SemaDecl.cpp revision c79209789205c9de5fcc7aedfd6308057d40b618
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37#include <cstring>
38#include <functional>
39#include <queue>
40using namespace clang;
41
42/// getDeclName - Return a pretty name for the specified decl if possible, or
43/// an empty string if not.  This is used for pretty crash reporting.
44std::string Sema::getDeclName(DeclPtrTy d) {
45  Decl *D = d.getAs<Decl>();
46  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
47    return DN->getQualifiedNameAsString();
48  return "";
49}
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
52  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
53}
54
55/// \brief If the identifier refers to a type name within this scope,
56/// return the declaration of that type.
57///
58/// This routine performs ordinary name lookup of the identifier II
59/// within the given scope, with optional C++ scope specifier SS, to
60/// determine whether the name refers to a type. If so, returns an
61/// opaque pointer (actually a QualType) corresponding to that
62/// type. Otherwise, returns NULL.
63///
64/// If name lookup results in an ambiguity, this routine will complain
65/// and then return NULL.
66Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
67                                Scope *S, const CXXScopeSpec *SS,
68                                bool isClassName) {
69  // C++ [temp.res]p3:
70  //   A qualified-id that refers to a type and in which the
71  //   nested-name-specifier depends on a template-parameter (14.6.2)
72  //   shall be prefixed by the keyword typename to indicate that the
73  //   qualified-id denotes a type, forming an
74  //   elaborated-type-specifier (7.1.5.3).
75  //
76  // We therefore do not perform any name lookup if the result would
77  // refer to a member of an unknown specialization.
78  if (SS && isUnknownSpecialization(*SS)) {
79    if (!isClassName)
80      return 0;
81
82    // We know from the grammar that this name refers to a type, so build a
83    // TypenameType node to describe the type.
84    // FIXME: Record somewhere that this TypenameType node has no "typename"
85    // keyword associated with it.
86    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
87                             II, SS->getRange()).getAsOpaquePtr();
88  }
89
90  LookupResult Result;
91  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
92
93  NamedDecl *IIDecl = 0;
94  switch (Result.getKind()) {
95  case LookupResult::NotFound:
96  case LookupResult::FoundOverloaded:
97    return 0;
98
99  case LookupResult::Ambiguous:
100    // Recover from type-hiding ambiguities by hiding the type.  We'll
101    // do the lookup again when looking for an object, and we can
102    // diagnose the error then.  If we don't do this, then the error
103    // about hiding the type will be immediately followed by an error
104    // that only makes sense if the identifier was treated like a type.
105    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
106      return 0;
107
108    // Look to see if we have a type anywhere in the list of results.
109    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
110         Res != ResEnd; ++Res) {
111      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
112        if (!IIDecl ||
113            (*Res)->getLocation().getRawEncoding() <
114              IIDecl->getLocation().getRawEncoding())
115          IIDecl = *Res;
116      }
117    }
118
119    if (!IIDecl) {
120      // None of the entities we found is a type, so there is no way
121      // to even assume that the result is a type. In this case, don't
122      // complain about the ambiguity. The parser will either try to
123      // perform this lookup again (e.g., as an object name), which
124      // will produce the ambiguity, or will complain that it expected
125      // a type name.
126      return 0;
127    }
128
129    // We found a type within the ambiguous lookup; diagnose the
130    // ambiguity and then return that type. This might be the right
131    // answer, or it might not be, but it suppresses any attempt to
132    // perform the name lookup again.
133    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
134    break;
135
136  case LookupResult::Found:
137    IIDecl = Result.getFoundDecl();
138    break;
139  }
140
141  assert(IIDecl && "Didn't find decl");
142
143  QualType T;
144  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
145    DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147    // C++ [temp.local]p2:
148    //   Within the scope of a class template specialization or
149    //   partial specialization, when the injected-class-name is
150    //   not followed by a <, it is equivalent to the
151    //   injected-class-name followed by the template-argument s
152    //   of the class template specialization or partial
153    //   specialization enclosed in <>.
154    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
155      if (RD->isInjectedClassName())
156        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
157          T = Template->getInjectedClassNameType(Context);
158
159    if (T.isNull())
160      T = Context.getTypeDeclType(TD);
161
162    if (SS)
163      T = getQualifiedNameType(*SS, T);
164
165  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
166    DiagnoseUseOfDecl(IIDecl, NameLoc);
167    T = Context.getObjCInterfaceType(IDecl);
168  } else
169    return 0;
170
171  return T.getAsOpaquePtr();
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R;
182  LookupName(R, S, &II, LookupTagName, false, false);
183  if (R.getKind() == LookupResult::Found)
184    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
185      switch (TD->getTagKind()) {
186      case TagDecl::TK_struct: return DeclSpec::TST_struct;
187      case TagDecl::TK_union:  return DeclSpec::TST_union;
188      case TagDecl::TK_class:  return DeclSpec::TST_class;
189      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
190      }
191    }
192
193  return DeclSpec::TST_unspecified;
194}
195
196bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
197                                   SourceLocation IILoc,
198                                   Scope *S,
199                                   const CXXScopeSpec *SS,
200                                   TypeTy *&SuggestedType) {
201  // We don't have anything to suggest (yet).
202  SuggestedType = 0;
203
204  // FIXME: Should we move the logic that tries to recover from a missing tag
205  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
206
207  if (!SS)
208    Diag(IILoc, diag::err_unknown_typename) << &II;
209  else if (DeclContext *DC = computeDeclContext(*SS, false))
210    Diag(IILoc, diag::err_typename_nested_not_found)
211      << &II << DC << SS->getRange();
212  else if (isDependentScopeSpecifier(*SS)) {
213    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
214      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
215      << SourceRange(SS->getRange().getBegin(), IILoc)
216      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
217                                               "typename ");
218    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
219  } else {
220    assert(SS && SS->isInvalid() &&
221           "Invalid scope specifier has already been diagnosed");
222  }
223
224  return true;
225}
226
227// Determines the context to return to after temporarily entering a
228// context.  This depends in an unnecessarily complicated way on the
229// exact ordering of callbacks from the parser.
230DeclContext *Sema::getContainingDC(DeclContext *DC) {
231
232  // Functions defined inline within classes aren't parsed until we've
233  // finished parsing the top-level class, so the top-level class is
234  // the context we'll need to return to.
235  if (isa<FunctionDecl>(DC)) {
236    DC = DC->getLexicalParent();
237
238    // A function not defined within a class will always return to its
239    // lexical context.
240    if (!isa<CXXRecordDecl>(DC))
241      return DC;
242
243    // A C++ inline method/friend is parsed *after* the topmost class
244    // it was declared in is fully parsed ("complete");  the topmost
245    // class is the context we need to return to.
246    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
247      DC = RD;
248
249    // Return the declaration context of the topmost class the inline method is
250    // declared in.
251    return DC;
252  }
253
254  if (isa<ObjCMethodDecl>(DC))
255    return Context.getTranslationUnitDecl();
256
257  return DC->getLexicalParent();
258}
259
260void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
261  assert(getContainingDC(DC) == CurContext &&
262      "The next DeclContext should be lexically contained in the current one.");
263  CurContext = DC;
264  S->setEntity(DC);
265}
266
267void Sema::PopDeclContext() {
268  assert(CurContext && "DeclContext imbalance!");
269
270  CurContext = getContainingDC(CurContext);
271}
272
273/// EnterDeclaratorContext - Used when we must lookup names in the context
274/// of a declarator's nested name specifier.
275void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
276  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
277  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
278  CurContext = DC;
279  assert(CurContext && "No context?");
280  S->setEntity(CurContext);
281}
282
283void Sema::ExitDeclaratorContext(Scope *S) {
284  S->setEntity(PreDeclaratorDC);
285  PreDeclaratorDC = 0;
286
287  // Reset CurContext to the nearest enclosing context.
288  while (!S->getEntity() && S->getParent())
289    S = S->getParent();
290  CurContext = static_cast<DeclContext*>(S->getEntity());
291  assert(CurContext && "No context?");
292}
293
294/// \brief Determine whether we allow overloading of the function
295/// PrevDecl with another declaration.
296///
297/// This routine determines whether overloading is possible, not
298/// whether some new function is actually an overload. It will return
299/// true in C++ (where we can always provide overloads) or, as an
300/// extension, in C when the previous function is already an
301/// overloaded function declaration or has the "overloadable"
302/// attribute.
303static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
304  if (Context.getLangOptions().CPlusPlus)
305    return true;
306
307  if (isa<OverloadedFunctionDecl>(PrevDecl))
308    return true;
309
310  return PrevDecl->getAttr<OverloadableAttr>() != 0;
311}
312
313/// Add this decl to the scope shadowed decl chains.
314void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
315  // Move up the scope chain until we find the nearest enclosing
316  // non-transparent context. The declaration will be introduced into this
317  // scope.
318  while (S->getEntity() &&
319         ((DeclContext *)S->getEntity())->isTransparentContext())
320    S = S->getParent();
321
322  // Add scoped declarations into their context, so that they can be
323  // found later. Declarations without a context won't be inserted
324  // into any context.
325  if (AddToContext)
326    CurContext->addDecl(D);
327
328  // Out-of-line function and variable definitions should not be pushed into
329  // scope.
330  if ((isa<FunctionTemplateDecl>(D) &&
331       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
332      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
333      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
334    return;
335
336  // If this replaces anything in the current scope,
337  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
338                               IEnd = IdResolver.end();
339  for (; I != IEnd; ++I) {
340    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
341      S->RemoveDecl(DeclPtrTy::make(*I));
342      IdResolver.RemoveDecl(*I);
343
344      // Should only need to replace one decl.
345      break;
346    }
347  }
348
349  S->AddDecl(DeclPtrTy::make(D));
350  IdResolver.AddDecl(D);
351}
352
353bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
354  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
355    // Look inside the overload set to determine if any of the declarations
356    // are in scope. (Possibly) build a new overload set containing only
357    // those declarations that are in scope.
358    OverloadedFunctionDecl *NewOvl = 0;
359    bool FoundInScope = false;
360    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
361         FEnd = Ovl->function_end();
362         F != FEnd; ++F) {
363      NamedDecl *FD = F->get();
364      if (!isDeclInScope(FD, Ctx, S)) {
365        if (!NewOvl && F != Ovl->function_begin()) {
366          NewOvl = OverloadedFunctionDecl::Create(Context,
367                                                  F->get()->getDeclContext(),
368                                                  F->get()->getDeclName());
369          D = NewOvl;
370          for (OverloadedFunctionDecl::function_iterator
371               First = Ovl->function_begin();
372               First != F; ++First)
373            NewOvl->addOverload(*First);
374        }
375      } else {
376        FoundInScope = true;
377        if (NewOvl)
378          NewOvl->addOverload(*F);
379      }
380    }
381
382    return FoundInScope;
383  }
384
385  return IdResolver.isDeclInScope(D, Ctx, Context, S);
386}
387
388static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
389  if (D->isUsed() || D->hasAttr<UnusedAttr>())
390    return false;
391
392  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
393    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
394      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
395        if (!RD->hasTrivialConstructor())
396          return false;
397        if (!RD->hasTrivialDestructor())
398          return false;
399      }
400    }
401  }
402
403  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
404          !isa<ImplicitParamDecl>(D) &&
405          D->getDeclContext()->isFunctionOrMethod());
406}
407
408void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
409  if (S->decl_empty()) return;
410  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
411         "Scope shouldn't contain decls!");
412
413  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
414       I != E; ++I) {
415    Decl *TmpD = (*I).getAs<Decl>();
416    assert(TmpD && "This decl didn't get pushed??");
417
418    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
419    NamedDecl *D = cast<NamedDecl>(TmpD);
420
421    if (!D->getDeclName()) continue;
422
423    // Diagnose unused variables in this scope.
424    if (ShouldDiagnoseUnusedDecl(D))
425      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
426
427    // Remove this name from our lexical scope.
428    IdResolver.RemoveDecl(D);
429  }
430}
431
432/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
433/// return 0 if one not found.
434ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
435  // The third "scope" argument is 0 since we aren't enabling lazy built-in
436  // creation from this context.
437  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
438
439  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
440}
441
442/// getNonFieldDeclScope - Retrieves the innermost scope, starting
443/// from S, where a non-field would be declared. This routine copes
444/// with the difference between C and C++ scoping rules in structs and
445/// unions. For example, the following code is well-formed in C but
446/// ill-formed in C++:
447/// @code
448/// struct S6 {
449///   enum { BAR } e;
450/// };
451///
452/// void test_S6() {
453///   struct S6 a;
454///   a.e = BAR;
455/// }
456/// @endcode
457/// For the declaration of BAR, this routine will return a different
458/// scope. The scope S will be the scope of the unnamed enumeration
459/// within S6. In C++, this routine will return the scope associated
460/// with S6, because the enumeration's scope is a transparent
461/// context but structures can contain non-field names. In C, this
462/// routine will return the translation unit scope, since the
463/// enumeration's scope is a transparent context and structures cannot
464/// contain non-field names.
465Scope *Sema::getNonFieldDeclScope(Scope *S) {
466  while (((S->getFlags() & Scope::DeclScope) == 0) ||
467         (S->getEntity() &&
468          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
469         (S->isClassScope() && !getLangOptions().CPlusPlus))
470    S = S->getParent();
471  return S;
472}
473
474void Sema::InitBuiltinVaListType() {
475  if (!Context.getBuiltinVaListType().isNull())
476    return;
477
478  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
479  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
480  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
481  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
482}
483
484/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
485/// file scope.  lazily create a decl for it. ForRedeclaration is true
486/// if we're creating this built-in in anticipation of redeclaring the
487/// built-in.
488NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
489                                     Scope *S, bool ForRedeclaration,
490                                     SourceLocation Loc) {
491  Builtin::ID BID = (Builtin::ID)bid;
492
493  if (Context.BuiltinInfo.hasVAListUse(BID))
494    InitBuiltinVaListType();
495
496  ASTContext::GetBuiltinTypeError Error;
497  QualType R = Context.GetBuiltinType(BID, Error);
498  switch (Error) {
499  case ASTContext::GE_None:
500    // Okay
501    break;
502
503  case ASTContext::GE_Missing_stdio:
504    if (ForRedeclaration)
505      Diag(Loc, diag::err_implicit_decl_requires_stdio)
506        << Context.BuiltinInfo.GetName(BID);
507    return 0;
508
509  case ASTContext::GE_Missing_setjmp:
510    if (ForRedeclaration)
511      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
512        << Context.BuiltinInfo.GetName(BID);
513    return 0;
514  }
515
516  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
517    Diag(Loc, diag::ext_implicit_lib_function_decl)
518      << Context.BuiltinInfo.GetName(BID)
519      << R;
520    if (Context.BuiltinInfo.getHeaderName(BID) &&
521        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
522          != Diagnostic::Ignored)
523      Diag(Loc, diag::note_please_include_header)
524        << Context.BuiltinInfo.getHeaderName(BID)
525        << Context.BuiltinInfo.GetName(BID);
526  }
527
528  FunctionDecl *New = FunctionDecl::Create(Context,
529                                           Context.getTranslationUnitDecl(),
530                                           Loc, II, R, /*DInfo=*/0,
531                                           FunctionDecl::Extern, false,
532                                           /*hasPrototype=*/true);
533  New->setImplicit();
534
535  // Create Decl objects for each parameter, adding them to the
536  // FunctionDecl.
537  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
538    llvm::SmallVector<ParmVarDecl*, 16> Params;
539    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
540      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
541                                           FT->getArgType(i), /*DInfo=*/0,
542                                           VarDecl::None, 0));
543    New->setParams(Context, Params.data(), Params.size());
544  }
545
546  AddKnownFunctionAttributes(New);
547
548  // TUScope is the translation-unit scope to insert this function into.
549  // FIXME: This is hideous. We need to teach PushOnScopeChains to
550  // relate Scopes to DeclContexts, and probably eliminate CurContext
551  // entirely, but we're not there yet.
552  DeclContext *SavedContext = CurContext;
553  CurContext = Context.getTranslationUnitDecl();
554  PushOnScopeChains(New, TUScope);
555  CurContext = SavedContext;
556  return New;
557}
558
559/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
560/// same name and scope as a previous declaration 'Old'.  Figure out
561/// how to resolve this situation, merging decls or emitting
562/// diagnostics as appropriate. If there was an error, set New to be invalid.
563///
564void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
565  // If either decl is known invalid already, set the new one to be invalid and
566  // don't bother doing any merging checks.
567  if (New->isInvalidDecl() || OldD->isInvalidDecl())
568    return New->setInvalidDecl();
569
570  // Allow multiple definitions for ObjC built-in typedefs.
571  // FIXME: Verify the underlying types are equivalent!
572  if (getLangOptions().ObjC1) {
573    const IdentifierInfo *TypeID = New->getIdentifier();
574    switch (TypeID->getLength()) {
575    default: break;
576    case 2:
577      if (!TypeID->isStr("id"))
578        break;
579      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
580      // Install the built-in type for 'id', ignoring the current definition.
581      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
582      return;
583    case 5:
584      if (!TypeID->isStr("Class"))
585        break;
586      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
587      // Install the built-in type for 'Class', ignoring the current definition.
588      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
589      return;
590    case 3:
591      if (!TypeID->isStr("SEL"))
592        break;
593      Context.setObjCSelType(Context.getTypeDeclType(New));
594      return;
595    case 8:
596      if (!TypeID->isStr("Protocol"))
597        break;
598      Context.setObjCProtoType(New->getUnderlyingType());
599      return;
600    }
601    // Fall through - the typedef name was not a builtin type.
602  }
603  // Verify the old decl was also a type.
604  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
605  if (!Old) {
606    Diag(New->getLocation(), diag::err_redefinition_different_kind)
607      << New->getDeclName();
608    if (OldD->getLocation().isValid())
609      Diag(OldD->getLocation(), diag::note_previous_definition);
610    return New->setInvalidDecl();
611  }
612
613  // Determine the "old" type we'll use for checking and diagnostics.
614  QualType OldType;
615  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
616    OldType = OldTypedef->getUnderlyingType();
617  else
618    OldType = Context.getTypeDeclType(Old);
619
620  // If the typedef types are not identical, reject them in all languages and
621  // with any extensions enabled.
622
623  if (OldType != New->getUnderlyingType() &&
624      Context.getCanonicalType(OldType) !=
625      Context.getCanonicalType(New->getUnderlyingType())) {
626    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
627      << New->getUnderlyingType() << OldType;
628    if (Old->getLocation().isValid())
629      Diag(Old->getLocation(), diag::note_previous_definition);
630    return New->setInvalidDecl();
631  }
632
633  if (getLangOptions().Microsoft)
634    return;
635
636  // C++ [dcl.typedef]p2:
637  //   In a given non-class scope, a typedef specifier can be used to
638  //   redefine the name of any type declared in that scope to refer
639  //   to the type to which it already refers.
640  if (getLangOptions().CPlusPlus) {
641    if (!isa<CXXRecordDecl>(CurContext))
642      return;
643    Diag(New->getLocation(), diag::err_redefinition)
644      << New->getDeclName();
645    Diag(Old->getLocation(), diag::note_previous_definition);
646    return New->setInvalidDecl();
647  }
648
649  // If we have a redefinition of a typedef in C, emit a warning.  This warning
650  // is normally mapped to an error, but can be controlled with
651  // -Wtypedef-redefinition.  If either the original or the redefinition is
652  // in a system header, don't emit this for compatibility with GCC.
653  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
654      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
655       Context.getSourceManager().isInSystemHeader(New->getLocation())))
656    return;
657
658  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
659    << New->getDeclName();
660  Diag(Old->getLocation(), diag::note_previous_definition);
661  return;
662}
663
664/// DeclhasAttr - returns true if decl Declaration already has the target
665/// attribute.
666static bool
667DeclHasAttr(const Decl *decl, const Attr *target) {
668  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
669    if (attr->getKind() == target->getKind())
670      return true;
671
672  return false;
673}
674
675/// MergeAttributes - append attributes from the Old decl to the New one.
676static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
677  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
678    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
679      Attr *NewAttr = attr->clone(C);
680      NewAttr->setInherited(true);
681      New->addAttr(NewAttr);
682    }
683  }
684}
685
686/// Used in MergeFunctionDecl to keep track of function parameters in
687/// C.
688struct GNUCompatibleParamWarning {
689  ParmVarDecl *OldParm;
690  ParmVarDecl *NewParm;
691  QualType PromotedType;
692};
693
694/// MergeFunctionDecl - We just parsed a function 'New' from
695/// declarator D which has the same name and scope as a previous
696/// declaration 'Old'.  Figure out how to resolve this situation,
697/// merging decls or emitting diagnostics as appropriate.
698///
699/// In C++, New and Old must be declarations that are not
700/// overloaded. Use IsOverload to determine whether New and Old are
701/// overloaded, and to select the Old declaration that New should be
702/// merged with.
703///
704/// Returns true if there was an error, false otherwise.
705bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
706  assert(!isa<OverloadedFunctionDecl>(OldD) &&
707         "Cannot merge with an overloaded function declaration");
708
709  // Verify the old decl was also a function.
710  FunctionDecl *Old = 0;
711  if (FunctionTemplateDecl *OldFunctionTemplate
712        = dyn_cast<FunctionTemplateDecl>(OldD))
713    Old = OldFunctionTemplate->getTemplatedDecl();
714  else
715    Old = dyn_cast<FunctionDecl>(OldD);
716  if (!Old) {
717    Diag(New->getLocation(), diag::err_redefinition_different_kind)
718      << New->getDeclName();
719    Diag(OldD->getLocation(), diag::note_previous_definition);
720    return true;
721  }
722
723  // Determine whether the previous declaration was a definition,
724  // implicit declaration, or a declaration.
725  diag::kind PrevDiag;
726  if (Old->isThisDeclarationADefinition())
727    PrevDiag = diag::note_previous_definition;
728  else if (Old->isImplicit())
729    PrevDiag = diag::note_previous_implicit_declaration;
730  else
731    PrevDiag = diag::note_previous_declaration;
732
733  QualType OldQType = Context.getCanonicalType(Old->getType());
734  QualType NewQType = Context.getCanonicalType(New->getType());
735
736  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
737      New->getStorageClass() == FunctionDecl::Static &&
738      Old->getStorageClass() != FunctionDecl::Static) {
739    Diag(New->getLocation(), diag::err_static_non_static)
740      << New;
741    Diag(Old->getLocation(), PrevDiag);
742    return true;
743  }
744
745  if (getLangOptions().CPlusPlus) {
746    // (C++98 13.1p2):
747    //   Certain function declarations cannot be overloaded:
748    //     -- Function declarations that differ only in the return type
749    //        cannot be overloaded.
750    QualType OldReturnType
751      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
752    QualType NewReturnType
753      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
754    if (OldReturnType != NewReturnType) {
755      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
756      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
757      return true;
758    }
759
760    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
761    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
762    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
763        NewMethod->getLexicalDeclContext()->isRecord()) {
764      //    -- Member function declarations with the same name and the
765      //       same parameter types cannot be overloaded if any of them
766      //       is a static member function declaration.
767      if (OldMethod->isStatic() || NewMethod->isStatic()) {
768        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
769        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
770        return true;
771      }
772
773      // C++ [class.mem]p1:
774      //   [...] A member shall not be declared twice in the
775      //   member-specification, except that a nested class or member
776      //   class template can be declared and then later defined.
777      unsigned NewDiag;
778      if (isa<CXXConstructorDecl>(OldMethod))
779        NewDiag = diag::err_constructor_redeclared;
780      else if (isa<CXXDestructorDecl>(NewMethod))
781        NewDiag = diag::err_destructor_redeclared;
782      else if (isa<CXXConversionDecl>(NewMethod))
783        NewDiag = diag::err_conv_function_redeclared;
784      else
785        NewDiag = diag::err_member_redeclared;
786
787      Diag(New->getLocation(), NewDiag);
788      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
789    }
790
791    // (C++98 8.3.5p3):
792    //   All declarations for a function shall agree exactly in both the
793    //   return type and the parameter-type-list.
794    if (OldQType == NewQType)
795      return MergeCompatibleFunctionDecls(New, Old);
796
797    // Fall through for conflicting redeclarations and redefinitions.
798  }
799
800  // C: Function types need to be compatible, not identical. This handles
801  // duplicate function decls like "void f(int); void f(enum X);" properly.
802  if (!getLangOptions().CPlusPlus &&
803      Context.typesAreCompatible(OldQType, NewQType)) {
804    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
805    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
806    const FunctionProtoType *OldProto = 0;
807    if (isa<FunctionNoProtoType>(NewFuncType) &&
808        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
809      // The old declaration provided a function prototype, but the
810      // new declaration does not. Merge in the prototype.
811      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
812      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
813                                                 OldProto->arg_type_end());
814      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
815                                         ParamTypes.data(), ParamTypes.size(),
816                                         OldProto->isVariadic(),
817                                         OldProto->getTypeQuals());
818      New->setType(NewQType);
819      New->setHasInheritedPrototype();
820
821      // Synthesize a parameter for each argument type.
822      llvm::SmallVector<ParmVarDecl*, 16> Params;
823      for (FunctionProtoType::arg_type_iterator
824             ParamType = OldProto->arg_type_begin(),
825             ParamEnd = OldProto->arg_type_end();
826           ParamType != ParamEnd; ++ParamType) {
827        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
828                                                 SourceLocation(), 0,
829                                                 *ParamType, /*DInfo=*/0,
830                                                 VarDecl::None, 0);
831        Param->setImplicit();
832        Params.push_back(Param);
833      }
834
835      New->setParams(Context, Params.data(), Params.size());
836    }
837
838    return MergeCompatibleFunctionDecls(New, Old);
839  }
840
841  // GNU C permits a K&R definition to follow a prototype declaration
842  // if the declared types of the parameters in the K&R definition
843  // match the types in the prototype declaration, even when the
844  // promoted types of the parameters from the K&R definition differ
845  // from the types in the prototype. GCC then keeps the types from
846  // the prototype.
847  //
848  // If a variadic prototype is followed by a non-variadic K&R definition,
849  // the K&R definition becomes variadic.  This is sort of an edge case, but
850  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
851  // C99 6.9.1p8.
852  if (!getLangOptions().CPlusPlus &&
853      Old->hasPrototype() && !New->hasPrototype() &&
854      New->getType()->getAs<FunctionProtoType>() &&
855      Old->getNumParams() == New->getNumParams()) {
856    llvm::SmallVector<QualType, 16> ArgTypes;
857    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
858    const FunctionProtoType *OldProto
859      = Old->getType()->getAs<FunctionProtoType>();
860    const FunctionProtoType *NewProto
861      = New->getType()->getAs<FunctionProtoType>();
862
863    // Determine whether this is the GNU C extension.
864    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
865                                               NewProto->getResultType());
866    bool LooseCompatible = !MergedReturn.isNull();
867    for (unsigned Idx = 0, End = Old->getNumParams();
868         LooseCompatible && Idx != End; ++Idx) {
869      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
870      ParmVarDecl *NewParm = New->getParamDecl(Idx);
871      if (Context.typesAreCompatible(OldParm->getType(),
872                                     NewProto->getArgType(Idx))) {
873        ArgTypes.push_back(NewParm->getType());
874      } else if (Context.typesAreCompatible(OldParm->getType(),
875                                            NewParm->getType())) {
876        GNUCompatibleParamWarning Warn
877          = { OldParm, NewParm, NewProto->getArgType(Idx) };
878        Warnings.push_back(Warn);
879        ArgTypes.push_back(NewParm->getType());
880      } else
881        LooseCompatible = false;
882    }
883
884    if (LooseCompatible) {
885      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
886        Diag(Warnings[Warn].NewParm->getLocation(),
887             diag::ext_param_promoted_not_compatible_with_prototype)
888          << Warnings[Warn].PromotedType
889          << Warnings[Warn].OldParm->getType();
890        Diag(Warnings[Warn].OldParm->getLocation(),
891             diag::note_previous_declaration);
892      }
893
894      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
895                                           ArgTypes.size(),
896                                           OldProto->isVariadic(), 0));
897      return MergeCompatibleFunctionDecls(New, Old);
898    }
899
900    // Fall through to diagnose conflicting types.
901  }
902
903  // A function that has already been declared has been redeclared or defined
904  // with a different type- show appropriate diagnostic
905  if (unsigned BuiltinID = Old->getBuiltinID()) {
906    // The user has declared a builtin function with an incompatible
907    // signature.
908    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
909      // The function the user is redeclaring is a library-defined
910      // function like 'malloc' or 'printf'. Warn about the
911      // redeclaration, then pretend that we don't know about this
912      // library built-in.
913      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
914      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
915        << Old << Old->getType();
916      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
917      Old->setInvalidDecl();
918      return false;
919    }
920
921    PrevDiag = diag::note_previous_builtin_declaration;
922  }
923
924  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
925  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
926  return true;
927}
928
929/// \brief Completes the merge of two function declarations that are
930/// known to be compatible.
931///
932/// This routine handles the merging of attributes and other
933/// properties of function declarations form the old declaration to
934/// the new declaration, once we know that New is in fact a
935/// redeclaration of Old.
936///
937/// \returns false
938bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
939  // Merge the attributes
940  MergeAttributes(New, Old, Context);
941
942  // Merge the storage class.
943  if (Old->getStorageClass() != FunctionDecl::Extern &&
944      Old->getStorageClass() != FunctionDecl::None)
945    New->setStorageClass(Old->getStorageClass());
946
947  // Merge "pure" flag.
948  if (Old->isPure())
949    New->setPure();
950
951  // Merge the "deleted" flag.
952  if (Old->isDeleted())
953    New->setDeleted();
954
955  if (getLangOptions().CPlusPlus)
956    return MergeCXXFunctionDecl(New, Old);
957
958  return false;
959}
960
961/// MergeVarDecl - We just parsed a variable 'New' which has the same name
962/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
963/// situation, merging decls or emitting diagnostics as appropriate.
964///
965/// Tentative definition rules (C99 6.9.2p2) are checked by
966/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
967/// definitions here, since the initializer hasn't been attached.
968///
969void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
970  // If either decl is invalid, make sure the new one is marked invalid and
971  // don't do any other checking.
972  if (New->isInvalidDecl() || OldD->isInvalidDecl())
973    return New->setInvalidDecl();
974
975  // Verify the old decl was also a variable.
976  VarDecl *Old = dyn_cast<VarDecl>(OldD);
977  if (!Old) {
978    Diag(New->getLocation(), diag::err_redefinition_different_kind)
979      << New->getDeclName();
980    Diag(OldD->getLocation(), diag::note_previous_definition);
981    return New->setInvalidDecl();
982  }
983
984  MergeAttributes(New, Old, Context);
985
986  // Merge the types
987  QualType MergedT;
988  if (getLangOptions().CPlusPlus) {
989    if (Context.hasSameType(New->getType(), Old->getType()))
990      MergedT = New->getType();
991    // C++ [basic.types]p7:
992    //   [...] The declared type of an array object might be an array of
993    //   unknown size and therefore be incomplete at one point in a
994    //   translation unit and complete later on; [...]
995    else if (Old->getType()->isIncompleteArrayType() &&
996             New->getType()->isArrayType()) {
997      CanQual<ArrayType> OldArray
998        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
999      CanQual<ArrayType> NewArray
1000        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1001      if (OldArray->getElementType() == NewArray->getElementType())
1002        MergedT = New->getType();
1003    }
1004  } else {
1005    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1006  }
1007  if (MergedT.isNull()) {
1008    Diag(New->getLocation(), diag::err_redefinition_different_type)
1009      << New->getDeclName();
1010    Diag(Old->getLocation(), diag::note_previous_definition);
1011    return New->setInvalidDecl();
1012  }
1013  New->setType(MergedT);
1014
1015  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1016  if (New->getStorageClass() == VarDecl::Static &&
1017      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1018    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1019    Diag(Old->getLocation(), diag::note_previous_definition);
1020    return New->setInvalidDecl();
1021  }
1022  // C99 6.2.2p4:
1023  //   For an identifier declared with the storage-class specifier
1024  //   extern in a scope in which a prior declaration of that
1025  //   identifier is visible,23) if the prior declaration specifies
1026  //   internal or external linkage, the linkage of the identifier at
1027  //   the later declaration is the same as the linkage specified at
1028  //   the prior declaration. If no prior declaration is visible, or
1029  //   if the prior declaration specifies no linkage, then the
1030  //   identifier has external linkage.
1031  if (New->hasExternalStorage() && Old->hasLinkage())
1032    /* Okay */;
1033  else if (New->getStorageClass() != VarDecl::Static &&
1034           Old->getStorageClass() == VarDecl::Static) {
1035    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037    return New->setInvalidDecl();
1038  }
1039
1040  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1041
1042  // FIXME: The test for external storage here seems wrong? We still
1043  // need to check for mismatches.
1044  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1045      // Don't complain about out-of-line definitions of static members.
1046      !(Old->getLexicalDeclContext()->isRecord() &&
1047        !New->getLexicalDeclContext()->isRecord())) {
1048    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1049    Diag(Old->getLocation(), diag::note_previous_definition);
1050    return New->setInvalidDecl();
1051  }
1052
1053  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1054    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1055    Diag(Old->getLocation(), diag::note_previous_definition);
1056  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1057    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1058    Diag(Old->getLocation(), diag::note_previous_definition);
1059  }
1060
1061  // Keep a chain of previous declarations.
1062  New->setPreviousDeclaration(Old);
1063}
1064
1065/// CheckFallThrough - Check that we don't fall off the end of a
1066/// Statement that should return a value.
1067///
1068/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1069/// MaybeFallThrough iff we might or might not fall off the end,
1070/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1071/// return.  We assume NeverFallThrough iff we never fall off the end of the
1072/// statement but we may return.  We assume that functions not marked noreturn
1073/// will return.
1074Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1075  // FIXME: Eventually share this CFG object when we have other warnings based
1076  // of the CFG.  This can be done using AnalysisContext.
1077  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1078
1079  // FIXME: They should never return 0, fix that, delete this code.
1080  if (cfg == 0)
1081    // FIXME: This should be NeverFallThrough
1082    return NeverFallThroughOrReturn;
1083  // The CFG leaves in dead things, and we don't want to dead code paths to
1084  // confuse us, so we mark all live things first.
1085  std::queue<CFGBlock*> workq;
1086  llvm::BitVector live(cfg->getNumBlockIDs());
1087  // Prep work queue
1088  workq.push(&cfg->getEntry());
1089  // Solve
1090  while (!workq.empty()) {
1091    CFGBlock *item = workq.front();
1092    workq.pop();
1093    live.set(item->getBlockID());
1094    for (CFGBlock::succ_iterator I=item->succ_begin(),
1095           E=item->succ_end();
1096         I != E;
1097         ++I) {
1098      if ((*I) && !live[(*I)->getBlockID()]) {
1099        live.set((*I)->getBlockID());
1100        workq.push(*I);
1101      }
1102    }
1103  }
1104
1105  // Now we know what is live, we check the live precessors of the exit block
1106  // and look for fall through paths, being careful to ignore normal returns,
1107  // and exceptional paths.
1108  bool HasLiveReturn = false;
1109  bool HasFakeEdge = false;
1110  bool HasPlainEdge = false;
1111  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1112         E = cfg->getExit().pred_end();
1113       I != E;
1114       ++I) {
1115    CFGBlock& B = **I;
1116    if (!live[B.getBlockID()])
1117      continue;
1118    if (B.size() == 0) {
1119      // A labeled empty statement, or the entry block...
1120      HasPlainEdge = true;
1121      continue;
1122    }
1123    Stmt *S = B[B.size()-1];
1124    if (isa<ReturnStmt>(S)) {
1125      HasLiveReturn = true;
1126      continue;
1127    }
1128    if (isa<ObjCAtThrowStmt>(S)) {
1129      HasFakeEdge = true;
1130      continue;
1131    }
1132    if (isa<CXXThrowExpr>(S)) {
1133      HasFakeEdge = true;
1134      continue;
1135    }
1136    bool NoReturnEdge = false;
1137    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1138      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1139      if (CEE->getType().getNoReturnAttr()) {
1140        NoReturnEdge = true;
1141        HasFakeEdge = true;
1142      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1143        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1144          if (FD->hasAttr<NoReturnAttr>()) {
1145            NoReturnEdge = true;
1146            HasFakeEdge = true;
1147          }
1148        }
1149      }
1150    }
1151    // FIXME: Add noreturn message sends.
1152    if (NoReturnEdge == false)
1153      HasPlainEdge = true;
1154  }
1155  if (!HasPlainEdge) {
1156    if (HasLiveReturn)
1157      return NeverFallThrough;
1158    return NeverFallThroughOrReturn;
1159  }
1160  if (HasFakeEdge || HasLiveReturn)
1161    return MaybeFallThrough;
1162  // This says AlwaysFallThrough for calls to functions that are not marked
1163  // noreturn, that don't return.  If people would like this warning to be more
1164  // accurate, such functions should be marked as noreturn.
1165  return AlwaysFallThrough;
1166}
1167
1168/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1169/// function that should return a value.  Check that we don't fall off the end
1170/// of a noreturn function.  We assume that functions and blocks not marked
1171/// noreturn will return.
1172void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1173  // FIXME: Would be nice if we had a better way to control cascading errors,
1174  // but for now, avoid them.  The problem is that when Parse sees:
1175  //   int foo() { return a; }
1176  // The return is eaten and the Sema code sees just:
1177  //   int foo() { }
1178  // which this code would then warn about.
1179  if (getDiagnostics().hasErrorOccurred())
1180    return;
1181
1182  bool ReturnsVoid = false;
1183  bool HasNoReturn = false;
1184  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1185    // If the result type of the function is a dependent type, we don't know
1186    // whether it will be void or not, so don't
1187    if (FD->getResultType()->isDependentType())
1188      return;
1189    if (FD->getResultType()->isVoidType())
1190      ReturnsVoid = true;
1191    if (FD->hasAttr<NoReturnAttr>())
1192      HasNoReturn = true;
1193  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1194    if (MD->getResultType()->isVoidType())
1195      ReturnsVoid = true;
1196    if (MD->hasAttr<NoReturnAttr>())
1197      HasNoReturn = true;
1198  }
1199
1200  // Short circuit for compilation speed.
1201  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1202       == Diagnostic::Ignored || ReturnsVoid)
1203      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1204          == Diagnostic::Ignored || !HasNoReturn)
1205      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1206          == Diagnostic::Ignored || !ReturnsVoid))
1207    return;
1208  // FIXME: Function try block
1209  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1210    switch (CheckFallThrough(Body)) {
1211    case MaybeFallThrough:
1212      if (HasNoReturn)
1213        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1214      else if (!ReturnsVoid)
1215        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1216      break;
1217    case AlwaysFallThrough:
1218      if (HasNoReturn)
1219        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1220      else if (!ReturnsVoid)
1221        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1222      break;
1223    case NeverFallThroughOrReturn:
1224      if (ReturnsVoid && !HasNoReturn)
1225        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1226      break;
1227    case NeverFallThrough:
1228      break;
1229    }
1230  }
1231}
1232
1233/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1234/// that should return a value.  Check that we don't fall off the end of a
1235/// noreturn block.  We assume that functions and blocks not marked noreturn
1236/// will return.
1237void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1238  // FIXME: Would be nice if we had a better way to control cascading errors,
1239  // but for now, avoid them.  The problem is that when Parse sees:
1240  //   int foo() { return a; }
1241  // The return is eaten and the Sema code sees just:
1242  //   int foo() { }
1243  // which this code would then warn about.
1244  if (getDiagnostics().hasErrorOccurred())
1245    return;
1246  bool ReturnsVoid = false;
1247  bool HasNoReturn = false;
1248  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1249    if (FT->getResultType()->isVoidType())
1250      ReturnsVoid = true;
1251    if (FT->getNoReturnAttr())
1252      HasNoReturn = true;
1253  }
1254
1255  // Short circuit for compilation speed.
1256  if (ReturnsVoid
1257      && !HasNoReturn
1258      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1259          == Diagnostic::Ignored || !ReturnsVoid))
1260    return;
1261  // FIXME: Funtion try block
1262  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1263    switch (CheckFallThrough(Body)) {
1264    case MaybeFallThrough:
1265      if (HasNoReturn)
1266        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1267      else if (!ReturnsVoid)
1268        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1269      break;
1270    case AlwaysFallThrough:
1271      if (HasNoReturn)
1272        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1273      else if (!ReturnsVoid)
1274        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1275      break;
1276    case NeverFallThroughOrReturn:
1277      if (ReturnsVoid)
1278        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1279      break;
1280    case NeverFallThrough:
1281      break;
1282    }
1283  }
1284}
1285
1286/// CheckParmsForFunctionDef - Check that the parameters of the given
1287/// function are appropriate for the definition of a function. This
1288/// takes care of any checks that cannot be performed on the
1289/// declaration itself, e.g., that the types of each of the function
1290/// parameters are complete.
1291bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1292  bool HasInvalidParm = false;
1293  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1294    ParmVarDecl *Param = FD->getParamDecl(p);
1295
1296    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1297    // function declarator that is part of a function definition of
1298    // that function shall not have incomplete type.
1299    //
1300    // This is also C++ [dcl.fct]p6.
1301    if (!Param->isInvalidDecl() &&
1302        RequireCompleteType(Param->getLocation(), Param->getType(),
1303                               diag::err_typecheck_decl_incomplete_type)) {
1304      Param->setInvalidDecl();
1305      HasInvalidParm = true;
1306    }
1307
1308    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1309    // declaration of each parameter shall include an identifier.
1310    if (Param->getIdentifier() == 0 &&
1311        !Param->isImplicit() &&
1312        !getLangOptions().CPlusPlus)
1313      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1314  }
1315
1316  return HasInvalidParm;
1317}
1318
1319/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1320/// no declarator (e.g. "struct foo;") is parsed.
1321Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1322  // FIXME: Error on auto/register at file scope
1323  // FIXME: Error on inline/virtual/explicit
1324  // FIXME: Error on invalid restrict
1325  // FIXME: Warn on useless __thread
1326  // FIXME: Warn on useless const/volatile
1327  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1328  // FIXME: Warn on useless attributes
1329  Decl *TagD = 0;
1330  TagDecl *Tag = 0;
1331  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1332      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1333      DS.getTypeSpecType() == DeclSpec::TST_union ||
1334      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1335    TagD = static_cast<Decl *>(DS.getTypeRep());
1336
1337    if (!TagD) // We probably had an error
1338      return DeclPtrTy();
1339
1340    // Note that the above type specs guarantee that the
1341    // type rep is a Decl, whereas in many of the others
1342    // it's a Type.
1343    Tag = dyn_cast<TagDecl>(TagD);
1344  }
1345
1346  if (DS.isFriendSpecified()) {
1347    // If we're dealing with a class template decl, assume that the
1348    // template routines are handling it.
1349    if (TagD && isa<ClassTemplateDecl>(TagD))
1350      return DeclPtrTy();
1351    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1352  }
1353
1354  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1355    // If there are attributes in the DeclSpec, apply them to the record.
1356    if (const AttributeList *AL = DS.getAttributes())
1357      ProcessDeclAttributeList(S, Record, AL);
1358
1359    if (!Record->getDeclName() && Record->isDefinition() &&
1360        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1361      if (getLangOptions().CPlusPlus ||
1362          Record->getDeclContext()->isRecord())
1363        return BuildAnonymousStructOrUnion(S, DS, Record);
1364
1365      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1366        << DS.getSourceRange();
1367    }
1368
1369    // Microsoft allows unnamed struct/union fields. Don't complain
1370    // about them.
1371    // FIXME: Should we support Microsoft's extensions in this area?
1372    if (Record->getDeclName() && getLangOptions().Microsoft)
1373      return DeclPtrTy::make(Tag);
1374  }
1375
1376  if (!DS.isMissingDeclaratorOk() &&
1377      DS.getTypeSpecType() != DeclSpec::TST_error) {
1378    // Warn about typedefs of enums without names, since this is an
1379    // extension in both Microsoft an GNU.
1380    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1381        Tag && isa<EnumDecl>(Tag)) {
1382      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1383        << DS.getSourceRange();
1384      return DeclPtrTy::make(Tag);
1385    }
1386
1387    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1388      << DS.getSourceRange();
1389    return DeclPtrTy();
1390  }
1391
1392  return DeclPtrTy::make(Tag);
1393}
1394
1395/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1396/// anonymous struct or union AnonRecord into the owning context Owner
1397/// and scope S. This routine will be invoked just after we realize
1398/// that an unnamed union or struct is actually an anonymous union or
1399/// struct, e.g.,
1400///
1401/// @code
1402/// union {
1403///   int i;
1404///   float f;
1405/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1406///    // f into the surrounding scope.x
1407/// @endcode
1408///
1409/// This routine is recursive, injecting the names of nested anonymous
1410/// structs/unions into the owning context and scope as well.
1411bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1412                                               RecordDecl *AnonRecord) {
1413  bool Invalid = false;
1414  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1415                               FEnd = AnonRecord->field_end();
1416       F != FEnd; ++F) {
1417    if ((*F)->getDeclName()) {
1418      LookupResult R;
1419      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1420                          LookupOrdinaryName, true);
1421      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1422      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1423        // C++ [class.union]p2:
1424        //   The names of the members of an anonymous union shall be
1425        //   distinct from the names of any other entity in the
1426        //   scope in which the anonymous union is declared.
1427        unsigned diagKind
1428          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1429                                 : diag::err_anonymous_struct_member_redecl;
1430        Diag((*F)->getLocation(), diagKind)
1431          << (*F)->getDeclName();
1432        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1433        Invalid = true;
1434      } else {
1435        // C++ [class.union]p2:
1436        //   For the purpose of name lookup, after the anonymous union
1437        //   definition, the members of the anonymous union are
1438        //   considered to have been defined in the scope in which the
1439        //   anonymous union is declared.
1440        Owner->makeDeclVisibleInContext(*F);
1441        S->AddDecl(DeclPtrTy::make(*F));
1442        IdResolver.AddDecl(*F);
1443      }
1444    } else if (const RecordType *InnerRecordType
1445                 = (*F)->getType()->getAs<RecordType>()) {
1446      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1447      if (InnerRecord->isAnonymousStructOrUnion())
1448        Invalid = Invalid ||
1449          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1450    }
1451  }
1452
1453  return Invalid;
1454}
1455
1456/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1457/// anonymous structure or union. Anonymous unions are a C++ feature
1458/// (C++ [class.union]) and a GNU C extension; anonymous structures
1459/// are a GNU C and GNU C++ extension.
1460Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1461                                                  RecordDecl *Record) {
1462  DeclContext *Owner = Record->getDeclContext();
1463
1464  // Diagnose whether this anonymous struct/union is an extension.
1465  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1466    Diag(Record->getLocation(), diag::ext_anonymous_union);
1467  else if (!Record->isUnion())
1468    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1469
1470  // C and C++ require different kinds of checks for anonymous
1471  // structs/unions.
1472  bool Invalid = false;
1473  if (getLangOptions().CPlusPlus) {
1474    const char* PrevSpec = 0;
1475    unsigned DiagID;
1476    // C++ [class.union]p3:
1477    //   Anonymous unions declared in a named namespace or in the
1478    //   global namespace shall be declared static.
1479    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1480        (isa<TranslationUnitDecl>(Owner) ||
1481         (isa<NamespaceDecl>(Owner) &&
1482          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1483      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1484      Invalid = true;
1485
1486      // Recover by adding 'static'.
1487      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1488                             PrevSpec, DiagID);
1489    }
1490    // C++ [class.union]p3:
1491    //   A storage class is not allowed in a declaration of an
1492    //   anonymous union in a class scope.
1493    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1494             isa<RecordDecl>(Owner)) {
1495      Diag(DS.getStorageClassSpecLoc(),
1496           diag::err_anonymous_union_with_storage_spec);
1497      Invalid = true;
1498
1499      // Recover by removing the storage specifier.
1500      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1501                             PrevSpec, DiagID);
1502    }
1503
1504    // C++ [class.union]p2:
1505    //   The member-specification of an anonymous union shall only
1506    //   define non-static data members. [Note: nested types and
1507    //   functions cannot be declared within an anonymous union. ]
1508    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1509                                 MemEnd = Record->decls_end();
1510         Mem != MemEnd; ++Mem) {
1511      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1512        // C++ [class.union]p3:
1513        //   An anonymous union shall not have private or protected
1514        //   members (clause 11).
1515        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1516          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1517            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1518          Invalid = true;
1519        }
1520      } else if ((*Mem)->isImplicit()) {
1521        // Any implicit members are fine.
1522      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1523        // This is a type that showed up in an
1524        // elaborated-type-specifier inside the anonymous struct or
1525        // union, but which actually declares a type outside of the
1526        // anonymous struct or union. It's okay.
1527      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1528        if (!MemRecord->isAnonymousStructOrUnion() &&
1529            MemRecord->getDeclName()) {
1530          // This is a nested type declaration.
1531          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1532            << (int)Record->isUnion();
1533          Invalid = true;
1534        }
1535      } else {
1536        // We have something that isn't a non-static data
1537        // member. Complain about it.
1538        unsigned DK = diag::err_anonymous_record_bad_member;
1539        if (isa<TypeDecl>(*Mem))
1540          DK = diag::err_anonymous_record_with_type;
1541        else if (isa<FunctionDecl>(*Mem))
1542          DK = diag::err_anonymous_record_with_function;
1543        else if (isa<VarDecl>(*Mem))
1544          DK = diag::err_anonymous_record_with_static;
1545        Diag((*Mem)->getLocation(), DK)
1546            << (int)Record->isUnion();
1547          Invalid = true;
1548      }
1549    }
1550  }
1551
1552  if (!Record->isUnion() && !Owner->isRecord()) {
1553    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1554      << (int)getLangOptions().CPlusPlus;
1555    Invalid = true;
1556  }
1557
1558  // Mock up a declarator.
1559  Declarator Dc(DS, Declarator::TypeNameContext);
1560  DeclaratorInfo *DInfo = 0;
1561  GetTypeForDeclarator(Dc, S, &DInfo);
1562  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1563
1564  // Create a declaration for this anonymous struct/union.
1565  NamedDecl *Anon = 0;
1566  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1567    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1568                             /*IdentifierInfo=*/0,
1569                             Context.getTypeDeclType(Record),
1570                             DInfo,
1571                             /*BitWidth=*/0, /*Mutable=*/false);
1572    Anon->setAccess(AS_public);
1573    if (getLangOptions().CPlusPlus)
1574      FieldCollector->Add(cast<FieldDecl>(Anon));
1575  } else {
1576    VarDecl::StorageClass SC;
1577    switch (DS.getStorageClassSpec()) {
1578    default: assert(0 && "Unknown storage class!");
1579    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1580    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1581    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1582    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1583    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1584    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1585    case DeclSpec::SCS_mutable:
1586      // mutable can only appear on non-static class members, so it's always
1587      // an error here
1588      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1589      Invalid = true;
1590      SC = VarDecl::None;
1591      break;
1592    }
1593
1594    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1595                           /*IdentifierInfo=*/0,
1596                           Context.getTypeDeclType(Record),
1597                           DInfo,
1598                           SC);
1599  }
1600  Anon->setImplicit();
1601
1602  // Add the anonymous struct/union object to the current
1603  // context. We'll be referencing this object when we refer to one of
1604  // its members.
1605  Owner->addDecl(Anon);
1606
1607  // Inject the members of the anonymous struct/union into the owning
1608  // context and into the identifier resolver chain for name lookup
1609  // purposes.
1610  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1611    Invalid = true;
1612
1613  // Mark this as an anonymous struct/union type. Note that we do not
1614  // do this until after we have already checked and injected the
1615  // members of this anonymous struct/union type, because otherwise
1616  // the members could be injected twice: once by DeclContext when it
1617  // builds its lookup table, and once by
1618  // InjectAnonymousStructOrUnionMembers.
1619  Record->setAnonymousStructOrUnion(true);
1620
1621  if (Invalid)
1622    Anon->setInvalidDecl();
1623
1624  return DeclPtrTy::make(Anon);
1625}
1626
1627
1628/// GetNameForDeclarator - Determine the full declaration name for the
1629/// given Declarator.
1630DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1631  return GetNameFromUnqualifiedId(D.getName());
1632}
1633
1634/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1635DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1636  switch (Name.getKind()) {
1637    case UnqualifiedId::IK_Identifier:
1638      return DeclarationName(Name.Identifier);
1639
1640    case UnqualifiedId::IK_OperatorFunctionId:
1641      return Context.DeclarationNames.getCXXOperatorName(
1642                                                         Name.OperatorFunctionId.Operator);
1643
1644    case UnqualifiedId::IK_ConversionFunctionId: {
1645      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1646      if (Ty.isNull())
1647        return DeclarationName();
1648
1649      return Context.DeclarationNames.getCXXConversionFunctionName(
1650                                                                   Context.getCanonicalType(Ty));
1651    }
1652
1653    case UnqualifiedId::IK_ConstructorName: {
1654      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1655      if (Ty.isNull())
1656        return DeclarationName();
1657
1658      return Context.DeclarationNames.getCXXConstructorName(
1659                                                            Context.getCanonicalType(Ty));
1660    }
1661
1662    case UnqualifiedId::IK_DestructorName: {
1663      QualType Ty = GetTypeFromParser(Name.DestructorName);
1664      if (Ty.isNull())
1665        return DeclarationName();
1666
1667      return Context.DeclarationNames.getCXXDestructorName(
1668                                                           Context.getCanonicalType(Ty));
1669    }
1670
1671    case UnqualifiedId::IK_TemplateId: {
1672      TemplateName TName
1673        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1674      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1675        return Template->getDeclName();
1676      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1677        return Ovl->getDeclName();
1678
1679      return DeclarationName();
1680    }
1681  }
1682
1683  assert(false && "Unknown name kind");
1684  return DeclarationName();
1685}
1686
1687/// isNearlyMatchingFunction - Determine whether the C++ functions
1688/// Declaration and Definition are "nearly" matching. This heuristic
1689/// is used to improve diagnostics in the case where an out-of-line
1690/// function definition doesn't match any declaration within
1691/// the class or namespace.
1692static bool isNearlyMatchingFunction(ASTContext &Context,
1693                                     FunctionDecl *Declaration,
1694                                     FunctionDecl *Definition) {
1695  if (Declaration->param_size() != Definition->param_size())
1696    return false;
1697  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1698    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1699    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1700
1701    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1702                                        DefParamTy.getNonReferenceType()))
1703      return false;
1704  }
1705
1706  return true;
1707}
1708
1709Sema::DeclPtrTy
1710Sema::HandleDeclarator(Scope *S, Declarator &D,
1711                       MultiTemplateParamsArg TemplateParamLists,
1712                       bool IsFunctionDefinition) {
1713  DeclarationName Name = GetNameForDeclarator(D);
1714
1715  // All of these full declarators require an identifier.  If it doesn't have
1716  // one, the ParsedFreeStandingDeclSpec action should be used.
1717  if (!Name) {
1718    if (!D.isInvalidType())  // Reject this if we think it is valid.
1719      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1720           diag::err_declarator_need_ident)
1721        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1722    return DeclPtrTy();
1723  }
1724
1725  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1726  // we find one that is.
1727  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1728         (S->getFlags() & Scope::TemplateParamScope) != 0)
1729    S = S->getParent();
1730
1731  // If this is an out-of-line definition of a member of a class template
1732  // or class template partial specialization, we may need to rebuild the
1733  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1734  // for more information.
1735  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1736  // handle expressions properly.
1737  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1738  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1739      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1740      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1741       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1742       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1743       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1744    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1745      // FIXME: Preserve type source info.
1746      QualType T = GetTypeFromParser(DS.getTypeRep());
1747      EnterDeclaratorContext(S, DC);
1748      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1749      ExitDeclaratorContext(S);
1750      if (T.isNull())
1751        return DeclPtrTy();
1752      DS.UpdateTypeRep(T.getAsOpaquePtr());
1753    }
1754  }
1755
1756  DeclContext *DC;
1757  NamedDecl *PrevDecl;
1758  NamedDecl *New;
1759
1760  DeclaratorInfo *DInfo = 0;
1761  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1762
1763  // See if this is a redefinition of a variable in the same scope.
1764  if (D.getCXXScopeSpec().isInvalid()) {
1765    DC = CurContext;
1766    PrevDecl = 0;
1767    D.setInvalidType();
1768  } else if (!D.getCXXScopeSpec().isSet()) {
1769    LookupNameKind NameKind = LookupOrdinaryName;
1770
1771    // If the declaration we're planning to build will be a function
1772    // or object with linkage, then look for another declaration with
1773    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1774    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1775      /* Do nothing*/;
1776    else if (R->isFunctionType()) {
1777      if (CurContext->isFunctionOrMethod() ||
1778          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1779        NameKind = LookupRedeclarationWithLinkage;
1780    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1781      NameKind = LookupRedeclarationWithLinkage;
1782    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1783             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1784      NameKind = LookupRedeclarationWithLinkage;
1785
1786    DC = CurContext;
1787    LookupResult R;
1788    LookupName(R, S, Name, NameKind, true,
1789               NameKind == LookupRedeclarationWithLinkage,
1790               D.getIdentifierLoc());
1791    PrevDecl = R.getAsSingleDecl(Context);
1792  } else { // Something like "int foo::x;"
1793    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1794
1795    if (!DC) {
1796      // If we could not compute the declaration context, it's because the
1797      // declaration context is dependent but does not refer to a class,
1798      // class template, or class template partial specialization. Complain
1799      // and return early, to avoid the coming semantic disaster.
1800      Diag(D.getIdentifierLoc(),
1801           diag::err_template_qualified_declarator_no_match)
1802        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1803        << D.getCXXScopeSpec().getRange();
1804      return DeclPtrTy();
1805    }
1806
1807    if (!DC->isDependentContext() &&
1808        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1809      return DeclPtrTy();
1810
1811    LookupResult Res;
1812    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1813    PrevDecl = Res.getAsSingleDecl(Context);
1814
1815    // C++ 7.3.1.2p2:
1816    // Members (including explicit specializations of templates) of a named
1817    // namespace can also be defined outside that namespace by explicit
1818    // qualification of the name being defined, provided that the entity being
1819    // defined was already declared in the namespace and the definition appears
1820    // after the point of declaration in a namespace that encloses the
1821    // declarations namespace.
1822    //
1823    // Note that we only check the context at this point. We don't yet
1824    // have enough information to make sure that PrevDecl is actually
1825    // the declaration we want to match. For example, given:
1826    //
1827    //   class X {
1828    //     void f();
1829    //     void f(float);
1830    //   };
1831    //
1832    //   void X::f(int) { } // ill-formed
1833    //
1834    // In this case, PrevDecl will point to the overload set
1835    // containing the two f's declared in X, but neither of them
1836    // matches.
1837
1838    // First check whether we named the global scope.
1839    if (isa<TranslationUnitDecl>(DC)) {
1840      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1841        << Name << D.getCXXScopeSpec().getRange();
1842    } else {
1843      DeclContext *Cur = CurContext;
1844      while (isa<LinkageSpecDecl>(Cur))
1845        Cur = Cur->getParent();
1846      if (!Cur->Encloses(DC)) {
1847        // The qualifying scope doesn't enclose the original declaration.
1848        // Emit diagnostic based on current scope.
1849        SourceLocation L = D.getIdentifierLoc();
1850        SourceRange R = D.getCXXScopeSpec().getRange();
1851        if (isa<FunctionDecl>(Cur))
1852          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1853        else
1854          Diag(L, diag::err_invalid_declarator_scope)
1855            << Name << cast<NamedDecl>(DC) << R;
1856        D.setInvalidType();
1857      }
1858    }
1859  }
1860
1861  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1862    // Maybe we will complain about the shadowed template parameter.
1863    if (!D.isInvalidType())
1864      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1865        D.setInvalidType();
1866
1867    // Just pretend that we didn't see the previous declaration.
1868    PrevDecl = 0;
1869  }
1870
1871  // In C++, the previous declaration we find might be a tag type
1872  // (class or enum). In this case, the new declaration will hide the
1873  // tag type. Note that this does does not apply if we're declaring a
1874  // typedef (C++ [dcl.typedef]p4).
1875  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1876      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1877    PrevDecl = 0;
1878
1879  bool Redeclaration = false;
1880  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1881    if (TemplateParamLists.size()) {
1882      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1883      return DeclPtrTy();
1884    }
1885
1886    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1887  } else if (R->isFunctionType()) {
1888    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1889                                  move(TemplateParamLists),
1890                                  IsFunctionDefinition, Redeclaration);
1891  } else {
1892    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1893                                  move(TemplateParamLists),
1894                                  Redeclaration);
1895  }
1896
1897  if (New == 0)
1898    return DeclPtrTy();
1899
1900  // If this has an identifier and is not an invalid redeclaration or
1901  // function template specialization, add it to the scope stack.
1902  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1903      !(isa<FunctionDecl>(New) &&
1904        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1905    PushOnScopeChains(New, S);
1906
1907  return DeclPtrTy::make(New);
1908}
1909
1910/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1911/// types into constant array types in certain situations which would otherwise
1912/// be errors (for GCC compatibility).
1913static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1914                                                    ASTContext &Context,
1915                                                    bool &SizeIsNegative) {
1916  // This method tries to turn a variable array into a constant
1917  // array even when the size isn't an ICE.  This is necessary
1918  // for compatibility with code that depends on gcc's buggy
1919  // constant expression folding, like struct {char x[(int)(char*)2];}
1920  SizeIsNegative = false;
1921
1922  QualifierCollector Qs;
1923  const Type *Ty = Qs.strip(T);
1924
1925  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1926    QualType Pointee = PTy->getPointeeType();
1927    QualType FixedType =
1928        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1929    if (FixedType.isNull()) return FixedType;
1930    FixedType = Context.getPointerType(FixedType);
1931    return Qs.apply(FixedType);
1932  }
1933
1934  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1935  if (!VLATy)
1936    return QualType();
1937  // FIXME: We should probably handle this case
1938  if (VLATy->getElementType()->isVariablyModifiedType())
1939    return QualType();
1940
1941  Expr::EvalResult EvalResult;
1942  if (!VLATy->getSizeExpr() ||
1943      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1944      !EvalResult.Val.isInt())
1945    return QualType();
1946
1947  llvm::APSInt &Res = EvalResult.Val.getInt();
1948  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1949    // TODO: preserve the size expression in declarator info
1950    return Context.getConstantArrayType(VLATy->getElementType(),
1951                                        Res, ArrayType::Normal, 0);
1952  }
1953
1954  SizeIsNegative = true;
1955  return QualType();
1956}
1957
1958/// \brief Register the given locally-scoped external C declaration so
1959/// that it can be found later for redeclarations
1960void
1961Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1962                                       Scope *S) {
1963  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1964         "Decl is not a locally-scoped decl!");
1965  // Note that we have a locally-scoped external with this name.
1966  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1967
1968  if (!PrevDecl)
1969    return;
1970
1971  // If there was a previous declaration of this variable, it may be
1972  // in our identifier chain. Update the identifier chain with the new
1973  // declaration.
1974  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1975    // The previous declaration was found on the identifer resolver
1976    // chain, so remove it from its scope.
1977    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1978      S = S->getParent();
1979
1980    if (S)
1981      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1982  }
1983}
1984
1985/// \brief Diagnose function specifiers on a declaration of an identifier that
1986/// does not identify a function.
1987void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1988  // FIXME: We should probably indicate the identifier in question to avoid
1989  // confusion for constructs like "inline int a(), b;"
1990  if (D.getDeclSpec().isInlineSpecified())
1991    Diag(D.getDeclSpec().getInlineSpecLoc(),
1992         diag::err_inline_non_function);
1993
1994  if (D.getDeclSpec().isVirtualSpecified())
1995    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1996         diag::err_virtual_non_function);
1997
1998  if (D.getDeclSpec().isExplicitSpecified())
1999    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2000         diag::err_explicit_non_function);
2001}
2002
2003NamedDecl*
2004Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2005                             QualType R,  DeclaratorInfo *DInfo,
2006                             NamedDecl* PrevDecl, bool &Redeclaration) {
2007  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2008  if (D.getCXXScopeSpec().isSet()) {
2009    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2010      << D.getCXXScopeSpec().getRange();
2011    D.setInvalidType();
2012    // Pretend we didn't see the scope specifier.
2013    DC = 0;
2014  }
2015
2016  if (getLangOptions().CPlusPlus) {
2017    // Check that there are no default arguments (C++ only).
2018    CheckExtraCXXDefaultArguments(D);
2019  }
2020
2021  DiagnoseFunctionSpecifiers(D);
2022
2023  if (D.getDeclSpec().isThreadSpecified())
2024    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2025
2026  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2027  if (!NewTD) return 0;
2028
2029  // Handle attributes prior to checking for duplicates in MergeVarDecl
2030  ProcessDeclAttributes(S, NewTD, D);
2031  // Merge the decl with the existing one if appropriate. If the decl is
2032  // in an outer scope, it isn't the same thing.
2033  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2034    Redeclaration = true;
2035    MergeTypeDefDecl(NewTD, PrevDecl);
2036  }
2037
2038  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2039  // then it shall have block scope.
2040  QualType T = NewTD->getUnderlyingType();
2041  if (T->isVariablyModifiedType()) {
2042    CurFunctionNeedsScopeChecking = true;
2043
2044    if (S->getFnParent() == 0) {
2045      bool SizeIsNegative;
2046      QualType FixedTy =
2047          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2048      if (!FixedTy.isNull()) {
2049        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2050        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2051      } else {
2052        if (SizeIsNegative)
2053          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2054        else if (T->isVariableArrayType())
2055          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2056        else
2057          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2058        NewTD->setInvalidDecl();
2059      }
2060    }
2061  }
2062
2063  // If this is the C FILE type, notify the AST context.
2064  if (IdentifierInfo *II = NewTD->getIdentifier())
2065    if (!NewTD->isInvalidDecl() &&
2066        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2067      if (II->isStr("FILE"))
2068        Context.setFILEDecl(NewTD);
2069      else if (II->isStr("jmp_buf"))
2070        Context.setjmp_bufDecl(NewTD);
2071      else if (II->isStr("sigjmp_buf"))
2072        Context.setsigjmp_bufDecl(NewTD);
2073    }
2074
2075  return NewTD;
2076}
2077
2078/// \brief Determines whether the given declaration is an out-of-scope
2079/// previous declaration.
2080///
2081/// This routine should be invoked when name lookup has found a
2082/// previous declaration (PrevDecl) that is not in the scope where a
2083/// new declaration by the same name is being introduced. If the new
2084/// declaration occurs in a local scope, previous declarations with
2085/// linkage may still be considered previous declarations (C99
2086/// 6.2.2p4-5, C++ [basic.link]p6).
2087///
2088/// \param PrevDecl the previous declaration found by name
2089/// lookup
2090///
2091/// \param DC the context in which the new declaration is being
2092/// declared.
2093///
2094/// \returns true if PrevDecl is an out-of-scope previous declaration
2095/// for a new delcaration with the same name.
2096static bool
2097isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2098                                ASTContext &Context) {
2099  if (!PrevDecl)
2100    return 0;
2101
2102  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2103  // case we need to check each of the overloaded functions.
2104  if (!PrevDecl->hasLinkage())
2105    return false;
2106
2107  if (Context.getLangOptions().CPlusPlus) {
2108    // C++ [basic.link]p6:
2109    //   If there is a visible declaration of an entity with linkage
2110    //   having the same name and type, ignoring entities declared
2111    //   outside the innermost enclosing namespace scope, the block
2112    //   scope declaration declares that same entity and receives the
2113    //   linkage of the previous declaration.
2114    DeclContext *OuterContext = DC->getLookupContext();
2115    if (!OuterContext->isFunctionOrMethod())
2116      // This rule only applies to block-scope declarations.
2117      return false;
2118    else {
2119      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2120      if (PrevOuterContext->isRecord())
2121        // We found a member function: ignore it.
2122        return false;
2123      else {
2124        // Find the innermost enclosing namespace for the new and
2125        // previous declarations.
2126        while (!OuterContext->isFileContext())
2127          OuterContext = OuterContext->getParent();
2128        while (!PrevOuterContext->isFileContext())
2129          PrevOuterContext = PrevOuterContext->getParent();
2130
2131        // The previous declaration is in a different namespace, so it
2132        // isn't the same function.
2133        if (OuterContext->getPrimaryContext() !=
2134            PrevOuterContext->getPrimaryContext())
2135          return false;
2136      }
2137    }
2138  }
2139
2140  return true;
2141}
2142
2143NamedDecl*
2144Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2145                              QualType R, DeclaratorInfo *DInfo,
2146                              NamedDecl* PrevDecl,
2147                              MultiTemplateParamsArg TemplateParamLists,
2148                              bool &Redeclaration) {
2149  DeclarationName Name = GetNameForDeclarator(D);
2150
2151  // Check that there are no default arguments (C++ only).
2152  if (getLangOptions().CPlusPlus)
2153    CheckExtraCXXDefaultArguments(D);
2154
2155  VarDecl *NewVD;
2156  VarDecl::StorageClass SC;
2157  switch (D.getDeclSpec().getStorageClassSpec()) {
2158  default: assert(0 && "Unknown storage class!");
2159  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2160  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2161  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2162  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2163  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2164  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2165  case DeclSpec::SCS_mutable:
2166    // mutable can only appear on non-static class members, so it's always
2167    // an error here
2168    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2169    D.setInvalidType();
2170    SC = VarDecl::None;
2171    break;
2172  }
2173
2174  IdentifierInfo *II = Name.getAsIdentifierInfo();
2175  if (!II) {
2176    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2177      << Name.getAsString();
2178    return 0;
2179  }
2180
2181  DiagnoseFunctionSpecifiers(D);
2182
2183  if (!DC->isRecord() && S->getFnParent() == 0) {
2184    // C99 6.9p2: The storage-class specifiers auto and register shall not
2185    // appear in the declaration specifiers in an external declaration.
2186    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2187
2188      // If this is a register variable with an asm label specified, then this
2189      // is a GNU extension.
2190      if (SC == VarDecl::Register && D.getAsmLabel())
2191        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2192      else
2193        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2194      D.setInvalidType();
2195    }
2196  }
2197  if (DC->isRecord() && !CurContext->isRecord()) {
2198    // This is an out-of-line definition of a static data member.
2199    if (SC == VarDecl::Static) {
2200      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2201           diag::err_static_out_of_line)
2202        << CodeModificationHint::CreateRemoval(
2203                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2204    } else if (SC == VarDecl::None)
2205      SC = VarDecl::Static;
2206  }
2207  if (SC == VarDecl::Static) {
2208    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2209      if (RD->isLocalClass())
2210        Diag(D.getIdentifierLoc(),
2211             diag::err_static_data_member_not_allowed_in_local_class)
2212          << Name << RD->getDeclName();
2213    }
2214  }
2215
2216  // Match up the template parameter lists with the scope specifier, then
2217  // determine whether we have a template or a template specialization.
2218  bool isExplicitSpecialization = false;
2219  if (TemplateParameterList *TemplateParams
2220        = MatchTemplateParametersToScopeSpecifier(
2221                                  D.getDeclSpec().getSourceRange().getBegin(),
2222                                                  D.getCXXScopeSpec(),
2223                        (TemplateParameterList**)TemplateParamLists.get(),
2224                                                   TemplateParamLists.size(),
2225                                                  isExplicitSpecialization)) {
2226    if (TemplateParams->size() > 0) {
2227      // There is no such thing as a variable template.
2228      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2229        << II
2230        << SourceRange(TemplateParams->getTemplateLoc(),
2231                       TemplateParams->getRAngleLoc());
2232      return 0;
2233    } else {
2234      // There is an extraneous 'template<>' for this variable. Complain
2235      // about it, but allow the declaration of the variable.
2236      Diag(TemplateParams->getTemplateLoc(),
2237           diag::err_template_variable_noparams)
2238        << II
2239        << SourceRange(TemplateParams->getTemplateLoc(),
2240                       TemplateParams->getRAngleLoc());
2241
2242      isExplicitSpecialization = true;
2243    }
2244  }
2245
2246  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2247                          II, R, DInfo, SC);
2248
2249  if (D.isInvalidType())
2250    NewVD->setInvalidDecl();
2251
2252  if (D.getDeclSpec().isThreadSpecified()) {
2253    if (NewVD->hasLocalStorage())
2254      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2255    else if (!Context.Target.isTLSSupported())
2256      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2257    else
2258      NewVD->setThreadSpecified(true);
2259  }
2260
2261  // Set the lexical context. If the declarator has a C++ scope specifier, the
2262  // lexical context will be different from the semantic context.
2263  NewVD->setLexicalDeclContext(CurContext);
2264
2265  // Handle attributes prior to checking for duplicates in MergeVarDecl
2266  ProcessDeclAttributes(S, NewVD, D);
2267
2268  // Handle GNU asm-label extension (encoded as an attribute).
2269  if (Expr *E = (Expr*) D.getAsmLabel()) {
2270    // The parser guarantees this is a string.
2271    StringLiteral *SE = cast<StringLiteral>(E);
2272    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2273                                                        SE->getByteLength())));
2274  }
2275
2276  // If name lookup finds a previous declaration that is not in the
2277  // same scope as the new declaration, this may still be an
2278  // acceptable redeclaration.
2279  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2280      !(NewVD->hasLinkage() &&
2281        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2282    PrevDecl = 0;
2283
2284  // Merge the decl with the existing one if appropriate.
2285  if (PrevDecl) {
2286    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2287      // The user tried to define a non-static data member
2288      // out-of-line (C++ [dcl.meaning]p1).
2289      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2290        << D.getCXXScopeSpec().getRange();
2291      PrevDecl = 0;
2292      NewVD->setInvalidDecl();
2293    }
2294  } else if (D.getCXXScopeSpec().isSet()) {
2295    // No previous declaration in the qualifying scope.
2296    Diag(D.getIdentifierLoc(), diag::err_no_member)
2297      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2298      << D.getCXXScopeSpec().getRange();
2299    NewVD->setInvalidDecl();
2300  }
2301
2302  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2303
2304  // This is an explicit specialization of a static data member. Check it.
2305  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2306      CheckMemberSpecialization(NewVD, PrevDecl))
2307    NewVD->setInvalidDecl();
2308
2309  // attributes declared post-definition are currently ignored
2310  if (PrevDecl) {
2311    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2312    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2313      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2314      Diag(Def->getLocation(), diag::note_previous_definition);
2315    }
2316  }
2317
2318  // If this is a locally-scoped extern C variable, update the map of
2319  // such variables.
2320  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2321      !NewVD->isInvalidDecl())
2322    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2323
2324  return NewVD;
2325}
2326
2327/// \brief Perform semantic checking on a newly-created variable
2328/// declaration.
2329///
2330/// This routine performs all of the type-checking required for a
2331/// variable declaration once it has been built. It is used both to
2332/// check variables after they have been parsed and their declarators
2333/// have been translated into a declaration, and to check variables
2334/// that have been instantiated from a template.
2335///
2336/// Sets NewVD->isInvalidDecl() if an error was encountered.
2337void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2338                                    bool &Redeclaration) {
2339  // If the decl is already known invalid, don't check it.
2340  if (NewVD->isInvalidDecl())
2341    return;
2342
2343  QualType T = NewVD->getType();
2344
2345  if (T->isObjCInterfaceType()) {
2346    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2347    return NewVD->setInvalidDecl();
2348  }
2349
2350  // The variable can not have an abstract class type.
2351  if (RequireNonAbstractType(NewVD->getLocation(), T,
2352                             diag::err_abstract_type_in_decl,
2353                             AbstractVariableType))
2354    return NewVD->setInvalidDecl();
2355
2356  // Emit an error if an address space was applied to decl with local storage.
2357  // This includes arrays of objects with address space qualifiers, but not
2358  // automatic variables that point to other address spaces.
2359  // ISO/IEC TR 18037 S5.1.2
2360  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2361    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2362    return NewVD->setInvalidDecl();
2363  }
2364
2365  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2366      && !NewVD->hasAttr<BlocksAttr>())
2367    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2368
2369  bool isVM = T->isVariablyModifiedType();
2370  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2371      NewVD->hasAttr<BlocksAttr>())
2372    CurFunctionNeedsScopeChecking = true;
2373
2374  if ((isVM && NewVD->hasLinkage()) ||
2375      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2376    bool SizeIsNegative;
2377    QualType FixedTy =
2378        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2379
2380    if (FixedTy.isNull() && T->isVariableArrayType()) {
2381      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2382      // FIXME: This won't give the correct result for
2383      // int a[10][n];
2384      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2385
2386      if (NewVD->isFileVarDecl())
2387        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2388        << SizeRange;
2389      else if (NewVD->getStorageClass() == VarDecl::Static)
2390        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2391        << SizeRange;
2392      else
2393        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2394        << SizeRange;
2395      return NewVD->setInvalidDecl();
2396    }
2397
2398    if (FixedTy.isNull()) {
2399      if (NewVD->isFileVarDecl())
2400        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2401      else
2402        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2403      return NewVD->setInvalidDecl();
2404    }
2405
2406    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2407    NewVD->setType(FixedTy);
2408  }
2409
2410  if (!PrevDecl && NewVD->isExternC()) {
2411    // Since we did not find anything by this name and we're declaring
2412    // an extern "C" variable, look for a non-visible extern "C"
2413    // declaration with the same name.
2414    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2415      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2416    if (Pos != LocallyScopedExternalDecls.end())
2417      PrevDecl = Pos->second;
2418  }
2419
2420  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2421    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2422      << T;
2423    return NewVD->setInvalidDecl();
2424  }
2425
2426  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2427    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2428    return NewVD->setInvalidDecl();
2429  }
2430
2431  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2432    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2433    return NewVD->setInvalidDecl();
2434  }
2435
2436  if (PrevDecl) {
2437    Redeclaration = true;
2438    MergeVarDecl(NewVD, PrevDecl);
2439  }
2440}
2441
2442static bool isUsingDecl(Decl *D) {
2443  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2444}
2445
2446/// \brief Data used with FindOverriddenMethod
2447struct FindOverriddenMethodData {
2448  Sema *S;
2449  CXXMethodDecl *Method;
2450};
2451
2452/// \brief Member lookup function that determines whether a given C++
2453/// method overrides a method in a base class, to be used with
2454/// CXXRecordDecl::lookupInBases().
2455static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2456                                 CXXBasePath &Path,
2457                                 void *UserData) {
2458  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2459
2460  FindOverriddenMethodData *Data
2461    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2462  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2463       Path.Decls.first != Path.Decls.second;
2464       ++Path.Decls.first) {
2465    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2466      OverloadedFunctionDecl::function_iterator MatchedDecl;
2467      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2468        return true;
2469    }
2470  }
2471
2472  return false;
2473}
2474
2475NamedDecl*
2476Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2477                              QualType R, DeclaratorInfo *DInfo,
2478                              NamedDecl* PrevDecl,
2479                              MultiTemplateParamsArg TemplateParamLists,
2480                              bool IsFunctionDefinition, bool &Redeclaration) {
2481  assert(R.getTypePtr()->isFunctionType());
2482
2483  DeclarationName Name = GetNameForDeclarator(D);
2484  FunctionDecl::StorageClass SC = FunctionDecl::None;
2485  switch (D.getDeclSpec().getStorageClassSpec()) {
2486  default: assert(0 && "Unknown storage class!");
2487  case DeclSpec::SCS_auto:
2488  case DeclSpec::SCS_register:
2489  case DeclSpec::SCS_mutable:
2490    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2491         diag::err_typecheck_sclass_func);
2492    D.setInvalidType();
2493    break;
2494  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2495  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2496  case DeclSpec::SCS_static: {
2497    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2498      // C99 6.7.1p5:
2499      //   The declaration of an identifier for a function that has
2500      //   block scope shall have no explicit storage-class specifier
2501      //   other than extern
2502      // See also (C++ [dcl.stc]p4).
2503      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2504           diag::err_static_block_func);
2505      SC = FunctionDecl::None;
2506    } else
2507      SC = FunctionDecl::Static;
2508    break;
2509  }
2510  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2511  }
2512
2513  if (D.getDeclSpec().isThreadSpecified())
2514    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2515
2516  bool isFriend = D.getDeclSpec().isFriendSpecified();
2517  bool isInline = D.getDeclSpec().isInlineSpecified();
2518  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2519  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2520
2521  // Check that the return type is not an abstract class type.
2522  // For record types, this is done by the AbstractClassUsageDiagnoser once
2523  // the class has been completely parsed.
2524  if (!DC->isRecord() &&
2525      RequireNonAbstractType(D.getIdentifierLoc(),
2526                             R->getAs<FunctionType>()->getResultType(),
2527                             diag::err_abstract_type_in_decl,
2528                             AbstractReturnType))
2529    D.setInvalidType();
2530
2531  // Do not allow returning a objc interface by-value.
2532  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2533    Diag(D.getIdentifierLoc(),
2534         diag::err_object_cannot_be_passed_returned_by_value) << 0
2535      << R->getAs<FunctionType>()->getResultType();
2536    D.setInvalidType();
2537  }
2538
2539  bool isVirtualOkay = false;
2540  FunctionDecl *NewFD;
2541
2542  if (isFriend) {
2543    // DC is the namespace in which the function is being declared.
2544    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2545           "friend function being created in a non-namespace context");
2546
2547    // C++ [class.friend]p5
2548    //   A function can be defined in a friend declaration of a
2549    //   class . . . . Such a function is implicitly inline.
2550    isInline |= IsFunctionDefinition;
2551  }
2552
2553  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2554    // This is a C++ constructor declaration.
2555    assert(DC->isRecord() &&
2556           "Constructors can only be declared in a member context");
2557
2558    R = CheckConstructorDeclarator(D, R, SC);
2559
2560    // Create the new declaration
2561    NewFD = CXXConstructorDecl::Create(Context,
2562                                       cast<CXXRecordDecl>(DC),
2563                                       D.getIdentifierLoc(), Name, R, DInfo,
2564                                       isExplicit, isInline,
2565                                       /*isImplicitlyDeclared=*/false);
2566  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2567    // This is a C++ destructor declaration.
2568    if (DC->isRecord()) {
2569      R = CheckDestructorDeclarator(D, SC);
2570
2571      NewFD = CXXDestructorDecl::Create(Context,
2572                                        cast<CXXRecordDecl>(DC),
2573                                        D.getIdentifierLoc(), Name, R,
2574                                        isInline,
2575                                        /*isImplicitlyDeclared=*/false);
2576
2577      isVirtualOkay = true;
2578    } else {
2579      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2580
2581      // Create a FunctionDecl to satisfy the function definition parsing
2582      // code path.
2583      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2584                                   Name, R, DInfo, SC, isInline,
2585                                   /*hasPrototype=*/true);
2586      D.setInvalidType();
2587    }
2588  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2589    if (!DC->isRecord()) {
2590      Diag(D.getIdentifierLoc(),
2591           diag::err_conv_function_not_member);
2592      return 0;
2593    }
2594
2595    CheckConversionDeclarator(D, R, SC);
2596    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2597                                      D.getIdentifierLoc(), Name, R, DInfo,
2598                                      isInline, isExplicit);
2599
2600    isVirtualOkay = true;
2601  } else if (DC->isRecord()) {
2602    // If the of the function is the same as the name of the record, then this
2603    // must be an invalid constructor that has a return type.
2604    // (The parser checks for a return type and makes the declarator a
2605    // constructor if it has no return type).
2606    // must have an invalid constructor that has a return type
2607    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2608      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2609        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2610        << SourceRange(D.getIdentifierLoc());
2611      return 0;
2612    }
2613
2614    bool isStatic = SC == FunctionDecl::Static;
2615
2616    // [class.free]p1:
2617    // Any allocation function for a class T is a static member
2618    // (even if not explicitly declared static).
2619    if (Name.getCXXOverloadedOperator() == OO_New ||
2620        Name.getCXXOverloadedOperator() == OO_Array_New)
2621      isStatic = true;
2622
2623    // [class.free]p6 Any deallocation function for a class X is a static member
2624    // (even if not explicitly declared static).
2625    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2626        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2627      isStatic = true;
2628
2629    // This is a C++ method declaration.
2630    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2631                                  D.getIdentifierLoc(), Name, R, DInfo,
2632                                  isStatic, isInline);
2633
2634    isVirtualOkay = !isStatic;
2635  } else {
2636    // Determine whether the function was written with a
2637    // prototype. This true when:
2638    //   - we're in C++ (where every function has a prototype),
2639    //   - there is a prototype in the declarator, or
2640    //   - the type R of the function is some kind of typedef or other reference
2641    //     to a type name (which eventually refers to a function type).
2642    bool HasPrototype =
2643       getLangOptions().CPlusPlus ||
2644       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2645       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2646
2647    NewFD = FunctionDecl::Create(Context, DC,
2648                                 D.getIdentifierLoc(),
2649                                 Name, R, DInfo, SC, isInline, HasPrototype);
2650  }
2651
2652  if (D.isInvalidType())
2653    NewFD->setInvalidDecl();
2654
2655  // Set the lexical context. If the declarator has a C++
2656  // scope specifier, or is the object of a friend declaration, the
2657  // lexical context will be different from the semantic context.
2658  NewFD->setLexicalDeclContext(CurContext);
2659
2660  // Match up the template parameter lists with the scope specifier, then
2661  // determine whether we have a template or a template specialization.
2662  FunctionTemplateDecl *FunctionTemplate = 0;
2663  bool isExplicitSpecialization = false;
2664  bool isFunctionTemplateSpecialization = false;
2665  if (TemplateParameterList *TemplateParams
2666        = MatchTemplateParametersToScopeSpecifier(
2667                                  D.getDeclSpec().getSourceRange().getBegin(),
2668                                  D.getCXXScopeSpec(),
2669                           (TemplateParameterList**)TemplateParamLists.get(),
2670                                                  TemplateParamLists.size(),
2671                                                  isExplicitSpecialization)) {
2672    if (TemplateParams->size() > 0) {
2673      // This is a function template
2674
2675      // Check that we can declare a template here.
2676      if (CheckTemplateDeclScope(S, TemplateParams))
2677        return 0;
2678
2679      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2680                                                      NewFD->getLocation(),
2681                                                      Name, TemplateParams,
2682                                                      NewFD);
2683      FunctionTemplate->setLexicalDeclContext(CurContext);
2684      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2685    } else {
2686      // This is a function template specialization.
2687      isFunctionTemplateSpecialization = true;
2688    }
2689
2690    // FIXME: Free this memory properly.
2691    TemplateParamLists.release();
2692  }
2693
2694  // C++ [dcl.fct.spec]p5:
2695  //   The virtual specifier shall only be used in declarations of
2696  //   nonstatic class member functions that appear within a
2697  //   member-specification of a class declaration; see 10.3.
2698  //
2699  if (isVirtual && !NewFD->isInvalidDecl()) {
2700    if (!isVirtualOkay) {
2701       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2702           diag::err_virtual_non_function);
2703    } else if (!CurContext->isRecord()) {
2704      // 'virtual' was specified outside of the class.
2705      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2706        << CodeModificationHint::CreateRemoval(
2707                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2708    } else {
2709      // Okay: Add virtual to the method.
2710      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2711      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2712      CurClass->setAggregate(false);
2713      CurClass->setPOD(false);
2714      CurClass->setEmpty(false);
2715      CurClass->setPolymorphic(true);
2716      CurClass->setHasTrivialConstructor(false);
2717      CurClass->setHasTrivialCopyConstructor(false);
2718      CurClass->setHasTrivialCopyAssignment(false);
2719    }
2720  }
2721
2722  if (isFriend) {
2723    if (FunctionTemplate) {
2724      FunctionTemplate->setObjectOfFriendDecl(
2725                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2726      FunctionTemplate->setAccess(AS_public);
2727    }
2728    else
2729      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2730
2731    NewFD->setAccess(AS_public);
2732  }
2733
2734
2735  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2736    // Look for virtual methods in base classes that this method might override.
2737    CXXBasePaths Paths;
2738    FindOverriddenMethodData Data;
2739    Data.Method = NewMD;
2740    Data.S = this;
2741    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2742                                                Paths)) {
2743      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2744           E = Paths.found_decls_end(); I != E; ++I) {
2745        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2746          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2747              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2748            NewMD->addOverriddenMethod(OldMD);
2749        }
2750      }
2751    }
2752  }
2753
2754  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2755      !CurContext->isRecord()) {
2756    // C++ [class.static]p1:
2757    //   A data or function member of a class may be declared static
2758    //   in a class definition, in which case it is a static member of
2759    //   the class.
2760
2761    // Complain about the 'static' specifier if it's on an out-of-line
2762    // member function definition.
2763    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2764         diag::err_static_out_of_line)
2765      << CodeModificationHint::CreateRemoval(
2766                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2767  }
2768
2769  // Handle GNU asm-label extension (encoded as an attribute).
2770  if (Expr *E = (Expr*) D.getAsmLabel()) {
2771    // The parser guarantees this is a string.
2772    StringLiteral *SE = cast<StringLiteral>(E);
2773    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2774                                                        SE->getByteLength())));
2775  }
2776
2777  // Copy the parameter declarations from the declarator D to the function
2778  // declaration NewFD, if they are available.  First scavenge them into Params.
2779  llvm::SmallVector<ParmVarDecl*, 16> Params;
2780  if (D.getNumTypeObjects() > 0) {
2781    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2782
2783    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2784    // function that takes no arguments, not a function that takes a
2785    // single void argument.
2786    // We let through "const void" here because Sema::GetTypeForDeclarator
2787    // already checks for that case.
2788    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2789        FTI.ArgInfo[0].Param &&
2790        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2791      // Empty arg list, don't push any params.
2792      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2793
2794      // In C++, the empty parameter-type-list must be spelled "void"; a
2795      // typedef of void is not permitted.
2796      if (getLangOptions().CPlusPlus &&
2797          Param->getType().getUnqualifiedType() != Context.VoidTy)
2798        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2799      // FIXME: Leaks decl?
2800    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2801      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2802        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2803        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2804        Param->setDeclContext(NewFD);
2805        Params.push_back(Param);
2806      }
2807    }
2808
2809  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2810    // When we're declaring a function with a typedef, typeof, etc as in the
2811    // following example, we'll need to synthesize (unnamed)
2812    // parameters for use in the declaration.
2813    //
2814    // @code
2815    // typedef void fn(int);
2816    // fn f;
2817    // @endcode
2818
2819    // Synthesize a parameter for each argument type.
2820    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2821         AE = FT->arg_type_end(); AI != AE; ++AI) {
2822      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2823                                               SourceLocation(), 0,
2824                                               *AI, /*DInfo=*/0,
2825                                               VarDecl::None, 0);
2826      Param->setImplicit();
2827      Params.push_back(Param);
2828    }
2829  } else {
2830    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2831           "Should not need args for typedef of non-prototype fn");
2832  }
2833  // Finally, we know we have the right number of parameters, install them.
2834  NewFD->setParams(Context, Params.data(), Params.size());
2835
2836  // If name lookup finds a previous declaration that is not in the
2837  // same scope as the new declaration, this may still be an
2838  // acceptable redeclaration.
2839  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2840      !(NewFD->hasLinkage() &&
2841        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2842    PrevDecl = 0;
2843
2844  // If the declarator is a template-id, translate the parser's template
2845  // argument list into our AST format.
2846  bool HasExplicitTemplateArgs = false;
2847  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2848  SourceLocation LAngleLoc, RAngleLoc;
2849  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2850    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2851    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2852                                       TemplateId->getTemplateArgs(),
2853                                       TemplateId->NumArgs);
2854    translateTemplateArguments(TemplateArgsPtr,
2855                               TemplateArgs);
2856    TemplateArgsPtr.release();
2857
2858    HasExplicitTemplateArgs = true;
2859    LAngleLoc = TemplateId->LAngleLoc;
2860    RAngleLoc = TemplateId->RAngleLoc;
2861
2862    if (FunctionTemplate) {
2863      // FIXME: Diagnose function template with explicit template
2864      // arguments.
2865      HasExplicitTemplateArgs = false;
2866    } else if (!isFunctionTemplateSpecialization &&
2867               !D.getDeclSpec().isFriendSpecified()) {
2868      // We have encountered something that the user meant to be a
2869      // specialization (because it has explicitly-specified template
2870      // arguments) but that was not introduced with a "template<>" (or had
2871      // too few of them).
2872      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2873        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2874        << CodeModificationHint::CreateInsertion(
2875                                   D.getDeclSpec().getSourceRange().getBegin(),
2876                                                 "template<> ");
2877      isFunctionTemplateSpecialization = true;
2878    }
2879  }
2880
2881  if (isFunctionTemplateSpecialization) {
2882      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2883                                              LAngleLoc, TemplateArgs.data(),
2884                                              TemplateArgs.size(), RAngleLoc,
2885                                              PrevDecl))
2886        NewFD->setInvalidDecl();
2887  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2888             CheckMemberSpecialization(NewFD, PrevDecl))
2889    NewFD->setInvalidDecl();
2890
2891  // Perform semantic checking on the function declaration.
2892  bool OverloadableAttrRequired = false; // FIXME: HACK!
2893  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2894                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2895
2896  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2897    // An out-of-line member function declaration must also be a
2898    // definition (C++ [dcl.meaning]p1).
2899    // Note that this is not the case for explicit specializations of
2900    // function templates or member functions of class templates, per
2901    // C++ [temp.expl.spec]p2.
2902    if (!IsFunctionDefinition && !isFriend &&
2903        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2904      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2905        << D.getCXXScopeSpec().getRange();
2906      NewFD->setInvalidDecl();
2907    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2908      // The user tried to provide an out-of-line definition for a
2909      // function that is a member of a class or namespace, but there
2910      // was no such member function declared (C++ [class.mfct]p2,
2911      // C++ [namespace.memdef]p2). For example:
2912      //
2913      // class X {
2914      //   void f() const;
2915      // };
2916      //
2917      // void X::f() { } // ill-formed
2918      //
2919      // Complain about this problem, and attempt to suggest close
2920      // matches (e.g., those that differ only in cv-qualifiers and
2921      // whether the parameter types are references).
2922      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2923        << Name << DC << D.getCXXScopeSpec().getRange();
2924      NewFD->setInvalidDecl();
2925
2926      LookupResult Prev;
2927      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2928      assert(!Prev.isAmbiguous() &&
2929             "Cannot have an ambiguity in previous-declaration lookup");
2930      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2931           Func != FuncEnd; ++Func) {
2932        if (isa<FunctionDecl>(*Func) &&
2933            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2934          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2935      }
2936
2937      PrevDecl = 0;
2938    }
2939  }
2940
2941  // Handle attributes. We need to have merged decls when handling attributes
2942  // (for example to check for conflicts, etc).
2943  // FIXME: This needs to happen before we merge declarations. Then,
2944  // let attribute merging cope with attribute conflicts.
2945  ProcessDeclAttributes(S, NewFD, D);
2946
2947  // attributes declared post-definition are currently ignored
2948  if (Redeclaration && PrevDecl) {
2949    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2950    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2951      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2952      Diag(Def->getLocation(), diag::note_previous_definition);
2953    }
2954  }
2955
2956  AddKnownFunctionAttributes(NewFD);
2957
2958  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2959    // If a function name is overloadable in C, then every function
2960    // with that name must be marked "overloadable".
2961    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2962      << Redeclaration << NewFD;
2963    if (PrevDecl)
2964      Diag(PrevDecl->getLocation(),
2965           diag::note_attribute_overloadable_prev_overload);
2966    NewFD->addAttr(::new (Context) OverloadableAttr());
2967  }
2968
2969  // If this is a locally-scoped extern C function, update the
2970  // map of such names.
2971  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2972      && !NewFD->isInvalidDecl())
2973    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2974
2975  // Set this FunctionDecl's range up to the right paren.
2976  NewFD->setLocEnd(D.getSourceRange().getEnd());
2977
2978  if (FunctionTemplate && NewFD->isInvalidDecl())
2979    FunctionTemplate->setInvalidDecl();
2980
2981  if (FunctionTemplate)
2982    return FunctionTemplate;
2983
2984  return NewFD;
2985}
2986
2987/// \brief Perform semantic checking of a new function declaration.
2988///
2989/// Performs semantic analysis of the new function declaration
2990/// NewFD. This routine performs all semantic checking that does not
2991/// require the actual declarator involved in the declaration, and is
2992/// used both for the declaration of functions as they are parsed
2993/// (called via ActOnDeclarator) and for the declaration of functions
2994/// that have been instantiated via C++ template instantiation (called
2995/// via InstantiateDecl).
2996///
2997/// \param IsExplicitSpecialiation whether this new function declaration is
2998/// an explicit specialization of the previous declaration.
2999///
3000/// This sets NewFD->isInvalidDecl() to true if there was an error.
3001void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
3002                                    bool IsExplicitSpecialization,
3003                                    bool &Redeclaration,
3004                                    bool &OverloadableAttrRequired) {
3005  // If NewFD is already known erroneous, don't do any of this checking.
3006  if (NewFD->isInvalidDecl())
3007    return;
3008
3009  if (NewFD->getResultType()->isVariablyModifiedType()) {
3010    // Functions returning a variably modified type violate C99 6.7.5.2p2
3011    // because all functions have linkage.
3012    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3013    return NewFD->setInvalidDecl();
3014  }
3015
3016  if (NewFD->isMain())
3017    CheckMain(NewFD);
3018
3019  // Check for a previous declaration of this name.
3020  if (!PrevDecl && NewFD->isExternC()) {
3021    // Since we did not find anything by this name and we're declaring
3022    // an extern "C" function, look for a non-visible extern "C"
3023    // declaration with the same name.
3024    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3025      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3026    if (Pos != LocallyScopedExternalDecls.end())
3027      PrevDecl = Pos->second;
3028  }
3029
3030  // Merge or overload the declaration with an existing declaration of
3031  // the same name, if appropriate.
3032  if (PrevDecl) {
3033    // Determine whether NewFD is an overload of PrevDecl or
3034    // a declaration that requires merging. If it's an overload,
3035    // there's no more work to do here; we'll just add the new
3036    // function to the scope.
3037    OverloadedFunctionDecl::function_iterator MatchedDecl;
3038
3039    if (!getLangOptions().CPlusPlus &&
3040        AllowOverloadingOfFunction(PrevDecl, Context)) {
3041      OverloadableAttrRequired = true;
3042
3043      // Functions marked "overloadable" must have a prototype (that
3044      // we can't get through declaration merging).
3045      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3046        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3047          << NewFD;
3048        Redeclaration = true;
3049
3050        // Turn this into a variadic function with no parameters.
3051        QualType R = Context.getFunctionType(
3052                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3053                       0, 0, true, 0);
3054        NewFD->setType(R);
3055        return NewFD->setInvalidDecl();
3056      }
3057    }
3058
3059    if (PrevDecl &&
3060        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3061         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3062      Redeclaration = true;
3063      Decl *OldDecl = PrevDecl;
3064
3065      // If PrevDecl was an overloaded function, extract the
3066      // FunctionDecl that matched.
3067      if (isa<OverloadedFunctionDecl>(PrevDecl))
3068        OldDecl = *MatchedDecl;
3069
3070      // NewFD and OldDecl represent declarations that need to be
3071      // merged.
3072      if (MergeFunctionDecl(NewFD, OldDecl))
3073        return NewFD->setInvalidDecl();
3074
3075      if (FunctionTemplateDecl *OldTemplateDecl
3076                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3077        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3078        FunctionTemplateDecl *NewTemplateDecl
3079          = NewFD->getDescribedFunctionTemplate();
3080        assert(NewTemplateDecl && "Template/non-template mismatch");
3081        if (CXXMethodDecl *Method
3082              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3083          Method->setAccess(OldTemplateDecl->getAccess());
3084          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3085        }
3086
3087        // If this is an explicit specialization of a member that is a function
3088        // template, mark it as a member specialization.
3089        if (IsExplicitSpecialization &&
3090            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3091          NewTemplateDecl->setMemberSpecialization();
3092          assert(OldTemplateDecl->isMemberSpecialization());
3093        }
3094      } else {
3095        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3096          NewFD->setAccess(OldDecl->getAccess());
3097        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3098      }
3099    }
3100  }
3101
3102  // Semantic checking for this function declaration (in isolation).
3103  if (getLangOptions().CPlusPlus) {
3104    // C++-specific checks.
3105    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3106      CheckConstructor(Constructor);
3107    } else if (CXXDestructorDecl *Destructor =
3108                dyn_cast<CXXDestructorDecl>(NewFD)) {
3109      CXXRecordDecl *Record = Destructor->getParent();
3110      QualType ClassType = Context.getTypeDeclType(Record);
3111
3112      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3113      // type is dependent? Both gcc and edg can handle that.
3114      if (!ClassType->isDependentType()) {
3115        DeclarationName Name
3116          = Context.DeclarationNames.getCXXDestructorName(
3117                                        Context.getCanonicalType(ClassType));
3118        if (NewFD->getDeclName() != Name) {
3119          Diag(NewFD->getLocation(), diag::err_destructor_name);
3120          return NewFD->setInvalidDecl();
3121        }
3122
3123        CheckDestructor(Destructor);
3124      }
3125
3126      Record->setUserDeclaredDestructor(true);
3127      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3128      // user-defined destructor.
3129      Record->setPOD(false);
3130
3131      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3132      // declared destructor.
3133      // FIXME: C++0x: don't do this for "= default" destructors
3134      Record->setHasTrivialDestructor(false);
3135    } else if (CXXConversionDecl *Conversion
3136               = dyn_cast<CXXConversionDecl>(NewFD))
3137      ActOnConversionDeclarator(Conversion);
3138
3139    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3140    if (NewFD->isOverloadedOperator() &&
3141        CheckOverloadedOperatorDeclaration(NewFD))
3142      return NewFD->setInvalidDecl();
3143
3144    // In C++, check default arguments now that we have merged decls. Unless
3145    // the lexical context is the class, because in this case this is done
3146    // during delayed parsing anyway.
3147    if (!CurContext->isRecord())
3148      CheckCXXDefaultArguments(NewFD);
3149  }
3150}
3151
3152void Sema::CheckMain(FunctionDecl* FD) {
3153  // C++ [basic.start.main]p3:  A program that declares main to be inline
3154  //   or static is ill-formed.
3155  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3156  //   shall not appear in a declaration of main.
3157  // static main is not an error under C99, but we should warn about it.
3158  bool isInline = FD->isInlineSpecified();
3159  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3160  if (isInline || isStatic) {
3161    unsigned diagID = diag::warn_unusual_main_decl;
3162    if (isInline || getLangOptions().CPlusPlus)
3163      diagID = diag::err_unusual_main_decl;
3164
3165    int which = isStatic + (isInline << 1) - 1;
3166    Diag(FD->getLocation(), diagID) << which;
3167  }
3168
3169  QualType T = FD->getType();
3170  assert(T->isFunctionType() && "function decl is not of function type");
3171  const FunctionType* FT = T->getAs<FunctionType>();
3172
3173  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3174    // TODO: add a replacement fixit to turn the return type into 'int'.
3175    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3176    FD->setInvalidDecl(true);
3177  }
3178
3179  // Treat protoless main() as nullary.
3180  if (isa<FunctionNoProtoType>(FT)) return;
3181
3182  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3183  unsigned nparams = FTP->getNumArgs();
3184  assert(FD->getNumParams() == nparams);
3185
3186  if (nparams > 3) {
3187    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3188    FD->setInvalidDecl(true);
3189    nparams = 3;
3190  }
3191
3192  // FIXME: a lot of the following diagnostics would be improved
3193  // if we had some location information about types.
3194
3195  QualType CharPP =
3196    Context.getPointerType(Context.getPointerType(Context.CharTy));
3197  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3198
3199  for (unsigned i = 0; i < nparams; ++i) {
3200    QualType AT = FTP->getArgType(i);
3201
3202    bool mismatch = true;
3203
3204    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3205      mismatch = false;
3206    else if (Expected[i] == CharPP) {
3207      // As an extension, the following forms are okay:
3208      //   char const **
3209      //   char const * const *
3210      //   char * const *
3211
3212      QualifierCollector qs;
3213      const PointerType* PT;
3214      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3215          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3216          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3217        qs.removeConst();
3218        mismatch = !qs.empty();
3219      }
3220    }
3221
3222    if (mismatch) {
3223      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3224      // TODO: suggest replacing given type with expected type
3225      FD->setInvalidDecl(true);
3226    }
3227  }
3228
3229  if (nparams == 1 && !FD->isInvalidDecl()) {
3230    Diag(FD->getLocation(), diag::warn_main_one_arg);
3231  }
3232}
3233
3234bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3235  // FIXME: Need strict checking.  In C89, we need to check for
3236  // any assignment, increment, decrement, function-calls, or
3237  // commas outside of a sizeof.  In C99, it's the same list,
3238  // except that the aforementioned are allowed in unevaluated
3239  // expressions.  Everything else falls under the
3240  // "may accept other forms of constant expressions" exception.
3241  // (We never end up here for C++, so the constant expression
3242  // rules there don't matter.)
3243  if (Init->isConstantInitializer(Context))
3244    return false;
3245  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3246    << Init->getSourceRange();
3247  return true;
3248}
3249
3250void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3251  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3252}
3253
3254/// AddInitializerToDecl - Adds the initializer Init to the
3255/// declaration dcl. If DirectInit is true, this is C++ direct
3256/// initialization rather than copy initialization.
3257void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3258  Decl *RealDecl = dcl.getAs<Decl>();
3259  // If there is no declaration, there was an error parsing it.  Just ignore
3260  // the initializer.
3261  if (RealDecl == 0)
3262    return;
3263
3264  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3265    // With declarators parsed the way they are, the parser cannot
3266    // distinguish between a normal initializer and a pure-specifier.
3267    // Thus this grotesque test.
3268    IntegerLiteral *IL;
3269    Expr *Init = static_cast<Expr *>(init.get());
3270    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3271        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3272      if (Method->isVirtualAsWritten()) {
3273        Method->setPure();
3274
3275        // A class is abstract if at least one function is pure virtual.
3276        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3277      } else if (!Method->isInvalidDecl()) {
3278        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3279          << Method->getDeclName() << Init->getSourceRange();
3280        Method->setInvalidDecl();
3281      }
3282    } else {
3283      Diag(Method->getLocation(), diag::err_member_function_initialization)
3284        << Method->getDeclName() << Init->getSourceRange();
3285      Method->setInvalidDecl();
3286    }
3287    return;
3288  }
3289
3290  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3291  if (!VDecl) {
3292    if (getLangOptions().CPlusPlus &&
3293        RealDecl->getLexicalDeclContext()->isRecord() &&
3294        isa<NamedDecl>(RealDecl))
3295      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3296        << cast<NamedDecl>(RealDecl)->getDeclName();
3297    else
3298      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3299    RealDecl->setInvalidDecl();
3300    return;
3301  }
3302
3303  // A definition must end up with a complete type, which means it must be
3304  // complete with the restriction that an array type might be completed by the
3305  // initializer; note that later code assumes this restriction.
3306  QualType BaseDeclType = VDecl->getType();
3307  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3308    BaseDeclType = Array->getElementType();
3309  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3310                          diag::err_typecheck_decl_incomplete_type)) {
3311    RealDecl->setInvalidDecl();
3312    return;
3313  }
3314
3315  const VarDecl *Def = 0;
3316  if (VDecl->getDefinition(Def)) {
3317    Diag(VDecl->getLocation(), diag::err_redefinition)
3318      << VDecl->getDeclName();
3319    Diag(Def->getLocation(), diag::note_previous_definition);
3320    VDecl->setInvalidDecl();
3321    return;
3322  }
3323
3324  // Take ownership of the expression, now that we're sure we have somewhere
3325  // to put it.
3326  Expr *Init = init.takeAs<Expr>();
3327  assert(Init && "missing initializer");
3328
3329  // Get the decls type and save a reference for later, since
3330  // CheckInitializerTypes may change it.
3331  QualType DclT = VDecl->getType(), SavT = DclT;
3332  if (VDecl->isBlockVarDecl()) {
3333    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3334      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3335      VDecl->setInvalidDecl();
3336    } else if (!VDecl->isInvalidDecl()) {
3337      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3338                                VDecl->getDeclName(), DirectInit))
3339        VDecl->setInvalidDecl();
3340
3341      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3342      // Don't check invalid declarations to avoid emitting useless diagnostics.
3343      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3344        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3345          CheckForConstantInitializer(Init, DclT);
3346      }
3347    }
3348  } else if (VDecl->isStaticDataMember() &&
3349             VDecl->getLexicalDeclContext()->isRecord()) {
3350    // This is an in-class initialization for a static data member, e.g.,
3351    //
3352    // struct S {
3353    //   static const int value = 17;
3354    // };
3355
3356    // Attach the initializer
3357    VDecl->setInit(Context, Init);
3358
3359    // C++ [class.mem]p4:
3360    //   A member-declarator can contain a constant-initializer only
3361    //   if it declares a static member (9.4) of const integral or
3362    //   const enumeration type, see 9.4.2.
3363    QualType T = VDecl->getType();
3364    if (!T->isDependentType() &&
3365        (!Context.getCanonicalType(T).isConstQualified() ||
3366         !T->isIntegralType())) {
3367      Diag(VDecl->getLocation(), diag::err_member_initialization)
3368        << VDecl->getDeclName() << Init->getSourceRange();
3369      VDecl->setInvalidDecl();
3370    } else {
3371      // C++ [class.static.data]p4:
3372      //   If a static data member is of const integral or const
3373      //   enumeration type, its declaration in the class definition
3374      //   can specify a constant-initializer which shall be an
3375      //   integral constant expression (5.19).
3376      if (!Init->isTypeDependent() &&
3377          !Init->getType()->isIntegralType()) {
3378        // We have a non-dependent, non-integral or enumeration type.
3379        Diag(Init->getSourceRange().getBegin(),
3380             diag::err_in_class_initializer_non_integral_type)
3381          << Init->getType() << Init->getSourceRange();
3382        VDecl->setInvalidDecl();
3383      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3384        // Check whether the expression is a constant expression.
3385        llvm::APSInt Value;
3386        SourceLocation Loc;
3387        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3388          Diag(Loc, diag::err_in_class_initializer_non_constant)
3389            << Init->getSourceRange();
3390          VDecl->setInvalidDecl();
3391        } else if (!VDecl->getType()->isDependentType())
3392          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3393      }
3394    }
3395  } else if (VDecl->isFileVarDecl()) {
3396    if (VDecl->getStorageClass() == VarDecl::Extern)
3397      Diag(VDecl->getLocation(), diag::warn_extern_init);
3398    if (!VDecl->isInvalidDecl())
3399      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3400                                VDecl->getDeclName(), DirectInit))
3401        VDecl->setInvalidDecl();
3402
3403    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3404    // Don't check invalid declarations to avoid emitting useless diagnostics.
3405    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3406      // C99 6.7.8p4. All file scoped initializers need to be constant.
3407      CheckForConstantInitializer(Init, DclT);
3408    }
3409  }
3410  // If the type changed, it means we had an incomplete type that was
3411  // completed by the initializer. For example:
3412  //   int ary[] = { 1, 3, 5 };
3413  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3414  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3415    VDecl->setType(DclT);
3416    Init->setType(DclT);
3417  }
3418
3419  Init = MaybeCreateCXXExprWithTemporaries(Init,
3420                                           /*ShouldDestroyTemporaries=*/true);
3421  // Attach the initializer to the decl.
3422  VDecl->setInit(Context, Init);
3423
3424  // If the previous declaration of VDecl was a tentative definition,
3425  // remove it from the set of tentative definitions.
3426  if (VDecl->getPreviousDeclaration() &&
3427      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3428    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3429    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3430  }
3431
3432  return;
3433}
3434
3435void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3436                                  bool TypeContainsUndeducedAuto) {
3437  Decl *RealDecl = dcl.getAs<Decl>();
3438
3439  // If there is no declaration, there was an error parsing it. Just ignore it.
3440  if (RealDecl == 0)
3441    return;
3442
3443  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3444    QualType Type = Var->getType();
3445
3446    // Record tentative definitions.
3447    if (Var->isTentativeDefinition(Context)) {
3448      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3449        InsertPair =
3450           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3451
3452      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3453      // want the second one in the map.
3454      InsertPair.first->second = Var;
3455
3456      // However, for the list, we don't care about the order, just make sure
3457      // that there are no dupes for a given declaration name.
3458      if (InsertPair.second)
3459        TentativeDefinitionList.push_back(Var->getDeclName());
3460    }
3461
3462    // C++ [dcl.init.ref]p3:
3463    //   The initializer can be omitted for a reference only in a
3464    //   parameter declaration (8.3.5), in the declaration of a
3465    //   function return type, in the declaration of a class member
3466    //   within its class declaration (9.2), and where the extern
3467    //   specifier is explicitly used.
3468    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3469      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3470        << Var->getDeclName()
3471        << SourceRange(Var->getLocation(), Var->getLocation());
3472      Var->setInvalidDecl();
3473      return;
3474    }
3475
3476    // C++0x [dcl.spec.auto]p3
3477    if (TypeContainsUndeducedAuto) {
3478      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3479        << Var->getDeclName() << Type;
3480      Var->setInvalidDecl();
3481      return;
3482    }
3483
3484    // An array without size is an incomplete type, and there are no special
3485    // rules in C++ to make such a definition acceptable.
3486    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3487        !Var->hasExternalStorage()) {
3488      Diag(Var->getLocation(),
3489           diag::err_typecheck_incomplete_array_needs_initializer);
3490      Var->setInvalidDecl();
3491      return;
3492    }
3493
3494    // C++ [temp.expl.spec]p15:
3495    //   An explicit specialization of a static data member of a template is a
3496    //   definition if the declaration includes an initializer; otherwise, it
3497    //   is a declaration.
3498    if (Var->isStaticDataMember() &&
3499        Var->getInstantiatedFromStaticDataMember() &&
3500        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3501      return;
3502
3503    // C++ [dcl.init]p9:
3504    //   If no initializer is specified for an object, and the object
3505    //   is of (possibly cv-qualified) non-POD class type (or array
3506    //   thereof), the object shall be default-initialized; if the
3507    //   object is of const-qualified type, the underlying class type
3508    //   shall have a user-declared default constructor.
3509    //
3510    // FIXME: Diagnose the "user-declared default constructor" bit.
3511    if (getLangOptions().CPlusPlus) {
3512      QualType InitType = Type;
3513      if (const ArrayType *Array = Context.getAsArrayType(Type))
3514        InitType = Context.getBaseElementType(Array);
3515      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3516          InitType->isRecordType() && !InitType->isDependentType()) {
3517        if (!RequireCompleteType(Var->getLocation(), InitType,
3518                                 diag::err_invalid_incomplete_type_use)) {
3519          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3520
3521          CXXConstructorDecl *Constructor
3522            = PerformInitializationByConstructor(InitType,
3523                                                 MultiExprArg(*this, 0, 0),
3524                                                 Var->getLocation(),
3525                                               SourceRange(Var->getLocation(),
3526                                                           Var->getLocation()),
3527                                                 Var->getDeclName(),
3528                                                 IK_Default,
3529                                                 ConstructorArgs);
3530
3531          // FIXME: Location info for the variable initialization?
3532          if (!Constructor)
3533            Var->setInvalidDecl();
3534          else {
3535            // FIXME: Cope with initialization of arrays
3536            if (!Constructor->isTrivial() &&
3537                InitializeVarWithConstructor(Var, Constructor,
3538                                             move_arg(ConstructorArgs)))
3539              Var->setInvalidDecl();
3540
3541            FinalizeVarWithDestructor(Var, InitType);
3542          }
3543        } else {
3544          Var->setInvalidDecl();
3545        }
3546      }
3547    }
3548
3549#if 0
3550    // FIXME: Temporarily disabled because we are not properly parsing
3551    // linkage specifications on declarations, e.g.,
3552    //
3553    //   extern "C" const CGPoint CGPointerZero;
3554    //
3555    // C++ [dcl.init]p9:
3556    //
3557    //     If no initializer is specified for an object, and the
3558    //     object is of (possibly cv-qualified) non-POD class type (or
3559    //     array thereof), the object shall be default-initialized; if
3560    //     the object is of const-qualified type, the underlying class
3561    //     type shall have a user-declared default
3562    //     constructor. Otherwise, if no initializer is specified for
3563    //     an object, the object and its subobjects, if any, have an
3564    //     indeterminate initial value; if the object or any of its
3565    //     subobjects are of const-qualified type, the program is
3566    //     ill-formed.
3567    //
3568    // This isn't technically an error in C, so we don't diagnose it.
3569    //
3570    // FIXME: Actually perform the POD/user-defined default
3571    // constructor check.
3572    if (getLangOptions().CPlusPlus &&
3573        Context.getCanonicalType(Type).isConstQualified() &&
3574        !Var->hasExternalStorage())
3575      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3576        << Var->getName()
3577        << SourceRange(Var->getLocation(), Var->getLocation());
3578#endif
3579  }
3580}
3581
3582Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3583                                                   DeclPtrTy *Group,
3584                                                   unsigned NumDecls) {
3585  llvm::SmallVector<Decl*, 8> Decls;
3586
3587  if (DS.isTypeSpecOwned())
3588    Decls.push_back((Decl*)DS.getTypeRep());
3589
3590  for (unsigned i = 0; i != NumDecls; ++i)
3591    if (Decl *D = Group[i].getAs<Decl>())
3592      Decls.push_back(D);
3593
3594  // Perform semantic analysis that depends on having fully processed both
3595  // the declarator and initializer.
3596  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3597    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3598    if (!IDecl)
3599      continue;
3600    QualType T = IDecl->getType();
3601
3602    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3603    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3604    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3605      if (T->isDependentType()) {
3606        // If T is dependent, we should not require a complete type.
3607        // (RequireCompleteType shouldn't be called with dependent types.)
3608        // But we still can at least check if we've got an array of unspecified
3609        // size without an initializer.
3610        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3611            !IDecl->getInit()) {
3612          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3613            << T;
3614          IDecl->setInvalidDecl();
3615        }
3616      } else if (!IDecl->isInvalidDecl()) {
3617        // If T is an incomplete array type with an initializer list that is
3618        // dependent on something, its size has not been fixed. We could attempt
3619        // to fix the size for such arrays, but we would still have to check
3620        // here for initializers containing a C++0x vararg expansion, e.g.
3621        // template <typename... Args> void f(Args... args) {
3622        //   int vals[] = { args };
3623        // }
3624        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3625        Expr *Init = IDecl->getInit();
3626        if (IAT && Init &&
3627            (Init->isTypeDependent() || Init->isValueDependent())) {
3628          // Check that the member type of the array is complete, at least.
3629          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3630                                  diag::err_typecheck_decl_incomplete_type))
3631            IDecl->setInvalidDecl();
3632        } else if (RequireCompleteType(IDecl->getLocation(), T,
3633                                      diag::err_typecheck_decl_incomplete_type))
3634          IDecl->setInvalidDecl();
3635      }
3636    }
3637    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3638    // object that has file scope without an initializer, and without a
3639    // storage-class specifier or with the storage-class specifier "static",
3640    // constitutes a tentative definition. Note: A tentative definition with
3641    // external linkage is valid (C99 6.2.2p5).
3642    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3643      if (const IncompleteArrayType *ArrayT
3644          = Context.getAsIncompleteArrayType(T)) {
3645        if (RequireCompleteType(IDecl->getLocation(),
3646                                ArrayT->getElementType(),
3647                                diag::err_illegal_decl_array_incomplete_type))
3648          IDecl->setInvalidDecl();
3649      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3650        // C99 6.9.2p3: If the declaration of an identifier for an object is
3651        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3652        // declared type shall not be an incomplete type.
3653        // NOTE: code such as the following
3654        //     static struct s;
3655        //     struct s { int a; };
3656        // is accepted by gcc. Hence here we issue a warning instead of
3657        // an error and we do not invalidate the static declaration.
3658        // NOTE: to avoid multiple warnings, only check the first declaration.
3659        if (IDecl->getPreviousDeclaration() == 0)
3660          RequireCompleteType(IDecl->getLocation(), T,
3661                              diag::ext_typecheck_decl_incomplete_type);
3662      }
3663    }
3664  }
3665  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3666                                                   Decls.data(), Decls.size()));
3667}
3668
3669
3670/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3671/// to introduce parameters into function prototype scope.
3672Sema::DeclPtrTy
3673Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3674  const DeclSpec &DS = D.getDeclSpec();
3675
3676  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3677  VarDecl::StorageClass StorageClass = VarDecl::None;
3678  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3679    StorageClass = VarDecl::Register;
3680  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3681    Diag(DS.getStorageClassSpecLoc(),
3682         diag::err_invalid_storage_class_in_func_decl);
3683    D.getMutableDeclSpec().ClearStorageClassSpecs();
3684  }
3685
3686  if (D.getDeclSpec().isThreadSpecified())
3687    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3688
3689  DiagnoseFunctionSpecifiers(D);
3690
3691  // Check that there are no default arguments inside the type of this
3692  // parameter (C++ only).
3693  if (getLangOptions().CPlusPlus)
3694    CheckExtraCXXDefaultArguments(D);
3695
3696  DeclaratorInfo *DInfo = 0;
3697  TagDecl *OwnedDecl = 0;
3698  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3699
3700  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3701    // C++ [dcl.fct]p6:
3702    //   Types shall not be defined in return or parameter types.
3703    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3704      << Context.getTypeDeclType(OwnedDecl);
3705  }
3706
3707  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3708  // Can this happen for params?  We already checked that they don't conflict
3709  // among each other.  Here they can only shadow globals, which is ok.
3710  IdentifierInfo *II = D.getIdentifier();
3711  if (II) {
3712    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3713      if (PrevDecl->isTemplateParameter()) {
3714        // Maybe we will complain about the shadowed template parameter.
3715        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3716        // Just pretend that we didn't see the previous declaration.
3717        PrevDecl = 0;
3718      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3719        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3720
3721        // Recover by removing the name
3722        II = 0;
3723        D.SetIdentifier(0, D.getIdentifierLoc());
3724      }
3725    }
3726  }
3727
3728  // Parameters can not be abstract class types.
3729  // For record types, this is done by the AbstractClassUsageDiagnoser once
3730  // the class has been completely parsed.
3731  if (!CurContext->isRecord() &&
3732      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3733                             diag::err_abstract_type_in_decl,
3734                             AbstractParamType))
3735    D.setInvalidType(true);
3736
3737  QualType T = adjustParameterType(parmDeclType);
3738
3739  ParmVarDecl *New
3740    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3741                          T, DInfo, StorageClass, 0);
3742
3743  if (D.isInvalidType())
3744    New->setInvalidDecl();
3745
3746  // Parameter declarators cannot be interface types. All ObjC objects are
3747  // passed by reference.
3748  if (T->isObjCInterfaceType()) {
3749    Diag(D.getIdentifierLoc(),
3750         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3751    New->setInvalidDecl();
3752  }
3753
3754  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3755  if (D.getCXXScopeSpec().isSet()) {
3756    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3757      << D.getCXXScopeSpec().getRange();
3758    New->setInvalidDecl();
3759  }
3760
3761  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3762  // duration shall not be qualified by an address-space qualifier."
3763  // Since all parameters have automatic store duration, they can not have
3764  // an address space.
3765  if (T.getAddressSpace() != 0) {
3766    Diag(D.getIdentifierLoc(),
3767         diag::err_arg_with_address_space);
3768    New->setInvalidDecl();
3769  }
3770
3771
3772  // Add the parameter declaration into this scope.
3773  S->AddDecl(DeclPtrTy::make(New));
3774  if (II)
3775    IdResolver.AddDecl(New);
3776
3777  ProcessDeclAttributes(S, New, D);
3778
3779  if (New->hasAttr<BlocksAttr>()) {
3780    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3781  }
3782  return DeclPtrTy::make(New);
3783}
3784
3785void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3786                                           SourceLocation LocAfterDecls) {
3787  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3788         "Not a function declarator!");
3789  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3790
3791  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3792  // for a K&R function.
3793  if (!FTI.hasPrototype) {
3794    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3795      --i;
3796      if (FTI.ArgInfo[i].Param == 0) {
3797        llvm::SmallString<256> Code;
3798        llvm::raw_svector_ostream(Code) << "  int "
3799                                        << FTI.ArgInfo[i].Ident->getName()
3800                                        << ";\n";
3801        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3802          << FTI.ArgInfo[i].Ident
3803          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3804
3805        // Implicitly declare the argument as type 'int' for lack of a better
3806        // type.
3807        DeclSpec DS;
3808        const char* PrevSpec; // unused
3809        unsigned DiagID; // unused
3810        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3811                           PrevSpec, DiagID);
3812        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3813        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3814        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3815      }
3816    }
3817  }
3818}
3819
3820Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3821                                              Declarator &D) {
3822  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3823  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3824         "Not a function declarator!");
3825  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3826
3827  if (FTI.hasPrototype) {
3828    // FIXME: Diagnose arguments without names in C.
3829  }
3830
3831  Scope *ParentScope = FnBodyScope->getParent();
3832
3833  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3834                                  MultiTemplateParamsArg(*this),
3835                                  /*IsFunctionDefinition=*/true);
3836  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3837}
3838
3839Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3840  // Clear the last template instantiation error context.
3841  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3842
3843  if (!D)
3844    return D;
3845  FunctionDecl *FD = 0;
3846
3847  if (FunctionTemplateDecl *FunTmpl
3848        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3849    FD = FunTmpl->getTemplatedDecl();
3850  else
3851    FD = cast<FunctionDecl>(D.getAs<Decl>());
3852
3853  CurFunctionNeedsScopeChecking = false;
3854
3855  // See if this is a redefinition.
3856  const FunctionDecl *Definition;
3857  if (FD->getBody(Definition)) {
3858    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3859    Diag(Definition->getLocation(), diag::note_previous_definition);
3860  }
3861
3862  // Builtin functions cannot be defined.
3863  if (unsigned BuiltinID = FD->getBuiltinID()) {
3864    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3865      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3866      FD->setInvalidDecl();
3867    }
3868  }
3869
3870  // The return type of a function definition must be complete
3871  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3872  QualType ResultType = FD->getResultType();
3873  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3874      !FD->isInvalidDecl() &&
3875      RequireCompleteType(FD->getLocation(), ResultType,
3876                          diag::err_func_def_incomplete_result))
3877    FD->setInvalidDecl();
3878
3879  // GNU warning -Wmissing-prototypes:
3880  //   Warn if a global function is defined without a previous
3881  //   prototype declaration. This warning is issued even if the
3882  //   definition itself provides a prototype. The aim is to detect
3883  //   global functions that fail to be declared in header files.
3884  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3885      !FD->isMain()) {
3886    bool MissingPrototype = true;
3887    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3888         Prev; Prev = Prev->getPreviousDeclaration()) {
3889      // Ignore any declarations that occur in function or method
3890      // scope, because they aren't visible from the header.
3891      if (Prev->getDeclContext()->isFunctionOrMethod())
3892        continue;
3893
3894      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3895      break;
3896    }
3897
3898    if (MissingPrototype)
3899      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3900  }
3901
3902  if (FnBodyScope)
3903    PushDeclContext(FnBodyScope, FD);
3904
3905  // Check the validity of our function parameters
3906  CheckParmsForFunctionDef(FD);
3907
3908  // Introduce our parameters into the function scope
3909  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3910    ParmVarDecl *Param = FD->getParamDecl(p);
3911    Param->setOwningFunction(FD);
3912
3913    // If this has an identifier, add it to the scope stack.
3914    if (Param->getIdentifier() && FnBodyScope)
3915      PushOnScopeChains(Param, FnBodyScope);
3916  }
3917
3918  // Checking attributes of current function definition
3919  // dllimport attribute.
3920  if (FD->getAttr<DLLImportAttr>() &&
3921      (!FD->getAttr<DLLExportAttr>())) {
3922    // dllimport attribute cannot be applied to definition.
3923    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3924      Diag(FD->getLocation(),
3925           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3926        << "dllimport";
3927      FD->setInvalidDecl();
3928      return DeclPtrTy::make(FD);
3929    } else {
3930      // If a symbol previously declared dllimport is later defined, the
3931      // attribute is ignored in subsequent references, and a warning is
3932      // emitted.
3933      Diag(FD->getLocation(),
3934           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3935        << FD->getNameAsCString() << "dllimport";
3936    }
3937  }
3938  return DeclPtrTy::make(FD);
3939}
3940
3941Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3942  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3943}
3944
3945Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3946                                              bool IsInstantiation) {
3947  Decl *dcl = D.getAs<Decl>();
3948  Stmt *Body = BodyArg.takeAs<Stmt>();
3949
3950  FunctionDecl *FD = 0;
3951  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3952  if (FunTmpl)
3953    FD = FunTmpl->getTemplatedDecl();
3954  else
3955    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3956
3957  if (FD) {
3958    FD->setBody(Body);
3959    if (FD->isMain())
3960      // C and C++ allow for main to automagically return 0.
3961      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3962      FD->setHasImplicitReturnZero(true);
3963    else
3964      CheckFallThroughForFunctionDef(FD, Body);
3965
3966    if (!FD->isInvalidDecl())
3967      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3968
3969    // C++ [basic.def.odr]p2:
3970    //   [...] A virtual member function is used if it is not pure. [...]
3971    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3972      if (Method->isVirtual() && !Method->isPure())
3973        MarkDeclarationReferenced(Method->getLocation(), Method);
3974
3975    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3976  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3977    assert(MD == getCurMethodDecl() && "Method parsing confused");
3978    MD->setBody(Body);
3979    CheckFallThroughForFunctionDef(MD, Body);
3980    MD->setEndLoc(Body->getLocEnd());
3981
3982    if (!MD->isInvalidDecl())
3983      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3984  } else {
3985    Body->Destroy(Context);
3986    return DeclPtrTy();
3987  }
3988  if (!IsInstantiation)
3989    PopDeclContext();
3990
3991  // Verify and clean out per-function state.
3992
3993  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3994
3995  // Check goto/label use.
3996  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3997       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3998    LabelStmt *L = I->second;
3999
4000    // Verify that we have no forward references left.  If so, there was a goto
4001    // or address of a label taken, but no definition of it.  Label fwd
4002    // definitions are indicated with a null substmt.
4003    if (L->getSubStmt() != 0)
4004      continue;
4005
4006    // Emit error.
4007    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4008
4009    // At this point, we have gotos that use the bogus label.  Stitch it into
4010    // the function body so that they aren't leaked and that the AST is well
4011    // formed.
4012    if (Body == 0) {
4013      // The whole function wasn't parsed correctly, just delete this.
4014      L->Destroy(Context);
4015      continue;
4016    }
4017
4018    // Otherwise, the body is valid: we want to stitch the label decl into the
4019    // function somewhere so that it is properly owned and so that the goto
4020    // has a valid target.  Do this by creating a new compound stmt with the
4021    // label in it.
4022
4023    // Give the label a sub-statement.
4024    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4025
4026    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4027                               cast<CXXTryStmt>(Body)->getTryBlock() :
4028                               cast<CompoundStmt>(Body);
4029    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4030    Elements.push_back(L);
4031    Compound->setStmts(Context, &Elements[0], Elements.size());
4032  }
4033  FunctionLabelMap.clear();
4034
4035  if (!Body) return D;
4036
4037  // Verify that that gotos and switch cases don't jump into scopes illegally.
4038  if (CurFunctionNeedsScopeChecking)
4039    DiagnoseInvalidJumps(Body);
4040
4041  // C++ constructors that have function-try-blocks can't have return
4042  // statements in the handlers of that block. (C++ [except.handle]p14)
4043  // Verify this.
4044  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4045    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4046
4047  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4048    computeBaseOrMembersToDestroy(Destructor);
4049
4050  // If any errors have occurred, clear out any temporaries that may have
4051  // been leftover. This ensures that these temporaries won't be picked up for
4052  // deletion in some later function.
4053  if (PP.getDiagnostics().hasErrorOccurred())
4054    ExprTemporaries.clear();
4055
4056  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4057  return D;
4058}
4059
4060/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4061/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4062NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4063                                          IdentifierInfo &II, Scope *S) {
4064  // Before we produce a declaration for an implicitly defined
4065  // function, see whether there was a locally-scoped declaration of
4066  // this name as a function or variable. If so, use that
4067  // (non-visible) declaration, and complain about it.
4068  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4069    = LocallyScopedExternalDecls.find(&II);
4070  if (Pos != LocallyScopedExternalDecls.end()) {
4071    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4072    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4073    return Pos->second;
4074  }
4075
4076  // Extension in C99.  Legal in C90, but warn about it.
4077  if (II.getName().startswith("__builtin_"))
4078    Diag(Loc, diag::warn_builtin_unknown) << &II;
4079  else if (getLangOptions().C99)
4080    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4081  else
4082    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4083
4084  // Set a Declarator for the implicit definition: int foo();
4085  const char *Dummy;
4086  DeclSpec DS;
4087  unsigned DiagID;
4088  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4089  Error = Error; // Silence warning.
4090  assert(!Error && "Error setting up implicit decl!");
4091  Declarator D(DS, Declarator::BlockContext);
4092  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4093                                             0, 0, false, SourceLocation(),
4094                                             false, 0,0,0, Loc, Loc, D),
4095                SourceLocation());
4096  D.SetIdentifier(&II, Loc);
4097
4098  // Insert this function into translation-unit scope.
4099
4100  DeclContext *PrevDC = CurContext;
4101  CurContext = Context.getTranslationUnitDecl();
4102
4103  FunctionDecl *FD =
4104 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4105  FD->setImplicit();
4106
4107  CurContext = PrevDC;
4108
4109  AddKnownFunctionAttributes(FD);
4110
4111  return FD;
4112}
4113
4114/// \brief Adds any function attributes that we know a priori based on
4115/// the declaration of this function.
4116///
4117/// These attributes can apply both to implicitly-declared builtins
4118/// (like __builtin___printf_chk) or to library-declared functions
4119/// like NSLog or printf.
4120void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4121  if (FD->isInvalidDecl())
4122    return;
4123
4124  // If this is a built-in function, map its builtin attributes to
4125  // actual attributes.
4126  if (unsigned BuiltinID = FD->getBuiltinID()) {
4127    // Handle printf-formatting attributes.
4128    unsigned FormatIdx;
4129    bool HasVAListArg;
4130    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4131      if (!FD->getAttr<FormatAttr>())
4132        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4133                                             HasVAListArg ? 0 : FormatIdx + 2));
4134    }
4135
4136    // Mark const if we don't care about errno and that is the only
4137    // thing preventing the function from being const. This allows
4138    // IRgen to use LLVM intrinsics for such functions.
4139    if (!getLangOptions().MathErrno &&
4140        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4141      if (!FD->getAttr<ConstAttr>())
4142        FD->addAttr(::new (Context) ConstAttr());
4143    }
4144
4145    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4146      FD->addAttr(::new (Context) NoReturnAttr());
4147  }
4148
4149  IdentifierInfo *Name = FD->getIdentifier();
4150  if (!Name)
4151    return;
4152  if ((!getLangOptions().CPlusPlus &&
4153       FD->getDeclContext()->isTranslationUnit()) ||
4154      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4155       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4156       LinkageSpecDecl::lang_c)) {
4157    // Okay: this could be a libc/libm/Objective-C function we know
4158    // about.
4159  } else
4160    return;
4161
4162  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4163    // FIXME: NSLog and NSLogv should be target specific
4164    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4165      // FIXME: We known better than our headers.
4166      const_cast<FormatAttr *>(Format)->setType("printf");
4167    } else
4168      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4169                                             Name->isStr("NSLogv") ? 0 : 2));
4170  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4171    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4172    // target-specific builtins, perhaps?
4173    if (!FD->getAttr<FormatAttr>())
4174      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4175                                             Name->isStr("vasprintf") ? 0 : 3));
4176  }
4177}
4178
4179TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4180                                    DeclaratorInfo *DInfo) {
4181  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4182  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4183
4184  if (!DInfo) {
4185    assert(D.isInvalidType() && "no declarator info for valid type");
4186    DInfo = Context.getTrivialDeclaratorInfo(T);
4187  }
4188
4189  // Scope manipulation handled by caller.
4190  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4191                                           D.getIdentifierLoc(),
4192                                           D.getIdentifier(),
4193                                           DInfo);
4194
4195  if (const TagType *TT = T->getAs<TagType>()) {
4196    TagDecl *TD = TT->getDecl();
4197
4198    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4199    // keep track of the TypedefDecl.
4200    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4201      TD->setTypedefForAnonDecl(NewTD);
4202  }
4203
4204  if (D.isInvalidType())
4205    NewTD->setInvalidDecl();
4206  return NewTD;
4207}
4208
4209
4210/// \brief Determine whether a tag with a given kind is acceptable
4211/// as a redeclaration of the given tag declaration.
4212///
4213/// \returns true if the new tag kind is acceptable, false otherwise.
4214bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4215                                        TagDecl::TagKind NewTag,
4216                                        SourceLocation NewTagLoc,
4217                                        const IdentifierInfo &Name) {
4218  // C++ [dcl.type.elab]p3:
4219  //   The class-key or enum keyword present in the
4220  //   elaborated-type-specifier shall agree in kind with the
4221  //   declaration to which the name in theelaborated-type-specifier
4222  //   refers. This rule also applies to the form of
4223  //   elaborated-type-specifier that declares a class-name or
4224  //   friend class since it can be construed as referring to the
4225  //   definition of the class. Thus, in any
4226  //   elaborated-type-specifier, the enum keyword shall be used to
4227  //   refer to an enumeration (7.2), the union class-keyshall be
4228  //   used to refer to a union (clause 9), and either the class or
4229  //   struct class-key shall be used to refer to a class (clause 9)
4230  //   declared using the class or struct class-key.
4231  TagDecl::TagKind OldTag = Previous->getTagKind();
4232  if (OldTag == NewTag)
4233    return true;
4234
4235  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4236      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4237    // Warn about the struct/class tag mismatch.
4238    bool isTemplate = false;
4239    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4240      isTemplate = Record->getDescribedClassTemplate();
4241
4242    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4243      << (NewTag == TagDecl::TK_class)
4244      << isTemplate << &Name
4245      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4246                              OldTag == TagDecl::TK_class? "class" : "struct");
4247    Diag(Previous->getLocation(), diag::note_previous_use);
4248    return true;
4249  }
4250  return false;
4251}
4252
4253/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4254/// former case, Name will be non-null.  In the later case, Name will be null.
4255/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4256/// reference/declaration/definition of a tag.
4257Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4258                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4259                               IdentifierInfo *Name, SourceLocation NameLoc,
4260                               AttributeList *Attr, AccessSpecifier AS,
4261                               MultiTemplateParamsArg TemplateParameterLists,
4262                               bool &OwnedDecl, bool &IsDependent) {
4263  // If this is not a definition, it must have a name.
4264  assert((Name != 0 || TUK == TUK_Definition) &&
4265         "Nameless record must be a definition!");
4266
4267  OwnedDecl = false;
4268  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4269
4270  // FIXME: Check explicit specializations more carefully.
4271  bool isExplicitSpecialization = false;
4272  if (TUK != TUK_Reference) {
4273    if (TemplateParameterList *TemplateParams
4274          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4275                        (TemplateParameterList**)TemplateParameterLists.get(),
4276                                              TemplateParameterLists.size(),
4277                                                    isExplicitSpecialization)) {
4278      if (TemplateParams->size() > 0) {
4279        // This is a declaration or definition of a class template (which may
4280        // be a member of another template).
4281        OwnedDecl = false;
4282        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4283                                               SS, Name, NameLoc, Attr,
4284                                               TemplateParams,
4285                                               AS);
4286        TemplateParameterLists.release();
4287        return Result.get();
4288      } else {
4289        // The "template<>" header is extraneous.
4290        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4291          << ElaboratedType::getNameForTagKind(Kind) << Name;
4292        isExplicitSpecialization = true;
4293      }
4294    }
4295
4296    TemplateParameterLists.release();
4297  }
4298
4299  DeclContext *SearchDC = CurContext;
4300  DeclContext *DC = CurContext;
4301  NamedDecl *PrevDecl = 0;
4302  bool isStdBadAlloc = false;
4303  bool Invalid = false;
4304
4305  bool RedeclarationOnly = (TUK != TUK_Reference);
4306
4307  if (Name && SS.isNotEmpty()) {
4308    // We have a nested-name tag ('struct foo::bar').
4309
4310    // Check for invalid 'foo::'.
4311    if (SS.isInvalid()) {
4312      Name = 0;
4313      goto CreateNewDecl;
4314    }
4315
4316    // If this is a friend or a reference to a class in a dependent
4317    // context, don't try to make a decl for it.
4318    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4319      DC = computeDeclContext(SS, false);
4320      if (!DC) {
4321        IsDependent = true;
4322        return DeclPtrTy();
4323      }
4324    }
4325
4326    if (RequireCompleteDeclContext(SS))
4327      return DeclPtrTy::make((Decl *)0);
4328
4329    DC = computeDeclContext(SS, true);
4330    SearchDC = DC;
4331    // Look-up name inside 'foo::'.
4332    LookupResult R;
4333    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4334
4335    if (R.isAmbiguous()) {
4336      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4337      return DeclPtrTy();
4338    }
4339
4340    if (R.getKind() == LookupResult::Found)
4341      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4342
4343    // A tag 'foo::bar' must already exist.
4344    if (!PrevDecl) {
4345      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4346      Name = 0;
4347      Invalid = true;
4348      goto CreateNewDecl;
4349    }
4350  } else if (Name) {
4351    // If this is a named struct, check to see if there was a previous forward
4352    // declaration or definition.
4353    // FIXME: We're looking into outer scopes here, even when we
4354    // shouldn't be. Doing so can result in ambiguities that we
4355    // shouldn't be diagnosing.
4356    LookupResult R;
4357    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4358    if (R.isAmbiguous()) {
4359      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4360      // FIXME: This is not best way to recover from case like:
4361      //
4362      // struct S s;
4363      //
4364      // causes needless "incomplete type" error later.
4365      Name = 0;
4366      PrevDecl = 0;
4367      Invalid = true;
4368    } else
4369      PrevDecl = R.getAsSingleDecl(Context);
4370
4371    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4372      // FIXME: This makes sure that we ignore the contexts associated
4373      // with C structs, unions, and enums when looking for a matching
4374      // tag declaration or definition. See the similar lookup tweak
4375      // in Sema::LookupName; is there a better way to deal with this?
4376      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4377        SearchDC = SearchDC->getParent();
4378    }
4379  }
4380
4381  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4382    // Maybe we will complain about the shadowed template parameter.
4383    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4384    // Just pretend that we didn't see the previous declaration.
4385    PrevDecl = 0;
4386  }
4387
4388  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4389      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4390    // This is a declaration of or a reference to "std::bad_alloc".
4391    isStdBadAlloc = true;
4392
4393    if (!PrevDecl && StdBadAlloc) {
4394      // std::bad_alloc has been implicitly declared (but made invisible to
4395      // name lookup). Fill in this implicit declaration as the previous
4396      // declaration, so that the declarations get chained appropriately.
4397      PrevDecl = StdBadAlloc;
4398    }
4399  }
4400
4401  if (PrevDecl) {
4402    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4403      // If this is a use of a previous tag, or if the tag is already declared
4404      // in the same scope (so that the definition/declaration completes or
4405      // rementions the tag), reuse the decl.
4406      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4407          isDeclInScope(PrevDecl, SearchDC, S)) {
4408        // Make sure that this wasn't declared as an enum and now used as a
4409        // struct or something similar.
4410        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4411          bool SafeToContinue
4412            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4413               Kind != TagDecl::TK_enum);
4414          if (SafeToContinue)
4415            Diag(KWLoc, diag::err_use_with_wrong_tag)
4416              << Name
4417              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4418                                                  PrevTagDecl->getKindName());
4419          else
4420            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4421          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4422
4423          if (SafeToContinue)
4424            Kind = PrevTagDecl->getTagKind();
4425          else {
4426            // Recover by making this an anonymous redefinition.
4427            Name = 0;
4428            PrevDecl = 0;
4429            Invalid = true;
4430          }
4431        }
4432
4433        if (!Invalid) {
4434          // If this is a use, just return the declaration we found.
4435
4436          // FIXME: In the future, return a variant or some other clue
4437          // for the consumer of this Decl to know it doesn't own it.
4438          // For our current ASTs this shouldn't be a problem, but will
4439          // need to be changed with DeclGroups.
4440          if (TUK == TUK_Reference || TUK == TUK_Friend)
4441            return DeclPtrTy::make(PrevDecl);
4442
4443          // Diagnose attempts to redefine a tag.
4444          if (TUK == TUK_Definition) {
4445            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4446              // If we're defining a specialization and the previous definition
4447              // is from an implicit instantiation, don't emit an error
4448              // here; we'll catch this in the general case below.
4449              if (!isExplicitSpecialization ||
4450                  !isa<CXXRecordDecl>(Def) ||
4451                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4452                                               == TSK_ExplicitSpecialization) {
4453                Diag(NameLoc, diag::err_redefinition) << Name;
4454                Diag(Def->getLocation(), diag::note_previous_definition);
4455                // If this is a redefinition, recover by making this
4456                // struct be anonymous, which will make any later
4457                // references get the previous definition.
4458                Name = 0;
4459                PrevDecl = 0;
4460                Invalid = true;
4461              }
4462            } else {
4463              // If the type is currently being defined, complain
4464              // about a nested redefinition.
4465              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4466              if (Tag->isBeingDefined()) {
4467                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4468                Diag(PrevTagDecl->getLocation(),
4469                     diag::note_previous_definition);
4470                Name = 0;
4471                PrevDecl = 0;
4472                Invalid = true;
4473              }
4474            }
4475
4476            // Okay, this is definition of a previously declared or referenced
4477            // tag PrevDecl. We're going to create a new Decl for it.
4478          }
4479        }
4480        // If we get here we have (another) forward declaration or we
4481        // have a definition.  Just create a new decl.
4482
4483      } else {
4484        // If we get here, this is a definition of a new tag type in a nested
4485        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4486        // new decl/type.  We set PrevDecl to NULL so that the entities
4487        // have distinct types.
4488        PrevDecl = 0;
4489      }
4490      // If we get here, we're going to create a new Decl. If PrevDecl
4491      // is non-NULL, it's a definition of the tag declared by
4492      // PrevDecl. If it's NULL, we have a new definition.
4493    } else {
4494      // PrevDecl is a namespace, template, or anything else
4495      // that lives in the IDNS_Tag identifier namespace.
4496      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4497        // The tag name clashes with a namespace name, issue an error and
4498        // recover by making this tag be anonymous.
4499        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4500        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4501        Name = 0;
4502        PrevDecl = 0;
4503        Invalid = true;
4504      } else {
4505        // The existing declaration isn't relevant to us; we're in a
4506        // new scope, so clear out the previous declaration.
4507        PrevDecl = 0;
4508      }
4509    }
4510  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4511             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4512    // C++ [basic.scope.pdecl]p5:
4513    //   -- for an elaborated-type-specifier of the form
4514    //
4515    //          class-key identifier
4516    //
4517    //      if the elaborated-type-specifier is used in the
4518    //      decl-specifier-seq or parameter-declaration-clause of a
4519    //      function defined in namespace scope, the identifier is
4520    //      declared as a class-name in the namespace that contains
4521    //      the declaration; otherwise, except as a friend
4522    //      declaration, the identifier is declared in the smallest
4523    //      non-class, non-function-prototype scope that contains the
4524    //      declaration.
4525    //
4526    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4527    // C structs and unions.
4528    //
4529    // GNU C also supports this behavior as part of its incomplete
4530    // enum types extension, while GNU C++ does not.
4531    //
4532    // Find the context where we'll be declaring the tag.
4533    // FIXME: We would like to maintain the current DeclContext as the
4534    // lexical context,
4535    while (SearchDC->isRecord())
4536      SearchDC = SearchDC->getParent();
4537
4538    // Find the scope where we'll be declaring the tag.
4539    while (S->isClassScope() ||
4540           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4541           ((S->getFlags() & Scope::DeclScope) == 0) ||
4542           (S->getEntity() &&
4543            ((DeclContext *)S->getEntity())->isTransparentContext()))
4544      S = S->getParent();
4545
4546  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4547    // C++ [namespace.memdef]p3:
4548    //   If a friend declaration in a non-local class first declares a
4549    //   class or function, the friend class or function is a member of
4550    //   the innermost enclosing namespace.
4551    while (!SearchDC->isFileContext())
4552      SearchDC = SearchDC->getParent();
4553
4554    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4555    while (S->getEntity() != SearchDC)
4556      S = S->getParent();
4557  }
4558
4559CreateNewDecl:
4560
4561  // If there is an identifier, use the location of the identifier as the
4562  // location of the decl, otherwise use the location of the struct/union
4563  // keyword.
4564  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4565
4566  // Otherwise, create a new declaration. If there is a previous
4567  // declaration of the same entity, the two will be linked via
4568  // PrevDecl.
4569  TagDecl *New;
4570
4571  if (Kind == TagDecl::TK_enum) {
4572    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4573    // enum X { A, B, C } D;    D should chain to X.
4574    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4575                           cast_or_null<EnumDecl>(PrevDecl));
4576    // If this is an undefined enum, warn.
4577    if (TUK != TUK_Definition && !Invalid)  {
4578      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4579                                              : diag::ext_forward_ref_enum;
4580      Diag(Loc, DK);
4581    }
4582  } else {
4583    // struct/union/class
4584
4585    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4586    // struct X { int A; } D;    D should chain to X.
4587    if (getLangOptions().CPlusPlus) {
4588      // FIXME: Look for a way to use RecordDecl for simple structs.
4589      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4590                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4591
4592      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4593        StdBadAlloc = cast<CXXRecordDecl>(New);
4594    } else
4595      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4596                               cast_or_null<RecordDecl>(PrevDecl));
4597  }
4598
4599  if (Kind != TagDecl::TK_enum) {
4600    // Handle #pragma pack: if the #pragma pack stack has non-default
4601    // alignment, make up a packed attribute for this decl. These
4602    // attributes are checked when the ASTContext lays out the
4603    // structure.
4604    //
4605    // It is important for implementing the correct semantics that this
4606    // happen here (in act on tag decl). The #pragma pack stack is
4607    // maintained as a result of parser callbacks which can occur at
4608    // many points during the parsing of a struct declaration (because
4609    // the #pragma tokens are effectively skipped over during the
4610    // parsing of the struct).
4611    if (unsigned Alignment = getPragmaPackAlignment())
4612      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4613  }
4614
4615  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4616    // C++ [dcl.typedef]p3:
4617    //   [...] Similarly, in a given scope, a class or enumeration
4618    //   shall not be declared with the same name as a typedef-name
4619    //   that is declared in that scope and refers to a type other
4620    //   than the class or enumeration itself.
4621    LookupResult Lookup;
4622    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4623    TypedefDecl *PrevTypedef = 0;
4624    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4625      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4626
4627    NamedDecl *PrevTypedefNamed = PrevTypedef;
4628    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4629        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4630          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4631      Diag(Loc, diag::err_tag_definition_of_typedef)
4632        << Context.getTypeDeclType(New)
4633        << PrevTypedef->getUnderlyingType();
4634      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4635      Invalid = true;
4636    }
4637  }
4638
4639  // If this is a specialization of a member class (of a class template),
4640  // check the specialization.
4641  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4642    Invalid = true;
4643
4644  if (Invalid)
4645    New->setInvalidDecl();
4646
4647  if (Attr)
4648    ProcessDeclAttributeList(S, New, Attr);
4649
4650  // If we're declaring or defining a tag in function prototype scope
4651  // in C, note that this type can only be used within the function.
4652  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4653    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4654
4655  // Set the lexical context. If the tag has a C++ scope specifier, the
4656  // lexical context will be different from the semantic context.
4657  New->setLexicalDeclContext(CurContext);
4658
4659  // Mark this as a friend decl if applicable.
4660  if (TUK == TUK_Friend)
4661    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4662
4663  // Set the access specifier.
4664  if (!Invalid && TUK != TUK_Friend)
4665    SetMemberAccessSpecifier(New, PrevDecl, AS);
4666
4667  if (TUK == TUK_Definition)
4668    New->startDefinition();
4669
4670  // If this has an identifier, add it to the scope stack.
4671  if (TUK == TUK_Friend) {
4672    // We might be replacing an existing declaration in the lookup tables;
4673    // if so, borrow its access specifier.
4674    if (PrevDecl)
4675      New->setAccess(PrevDecl->getAccess());
4676
4677    // Friend tag decls are visible in fairly strange ways.
4678    if (!CurContext->isDependentContext()) {
4679      DeclContext *DC = New->getDeclContext()->getLookupContext();
4680      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4681      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4682        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4683    }
4684  } else if (Name) {
4685    S = getNonFieldDeclScope(S);
4686    PushOnScopeChains(New, S);
4687  } else {
4688    CurContext->addDecl(New);
4689  }
4690
4691  // If this is the C FILE type, notify the AST context.
4692  if (IdentifierInfo *II = New->getIdentifier())
4693    if (!New->isInvalidDecl() &&
4694        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4695        II->isStr("FILE"))
4696      Context.setFILEDecl(New);
4697
4698  OwnedDecl = true;
4699  return DeclPtrTy::make(New);
4700}
4701
4702void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4703  AdjustDeclIfTemplate(TagD);
4704  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4705
4706  // Enter the tag context.
4707  PushDeclContext(S, Tag);
4708
4709  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4710    FieldCollector->StartClass();
4711
4712    if (Record->getIdentifier()) {
4713      // C++ [class]p2:
4714      //   [...] The class-name is also inserted into the scope of the
4715      //   class itself; this is known as the injected-class-name. For
4716      //   purposes of access checking, the injected-class-name is treated
4717      //   as if it were a public member name.
4718      CXXRecordDecl *InjectedClassName
4719        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4720                                CurContext, Record->getLocation(),
4721                                Record->getIdentifier(),
4722                                Record->getTagKeywordLoc(),
4723                                Record);
4724      InjectedClassName->setImplicit();
4725      InjectedClassName->setAccess(AS_public);
4726      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4727        InjectedClassName->setDescribedClassTemplate(Template);
4728      PushOnScopeChains(InjectedClassName, S);
4729      assert(InjectedClassName->isInjectedClassName() &&
4730             "Broken injected-class-name");
4731    }
4732  }
4733}
4734
4735void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4736                                    SourceLocation RBraceLoc) {
4737  AdjustDeclIfTemplate(TagD);
4738  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4739  Tag->setRBraceLoc(RBraceLoc);
4740
4741  if (isa<CXXRecordDecl>(Tag))
4742    FieldCollector->FinishClass();
4743
4744  // Exit this scope of this tag's definition.
4745  PopDeclContext();
4746
4747  // Notify the consumer that we've defined a tag.
4748  Consumer.HandleTagDeclDefinition(Tag);
4749}
4750
4751// Note that FieldName may be null for anonymous bitfields.
4752bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4753                          QualType FieldTy, const Expr *BitWidth,
4754                          bool *ZeroWidth) {
4755  // Default to true; that shouldn't confuse checks for emptiness
4756  if (ZeroWidth)
4757    *ZeroWidth = true;
4758
4759  // C99 6.7.2.1p4 - verify the field type.
4760  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4761  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4762    // Handle incomplete types with specific error.
4763    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4764      return true;
4765    if (FieldName)
4766      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4767        << FieldName << FieldTy << BitWidth->getSourceRange();
4768    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4769      << FieldTy << BitWidth->getSourceRange();
4770  }
4771
4772  // If the bit-width is type- or value-dependent, don't try to check
4773  // it now.
4774  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4775    return false;
4776
4777  llvm::APSInt Value;
4778  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4779    return true;
4780
4781  if (Value != 0 && ZeroWidth)
4782    *ZeroWidth = false;
4783
4784  // Zero-width bitfield is ok for anonymous field.
4785  if (Value == 0 && FieldName)
4786    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4787
4788  if (Value.isSigned() && Value.isNegative()) {
4789    if (FieldName)
4790      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4791               << FieldName << Value.toString(10);
4792    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4793      << Value.toString(10);
4794  }
4795
4796  if (!FieldTy->isDependentType()) {
4797    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4798    if (Value.getZExtValue() > TypeSize) {
4799      if (FieldName)
4800        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4801          << FieldName << (unsigned)TypeSize;
4802      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4803        << (unsigned)TypeSize;
4804    }
4805  }
4806
4807  return false;
4808}
4809
4810/// ActOnField - Each field of a struct/union/class is passed into this in order
4811/// to create a FieldDecl object for it.
4812Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4813                                 SourceLocation DeclStart,
4814                                 Declarator &D, ExprTy *BitfieldWidth) {
4815  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4816                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4817                               AS_public);
4818  return DeclPtrTy::make(Res);
4819}
4820
4821/// HandleField - Analyze a field of a C struct or a C++ data member.
4822///
4823FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4824                             SourceLocation DeclStart,
4825                             Declarator &D, Expr *BitWidth,
4826                             AccessSpecifier AS) {
4827  IdentifierInfo *II = D.getIdentifier();
4828  SourceLocation Loc = DeclStart;
4829  if (II) Loc = D.getIdentifierLoc();
4830
4831  DeclaratorInfo *DInfo = 0;
4832  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4833  if (getLangOptions().CPlusPlus)
4834    CheckExtraCXXDefaultArguments(D);
4835
4836  DiagnoseFunctionSpecifiers(D);
4837
4838  if (D.getDeclSpec().isThreadSpecified())
4839    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4840
4841  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4842
4843  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4844    // Maybe we will complain about the shadowed template parameter.
4845    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4846    // Just pretend that we didn't see the previous declaration.
4847    PrevDecl = 0;
4848  }
4849
4850  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4851    PrevDecl = 0;
4852
4853  bool Mutable
4854    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4855  SourceLocation TSSL = D.getSourceRange().getBegin();
4856  FieldDecl *NewFD
4857    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4858                     AS, PrevDecl, &D);
4859  if (NewFD->isInvalidDecl() && PrevDecl) {
4860    // Don't introduce NewFD into scope; there's already something
4861    // with the same name in the same scope.
4862  } else if (II) {
4863    PushOnScopeChains(NewFD, S);
4864  } else
4865    Record->addDecl(NewFD);
4866
4867  return NewFD;
4868}
4869
4870/// \brief Build a new FieldDecl and check its well-formedness.
4871///
4872/// This routine builds a new FieldDecl given the fields name, type,
4873/// record, etc. \p PrevDecl should refer to any previous declaration
4874/// with the same name and in the same scope as the field to be
4875/// created.
4876///
4877/// \returns a new FieldDecl.
4878///
4879/// \todo The Declarator argument is a hack. It will be removed once
4880FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4881                                DeclaratorInfo *DInfo,
4882                                RecordDecl *Record, SourceLocation Loc,
4883                                bool Mutable, Expr *BitWidth,
4884                                SourceLocation TSSL,
4885                                AccessSpecifier AS, NamedDecl *PrevDecl,
4886                                Declarator *D) {
4887  IdentifierInfo *II = Name.getAsIdentifierInfo();
4888  bool InvalidDecl = false;
4889  if (D) InvalidDecl = D->isInvalidType();
4890
4891  // If we receive a broken type, recover by assuming 'int' and
4892  // marking this declaration as invalid.
4893  if (T.isNull()) {
4894    InvalidDecl = true;
4895    T = Context.IntTy;
4896  }
4897
4898  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4899  // than a variably modified type.
4900  if (T->isVariablyModifiedType()) {
4901    bool SizeIsNegative;
4902    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4903                                                           SizeIsNegative);
4904    if (!FixedTy.isNull()) {
4905      Diag(Loc, diag::warn_illegal_constant_array_size);
4906      T = FixedTy;
4907    } else {
4908      if (SizeIsNegative)
4909        Diag(Loc, diag::err_typecheck_negative_array_size);
4910      else
4911        Diag(Loc, diag::err_typecheck_field_variable_size);
4912      InvalidDecl = true;
4913    }
4914  }
4915
4916  // Fields can not have abstract class types
4917  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4918                             AbstractFieldType))
4919    InvalidDecl = true;
4920
4921  bool ZeroWidth = false;
4922  // If this is declared as a bit-field, check the bit-field.
4923  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4924    InvalidDecl = true;
4925    DeleteExpr(BitWidth);
4926    BitWidth = 0;
4927    ZeroWidth = false;
4928  }
4929
4930  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4931                                       BitWidth, Mutable);
4932  if (InvalidDecl)
4933    NewFD->setInvalidDecl();
4934
4935  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4936    Diag(Loc, diag::err_duplicate_member) << II;
4937    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4938    NewFD->setInvalidDecl();
4939  }
4940
4941  if (getLangOptions().CPlusPlus) {
4942    QualType EltTy = Context.getBaseElementType(T);
4943
4944    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4945
4946    if (!T->isPODType())
4947      CXXRecord->setPOD(false);
4948    if (!ZeroWidth)
4949      CXXRecord->setEmpty(false);
4950
4951    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4952      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4953
4954      if (!RDecl->hasTrivialConstructor())
4955        CXXRecord->setHasTrivialConstructor(false);
4956      if (!RDecl->hasTrivialCopyConstructor())
4957        CXXRecord->setHasTrivialCopyConstructor(false);
4958      if (!RDecl->hasTrivialCopyAssignment())
4959        CXXRecord->setHasTrivialCopyAssignment(false);
4960      if (!RDecl->hasTrivialDestructor())
4961        CXXRecord->setHasTrivialDestructor(false);
4962
4963      // C++ 9.5p1: An object of a class with a non-trivial
4964      // constructor, a non-trivial copy constructor, a non-trivial
4965      // destructor, or a non-trivial copy assignment operator
4966      // cannot be a member of a union, nor can an array of such
4967      // objects.
4968      // TODO: C++0x alters this restriction significantly.
4969      if (Record->isUnion()) {
4970        // We check for copy constructors before constructors
4971        // because otherwise we'll never get complaints about
4972        // copy constructors.
4973
4974        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4975
4976        CXXSpecialMember member;
4977        if (!RDecl->hasTrivialCopyConstructor())
4978          member = CXXCopyConstructor;
4979        else if (!RDecl->hasTrivialConstructor())
4980          member = CXXDefaultConstructor;
4981        else if (!RDecl->hasTrivialCopyAssignment())
4982          member = CXXCopyAssignment;
4983        else if (!RDecl->hasTrivialDestructor())
4984          member = CXXDestructor;
4985        else
4986          member = invalid;
4987
4988        if (member != invalid) {
4989          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4990          DiagnoseNontrivial(RT, member);
4991          NewFD->setInvalidDecl();
4992        }
4993      }
4994    }
4995  }
4996
4997  // FIXME: We need to pass in the attributes given an AST
4998  // representation, not a parser representation.
4999  if (D)
5000    // FIXME: What to pass instead of TUScope?
5001    ProcessDeclAttributes(TUScope, NewFD, *D);
5002
5003  if (T.isObjCGCWeak())
5004    Diag(Loc, diag::warn_attribute_weak_on_field);
5005
5006  NewFD->setAccess(AS);
5007
5008  // C++ [dcl.init.aggr]p1:
5009  //   An aggregate is an array or a class (clause 9) with [...] no
5010  //   private or protected non-static data members (clause 11).
5011  // A POD must be an aggregate.
5012  if (getLangOptions().CPlusPlus &&
5013      (AS == AS_private || AS == AS_protected)) {
5014    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5015    CXXRecord->setAggregate(false);
5016    CXXRecord->setPOD(false);
5017  }
5018
5019  return NewFD;
5020}
5021
5022/// DiagnoseNontrivial - Given that a class has a non-trivial
5023/// special member, figure out why.
5024void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5025  QualType QT(T, 0U);
5026  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5027
5028  // Check whether the member was user-declared.
5029  switch (member) {
5030  case CXXDefaultConstructor:
5031    if (RD->hasUserDeclaredConstructor()) {
5032      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5033      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5034        const FunctionDecl *body = 0;
5035        ci->getBody(body);
5036        if (!body ||
5037            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5038          SourceLocation CtorLoc = ci->getLocation();
5039          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5040          return;
5041        }
5042      }
5043
5044      assert(0 && "found no user-declared constructors");
5045      return;
5046    }
5047    break;
5048
5049  case CXXCopyConstructor:
5050    if (RD->hasUserDeclaredCopyConstructor()) {
5051      SourceLocation CtorLoc =
5052        RD->getCopyConstructor(Context, 0)->getLocation();
5053      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5054      return;
5055    }
5056    break;
5057
5058  case CXXCopyAssignment:
5059    if (RD->hasUserDeclaredCopyAssignment()) {
5060      // FIXME: this should use the location of the copy
5061      // assignment, not the type.
5062      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5063      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5064      return;
5065    }
5066    break;
5067
5068  case CXXDestructor:
5069    if (RD->hasUserDeclaredDestructor()) {
5070      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5071      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5072      return;
5073    }
5074    break;
5075  }
5076
5077  typedef CXXRecordDecl::base_class_iterator base_iter;
5078
5079  // Virtual bases and members inhibit trivial copying/construction,
5080  // but not trivial destruction.
5081  if (member != CXXDestructor) {
5082    // Check for virtual bases.  vbases includes indirect virtual bases,
5083    // so we just iterate through the direct bases.
5084    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5085      if (bi->isVirtual()) {
5086        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5087        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5088        return;
5089      }
5090
5091    // Check for virtual methods.
5092    typedef CXXRecordDecl::method_iterator meth_iter;
5093    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5094         ++mi) {
5095      if (mi->isVirtual()) {
5096        SourceLocation MLoc = mi->getSourceRange().getBegin();
5097        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5098        return;
5099      }
5100    }
5101  }
5102
5103  bool (CXXRecordDecl::*hasTrivial)() const;
5104  switch (member) {
5105  case CXXDefaultConstructor:
5106    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5107  case CXXCopyConstructor:
5108    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5109  case CXXCopyAssignment:
5110    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5111  case CXXDestructor:
5112    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5113  default:
5114    assert(0 && "unexpected special member"); return;
5115  }
5116
5117  // Check for nontrivial bases (and recurse).
5118  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5119    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5120    assert(BaseRT && "Don't know how to handle dependent bases");
5121    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5122    if (!(BaseRecTy->*hasTrivial)()) {
5123      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5124      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5125      DiagnoseNontrivial(BaseRT, member);
5126      return;
5127    }
5128  }
5129
5130  // Check for nontrivial members (and recurse).
5131  typedef RecordDecl::field_iterator field_iter;
5132  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5133       ++fi) {
5134    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5135    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5136      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5137
5138      if (!(EltRD->*hasTrivial)()) {
5139        SourceLocation FLoc = (*fi)->getLocation();
5140        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5141        DiagnoseNontrivial(EltRT, member);
5142        return;
5143      }
5144    }
5145  }
5146
5147  assert(0 && "found no explanation for non-trivial member");
5148}
5149
5150/// TranslateIvarVisibility - Translate visibility from a token ID to an
5151///  AST enum value.
5152static ObjCIvarDecl::AccessControl
5153TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5154  switch (ivarVisibility) {
5155  default: assert(0 && "Unknown visitibility kind");
5156  case tok::objc_private: return ObjCIvarDecl::Private;
5157  case tok::objc_public: return ObjCIvarDecl::Public;
5158  case tok::objc_protected: return ObjCIvarDecl::Protected;
5159  case tok::objc_package: return ObjCIvarDecl::Package;
5160  }
5161}
5162
5163/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5164/// in order to create an IvarDecl object for it.
5165Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5166                                SourceLocation DeclStart,
5167                                DeclPtrTy IntfDecl,
5168                                Declarator &D, ExprTy *BitfieldWidth,
5169                                tok::ObjCKeywordKind Visibility) {
5170
5171  IdentifierInfo *II = D.getIdentifier();
5172  Expr *BitWidth = (Expr*)BitfieldWidth;
5173  SourceLocation Loc = DeclStart;
5174  if (II) Loc = D.getIdentifierLoc();
5175
5176  // FIXME: Unnamed fields can be handled in various different ways, for
5177  // example, unnamed unions inject all members into the struct namespace!
5178
5179  DeclaratorInfo *DInfo = 0;
5180  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5181
5182  if (BitWidth) {
5183    // 6.7.2.1p3, 6.7.2.1p4
5184    if (VerifyBitField(Loc, II, T, BitWidth)) {
5185      D.setInvalidType();
5186      DeleteExpr(BitWidth);
5187      BitWidth = 0;
5188    }
5189  } else {
5190    // Not a bitfield.
5191
5192    // validate II.
5193
5194  }
5195
5196  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5197  // than a variably modified type.
5198  if (T->isVariablyModifiedType()) {
5199    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5200    D.setInvalidType();
5201  }
5202
5203  // Get the visibility (access control) for this ivar.
5204  ObjCIvarDecl::AccessControl ac =
5205    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5206                                        : ObjCIvarDecl::None;
5207  // Must set ivar's DeclContext to its enclosing interface.
5208  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5209  DeclContext *EnclosingContext;
5210  if (ObjCImplementationDecl *IMPDecl =
5211      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5212    // Case of ivar declared in an implementation. Context is that of its class.
5213    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5214    assert(IDecl && "No class- ActOnIvar");
5215    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5216  } else
5217    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5218  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5219
5220  // Construct the decl.
5221  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5222                                             EnclosingContext, Loc, II, T,
5223                                             DInfo, ac, (Expr *)BitfieldWidth);
5224
5225  if (II) {
5226    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5227    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5228        && !isa<TagDecl>(PrevDecl)) {
5229      Diag(Loc, diag::err_duplicate_member) << II;
5230      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5231      NewID->setInvalidDecl();
5232    }
5233  }
5234
5235  // Process attributes attached to the ivar.
5236  ProcessDeclAttributes(S, NewID, D);
5237
5238  if (D.isInvalidType())
5239    NewID->setInvalidDecl();
5240
5241  if (II) {
5242    // FIXME: When interfaces are DeclContexts, we'll need to add
5243    // these to the interface.
5244    S->AddDecl(DeclPtrTy::make(NewID));
5245    IdResolver.AddDecl(NewID);
5246  }
5247
5248  return DeclPtrTy::make(NewID);
5249}
5250
5251void Sema::ActOnFields(Scope* S,
5252                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5253                       DeclPtrTy *Fields, unsigned NumFields,
5254                       SourceLocation LBrac, SourceLocation RBrac,
5255                       AttributeList *Attr) {
5256  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5257  assert(EnclosingDecl && "missing record or interface decl");
5258
5259  // If the decl this is being inserted into is invalid, then it may be a
5260  // redeclaration or some other bogus case.  Don't try to add fields to it.
5261  if (EnclosingDecl->isInvalidDecl()) {
5262    // FIXME: Deallocate fields?
5263    return;
5264  }
5265
5266
5267  // Verify that all the fields are okay.
5268  unsigned NumNamedMembers = 0;
5269  llvm::SmallVector<FieldDecl*, 32> RecFields;
5270
5271  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5272  for (unsigned i = 0; i != NumFields; ++i) {
5273    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5274
5275    // Get the type for the field.
5276    Type *FDTy = FD->getType().getTypePtr();
5277
5278    if (!FD->isAnonymousStructOrUnion()) {
5279      // Remember all fields written by the user.
5280      RecFields.push_back(FD);
5281    }
5282
5283    // If the field is already invalid for some reason, don't emit more
5284    // diagnostics about it.
5285    if (FD->isInvalidDecl())
5286      continue;
5287
5288    // C99 6.7.2.1p2:
5289    //   A structure or union shall not contain a member with
5290    //   incomplete or function type (hence, a structure shall not
5291    //   contain an instance of itself, but may contain a pointer to
5292    //   an instance of itself), except that the last member of a
5293    //   structure with more than one named member may have incomplete
5294    //   array type; such a structure (and any union containing,
5295    //   possibly recursively, a member that is such a structure)
5296    //   shall not be a member of a structure or an element of an
5297    //   array.
5298    if (FDTy->isFunctionType()) {
5299      // Field declared as a function.
5300      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5301        << FD->getDeclName();
5302      FD->setInvalidDecl();
5303      EnclosingDecl->setInvalidDecl();
5304      continue;
5305    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5306               Record && Record->isStruct()) {
5307      // Flexible array member.
5308      if (NumNamedMembers < 1) {
5309        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5310          << FD->getDeclName();
5311        FD->setInvalidDecl();
5312        EnclosingDecl->setInvalidDecl();
5313        continue;
5314      }
5315      // Okay, we have a legal flexible array member at the end of the struct.
5316      if (Record)
5317        Record->setHasFlexibleArrayMember(true);
5318    } else if (!FDTy->isDependentType() &&
5319               RequireCompleteType(FD->getLocation(), FD->getType(),
5320                                   diag::err_field_incomplete)) {
5321      // Incomplete type
5322      FD->setInvalidDecl();
5323      EnclosingDecl->setInvalidDecl();
5324      continue;
5325    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5326      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5327        // If this is a member of a union, then entire union becomes "flexible".
5328        if (Record && Record->isUnion()) {
5329          Record->setHasFlexibleArrayMember(true);
5330        } else {
5331          // If this is a struct/class and this is not the last element, reject
5332          // it.  Note that GCC supports variable sized arrays in the middle of
5333          // structures.
5334          if (i != NumFields-1)
5335            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5336              << FD->getDeclName() << FD->getType();
5337          else {
5338            // We support flexible arrays at the end of structs in
5339            // other structs as an extension.
5340            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5341              << FD->getDeclName();
5342            if (Record)
5343              Record->setHasFlexibleArrayMember(true);
5344          }
5345        }
5346      }
5347      if (Record && FDTTy->getDecl()->hasObjectMember())
5348        Record->setHasObjectMember(true);
5349    } else if (FDTy->isObjCInterfaceType()) {
5350      /// A field cannot be an Objective-c object
5351      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5352      FD->setInvalidDecl();
5353      EnclosingDecl->setInvalidDecl();
5354      continue;
5355    } else if (getLangOptions().ObjC1 &&
5356               getLangOptions().getGCMode() != LangOptions::NonGC &&
5357               Record &&
5358               (FD->getType()->isObjCObjectPointerType() ||
5359                FD->getType().isObjCGCStrong()))
5360      Record->setHasObjectMember(true);
5361    // Keep track of the number of named members.
5362    if (FD->getIdentifier())
5363      ++NumNamedMembers;
5364  }
5365
5366  // Okay, we successfully defined 'Record'.
5367  if (Record) {
5368    Record->completeDefinition(Context);
5369  } else {
5370    ObjCIvarDecl **ClsFields =
5371      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5372    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5373      ID->setIVarList(ClsFields, RecFields.size(), Context);
5374      ID->setLocEnd(RBrac);
5375      // Add ivar's to class's DeclContext.
5376      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5377        ClsFields[i]->setLexicalDeclContext(ID);
5378        ID->addDecl(ClsFields[i]);
5379      }
5380      // Must enforce the rule that ivars in the base classes may not be
5381      // duplicates.
5382      if (ID->getSuperClass()) {
5383        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5384             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5385          ObjCIvarDecl* Ivar = (*IVI);
5386
5387          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5388            ObjCIvarDecl* prevIvar =
5389              ID->getSuperClass()->lookupInstanceVariable(II);
5390            if (prevIvar) {
5391              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5392              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5393            }
5394          }
5395        }
5396      }
5397    } else if (ObjCImplementationDecl *IMPDecl =
5398                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5399      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5400      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5401        // Ivar declared in @implementation never belongs to the implementation.
5402        // Only it is in implementation's lexical context.
5403        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5404      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5405    }
5406  }
5407
5408  if (Attr)
5409    ProcessDeclAttributeList(S, Record, Attr);
5410}
5411
5412EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5413                                          EnumConstantDecl *LastEnumConst,
5414                                          SourceLocation IdLoc,
5415                                          IdentifierInfo *Id,
5416                                          ExprArg val) {
5417  Expr *Val = (Expr *)val.get();
5418
5419  llvm::APSInt EnumVal(32);
5420  QualType EltTy;
5421  if (Val) {
5422    if (Val->isTypeDependent())
5423      EltTy = Context.DependentTy;
5424    else {
5425      // Make sure to promote the operand type to int.
5426      UsualUnaryConversions(Val);
5427      if (Val != val.get()) {
5428        val.release();
5429        val = Val;
5430      }
5431
5432      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5433      SourceLocation ExpLoc;
5434      if (!Val->isValueDependent() &&
5435          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5436        Val = 0;
5437      } else {
5438        EltTy = Val->getType();
5439      }
5440    }
5441  }
5442
5443  if (!Val) {
5444    if (LastEnumConst) {
5445      // Assign the last value + 1.
5446      EnumVal = LastEnumConst->getInitVal();
5447      ++EnumVal;
5448
5449      // Check for overflow on increment.
5450      if (EnumVal < LastEnumConst->getInitVal())
5451        Diag(IdLoc, diag::warn_enum_value_overflow);
5452
5453      EltTy = LastEnumConst->getType();
5454    } else {
5455      // First value, set to zero.
5456      EltTy = Context.IntTy;
5457      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5458    }
5459  }
5460
5461  assert(!EltTy.isNull() && "Enum constant with NULL type");
5462
5463  val.release();
5464  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5465                                  Val, EnumVal);
5466}
5467
5468
5469Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5470                                        DeclPtrTy lastEnumConst,
5471                                        SourceLocation IdLoc,
5472                                        IdentifierInfo *Id,
5473                                        SourceLocation EqualLoc, ExprTy *val) {
5474  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5475  EnumConstantDecl *LastEnumConst =
5476    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5477  Expr *Val = static_cast<Expr*>(val);
5478
5479  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5480  // we find one that is.
5481  S = getNonFieldDeclScope(S);
5482
5483  // Verify that there isn't already something declared with this name in this
5484  // scope.
5485  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5486  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5487    // Maybe we will complain about the shadowed template parameter.
5488    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5489    // Just pretend that we didn't see the previous declaration.
5490    PrevDecl = 0;
5491  }
5492
5493  if (PrevDecl) {
5494    // When in C++, we may get a TagDecl with the same name; in this case the
5495    // enum constant will 'hide' the tag.
5496    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5497           "Received TagDecl when not in C++!");
5498    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5499      if (isa<EnumConstantDecl>(PrevDecl))
5500        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5501      else
5502        Diag(IdLoc, diag::err_redefinition) << Id;
5503      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5504      if (Val) Val->Destroy(Context);
5505      return DeclPtrTy();
5506    }
5507  }
5508
5509  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5510                                            IdLoc, Id, Owned(Val));
5511
5512  // Register this decl in the current scope stack.
5513  if (New)
5514    PushOnScopeChains(New, S);
5515
5516  return DeclPtrTy::make(New);
5517}
5518
5519void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5520                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5521                         DeclPtrTy *Elements, unsigned NumElements,
5522                         Scope *S, AttributeList *Attr) {
5523  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5524  QualType EnumType = Context.getTypeDeclType(Enum);
5525
5526  if (Attr)
5527    ProcessDeclAttributeList(S, Enum, Attr);
5528
5529  // TODO: If the result value doesn't fit in an int, it must be a long or long
5530  // long value.  ISO C does not support this, but GCC does as an extension,
5531  // emit a warning.
5532  unsigned IntWidth = Context.Target.getIntWidth();
5533  unsigned CharWidth = Context.Target.getCharWidth();
5534  unsigned ShortWidth = Context.Target.getShortWidth();
5535
5536  // Verify that all the values are okay, compute the size of the values, and
5537  // reverse the list.
5538  unsigned NumNegativeBits = 0;
5539  unsigned NumPositiveBits = 0;
5540
5541  // Keep track of whether all elements have type int.
5542  bool AllElementsInt = true;
5543
5544  for (unsigned i = 0; i != NumElements; ++i) {
5545    EnumConstantDecl *ECD =
5546      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5547    if (!ECD) continue;  // Already issued a diagnostic.
5548
5549    // If the enum value doesn't fit in an int, emit an extension warning.
5550    const llvm::APSInt &InitVal = ECD->getInitVal();
5551    assert(InitVal.getBitWidth() >= IntWidth &&
5552           "Should have promoted value to int");
5553    if (InitVal.getBitWidth() > IntWidth) {
5554      llvm::APSInt V(InitVal);
5555      V.trunc(IntWidth);
5556      V.extend(InitVal.getBitWidth());
5557      if (V != InitVal)
5558        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5559          << InitVal.toString(10);
5560    }
5561
5562    // Keep track of the size of positive and negative values.
5563    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5564      NumPositiveBits = std::max(NumPositiveBits,
5565                                 (unsigned)InitVal.getActiveBits());
5566    else
5567      NumNegativeBits = std::max(NumNegativeBits,
5568                                 (unsigned)InitVal.getMinSignedBits());
5569
5570    // Keep track of whether every enum element has type int (very commmon).
5571    if (AllElementsInt)
5572      AllElementsInt = ECD->getType() == Context.IntTy;
5573  }
5574
5575  // Figure out the type that should be used for this enum.
5576  // FIXME: Support -fshort-enums.
5577  QualType BestType;
5578  unsigned BestWidth;
5579
5580  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5581
5582  if (NumNegativeBits) {
5583    // If there is a negative value, figure out the smallest integer type (of
5584    // int/long/longlong) that fits.
5585    // If it's packed, check also if it fits a char or a short.
5586    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5587        BestType = Context.SignedCharTy;
5588        BestWidth = CharWidth;
5589    } else if (Packed && NumNegativeBits <= ShortWidth &&
5590               NumPositiveBits < ShortWidth) {
5591        BestType = Context.ShortTy;
5592        BestWidth = ShortWidth;
5593    }
5594    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5595      BestType = Context.IntTy;
5596      BestWidth = IntWidth;
5597    } else {
5598      BestWidth = Context.Target.getLongWidth();
5599
5600      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5601        BestType = Context.LongTy;
5602      else {
5603        BestWidth = Context.Target.getLongLongWidth();
5604
5605        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5606          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5607        BestType = Context.LongLongTy;
5608      }
5609    }
5610  } else {
5611    // If there is no negative value, figure out which of uint, ulong, ulonglong
5612    // fits.
5613    // If it's packed, check also if it fits a char or a short.
5614    if (Packed && NumPositiveBits <= CharWidth) {
5615        BestType = Context.UnsignedCharTy;
5616        BestWidth = CharWidth;
5617    } else if (Packed && NumPositiveBits <= ShortWidth) {
5618        BestType = Context.UnsignedShortTy;
5619        BestWidth = ShortWidth;
5620    }
5621    else if (NumPositiveBits <= IntWidth) {
5622      BestType = Context.UnsignedIntTy;
5623      BestWidth = IntWidth;
5624    } else if (NumPositiveBits <=
5625               (BestWidth = Context.Target.getLongWidth())) {
5626      BestType = Context.UnsignedLongTy;
5627    } else {
5628      BestWidth = Context.Target.getLongLongWidth();
5629      assert(NumPositiveBits <= BestWidth &&
5630             "How could an initializer get larger than ULL?");
5631      BestType = Context.UnsignedLongLongTy;
5632    }
5633  }
5634
5635  // Loop over all of the enumerator constants, changing their types to match
5636  // the type of the enum if needed.
5637  for (unsigned i = 0; i != NumElements; ++i) {
5638    EnumConstantDecl *ECD =
5639      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5640    if (!ECD) continue;  // Already issued a diagnostic.
5641
5642    // Standard C says the enumerators have int type, but we allow, as an
5643    // extension, the enumerators to be larger than int size.  If each
5644    // enumerator value fits in an int, type it as an int, otherwise type it the
5645    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5646    // that X has type 'int', not 'unsigned'.
5647    if (ECD->getType() == Context.IntTy) {
5648      // Make sure the init value is signed.
5649      llvm::APSInt IV = ECD->getInitVal();
5650      IV.setIsSigned(true);
5651      ECD->setInitVal(IV);
5652
5653      if (getLangOptions().CPlusPlus)
5654        // C++ [dcl.enum]p4: Following the closing brace of an
5655        // enum-specifier, each enumerator has the type of its
5656        // enumeration.
5657        ECD->setType(EnumType);
5658      continue;  // Already int type.
5659    }
5660
5661    // Determine whether the value fits into an int.
5662    llvm::APSInt InitVal = ECD->getInitVal();
5663    bool FitsInInt;
5664    if (InitVal.isUnsigned() || !InitVal.isNegative())
5665      FitsInInt = InitVal.getActiveBits() < IntWidth;
5666    else
5667      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5668
5669    // If it fits into an integer type, force it.  Otherwise force it to match
5670    // the enum decl type.
5671    QualType NewTy;
5672    unsigned NewWidth;
5673    bool NewSign;
5674    if (FitsInInt) {
5675      NewTy = Context.IntTy;
5676      NewWidth = IntWidth;
5677      NewSign = true;
5678    } else if (ECD->getType() == BestType) {
5679      // Already the right type!
5680      if (getLangOptions().CPlusPlus)
5681        // C++ [dcl.enum]p4: Following the closing brace of an
5682        // enum-specifier, each enumerator has the type of its
5683        // enumeration.
5684        ECD->setType(EnumType);
5685      continue;
5686    } else {
5687      NewTy = BestType;
5688      NewWidth = BestWidth;
5689      NewSign = BestType->isSignedIntegerType();
5690    }
5691
5692    // Adjust the APSInt value.
5693    InitVal.extOrTrunc(NewWidth);
5694    InitVal.setIsSigned(NewSign);
5695    ECD->setInitVal(InitVal);
5696
5697    // Adjust the Expr initializer and type.
5698    if (ECD->getInitExpr())
5699      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5700                                                      CastExpr::CK_IntegralCast,
5701                                                      ECD->getInitExpr(),
5702                                                      /*isLvalue=*/false));
5703    if (getLangOptions().CPlusPlus)
5704      // C++ [dcl.enum]p4: Following the closing brace of an
5705      // enum-specifier, each enumerator has the type of its
5706      // enumeration.
5707      ECD->setType(EnumType);
5708    else
5709      ECD->setType(NewTy);
5710  }
5711
5712  Enum->completeDefinition(Context, BestType);
5713}
5714
5715Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5716                                            ExprArg expr) {
5717  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5718
5719  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5720                                                   Loc, AsmString);
5721  CurContext->addDecl(New);
5722  return DeclPtrTy::make(New);
5723}
5724
5725void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5726                             SourceLocation PragmaLoc,
5727                             SourceLocation NameLoc) {
5728  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5729
5730  if (PrevDecl) {
5731    PrevDecl->addAttr(::new (Context) WeakAttr());
5732  } else {
5733    (void)WeakUndeclaredIdentifiers.insert(
5734      std::pair<IdentifierInfo*,WeakInfo>
5735        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5736  }
5737}
5738
5739void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5740                                IdentifierInfo* AliasName,
5741                                SourceLocation PragmaLoc,
5742                                SourceLocation NameLoc,
5743                                SourceLocation AliasNameLoc) {
5744  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5745  WeakInfo W = WeakInfo(Name, NameLoc);
5746
5747  if (PrevDecl) {
5748    if (!PrevDecl->hasAttr<AliasAttr>())
5749      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5750        DeclApplyPragmaWeak(TUScope, ND, W);
5751  } else {
5752    (void)WeakUndeclaredIdentifiers.insert(
5753      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5754  }
5755}
5756