SemaDecl.cpp revision c63a1f276f7b324fd9a4be82098b1c8f7bf30733
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/Type.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Scope.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Basic/SourceManager.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/DenseSet.h"
36using namespace clang;
37
38Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
39  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
40
41  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
42                 isa<ObjCInterfaceDecl>(IIDecl) ||
43                 isa<TagDecl>(IIDecl)))
44    return IIDecl;
45  return 0;
46}
47
48DeclContext *Sema::getDCParent(DeclContext *DC) {
49  // If CurContext is a ObjC method, getParent() will return NULL.
50  if (isa<ObjCMethodDecl>(DC))
51    return Context.getTranslationUnitDecl();
52
53  // A C++ inline method is parsed *after* the topmost class it was declared in
54  // is fully parsed (it's "complete").
55  // The parsing of a C++ inline method happens at the declaration context of
56  // the topmost (non-nested) class it is declared in.
57  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
58    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
59    DC = MD->getParent();
60    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
61      DC = RD;
62
63    // Return the declaration context of the topmost class the inline method is
64    // declared in.
65    return DC;
66  }
67
68  return DC->getParent();
69}
70
71void Sema::PushDeclContext(DeclContext *DC) {
72  assert(getDCParent(DC) == CurContext &&
73       "The next DeclContext should be directly contained in the current one.");
74  CurContext = DC;
75}
76
77void Sema::PopDeclContext() {
78  assert(CurContext && "DeclContext imbalance!");
79  CurContext = getDCParent(CurContext);
80}
81
82/// Add this decl to the scope shadowed decl chains.
83void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
84  S->AddDecl(D);
85
86  // C++ [basic.scope]p4:
87  //   -- exactly one declaration shall declare a class name or
88  //   enumeration name that is not a typedef name and the other
89  //   declarations shall all refer to the same object or
90  //   enumerator, or all refer to functions and function templates;
91  //   in this case the class name or enumeration name is hidden.
92  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
93    // We are pushing the name of a tag (enum or class).
94    IdentifierResolver::iterator
95        I = IdResolver.begin(TD->getIdentifier(),
96                             TD->getDeclContext(), false/*LookInParentCtx*/);
97    if (I != IdResolver.end() &&
98        IdResolver.isDeclInScope(*I, TD->getDeclContext(), S)) {
99      // There is already a declaration with the same name in the same
100      // scope. It must be found before we find the new declaration,
101      // so swap the order on the shadowed declaration chain.
102
103      IdResolver.AddShadowedDecl(TD, *I);
104      return;
105    }
106  }
107
108  IdResolver.AddDecl(D);
109}
110
111void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
112  if (S->decl_empty()) return;
113  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
114
115  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
116       I != E; ++I) {
117    Decl *TmpD = static_cast<Decl*>(*I);
118    assert(TmpD && "This decl didn't get pushed??");
119
120    if (isa<CXXFieldDecl>(TmpD)) continue;
121
122    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
123    ScopedDecl *D = cast<ScopedDecl>(TmpD);
124
125    IdentifierInfo *II = D->getIdentifier();
126    if (!II) continue;
127
128    // We only want to remove the decls from the identifier decl chains for local
129    // scopes, when inside a function/method.
130    if (S->getFnParent() != 0)
131      IdResolver.RemoveDecl(D);
132
133    // Chain this decl to the containing DeclContext.
134    D->setNext(CurContext->getDeclChain());
135    CurContext->setDeclChain(D);
136  }
137}
138
139/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
140/// return 0 if one not found.
141ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
142  // The third "scope" argument is 0 since we aren't enabling lazy built-in
143  // creation from this context.
144  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
145
146  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
147}
148
149/// LookupDecl - Look up the inner-most declaration in the specified
150/// namespace.
151Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
152                       Scope *S, bool enableLazyBuiltinCreation) {
153  if (II == 0) return 0;
154  unsigned NS = NSI;
155  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
156    NS |= Decl::IDNS_Tag;
157
158  // Scan up the scope chain looking for a decl that matches this identifier
159  // that is in the appropriate namespace.  This search should not take long, as
160  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
161  for (IdentifierResolver::iterator
162       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
163    if ((*I)->getIdentifierNamespace() & NS)
164      return *I;
165
166  // If we didn't find a use of this identifier, and if the identifier
167  // corresponds to a compiler builtin, create the decl object for the builtin
168  // now, injecting it into translation unit scope, and return it.
169  if (NS & Decl::IDNS_Ordinary) {
170    if (enableLazyBuiltinCreation) {
171      // If this is a builtin on this (or all) targets, create the decl.
172      if (unsigned BuiltinID = II->getBuiltinID())
173        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
174    }
175    if (getLangOptions().ObjC1) {
176      // @interface and @compatibility_alias introduce typedef-like names.
177      // Unlike typedef's, they can only be introduced at file-scope (and are
178      // therefore not scoped decls). They can, however, be shadowed by
179      // other names in IDNS_Ordinary.
180      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
181      if (IDI != ObjCInterfaceDecls.end())
182        return IDI->second;
183      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
184      if (I != ObjCAliasDecls.end())
185        return I->second->getClassInterface();
186    }
187  }
188  return 0;
189}
190
191void Sema::InitBuiltinVaListType() {
192  if (!Context.getBuiltinVaListType().isNull())
193    return;
194
195  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
196  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
197  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
198  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
199}
200
201/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
202/// lazily create a decl for it.
203ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
204                                      Scope *S) {
205  Builtin::ID BID = (Builtin::ID)bid;
206
207  if (BID == Builtin::BI__builtin_va_start ||
208      BID == Builtin::BI__builtin_va_copy ||
209      BID == Builtin::BI__builtin_va_end ||
210      BID == Builtin::BI__builtin_stdarg_start)
211    InitBuiltinVaListType();
212
213  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
214  FunctionDecl *New = FunctionDecl::Create(Context,
215                                           Context.getTranslationUnitDecl(),
216                                           SourceLocation(), II, R,
217                                           FunctionDecl::Extern, false, 0);
218
219  // Create Decl objects for each parameter, adding them to the
220  // FunctionDecl.
221  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
222    llvm::SmallVector<ParmVarDecl*, 16> Params;
223    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
224      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
225                                           FT->getArgType(i), VarDecl::None, 0,
226                                           0));
227    New->setParams(&Params[0], Params.size());
228  }
229
230
231
232  // TUScope is the translation-unit scope to insert this function into.
233  PushOnScopeChains(New, TUScope);
234  return New;
235}
236
237/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
238/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
239/// situation, merging decls or emitting diagnostics as appropriate.
240///
241TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
242  // Verify the old decl was also a typedef.
243  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
244  if (!Old) {
245    Diag(New->getLocation(), diag::err_redefinition_different_kind,
246         New->getName());
247    Diag(OldD->getLocation(), diag::err_previous_definition);
248    return New;
249  }
250
251  // If the typedef types are not identical, reject them in all languages and
252  // with any extensions enabled.
253  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
254      Context.getCanonicalType(Old->getUnderlyingType()) !=
255      Context.getCanonicalType(New->getUnderlyingType())) {
256    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
257         New->getUnderlyingType().getAsString(),
258         Old->getUnderlyingType().getAsString());
259    Diag(Old->getLocation(), diag::err_previous_definition);
260    return Old;
261  }
262
263  // Allow multiple definitions for ObjC built-in typedefs.
264  // FIXME: Verify the underlying types are equivalent!
265  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
266    return Old;
267
268  if (getLangOptions().Microsoft) return New;
269
270  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
271  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
272  // *either* declaration is in a system header. The code below implements
273  // this adhoc compatibility rule. FIXME: The following code will not
274  // work properly when compiling ".i" files (containing preprocessed output).
275  SourceManager &SrcMgr = Context.getSourceManager();
276  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
277  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
278  if (OldDeclFile) {
279    DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
280    // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
281    if (OldDirType != DirectoryLookup::NormalHeaderDir)
282      return New;
283  }
284  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
285  if (NewDeclFile) {
286    DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
287    // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
288    if (NewDirType != DirectoryLookup::NormalHeaderDir)
289      return New;
290  }
291
292  Diag(New->getLocation(), diag::err_redefinition, New->getName());
293  Diag(Old->getLocation(), diag::err_previous_definition);
294  return New;
295}
296
297/// DeclhasAttr - returns true if decl Declaration already has the target
298/// attribute.
299static bool DeclHasAttr(const Decl *decl, const Attr *target) {
300  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
301    if (attr->getKind() == target->getKind())
302      return true;
303
304  return false;
305}
306
307/// MergeAttributes - append attributes from the Old decl to the New one.
308static void MergeAttributes(Decl *New, Decl *Old) {
309  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
310
311  while (attr) {
312     tmp = attr;
313     attr = attr->getNext();
314
315    if (!DeclHasAttr(New, tmp)) {
316       New->addAttr(tmp);
317    } else {
318       tmp->setNext(0);
319       delete(tmp);
320    }
321  }
322
323  Old->invalidateAttrs();
324}
325
326/// MergeFunctionDecl - We just parsed a function 'New' from
327/// declarator D which has the same name and scope as a previous
328/// declaration 'Old'.  Figure out how to resolve this situation,
329/// merging decls or emitting diagnostics as appropriate.
330/// Redeclaration will be set true if thisNew is a redeclaration OldD.
331FunctionDecl *
332Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
333  Redeclaration = false;
334  // Verify the old decl was also a function.
335  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
336  if (!Old) {
337    Diag(New->getLocation(), diag::err_redefinition_different_kind,
338         New->getName());
339    Diag(OldD->getLocation(), diag::err_previous_definition);
340    return New;
341  }
342
343  QualType OldQType = Context.getCanonicalType(Old->getType());
344  QualType NewQType = Context.getCanonicalType(New->getType());
345
346  // C++ [dcl.fct]p3:
347  //   All declarations for a function shall agree exactly in both the
348  //   return type and the parameter-type-list.
349  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
350    MergeAttributes(New, Old);
351    Redeclaration = true;
352    return MergeCXXFunctionDecl(New, Old);
353  }
354
355  // C: Function types need to be compatible, not identical. This handles
356  // duplicate function decls like "void f(int); void f(enum X);" properly.
357  if (!getLangOptions().CPlusPlus &&
358      Context.functionTypesAreCompatible(OldQType, NewQType)) {
359    MergeAttributes(New, Old);
360    Redeclaration = true;
361    return New;
362  }
363
364  // A function that has already been declared has been redeclared or defined
365  // with a different type- show appropriate diagnostic
366  diag::kind PrevDiag;
367  if (Old->isThisDeclarationADefinition())
368    PrevDiag = diag::err_previous_definition;
369  else if (Old->isImplicit())
370    PrevDiag = diag::err_previous_implicit_declaration;
371  else
372    PrevDiag = diag::err_previous_declaration;
373
374  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
375  // TODO: This is totally simplistic.  It should handle merging functions
376  // together etc, merging extern int X; int X; ...
377  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
378  Diag(Old->getLocation(), PrevDiag);
379  return New;
380}
381
382/// equivalentArrayTypes - Used to determine whether two array types are
383/// equivalent.
384/// We need to check this explicitly as an incomplete array definition is
385/// considered a VariableArrayType, so will not match a complete array
386/// definition that would be otherwise equivalent.
387static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType,
388                                    ASTContext &Context) {
389  const ArrayType *NewAT = Context.getAsArrayType(NewQType);
390  const ArrayType *OldAT = Context.getAsArrayType(OldQType);
391
392  if (!NewAT || !OldAT)
393    return false;
394
395  // If either (or both) array types in incomplete we need to strip off the
396  // outer VariableArrayType.  Once the outer VAT is removed the remaining
397  // types must be identical if the array types are to be considered
398  // equivalent.
399  // eg. int[][1] and int[1][1] become
400  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
401  // removing the outermost VAT gives
402  //     CAT(1, int) and CAT(1, int)
403  // which are equal, therefore the array types are equivalent.
404  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
405    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
406      return false;
407    NewQType = Context.getCanonicalType(NewAT->getElementType());
408    OldQType = Context.getCanonicalType(OldAT->getElementType());
409  }
410
411  return NewQType == OldQType;
412}
413
414/// MergeVarDecl - We just parsed a variable 'New' which has the same name
415/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
416/// situation, merging decls or emitting diagnostics as appropriate.
417///
418/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
419/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
420///
421VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
422  // Verify the old decl was also a variable.
423  VarDecl *Old = dyn_cast<VarDecl>(OldD);
424  if (!Old) {
425    Diag(New->getLocation(), diag::err_redefinition_different_kind,
426         New->getName());
427    Diag(OldD->getLocation(), diag::err_previous_definition);
428    return New;
429  }
430
431  MergeAttributes(New, Old);
432
433  // Verify the types match.
434  QualType OldCType = Context.getCanonicalType(Old->getType());
435  QualType NewCType = Context.getCanonicalType(New->getType());
436  if (OldCType != NewCType &&
437      !areEquivalentArrayTypes(NewCType, OldCType, Context)) {
438    Diag(New->getLocation(), diag::err_redefinition, New->getName());
439    Diag(Old->getLocation(), diag::err_previous_definition);
440    return New;
441  }
442  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
443  if (New->getStorageClass() == VarDecl::Static &&
444      (Old->getStorageClass() == VarDecl::None ||
445       Old->getStorageClass() == VarDecl::Extern)) {
446    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
447    Diag(Old->getLocation(), diag::err_previous_definition);
448    return New;
449  }
450  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
451  if (New->getStorageClass() != VarDecl::Static &&
452      Old->getStorageClass() == VarDecl::Static) {
453    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
454    Diag(Old->getLocation(), diag::err_previous_definition);
455    return New;
456  }
457  // We've verified the types match, now handle "tentative" definitions.
458  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
459    // Handle C "tentative" external object definitions (C99 6.9.2).
460    bool OldIsTentative = false;
461    bool NewIsTentative = false;
462
463    if (!Old->getInit() &&
464        (Old->getStorageClass() == VarDecl::None ||
465         Old->getStorageClass() == VarDecl::Static))
466      OldIsTentative = true;
467
468    // FIXME: this check doesn't work (since the initializer hasn't been
469    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
470    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
471    // thrown out the old decl.
472    if (!New->getInit() &&
473        (New->getStorageClass() == VarDecl::None ||
474         New->getStorageClass() == VarDecl::Static))
475      ; // change to NewIsTentative = true; once the code is moved.
476
477    if (NewIsTentative || OldIsTentative)
478      return New;
479  }
480  // Handle __private_extern__ just like extern.
481  if (Old->getStorageClass() != VarDecl::Extern &&
482      Old->getStorageClass() != VarDecl::PrivateExtern &&
483      New->getStorageClass() != VarDecl::Extern &&
484      New->getStorageClass() != VarDecl::PrivateExtern) {
485    Diag(New->getLocation(), diag::err_redefinition, New->getName());
486    Diag(Old->getLocation(), diag::err_previous_definition);
487  }
488  return New;
489}
490
491/// CheckParmsForFunctionDef - Check that the parameters of the given
492/// function are appropriate for the definition of a function. This
493/// takes care of any checks that cannot be performed on the
494/// declaration itself, e.g., that the types of each of the function
495/// parameters are complete.
496bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
497  bool HasInvalidParm = false;
498  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
499    ParmVarDecl *Param = FD->getParamDecl(p);
500
501    // C99 6.7.5.3p4: the parameters in a parameter type list in a
502    // function declarator that is part of a function definition of
503    // that function shall not have incomplete type.
504    if (Param->getType()->isIncompleteType() &&
505        !Param->isInvalidDecl()) {
506      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
507           Param->getType().getAsString());
508      Param->setInvalidDecl();
509      HasInvalidParm = true;
510    }
511  }
512
513  return HasInvalidParm;
514}
515
516/// CreateImplicitParameter - Creates an implicit function parameter
517/// in the scope S and with the given type. This routine is used, for
518/// example, to create the implicit "self" parameter in an Objective-C
519/// method.
520ImplicitParamDecl *
521Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
522                              SourceLocation IdLoc, QualType Type) {
523  ImplicitParamDecl *New = ImplicitParamDecl::Create(Context, CurContext,
524      IdLoc, Id, Type, 0);
525  if (Id)
526    PushOnScopeChains(New, S);
527
528  return New;
529}
530
531/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
532/// no declarator (e.g. "struct foo;") is parsed.
533Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
534  // TODO: emit error on 'int;' or 'const enum foo;'.
535  // TODO: emit error on 'typedef int;'
536  // if (!DS.isMissingDeclaratorOk()) Diag(...);
537
538  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
539}
540
541bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
542  // Get the type before calling CheckSingleAssignmentConstraints(), since
543  // it can promote the expression.
544  QualType InitType = Init->getType();
545
546  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
547  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
548                                  InitType, Init, "initializing");
549}
550
551bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
552  const ArrayType *AT = Context.getAsArrayType(DeclT);
553
554  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
555    // C99 6.7.8p14. We have an array of character type with unknown size
556    // being initialized to a string literal.
557    llvm::APSInt ConstVal(32);
558    ConstVal = strLiteral->getByteLength() + 1;
559    // Return a new array type (C99 6.7.8p22).
560    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
561                                         ArrayType::Normal, 0);
562  } else {
563    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
564    // C99 6.7.8p14. We have an array of character type with known size.
565    // FIXME: Avoid truncation for 64-bit length strings.
566    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
567      Diag(strLiteral->getSourceRange().getBegin(),
568           diag::warn_initializer_string_for_char_array_too_long,
569           strLiteral->getSourceRange());
570  }
571  // Set type from "char *" to "constant array of char".
572  strLiteral->setType(DeclT);
573  // For now, we always return false (meaning success).
574  return false;
575}
576
577StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
578  const ArrayType *AT = Context.getAsArrayType(DeclType);
579  if (AT && AT->getElementType()->isCharType()) {
580    return dyn_cast<StringLiteral>(Init);
581  }
582  return 0;
583}
584
585bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
586  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
587  // of unknown size ("[]") or an object type that is not a variable array type.
588  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
589    return Diag(VAT->getSizeExpr()->getLocStart(),
590                diag::err_variable_object_no_init,
591                VAT->getSizeExpr()->getSourceRange());
592
593  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
594  if (!InitList) {
595    // FIXME: Handle wide strings
596    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
597      return CheckStringLiteralInit(strLiteral, DeclType);
598
599    if (DeclType->isArrayType())
600      return Diag(Init->getLocStart(),
601                  diag::err_array_init_list_required,
602                  Init->getSourceRange());
603
604    return CheckSingleInitializer(Init, DeclType);
605  }
606
607  InitListChecker CheckInitList(this, InitList, DeclType);
608  return CheckInitList.HadError();
609}
610
611Sema::DeclTy *
612Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
613  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
614  IdentifierInfo *II = D.getIdentifier();
615
616  // All of these full declarators require an identifier.  If it doesn't have
617  // one, the ParsedFreeStandingDeclSpec action should be used.
618  if (II == 0) {
619    Diag(D.getDeclSpec().getSourceRange().getBegin(),
620         diag::err_declarator_need_ident,
621         D.getDeclSpec().getSourceRange(), D.getSourceRange());
622    return 0;
623  }
624
625  // The scope passed in may not be a decl scope.  Zip up the scope tree until
626  // we find one that is.
627  while ((S->getFlags() & Scope::DeclScope) == 0)
628    S = S->getParent();
629
630  // See if this is a redefinition of a variable in the same scope.
631  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
632  ScopedDecl *New;
633  bool InvalidDecl = false;
634
635  // In C++, the previous declaration we find might be a tag type
636  // (class or enum). In this case, the new declaration will hide the
637  // tag type.
638  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
639    PrevDecl = 0;
640
641  QualType R = GetTypeForDeclarator(D, S);
642  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
643
644  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
645    // Check that there are no default arguments (C++ only).
646    if (getLangOptions().CPlusPlus)
647      CheckExtraCXXDefaultArguments(D);
648
649    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
650    if (!NewTD) return 0;
651
652    // Handle attributes prior to checking for duplicates in MergeVarDecl
653    ProcessDeclAttributes(NewTD, D);
654    // Merge the decl with the existing one if appropriate. If the decl is
655    // in an outer scope, it isn't the same thing.
656    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
657      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
658      if (NewTD == 0) return 0;
659    }
660    New = NewTD;
661    if (S->getFnParent() == 0) {
662      // C99 6.7.7p2: If a typedef name specifies a variably modified type
663      // then it shall have block scope.
664      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
665        // FIXME: Diagnostic needs to be fixed.
666        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
667        InvalidDecl = true;
668      }
669    }
670  } else if (R.getTypePtr()->isFunctionType()) {
671    FunctionDecl::StorageClass SC = FunctionDecl::None;
672    switch (D.getDeclSpec().getStorageClassSpec()) {
673      default: assert(0 && "Unknown storage class!");
674      case DeclSpec::SCS_auto:
675      case DeclSpec::SCS_register:
676        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
677             R.getAsString());
678        InvalidDecl = true;
679        break;
680      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
681      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
682      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
683      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
684    }
685
686    bool isInline = D.getDeclSpec().isInlineSpecified();
687    FunctionDecl *NewFD;
688    if (D.getContext() == Declarator::MemberContext) {
689      // This is a C++ method declaration.
690      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
691                                    D.getIdentifierLoc(), II, R,
692                                    (SC == FunctionDecl::Static), isInline,
693                                    LastDeclarator);
694    } else {
695      NewFD = FunctionDecl::Create(Context, CurContext,
696                                   D.getIdentifierLoc(),
697                                   II, R, SC, isInline,
698                                   LastDeclarator);
699    }
700    // Handle attributes.
701    ProcessDeclAttributes(NewFD, D);
702
703    // Copy the parameter declarations from the declarator D to
704    // the function declaration NewFD, if they are available.
705    if (D.getNumTypeObjects() > 0 &&
706        D.getTypeObject(0).Fun.hasPrototype) {
707      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
708
709      // Create Decl objects for each parameter, adding them to the
710      // FunctionDecl.
711      llvm::SmallVector<ParmVarDecl*, 16> Params;
712
713      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
714      // function that takes no arguments, not a function that takes a
715      // single void argument.
716      // We let through "const void" here because Sema::GetTypeForDeclarator
717      // already checks for that case.
718      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
719          FTI.ArgInfo[0].Param &&
720          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
721        // empty arg list, don't push any params.
722        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
723
724        // In C++, the empty parameter-type-list must be spelled "void"; a
725        // typedef of void is not permitted.
726        if (getLangOptions().CPlusPlus &&
727            Param->getType().getUnqualifiedType() != Context.VoidTy) {
728          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
729        }
730
731      } else {
732        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
733          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
734      }
735
736      NewFD->setParams(&Params[0], Params.size());
737    }
738
739    // Merge the decl with the existing one if appropriate. Since C functions
740    // are in a flat namespace, make sure we consider decls in outer scopes.
741    if (PrevDecl &&
742        (!getLangOptions().CPlusPlus ||
743         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
744      bool Redeclaration = false;
745      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
746      if (NewFD == 0) return 0;
747      if (Redeclaration) {
748        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
749      }
750    }
751    New = NewFD;
752
753    // In C++, check default arguments now that we have merged decls.
754    if (getLangOptions().CPlusPlus)
755      CheckCXXDefaultArguments(NewFD);
756  } else {
757    // Check that there are no default arguments (C++ only).
758    if (getLangOptions().CPlusPlus)
759      CheckExtraCXXDefaultArguments(D);
760
761    if (R.getTypePtr()->isObjCInterfaceType()) {
762      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
763           D.getIdentifier()->getName());
764      InvalidDecl = true;
765    }
766
767    VarDecl *NewVD;
768    VarDecl::StorageClass SC;
769    switch (D.getDeclSpec().getStorageClassSpec()) {
770    default: assert(0 && "Unknown storage class!");
771    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
772    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
773    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
774    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
775    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
776    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
777    }
778    if (D.getContext() == Declarator::MemberContext) {
779      assert(SC == VarDecl::Static && "Invalid storage class for member!");
780      // This is a static data member for a C++ class.
781      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
782                                      D.getIdentifierLoc(), II,
783                                      R, LastDeclarator);
784    } else {
785      if (S->getFnParent() == 0) {
786        // C99 6.9p2: The storage-class specifiers auto and register shall not
787        // appear in the declaration specifiers in an external declaration.
788        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
789          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
790               R.getAsString());
791          InvalidDecl = true;
792        }
793        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
794                                II, R, SC, LastDeclarator);
795      } else {
796        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
797                                II, R, SC, LastDeclarator);
798      }
799    }
800    // Handle attributes prior to checking for duplicates in MergeVarDecl
801    ProcessDeclAttributes(NewVD, D);
802
803    // Emit an error if an address space was applied to decl with local storage.
804    // This includes arrays of objects with address space qualifiers, but not
805    // automatic variables that point to other address spaces.
806    // ISO/IEC TR 18037 S5.1.2
807    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
808      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
809      InvalidDecl = true;
810    }
811    // Merge the decl with the existing one if appropriate. If the decl is
812    // in an outer scope, it isn't the same thing.
813    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
814      NewVD = MergeVarDecl(NewVD, PrevDecl);
815      if (NewVD == 0) return 0;
816    }
817    New = NewVD;
818  }
819
820  // If this has an identifier, add it to the scope stack.
821  if (II)
822    PushOnScopeChains(New, S);
823  // If any semantic error occurred, mark the decl as invalid.
824  if (D.getInvalidType() || InvalidDecl)
825    New->setInvalidDecl();
826
827  return New;
828}
829
830bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
831  switch (Init->getStmtClass()) {
832  default:
833    Diag(Init->getExprLoc(),
834         diag::err_init_element_not_constant, Init->getSourceRange());
835    return true;
836  case Expr::ParenExprClass: {
837    const ParenExpr* PE = cast<ParenExpr>(Init);
838    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
839  }
840  case Expr::CompoundLiteralExprClass:
841    return cast<CompoundLiteralExpr>(Init)->isFileScope();
842  case Expr::DeclRefExprClass: {
843    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
844    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
845      if (VD->hasGlobalStorage())
846        return false;
847      Diag(Init->getExprLoc(),
848           diag::err_init_element_not_constant, Init->getSourceRange());
849      return true;
850    }
851    if (isa<FunctionDecl>(D))
852      return false;
853    Diag(Init->getExprLoc(),
854         diag::err_init_element_not_constant, Init->getSourceRange());
855    return true;
856  }
857  case Expr::MemberExprClass: {
858    const MemberExpr *M = cast<MemberExpr>(Init);
859    if (M->isArrow())
860      return CheckAddressConstantExpression(M->getBase());
861    return CheckAddressConstantExpressionLValue(M->getBase());
862  }
863  case Expr::ArraySubscriptExprClass: {
864    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
865    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
866    return CheckAddressConstantExpression(ASE->getBase()) ||
867           CheckArithmeticConstantExpression(ASE->getIdx());
868  }
869  case Expr::StringLiteralClass:
870  case Expr::PreDefinedExprClass:
871    return false;
872  case Expr::UnaryOperatorClass: {
873    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
874
875    // C99 6.6p9
876    if (Exp->getOpcode() == UnaryOperator::Deref)
877      return CheckAddressConstantExpression(Exp->getSubExpr());
878
879    Diag(Init->getExprLoc(),
880         diag::err_init_element_not_constant, Init->getSourceRange());
881    return true;
882  }
883  }
884}
885
886bool Sema::CheckAddressConstantExpression(const Expr* Init) {
887  switch (Init->getStmtClass()) {
888  default:
889    Diag(Init->getExprLoc(),
890         diag::err_init_element_not_constant, Init->getSourceRange());
891    return true;
892  case Expr::ParenExprClass: {
893    const ParenExpr* PE = cast<ParenExpr>(Init);
894    return CheckAddressConstantExpression(PE->getSubExpr());
895  }
896  case Expr::StringLiteralClass:
897  case Expr::ObjCStringLiteralClass:
898    return false;
899  case Expr::CallExprClass: {
900    const CallExpr *CE = cast<CallExpr>(Init);
901    if (CE->isBuiltinConstantExpr())
902      return false;
903    Diag(Init->getExprLoc(),
904         diag::err_init_element_not_constant, Init->getSourceRange());
905    return true;
906  }
907  case Expr::UnaryOperatorClass: {
908    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
909
910    // C99 6.6p9
911    if (Exp->getOpcode() == UnaryOperator::AddrOf)
912      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
913
914    if (Exp->getOpcode() == UnaryOperator::Extension)
915      return CheckAddressConstantExpression(Exp->getSubExpr());
916
917    Diag(Init->getExprLoc(),
918         diag::err_init_element_not_constant, Init->getSourceRange());
919    return true;
920  }
921  case Expr::BinaryOperatorClass: {
922    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
923    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
924
925    Expr *PExp = Exp->getLHS();
926    Expr *IExp = Exp->getRHS();
927    if (IExp->getType()->isPointerType())
928      std::swap(PExp, IExp);
929
930    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
931    return CheckAddressConstantExpression(PExp) ||
932           CheckArithmeticConstantExpression(IExp);
933  }
934  case Expr::ImplicitCastExprClass: {
935    const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
936
937    // Check for implicit promotion
938    if (SubExpr->getType()->isFunctionType() ||
939        SubExpr->getType()->isArrayType())
940      return CheckAddressConstantExpressionLValue(SubExpr);
941
942    // Check for pointer->pointer cast
943    if (SubExpr->getType()->isPointerType())
944      return CheckAddressConstantExpression(SubExpr);
945
946    if (SubExpr->getType()->isArithmeticType())
947      return CheckArithmeticConstantExpression(SubExpr);
948
949    Diag(Init->getExprLoc(),
950         diag::err_init_element_not_constant, Init->getSourceRange());
951    return true;
952  }
953  case Expr::CastExprClass: {
954    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
955
956    // Check for pointer->pointer cast
957    if (SubExpr->getType()->isPointerType())
958      return CheckAddressConstantExpression(SubExpr);
959
960    // FIXME: Should we pedwarn for (int*)(0+0)?
961    if (SubExpr->getType()->isArithmeticType())
962      return CheckArithmeticConstantExpression(SubExpr);
963
964    Diag(Init->getExprLoc(),
965         diag::err_init_element_not_constant, Init->getSourceRange());
966    return true;
967  }
968  case Expr::ConditionalOperatorClass: {
969    // FIXME: Should we pedwarn here?
970    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
971    if (!Exp->getCond()->getType()->isArithmeticType()) {
972      Diag(Init->getExprLoc(),
973           diag::err_init_element_not_constant, Init->getSourceRange());
974      return true;
975    }
976    if (CheckArithmeticConstantExpression(Exp->getCond()))
977      return true;
978    if (Exp->getLHS() &&
979        CheckAddressConstantExpression(Exp->getLHS()))
980      return true;
981    return CheckAddressConstantExpression(Exp->getRHS());
982  }
983  case Expr::AddrLabelExprClass:
984    return false;
985  }
986}
987
988static const Expr* FindExpressionBaseAddress(const Expr* E);
989
990static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
991  switch (E->getStmtClass()) {
992  default:
993    return E;
994  case Expr::ParenExprClass: {
995    const ParenExpr* PE = cast<ParenExpr>(E);
996    return FindExpressionBaseAddressLValue(PE->getSubExpr());
997  }
998  case Expr::MemberExprClass: {
999    const MemberExpr *M = cast<MemberExpr>(E);
1000    if (M->isArrow())
1001      return FindExpressionBaseAddress(M->getBase());
1002    return FindExpressionBaseAddressLValue(M->getBase());
1003  }
1004  case Expr::ArraySubscriptExprClass: {
1005    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1006    return FindExpressionBaseAddress(ASE->getBase());
1007  }
1008  case Expr::UnaryOperatorClass: {
1009    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1010
1011    if (Exp->getOpcode() == UnaryOperator::Deref)
1012      return FindExpressionBaseAddress(Exp->getSubExpr());
1013
1014    return E;
1015  }
1016  }
1017}
1018
1019static const Expr* FindExpressionBaseAddress(const Expr* E) {
1020  switch (E->getStmtClass()) {
1021  default:
1022    return E;
1023  case Expr::ParenExprClass: {
1024    const ParenExpr* PE = cast<ParenExpr>(E);
1025    return FindExpressionBaseAddress(PE->getSubExpr());
1026  }
1027  case Expr::UnaryOperatorClass: {
1028    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1029
1030    // C99 6.6p9
1031    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1032      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1033
1034    if (Exp->getOpcode() == UnaryOperator::Extension)
1035      return FindExpressionBaseAddress(Exp->getSubExpr());
1036
1037    return E;
1038  }
1039  case Expr::BinaryOperatorClass: {
1040    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1041
1042    Expr *PExp = Exp->getLHS();
1043    Expr *IExp = Exp->getRHS();
1044    if (IExp->getType()->isPointerType())
1045      std::swap(PExp, IExp);
1046
1047    return FindExpressionBaseAddress(PExp);
1048  }
1049  case Expr::ImplicitCastExprClass: {
1050    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1051
1052    // Check for implicit promotion
1053    if (SubExpr->getType()->isFunctionType() ||
1054        SubExpr->getType()->isArrayType())
1055      return FindExpressionBaseAddressLValue(SubExpr);
1056
1057    // Check for pointer->pointer cast
1058    if (SubExpr->getType()->isPointerType())
1059      return FindExpressionBaseAddress(SubExpr);
1060
1061    // We assume that we have an arithmetic expression here;
1062    // if we don't, we'll figure it out later
1063    return 0;
1064  }
1065  case Expr::CastExprClass: {
1066    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1067
1068    // Check for pointer->pointer cast
1069    if (SubExpr->getType()->isPointerType())
1070      return FindExpressionBaseAddress(SubExpr);
1071
1072    // We assume that we have an arithmetic expression here;
1073    // if we don't, we'll figure it out later
1074    return 0;
1075  }
1076  }
1077}
1078
1079bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1080  switch (Init->getStmtClass()) {
1081  default:
1082    Diag(Init->getExprLoc(),
1083         diag::err_init_element_not_constant, Init->getSourceRange());
1084    return true;
1085  case Expr::ParenExprClass: {
1086    const ParenExpr* PE = cast<ParenExpr>(Init);
1087    return CheckArithmeticConstantExpression(PE->getSubExpr());
1088  }
1089  case Expr::FloatingLiteralClass:
1090  case Expr::IntegerLiteralClass:
1091  case Expr::CharacterLiteralClass:
1092  case Expr::ImaginaryLiteralClass:
1093  case Expr::TypesCompatibleExprClass:
1094  case Expr::CXXBoolLiteralExprClass:
1095    return false;
1096  case Expr::CallExprClass: {
1097    const CallExpr *CE = cast<CallExpr>(Init);
1098    if (CE->isBuiltinConstantExpr())
1099      return false;
1100    Diag(Init->getExprLoc(),
1101         diag::err_init_element_not_constant, Init->getSourceRange());
1102    return true;
1103  }
1104  case Expr::DeclRefExprClass: {
1105    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1106    if (isa<EnumConstantDecl>(D))
1107      return false;
1108    Diag(Init->getExprLoc(),
1109         diag::err_init_element_not_constant, Init->getSourceRange());
1110    return true;
1111  }
1112  case Expr::CompoundLiteralExprClass:
1113    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1114    // but vectors are allowed to be magic.
1115    if (Init->getType()->isVectorType())
1116      return false;
1117    Diag(Init->getExprLoc(),
1118         diag::err_init_element_not_constant, Init->getSourceRange());
1119    return true;
1120  case Expr::UnaryOperatorClass: {
1121    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1122
1123    switch (Exp->getOpcode()) {
1124    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1125    // See C99 6.6p3.
1126    default:
1127      Diag(Init->getExprLoc(),
1128           diag::err_init_element_not_constant, Init->getSourceRange());
1129      return true;
1130    case UnaryOperator::SizeOf:
1131    case UnaryOperator::AlignOf:
1132    case UnaryOperator::OffsetOf:
1133      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1134      // See C99 6.5.3.4p2 and 6.6p3.
1135      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1136        return false;
1137      Diag(Init->getExprLoc(),
1138           diag::err_init_element_not_constant, Init->getSourceRange());
1139      return true;
1140    case UnaryOperator::Extension:
1141    case UnaryOperator::LNot:
1142    case UnaryOperator::Plus:
1143    case UnaryOperator::Minus:
1144    case UnaryOperator::Not:
1145      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1146    }
1147  }
1148  case Expr::SizeOfAlignOfTypeExprClass: {
1149    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1150    // Special check for void types, which are allowed as an extension
1151    if (Exp->getArgumentType()->isVoidType())
1152      return false;
1153    // alignof always evaluates to a constant.
1154    // FIXME: is sizeof(int[3.0]) a constant expression?
1155    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1156      Diag(Init->getExprLoc(),
1157           diag::err_init_element_not_constant, Init->getSourceRange());
1158      return true;
1159    }
1160    return false;
1161  }
1162  case Expr::BinaryOperatorClass: {
1163    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1164
1165    if (Exp->getLHS()->getType()->isArithmeticType() &&
1166        Exp->getRHS()->getType()->isArithmeticType()) {
1167      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1168             CheckArithmeticConstantExpression(Exp->getRHS());
1169    }
1170
1171    if (Exp->getLHS()->getType()->isPointerType() &&
1172        Exp->getRHS()->getType()->isPointerType()) {
1173      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1174      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1175
1176      // Only allow a null (constant integer) base; we could
1177      // allow some additional cases if necessary, but this
1178      // is sufficient to cover offsetof-like constructs.
1179      if (!LHSBase && !RHSBase) {
1180        return CheckAddressConstantExpression(Exp->getLHS()) ||
1181               CheckAddressConstantExpression(Exp->getRHS());
1182      }
1183    }
1184
1185    Diag(Init->getExprLoc(),
1186         diag::err_init_element_not_constant, Init->getSourceRange());
1187    return true;
1188  }
1189  case Expr::ImplicitCastExprClass:
1190  case Expr::CastExprClass: {
1191    const Expr *SubExpr;
1192    if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
1193      SubExpr = C->getSubExpr();
1194    } else {
1195      SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1196    }
1197
1198    if (SubExpr->getType()->isArithmeticType())
1199      return CheckArithmeticConstantExpression(SubExpr);
1200
1201    Diag(Init->getExprLoc(),
1202         diag::err_init_element_not_constant, Init->getSourceRange());
1203    return true;
1204  }
1205  case Expr::ConditionalOperatorClass: {
1206    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1207    if (CheckArithmeticConstantExpression(Exp->getCond()))
1208      return true;
1209    if (Exp->getLHS() &&
1210        CheckArithmeticConstantExpression(Exp->getLHS()))
1211      return true;
1212    return CheckArithmeticConstantExpression(Exp->getRHS());
1213  }
1214  }
1215}
1216
1217bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1218  Init = Init->IgnoreParens();
1219
1220  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1221  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1222    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1223
1224  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1225    return CheckForConstantInitializer(e->getInitializer(), DclT);
1226
1227  if (Init->getType()->isReferenceType()) {
1228    // FIXME: Work out how the heck reference types work
1229    return false;
1230#if 0
1231    // A reference is constant if the address of the expression
1232    // is constant
1233    // We look through initlists here to simplify
1234    // CheckAddressConstantExpressionLValue.
1235    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1236      assert(Exp->getNumInits() > 0 &&
1237             "Refernce initializer cannot be empty");
1238      Init = Exp->getInit(0);
1239    }
1240    return CheckAddressConstantExpressionLValue(Init);
1241#endif
1242  }
1243
1244  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1245    unsigned numInits = Exp->getNumInits();
1246    for (unsigned i = 0; i < numInits; i++) {
1247      // FIXME: Need to get the type of the declaration for C++,
1248      // because it could be a reference?
1249      if (CheckForConstantInitializer(Exp->getInit(i),
1250                                      Exp->getInit(i)->getType()))
1251        return true;
1252    }
1253    return false;
1254  }
1255
1256  if (Init->isNullPointerConstant(Context))
1257    return false;
1258  if (Init->getType()->isArithmeticType()) {
1259    QualType InitTy = Context.getCanonicalType(Init->getType())
1260                             .getUnqualifiedType();
1261    if (InitTy == Context.BoolTy) {
1262      // Special handling for pointers implicitly cast to bool;
1263      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1264      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1265        Expr* SubE = ICE->getSubExpr();
1266        if (SubE->getType()->isPointerType() ||
1267            SubE->getType()->isArrayType() ||
1268            SubE->getType()->isFunctionType()) {
1269          return CheckAddressConstantExpression(Init);
1270        }
1271      }
1272    } else if (InitTy->isIntegralType()) {
1273      Expr* SubE = 0;
1274      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
1275        SubE = ICE->getSubExpr();
1276      else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1277        SubE = CE->getSubExpr();
1278      // Special check for pointer cast to int; we allow as an extension
1279      // an address constant cast to an integer if the integer
1280      // is of an appropriate width (this sort of code is apparently used
1281      // in some places).
1282      // FIXME: Add pedwarn?
1283      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1284      if (SubE && (SubE->getType()->isPointerType() ||
1285                   SubE->getType()->isArrayType() ||
1286                   SubE->getType()->isFunctionType())) {
1287        unsigned IntWidth = Context.getTypeSize(Init->getType());
1288        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1289        if (IntWidth >= PointerWidth)
1290          return CheckAddressConstantExpression(Init);
1291      }
1292    }
1293
1294    return CheckArithmeticConstantExpression(Init);
1295  }
1296
1297  if (Init->getType()->isPointerType())
1298    return CheckAddressConstantExpression(Init);
1299
1300  // An array type at the top level that isn't an init-list must
1301  // be a string literal
1302  if (Init->getType()->isArrayType())
1303    return false;
1304
1305  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1306       Init->getSourceRange());
1307  return true;
1308}
1309
1310void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1311  Decl *RealDecl = static_cast<Decl *>(dcl);
1312  Expr *Init = static_cast<Expr *>(init);
1313  assert(Init && "missing initializer");
1314
1315  // If there is no declaration, there was an error parsing it.  Just ignore
1316  // the initializer.
1317  if (RealDecl == 0) {
1318    delete Init;
1319    return;
1320  }
1321
1322  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1323  if (!VDecl) {
1324    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1325         diag::err_illegal_initializer);
1326    RealDecl->setInvalidDecl();
1327    return;
1328  }
1329  // Get the decls type and save a reference for later, since
1330  // CheckInitializerTypes may change it.
1331  QualType DclT = VDecl->getType(), SavT = DclT;
1332  if (VDecl->isBlockVarDecl()) {
1333    VarDecl::StorageClass SC = VDecl->getStorageClass();
1334    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1335      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1336      VDecl->setInvalidDecl();
1337    } else if (!VDecl->isInvalidDecl()) {
1338      if (CheckInitializerTypes(Init, DclT))
1339        VDecl->setInvalidDecl();
1340      if (SC == VarDecl::Static) // C99 6.7.8p4.
1341        CheckForConstantInitializer(Init, DclT);
1342    }
1343  } else if (VDecl->isFileVarDecl()) {
1344    if (VDecl->getStorageClass() == VarDecl::Extern)
1345      Diag(VDecl->getLocation(), diag::warn_extern_init);
1346    if (!VDecl->isInvalidDecl())
1347      if (CheckInitializerTypes(Init, DclT))
1348        VDecl->setInvalidDecl();
1349
1350    // C99 6.7.8p4. All file scoped initializers need to be constant.
1351    CheckForConstantInitializer(Init, DclT);
1352  }
1353  // If the type changed, it means we had an incomplete type that was
1354  // completed by the initializer. For example:
1355  //   int ary[] = { 1, 3, 5 };
1356  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1357  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1358    VDecl->setType(DclT);
1359    Init->setType(DclT);
1360  }
1361
1362  // Attach the initializer to the decl.
1363  VDecl->setInit(Init);
1364  return;
1365}
1366
1367/// The declarators are chained together backwards, reverse the list.
1368Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1369  // Often we have single declarators, handle them quickly.
1370  Decl *GroupDecl = static_cast<Decl*>(group);
1371  if (GroupDecl == 0)
1372    return 0;
1373
1374  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1375  ScopedDecl *NewGroup = 0;
1376  if (Group->getNextDeclarator() == 0)
1377    NewGroup = Group;
1378  else { // reverse the list.
1379    while (Group) {
1380      ScopedDecl *Next = Group->getNextDeclarator();
1381      Group->setNextDeclarator(NewGroup);
1382      NewGroup = Group;
1383      Group = Next;
1384    }
1385  }
1386  // Perform semantic analysis that depends on having fully processed both
1387  // the declarator and initializer.
1388  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1389    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1390    if (!IDecl)
1391      continue;
1392    QualType T = IDecl->getType();
1393
1394    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1395    // static storage duration, it shall not have a variable length array.
1396    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1397        IDecl->getStorageClass() == VarDecl::Static) {
1398      if (T->isVariableArrayType()) {
1399        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1400        IDecl->setInvalidDecl();
1401      }
1402    }
1403    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1404    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1405    if (IDecl->isBlockVarDecl() &&
1406        IDecl->getStorageClass() != VarDecl::Extern) {
1407      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1408        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1409             T.getAsString());
1410        IDecl->setInvalidDecl();
1411      }
1412    }
1413    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1414    // object that has file scope without an initializer, and without a
1415    // storage-class specifier or with the storage-class specifier "static",
1416    // constitutes a tentative definition. Note: A tentative definition with
1417    // external linkage is valid (C99 6.2.2p5).
1418    if (IDecl && !IDecl->getInit() &&
1419        (IDecl->getStorageClass() == VarDecl::Static ||
1420         IDecl->getStorageClass() == VarDecl::None)) {
1421      if (T->isIncompleteArrayType()) {
1422        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1423        // array to be completed. Don't issue a diagnostic.
1424      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1425        // C99 6.9.2p3: If the declaration of an identifier for an object is
1426        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1427        // declared type shall not be an incomplete type.
1428        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1429             T.getAsString());
1430        IDecl->setInvalidDecl();
1431      }
1432    }
1433  }
1434  return NewGroup;
1435}
1436
1437/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1438/// to introduce parameters into function prototype scope.
1439Sema::DeclTy *
1440Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442
1443  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1444  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1445      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1446    Diag(DS.getStorageClassSpecLoc(),
1447         diag::err_invalid_storage_class_in_func_decl);
1448    D.getMutableDeclSpec().ClearStorageClassSpecs();
1449  }
1450  if (DS.isThreadSpecified()) {
1451    Diag(DS.getThreadSpecLoc(),
1452         diag::err_invalid_storage_class_in_func_decl);
1453    D.getMutableDeclSpec().ClearStorageClassSpecs();
1454  }
1455
1456  // Check that there are no default arguments inside the type of this
1457  // parameter (C++ only).
1458  if (getLangOptions().CPlusPlus)
1459    CheckExtraCXXDefaultArguments(D);
1460
1461  // In this context, we *do not* check D.getInvalidType(). If the declarator
1462  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1463  // though it will not reflect the user specified type.
1464  QualType parmDeclType = GetTypeForDeclarator(D, S);
1465
1466  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1467
1468  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1469  // Can this happen for params?  We already checked that they don't conflict
1470  // among each other.  Here they can only shadow globals, which is ok.
1471  IdentifierInfo *II = D.getIdentifier();
1472  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1473    if (S->isDeclScope(PrevDecl)) {
1474      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1475           dyn_cast<NamedDecl>(PrevDecl)->getName());
1476
1477      // Recover by removing the name
1478      II = 0;
1479      D.SetIdentifier(0, D.getIdentifierLoc());
1480    }
1481  }
1482
1483  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1484  // Doing the promotion here has a win and a loss. The win is the type for
1485  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1486  // code generator). The loss is the orginal type isn't preserved. For example:
1487  //
1488  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1489  //    int blockvardecl[5];
1490  //    sizeof(parmvardecl);  // size == 4
1491  //    sizeof(blockvardecl); // size == 20
1492  // }
1493  //
1494  // For expressions, all implicit conversions are captured using the
1495  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1496  //
1497  // FIXME: If a source translation tool needs to see the original type, then
1498  // we need to consider storing both types (in ParmVarDecl)...
1499  //
1500  if (parmDeclType->isArrayType()) {
1501    // int x[restrict 4] ->  int *restrict
1502    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1503  } else if (parmDeclType->isFunctionType())
1504    parmDeclType = Context.getPointerType(parmDeclType);
1505
1506  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1507                                         D.getIdentifierLoc(), II,
1508                                         parmDeclType, VarDecl::None,
1509                                         0, 0);
1510
1511  if (D.getInvalidType())
1512    New->setInvalidDecl();
1513
1514  if (II)
1515    PushOnScopeChains(New, S);
1516
1517  ProcessDeclAttributes(New, D);
1518  return New;
1519
1520}
1521
1522Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1523  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1524  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1525         "Not a function declarator!");
1526  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1527
1528  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1529  // for a K&R function.
1530  if (!FTI.hasPrototype) {
1531    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1532      if (FTI.ArgInfo[i].Param == 0) {
1533        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1534             FTI.ArgInfo[i].Ident->getName());
1535        // Implicitly declare the argument as type 'int' for lack of a better
1536        // type.
1537        DeclSpec DS;
1538        const char* PrevSpec; // unused
1539        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1540                           PrevSpec);
1541        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1542        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1543        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1544      }
1545    }
1546
1547    // Since this is a function definition, act as though we have information
1548    // about the arguments.
1549    if (FTI.NumArgs)
1550      FTI.hasPrototype = true;
1551  } else {
1552    // FIXME: Diagnose arguments without names in C.
1553  }
1554
1555  Scope *GlobalScope = FnBodyScope->getParent();
1556
1557  // See if this is a redefinition.
1558  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1559                             GlobalScope);
1560  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1561    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1562      const FunctionDecl *Definition;
1563      if (FD->getBody(Definition)) {
1564        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1565             D.getIdentifier()->getName());
1566        Diag(Definition->getLocation(), diag::err_previous_definition);
1567      }
1568    }
1569  }
1570
1571  return ActOnStartOfFunctionDef(FnBodyScope,
1572                                 ActOnDeclarator(GlobalScope, D, 0));
1573}
1574
1575Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1576  Decl *decl = static_cast<Decl*>(D);
1577  FunctionDecl *FD = cast<FunctionDecl>(decl);
1578  PushDeclContext(FD);
1579
1580  // Check the validity of our function parameters
1581  CheckParmsForFunctionDef(FD);
1582
1583  // Introduce our parameters into the function scope
1584  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1585    ParmVarDecl *Param = FD->getParamDecl(p);
1586    // If this has an identifier, add it to the scope stack.
1587    if (Param->getIdentifier())
1588      PushOnScopeChains(Param, FnBodyScope);
1589  }
1590
1591  return FD;
1592}
1593
1594Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1595  Decl *dcl = static_cast<Decl *>(D);
1596  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1597    FD->setBody((Stmt*)Body);
1598    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1599  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1600    MD->setBody((Stmt*)Body);
1601  } else
1602    return 0;
1603  PopDeclContext();
1604  // Verify and clean out per-function state.
1605
1606  // Check goto/label use.
1607  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1608       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1609    // Verify that we have no forward references left.  If so, there was a goto
1610    // or address of a label taken, but no definition of it.  Label fwd
1611    // definitions are indicated with a null substmt.
1612    if (I->second->getSubStmt() == 0) {
1613      LabelStmt *L = I->second;
1614      // Emit error.
1615      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1616
1617      // At this point, we have gotos that use the bogus label.  Stitch it into
1618      // the function body so that they aren't leaked and that the AST is well
1619      // formed.
1620      if (Body) {
1621        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1622        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1623      } else {
1624        // The whole function wasn't parsed correctly, just delete this.
1625        delete L;
1626      }
1627    }
1628  }
1629  LabelMap.clear();
1630
1631  return D;
1632}
1633
1634/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1635/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1636ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1637                                           IdentifierInfo &II, Scope *S) {
1638  // Extension in C99.  Legal in C90, but warn about it.
1639  if (getLangOptions().C99)
1640    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1641  else
1642    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1643
1644  // FIXME: handle stuff like:
1645  // void foo() { extern float X(); }
1646  // void bar() { X(); }  <-- implicit decl for X in another scope.
1647
1648  // Set a Declarator for the implicit definition: int foo();
1649  const char *Dummy;
1650  DeclSpec DS;
1651  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1652  Error = Error; // Silence warning.
1653  assert(!Error && "Error setting up implicit decl!");
1654  Declarator D(DS, Declarator::BlockContext);
1655  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1656  D.SetIdentifier(&II, Loc);
1657
1658  // Insert this function into translation-unit scope.
1659
1660  DeclContext *PrevDC = CurContext;
1661  CurContext = Context.getTranslationUnitDecl();
1662
1663  FunctionDecl *FD =
1664    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1665  FD->setImplicit();
1666
1667  CurContext = PrevDC;
1668
1669  return FD;
1670}
1671
1672
1673TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1674                                    ScopedDecl *LastDeclarator) {
1675  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1676  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1677
1678  // Scope manipulation handled by caller.
1679  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1680                                           D.getIdentifierLoc(),
1681                                           D.getIdentifier(),
1682                                           T, LastDeclarator);
1683  if (D.getInvalidType())
1684    NewTD->setInvalidDecl();
1685  return NewTD;
1686}
1687
1688/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1689/// former case, Name will be non-null.  In the later case, Name will be null.
1690/// TagType indicates what kind of tag this is. TK indicates whether this is a
1691/// reference/declaration/definition of a tag.
1692Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1693                             SourceLocation KWLoc, IdentifierInfo *Name,
1694                             SourceLocation NameLoc, AttributeList *Attr) {
1695  // If this is a use of an existing tag, it must have a name.
1696  assert((Name != 0 || TK == TK_Definition) &&
1697         "Nameless record must be a definition!");
1698
1699  TagDecl::TagKind Kind;
1700  switch (TagType) {
1701  default: assert(0 && "Unknown tag type!");
1702  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1703  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1704  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1705  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1706  }
1707
1708  // If this is a named struct, check to see if there was a previous forward
1709  // declaration or definition.
1710  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1711  if (ScopedDecl *PrevDecl =
1712          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1713
1714    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1715            "unexpected Decl type");
1716    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1717      // If this is a use of a previous tag, or if the tag is already declared
1718      // in the same scope (so that the definition/declaration completes or
1719      // rementions the tag), reuse the decl.
1720      if (TK == TK_Reference ||
1721          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1722        // Make sure that this wasn't declared as an enum and now used as a
1723        // struct or something similar.
1724        if (PrevTagDecl->getTagKind() != Kind) {
1725          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1726          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1727          // Recover by making this an anonymous redefinition.
1728          Name = 0;
1729          PrevDecl = 0;
1730        } else {
1731          // If this is a use or a forward declaration, we're good.
1732          if (TK != TK_Definition)
1733            return PrevDecl;
1734
1735          // Diagnose attempts to redefine a tag.
1736          if (PrevTagDecl->isDefinition()) {
1737            Diag(NameLoc, diag::err_redefinition, Name->getName());
1738            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1739            // If this is a redefinition, recover by making this struct be
1740            // anonymous, which will make any later references get the previous
1741            // definition.
1742            Name = 0;
1743          } else {
1744            // Okay, this is definition of a previously declared or referenced
1745            // tag. Move the location of the decl to be the definition site.
1746            PrevDecl->setLocation(NameLoc);
1747            return PrevDecl;
1748          }
1749        }
1750      }
1751      // If we get here, this is a definition of a new struct type in a nested
1752      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1753      // type.
1754    } else {
1755      // PrevDecl is a namespace.
1756      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1757        // The tag name clashes with a namespace name, issue an error and recover
1758        // by making this tag be anonymous.
1759        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1760        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1761        Name = 0;
1762      }
1763    }
1764  }
1765
1766  // If there is an identifier, use the location of the identifier as the
1767  // location of the decl, otherwise use the location of the struct/union
1768  // keyword.
1769  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1770
1771  // Otherwise, if this is the first time we've seen this tag, create the decl.
1772  TagDecl *New;
1773  if (Kind == TagDecl::TK_enum) {
1774    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1775    // enum X { A, B, C } D;    D should chain to X.
1776    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1777    // If this is an undefined enum, warn.
1778    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1779  } else {
1780    // struct/union/class
1781
1782    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1783    // struct X { int A; } D;    D should chain to X.
1784    if (getLangOptions().CPlusPlus)
1785      // FIXME: Look for a way to use RecordDecl for simple structs.
1786      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1787    else
1788      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1789  }
1790
1791  // If this has an identifier, add it to the scope stack.
1792  if (Name) {
1793    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1794    // we find one that is.
1795    while ((S->getFlags() & Scope::DeclScope) == 0)
1796      S = S->getParent();
1797
1798    // Add it to the decl chain.
1799    PushOnScopeChains(New, S);
1800  }
1801
1802  if (Attr)
1803    ProcessDeclAttributeList(New, Attr);
1804  return New;
1805}
1806
1807/// Collect the instance variables declared in an Objective-C object.  Used in
1808/// the creation of structures from objects using the @defs directive.
1809static void CollectIvars(ObjCInterfaceDecl *Class,
1810                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1811  if (Class->getSuperClass())
1812    CollectIvars(Class->getSuperClass(), ivars);
1813  ivars.append(Class->ivar_begin(), Class->ivar_end());
1814}
1815
1816/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1817/// instance variables of ClassName into Decls.
1818void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1819                     IdentifierInfo *ClassName,
1820                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1821  // Check that ClassName is a valid class
1822  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1823  if (!Class) {
1824    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1825    return;
1826  }
1827  // Collect the instance variables
1828  CollectIvars(Class, Decls);
1829}
1830
1831QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1832  // This method tries to turn a variable array into a constant
1833  // array even when the size isn't an ICE.  This is necessary
1834  // for compatibility with code that depends on gcc's buggy
1835  // constant expression folding, like struct {char x[(int)(char*)2];}
1836  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1837    APValue Result;
1838    if (VLATy->getSizeExpr() &&
1839        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1840      llvm::APSInt &Res = Result.getInt();
1841      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1842        return Context.getConstantArrayType(VLATy->getElementType(),
1843                                            Res, ArrayType::Normal, 0);
1844    }
1845  }
1846  return QualType();
1847}
1848
1849/// ActOnField - Each field of a struct/union/class is passed into this in order
1850/// to create a FieldDecl object for it.
1851Sema::DeclTy *Sema::ActOnField(Scope *S,
1852                               SourceLocation DeclStart,
1853                               Declarator &D, ExprTy *BitfieldWidth) {
1854  IdentifierInfo *II = D.getIdentifier();
1855  Expr *BitWidth = (Expr*)BitfieldWidth;
1856  SourceLocation Loc = DeclStart;
1857  if (II) Loc = D.getIdentifierLoc();
1858
1859  // FIXME: Unnamed fields can be handled in various different ways, for
1860  // example, unnamed unions inject all members into the struct namespace!
1861
1862
1863  if (BitWidth) {
1864    // TODO: Validate.
1865    //printf("WARNING: BITFIELDS IGNORED!\n");
1866
1867    // 6.7.2.1p3
1868    // 6.7.2.1p4
1869
1870  } else {
1871    // Not a bitfield.
1872
1873    // validate II.
1874
1875  }
1876
1877  QualType T = GetTypeForDeclarator(D, S);
1878  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1879  bool InvalidDecl = false;
1880
1881  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1882  // than a variably modified type.
1883  if (T->isVariablyModifiedType()) {
1884    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
1885    if (!FixedTy.isNull()) {
1886      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
1887      T = FixedTy;
1888    } else {
1889      // FIXME: This diagnostic needs work
1890      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1891      InvalidDecl = true;
1892    }
1893  }
1894  // FIXME: Chain fielddecls together.
1895  FieldDecl *NewFD;
1896
1897  if (getLangOptions().CPlusPlus) {
1898    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
1899    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
1900                                 Loc, II, T, BitWidth);
1901    if (II)
1902      PushOnScopeChains(NewFD, S);
1903  }
1904  else
1905    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1906
1907  ProcessDeclAttributes(NewFD, D);
1908
1909  if (D.getInvalidType() || InvalidDecl)
1910    NewFD->setInvalidDecl();
1911  return NewFD;
1912}
1913
1914/// TranslateIvarVisibility - Translate visibility from a token ID to an
1915///  AST enum value.
1916static ObjCIvarDecl::AccessControl
1917TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1918  switch (ivarVisibility) {
1919    case tok::objc_private: return ObjCIvarDecl::Private;
1920    case tok::objc_public: return ObjCIvarDecl::Public;
1921    case tok::objc_protected: return ObjCIvarDecl::Protected;
1922    case tok::objc_package: return ObjCIvarDecl::Package;
1923    default: assert(false && "Unknown visitibility kind");
1924  }
1925}
1926
1927/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1928/// in order to create an IvarDecl object for it.
1929Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1930                              SourceLocation DeclStart,
1931                              Declarator &D, ExprTy *BitfieldWidth,
1932                              tok::ObjCKeywordKind Visibility) {
1933  IdentifierInfo *II = D.getIdentifier();
1934  Expr *BitWidth = (Expr*)BitfieldWidth;
1935  SourceLocation Loc = DeclStart;
1936  if (II) Loc = D.getIdentifierLoc();
1937
1938  // FIXME: Unnamed fields can be handled in various different ways, for
1939  // example, unnamed unions inject all members into the struct namespace!
1940
1941
1942  if (BitWidth) {
1943    // TODO: Validate.
1944    //printf("WARNING: BITFIELDS IGNORED!\n");
1945
1946    // 6.7.2.1p3
1947    // 6.7.2.1p4
1948
1949  } else {
1950    // Not a bitfield.
1951
1952    // validate II.
1953
1954  }
1955
1956  QualType T = GetTypeForDeclarator(D, S);
1957  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1958  bool InvalidDecl = false;
1959
1960  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1961  // than a variably modified type.
1962  if (T->isVariablyModifiedType()) {
1963    // FIXME: This diagnostic needs work
1964    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1965    InvalidDecl = true;
1966  }
1967
1968  // Get the visibility (access control) for this ivar.
1969  ObjCIvarDecl::AccessControl ac =
1970    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
1971                                        : ObjCIvarDecl::None;
1972
1973  // Construct the decl.
1974  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
1975                                             (Expr *)BitfieldWidth);
1976
1977  // Process attributes attached to the ivar.
1978  ProcessDeclAttributes(NewID, D);
1979
1980  if (D.getInvalidType() || InvalidDecl)
1981    NewID->setInvalidDecl();
1982
1983  return NewID;
1984}
1985
1986void Sema::ActOnFields(Scope* S,
1987                       SourceLocation RecLoc, DeclTy *RecDecl,
1988                       DeclTy **Fields, unsigned NumFields,
1989                       SourceLocation LBrac, SourceLocation RBrac) {
1990  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1991  assert(EnclosingDecl && "missing record or interface decl");
1992  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1993
1994  if (Record && Record->isDefinition()) {
1995    // Diagnose code like:
1996    //     struct S { struct S {} X; };
1997    // We discover this when we complete the outer S.  Reject and ignore the
1998    // outer S.
1999    Diag(Record->getLocation(), diag::err_nested_redefinition,
2000         Record->getKindName());
2001    Diag(RecLoc, diag::err_previous_definition);
2002    Record->setInvalidDecl();
2003    return;
2004  }
2005  // Verify that all the fields are okay.
2006  unsigned NumNamedMembers = 0;
2007  llvm::SmallVector<FieldDecl*, 32> RecFields;
2008  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2009
2010  for (unsigned i = 0; i != NumFields; ++i) {
2011
2012    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2013    assert(FD && "missing field decl");
2014
2015    // Remember all fields.
2016    RecFields.push_back(FD);
2017
2018    // Get the type for the field.
2019    Type *FDTy = FD->getType().getTypePtr();
2020
2021    // C99 6.7.2.1p2 - A field may not be a function type.
2022    if (FDTy->isFunctionType()) {
2023      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2024           FD->getName());
2025      FD->setInvalidDecl();
2026      EnclosingDecl->setInvalidDecl();
2027      continue;
2028    }
2029    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2030    if (FDTy->isIncompleteType()) {
2031      if (!Record) {  // Incomplete ivar type is always an error.
2032        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2033        FD->setInvalidDecl();
2034        EnclosingDecl->setInvalidDecl();
2035        continue;
2036      }
2037      if (i != NumFields-1 ||                   // ... that the last member ...
2038          !Record->isStruct() ||  // ... of a structure ...
2039          !FDTy->isArrayType()) {         //... may have incomplete array type.
2040        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2041        FD->setInvalidDecl();
2042        EnclosingDecl->setInvalidDecl();
2043        continue;
2044      }
2045      if (NumNamedMembers < 1) {  //... must have more than named member ...
2046        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2047             FD->getName());
2048        FD->setInvalidDecl();
2049        EnclosingDecl->setInvalidDecl();
2050        continue;
2051      }
2052      // Okay, we have a legal flexible array member at the end of the struct.
2053      if (Record)
2054        Record->setHasFlexibleArrayMember(true);
2055    }
2056    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2057    /// field of another structure or the element of an array.
2058    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2059      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2060        // If this is a member of a union, then entire union becomes "flexible".
2061        if (Record && Record->isUnion()) {
2062          Record->setHasFlexibleArrayMember(true);
2063        } else {
2064          // If this is a struct/class and this is not the last element, reject
2065          // it.  Note that GCC supports variable sized arrays in the middle of
2066          // structures.
2067          if (i != NumFields-1) {
2068            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2069                 FD->getName());
2070            FD->setInvalidDecl();
2071            EnclosingDecl->setInvalidDecl();
2072            continue;
2073          }
2074          // We support flexible arrays at the end of structs in other structs
2075          // as an extension.
2076          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2077               FD->getName());
2078          if (Record)
2079            Record->setHasFlexibleArrayMember(true);
2080        }
2081      }
2082    }
2083    /// A field cannot be an Objective-c object
2084    if (FDTy->isObjCInterfaceType()) {
2085      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2086           FD->getName());
2087      FD->setInvalidDecl();
2088      EnclosingDecl->setInvalidDecl();
2089      continue;
2090    }
2091    // Keep track of the number of named members.
2092    if (IdentifierInfo *II = FD->getIdentifier()) {
2093      // Detect duplicate member names.
2094      if (!FieldIDs.insert(II)) {
2095        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2096        // Find the previous decl.
2097        SourceLocation PrevLoc;
2098        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2099          assert(i != e && "Didn't find previous def!");
2100          if (RecFields[i]->getIdentifier() == II) {
2101            PrevLoc = RecFields[i]->getLocation();
2102            break;
2103          }
2104        }
2105        Diag(PrevLoc, diag::err_previous_definition);
2106        FD->setInvalidDecl();
2107        EnclosingDecl->setInvalidDecl();
2108        continue;
2109      }
2110      ++NumNamedMembers;
2111    }
2112  }
2113
2114  // Okay, we successfully defined 'Record'.
2115  if (Record) {
2116    Record->defineBody(&RecFields[0], RecFields.size());
2117    Consumer.HandleTagDeclDefinition(Record);
2118  } else {
2119    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2120    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2121      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2122    else if (ObjCImplementationDecl *IMPDecl =
2123               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2124      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2125      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2126      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2127    }
2128  }
2129}
2130
2131Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2132                                      DeclTy *lastEnumConst,
2133                                      SourceLocation IdLoc, IdentifierInfo *Id,
2134                                      SourceLocation EqualLoc, ExprTy *val) {
2135  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2136  EnumConstantDecl *LastEnumConst =
2137    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2138  Expr *Val = static_cast<Expr*>(val);
2139
2140  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2141  // we find one that is.
2142  while ((S->getFlags() & Scope::DeclScope) == 0)
2143    S = S->getParent();
2144
2145  // Verify that there isn't already something declared with this name in this
2146  // scope.
2147  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2148    // When in C++, we may get a TagDecl with the same name; in this case the
2149    // enum constant will 'hide' the tag.
2150    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2151           "Received TagDecl when not in C++!");
2152    if (!isa<TagDecl>(PrevDecl) &&
2153        IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2154      if (isa<EnumConstantDecl>(PrevDecl))
2155        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2156      else
2157        Diag(IdLoc, diag::err_redefinition, Id->getName());
2158      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2159      delete Val;
2160      return 0;
2161    }
2162  }
2163
2164  llvm::APSInt EnumVal(32);
2165  QualType EltTy;
2166  if (Val) {
2167    // Make sure to promote the operand type to int.
2168    UsualUnaryConversions(Val);
2169
2170    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2171    SourceLocation ExpLoc;
2172    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2173      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2174           Id->getName());
2175      delete Val;
2176      Val = 0;  // Just forget about it.
2177    } else {
2178      EltTy = Val->getType();
2179    }
2180  }
2181
2182  if (!Val) {
2183    if (LastEnumConst) {
2184      // Assign the last value + 1.
2185      EnumVal = LastEnumConst->getInitVal();
2186      ++EnumVal;
2187
2188      // Check for overflow on increment.
2189      if (EnumVal < LastEnumConst->getInitVal())
2190        Diag(IdLoc, diag::warn_enum_value_overflow);
2191
2192      EltTy = LastEnumConst->getType();
2193    } else {
2194      // First value, set to zero.
2195      EltTy = Context.IntTy;
2196      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2197    }
2198  }
2199
2200  EnumConstantDecl *New =
2201    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2202                             Val, EnumVal,
2203                             LastEnumConst);
2204
2205  // Register this decl in the current scope stack.
2206  PushOnScopeChains(New, S);
2207  return New;
2208}
2209
2210void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2211                         DeclTy **Elements, unsigned NumElements) {
2212  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2213  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
2214
2215  // TODO: If the result value doesn't fit in an int, it must be a long or long
2216  // long value.  ISO C does not support this, but GCC does as an extension,
2217  // emit a warning.
2218  unsigned IntWidth = Context.Target.getIntWidth();
2219
2220  // Verify that all the values are okay, compute the size of the values, and
2221  // reverse the list.
2222  unsigned NumNegativeBits = 0;
2223  unsigned NumPositiveBits = 0;
2224
2225  // Keep track of whether all elements have type int.
2226  bool AllElementsInt = true;
2227
2228  EnumConstantDecl *EltList = 0;
2229  for (unsigned i = 0; i != NumElements; ++i) {
2230    EnumConstantDecl *ECD =
2231      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2232    if (!ECD) continue;  // Already issued a diagnostic.
2233
2234    // If the enum value doesn't fit in an int, emit an extension warning.
2235    const llvm::APSInt &InitVal = ECD->getInitVal();
2236    assert(InitVal.getBitWidth() >= IntWidth &&
2237           "Should have promoted value to int");
2238    if (InitVal.getBitWidth() > IntWidth) {
2239      llvm::APSInt V(InitVal);
2240      V.trunc(IntWidth);
2241      V.extend(InitVal.getBitWidth());
2242      if (V != InitVal)
2243        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2244             InitVal.toString());
2245    }
2246
2247    // Keep track of the size of positive and negative values.
2248    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2249      NumPositiveBits = std::max(NumPositiveBits,
2250                                 (unsigned)InitVal.getActiveBits());
2251    else
2252      NumNegativeBits = std::max(NumNegativeBits,
2253                                 (unsigned)InitVal.getMinSignedBits());
2254
2255    // Keep track of whether every enum element has type int (very commmon).
2256    if (AllElementsInt)
2257      AllElementsInt = ECD->getType() == Context.IntTy;
2258
2259    ECD->setNextDeclarator(EltList);
2260    EltList = ECD;
2261  }
2262
2263  // Figure out the type that should be used for this enum.
2264  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2265  QualType BestType;
2266  unsigned BestWidth;
2267
2268  if (NumNegativeBits) {
2269    // If there is a negative value, figure out the smallest integer type (of
2270    // int/long/longlong) that fits.
2271    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2272      BestType = Context.IntTy;
2273      BestWidth = IntWidth;
2274    } else {
2275      BestWidth = Context.Target.getLongWidth();
2276
2277      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2278        BestType = Context.LongTy;
2279      else {
2280        BestWidth = Context.Target.getLongLongWidth();
2281
2282        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2283          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2284        BestType = Context.LongLongTy;
2285      }
2286    }
2287  } else {
2288    // If there is no negative value, figure out which of uint, ulong, ulonglong
2289    // fits.
2290    if (NumPositiveBits <= IntWidth) {
2291      BestType = Context.UnsignedIntTy;
2292      BestWidth = IntWidth;
2293    } else if (NumPositiveBits <=
2294               (BestWidth = Context.Target.getLongWidth())) {
2295      BestType = Context.UnsignedLongTy;
2296    } else {
2297      BestWidth = Context.Target.getLongLongWidth();
2298      assert(NumPositiveBits <= BestWidth &&
2299             "How could an initializer get larger than ULL?");
2300      BestType = Context.UnsignedLongLongTy;
2301    }
2302  }
2303
2304  // Loop over all of the enumerator constants, changing their types to match
2305  // the type of the enum if needed.
2306  for (unsigned i = 0; i != NumElements; ++i) {
2307    EnumConstantDecl *ECD =
2308      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2309    if (!ECD) continue;  // Already issued a diagnostic.
2310
2311    // Standard C says the enumerators have int type, but we allow, as an
2312    // extension, the enumerators to be larger than int size.  If each
2313    // enumerator value fits in an int, type it as an int, otherwise type it the
2314    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2315    // that X has type 'int', not 'unsigned'.
2316    if (ECD->getType() == Context.IntTy) {
2317      // Make sure the init value is signed.
2318      llvm::APSInt IV = ECD->getInitVal();
2319      IV.setIsSigned(true);
2320      ECD->setInitVal(IV);
2321      continue;  // Already int type.
2322    }
2323
2324    // Determine whether the value fits into an int.
2325    llvm::APSInt InitVal = ECD->getInitVal();
2326    bool FitsInInt;
2327    if (InitVal.isUnsigned() || !InitVal.isNegative())
2328      FitsInInt = InitVal.getActiveBits() < IntWidth;
2329    else
2330      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2331
2332    // If it fits into an integer type, force it.  Otherwise force it to match
2333    // the enum decl type.
2334    QualType NewTy;
2335    unsigned NewWidth;
2336    bool NewSign;
2337    if (FitsInInt) {
2338      NewTy = Context.IntTy;
2339      NewWidth = IntWidth;
2340      NewSign = true;
2341    } else if (ECD->getType() == BestType) {
2342      // Already the right type!
2343      continue;
2344    } else {
2345      NewTy = BestType;
2346      NewWidth = BestWidth;
2347      NewSign = BestType->isSignedIntegerType();
2348    }
2349
2350    // Adjust the APSInt value.
2351    InitVal.extOrTrunc(NewWidth);
2352    InitVal.setIsSigned(NewSign);
2353    ECD->setInitVal(InitVal);
2354
2355    // Adjust the Expr initializer and type.
2356    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2357    ECD->setType(NewTy);
2358  }
2359
2360  Enum->defineElements(EltList, BestType);
2361  Consumer.HandleTagDeclDefinition(Enum);
2362}
2363
2364Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2365                                          ExprTy *expr) {
2366  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2367
2368  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2369}
2370
2371Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2372                                     SourceLocation LBrace,
2373                                     SourceLocation RBrace,
2374                                     const char *Lang,
2375                                     unsigned StrSize,
2376                                     DeclTy *D) {
2377  LinkageSpecDecl::LanguageIDs Language;
2378  Decl *dcl = static_cast<Decl *>(D);
2379  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2380    Language = LinkageSpecDecl::lang_c;
2381  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2382    Language = LinkageSpecDecl::lang_cxx;
2383  else {
2384    Diag(Loc, diag::err_bad_language);
2385    return 0;
2386  }
2387
2388  // FIXME: Add all the various semantics of linkage specifications
2389  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2390}
2391