFD))
3832      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3833
3834    return;
3835  }
3836
3837  if (NewFD->getResultType()->isVariablyModifiedType()) {
3838    // Functions returning a variably modified type violate C99 6.7.5.2p2
3839    // because all functions have linkage.
3840    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3841    return NewFD->setInvalidDecl();
3842  }
3843
3844  if (NewFD->isMain())
3845    CheckMain(NewFD);
3846
3847  // Check for a previous declaration of this name.
3848  if (Previous.empty() && NewFD->isExternC()) {
3849    // Since we did not find anything by this name and we're declaring
3850    // an extern "C" function, look for a non-visible extern "C"
3851    // declaration with the same name.
3852    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3853      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3854    if (Pos != LocallyScopedExternalDecls.end())
3855      Previous.addDecl(Pos->second);
3856  }
3857
3858  // Merge or overload the declaration with an existing declaration of
3859  // the same name, if appropriate.
3860  if (!Previous.empty()) {
3861    // Determine whether NewFD is an overload of PrevDecl or
3862    // a declaration that requires merging. If it's an overload,
3863    // there's no more work to do here; we'll just add the new
3864    // function to the scope.
3865
3866    NamedDecl *OldDecl = 0;
3867    if (!AllowOverloadingOfFunction(Previous, Context)) {
3868      Redeclaration = true;
3869      OldDecl = Previous.getFoundDecl();
3870    } else {
3871      if (!getLangOptions().CPlusPlus)
3872        OverloadableAttrRequired = true;
3873
3874      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3875                            /*NewIsUsingDecl*/ false)) {
3876      case Ovl_Match:
3877        Redeclaration = true;
3878        break;
3879
3880      case Ovl_NonFunction:
3881        Redeclaration = true;
3882        break;
3883
3884      case Ovl_Overload:
3885        Redeclaration = false;
3886        break;
3887      }
3888    }
3889
3890    if (Redeclaration) {
3891      // NewFD and OldDecl represent declarations that need to be
3892      // merged.
3893      if (MergeFunctionDecl(NewFD, OldDecl))
3894        return NewFD->setInvalidDecl();
3895
3896      Previous.clear();
3897      Previous.addDecl(OldDecl);
3898
3899      if (FunctionTemplateDecl *OldTemplateDecl
3900                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3901        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3902        FunctionTemplateDecl *NewTemplateDecl
3903          = NewFD->getDescribedFunctionTemplate();
3904        assert(NewTemplateDecl && "Template/non-template mismatch");
3905        if (CXXMethodDecl *Method
3906              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3907          Method->setAccess(OldTemplateDecl->getAccess());
3908          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3909        }
3910
3911        // If this is an explicit specialization of a member that is a function
3912        // template, mark it as a member specialization.
3913        if (IsExplicitSpecialization &&
3914            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3915          NewTemplateDecl->setMemberSpecialization();
3916          assert(OldTemplateDecl->isMemberSpecialization());
3917        }
3918      } else {
3919        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3920          NewFD->setAccess(OldDecl->getAccess());
3921        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3922      }
3923    }
3924  }
3925
3926  // Semantic checking for this function declaration (in isolation).
3927  if (getLangOptions().CPlusPlus) {
3928    // C++-specific checks.
3929    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3930      CheckConstructor(Constructor);
3931    } else if (CXXDestructorDecl *Destructor =
3932                dyn_cast<CXXDestructorDecl>(NewFD)) {
3933      CXXRecordDecl *Record = Destructor->getParent();
3934      QualType ClassType = Context.getTypeDeclType(Record);
3935
3936      // FIXME: Shouldn't we be able to perform this check even when the class
3937      // type is dependent? Both gcc and edg can handle that.
3938      if (!ClassType->isDependentType()) {
3939        DeclarationName Name
3940          = Context.DeclarationNames.getCXXDestructorName(
3941                                        Context.getCanonicalType(ClassType));
3942//         NewFD->getDeclName().dump();
3943//         Name.dump();
3944        if (NewFD->getDeclName() != Name) {
3945          Diag(NewFD->getLocation(), diag::err_destructor_name);
3946          return NewFD->setInvalidDecl();
3947        }
3948      }
3949
3950      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3951      // declared destructor.
3952      // FIXME: C++0x: don't do this for "= default" destructors
3953      Record->setHasTrivialDestructor(false);
3954    } else if (CXXConversionDecl *Conversion
3955               = dyn_cast<CXXConversionDecl>(NewFD)) {
3956      ActOnConversionDeclarator(Conversion);
3957    }
3958
3959    // Find any virtual functions that this function overrides.
3960    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3961      if (!Method->isFunctionTemplateSpecialization() &&
3962          !Method->getDescribedFunctionTemplate())
3963        AddOverriddenMethods(Method->getParent(), Method);
3964    }
3965
3966    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3967    if (NewFD->isOverloadedOperator() &&
3968        CheckOverloadedOperatorDeclaration(NewFD))
3969      return NewFD->setInvalidDecl();
3970
3971    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3972    if (NewFD->getLiteralIdentifier() &&
3973        CheckLiteralOperatorDeclaration(NewFD))
3974      return NewFD->setInvalidDecl();
3975
3976    // In C++, check default arguments now that we have merged decls. Unless
3977    // the lexical context is the class, because in this case this is done
3978    // during delayed parsing anyway.
3979    if (!CurContext->isRecord())
3980      CheckCXXDefaultArguments(NewFD);
3981  }
3982}
3983
3984void Sema::CheckMain(FunctionDecl* FD) {
3985  // C++ [basic.start.main]p3:  A program that declares main to be inline
3986  //   or static is ill-formed.
3987  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3988  //   shall not appear in a declaration of main.
3989  // static main is not an error under C99, but we should warn about it.
3990  bool isInline = FD->isInlineSpecified();
3991  bool isStatic = FD->getStorageClass() == SC_Static;
3992  if (isInline || isStatic) {
3993    unsigned diagID = diag::warn_unusual_main_decl;
3994    if (isInline || getLangOptions().CPlusPlus)
3995      diagID = diag::err_unusual_main_decl;
3996
3997    int which = isStatic + (isInline << 1) - 1;
3998    Diag(FD->getLocation(), diagID) << which;
3999  }
4000
4001  QualType T = FD->getType();
4002  assert(T->isFunctionType() && "function decl is not of function type");
4003  const FunctionType* FT = T->getAs<FunctionType>();
4004
4005  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4006    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4007    TypeLoc TL = TSI->getTypeLoc();
4008    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4009                                          diag::err_main_returns_nonint);
4010    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4011      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4012                                        "int");
4013    }
4014    FD->setInvalidDecl(true);
4015  }
4016
4017  // Treat protoless main() as nullary.
4018  if (isa<FunctionNoProtoType>(FT)) return;
4019
4020  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4021  unsigned nparams = FTP->getNumArgs();
4022  assert(FD->getNumParams() == nparams);
4023
4024  bool HasExtraParameters = (nparams > 3);
4025
4026  // Darwin passes an undocumented fourth argument of type char**.  If
4027  // other platforms start sprouting these, the logic below will start
4028  // getting shifty.
4029  if (nparams == 4 &&
4030      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4031    HasExtraParameters = false;
4032
4033  if (HasExtraParameters) {
4034    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4035    FD->setInvalidDecl(true);
4036    nparams = 3;
4037  }
4038
4039  // FIXME: a lot of the following diagnostics would be improved
4040  // if we had some location information about types.
4041
4042  QualType CharPP =
4043    Context.getPointerType(Context.getPointerType(Context.CharTy));
4044  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4045
4046  for (unsigned i = 0; i < nparams; ++i) {
4047    QualType AT = FTP->getArgType(i);
4048
4049    bool mismatch = true;
4050
4051    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4052      mismatch = false;
4053    else if (Expected[i] == CharPP) {
4054      // As an extension, the following forms are okay:
4055      //   char const **
4056      //   char const * const *
4057      //   char * const *
4058
4059      QualifierCollector qs;
4060      const PointerType* PT;
4061      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4062          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4063          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4064        qs.removeConst();
4065        mismatch = !qs.empty();
4066      }
4067    }
4068
4069    if (mismatch) {
4070      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4071      // TODO: suggest replacing given type with expected type
4072      FD->setInvalidDecl(true);
4073    }
4074  }
4075
4076  if (nparams == 1 && !FD->isInvalidDecl()) {
4077    Diag(FD->getLocation(), diag::warn_main_one_arg);
4078  }
4079}
4080
4081bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4082  // FIXME: Need strict checking.  In C89, we need to check for
4083  // any assignment, increment, decrement, function-calls, or
4084  // commas outside of a sizeof.  In C99, it's the same list,
4085  // except that the aforementioned are allowed in unevaluated
4086  // expressions.  Everything else falls under the
4087  // "may accept other forms of constant expressions" exception.
4088  // (We never end up here for C++, so the constant expression
4089  // rules there don't matter.)
4090  if (Init->isConstantInitializer(Context, false))
4091    return false;
4092  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4093    << Init->getSourceRange();
4094  return true;
4095}
4096
4097void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4098  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4099}
4100
4101/// AddInitializerToDecl - Adds the initializer Init to the
4102/// declaration dcl. If DirectInit is true, this is C++ direct
4103/// initialization rather than copy initialization.
4104void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4105  // If there is no declaration, there was an error parsing it.  Just ignore
4106  // the initializer.
4107  if (RealDecl == 0)
4108    return;
4109
4110  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4111    // With declarators parsed the way they are, the parser cannot
4112    // distinguish between a normal initializer and a pure-specifier.
4113    // Thus this grotesque test.
4114    IntegerLiteral *IL;
4115    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4116        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4117      CheckPureMethod(Method, Init->getSourceRange());
4118    else {
4119      Diag(Method->getLocation(), diag::err_member_function_initialization)
4120        << Method->getDeclName() << Init->getSourceRange();
4121      Method->setInvalidDecl();
4122    }
4123    return;
4124  }
4125
4126  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4127  if (!VDecl) {
4128    if (getLangOptions().CPlusPlus &&
4129        RealDecl->getLexicalDeclContext()->isRecord() &&
4130        isa<NamedDecl>(RealDecl))
4131      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4132    else
4133      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4134    RealDecl->setInvalidDecl();
4135    return;
4136  }
4137
4138
4139
4140  // A definition must end up with a complete type, which means it must be
4141  // complete with the restriction that an array type might be completed by the
4142  // initializer; note that later code assumes this restriction.
4143  QualType BaseDeclType = VDecl->getType();
4144  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4145    BaseDeclType = Array->getElementType();
4146  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4147                          diag::err_typecheck_decl_incomplete_type)) {
4148    RealDecl->setInvalidDecl();
4149    return;
4150  }
4151
4152  // The variable can not have an abstract class type.
4153  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4154                             diag::err_abstract_type_in_decl,
4155                             AbstractVariableType))
4156    VDecl->setInvalidDecl();
4157
4158  const VarDecl *Def;
4159  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4160    Diag(VDecl->getLocation(), diag::err_redefinition)
4161      << VDecl->getDeclName();
4162    Diag(Def->getLocation(), diag::note_previous_definition);
4163    VDecl->setInvalidDecl();
4164    return;
4165  }
4166
4167  // C++ [class.static.data]p4
4168  //   If a static data member is of const integral or const
4169  //   enumeration type, its declaration in the class definition can
4170  //   specify a constant-initializer which shall be an integral
4171  //   constant expression (5.19). In that case, the member can appear
4172  //   in integral constant expressions. The member shall still be
4173  //   defined in a namespace scope if it is used in the program and the
4174  //   namespace scope definition shall not contain an initializer.
4175  //
4176  // We already performed a redefinition check above, but for static
4177  // data members we also need to check whether there was an in-class
4178  // declaration with an initializer.
4179  const VarDecl* PrevInit = 0;
4180  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4181    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4182    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4183    return;
4184  }
4185
4186  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4187    getCurFunction()->setHasBranchProtectedScope();
4188
4189  // Capture the variable that is being initialized and the style of
4190  // initialization.
4191  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4192
4193  // FIXME: Poor source location information.
4194  InitializationKind Kind
4195    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4196                                                   Init->getLocStart(),
4197                                                   Init->getLocEnd())
4198                : InitializationKind::CreateCopy(VDecl->getLocation(),
4199                                                 Init->getLocStart());
4200
4201  // Get the decls type and save a reference for later, since
4202  // CheckInitializerTypes may change it.
4203  QualType DclT = VDecl->getType(), SavT = DclT;
4204  if (VDecl->isBlockVarDecl()) {
4205    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4206      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4207      VDecl->setInvalidDecl();
4208    } else if (!VDecl->isInvalidDecl()) {
4209      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4210      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4211                                                MultiExprArg(*this, &Init, 1),
4212                                                &DclT);
4213      if (Result.isInvalid()) {
4214        VDecl->setInvalidDecl();
4215        return;
4216      }
4217
4218      Init = Result.takeAs<Expr>();
4219
4220      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4221      // Don't check invalid declarations to avoid emitting useless diagnostics.
4222      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4223        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4224          CheckForConstantInitializer(Init, DclT);
4225      }
4226    }
4227  } else if (VDecl->isStaticDataMember() &&
4228             VDecl->getLexicalDeclContext()->isRecord()) {
4229    // This is an in-class initialization for a static data member, e.g.,
4230    //
4231    // struct S {
4232    //   static const int value = 17;
4233    // };
4234
4235    // Try to perform the initialization regardless.
4236    if (!VDecl->isInvalidDecl()) {
4237      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4238      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4239                                          MultiExprArg(*this, &Init, 1),
4240                                          &DclT);
4241      if (Result.isInvalid()) {
4242        VDecl->setInvalidDecl();
4243        return;
4244      }
4245
4246      Init = Result.takeAs<Expr>();
4247    }
4248
4249    // C++ [class.mem]p4:
4250    //   A member-declarator can contain a constant-initializer only
4251    //   if it declares a static member (9.4) of const integral or
4252    //   const enumeration type, see 9.4.2.
4253    QualType T = VDecl->getType();
4254
4255    // Do nothing on dependent types.
4256    if (T->isDependentType()) {
4257
4258    // Require constness.
4259    } else if (!T.isConstQualified()) {
4260      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4261        << Init->getSourceRange();
4262      VDecl->setInvalidDecl();
4263
4264    // We allow integer constant expressions in all cases.
4265    } else if (T->isIntegralOrEnumerationType()) {
4266      if (!Init->isValueDependent()) {
4267        // Check whether the expression is a constant expression.
4268        llvm::APSInt Value;
4269        SourceLocation Loc;
4270        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4271          Diag(Loc, diag::err_in_class_initializer_non_constant)
4272            << Init->getSourceRange();
4273          VDecl->setInvalidDecl();
4274        }
4275      }
4276
4277    // We allow floating-point constants as an extension in C++03, and
4278    // C++0x has far more complicated rules that we don't really
4279    // implement fully.
4280    } else {
4281      bool Allowed = false;
4282      if (getLangOptions().CPlusPlus0x) {
4283        Allowed = T->isLiteralType();
4284      } else if (T->isFloatingType()) { // also permits complex, which is ok
4285        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4286          << T << Init->getSourceRange();
4287        Allowed = true;
4288      }
4289
4290      if (!Allowed) {
4291        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4292          << T << Init->getSourceRange();
4293        VDecl->setInvalidDecl();
4294
4295      // TODO: there are probably expressions that pass here that shouldn't.
4296      } else if (!Init->isValueDependent() &&
4297                 !Init->isConstantInitializer(Context, false)) {
4298        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4299          << Init->getSourceRange();
4300        VDecl->setInvalidDecl();
4301      }
4302    }
4303  } else if (VDecl->isFileVarDecl()) {
4304    if (VDecl->getStorageClass() == SC_Extern &&
4305        (!getLangOptions().CPlusPlus ||
4306         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4307      Diag(VDecl->getLocation(), diag::warn_extern_init);
4308    if (!VDecl->isInvalidDecl()) {
4309      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4310      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4311                                                MultiExprArg(*this, &Init, 1),
4312                                                &DclT);
4313      if (Result.isInvalid()) {
4314        VDecl->setInvalidDecl();
4315        return;
4316      }
4317
4318      Init = Result.takeAs<Expr>();
4319    }
4320
4321    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4322    // Don't check invalid declarations to avoid emitting useless diagnostics.
4323    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4324      // C99 6.7.8p4. All file scoped initializers need to be constant.
4325      CheckForConstantInitializer(Init, DclT);
4326    }
4327  }
4328  // If the type changed, it means we had an incomplete type that was
4329  // completed by the initializer. For example:
4330  //   int ary[] = { 1, 3, 5 };
4331  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4332  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4333    VDecl->setType(DclT);
4334    Init->setType(DclT);
4335  }
4336
4337  Init = MaybeCreateCXXExprWithTemporaries(Init);
4338  // Attach the initializer to the decl.
4339  VDecl->setInit(Init);
4340
4341  if (getLangOptions().CPlusPlus) {
4342    if (!VDecl->isInvalidDecl() &&
4343        !VDecl->getDeclContext()->isDependentContext() &&
4344        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4345        !Init->isConstantInitializer(Context,
4346                                     VDecl->getType()->isReferenceType()))
4347      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4348        << Init->getSourceRange();
4349
4350    // Make sure we mark the destructor as used if necessary.
4351    QualType InitType = VDecl->getType();
4352    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4353      InitType = Context.getBaseElementType(Array);
4354    if (const RecordType *Record = InitType->getAs<RecordType>())
4355      FinalizeVarWithDestructor(VDecl, Record);
4356  }
4357
4358  return;
4359}
4360
4361/// ActOnInitializerError - Given that there was an error parsing an
4362/// initializer for the given declaration, try to return to some form
4363/// of sanity.
4364void Sema::ActOnInitializerError(Decl *D) {
4365  // Our main concern here is re-establishing invariants like "a
4366  // variable's type is either dependent or complete".
4367  if (!D || D->isInvalidDecl()) return;
4368
4369  VarDecl *VD = dyn_cast<VarDecl>(D);
4370  if (!VD) return;
4371
4372  QualType Ty = VD->getType();
4373  if (Ty->isDependentType()) return;
4374
4375  // Require a complete type.
4376  if (RequireCompleteType(VD->getLocation(),
4377                          Context.getBaseElementType(Ty),
4378                          diag::err_typecheck_decl_incomplete_type)) {
4379    VD->setInvalidDecl();
4380    return;
4381  }
4382
4383  // Require an abstract type.
4384  if (RequireNonAbstractType(VD->getLocation(), Ty,
4385                             diag::err_abstract_type_in_decl,
4386                             AbstractVariableType)) {
4387    VD->setInvalidDecl();
4388    return;
4389  }
4390
4391  // Don't bother complaining about constructors or destructors,
4392  // though.
4393}
4394
4395void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4396                                  bool TypeContainsUndeducedAuto) {
4397  // If there is no declaration, there was an error parsing it. Just ignore it.
4398  if (RealDecl == 0)
4399    return;
4400
4401  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4402    QualType Type = Var->getType();
4403
4404    // C++0x [dcl.spec.auto]p3
4405    if (TypeContainsUndeducedAuto) {
4406      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4407        << Var->getDeclName() << Type;
4408      Var->setInvalidDecl();
4409      return;
4410    }
4411
4412    switch (Var->isThisDeclarationADefinition()) {
4413    case VarDecl::Definition:
4414      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4415        break;
4416
4417      // We have an out-of-line definition of a static data member
4418      // that has an in-class initializer, so we type-check this like
4419      // a declaration.
4420      //
4421      // Fall through
4422
4423    case VarDecl::DeclarationOnly:
4424      // It's only a declaration.
4425
4426      // Block scope. C99 6.7p7: If an identifier for an object is
4427      // declared with no linkage (C99 6.2.2p6), the type for the
4428      // object shall be complete.
4429      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4430          !Var->getLinkage() && !Var->isInvalidDecl() &&
4431          RequireCompleteType(Var->getLocation(), Type,
4432                              diag::err_typecheck_decl_incomplete_type))
4433        Var->setInvalidDecl();
4434
4435      // Make sure that the type is not abstract.
4436      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4437          RequireNonAbstractType(Var->getLocation(), Type,
4438                                 diag::err_abstract_type_in_decl,
4439                                 AbstractVariableType))
4440        Var->setInvalidDecl();
4441      return;
4442
4443    case VarDecl::TentativeDefinition:
4444      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4445      // object that has file scope without an initializer, and without a
4446      // storage-class specifier or with the storage-class specifier "static",
4447      // constitutes a tentative definition. Note: A tentative definition with
4448      // external linkage is valid (C99 6.2.2p5).
4449      if (!Var->isInvalidDecl()) {
4450        if (const IncompleteArrayType *ArrayT
4451                                    = Context.getAsIncompleteArrayType(Type)) {
4452          if (RequireCompleteType(Var->getLocation(),
4453                                  ArrayT->getElementType(),
4454                                  diag::err_illegal_decl_array_incomplete_type))
4455            Var->setInvalidDecl();
4456        } else if (Var->getStorageClass() == SC_Static) {
4457          // C99 6.9.2p3: If the declaration of an identifier for an object is
4458          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4459          // declared type shall not be an incomplete type.
4460          // NOTE: code such as the following
4461          //     static struct s;
4462          //     struct s { int a; };
4463          // is accepted by gcc. Hence here we issue a warning instead of
4464          // an error and we do not invalidate the static declaration.
4465          // NOTE: to avoid multiple warnings, only check the first declaration.
4466          if (Var->getPreviousDeclaration() == 0)
4467            RequireCompleteType(Var->getLocation(), Type,
4468                                diag::ext_typecheck_decl_incomplete_type);
4469        }
4470      }
4471
4472      // Record the tentative definition; we're done.
4473      if (!Var->isInvalidDecl())
4474        TentativeDefinitions.push_back(Var);
4475      return;
4476    }
4477
4478    // Provide a specific diagnostic for uninitialized variable
4479    // definitions with incomplete array type.
4480    if (Type->isIncompleteArrayType()) {
4481      Diag(Var->getLocation(),
4482           diag::err_typecheck_incomplete_array_needs_initializer);
4483      Var->setInvalidDecl();
4484      return;
4485    }
4486
4487    // Provide a specific diagnostic for uninitialized variable
4488    // definitions with reference type.
4489    if (Type->isReferenceType()) {
4490      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4491        << Var->getDeclName()
4492        << SourceRange(Var->getLocation(), Var->getLocation());
4493      Var->setInvalidDecl();
4494      return;
4495    }
4496
4497    // Do not attempt to type-check the default initializer for a
4498    // variable with dependent type.
4499    if (Type->isDependentType())
4500      return;
4501
4502    if (Var->isInvalidDecl())
4503      return;
4504
4505    if (RequireCompleteType(Var->getLocation(),
4506                            Context.getBaseElementType(Type),
4507                            diag::err_typecheck_decl_incomplete_type)) {
4508      Var->setInvalidDecl();
4509      return;
4510    }
4511
4512    // The variable can not have an abstract class type.
4513    if (RequireNonAbstractType(Var->getLocation(), Type,
4514                               diag::err_abstract_type_in_decl,
4515                               AbstractVariableType)) {
4516      Var->setInvalidDecl();
4517      return;
4518    }
4519
4520    const RecordType *Record
4521      = Context.getBaseElementType(Type)->getAs<RecordType>();
4522    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4523        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4524      // C++03 [dcl.init]p9:
4525      //   If no initializer is specified for an object, and the
4526      //   object is of (possibly cv-qualified) non-POD class type (or
4527      //   array thereof), the object shall be default-initialized; if
4528      //   the object is of const-qualified type, the underlying class
4529      //   type shall have a user-declared default
4530      //   constructor. Otherwise, if no initializer is specified for
4531      //   a non- static object, the object and its subobjects, if
4532      //   any, have an indeterminate initial value); if the object
4533      //   or any of its subobjects are of const-qualified type, the
4534      //   program is ill-formed.
4535      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4536    } else {
4537      // Check for jumps past the implicit initializer.  C++0x
4538      // clarifies that this applies to a "variable with automatic
4539      // storage duration", not a "local variable".
4540      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4541        getCurFunction()->setHasBranchProtectedScope();
4542
4543      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4544      InitializationKind Kind
4545        = InitializationKind::CreateDefault(Var->getLocation());
4546
4547      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4548      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4549                                        MultiExprArg(*this, 0, 0));
4550      if (Init.isInvalid())
4551        Var->setInvalidDecl();
4552      else if (Init.get()) {
4553        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4554
4555        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4556            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4557            !Var->getDeclContext()->isDependentContext() &&
4558            !Var->getInit()->isConstantInitializer(Context, false))
4559          Diag(Var->getLocation(), diag::warn_global_constructor);
4560      }
4561    }
4562
4563    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4564      FinalizeVarWithDestructor(Var, Record);
4565  }
4566}
4567
4568Sema::DeclGroupPtrTy
4569Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4570                              Decl **Group, unsigned NumDecls) {
4571  llvm::SmallVector<Decl*, 8> Decls;
4572
4573  if (DS.isTypeSpecOwned())
4574    Decls.push_back(DS.getRepAsDecl());
4575
4576  for (unsigned i = 0; i != NumDecls; ++i)
4577    if (Decl *D = Group[i])
4578      Decls.push_back(D);
4579
4580  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4581                                                   Decls.data(), Decls.size()));
4582}
4583
4584
4585/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4586/// to introduce parameters into function prototype scope.
4587Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4588  const DeclSpec &DS = D.getDeclSpec();
4589
4590  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4591  VarDecl::StorageClass StorageClass = SC_None;
4592  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4593  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4594    StorageClass = SC_Register;
4595    StorageClassAsWritten = SC_Register;
4596  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4597    Diag(DS.getStorageClassSpecLoc(),
4598         diag::err_invalid_storage_class_in_func_decl);
4599    D.getMutableDeclSpec().ClearStorageClassSpecs();
4600  }
4601
4602  if (D.getDeclSpec().isThreadSpecified())
4603    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4604
4605  DiagnoseFunctionSpecifiers(D);
4606
4607  // Check that there are no default arguments inside the type of this
4608  // parameter (C++ only).
4609  if (getLangOptions().CPlusPlus)
4610    CheckExtraCXXDefaultArguments(D);
4611
4612  TagDecl *OwnedDecl = 0;
4613  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4614  QualType parmDeclType = TInfo->getType();
4615
4616  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4617    // C++ [dcl.fct]p6:
4618    //   Types shall not be defined in return or parameter types.
4619    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4620      << Context.getTypeDeclType(OwnedDecl);
4621  }
4622
4623  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4624  IdentifierInfo *II = D.getIdentifier();
4625  if (II) {
4626    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4627                   ForRedeclaration);
4628    LookupName(R, S);
4629    if (R.isSingleResult()) {
4630      NamedDecl *PrevDecl = R.getFoundDecl();
4631      if (PrevDecl->isTemplateParameter()) {
4632        // Maybe we will complain about the shadowed template parameter.
4633        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4634        // Just pretend that we didn't see the previous declaration.
4635        PrevDecl = 0;
4636      } else if (S->isDeclScope(PrevDecl)) {
4637        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4638        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4639
4640        // Recover by removing the name
4641        II = 0;
4642        D.SetIdentifier(0, D.getIdentifierLoc());
4643        D.setInvalidType(true);
4644      }
4645    }
4646  }
4647
4648  // Temporarily put parameter variables in the translation unit, not
4649  // the enclosing context.  This prevents them from accidentally
4650  // looking like class members in C++.
4651  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4652                                    TInfo, parmDeclType, II,
4653                                    D.getIdentifierLoc(),
4654                                    StorageClass, StorageClassAsWritten);
4655
4656  if (D.isInvalidType())
4657    New->setInvalidDecl();
4658
4659  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4660  if (D.getCXXScopeSpec().isSet()) {
4661    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4662      << D.getCXXScopeSpec().getRange();
4663    New->setInvalidDecl();
4664  }
4665
4666  // Add the parameter declaration into this scope.
4667  S->AddDecl(New);
4668  if (II)
4669    IdResolver.AddDecl(New);
4670
4671  ProcessDeclAttributes(S, New, D);
4672
4673  if (New->hasAttr<BlocksAttr>()) {
4674    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4675  }
4676  return New;
4677}
4678
4679/// \brief Synthesizes a variable for a parameter arising from a
4680/// typedef.
4681ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4682                                              SourceLocation Loc,
4683                                              QualType T) {
4684  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4685                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4686                                           SC_None, SC_None, 0);
4687  Param->setImplicit();
4688  return Param;
4689}
4690
4691void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4692                                    ParmVarDecl * const *ParamEnd) {
4693  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4694        Diagnostic::Ignored)
4695    return;
4696
4697  // Don't diagnose unused-parameter errors in template instantiations; we
4698  // will already have done so in the template itself.
4699  if (!ActiveTemplateInstantiations.empty())
4700    return;
4701
4702  for (; Param != ParamEnd; ++Param) {
4703    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4704        !(*Param)->hasAttr<UnusedAttr>()) {
4705      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4706        << (*Param)->getDeclName();
4707    }
4708  }
4709}
4710
4711ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4712                                  TypeSourceInfo *TSInfo, QualType T,
4713                                  IdentifierInfo *Name,
4714                                  SourceLocation NameLoc,
4715                                  VarDecl::StorageClass StorageClass,
4716                                  VarDecl::StorageClass StorageClassAsWritten) {
4717  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4718                                         adjustParameterType(T), TSInfo,
4719                                         StorageClass, StorageClassAsWritten,
4720                                         0);
4721
4722  // Parameters can not be abstract class types.
4723  // For record types, this is done by the AbstractClassUsageDiagnoser once
4724  // the class has been completely parsed.
4725  if (!CurContext->isRecord() &&
4726      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4727                             AbstractParamType))
4728    New->setInvalidDecl();
4729
4730  // Parameter declarators cannot be interface types. All ObjC objects are
4731  // passed by reference.
4732  if (T->isObjCObjectType()) {
4733    Diag(NameLoc,
4734         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4735    New->setInvalidDecl();
4736  }
4737
4738  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4739  // duration shall not be qualified by an address-space qualifier."
4740  // Since all parameters have automatic store duration, they can not have
4741  // an address space.
4742  if (T.getAddressSpace() != 0) {
4743    Diag(NameLoc, diag::err_arg_with_address_space);
4744    New->setInvalidDecl();
4745  }
4746
4747  return New;
4748}
4749
4750void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4751                                           SourceLocation LocAfterDecls) {
4752  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4753         "Not a function declarator!");
4754  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4755
4756  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4757  // for a K&R function.
4758  if (!FTI.hasPrototype) {
4759    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4760      --i;
4761      if (FTI.ArgInfo[i].Param == 0) {
4762        llvm::SmallString<256> Code;
4763        llvm::raw_svector_ostream(Code) << "  int "
4764                                        << FTI.ArgInfo[i].Ident->getName()
4765                                        << ";\n";
4766        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4767          << FTI.ArgInfo[i].Ident
4768          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4769
4770        // Implicitly declare the argument as type 'int' for lack of a better
4771        // type.
4772        DeclSpec DS;
4773        const char* PrevSpec; // unused
4774        unsigned DiagID; // unused
4775        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4776                           PrevSpec, DiagID);
4777        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4778        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4779        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4780      }
4781    }
4782  }
4783}
4784
4785Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4786                                         Declarator &D) {
4787  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4788  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4789         "Not a function declarator!");
4790  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4791
4792  if (FTI.hasPrototype) {
4793    // FIXME: Diagnose arguments without names in C.
4794  }
4795
4796  Scope *ParentScope = FnBodyScope->getParent();
4797
4798  Decl *DP = HandleDeclarator(ParentScope, D,
4799                              MultiTemplateParamsArg(*this),
4800                              /*IsFunctionDefinition=*/true);
4801  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4802}
4803
4804static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4805  // Don't warn about invalid declarations.
4806  if (FD->isInvalidDecl())
4807    return false;
4808
4809  // Or declarations that aren't global.
4810  if (!FD->isGlobal())
4811    return false;
4812
4813  // Don't warn about C++ member functions.
4814  if (isa<CXXMethodDecl>(FD))
4815    return false;
4816
4817  // Don't warn about 'main'.
4818  if (FD->isMain())
4819    return false;
4820
4821  // Don't warn about inline functions.
4822  if (FD->isInlineSpecified())
4823    return false;
4824
4825  // Don't warn about function templates.
4826  if (FD->getDescribedFunctionTemplate())
4827    return false;
4828
4829  // Don't warn about function template specializations.
4830  if (FD->isFunctionTemplateSpecialization())
4831    return false;
4832
4833  bool MissingPrototype = true;
4834  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4835       Prev; Prev = Prev->getPreviousDeclaration()) {
4836    // Ignore any declarations that occur in function or method
4837    // scope, because they aren't visible from the header.
4838    if (Prev->getDeclContext()->isFunctionOrMethod())
4839      continue;
4840
4841    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4842    break;
4843  }
4844
4845  return MissingPrototype;
4846}
4847
4848Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4849  // Clear the last template instantiation error context.
4850  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4851
4852  if (!D)
4853    return D;
4854  FunctionDecl *FD = 0;
4855
4856  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4857    FD = FunTmpl->getTemplatedDecl();
4858  else
4859    FD = cast<FunctionDecl>(D);
4860
4861  // Enter a new function scope
4862  PushFunctionScope();
4863
4864  // See if this is a redefinition.
4865  // But don't complain if we're in GNU89 mode and the previous definition
4866  // was an extern inline function.
4867  const FunctionDecl *Definition;
4868  if (FD->hasBody(Definition) &&
4869      !canRedefineFunction(Definition, getLangOptions())) {
4870    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4871        Definition->getStorageClass() == SC_Extern)
4872      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4873        << FD->getDeclName() << getLangOptions().CPlusPlus;
4874    else
4875      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4876    Diag(Definition->getLocation(), diag::note_previous_definition);
4877  }
4878
4879  // Builtin functions cannot be defined.
4880  if (unsigned BuiltinID = FD->getBuiltinID()) {
4881    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4882      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4883      FD->setInvalidDecl();
4884    }
4885  }
4886
4887  // The return type of a function definition must be complete
4888  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4889  QualType ResultType = FD->getResultType();
4890  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4891      !FD->isInvalidDecl() &&
4892      RequireCompleteType(FD->getLocation(), ResultType,
4893                          diag::err_func_def_incomplete_result))
4894    FD->setInvalidDecl();
4895
4896  // GNU warning -Wmissing-prototypes:
4897  //   Warn if a global function is defined without a previous
4898  //   prototype declaration. This warning is issued even if the
4899  //   definition itself provides a prototype. The aim is to detect
4900  //   global functions that fail to be declared in header files.
4901  if (ShouldWarnAboutMissingPrototype(FD))
4902    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4903
4904  if (FnBodyScope)
4905    PushDeclContext(FnBodyScope, FD);
4906
4907  // Check the validity of our function parameters
4908  CheckParmsForFunctionDef(FD);
4909
4910  bool ShouldCheckShadow =
4911    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4912
4913  // Introduce our parameters into the function scope
4914  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4915    ParmVarDecl *Param = FD->getParamDecl(p);
4916    Param->setOwningFunction(FD);
4917
4918    // If this has an identifier, add it to the scope stack.
4919    if (Param->getIdentifier() && FnBodyScope) {
4920      if (ShouldCheckShadow)
4921        CheckShadow(FnBodyScope, Param);
4922
4923      PushOnScopeChains(Param, FnBodyScope);
4924    }
4925  }
4926
4927  // Checking attributes of current function definition
4928  // dllimport attribute.
4929  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4930  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4931    // dllimport attribute cannot be directly applied to definition.
4932    if (!DA->isInherited()) {
4933      Diag(FD->getLocation(),
4934           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4935        << "dllimport";
4936      FD->setInvalidDecl();
4937      return FD;
4938    }
4939
4940    // Visual C++ appears to not think this is an issue, so only issue
4941    // a warning when Microsoft extensions are disabled.
4942    if (!LangOpts.Microsoft) {
4943      // If a symbol previously declared dllimport is later defined, the
4944      // attribute is ignored in subsequent references, and a warning is
4945      // emitted.
4946      Diag(FD->getLocation(),
4947           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4948        << FD->getName() << "dllimport";
4949    }
4950  }
4951  return FD;
4952}
4953
4954/// \brief Given the set of return statements within a function body,
4955/// compute the variables that are subject to the named return value
4956/// optimization.
4957///
4958/// Each of the variables that is subject to the named return value
4959/// optimization will be marked as NRVO variables in the AST, and any
4960/// return statement that has a marked NRVO variable as its NRVO candidate can
4961/// use the named return value optimization.
4962///
4963/// This function applies a very simplistic algorithm for NRVO: if every return
4964/// statement in the function has the same NRVO candidate, that candidate is
4965/// the NRVO variable.
4966///
4967/// FIXME: Employ a smarter algorithm that accounts for multiple return
4968/// statements and the lifetimes of the NRVO candidates. We should be able to
4969/// find a maximal set of NRVO variables.
4970static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4971  ReturnStmt **Returns = Scope->Returns.data();
4972
4973  const VarDecl *NRVOCandidate = 0;
4974  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4975    if (!Returns[I]->getNRVOCandidate())
4976      return;
4977
4978    if (!NRVOCandidate)
4979      NRVOCandidate = Returns[I]->getNRVOCandidate();
4980    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4981      return;
4982  }
4983
4984  if (NRVOCandidate)
4985    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4986}
4987
4988Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4989  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4990}
4991
4992Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4993                                    bool IsInstantiation) {
4994  FunctionDecl *FD = 0;
4995  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4996  if (FunTmpl)
4997    FD = FunTmpl->getTemplatedDecl();
4998  else
4999    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5000
5001  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5002
5003  if (FD) {
5004    FD->setBody(Body);
5005    if (FD->isMain()) {
5006      // C and C++ allow for main to automagically return 0.
5007      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5008      FD->setHasImplicitReturnZero(true);
5009      WP.disableCheckFallThrough();
5010    }
5011
5012    if (!FD->isInvalidDecl()) {
5013      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5014
5015      // If this is a constructor, we need a vtable.
5016      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5017        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5018
5019      ComputeNRVO(Body, getCurFunction());
5020    }
5021
5022    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5023  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5024    assert(MD == getCurMethodDecl() && "Method parsing confused");
5025    MD->setBody(Body);
5026    MD->setEndLoc(Body->getLocEnd());
5027    if (!MD->isInvalidDecl())
5028      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5029  } else {
5030    return 0;
5031  }
5032
5033  // Verify and clean out per-function state.
5034
5035  // Check goto/label use.
5036  FunctionScopeInfo *CurFn = getCurFunction();
5037  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5038         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5039    LabelStmt *L = I->second;
5040
5041    // Verify that we have no forward references left.  If so, there was a goto
5042    // or address of a label taken, but no definition of it.  Label fwd
5043    // definitions are indicated with a null substmt.
5044    if (L->getSubStmt() != 0) {
5045      if (!L->isUsed())
5046        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5047      continue;
5048    }
5049
5050    // Emit error.
5051    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5052
5053    // At this point, we have gotos that use the bogus label.  Stitch it into
5054    // the function body so that they aren't leaked and that the AST is well
5055    // formed.
5056    if (Body == 0) {
5057      // The whole function wasn't parsed correctly.
5058      continue;
5059    }
5060
5061    // Otherwise, the body is valid: we want to stitch the label decl into the
5062    // function somewhere so that it is properly owned and so that the goto
5063    // has a valid target.  Do this by creating a new compound stmt with the
5064    // label in it.
5065
5066    // Give the label a sub-statement.
5067    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5068
5069    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5070                               cast<CXXTryStmt>(Body)->getTryBlock() :
5071                               cast<CompoundStmt>(Body);
5072    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5073                                          Compound->body_end());
5074    Elements.push_back(L);
5075    Compound->setStmts(Context, Elements.data(), Elements.size());
5076  }
5077
5078  if (Body) {
5079    // C++ constructors that have function-try-blocks can't have return
5080    // statements in the handlers of that block. (C++ [except.handle]p14)
5081    // Verify this.
5082    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5083      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5084
5085    // Verify that that gotos and switch cases don't jump into scopes illegally.
5086    // Verify that that gotos and switch cases don't jump into scopes illegally.
5087    if (getCurFunction()->NeedsScopeChecking() &&
5088        !dcl->isInvalidDecl() &&
5089        !hasAnyErrorsInThisFunction())
5090      DiagnoseInvalidJumps(Body);
5091
5092    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5093      if (!Destructor->getParent()->isDependentType())
5094        CheckDestructor(Destructor);
5095
5096      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5097                                             Destructor->getParent());
5098    }
5099
5100    // If any errors have occurred, clear out any temporaries that may have
5101    // been leftover. This ensures that these temporaries won't be picked up for
5102    // deletion in some later function.
5103    if (PP.getDiagnostics().hasErrorOccurred())
5104      ExprTemporaries.clear();
5105    else if (!isa<FunctionTemplateDecl>(dcl)) {
5106      // Since the body is valid, issue any analysis-based warnings that are
5107      // enabled.
5108      QualType ResultType;
5109      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5110        AnalysisWarnings.IssueWarnings(WP, FD);
5111      } else {
5112        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5113        AnalysisWarnings.IssueWarnings(WP, MD);
5114      }
5115    }
5116
5117    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5118  }
5119
5120  if (!IsInstantiation)
5121    PopDeclContext();
5122
5123  PopFunctionOrBlockScope();
5124
5125  // If any errors have occurred, clear out any temporaries that may have
5126  // been leftover. This ensures that these temporaries won't be picked up for
5127  // deletion in some later function.
5128  if (getDiagnostics().hasErrorOccurred())
5129    ExprTemporaries.clear();
5130
5131  return dcl;
5132}
5133
5134/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5135/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5136NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5137                                          IdentifierInfo &II, Scope *S) {
5138  // Before we produce a declaration for an implicitly defined
5139  // function, see whether there was a locally-scoped declaration of
5140  // this name as a function or variable. If so, use that
5141  // (non-visible) declaration, and complain about it.
5142  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5143    = LocallyScopedExternalDecls.find(&II);
5144  if (Pos != LocallyScopedExternalDecls.end()) {
5145    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5146    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5147    return Pos->second;
5148  }
5149
5150  // Extension in C99.  Legal in C90, but warn about it.
5151  if (II.getName().startswith("__builtin_"))
5152    Diag(Loc, diag::warn_builtin_unknown) << &II;
5153  else if (getLangOptions().C99)
5154    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5155  else
5156    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5157
5158  // Set a Declarator for the implicit definition: int foo();
5159  const char *Dummy;
5160  DeclSpec DS;
5161  unsigned DiagID;
5162  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5163  Error = Error; // Silence warning.
5164  assert(!Error && "Error setting up implicit decl!");
5165  Declarator D(DS, Declarator::BlockContext);
5166  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5167                                             0, 0, false, SourceLocation(),
5168                                             false, 0,0,0, Loc, Loc, D),
5169                SourceLocation());
5170  D.SetIdentifier(&II, Loc);
5171
5172  // Insert this function into translation-unit scope.
5173
5174  DeclContext *PrevDC = CurContext;
5175  CurContext = Context.getTranslationUnitDecl();
5176
5177  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5178  FD->setImplicit();
5179
5180  CurContext = PrevDC;
5181
5182  AddKnownFunctionAttributes(FD);
5183
5184  return FD;
5185}
5186
5187/// \brief Adds any function attributes that we know a priori based on
5188/// the declaration of this function.
5189///
5190/// These attributes can apply both to implicitly-declared builtins
5191/// (like __builtin___printf_chk) or to library-declared functions
5192/// like NSLog or printf.
5193void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5194  if (FD->isInvalidDecl())
5195    return;
5196
5197  // If this is a built-in function, map its builtin attributes to
5198  // actual attributes.
5199  if (unsigned BuiltinID = FD->getBuiltinID()) {
5200    // Handle printf-formatting attributes.
5201    unsigned FormatIdx;
5202    bool HasVAListArg;
5203    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5204      if (!FD->getAttr<FormatAttr>())
5205        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5206                                                "printf", FormatIdx+1,
5207                                               HasVAListArg ? 0 : FormatIdx+2));
5208    }
5209    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5210                                             HasVAListArg)) {
5211     if (!FD->getAttr<FormatAttr>())
5212       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5213                                              "scanf", FormatIdx+1,
5214                                              HasVAListArg ? 0 : FormatIdx+2));
5215    }
5216
5217    // Mark const if we don't care about errno and that is the only
5218    // thing preventing the function from being const. This allows
5219    // IRgen to use LLVM intrinsics for such functions.
5220    if (!getLangOptions().MathErrno &&
5221        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5222      if (!FD->getAttr<ConstAttr>())
5223        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5224    }
5225
5226    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5227      FD->setType(Context.getNoReturnType(FD->getType()));
5228    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5229      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5230    if (Context.BuiltinInfo.isConst(BuiltinID))
5231      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5232  }
5233
5234  IdentifierInfo *Name = FD->getIdentifier();
5235  if (!Name)
5236    return;
5237  if ((!getLangOptions().CPlusPlus &&
5238       FD->getDeclContext()->isTranslationUnit()) ||
5239      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5240       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5241       LinkageSpecDecl::lang_c)) {
5242    // Okay: this could be a libc/libm/Objective-C function we know
5243    // about.
5244  } else
5245    return;
5246
5247  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5248    // FIXME: NSLog and NSLogv should be target specific
5249    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5250      // FIXME: We known better than our headers.
5251      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5252    } else
5253      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5254                                             "printf", 1,
5255                                             Name->isStr("NSLogv") ? 0 : 2));
5256  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5257    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5258    // target-specific builtins, perhaps?
5259    if (!FD->getAttr<FormatAttr>())
5260      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5261                                             "printf", 2,
5262                                             Name->isStr("vasprintf") ? 0 : 3));
5263  }
5264}
5265
5266TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5267                                    TypeSourceInfo *TInfo) {
5268  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5269  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5270
5271  if (!TInfo) {
5272    assert(D.isInvalidType() && "no declarator info for valid type");
5273    TInfo = Context.getTrivialTypeSourceInfo(T);
5274  }
5275
5276  // Scope manipulation handled by caller.
5277  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5278                                           D.getIdentifierLoc(),
5279                                           D.getIdentifier(),
5280                                           TInfo);
5281
5282  if (const TagType *TT = T->getAs<TagType>()) {
5283    TagDecl *TD = TT->getDecl();
5284
5285    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5286    // keep track of the TypedefDecl.
5287    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5288      TD->setTypedefForAnonDecl(NewTD);
5289  }
5290
5291  if (D.isInvalidType())
5292    NewTD->setInvalidDecl();
5293  return NewTD;
5294}
5295
5296
5297/// \brief Determine whether a tag with a given kind is acceptable
5298/// as a redeclaration of the given tag declaration.
5299///
5300/// \returns true if the new tag kind is acceptable, false otherwise.
5301bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5302                                        TagTypeKind NewTag,
5303                                        SourceLocation NewTagLoc,
5304                                        const IdentifierInfo &Name) {
5305  // C++ [dcl.type.elab]p3:
5306  //   The class-key or enum keyword present in the
5307  //   elaborated-type-specifier shall agree in kind with the
5308  //   declaration to which the name in the elaborated-type-specifier
5309  //   refers. This rule also applies to the form of
5310  //   elaborated-type-specifier that declares a class-name or
5311  //   friend class since it can be construed as referring to the
5312  //   definition of the class. Thus, in any
5313  //   elaborated-type-specifier, the enum keyword shall be used to
5314  //   refer to an enumeration (7.2), the union class-key shall be
5315  //   used to refer to a union (clause 9), and either the class or
5316  //   struct class-key shall be used to refer to a class (clause 9)
5317  //   declared using the class or struct class-key.
5318  TagTypeKind OldTag = Previous->getTagKind();
5319  if (OldTag == NewTag)
5320    return true;
5321
5322  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5323      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5324    // Warn about the struct/class tag mismatch.
5325    bool isTemplate = false;
5326    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5327      isTemplate = Record->getDescribedClassTemplate();
5328
5329    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5330      << (NewTag == TTK_Class)
5331      << isTemplate << &Name
5332      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5333                              OldTag == TTK_Class? "class" : "struct");
5334    Diag(Previous->getLocation(), diag::note_previous_use);
5335    return true;
5336  }
5337  return false;
5338}
5339
5340/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5341/// former case, Name will be non-null.  In the later case, Name will be null.
5342/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5343/// reference/declaration/definition of a tag.
5344Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5345                     SourceLocation KWLoc, CXXScopeSpec &SS,
5346                     IdentifierInfo *Name, SourceLocation NameLoc,
5347                     AttributeList *Attr, AccessSpecifier AS,
5348                     MultiTemplateParamsArg TemplateParameterLists,
5349                     bool &OwnedDecl, bool &IsDependent) {
5350  // If this is not a definition, it must have a name.
5351  assert((Name != 0 || TUK == TUK_Definition) &&
5352         "Nameless record must be a definition!");
5353
5354  OwnedDecl = false;
5355  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5356
5357  // FIXME: Check explicit specializations more carefully.
5358  bool isExplicitSpecialization = false;
5359  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5360  bool Invalid = false;
5361  if (TUK != TUK_Reference) {
5362    if (TemplateParameterList *TemplateParams
5363          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5364                        (TemplateParameterList**)TemplateParameterLists.get(),
5365                                              TemplateParameterLists.size(),
5366                                                    TUK == TUK_Friend,
5367                                                    isExplicitSpecialization,
5368                                                    Invalid)) {
5369      // All but one template parameter lists have been matching.
5370      --NumMatchedTemplateParamLists;
5371
5372      if (TemplateParams->size() > 0) {
5373        // This is a declaration or definition of a class template (which may
5374        // be a member of another template).
5375        if (Invalid)
5376          return 0;
5377
5378        OwnedDecl = false;
5379        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5380                                               SS, Name, NameLoc, Attr,
5381                                               TemplateParams,
5382                                               AS);
5383        TemplateParameterLists.release();
5384        return Result.get();
5385      } else {
5386        // The "template<>" header is extraneous.
5387        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5388          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5389        isExplicitSpecialization = true;
5390      }
5391    }
5392  }
5393
5394  DeclContext *SearchDC = CurContext;
5395  DeclContext *DC = CurContext;
5396  bool isStdBadAlloc = false;
5397
5398  RedeclarationKind Redecl = ForRedeclaration;
5399  if (TUK == TUK_Friend || TUK == TUK_Reference)
5400    Redecl = NotForRedeclaration;
5401
5402  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5403
5404  if (Name && SS.isNotEmpty()) {
5405    // We have a nested-name tag ('struct foo::bar').
5406
5407    // Check for invalid 'foo::'.
5408    if (SS.isInvalid()) {
5409      Name = 0;
5410      goto CreateNewDecl;
5411    }
5412
5413    // If this is a friend or a reference to a class in a dependent
5414    // context, don't try to make a decl for it.
5415    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5416      DC = computeDeclContext(SS, false);
5417      if (!DC) {
5418        IsDependent = true;
5419        return 0;
5420      }
5421    } else {
5422      DC = computeDeclContext(SS, true);
5423      if (!DC) {
5424        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5425          << SS.getRange();
5426        return 0;
5427      }
5428    }
5429
5430    if (RequireCompleteDeclContext(SS, DC))
5431      return 0;
5432
5433    SearchDC = DC;
5434    // Look-up name inside 'foo::'.
5435    LookupQualifiedName(Previous, DC);
5436
5437    if (Previous.isAmbiguous())
5438      return 0;
5439
5440    if (Previous.empty()) {
5441      // Name lookup did not find anything. However, if the
5442      // nested-name-specifier refers to the current instantiation,
5443      // and that current instantiation has any dependent base
5444      // classes, we might find something at instantiation time: treat
5445      // this as a dependent elaborated-type-specifier.
5446      if (Previous.wasNotFoundInCurrentInstantiation()) {
5447        IsDependent = true;
5448        return 0;
5449      }
5450
5451      // A tag 'foo::bar' must already exist.
5452      Diag(NameLoc, diag::err_not_tag_in_scope)
5453        << Kind << Name << DC << SS.getRange();
5454      Name = 0;
5455      Invalid = true;
5456      goto CreateNewDecl;
5457    }
5458  } else if (Name) {
5459    // If this is a named struct, check to see if there was a previous forward
5460    // declaration or definition.
5461    // FIXME: We're looking into outer scopes here, even when we
5462    // shouldn't be. Doing so can result in ambiguities that we
5463    // shouldn't be diagnosing.
5464    LookupName(Previous, S);
5465
5466    // Note:  there used to be some attempt at recovery here.
5467    if (Previous.isAmbiguous())
5468      return 0;
5469
5470    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5471      // FIXME: This makes sure that we ignore the contexts associated
5472      // with C structs, unions, and enums when looking for a matching
5473      // tag declaration or definition. See the similar lookup tweak
5474      // in Sema::LookupName; is there a better way to deal with this?
5475      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5476        SearchDC = SearchDC->getParent();
5477    }
5478  } else if (S->isFunctionPrototypeScope()) {
5479    // If this is an enum declaration in function prototype scope, set its
5480    // initial context to the translation unit.
5481    SearchDC = Context.getTranslationUnitDecl();
5482  }
5483
5484  if (Previous.isSingleResult() &&
5485      Previous.getFoundDecl()->isTemplateParameter()) {
5486    // Maybe we will complain about the shadowed template parameter.
5487    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5488    // Just pretend that we didn't see the previous declaration.
5489    Previous.clear();
5490  }
5491
5492  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5493      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5494    // This is a declaration of or a reference to "std::bad_alloc".
5495    isStdBadAlloc = true;
5496
5497    if (Previous.empty() && StdBadAlloc) {
5498      // std::bad_alloc has been implicitly declared (but made invisible to
5499      // name lookup). Fill in this implicit declaration as the previous
5500      // declaration, so that the declarations get chained appropriately.
5501      Previous.addDecl(getStdBadAlloc());
5502    }
5503  }
5504
5505  // If we didn't find a previous declaration, and this is a reference
5506  // (or friend reference), move to the correct scope.  In C++, we
5507  // also need to do a redeclaration lookup there, just in case
5508  // there's a shadow friend decl.
5509  if (Name && Previous.empty() &&
5510      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5511    if (Invalid) goto CreateNewDecl;
5512    assert(SS.isEmpty());
5513
5514    if (TUK == TUK_Reference) {
5515      // C++ [basic.scope.pdecl]p5:
5516      //   -- for an elaborated-type-specifier of the form
5517      //
5518      //          class-key identifier
5519      //
5520      //      if the elaborated-type-specifier is used in the
5521      //      decl-specifier-seq or parameter-declaration-clause of a
5522      //      function defined in namespace scope, the identifier is
5523      //      declared as a class-name in the namespace that contains
5524      //      the declaration; otherwise, except as a friend
5525      //      declaration, the identifier is declared in the smallest
5526      //      non-class, non-function-prototype scope that contains the
5527      //      declaration.
5528      //
5529      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5530      // C structs and unions.
5531      //
5532      // It is an error in C++ to declare (rather than define) an enum
5533      // type, including via an elaborated type specifier.  We'll
5534      // diagnose that later; for now, declare the enum in the same
5535      // scope as we would have picked for any other tag type.
5536      //
5537      // GNU C also supports this behavior as part of its incomplete
5538      // enum types extension, while GNU C++ does not.
5539      //
5540      // Find the context where we'll be declaring the tag.
5541      // FIXME: We would like to maintain the current DeclContext as the
5542      // lexical context,
5543      while (SearchDC->isRecord())
5544        SearchDC = SearchDC->getParent();
5545
5546      // Find the scope where we'll be declaring the tag.
5547      while (S->isClassScope() ||
5548             (getLangOptions().CPlusPlus &&
5549              S->isFunctionPrototypeScope()) ||
5550             ((S->getFlags() & Scope::DeclScope) == 0) ||
5551             (S->getEntity() &&
5552              ((DeclContext *)S->getEntity())->isTransparentContext()))
5553        S = S->getParent();
5554    } else {
5555      assert(TUK == TUK_Friend);
5556      // C++ [namespace.memdef]p3:
5557      //   If a friend declaration in a non-local class first declares a
5558      //   class or function, the friend class or function is a member of
5559      //   the innermost enclosing namespace.
5560      SearchDC = SearchDC->getEnclosingNamespaceContext();
5561    }
5562
5563    // In C++, we need to do a redeclaration lookup to properly
5564    // diagnose some problems.
5565    if (getLangOptions().CPlusPlus) {
5566      Previous.setRedeclarationKind(ForRedeclaration);
5567      LookupQualifiedName(Previous, SearchDC);
5568    }
5569  }
5570
5571  if (!Previous.empty()) {
5572    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5573
5574    // It's okay to have a tag decl in the same scope as a typedef
5575    // which hides a tag decl in the same scope.  Finding this
5576    // insanity with a redeclaration lookup can only actually happen
5577    // in C++.
5578    //
5579    // This is also okay for elaborated-type-specifiers, which is
5580    // technically forbidden by the current standard but which is
5581    // okay according to the likely resolution of an open issue;
5582    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5583    if (getLangOptions().CPlusPlus) {
5584      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5585        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5586          TagDecl *Tag = TT->getDecl();
5587          if (Tag->getDeclName() == Name &&
5588              Tag->getDeclContext()->getRedeclContext()
5589                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5590            PrevDecl = Tag;
5591            Previous.clear();
5592            Previous.addDecl(Tag);
5593            Previous.resolveKind();
5594          }
5595        }
5596      }
5597    }
5598
5599    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5600      // If this is a use of a previous tag, or if the tag is already declared
5601      // in the same scope (so that the definition/declaration completes or
5602      // rementions the tag), reuse the decl.
5603      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5604          isDeclInScope(PrevDecl, SearchDC, S)) {
5605        // Make sure that this wasn't declared as an enum and now used as a
5606        // struct or something similar.
5607        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5608          bool SafeToContinue
5609            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5610               Kind != TTK_Enum);
5611          if (SafeToContinue)
5612            Diag(KWLoc, diag::err_use_with_wrong_tag)
5613              << Name
5614              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5615                                              PrevTagDecl->getKindName());
5616          else
5617            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5618          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5619
5620          if (SafeToContinue)
5621            Kind = PrevTagDecl->getTagKind();
5622          else {
5623            // Recover by making this an anonymous redefinition.
5624            Name = 0;
5625            Previous.clear();
5626            Invalid = true;
5627          }
5628        }
5629
5630        if (!Invalid) {
5631          // If this is a use, just return the declaration we found.
5632
5633          // FIXME: In the future, return a variant or some other clue
5634          // for the consumer of this Decl to know it doesn't own it.
5635          // For our current ASTs this shouldn't be a problem, but will
5636          // need to be changed with DeclGroups.
5637          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5638              TUK == TUK_Friend)
5639            return PrevTagDecl;
5640
5641          // Diagnose attempts to redefine a tag.
5642          if (TUK == TUK_Definition) {
5643            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5644              // If we're defining a specialization and the previous definition
5645              // is from an implicit instantiation, don't emit an error
5646              // here; we'll catch this in the general case below.
5647              if (!isExplicitSpecialization ||
5648                  !isa<CXXRecordDecl>(Def) ||
5649                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5650                                               == TSK_ExplicitSpecialization) {
5651                Diag(NameLoc, diag::err_redefinition) << Name;
5652                Diag(Def->getLocation(), diag::note_previous_definition);
5653                // If this is a redefinition, recover by making this
5654                // struct be anonymous, which will make any later
5655                // references get the previous definition.
5656                Name = 0;
5657                Previous.clear();
5658                Invalid = true;
5659              }
5660            } else {
5661              // If the type is currently being defined, complain
5662              // about a nested redefinition.
5663              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5664              if (Tag->isBeingDefined()) {
5665                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5666                Diag(PrevTagDecl->getLocation(),
5667                     diag::note_previous_definition);
5668                Name = 0;
5669                Previous.clear();
5670                Invalid = true;
5671              }
5672            }
5673
5674            // Okay, this is definition of a previously declared or referenced
5675            // tag PrevDecl. We're going to create a new Decl for it.
5676          }
5677        }
5678        // If we get here we have (another) forward declaration or we
5679        // have a definition.  Just create a new decl.
5680
5681      } else {
5682        // If we get here, this is a definition of a new tag type in a nested
5683        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5684        // new decl/type.  We set PrevDecl to NULL so that the entities
5685        // have distinct types.
5686        Previous.clear();
5687      }
5688      // If we get here, we're going to create a new Decl. If PrevDecl
5689      // is non-NULL, it's a definition of the tag declared by
5690      // PrevDecl. If it's NULL, we have a new definition.
5691
5692
5693    // Otherwise, PrevDecl is not a tag, but was found with tag
5694    // lookup.  This is only actually possible in C++, where a few
5695    // things like templates still live in the tag namespace.
5696    } else {
5697      assert(getLangOptions().CPlusPlus);
5698
5699      // Use a better diagnostic if an elaborated-type-specifier
5700      // found the wrong kind of type on the first
5701      // (non-redeclaration) lookup.
5702      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5703          !Previous.isForRedeclaration()) {
5704        unsigned Kind = 0;
5705        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5706        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5707        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5708        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5709        Invalid = true;
5710
5711      // Otherwise, only diagnose if the declaration is in scope.
5712      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5713        // do nothing
5714
5715      // Diagnose implicit declarations introduced by elaborated types.
5716      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5717        unsigned Kind = 0;
5718        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5719        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5720        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5721        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5722        Invalid = true;
5723
5724      // Otherwise it's a declaration.  Call out a particularly common
5725      // case here.
5726      } else if (isa<TypedefDecl>(PrevDecl)) {
5727        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5728          << Name
5729          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5730        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5731        Invalid = true;
5732
5733      // Otherwise, diagnose.
5734      } else {
5735        // The tag name clashes with something else in the target scope,
5736        // issue an error and recover by making this tag be anonymous.
5737        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5738        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5739        Name = 0;
5740        Invalid = true;
5741      }
5742
5743      // The existing declaration isn't relevant to us; we're in a
5744      // new scope, so clear out the previous declaration.
5745      Previous.clear();
5746    }
5747  }
5748
5749CreateNewDecl:
5750
5751  TagDecl *PrevDecl = 0;
5752  if (Previous.isSingleResult())
5753    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5754
5755  // If there is an identifier, use the location of the identifier as the
5756  // location of the decl, otherwise use the location of the struct/union
5757  // keyword.
5758  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5759
5760  // Otherwise, create a new declaration. If there is a previous
5761  // declaration of the same entity, the two will be linked via
5762  // PrevDecl.
5763  TagDecl *New;
5764
5765  if (Kind == TTK_Enum) {
5766    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5767    // enum X { A, B, C } D;    D should chain to X.
5768    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5769                           cast_or_null<EnumDecl>(PrevDecl));
5770    // If this is an undefined enum, warn.
5771    if (TUK != TUK_Definition && !Invalid) {
5772      TagDecl *Def;
5773      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5774        Diag(Loc, diag::ext_forward_ref_enum_def)
5775          << New;
5776        Diag(Def->getLocation(), diag::note_previous_definition);
5777      } else {
5778        unsigned DiagID = diag::ext_forward_ref_enum;
5779        if (getLangOptions().Microsoft)
5780          DiagID = diag::ext_ms_forward_ref_enum;
5781        else if (getLangOptions().CPlusPlus)
5782          DiagID = diag::err_forward_ref_enum;
5783        Diag(Loc, DiagID);
5784      }
5785    }
5786  } else {
5787    // struct/union/class
5788
5789    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5790    // struct X { int A; } D;    D should chain to X.
5791    if (getLangOptions().CPlusPlus) {
5792      // FIXME: Look for a way to use RecordDecl for simple structs.
5793      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5794                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5795
5796      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5797        StdBadAlloc = cast<CXXRecordDecl>(New);
5798    } else
5799      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5800                               cast_or_null<RecordDecl>(PrevDecl));
5801  }
5802
5803  // Maybe add qualifier info.
5804  if (SS.isNotEmpty()) {
5805    if (SS.isSet()) {
5806      NestedNameSpecifier *NNS
5807        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5808      New->setQualifierInfo(NNS, SS.getRange());
5809      if (NumMatchedTemplateParamLists > 0) {
5810        New->setTemplateParameterListsInfo(Context,
5811                                           NumMatchedTemplateParamLists,
5812                    (TemplateParameterList**) TemplateParameterLists.release());
5813      }
5814    }
5815    else
5816      Invalid = true;
5817  }
5818
5819  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5820    // Add alignment attributes if necessary; these attributes are checked when
5821    // the ASTContext lays out the structure.
5822    //
5823    // It is important for implementing the correct semantics that this
5824    // happen here (in act on tag decl). The #pragma pack stack is
5825    // maintained as a result of parser callbacks which can occur at
5826    // many points during the parsing of a struct declaration (because
5827    // the #pragma tokens are effectively skipped over during the
5828    // parsing of the struct).
5829    AddAlignmentAttributesForRecord(RD);
5830  }
5831
5832  // If this is a specialization of a member class (of a class template),
5833  // check the specialization.
5834  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5835    Invalid = true;
5836
5837  if (Invalid)
5838    New->setInvalidDecl();
5839
5840  if (Attr)
5841    ProcessDeclAttributeList(S, New, Attr);
5842
5843  // If we're declaring or defining a tag in function prototype scope
5844  // in C, note that this type can only be used within the function.
5845  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5846    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5847
5848  // Set the lexical context. If the tag has a C++ scope specifier, the
5849  // lexical context will be different from the semantic context.
5850  New->setLexicalDeclContext(CurContext);
5851
5852  // Mark this as a friend decl if applicable.
5853  if (TUK == TUK_Friend)
5854    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5855
5856  // Set the access specifier.
5857  if (!Invalid && SearchDC->isRecord())
5858    SetMemberAccessSpecifier(New, PrevDecl, AS);
5859
5860  if (TUK == TUK_Definition)
5861    New->startDefinition();
5862
5863  // If this has an identifier, add it to the scope stack.
5864  if (TUK == TUK_Friend) {
5865    // We might be replacing an existing declaration in the lookup tables;
5866    // if so, borrow its access specifier.
5867    if (PrevDecl)
5868      New->setAccess(PrevDecl->getAccess());
5869
5870    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5871    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5872    if (Name) // can be null along some error paths
5873      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5874        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5875  } else if (Name) {
5876    S = getNonFieldDeclScope(S);
5877    PushOnScopeChains(New, S);
5878  } else {
5879    CurContext->addDecl(New);
5880  }
5881
5882  // If this is the C FILE type, notify the AST context.
5883  if (IdentifierInfo *II = New->getIdentifier())
5884    if (!New->isInvalidDecl() &&
5885        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5886        II->isStr("FILE"))
5887      Context.setFILEDecl(New);
5888
5889  OwnedDecl = true;
5890  return New;
5891}
5892
5893void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5894  AdjustDeclIfTemplate(TagD);
5895  TagDecl *Tag = cast<TagDecl>(TagD);
5896
5897  // Enter the tag context.
5898  PushDeclContext(S, Tag);
5899}
5900
5901void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5902                                           SourceLocation LBraceLoc) {
5903  AdjustDeclIfTemplate(TagD);
5904  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5905
5906  FieldCollector->StartClass();
5907
5908  if (!Record->getIdentifier())
5909    return;
5910
5911  // C++ [class]p2:
5912  //   [...] The class-name is also inserted into the scope of the
5913  //   class itself; this is known as the injected-class-name. For
5914  //   purposes of access checking, the injected-class-name is treated
5915  //   as if it were a public member name.
5916  CXXRecordDecl *InjectedClassName
5917    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5918                            CurContext, Record->getLocation(),
5919                            Record->getIdentifier(),
5920                            Record->getTagKeywordLoc(),
5921                            Record);
5922  InjectedClassName->setImplicit();
5923  InjectedClassName->setAccess(AS_public);
5924  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5925      InjectedClassName->setDescribedClassTemplate(Template);
5926  PushOnScopeChains(InjectedClassName, S);
5927  assert(InjectedClassName->isInjectedClassName() &&
5928         "Broken injected-class-name");
5929}
5930
5931void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5932                                    SourceLocation RBraceLoc) {
5933  AdjustDeclIfTemplate(TagD);
5934  TagDecl *Tag = cast<TagDecl>(TagD);
5935  Tag->setRBraceLoc(RBraceLoc);
5936
5937  if (isa<CXXRecordDecl>(Tag))
5938    FieldCollector->FinishClass();
5939
5940  // Exit this scope of this tag's definition.
5941  PopDeclContext();
5942
5943  // Notify the consumer that we've defined a tag.
5944  Consumer.HandleTagDeclDefinition(Tag);
5945}
5946
5947void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5948  AdjustDeclIfTemplate(TagD);
5949  TagDecl *Tag = cast<TagDecl>(TagD);
5950  Tag->setInvalidDecl();
5951
5952  // We're undoing ActOnTagStartDefinition here, not
5953  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5954  // the FieldCollector.
5955
5956  PopDeclContext();
5957}
5958
5959// Note that FieldName may be null for anonymous bitfields.
5960bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5961                          QualType FieldTy, const Expr *BitWidth,
5962                          bool *ZeroWidth) {
5963  // Default to true; that shouldn't confuse checks for emptiness
5964  if (ZeroWidth)
5965    *ZeroWidth = true;
5966
5967  // C99 6.7.2.1p4 - verify the field type.
5968  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5969  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5970    // Handle incomplete types with specific error.
5971    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5972      return true;
5973    if (FieldName)
5974      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5975        << FieldName << FieldTy << BitWidth->getSourceRange();
5976    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5977      << FieldTy << BitWidth->getSourceRange();
5978  }
5979
5980  // If the bit-width is type- or value-dependent, don't try to check
5981  // it now.
5982  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5983    return false;
5984
5985  llvm::APSInt Value;
5986  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5987    return true;
5988
5989  if (Value != 0 && ZeroWidth)
5990    *ZeroWidth = false;
5991
5992  // Zero-width bitfield is ok for anonymous field.
5993  if (Value == 0 && FieldName)
5994    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5995
5996  if (Value.isSigned() && Value.isNegative()) {
5997    if (FieldName)
5998      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5999               << FieldName << Value.toString(10);
6000    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6001      << Value.toString(10);
6002  }
6003
6004  if (!FieldTy->isDependentType()) {
6005    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6006    if (Value.getZExtValue() > TypeSize) {
6007      if (!getLangOptions().CPlusPlus) {
6008        if (FieldName)
6009          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6010            << FieldName << (unsigned)Value.getZExtValue()
6011            << (unsigned)TypeSize;
6012
6013        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6014          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6015      }
6016
6017      if (FieldName)
6018        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6019          << FieldName << (unsigned)Value.getZExtValue()
6020          << (unsigned)TypeSize;
6021      else
6022        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6023          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6024    }
6025  }
6026
6027  return false;
6028}
6029
6030/// ActOnField - Each field of a struct/union/class is passed into this in order
6031/// to create a FieldDecl object for it.
6032Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6033                                 SourceLocation DeclStart,
6034                                 Declarator &D, ExprTy *BitfieldWidth) {
6035  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6036                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6037                               AS_public);
6038  return Res;
6039}
6040
6041/// HandleField - Analyze a field of a C struct or a C++ data member.
6042///
6043FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6044                             SourceLocation DeclStart,
6045                             Declarator &D, Expr *BitWidth,
6046                             AccessSpecifier AS) {
6047  IdentifierInfo *II = D.getIdentifier();
6048  SourceLocation Loc = DeclStart;
6049  if (II) Loc = D.getIdentifierLoc();
6050
6051  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6052  QualType T = TInfo->getType();
6053  if (getLangOptions().CPlusPlus)
6054    CheckExtraCXXDefaultArguments(D);
6055
6056  DiagnoseFunctionSpecifiers(D);
6057
6058  if (D.getDeclSpec().isThreadSpecified())
6059    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6060
6061  // Check to see if this name was declared as a member previously
6062  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6063  LookupName(Previous, S);
6064  assert((Previous.empty() || Previous.isOverloadedResult() ||
6065          Previous.isSingleResult())
6066    && "Lookup of member name should be either overloaded, single or null");
6067
6068  // If the name is overloaded then get any declaration else get the single result
6069  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6070    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6071
6072  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6073    // Maybe we will complain about the shadowed template parameter.
6074    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6075    // Just pretend that we didn't see the previous declaration.
6076    PrevDecl = 0;
6077  }
6078
6079  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6080    PrevDecl = 0;
6081
6082  bool Mutable
6083    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6084  SourceLocation TSSL = D.getSourceRange().getBegin();
6085  FieldDecl *NewFD
6086    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6087                     AS, PrevDecl, &D);
6088
6089  if (NewFD->isInvalidDecl())
6090    Record->setInvalidDecl();
6091
6092  if (NewFD->isInvalidDecl() && PrevDecl) {
6093    // Don't introduce NewFD into scope; there's already something
6094    // with the same name in the same scope.
6095  } else if (II) {
6096    PushOnScopeChains(NewFD, S);
6097  } else
6098    Record->addDecl(NewFD);
6099
6100  return NewFD;
6101}
6102
6103/// \brief Build a new FieldDecl and check its well-formedness.
6104///
6105/// This routine builds a new FieldDecl given the fields name, type,
6106/// record, etc. \p PrevDecl should refer to any previous declaration
6107/// with the same name and in the same scope as the field to be
6108/// created.
6109///
6110/// \returns a new FieldDecl.
6111///
6112/// \todo The Declarator argument is a hack. It will be removed once
6113FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6114                                TypeSourceInfo *TInfo,
6115                                RecordDecl *Record, SourceLocation Loc,
6116                                bool Mutable, Expr *BitWidth,
6117                                SourceLocation TSSL,
6118                                AccessSpecifier AS, NamedDecl *PrevDecl,
6119                                Declarator *D) {
6120  IdentifierInfo *II = Name.getAsIdentifierInfo();
6121  bool InvalidDecl = false;
6122  if (D) InvalidDecl = D->isInvalidType();
6123
6124  // If we receive a broken type, recover by assuming 'int' and
6125  // marking this declaration as invalid.
6126  if (T.isNull()) {
6127    InvalidDecl = true;
6128    T = Context.IntTy;
6129  }
6130
6131  QualType EltTy = Context.getBaseElementType(T);
6132  if (!EltTy->isDependentType() &&
6133      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6134    // Fields of incomplete type force their record to be invalid.
6135    Record->setInvalidDecl();
6136    InvalidDecl = true;
6137  }
6138
6139  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6140  // than a variably modified type.
6141  if (!InvalidDecl && T->isVariablyModifiedType()) {
6142    bool SizeIsNegative;
6143    llvm::APSInt Oversized;
6144    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6145                                                           SizeIsNegative,
6146                                                           Oversized);
6147    if (!FixedTy.isNull()) {
6148      Diag(Loc, diag::warn_illegal_constant_array_size);
6149      T = FixedTy;
6150    } else {
6151      if (SizeIsNegative)
6152        Diag(Loc, diag::err_typecheck_negative_array_size);
6153      else if (Oversized.getBoolValue())
6154        Diag(Loc, diag::err_array_too_large)
6155          << Oversized.toString(10);
6156      else
6157        Diag(Loc, diag::err_typecheck_field_variable_size);
6158      InvalidDecl = true;
6159    }
6160  }
6161
6162  // Fields can not have abstract class types
6163  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6164                                             diag::err_abstract_type_in_decl,
6165                                             AbstractFieldType))
6166    InvalidDecl = true;
6167
6168  bool ZeroWidth = false;
6169  // If this is declared as a bit-field, check the bit-field.
6170  if (!InvalidDecl && BitWidth &&
6171      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6172    InvalidDecl = true;
6173    BitWidth = 0;
6174    ZeroWidth = false;
6175  }
6176
6177  // Check that 'mutable' is consistent with the type of the declaration.
6178  if (!InvalidDecl && Mutable) {
6179    unsigned DiagID = 0;
6180    if (T->isReferenceType())
6181      DiagID = diag::err_mutable_reference;
6182    else if (T.isConstQualified())
6183      DiagID = diag::err_mutable_const;
6184
6185    if (DiagID) {
6186      SourceLocation ErrLoc = Loc;
6187      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6188        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6189      Diag(ErrLoc, DiagID);
6190      Mutable = false;
6191      InvalidDecl = true;
6192    }
6193  }
6194
6195  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6196                                       BitWidth, Mutable);
6197  if (InvalidDecl)
6198    NewFD->setInvalidDecl();
6199
6200  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6201    Diag(Loc, diag::err_duplicate_member) << II;
6202    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6203    NewFD->setInvalidDecl();
6204  }
6205
6206  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6207    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6208
6209    if (T->isReferenceType())
6210      CXXRecord->setHasTrivialConstructor(false);
6211
6212    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6213      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6214      if (RDecl->getDefinition()) {
6215        if (!RDecl->hasTrivialConstructor())
6216          CXXRecord->setHasTrivialConstructor(false);
6217        if (!RDecl->hasTrivialCopyConstructor())
6218          CXXRecord->setHasTrivialCopyConstructor(false);
6219        if (!RDecl->hasTrivialCopyAssignment())
6220          CXXRecord->setHasTrivialCopyAssignment(false);
6221        if (!RDecl->hasTrivialDestructor())
6222          CXXRecord->setHasTrivialDestructor(false);
6223
6224        // C++ 9.5p1: An object of a class with a non-trivial
6225        // constructor, a non-trivial copy constructor, a non-trivial
6226        // destructor, or a non-trivial copy assignment operator
6227        // cannot be a member of a union, nor can an array of such
6228        // objects.
6229        // TODO: C++0x alters this restriction significantly.
6230        if (Record->isUnion() && CheckNontrivialField(NewFD))
6231          NewFD->setInvalidDecl();
6232      }
6233    }
6234  }
6235
6236  // FIXME: We need to pass in the attributes given an AST
6237  // representation, not a parser representation.
6238  if (D)
6239    // FIXME: What to pass instead of TUScope?
6240    ProcessDeclAttributes(TUScope, NewFD, *D);
6241
6242  if (T.isObjCGCWeak())
6243    Diag(Loc, diag::warn_attribute_weak_on_field);
6244
6245  NewFD->setAccess(AS);
6246  return NewFD;
6247}
6248
6249bool Sema::CheckNontrivialField(FieldDecl *FD) {
6250  assert(FD);
6251  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6252
6253  if (FD->isInvalidDecl())
6254    return true;
6255
6256  QualType EltTy = Context.getBaseElementType(FD->getType());
6257  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6258    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6259    if (RDecl->getDefinition()) {
6260      // We check for copy constructors before constructors
6261      // because otherwise we'll never get complaints about
6262      // copy constructors.
6263
6264      CXXSpecialMember member = CXXInvalid;
6265      if (!RDecl->hasTrivialCopyConstructor())
6266        member = CXXCopyConstructor;
6267      else if (!RDecl->hasTrivialConstructor())
6268        member = CXXConstructor;
6269      else if (!RDecl->hasTrivialCopyAssignment())
6270        member = CXXCopyAssignment;
6271      else if (!RDecl->hasTrivialDestructor())
6272        member = CXXDestructor;
6273
6274      if (member != CXXInvalid) {
6275        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6276              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6277        DiagnoseNontrivial(RT, member);
6278        return true;
6279      }
6280    }
6281  }
6282
6283  return false;
6284}
6285
6286/// DiagnoseNontrivial - Given that a class has a non-trivial
6287/// special member, figure out why.
6288void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6289  QualType QT(T, 0U);
6290  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6291
6292  // Check whether the member was user-declared.
6293  switch (member) {
6294  case CXXInvalid:
6295    break;
6296
6297  case CXXConstructor:
6298    if (RD->hasUserDeclaredConstructor()) {
6299      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6300      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6301        const FunctionDecl *body = 0;
6302        ci->hasBody(body);
6303        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6304          SourceLocation CtorLoc = ci->getLocation();
6305          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6306          return;
6307        }
6308      }
6309
6310      assert(0 && "found no user-declared constructors");
6311      return;
6312    }
6313    break;
6314
6315  case CXXCopyConstructor:
6316    if (RD->hasUserDeclaredCopyConstructor()) {
6317      SourceLocation CtorLoc =
6318        RD->getCopyConstructor(Context, 0)->getLocation();
6319      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6320      return;
6321    }
6322    break;
6323
6324  case CXXCopyAssignment:
6325    if (RD->hasUserDeclaredCopyAssignment()) {
6326      // FIXME: this should use the location of the copy
6327      // assignment, not the type.
6328      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6329      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6330      return;
6331    }
6332    break;
6333
6334  case CXXDestructor:
6335    if (RD->hasUserDeclaredDestructor()) {
6336      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6337      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6338      return;
6339    }
6340    break;
6341  }
6342
6343  typedef CXXRecordDecl::base_class_iterator base_iter;
6344
6345  // Virtual bases and members inhibit trivial copying/construction,
6346  // but not trivial destruction.
6347  if (member != CXXDestructor) {
6348    // Check for virtual bases.  vbases includes indirect virtual bases,
6349    // so we just iterate through the direct bases.
6350    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6351      if (bi->isVirtual()) {
6352        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6353        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6354        return;
6355      }
6356
6357    // Check for virtual methods.
6358    typedef CXXRecordDecl::method_iterator meth_iter;
6359    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6360         ++mi) {
6361      if (mi->isVirtual()) {
6362        SourceLocation MLoc = mi->getSourceRange().getBegin();
6363        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6364        return;
6365      }
6366    }
6367  }
6368
6369  bool (CXXRecordDecl::*hasTrivial)() const;
6370  switch (member) {
6371  case CXXConstructor:
6372    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6373  case CXXCopyConstructor:
6374    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6375  case CXXCopyAssignment:
6376    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6377  case CXXDestructor:
6378    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6379  default:
6380    assert(0 && "unexpected special member"); return;
6381  }
6382
6383  // Check for nontrivial bases (and recurse).
6384  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6385    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6386    assert(BaseRT && "Don't know how to handle dependent bases");
6387    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6388    if (!(BaseRecTy->*hasTrivial)()) {
6389      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6390      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6391      DiagnoseNontrivial(BaseRT, member);
6392      return;
6393    }
6394  }
6395
6396  // Check for nontrivial members (and recurse).
6397  typedef RecordDecl::field_iterator field_iter;
6398  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6399       ++fi) {
6400    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6401    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6402      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6403
6404      if (!(EltRD->*hasTrivial)()) {
6405        SourceLocation FLoc = (*fi)->getLocation();
6406        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6407        DiagnoseNontrivial(EltRT, member);
6408        return;
6409      }
6410    }
6411  }
6412
6413  assert(0 && "found no explanation for non-trivial member");
6414}
6415
6416/// TranslateIvarVisibility - Translate visibility from a token ID to an
6417///  AST enum value.
6418static ObjCIvarDecl::AccessControl
6419TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6420  switch (ivarVisibility) {
6421  default: assert(0 && "Unknown visitibility kind");
6422  case tok::objc_private: return ObjCIvarDecl::Private;
6423  case tok::objc_public: return ObjCIvarDecl::Public;
6424  case tok::objc_protected: return ObjCIvarDecl::Protected;
6425  case tok::objc_package: return ObjCIvarDecl::Package;
6426  }
6427}
6428
6429/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6430/// in order to create an IvarDecl object for it.
6431Decl *Sema::ActOnIvar(Scope *S,
6432                                SourceLocation DeclStart,
6433                                Decl *IntfDecl,
6434                                Declarator &D, ExprTy *BitfieldWidth,
6435                                tok::ObjCKeywordKind Visibility) {
6436
6437  IdentifierInfo *II = D.getIdentifier();
6438  Expr *BitWidth = (Expr*)BitfieldWidth;
6439  SourceLocation Loc = DeclStart;
6440  if (II) Loc = D.getIdentifierLoc();
6441
6442  // FIXME: Unnamed fields can be handled in various different ways, for
6443  // example, unnamed unions inject all members into the struct namespace!
6444
6445  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6446  QualType T = TInfo->getType();
6447
6448  if (BitWidth) {
6449    // 6.7.2.1p3, 6.7.2.1p4
6450    if (VerifyBitField(Loc, II, T, BitWidth)) {
6451      D.setInvalidType();
6452      BitWidth = 0;
6453    }
6454  } else {
6455    // Not a bitfield.
6456
6457    // validate II.
6458
6459  }
6460  if (T->isReferenceType()) {
6461    Diag(Loc, diag::err_ivar_reference_type);
6462    D.setInvalidType();
6463  }
6464  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6465  // than a variably modified type.
6466  else if (T->isVariablyModifiedType()) {
6467    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6468    D.setInvalidType();
6469  }
6470
6471  // Get the visibility (access control) for this ivar.
6472  ObjCIvarDecl::AccessControl ac =
6473    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6474                                        : ObjCIvarDecl::None;
6475  // Must set ivar's DeclContext to its enclosing interface.
6476  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6477  ObjCContainerDecl *EnclosingContext;
6478  if (ObjCImplementationDecl *IMPDecl =
6479      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6480    if (!LangOpts.ObjCNonFragileABI2) {
6481    // Case of ivar declared in an implementation. Context is that of its class.
6482      EnclosingContext = IMPDecl->getClassInterface();
6483      assert(EnclosingContext && "Implementation has no class interface!");
6484    }
6485    else
6486      EnclosingContext = EnclosingDecl;
6487  } else {
6488    if (ObjCCategoryDecl *CDecl =
6489        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6490      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6491        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6492        return 0;
6493      }
6494    }
6495    EnclosingContext = EnclosingDecl;
6496  }
6497
6498  // Construct the decl.
6499  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6500                                             EnclosingContext, Loc, II, T,
6501                                             TInfo, ac, (Expr *)BitfieldWidth);
6502
6503  if (II) {
6504    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6505                                           ForRedeclaration);
6506    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6507        && !isa<TagDecl>(PrevDecl)) {
6508      Diag(Loc, diag::err_duplicate_member) << II;
6509      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6510      NewID->setInvalidDecl();
6511    }
6512  }
6513
6514  // Process attributes attached to the ivar.
6515  ProcessDeclAttributes(S, NewID, D);
6516
6517  if (D.isInvalidType())
6518    NewID->setInvalidDecl();
6519
6520  if (II) {
6521    // FIXME: When interfaces are DeclContexts, we'll need to add
6522    // these to the interface.
6523    S->AddDecl(NewID);
6524    IdResolver.AddDecl(NewID);
6525  }
6526
6527  return NewID;
6528}
6529
6530/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6531/// class and class extensions. For every class @interface and class
6532/// extension @interface, if the last ivar is a bitfield of any type,
6533/// then add an implicit `char :0` ivar to the end of that interface.
6534void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6535                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6536  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6537    return;
6538
6539  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6540  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6541
6542  if (!Ivar->isBitField())
6543    return;
6544  uint64_t BitFieldSize =
6545    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6546  if (BitFieldSize == 0)
6547    return;
6548  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6549  if (!ID) {
6550    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6551      if (!CD->IsClassExtension())
6552        return;
6553    }
6554    // No need to add this to end of @implementation.
6555    else
6556      return;
6557  }
6558  // All conditions are met. Add a new bitfield to the tail end of ivars.
6559  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6560  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6561
6562  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6563                              DeclLoc, 0,
6564                              Context.CharTy,
6565                              Context.CreateTypeSourceInfo(Context.CharTy),
6566                              ObjCIvarDecl::Private, BW,
6567                              true);
6568  AllIvarDecls.push_back(Ivar);
6569}
6570
6571void Sema::ActOnFields(Scope* S,
6572                       SourceLocation RecLoc, Decl *EnclosingDecl,
6573                       Decl **Fields, unsigned NumFields,
6574                       SourceLocation LBrac, SourceLocation RBrac,
6575                       AttributeList *Attr) {
6576  assert(EnclosingDecl && "missing record or interface decl");
6577
6578  // If the decl this is being inserted into is invalid, then it may be a
6579  // redeclaration or some other bogus case.  Don't try to add fields to it.
6580  if (EnclosingDecl->isInvalidDecl()) {
6581    // FIXME: Deallocate fields?
6582    return;
6583  }
6584
6585
6586  // Verify that all the fields are okay.
6587  unsigned NumNamedMembers = 0;
6588  llvm::SmallVector<FieldDecl*, 32> RecFields;
6589
6590  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6591  for (unsigned i = 0; i != NumFields; ++i) {
6592    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6593
6594    // Get the type for the field.
6595    Type *FDTy = FD->getType().getTypePtr();
6596
6597    if (!FD->isAnonymousStructOrUnion()) {
6598      // Remember all fields written by the user.
6599      RecFields.push_back(FD);
6600    }
6601
6602    // If the field is already invalid for some reason, don't emit more
6603    // diagnostics about it.
6604    if (FD->isInvalidDecl()) {
6605      EnclosingDecl->setInvalidDecl();
6606      continue;
6607    }
6608
6609    // C99 6.7.2.1p2:
6610    //   A structure or union shall not contain a member with
6611    //   incomplete or function type (hence, a structure shall not
6612    //   contain an instance of itself, but may contain a pointer to
6613    //   an instance of itself), except that the last member of a
6614    //   structure with more than one named member may have incomplete
6615    //   array type; such a structure (and any union containing,
6616    //   possibly recursively, a member that is such a structure)
6617    //   shall not be a member of a structure or an element of an
6618    //   array.
6619    if (FDTy->isFunctionType()) {
6620      // Field declared as a function.
6621      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6622        << FD->getDeclName();
6623      FD->setInvalidDecl();
6624      EnclosingDecl->setInvalidDecl();
6625      continue;
6626    } else if (FDTy->isIncompleteArrayType() && Record &&
6627               ((i == NumFields - 1 && !Record->isUnion()) ||
6628                (getLangOptions().Microsoft &&
6629                 (i == NumFields - 1 || Record->isUnion())))) {
6630      // Flexible array member.
6631      // Microsoft is more permissive regarding flexible array.
6632      // It will accept flexible array in union and also
6633	    // as the sole element of a struct/class.
6634      if (getLangOptions().Microsoft) {
6635        if (Record->isUnion())
6636          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6637            << FD->getDeclName();
6638        else if (NumFields == 1)
6639          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6640            << FD->getDeclName() << Record->getTagKind();
6641      } else  if (NumNamedMembers < 1) {
6642        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6643          << FD->getDeclName();
6644        FD->setInvalidDecl();
6645        EnclosingDecl->setInvalidDecl();
6646        continue;
6647      }
6648      if (!FD->getType()->isDependentType() &&
6649          !Context.getBaseElementType(FD->getType())->isPODType()) {
6650        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6651          << FD->getDeclName() << FD->getType();
6652        FD->setInvalidDecl();
6653        EnclosingDecl->setInvalidDecl();
6654        continue;
6655      }
6656      // Okay, we have a legal flexible array member at the end of the struct.
6657      if (Record)
6658        Record->setHasFlexibleArrayMember(true);
6659    } else if (!FDTy->isDependentType() &&
6660               RequireCompleteType(FD->getLocation(), FD->getType(),
6661                                   diag::err_field_incomplete)) {
6662      // Incomplete type
6663      FD->setInvalidDecl();
6664      EnclosingDecl->setInvalidDecl();
6665      continue;
6666    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6667      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6668        // If this is a member of a union, then entire union becomes "flexible".
6669        if (Record && Record->isUnion()) {
6670          Record->setHasFlexibleArrayMember(true);
6671        } else {
6672          // If this is a struct/class and this is not the last element, reject
6673          // it.  Note that GCC supports variable sized arrays in the middle of
6674          // structures.
6675          if (i != NumFields-1)
6676            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6677              << FD->getDeclName() << FD->getType();
6678          else {
6679            // We support flexible arrays at the end of structs in
6680            // other structs as an extension.
6681            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6682              << FD->getDeclName();
6683            if (Record)
6684              Record->setHasFlexibleArrayMember(true);
6685          }
6686        }
6687      }
6688      if (Record && FDTTy->getDecl()->hasObjectMember())
6689        Record->setHasObjectMember(true);
6690    } else if (FDTy->isObjCObjectType()) {
6691      /// A field cannot be an Objective-c object
6692      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6693      FD->setInvalidDecl();
6694      EnclosingDecl->setInvalidDecl();
6695      continue;
6696    } else if (getLangOptions().ObjC1 &&
6697               getLangOptions().getGCMode() != LangOptions::NonGC &&
6698               Record &&
6699               (FD->getType()->isObjCObjectPointerType() ||
6700                FD->getType().isObjCGCStrong()))
6701      Record->setHasObjectMember(true);
6702    else if (Context.getAsArrayType(FD->getType())) {
6703      QualType BaseType = Context.getBaseElementType(FD->getType());
6704      if (Record && BaseType->isRecordType() &&
6705          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6706        Record->setHasObjectMember(true);
6707    }
6708    // Keep track of the number of named members.
6709    if (FD->getIdentifier())
6710      ++NumNamedMembers;
6711  }
6712
6713  // Okay, we successfully defined 'Record'.
6714  if (Record) {
6715    Record->completeDefinition();
6716  } else {
6717    ObjCIvarDecl **ClsFields =
6718      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6719    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6720      ID->setLocEnd(RBrac);
6721      // Add ivar's to class's DeclContext.
6722      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6723        ClsFields[i]->setLexicalDeclContext(ID);
6724        ID->addDecl(ClsFields[i]);
6725      }
6726      // Must enforce the rule that ivars in the base classes may not be
6727      // duplicates.
6728      if (ID->getSuperClass())
6729        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6730    } else if (ObjCImplementationDecl *IMPDecl =
6731                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6732      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6733      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6734        // Ivar declared in @implementation never belongs to the implementation.
6735        // Only it is in implementation's lexical context.
6736        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6737      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6738    } else if (ObjCCategoryDecl *CDecl =
6739                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6740      // case of ivars in class extension; all other cases have been
6741      // reported as errors elsewhere.
6742      // FIXME. Class extension does not have a LocEnd field.
6743      // CDecl->setLocEnd(RBrac);
6744      // Add ivar's to class extension's DeclContext.
6745      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6746        ClsFields[i]->setLexicalDeclContext(CDecl);
6747        CDecl->addDecl(ClsFields[i]);
6748      }
6749    }
6750  }
6751
6752  if (Attr)
6753    ProcessDeclAttributeList(S, Record, Attr);
6754
6755  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6756  // set the visibility of this record.
6757  if (Record && !Record->getDeclContext()->isRecord())
6758    AddPushedVisibilityAttribute(Record);
6759}
6760
6761/// \brief Determine whether the given integral value is representable within
6762/// the given type T.
6763static bool isRepresentableIntegerValue(ASTContext &Context,
6764                                        llvm::APSInt &Value,
6765                                        QualType T) {
6766  assert(T->isIntegralType(Context) && "Integral type required!");
6767  unsigned BitWidth = Context.getIntWidth(T);
6768
6769  if (Value.isUnsigned() || Value.isNonNegative())
6770    return Value.getActiveBits() < BitWidth;
6771
6772  return Value.getMinSignedBits() <= BitWidth;
6773}
6774
6775// \brief Given an integral type, return the next larger integral type
6776// (or a NULL type of no such type exists).
6777static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6778  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6779  // enum checking below.
6780  assert(T->isIntegralType(Context) && "Integral type required!");
6781  const unsigned NumTypes = 4;
6782  QualType SignedIntegralTypes[NumTypes] = {
6783    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6784  };
6785  QualType UnsignedIntegralTypes[NumTypes] = {
6786    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6787    Context.UnsignedLongLongTy
6788  };
6789
6790  unsigned BitWidth = Context.getTypeSize(T);
6791  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6792                                            : UnsignedIntegralTypes;
6793  for (unsigned I = 0; I != NumTypes; ++I)
6794    if (Context.getTypeSize(Types[I]) > BitWidth)
6795      return Types[I];
6796
6797  return QualType();
6798}
6799
6800EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6801                                          EnumConstantDecl *LastEnumConst,
6802                                          SourceLocation IdLoc,
6803                                          IdentifierInfo *Id,
6804                                          Expr *Val) {
6805  unsigned IntWidth = Context.Target.getIntWidth();
6806  llvm::APSInt EnumVal(IntWidth);
6807  QualType EltTy;
6808  if (Val) {
6809    if (Enum->isDependentType() || Val->isTypeDependent())
6810      EltTy = Context.DependentTy;
6811    else {
6812      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6813      SourceLocation ExpLoc;
6814      if (!Val->isValueDependent() &&
6815          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6816        Val = 0;
6817      } else {
6818        if (!getLangOptions().CPlusPlus) {
6819          // C99 6.7.2.2p2:
6820          //   The expression that defines the value of an enumeration constant
6821          //   shall be an integer constant expression that has a value
6822          //   representable as an int.
6823
6824          // Complain if the value is not representable in an int.
6825          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6826            Diag(IdLoc, diag::ext_enum_value_not_int)
6827              << EnumVal.toString(10) << Val->getSourceRange()
6828              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6829          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6830            // Force the type of the expression to 'int'.
6831            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6832          }
6833        }
6834
6835        // C++0x [dcl.enum]p5:
6836        //   If the underlying type is not fixed, the type of each enumerator
6837        //   is the type of its initializing value:
6838        //     - If an initializer is specified for an enumerator, the
6839        //       initializing value has the same type as the expression.
6840        EltTy = Val->getType();
6841      }
6842    }
6843  }
6844
6845  if (!Val) {
6846    if (Enum->isDependentType())
6847      EltTy = Context.DependentTy;
6848    else if (!LastEnumConst) {
6849      // C++0x [dcl.enum]p5:
6850      //   If the underlying type is not fixed, the type of each enumerator
6851      //   is the type of its initializing value:
6852      //     - If no initializer is specified for the first enumerator, the
6853      //       initializing value has an unspecified integral type.
6854      //
6855      // GCC uses 'int' for its unspecified integral type, as does
6856      // C99 6.7.2.2p3.
6857      EltTy = Context.IntTy;
6858    } else {
6859      // Assign the last value + 1.
6860      EnumVal = LastEnumConst->getInitVal();
6861      ++EnumVal;
6862      EltTy = LastEnumConst->getType();
6863
6864      // Check for overflow on increment.
6865      if (EnumVal < LastEnumConst->getInitVal()) {
6866        // C++0x [dcl.enum]p5:
6867        //   If the underlying type is not fixed, the type of each enumerator
6868        //   is the type of its initializing value:
6869        //
6870        //     - Otherwise the type of the initializing value is the same as
6871        //       the type of the initializing value of the preceding enumerator
6872        //       unless the incremented value is not representable in that type,
6873        //       in which case the type is an unspecified integral type
6874        //       sufficient to contain the incremented value. If no such type
6875        //       exists, the program is ill-formed.
6876        QualType T = getNextLargerIntegralType(Context, EltTy);
6877        if (T.isNull()) {
6878          // There is no integral type larger enough to represent this
6879          // value. Complain, then allow the value to wrap around.
6880          EnumVal = LastEnumConst->getInitVal();
6881          EnumVal.zext(EnumVal.getBitWidth() * 2);
6882          Diag(IdLoc, diag::warn_enumerator_too_large)
6883            << EnumVal.toString(10);
6884        } else {
6885          EltTy = T;
6886        }
6887
6888        // Retrieve the last enumerator's value, extent that type to the
6889        // type that is supposed to be large enough to represent the incremented
6890        // value, then increment.
6891        EnumVal = LastEnumConst->getInitVal();
6892        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6893        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6894        ++EnumVal;
6895
6896        // If we're not in C++, diagnose the overflow of enumerator values,
6897        // which in C99 means that the enumerator value is not representable in
6898        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6899        // permits enumerator values that are representable in some larger
6900        // integral type.
6901        if (!getLangOptions().CPlusPlus && !T.isNull())
6902          Diag(IdLoc, diag::warn_enum_value_overflow);
6903      } else if (!getLangOptions().CPlusPlus &&
6904                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6905        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6906        Diag(IdLoc, diag::ext_enum_value_not_int)
6907          << EnumVal.toString(10) << 1;
6908      }
6909    }
6910  }
6911
6912  if (!EltTy->isDependentType()) {
6913    // Make the enumerator value match the signedness and size of the
6914    // enumerator's type.
6915    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6916    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6917  }
6918
6919  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6920                                  Val, EnumVal);
6921}
6922
6923
6924Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6925                                        Decl *lastEnumConst,
6926                                        SourceLocation IdLoc,
6927                                        IdentifierInfo *Id,
6928                                        SourceLocation EqualLoc, ExprTy *val) {
6929  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6930  EnumConstantDecl *LastEnumConst =
6931    cast_or_null<EnumConstantDecl>(lastEnumConst);
6932  Expr *Val = static_cast<Expr*>(val);
6933
6934  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6935  // we find one that is.
6936  S = getNonFieldDeclScope(S);
6937
6938  // Verify that there isn't already something declared with this name in this
6939  // scope.
6940  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6941                                         ForRedeclaration);
6942  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6943    // Maybe we will complain about the shadowed template parameter.
6944    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6945    // Just pretend that we didn't see the previous declaration.
6946    PrevDecl = 0;
6947  }
6948
6949  if (PrevDecl) {
6950    // When in C++, we may get a TagDecl with the same name; in this case the
6951    // enum constant will 'hide' the tag.
6952    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6953           "Received TagDecl when not in C++!");
6954    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6955      if (isa<EnumConstantDecl>(PrevDecl))
6956        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6957      else
6958        Diag(IdLoc, diag::err_redefinition) << Id;
6959      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6960      return 0;
6961    }
6962  }
6963
6964  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6965                                            IdLoc, Id, Val);
6966
6967  // Register this decl in the current scope stack.
6968  if (New) {
6969    New->setAccess(TheEnumDecl->getAccess());
6970    PushOnScopeChains(New, S);
6971  }
6972
6973  return New;
6974}
6975
6976void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6977                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6978                         Decl **Elements, unsigned NumElements,
6979                         Scope *S, AttributeList *Attr) {
6980  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6981  QualType EnumType = Context.getTypeDeclType(Enum);
6982
6983  if (Attr)
6984    ProcessDeclAttributeList(S, Enum, Attr);
6985
6986  if (Enum->isDependentType()) {
6987    for (unsigned i = 0; i != NumElements; ++i) {
6988      EnumConstantDecl *ECD =
6989        cast_or_null<EnumConstantDecl>(Elements[i]);
6990      if (!ECD) continue;
6991
6992      ECD->setType(EnumType);
6993    }
6994
6995    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6996    return;
6997  }
6998
6999  // TODO: If the result value doesn't fit in an int, it must be a long or long
7000  // long value.  ISO C does not support this, but GCC does as an extension,
7001  // emit a warning.
7002  unsigned IntWidth = Context.Target.getIntWidth();
7003  unsigned CharWidth = Context.Target.getCharWidth();
7004  unsigned ShortWidth = Context.Target.getShortWidth();
7005
7006  // Verify that all the values are okay, compute the size of the values, and
7007  // reverse the list.
7008  unsigned NumNegativeBits = 0;
7009  unsigned NumPositiveBits = 0;
7010
7011  // Keep track of whether all elements have type int.
7012  bool AllElementsInt = true;
7013
7014  for (unsigned i = 0; i != NumElements; ++i) {
7015    EnumConstantDecl *ECD =
7016      cast_or_null<EnumConstantDecl>(Elements[i]);
7017    if (!ECD) continue;  // Already issued a diagnostic.
7018
7019    const llvm::APSInt &InitVal = ECD->getInitVal();
7020
7021    // Keep track of the size of positive and negative values.
7022    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7023      NumPositiveBits = std::max(NumPositiveBits,
7024                                 (unsigned)InitVal.getActiveBits());
7025    else
7026      NumNegativeBits = std::max(NumNegativeBits,
7027                                 (unsigned)InitVal.getMinSignedBits());
7028
7029    // Keep track of whether every enum element has type int (very commmon).
7030    if (AllElementsInt)
7031      AllElementsInt = ECD->getType() == Context.IntTy;
7032  }
7033
7034  // Figure out the type that should be used for this enum.
7035  // FIXME: Support -fshort-enums.
7036  QualType BestType;
7037  unsigned BestWidth;
7038
7039  // C++0x N3000 [conv.prom]p3:
7040  //   An rvalue of an unscoped enumeration type whose underlying
7041  //   type is not fixed can be converted to an rvalue of the first
7042  //   of the following types that can represent all the values of
7043  //   the enumeration: int, unsigned int, long int, unsigned long
7044  //   int, long long int, or unsigned long long int.
7045  // C99 6.4.4.3p2:
7046  //   An identifier declared as an enumeration constant has type int.
7047  // The C99 rule is modified by a gcc extension
7048  QualType BestPromotionType;
7049
7050  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7051
7052  if (NumNegativeBits) {
7053    // If there is a negative value, figure out the smallest integer type (of
7054    // int/long/longlong) that fits.
7055    // If it's packed, check also if it fits a char or a short.
7056    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7057      BestType = Context.SignedCharTy;
7058      BestWidth = CharWidth;
7059    } else if (Packed && NumNegativeBits <= ShortWidth &&
7060               NumPositiveBits < ShortWidth) {
7061      BestType = Context.ShortTy;
7062      BestWidth = ShortWidth;
7063    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7064      BestType = Context.IntTy;
7065      BestWidth = IntWidth;
7066    } else {
7067      BestWidth = Context.Target.getLongWidth();
7068
7069      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7070        BestType = Context.LongTy;
7071      } else {
7072        BestWidth = Context.Target.getLongLongWidth();
7073
7074        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7075          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7076        BestType = Context.LongLongTy;
7077      }
7078    }
7079    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7080  } else {
7081    // If there is no negative value, figure out the smallest type that fits
7082    // all of the enumerator values.
7083    // If it's packed, check also if it fits a char or a short.
7084    if (Packed && NumPositiveBits <= CharWidth) {
7085      BestType = Context.UnsignedCharTy;
7086      BestPromotionType = Context.IntTy;
7087      BestWidth = CharWidth;
7088    } else if (Packed && NumPositiveBits <= ShortWidth) {
7089      BestType = Context.UnsignedShortTy;
7090      BestPromotionType = Context.IntTy;
7091      BestWidth = ShortWidth;
7092    } else if (NumPositiveBits <= IntWidth) {
7093      BestType = Context.UnsignedIntTy;
7094      BestWidth = IntWidth;
7095      BestPromotionType
7096        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7097                           ? Context.UnsignedIntTy : Context.IntTy;
7098    } else if (NumPositiveBits <=
7099               (BestWidth = Context.Target.getLongWidth())) {
7100      BestType = Context.UnsignedLongTy;
7101      BestPromotionType
7102        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7103                           ? Context.UnsignedLongTy : Context.LongTy;
7104    } else {
7105      BestWidth = Context.Target.getLongLongWidth();
7106      assert(NumPositiveBits <= BestWidth &&
7107             "How could an initializer get larger than ULL?");
7108      BestType = Context.UnsignedLongLongTy;
7109      BestPromotionType
7110        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7111                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7112    }
7113  }
7114
7115  // Loop over all of the enumerator constants, changing their types to match
7116  // the type of the enum if needed.
7117  for (unsigned i = 0; i != NumElements; ++i) {
7118    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7119    if (!ECD) continue;  // Already issued a diagnostic.
7120
7121    // Standard C says the enumerators have int type, but we allow, as an
7122    // extension, the enumerators to be larger than int size.  If each
7123    // enumerator value fits in an int, type it as an int, otherwise type it the
7124    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7125    // that X has type 'int', not 'unsigned'.
7126
7127    // Determine whether the value fits into an int.
7128    llvm::APSInt InitVal = ECD->getInitVal();
7129
7130    // If it fits into an integer type, force it.  Otherwise force it to match
7131    // the enum decl type.
7132    QualType NewTy;
7133    unsigned NewWidth;
7134    bool NewSign;
7135    if (!getLangOptions().CPlusPlus &&
7136        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7137      NewTy = Context.IntTy;
7138      NewWidth = IntWidth;
7139      NewSign = true;
7140    } else if (ECD->getType() == BestType) {
7141      // Already the right type!
7142      if (getLangOptions().CPlusPlus)
7143        // C++ [dcl.enum]p4: Following the closing brace of an
7144        // enum-specifier, each enumerator has the type of its
7145        // enumeration.
7146        ECD->setType(EnumType);
7147      continue;
7148    } else {
7149      NewTy = BestType;
7150      NewWidth = BestWidth;
7151      NewSign = BestType->isSignedIntegerType();
7152    }
7153
7154    // Adjust the APSInt value.
7155    InitVal.extOrTrunc(NewWidth);
7156    InitVal.setIsSigned(NewSign);
7157    ECD->setInitVal(InitVal);
7158
7159    // Adjust the Expr initializer and type.
7160    if (ECD->getInitExpr())
7161      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7162                                                CK_IntegralCast,
7163                                                ECD->getInitExpr(),
7164                                                /*base paths*/ 0,
7165                                                VK_RValue));
7166    if (getLangOptions().CPlusPlus)
7167      // C++ [dcl.enum]p4: Following the closing brace of an
7168      // enum-specifier, each enumerator has the type of its
7169      // enumeration.
7170      ECD->setType(EnumType);
7171    else
7172      ECD->setType(NewTy);
7173  }
7174
7175  Enum->completeDefinition(BestType, BestPromotionType,
7176                           NumPositiveBits, NumNegativeBits);
7177}
7178
7179Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7180  StringLiteral *AsmString = cast<StringLiteral>(expr);
7181
7182  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7183                                                   Loc, AsmString);
7184  CurContext->addDecl(New);
7185  return New;
7186}
7187
7188void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7189                             SourceLocation PragmaLoc,
7190                             SourceLocation NameLoc) {
7191  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7192
7193  if (PrevDecl) {
7194    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7195  } else {
7196    (void)WeakUndeclaredIdentifiers.insert(
7197      std::pair<IdentifierInfo*,WeakInfo>
7198        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7199  }
7200}
7201
7202void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7203                                IdentifierInfo* AliasName,
7204                                SourceLocation PragmaLoc,
7205                                SourceLocation NameLoc,
7206                                SourceLocation AliasNameLoc) {
7207  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7208                                    LookupOrdinaryName);
7209  WeakInfo W = WeakInfo(Name, NameLoc);
7210
7211  if (PrevDecl) {
7212    if (!PrevDecl->hasAttr<AliasAttr>())
7213      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7214        DeclApplyPragmaWeak(TUScope, ND, W);
7215  } else {
7216    (void)WeakUndeclaredIdentifiers.insert(
7217      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7218  }
7219}
7220