SemaDecl.cpp revision c855ce7ab97aa25c609a5f83e19b27289fede21a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177// We need this to handle
1178//
1179// typedef struct {
1180//   void *foo() { return 0; }
1181// } A;
1182//
1183// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184// for example. If 'A', foo will have external linkage. If we have '*A',
1185// foo will have no linkage. Since we can't know untill we get to the end
1186// of the typedef, this function finds out if D might have non external linkage.
1187// Callers should verify at the end of the TU if it D has external linkage or
1188// not.
1189bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190  const DeclContext *DC = D->getDeclContext();
1191  while (!DC->isTranslationUnit()) {
1192    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193      if (!RD->hasNameForLinkage())
1194        return true;
1195    }
1196    DC = DC->getParent();
1197  }
1198
1199  return !D->hasExternalLinkage();
1200}
1201
1202bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203  assert(D);
1204
1205  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206    return false;
1207
1208  // Ignore class templates.
1209  if (D->getDeclContext()->isDependentContext() ||
1210      D->getLexicalDeclContext()->isDependentContext())
1211    return false;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215      return false;
1216
1217    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219        return false;
1220    } else {
1221      // 'static inline' functions are used in headers; don't warn.
1222      if (FD->getStorageClass() == SC_Static &&
1223          FD->isInlineSpecified())
1224        return false;
1225    }
1226
1227    if (FD->doesThisDeclarationHaveABody() &&
1228        Context.DeclMustBeEmitted(FD))
1229      return false;
1230  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1231    // Don't warn on variables of const-qualified or reference type, since their
1232    // values can be used even if though they're not odr-used, and because const
1233    // qualified variables can appear in headers in contexts where they're not
1234    // intended to be used.
1235    // FIXME: Use more principled rules for these exemptions.
1236    if (!VD->isFileVarDecl() ||
1237        VD->getType().isConstQualified() ||
1238        VD->getType()->isReferenceType() ||
1239        Context.DeclMustBeEmitted(VD))
1240      return false;
1241
1242    if (VD->isStaticDataMember() &&
1243        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1244      return false;
1245
1246  } else {
1247    return false;
1248  }
1249
1250  // Only warn for unused decls internal to the translation unit.
1251  return mightHaveNonExternalLinkage(D);
1252}
1253
1254void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1255  if (!D)
1256    return;
1257
1258  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1259    const FunctionDecl *First = FD->getFirstDeclaration();
1260    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1261      return; // First should already be in the vector.
1262  }
1263
1264  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1265    const VarDecl *First = VD->getFirstDeclaration();
1266    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1267      return; // First should already be in the vector.
1268  }
1269
1270  if (ShouldWarnIfUnusedFileScopedDecl(D))
1271    UnusedFileScopedDecls.push_back(D);
1272}
1273
1274static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1275  if (D->isInvalidDecl())
1276    return false;
1277
1278  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1279    return false;
1280
1281  if (isa<LabelDecl>(D))
1282    return true;
1283
1284  // White-list anything that isn't a local variable.
1285  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1286      !D->getDeclContext()->isFunctionOrMethod())
1287    return false;
1288
1289  // Types of valid local variables should be complete, so this should succeed.
1290  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291
1292    // White-list anything with an __attribute__((unused)) type.
1293    QualType Ty = VD->getType();
1294
1295    // Only look at the outermost level of typedef.
1296    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1297      if (TT->getDecl()->hasAttr<UnusedAttr>())
1298        return false;
1299    }
1300
1301    // If we failed to complete the type for some reason, or if the type is
1302    // dependent, don't diagnose the variable.
1303    if (Ty->isIncompleteType() || Ty->isDependentType())
1304      return false;
1305
1306    if (const TagType *TT = Ty->getAs<TagType>()) {
1307      const TagDecl *Tag = TT->getDecl();
1308      if (Tag->hasAttr<UnusedAttr>())
1309        return false;
1310
1311      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1312        if (!RD->hasTrivialDestructor())
1313          return false;
1314
1315        if (const Expr *Init = VD->getInit()) {
1316          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1317            Init = Cleanups->getSubExpr();
1318          const CXXConstructExpr *Construct =
1319            dyn_cast<CXXConstructExpr>(Init);
1320          if (Construct && !Construct->isElidable()) {
1321            CXXConstructorDecl *CD = Construct->getConstructor();
1322            if (!CD->isTrivial())
1323              return false;
1324          }
1325        }
1326      }
1327    }
1328
1329    // TODO: __attribute__((unused)) templates?
1330  }
1331
1332  return true;
1333}
1334
1335static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1336                                     FixItHint &Hint) {
1337  if (isa<LabelDecl>(D)) {
1338    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1339                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1340    if (AfterColon.isInvalid())
1341      return;
1342    Hint = FixItHint::CreateRemoval(CharSourceRange::
1343                                    getCharRange(D->getLocStart(), AfterColon));
1344  }
1345  return;
1346}
1347
1348/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1349/// unless they are marked attr(unused).
1350void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1351  FixItHint Hint;
1352  if (!ShouldDiagnoseUnusedDecl(D))
1353    return;
1354
1355  GenerateFixForUnusedDecl(D, Context, Hint);
1356
1357  unsigned DiagID;
1358  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1359    DiagID = diag::warn_unused_exception_param;
1360  else if (isa<LabelDecl>(D))
1361    DiagID = diag::warn_unused_label;
1362  else
1363    DiagID = diag::warn_unused_variable;
1364
1365  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1366}
1367
1368static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1369  // Verify that we have no forward references left.  If so, there was a goto
1370  // or address of a label taken, but no definition of it.  Label fwd
1371  // definitions are indicated with a null substmt.
1372  if (L->getStmt() == 0)
1373    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1374}
1375
1376void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1377  if (S->decl_empty()) return;
1378  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1379         "Scope shouldn't contain decls!");
1380
1381  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1382       I != E; ++I) {
1383    Decl *TmpD = (*I);
1384    assert(TmpD && "This decl didn't get pushed??");
1385
1386    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1387    NamedDecl *D = cast<NamedDecl>(TmpD);
1388
1389    if (!D->getDeclName()) continue;
1390
1391    // Diagnose unused variables in this scope.
1392    if (!S->hasUnrecoverableErrorOccurred())
1393      DiagnoseUnusedDecl(D);
1394
1395    // If this was a forward reference to a label, verify it was defined.
1396    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1397      CheckPoppedLabel(LD, *this);
1398
1399    // Remove this name from our lexical scope.
1400    IdResolver.RemoveDecl(D);
1401  }
1402}
1403
1404void Sema::ActOnStartFunctionDeclarator() {
1405  ++InFunctionDeclarator;
1406}
1407
1408void Sema::ActOnEndFunctionDeclarator() {
1409  assert(InFunctionDeclarator);
1410  --InFunctionDeclarator;
1411}
1412
1413/// \brief Look for an Objective-C class in the translation unit.
1414///
1415/// \param Id The name of the Objective-C class we're looking for. If
1416/// typo-correction fixes this name, the Id will be updated
1417/// to the fixed name.
1418///
1419/// \param IdLoc The location of the name in the translation unit.
1420///
1421/// \param DoTypoCorrection If true, this routine will attempt typo correction
1422/// if there is no class with the given name.
1423///
1424/// \returns The declaration of the named Objective-C class, or NULL if the
1425/// class could not be found.
1426ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1427                                              SourceLocation IdLoc,
1428                                              bool DoTypoCorrection) {
1429  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1430  // creation from this context.
1431  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1432
1433  if (!IDecl && DoTypoCorrection) {
1434    // Perform typo correction at the given location, but only if we
1435    // find an Objective-C class name.
1436    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1437    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1438                                       LookupOrdinaryName, TUScope, NULL,
1439                                       Validator)) {
1440      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1441      Diag(IdLoc, diag::err_undef_interface_suggest)
1442        << Id << IDecl->getDeclName()
1443        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1444      Diag(IDecl->getLocation(), diag::note_previous_decl)
1445        << IDecl->getDeclName();
1446
1447      Id = IDecl->getIdentifier();
1448    }
1449  }
1450  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1451  // This routine must always return a class definition, if any.
1452  if (Def && Def->getDefinition())
1453      Def = Def->getDefinition();
1454  return Def;
1455}
1456
1457/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1458/// from S, where a non-field would be declared. This routine copes
1459/// with the difference between C and C++ scoping rules in structs and
1460/// unions. For example, the following code is well-formed in C but
1461/// ill-formed in C++:
1462/// @code
1463/// struct S6 {
1464///   enum { BAR } e;
1465/// };
1466///
1467/// void test_S6() {
1468///   struct S6 a;
1469///   a.e = BAR;
1470/// }
1471/// @endcode
1472/// For the declaration of BAR, this routine will return a different
1473/// scope. The scope S will be the scope of the unnamed enumeration
1474/// within S6. In C++, this routine will return the scope associated
1475/// with S6, because the enumeration's scope is a transparent
1476/// context but structures can contain non-field names. In C, this
1477/// routine will return the translation unit scope, since the
1478/// enumeration's scope is a transparent context and structures cannot
1479/// contain non-field names.
1480Scope *Sema::getNonFieldDeclScope(Scope *S) {
1481  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1482         (S->getEntity() &&
1483          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1484         (S->isClassScope() && !getLangOpts().CPlusPlus))
1485    S = S->getParent();
1486  return S;
1487}
1488
1489/// \brief Looks up the declaration of "struct objc_super" and
1490/// saves it for later use in building builtin declaration of
1491/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1492/// pre-existing declaration exists no action takes place.
1493static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1494                                        IdentifierInfo *II) {
1495  if (!II->isStr("objc_msgSendSuper"))
1496    return;
1497  ASTContext &Context = ThisSema.Context;
1498
1499  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1500                      SourceLocation(), Sema::LookupTagName);
1501  ThisSema.LookupName(Result, S);
1502  if (Result.getResultKind() == LookupResult::Found)
1503    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1504      Context.setObjCSuperType(Context.getTagDeclType(TD));
1505}
1506
1507/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1508/// file scope.  lazily create a decl for it. ForRedeclaration is true
1509/// if we're creating this built-in in anticipation of redeclaring the
1510/// built-in.
1511NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1512                                     Scope *S, bool ForRedeclaration,
1513                                     SourceLocation Loc) {
1514  LookupPredefedObjCSuperType(*this, S, II);
1515
1516  Builtin::ID BID = (Builtin::ID)bid;
1517
1518  ASTContext::GetBuiltinTypeError Error;
1519  QualType R = Context.GetBuiltinType(BID, Error);
1520  switch (Error) {
1521  case ASTContext::GE_None:
1522    // Okay
1523    break;
1524
1525  case ASTContext::GE_Missing_stdio:
1526    if (ForRedeclaration)
1527      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1528        << Context.BuiltinInfo.GetName(BID);
1529    return 0;
1530
1531  case ASTContext::GE_Missing_setjmp:
1532    if (ForRedeclaration)
1533      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1534        << Context.BuiltinInfo.GetName(BID);
1535    return 0;
1536
1537  case ASTContext::GE_Missing_ucontext:
1538    if (ForRedeclaration)
1539      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1540        << Context.BuiltinInfo.GetName(BID);
1541    return 0;
1542  }
1543
1544  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1545    Diag(Loc, diag::ext_implicit_lib_function_decl)
1546      << Context.BuiltinInfo.GetName(BID)
1547      << R;
1548    if (Context.BuiltinInfo.getHeaderName(BID) &&
1549        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1550          != DiagnosticsEngine::Ignored)
1551      Diag(Loc, diag::note_please_include_header)
1552        << Context.BuiltinInfo.getHeaderName(BID)
1553        << Context.BuiltinInfo.GetName(BID);
1554  }
1555
1556  FunctionDecl *New = FunctionDecl::Create(Context,
1557                                           Context.getTranslationUnitDecl(),
1558                                           Loc, Loc, II, R, /*TInfo=*/0,
1559                                           SC_Extern,
1560                                           false,
1561                                           /*hasPrototype=*/true);
1562  New->setImplicit();
1563
1564  // Create Decl objects for each parameter, adding them to the
1565  // FunctionDecl.
1566  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1567    SmallVector<ParmVarDecl*, 16> Params;
1568    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1569      ParmVarDecl *parm =
1570        ParmVarDecl::Create(Context, New, SourceLocation(),
1571                            SourceLocation(), 0,
1572                            FT->getArgType(i), /*TInfo=*/0,
1573                            SC_None, 0);
1574      parm->setScopeInfo(0, i);
1575      Params.push_back(parm);
1576    }
1577    New->setParams(Params);
1578  }
1579
1580  AddKnownFunctionAttributes(New);
1581
1582  // TUScope is the translation-unit scope to insert this function into.
1583  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1584  // relate Scopes to DeclContexts, and probably eliminate CurContext
1585  // entirely, but we're not there yet.
1586  DeclContext *SavedContext = CurContext;
1587  CurContext = Context.getTranslationUnitDecl();
1588  PushOnScopeChains(New, TUScope);
1589  CurContext = SavedContext;
1590  return New;
1591}
1592
1593/// \brief Filter out any previous declarations that the given declaration
1594/// should not consider because they are not permitted to conflict, e.g.,
1595/// because they come from hidden sub-modules and do not refer to the same
1596/// entity.
1597static void filterNonConflictingPreviousDecls(ASTContext &context,
1598                                              NamedDecl *decl,
1599                                              LookupResult &previous){
1600  // This is only interesting when modules are enabled.
1601  if (!context.getLangOpts().Modules)
1602    return;
1603
1604  // Empty sets are uninteresting.
1605  if (previous.empty())
1606    return;
1607
1608  LookupResult::Filter filter = previous.makeFilter();
1609  while (filter.hasNext()) {
1610    NamedDecl *old = filter.next();
1611
1612    // Non-hidden declarations are never ignored.
1613    if (!old->isHidden())
1614      continue;
1615
1616    // If either has no-external linkage, ignore the old declaration.
1617    // If this declaration would have external linkage if it were the first
1618    // declaration of this name, then it may in fact be a redeclaration of
1619    // some hidden declaration, so include those too. We don't need to worry
1620    // about some previous visible declaration giving this declaration external
1621    // linkage, because in that case, we'll mark this declaration as a redecl
1622    // of the visible decl, and that decl will already be a redecl of the
1623    // hidden declaration if that's appropriate.
1624    //
1625    // Don't cache this linkage computation, because it's not yet correct: we
1626    // may later give this declaration a previous declaration which changes
1627    // its linkage.
1628    if (old->getLinkage() != ExternalLinkage ||
1629        !decl->hasExternalLinkageUncached())
1630      filter.erase();
1631  }
1632
1633  filter.done();
1634}
1635
1636bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1637  QualType OldType;
1638  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1639    OldType = OldTypedef->getUnderlyingType();
1640  else
1641    OldType = Context.getTypeDeclType(Old);
1642  QualType NewType = New->getUnderlyingType();
1643
1644  if (NewType->isVariablyModifiedType()) {
1645    // Must not redefine a typedef with a variably-modified type.
1646    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1647    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1648      << Kind << NewType;
1649    if (Old->getLocation().isValid())
1650      Diag(Old->getLocation(), diag::note_previous_definition);
1651    New->setInvalidDecl();
1652    return true;
1653  }
1654
1655  if (OldType != NewType &&
1656      !OldType->isDependentType() &&
1657      !NewType->isDependentType() &&
1658      !Context.hasSameType(OldType, NewType)) {
1659    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1660    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1661      << Kind << NewType << OldType;
1662    if (Old->getLocation().isValid())
1663      Diag(Old->getLocation(), diag::note_previous_definition);
1664    New->setInvalidDecl();
1665    return true;
1666  }
1667  return false;
1668}
1669
1670/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1671/// same name and scope as a previous declaration 'Old'.  Figure out
1672/// how to resolve this situation, merging decls or emitting
1673/// diagnostics as appropriate. If there was an error, set New to be invalid.
1674///
1675void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1676  // If the new decl is known invalid already, don't bother doing any
1677  // merging checks.
1678  if (New->isInvalidDecl()) return;
1679
1680  // Allow multiple definitions for ObjC built-in typedefs.
1681  // FIXME: Verify the underlying types are equivalent!
1682  if (getLangOpts().ObjC1) {
1683    const IdentifierInfo *TypeID = New->getIdentifier();
1684    switch (TypeID->getLength()) {
1685    default: break;
1686    case 2:
1687      {
1688        if (!TypeID->isStr("id"))
1689          break;
1690        QualType T = New->getUnderlyingType();
1691        if (!T->isPointerType())
1692          break;
1693        if (!T->isVoidPointerType()) {
1694          QualType PT = T->getAs<PointerType>()->getPointeeType();
1695          if (!PT->isStructureType())
1696            break;
1697        }
1698        Context.setObjCIdRedefinitionType(T);
1699        // Install the built-in type for 'id', ignoring the current definition.
1700        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1701        return;
1702      }
1703    case 5:
1704      if (!TypeID->isStr("Class"))
1705        break;
1706      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1707      // Install the built-in type for 'Class', ignoring the current definition.
1708      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1709      return;
1710    case 3:
1711      if (!TypeID->isStr("SEL"))
1712        break;
1713      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1714      // Install the built-in type for 'SEL', ignoring the current definition.
1715      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1716      return;
1717    }
1718    // Fall through - the typedef name was not a builtin type.
1719  }
1720
1721  // Verify the old decl was also a type.
1722  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1723  if (!Old) {
1724    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1725      << New->getDeclName();
1726
1727    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1728    if (OldD->getLocation().isValid())
1729      Diag(OldD->getLocation(), diag::note_previous_definition);
1730
1731    return New->setInvalidDecl();
1732  }
1733
1734  // If the old declaration is invalid, just give up here.
1735  if (Old->isInvalidDecl())
1736    return New->setInvalidDecl();
1737
1738  // If the typedef types are not identical, reject them in all languages and
1739  // with any extensions enabled.
1740  if (isIncompatibleTypedef(Old, New))
1741    return;
1742
1743  // The types match.  Link up the redeclaration chain if the old
1744  // declaration was a typedef.
1745  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1746    New->setPreviousDeclaration(Typedef);
1747
1748  if (getLangOpts().MicrosoftExt)
1749    return;
1750
1751  if (getLangOpts().CPlusPlus) {
1752    // C++ [dcl.typedef]p2:
1753    //   In a given non-class scope, a typedef specifier can be used to
1754    //   redefine the name of any type declared in that scope to refer
1755    //   to the type to which it already refers.
1756    if (!isa<CXXRecordDecl>(CurContext))
1757      return;
1758
1759    // C++0x [dcl.typedef]p4:
1760    //   In a given class scope, a typedef specifier can be used to redefine
1761    //   any class-name declared in that scope that is not also a typedef-name
1762    //   to refer to the type to which it already refers.
1763    //
1764    // This wording came in via DR424, which was a correction to the
1765    // wording in DR56, which accidentally banned code like:
1766    //
1767    //   struct S {
1768    //     typedef struct A { } A;
1769    //   };
1770    //
1771    // in the C++03 standard. We implement the C++0x semantics, which
1772    // allow the above but disallow
1773    //
1774    //   struct S {
1775    //     typedef int I;
1776    //     typedef int I;
1777    //   };
1778    //
1779    // since that was the intent of DR56.
1780    if (!isa<TypedefNameDecl>(Old))
1781      return;
1782
1783    Diag(New->getLocation(), diag::err_redefinition)
1784      << New->getDeclName();
1785    Diag(Old->getLocation(), diag::note_previous_definition);
1786    return New->setInvalidDecl();
1787  }
1788
1789  // Modules always permit redefinition of typedefs, as does C11.
1790  if (getLangOpts().Modules || getLangOpts().C11)
1791    return;
1792
1793  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1794  // is normally mapped to an error, but can be controlled with
1795  // -Wtypedef-redefinition.  If either the original or the redefinition is
1796  // in a system header, don't emit this for compatibility with GCC.
1797  if (getDiagnostics().getSuppressSystemWarnings() &&
1798      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1799       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1800    return;
1801
1802  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1803    << New->getDeclName();
1804  Diag(Old->getLocation(), diag::note_previous_definition);
1805  return;
1806}
1807
1808/// DeclhasAttr - returns true if decl Declaration already has the target
1809/// attribute.
1810static bool
1811DeclHasAttr(const Decl *D, const Attr *A) {
1812  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1813  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1814  // responsible for making sure they are consistent.
1815  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1816  if (AA)
1817    return false;
1818
1819  // The following thread safety attributes can also be duplicated.
1820  switch (A->getKind()) {
1821    case attr::ExclusiveLocksRequired:
1822    case attr::SharedLocksRequired:
1823    case attr::LocksExcluded:
1824    case attr::ExclusiveLockFunction:
1825    case attr::SharedLockFunction:
1826    case attr::UnlockFunction:
1827    case attr::ExclusiveTrylockFunction:
1828    case attr::SharedTrylockFunction:
1829    case attr::GuardedBy:
1830    case attr::PtGuardedBy:
1831    case attr::AcquiredBefore:
1832    case attr::AcquiredAfter:
1833      return false;
1834    default:
1835      ;
1836  }
1837
1838  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1839  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1840  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1841    if ((*i)->getKind() == A->getKind()) {
1842      if (Ann) {
1843        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1844          return true;
1845        continue;
1846      }
1847      // FIXME: Don't hardcode this check
1848      if (OA && isa<OwnershipAttr>(*i))
1849        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1850      return true;
1851    }
1852
1853  return false;
1854}
1855
1856static bool isAttributeTargetADefinition(Decl *D) {
1857  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1858    return VD->isThisDeclarationADefinition();
1859  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1860    return TD->isCompleteDefinition() || TD->isBeingDefined();
1861  return true;
1862}
1863
1864/// Merge alignment attributes from \p Old to \p New, taking into account the
1865/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1866///
1867/// \return \c true if any attributes were added to \p New.
1868static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1869  // Look for alignas attributes on Old, and pick out whichever attribute
1870  // specifies the strictest alignment requirement.
1871  AlignedAttr *OldAlignasAttr = 0;
1872  AlignedAttr *OldStrictestAlignAttr = 0;
1873  unsigned OldAlign = 0;
1874  for (specific_attr_iterator<AlignedAttr>
1875         I = Old->specific_attr_begin<AlignedAttr>(),
1876         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1877    // FIXME: We have no way of representing inherited dependent alignments
1878    // in a case like:
1879    //   template<int A, int B> struct alignas(A) X;
1880    //   template<int A, int B> struct alignas(B) X {};
1881    // For now, we just ignore any alignas attributes which are not on the
1882    // definition in such a case.
1883    if (I->isAlignmentDependent())
1884      return false;
1885
1886    if (I->isAlignas())
1887      OldAlignasAttr = *I;
1888
1889    unsigned Align = I->getAlignment(S.Context);
1890    if (Align > OldAlign) {
1891      OldAlign = Align;
1892      OldStrictestAlignAttr = *I;
1893    }
1894  }
1895
1896  // Look for alignas attributes on New.
1897  AlignedAttr *NewAlignasAttr = 0;
1898  unsigned NewAlign = 0;
1899  for (specific_attr_iterator<AlignedAttr>
1900         I = New->specific_attr_begin<AlignedAttr>(),
1901         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1902    if (I->isAlignmentDependent())
1903      return false;
1904
1905    if (I->isAlignas())
1906      NewAlignasAttr = *I;
1907
1908    unsigned Align = I->getAlignment(S.Context);
1909    if (Align > NewAlign)
1910      NewAlign = Align;
1911  }
1912
1913  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1914    // Both declarations have 'alignas' attributes. We require them to match.
1915    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1916    // fall short. (If two declarations both have alignas, they must both match
1917    // every definition, and so must match each other if there is a definition.)
1918
1919    // If either declaration only contains 'alignas(0)' specifiers, then it
1920    // specifies the natural alignment for the type.
1921    if (OldAlign == 0 || NewAlign == 0) {
1922      QualType Ty;
1923      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1924        Ty = VD->getType();
1925      else
1926        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1927
1928      if (OldAlign == 0)
1929        OldAlign = S.Context.getTypeAlign(Ty);
1930      if (NewAlign == 0)
1931        NewAlign = S.Context.getTypeAlign(Ty);
1932    }
1933
1934    if (OldAlign != NewAlign) {
1935      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1936        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1937        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1938      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1939    }
1940  }
1941
1942  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1943    // C++11 [dcl.align]p6:
1944    //   if any declaration of an entity has an alignment-specifier,
1945    //   every defining declaration of that entity shall specify an
1946    //   equivalent alignment.
1947    // C11 6.7.5/7:
1948    //   If the definition of an object does not have an alignment
1949    //   specifier, any other declaration of that object shall also
1950    //   have no alignment specifier.
1951    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1952      << OldAlignasAttr->isC11();
1953    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1954      << OldAlignasAttr->isC11();
1955  }
1956
1957  bool AnyAdded = false;
1958
1959  // Ensure we have an attribute representing the strictest alignment.
1960  if (OldAlign > NewAlign) {
1961    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1962    Clone->setInherited(true);
1963    New->addAttr(Clone);
1964    AnyAdded = true;
1965  }
1966
1967  // Ensure we have an alignas attribute if the old declaration had one.
1968  if (OldAlignasAttr && !NewAlignasAttr &&
1969      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1970    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1971    Clone->setInherited(true);
1972    New->addAttr(Clone);
1973    AnyAdded = true;
1974  }
1975
1976  return AnyAdded;
1977}
1978
1979static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1980                               bool Override) {
1981  InheritableAttr *NewAttr = NULL;
1982  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1983  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1984    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1985                                      AA->getIntroduced(), AA->getDeprecated(),
1986                                      AA->getObsoleted(), AA->getUnavailable(),
1987                                      AA->getMessage(), Override,
1988                                      AttrSpellingListIndex);
1989  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1990    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1991                                    AttrSpellingListIndex);
1992  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1993    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1994                                        AttrSpellingListIndex);
1995  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1996    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1997                                   AttrSpellingListIndex);
1998  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1999    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2000                                   AttrSpellingListIndex);
2001  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
2002    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2003                                FA->getFormatIdx(), FA->getFirstArg(),
2004                                AttrSpellingListIndex);
2005  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
2006    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2007                                 AttrSpellingListIndex);
2008  else if (isa<AlignedAttr>(Attr))
2009    // AlignedAttrs are handled separately, because we need to handle all
2010    // such attributes on a declaration at the same time.
2011    NewAttr = 0;
2012  else if (!DeclHasAttr(D, Attr))
2013    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2014
2015  if (NewAttr) {
2016    NewAttr->setInherited(true);
2017    D->addAttr(NewAttr);
2018    return true;
2019  }
2020
2021  return false;
2022}
2023
2024static const Decl *getDefinition(const Decl *D) {
2025  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2026    return TD->getDefinition();
2027  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2028    return VD->getDefinition();
2029  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2030    const FunctionDecl* Def;
2031    if (FD->hasBody(Def))
2032      return Def;
2033  }
2034  return NULL;
2035}
2036
2037static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2038  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2039       I != E; ++I) {
2040    Attr *Attribute = *I;
2041    if (Attribute->getKind() == Kind)
2042      return true;
2043  }
2044  return false;
2045}
2046
2047/// checkNewAttributesAfterDef - If we already have a definition, check that
2048/// there are no new attributes in this declaration.
2049static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2050  if (!New->hasAttrs())
2051    return;
2052
2053  const Decl *Def = getDefinition(Old);
2054  if (!Def || Def == New)
2055    return;
2056
2057  AttrVec &NewAttributes = New->getAttrs();
2058  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2059    const Attr *NewAttribute = NewAttributes[I];
2060    if (hasAttribute(Def, NewAttribute->getKind())) {
2061      ++I;
2062      continue; // regular attr merging will take care of validating this.
2063    }
2064
2065    if (isa<C11NoReturnAttr>(NewAttribute)) {
2066      // C's _Noreturn is allowed to be added to a function after it is defined.
2067      ++I;
2068      continue;
2069    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2070      if (AA->isAlignas()) {
2071        // C++11 [dcl.align]p6:
2072        //   if any declaration of an entity has an alignment-specifier,
2073        //   every defining declaration of that entity shall specify an
2074        //   equivalent alignment.
2075        // C11 6.7.5/7:
2076        //   If the definition of an object does not have an alignment
2077        //   specifier, any other declaration of that object shall also
2078        //   have no alignment specifier.
2079        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2080          << AA->isC11();
2081        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2082          << AA->isC11();
2083        NewAttributes.erase(NewAttributes.begin() + I);
2084        --E;
2085        continue;
2086      }
2087    }
2088
2089    S.Diag(NewAttribute->getLocation(),
2090           diag::warn_attribute_precede_definition);
2091    S.Diag(Def->getLocation(), diag::note_previous_definition);
2092    NewAttributes.erase(NewAttributes.begin() + I);
2093    --E;
2094  }
2095}
2096
2097/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2098void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2099                               AvailabilityMergeKind AMK) {
2100  if (!Old->hasAttrs() && !New->hasAttrs())
2101    return;
2102
2103  // attributes declared post-definition are currently ignored
2104  checkNewAttributesAfterDef(*this, New, Old);
2105
2106  if (!Old->hasAttrs())
2107    return;
2108
2109  bool foundAny = New->hasAttrs();
2110
2111  // Ensure that any moving of objects within the allocated map is done before
2112  // we process them.
2113  if (!foundAny) New->setAttrs(AttrVec());
2114
2115  for (specific_attr_iterator<InheritableAttr>
2116         i = Old->specific_attr_begin<InheritableAttr>(),
2117         e = Old->specific_attr_end<InheritableAttr>();
2118       i != e; ++i) {
2119    bool Override = false;
2120    // Ignore deprecated/unavailable/availability attributes if requested.
2121    if (isa<DeprecatedAttr>(*i) ||
2122        isa<UnavailableAttr>(*i) ||
2123        isa<AvailabilityAttr>(*i)) {
2124      switch (AMK) {
2125      case AMK_None:
2126        continue;
2127
2128      case AMK_Redeclaration:
2129        break;
2130
2131      case AMK_Override:
2132        Override = true;
2133        break;
2134      }
2135    }
2136
2137    if (mergeDeclAttribute(*this, New, *i, Override))
2138      foundAny = true;
2139  }
2140
2141  if (mergeAlignedAttrs(*this, New, Old))
2142    foundAny = true;
2143
2144  if (!foundAny) New->dropAttrs();
2145}
2146
2147/// mergeParamDeclAttributes - Copy attributes from the old parameter
2148/// to the new one.
2149static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2150                                     const ParmVarDecl *oldDecl,
2151                                     Sema &S) {
2152  // C++11 [dcl.attr.depend]p2:
2153  //   The first declaration of a function shall specify the
2154  //   carries_dependency attribute for its declarator-id if any declaration
2155  //   of the function specifies the carries_dependency attribute.
2156  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2157      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2158    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2159           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2160    // Find the first declaration of the parameter.
2161    // FIXME: Should we build redeclaration chains for function parameters?
2162    const FunctionDecl *FirstFD =
2163      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2164    const ParmVarDecl *FirstVD =
2165      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2166    S.Diag(FirstVD->getLocation(),
2167           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2168  }
2169
2170  if (!oldDecl->hasAttrs())
2171    return;
2172
2173  bool foundAny = newDecl->hasAttrs();
2174
2175  // Ensure that any moving of objects within the allocated map is
2176  // done before we process them.
2177  if (!foundAny) newDecl->setAttrs(AttrVec());
2178
2179  for (specific_attr_iterator<InheritableParamAttr>
2180       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2181       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2182    if (!DeclHasAttr(newDecl, *i)) {
2183      InheritableAttr *newAttr =
2184        cast<InheritableParamAttr>((*i)->clone(S.Context));
2185      newAttr->setInherited(true);
2186      newDecl->addAttr(newAttr);
2187      foundAny = true;
2188    }
2189  }
2190
2191  if (!foundAny) newDecl->dropAttrs();
2192}
2193
2194namespace {
2195
2196/// Used in MergeFunctionDecl to keep track of function parameters in
2197/// C.
2198struct GNUCompatibleParamWarning {
2199  ParmVarDecl *OldParm;
2200  ParmVarDecl *NewParm;
2201  QualType PromotedType;
2202};
2203
2204}
2205
2206/// getSpecialMember - get the special member enum for a method.
2207Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2208  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2209    if (Ctor->isDefaultConstructor())
2210      return Sema::CXXDefaultConstructor;
2211
2212    if (Ctor->isCopyConstructor())
2213      return Sema::CXXCopyConstructor;
2214
2215    if (Ctor->isMoveConstructor())
2216      return Sema::CXXMoveConstructor;
2217  } else if (isa<CXXDestructorDecl>(MD)) {
2218    return Sema::CXXDestructor;
2219  } else if (MD->isCopyAssignmentOperator()) {
2220    return Sema::CXXCopyAssignment;
2221  } else if (MD->isMoveAssignmentOperator()) {
2222    return Sema::CXXMoveAssignment;
2223  }
2224
2225  return Sema::CXXInvalid;
2226}
2227
2228/// canRedefineFunction - checks if a function can be redefined. Currently,
2229/// only extern inline functions can be redefined, and even then only in
2230/// GNU89 mode.
2231static bool canRedefineFunction(const FunctionDecl *FD,
2232                                const LangOptions& LangOpts) {
2233  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2234          !LangOpts.CPlusPlus &&
2235          FD->isInlineSpecified() &&
2236          FD->getStorageClass() == SC_Extern);
2237}
2238
2239/// Is the given calling convention the ABI default for the given
2240/// declaration?
2241static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2242  CallingConv ABIDefaultCC;
2243  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2244    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2245  } else {
2246    // Free C function or a static method.
2247    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2248  }
2249  return ABIDefaultCC == CC;
2250}
2251
2252template <typename T>
2253static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2254  const DeclContext *DC = Old->getDeclContext();
2255  if (DC->isRecord())
2256    return false;
2257
2258  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2259  if (OldLinkage == CXXLanguageLinkage &&
2260      New->getDeclContext()->isExternCContext())
2261    return true;
2262  if (OldLinkage == CLanguageLinkage &&
2263      New->getDeclContext()->isExternCXXContext())
2264    return true;
2265  return false;
2266}
2267
2268/// MergeFunctionDecl - We just parsed a function 'New' from
2269/// declarator D which has the same name and scope as a previous
2270/// declaration 'Old'.  Figure out how to resolve this situation,
2271/// merging decls or emitting diagnostics as appropriate.
2272///
2273/// In C++, New and Old must be declarations that are not
2274/// overloaded. Use IsOverload to determine whether New and Old are
2275/// overloaded, and to select the Old declaration that New should be
2276/// merged with.
2277///
2278/// Returns true if there was an error, false otherwise.
2279bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2280  // Verify the old decl was also a function.
2281  FunctionDecl *Old = 0;
2282  if (FunctionTemplateDecl *OldFunctionTemplate
2283        = dyn_cast<FunctionTemplateDecl>(OldD))
2284    Old = OldFunctionTemplate->getTemplatedDecl();
2285  else
2286    Old = dyn_cast<FunctionDecl>(OldD);
2287  if (!Old) {
2288    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2289      if (New->getFriendObjectKind()) {
2290        Diag(New->getLocation(), diag::err_using_decl_friend);
2291        Diag(Shadow->getTargetDecl()->getLocation(),
2292             diag::note_using_decl_target);
2293        Diag(Shadow->getUsingDecl()->getLocation(),
2294             diag::note_using_decl) << 0;
2295        return true;
2296      }
2297
2298      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2299      Diag(Shadow->getTargetDecl()->getLocation(),
2300           diag::note_using_decl_target);
2301      Diag(Shadow->getUsingDecl()->getLocation(),
2302           diag::note_using_decl) << 0;
2303      return true;
2304    }
2305
2306    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2307      << New->getDeclName();
2308    Diag(OldD->getLocation(), diag::note_previous_definition);
2309    return true;
2310  }
2311
2312  // Determine whether the previous declaration was a definition,
2313  // implicit declaration, or a declaration.
2314  diag::kind PrevDiag;
2315  if (Old->isThisDeclarationADefinition())
2316    PrevDiag = diag::note_previous_definition;
2317  else if (Old->isImplicit())
2318    PrevDiag = diag::note_previous_implicit_declaration;
2319  else
2320    PrevDiag = diag::note_previous_declaration;
2321
2322  QualType OldQType = Context.getCanonicalType(Old->getType());
2323  QualType NewQType = Context.getCanonicalType(New->getType());
2324
2325  // Don't complain about this if we're in GNU89 mode and the old function
2326  // is an extern inline function.
2327  // Don't complain about specializations. They are not supposed to have
2328  // storage classes.
2329  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2330      New->getStorageClass() == SC_Static &&
2331      Old->getStorageClass() != SC_Static &&
2332      !New->getTemplateSpecializationInfo() &&
2333      !canRedefineFunction(Old, getLangOpts())) {
2334    if (getLangOpts().MicrosoftExt) {
2335      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2336      Diag(Old->getLocation(), PrevDiag);
2337    } else {
2338      Diag(New->getLocation(), diag::err_static_non_static) << New;
2339      Diag(Old->getLocation(), PrevDiag);
2340      return true;
2341    }
2342  }
2343
2344  // If a function is first declared with a calling convention, but is
2345  // later declared or defined without one, the second decl assumes the
2346  // calling convention of the first.
2347  //
2348  // It's OK if a function is first declared without a calling convention,
2349  // but is later declared or defined with the default calling convention.
2350  //
2351  // For the new decl, we have to look at the NON-canonical type to tell the
2352  // difference between a function that really doesn't have a calling
2353  // convention and one that is declared cdecl. That's because in
2354  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2355  // because it is the default calling convention.
2356  //
2357  // Note also that we DO NOT return at this point, because we still have
2358  // other tests to run.
2359  const FunctionType *OldType = cast<FunctionType>(OldQType);
2360  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2361  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2362  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2363  bool RequiresAdjustment = false;
2364  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2365    // Fast path: nothing to do.
2366
2367  // Inherit the CC from the previous declaration if it was specified
2368  // there but not here.
2369  } else if (NewTypeInfo.getCC() == CC_Default) {
2370    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2371    RequiresAdjustment = true;
2372
2373  // Don't complain about mismatches when the default CC is
2374  // effectively the same as the explict one. Only Old decl contains correct
2375  // information about storage class of CXXMethod.
2376  } else if (OldTypeInfo.getCC() == CC_Default &&
2377             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2378    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2379    RequiresAdjustment = true;
2380
2381  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2382                                     NewTypeInfo.getCC())) {
2383    // Calling conventions really aren't compatible, so complain.
2384    Diag(New->getLocation(), diag::err_cconv_change)
2385      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2386      << (OldTypeInfo.getCC() == CC_Default)
2387      << (OldTypeInfo.getCC() == CC_Default ? "" :
2388          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2389    Diag(Old->getLocation(), diag::note_previous_declaration);
2390    return true;
2391  }
2392
2393  // FIXME: diagnose the other way around?
2394  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2395    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2396    RequiresAdjustment = true;
2397  }
2398
2399  // Merge regparm attribute.
2400  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2401      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2402    if (NewTypeInfo.getHasRegParm()) {
2403      Diag(New->getLocation(), diag::err_regparm_mismatch)
2404        << NewType->getRegParmType()
2405        << OldType->getRegParmType();
2406      Diag(Old->getLocation(), diag::note_previous_declaration);
2407      return true;
2408    }
2409
2410    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2411    RequiresAdjustment = true;
2412  }
2413
2414  // Merge ns_returns_retained attribute.
2415  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2416    if (NewTypeInfo.getProducesResult()) {
2417      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2418      Diag(Old->getLocation(), diag::note_previous_declaration);
2419      return true;
2420    }
2421
2422    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2423    RequiresAdjustment = true;
2424  }
2425
2426  if (RequiresAdjustment) {
2427    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2428    New->setType(QualType(NewType, 0));
2429    NewQType = Context.getCanonicalType(New->getType());
2430  }
2431
2432  // If this redeclaration makes the function inline, we may need to add it to
2433  // UndefinedButUsed.
2434  if (!Old->isInlined() && New->isInlined() &&
2435      !New->hasAttr<GNUInlineAttr>() &&
2436      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2437      Old->isUsed(false) &&
2438      !Old->isDefined() && !New->isThisDeclarationADefinition())
2439    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2440                                           SourceLocation()));
2441
2442  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2443  // about it.
2444  if (New->hasAttr<GNUInlineAttr>() &&
2445      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2446    UndefinedButUsed.erase(Old->getCanonicalDecl());
2447  }
2448
2449  if (getLangOpts().CPlusPlus) {
2450    // (C++98 13.1p2):
2451    //   Certain function declarations cannot be overloaded:
2452    //     -- Function declarations that differ only in the return type
2453    //        cannot be overloaded.
2454    QualType OldReturnType = OldType->getResultType();
2455    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2456    QualType ResQT;
2457    if (OldReturnType != NewReturnType) {
2458      if (NewReturnType->isObjCObjectPointerType()
2459          && OldReturnType->isObjCObjectPointerType())
2460        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2461      if (ResQT.isNull()) {
2462        if (New->isCXXClassMember() && New->isOutOfLine())
2463          Diag(New->getLocation(),
2464               diag::err_member_def_does_not_match_ret_type) << New;
2465        else
2466          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2467        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2468        return true;
2469      }
2470      else
2471        NewQType = ResQT;
2472    }
2473
2474    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2475    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2476    if (OldMethod && NewMethod) {
2477      // Preserve triviality.
2478      NewMethod->setTrivial(OldMethod->isTrivial());
2479
2480      // MSVC allows explicit template specialization at class scope:
2481      // 2 CXMethodDecls referring to the same function will be injected.
2482      // We don't want a redeclartion error.
2483      bool IsClassScopeExplicitSpecialization =
2484                              OldMethod->isFunctionTemplateSpecialization() &&
2485                              NewMethod->isFunctionTemplateSpecialization();
2486      bool isFriend = NewMethod->getFriendObjectKind();
2487
2488      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2489          !IsClassScopeExplicitSpecialization) {
2490        //    -- Member function declarations with the same name and the
2491        //       same parameter types cannot be overloaded if any of them
2492        //       is a static member function declaration.
2493        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2494          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2495          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2496          return true;
2497        }
2498
2499        // C++ [class.mem]p1:
2500        //   [...] A member shall not be declared twice in the
2501        //   member-specification, except that a nested class or member
2502        //   class template can be declared and then later defined.
2503        if (ActiveTemplateInstantiations.empty()) {
2504          unsigned NewDiag;
2505          if (isa<CXXConstructorDecl>(OldMethod))
2506            NewDiag = diag::err_constructor_redeclared;
2507          else if (isa<CXXDestructorDecl>(NewMethod))
2508            NewDiag = diag::err_destructor_redeclared;
2509          else if (isa<CXXConversionDecl>(NewMethod))
2510            NewDiag = diag::err_conv_function_redeclared;
2511          else
2512            NewDiag = diag::err_member_redeclared;
2513
2514          Diag(New->getLocation(), NewDiag);
2515        } else {
2516          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2517            << New << New->getType();
2518        }
2519        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2520
2521      // Complain if this is an explicit declaration of a special
2522      // member that was initially declared implicitly.
2523      //
2524      // As an exception, it's okay to befriend such methods in order
2525      // to permit the implicit constructor/destructor/operator calls.
2526      } else if (OldMethod->isImplicit()) {
2527        if (isFriend) {
2528          NewMethod->setImplicit();
2529        } else {
2530          Diag(NewMethod->getLocation(),
2531               diag::err_definition_of_implicitly_declared_member)
2532            << New << getSpecialMember(OldMethod);
2533          return true;
2534        }
2535      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2536        Diag(NewMethod->getLocation(),
2537             diag::err_definition_of_explicitly_defaulted_member)
2538          << getSpecialMember(OldMethod);
2539        return true;
2540      }
2541    }
2542
2543    // C++11 [dcl.attr.noreturn]p1:
2544    //   The first declaration of a function shall specify the noreturn
2545    //   attribute if any declaration of that function specifies the noreturn
2546    //   attribute.
2547    if (New->hasAttr<CXX11NoReturnAttr>() &&
2548        !Old->hasAttr<CXX11NoReturnAttr>()) {
2549      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2550           diag::err_noreturn_missing_on_first_decl);
2551      Diag(Old->getFirstDeclaration()->getLocation(),
2552           diag::note_noreturn_missing_first_decl);
2553    }
2554
2555    // C++11 [dcl.attr.depend]p2:
2556    //   The first declaration of a function shall specify the
2557    //   carries_dependency attribute for its declarator-id if any declaration
2558    //   of the function specifies the carries_dependency attribute.
2559    if (New->hasAttr<CarriesDependencyAttr>() &&
2560        !Old->hasAttr<CarriesDependencyAttr>()) {
2561      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2562           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2563      Diag(Old->getFirstDeclaration()->getLocation(),
2564           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2565    }
2566
2567    // (C++98 8.3.5p3):
2568    //   All declarations for a function shall agree exactly in both the
2569    //   return type and the parameter-type-list.
2570    // We also want to respect all the extended bits except noreturn.
2571
2572    // noreturn should now match unless the old type info didn't have it.
2573    QualType OldQTypeForComparison = OldQType;
2574    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2575      assert(OldQType == QualType(OldType, 0));
2576      const FunctionType *OldTypeForComparison
2577        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2578      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2579      assert(OldQTypeForComparison.isCanonical());
2580    }
2581
2582    if (haveIncompatibleLanguageLinkages(Old, New)) {
2583      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2584      Diag(Old->getLocation(), PrevDiag);
2585      return true;
2586    }
2587
2588    if (OldQTypeForComparison == NewQType)
2589      return MergeCompatibleFunctionDecls(New, Old, S);
2590
2591    // Fall through for conflicting redeclarations and redefinitions.
2592  }
2593
2594  // C: Function types need to be compatible, not identical. This handles
2595  // duplicate function decls like "void f(int); void f(enum X);" properly.
2596  if (!getLangOpts().CPlusPlus &&
2597      Context.typesAreCompatible(OldQType, NewQType)) {
2598    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2599    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2600    const FunctionProtoType *OldProto = 0;
2601    if (isa<FunctionNoProtoType>(NewFuncType) &&
2602        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2603      // The old declaration provided a function prototype, but the
2604      // new declaration does not. Merge in the prototype.
2605      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2606      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2607                                                 OldProto->arg_type_end());
2608      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2609                                         ParamTypes,
2610                                         OldProto->getExtProtoInfo());
2611      New->setType(NewQType);
2612      New->setHasInheritedPrototype();
2613
2614      // Synthesize a parameter for each argument type.
2615      SmallVector<ParmVarDecl*, 16> Params;
2616      for (FunctionProtoType::arg_type_iterator
2617             ParamType = OldProto->arg_type_begin(),
2618             ParamEnd = OldProto->arg_type_end();
2619           ParamType != ParamEnd; ++ParamType) {
2620        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2621                                                 SourceLocation(),
2622                                                 SourceLocation(), 0,
2623                                                 *ParamType, /*TInfo=*/0,
2624                                                 SC_None,
2625                                                 0);
2626        Param->setScopeInfo(0, Params.size());
2627        Param->setImplicit();
2628        Params.push_back(Param);
2629      }
2630
2631      New->setParams(Params);
2632    }
2633
2634    return MergeCompatibleFunctionDecls(New, Old, S);
2635  }
2636
2637  // GNU C permits a K&R definition to follow a prototype declaration
2638  // if the declared types of the parameters in the K&R definition
2639  // match the types in the prototype declaration, even when the
2640  // promoted types of the parameters from the K&R definition differ
2641  // from the types in the prototype. GCC then keeps the types from
2642  // the prototype.
2643  //
2644  // If a variadic prototype is followed by a non-variadic K&R definition,
2645  // the K&R definition becomes variadic.  This is sort of an edge case, but
2646  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2647  // C99 6.9.1p8.
2648  if (!getLangOpts().CPlusPlus &&
2649      Old->hasPrototype() && !New->hasPrototype() &&
2650      New->getType()->getAs<FunctionProtoType>() &&
2651      Old->getNumParams() == New->getNumParams()) {
2652    SmallVector<QualType, 16> ArgTypes;
2653    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2654    const FunctionProtoType *OldProto
2655      = Old->getType()->getAs<FunctionProtoType>();
2656    const FunctionProtoType *NewProto
2657      = New->getType()->getAs<FunctionProtoType>();
2658
2659    // Determine whether this is the GNU C extension.
2660    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2661                                               NewProto->getResultType());
2662    bool LooseCompatible = !MergedReturn.isNull();
2663    for (unsigned Idx = 0, End = Old->getNumParams();
2664         LooseCompatible && Idx != End; ++Idx) {
2665      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2666      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2667      if (Context.typesAreCompatible(OldParm->getType(),
2668                                     NewProto->getArgType(Idx))) {
2669        ArgTypes.push_back(NewParm->getType());
2670      } else if (Context.typesAreCompatible(OldParm->getType(),
2671                                            NewParm->getType(),
2672                                            /*CompareUnqualified=*/true)) {
2673        GNUCompatibleParamWarning Warn
2674          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2675        Warnings.push_back(Warn);
2676        ArgTypes.push_back(NewParm->getType());
2677      } else
2678        LooseCompatible = false;
2679    }
2680
2681    if (LooseCompatible) {
2682      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2683        Diag(Warnings[Warn].NewParm->getLocation(),
2684             diag::ext_param_promoted_not_compatible_with_prototype)
2685          << Warnings[Warn].PromotedType
2686          << Warnings[Warn].OldParm->getType();
2687        if (Warnings[Warn].OldParm->getLocation().isValid())
2688          Diag(Warnings[Warn].OldParm->getLocation(),
2689               diag::note_previous_declaration);
2690      }
2691
2692      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2693                                           OldProto->getExtProtoInfo()));
2694      return MergeCompatibleFunctionDecls(New, Old, S);
2695    }
2696
2697    // Fall through to diagnose conflicting types.
2698  }
2699
2700  // A function that has already been declared has been redeclared or defined
2701  // with a different type- show appropriate diagnostic
2702  if (unsigned BuiltinID = Old->getBuiltinID()) {
2703    // The user has declared a builtin function with an incompatible
2704    // signature.
2705    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2706      // The function the user is redeclaring is a library-defined
2707      // function like 'malloc' or 'printf'. Warn about the
2708      // redeclaration, then pretend that we don't know about this
2709      // library built-in.
2710      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2711      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2712        << Old << Old->getType();
2713      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2714      Old->setInvalidDecl();
2715      return false;
2716    }
2717
2718    PrevDiag = diag::note_previous_builtin_declaration;
2719  }
2720
2721  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2722  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2723  return true;
2724}
2725
2726/// \brief Completes the merge of two function declarations that are
2727/// known to be compatible.
2728///
2729/// This routine handles the merging of attributes and other
2730/// properties of function declarations form the old declaration to
2731/// the new declaration, once we know that New is in fact a
2732/// redeclaration of Old.
2733///
2734/// \returns false
2735bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2736                                        Scope *S) {
2737  // Merge the attributes
2738  mergeDeclAttributes(New, Old);
2739
2740  // Merge "pure" flag.
2741  if (Old->isPure())
2742    New->setPure();
2743
2744  // Merge "used" flag.
2745  if (Old->isUsed(false))
2746    New->setUsed();
2747
2748  // Merge attributes from the parameters.  These can mismatch with K&R
2749  // declarations.
2750  if (New->getNumParams() == Old->getNumParams())
2751    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2752      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2753                               *this);
2754
2755  if (getLangOpts().CPlusPlus)
2756    return MergeCXXFunctionDecl(New, Old, S);
2757
2758  // Merge the function types so the we get the composite types for the return
2759  // and argument types.
2760  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2761  if (!Merged.isNull())
2762    New->setType(Merged);
2763
2764  return false;
2765}
2766
2767
2768void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2769                                ObjCMethodDecl *oldMethod) {
2770
2771  // Merge the attributes, including deprecated/unavailable
2772  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2773
2774  // Merge attributes from the parameters.
2775  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2776                                       oe = oldMethod->param_end();
2777  for (ObjCMethodDecl::param_iterator
2778         ni = newMethod->param_begin(), ne = newMethod->param_end();
2779       ni != ne && oi != oe; ++ni, ++oi)
2780    mergeParamDeclAttributes(*ni, *oi, *this);
2781
2782  CheckObjCMethodOverride(newMethod, oldMethod);
2783}
2784
2785/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2786/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2787/// emitting diagnostics as appropriate.
2788///
2789/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2790/// to here in AddInitializerToDecl. We can't check them before the initializer
2791/// is attached.
2792void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2793  if (New->isInvalidDecl() || Old->isInvalidDecl())
2794    return;
2795
2796  QualType MergedT;
2797  if (getLangOpts().CPlusPlus) {
2798    AutoType *AT = New->getType()->getContainedAutoType();
2799    if (AT && !AT->isDeduced()) {
2800      // We don't know what the new type is until the initializer is attached.
2801      return;
2802    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2803      // These could still be something that needs exception specs checked.
2804      return MergeVarDeclExceptionSpecs(New, Old);
2805    }
2806    // C++ [basic.link]p10:
2807    //   [...] the types specified by all declarations referring to a given
2808    //   object or function shall be identical, except that declarations for an
2809    //   array object can specify array types that differ by the presence or
2810    //   absence of a major array bound (8.3.4).
2811    else if (Old->getType()->isIncompleteArrayType() &&
2812             New->getType()->isArrayType()) {
2813      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2814      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2815      if (Context.hasSameType(OldArray->getElementType(),
2816                              NewArray->getElementType()))
2817        MergedT = New->getType();
2818    } else if (Old->getType()->isArrayType() &&
2819             New->getType()->isIncompleteArrayType()) {
2820      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2821      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2822      if (Context.hasSameType(OldArray->getElementType(),
2823                              NewArray->getElementType()))
2824        MergedT = Old->getType();
2825    } else if (New->getType()->isObjCObjectPointerType()
2826               && Old->getType()->isObjCObjectPointerType()) {
2827        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2828                                                        Old->getType());
2829    }
2830  } else {
2831    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2832  }
2833  if (MergedT.isNull()) {
2834    Diag(New->getLocation(), diag::err_redefinition_different_type)
2835      << New->getDeclName() << New->getType() << Old->getType();
2836    Diag(Old->getLocation(), diag::note_previous_definition);
2837    return New->setInvalidDecl();
2838  }
2839
2840  // Don't actually update the type on the new declaration if the old
2841  // declaration was a extern declaration in a different scope.
2842  if (!OldWasHidden)
2843    New->setType(MergedT);
2844}
2845
2846/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2847/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2848/// situation, merging decls or emitting diagnostics as appropriate.
2849///
2850/// Tentative definition rules (C99 6.9.2p2) are checked by
2851/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2852/// definitions here, since the initializer hasn't been attached.
2853///
2854void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2855                        bool PreviousWasHidden) {
2856  // If the new decl is already invalid, don't do any other checking.
2857  if (New->isInvalidDecl())
2858    return;
2859
2860  // Verify the old decl was also a variable.
2861  VarDecl *Old = 0;
2862  if (!Previous.isSingleResult() ||
2863      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2864    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2865      << New->getDeclName();
2866    Diag(Previous.getRepresentativeDecl()->getLocation(),
2867         diag::note_previous_definition);
2868    return New->setInvalidDecl();
2869  }
2870
2871  // C++ [class.mem]p1:
2872  //   A member shall not be declared twice in the member-specification [...]
2873  //
2874  // Here, we need only consider static data members.
2875  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2876    Diag(New->getLocation(), diag::err_duplicate_member)
2877      << New->getIdentifier();
2878    Diag(Old->getLocation(), diag::note_previous_declaration);
2879    New->setInvalidDecl();
2880  }
2881
2882  mergeDeclAttributes(New, Old);
2883  // Warn if an already-declared variable is made a weak_import in a subsequent
2884  // declaration
2885  if (New->getAttr<WeakImportAttr>() &&
2886      Old->getStorageClass() == SC_None &&
2887      !Old->getAttr<WeakImportAttr>()) {
2888    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2889    Diag(Old->getLocation(), diag::note_previous_definition);
2890    // Remove weak_import attribute on new declaration.
2891    New->dropAttr<WeakImportAttr>();
2892  }
2893
2894  // Merge the types.
2895  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2896  if (New->isInvalidDecl())
2897    return;
2898
2899  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2900  if (New->getStorageClass() == SC_Static &&
2901      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2902    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2903    Diag(Old->getLocation(), diag::note_previous_definition);
2904    return New->setInvalidDecl();
2905  }
2906  // C99 6.2.2p4:
2907  //   For an identifier declared with the storage-class specifier
2908  //   extern in a scope in which a prior declaration of that
2909  //   identifier is visible,23) if the prior declaration specifies
2910  //   internal or external linkage, the linkage of the identifier at
2911  //   the later declaration is the same as the linkage specified at
2912  //   the prior declaration. If no prior declaration is visible, or
2913  //   if the prior declaration specifies no linkage, then the
2914  //   identifier has external linkage.
2915  if (New->hasExternalStorage() && Old->hasLinkage())
2916    /* Okay */;
2917  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2918           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2919    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2920    Diag(Old->getLocation(), diag::note_previous_definition);
2921    return New->setInvalidDecl();
2922  }
2923
2924  // Check if extern is followed by non-extern and vice-versa.
2925  if (New->hasExternalStorage() &&
2926      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2927    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2928    Diag(Old->getLocation(), diag::note_previous_definition);
2929    return New->setInvalidDecl();
2930  }
2931  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2932      !New->hasExternalStorage()) {
2933    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2934    Diag(Old->getLocation(), diag::note_previous_definition);
2935    return New->setInvalidDecl();
2936  }
2937
2938  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2939
2940  // FIXME: The test for external storage here seems wrong? We still
2941  // need to check for mismatches.
2942  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2943      // Don't complain about out-of-line definitions of static members.
2944      !(Old->getLexicalDeclContext()->isRecord() &&
2945        !New->getLexicalDeclContext()->isRecord())) {
2946    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2947    Diag(Old->getLocation(), diag::note_previous_definition);
2948    return New->setInvalidDecl();
2949  }
2950
2951  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2952    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2953    Diag(Old->getLocation(), diag::note_previous_definition);
2954  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2955    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2956    Diag(Old->getLocation(), diag::note_previous_definition);
2957  }
2958
2959  // C++ doesn't have tentative definitions, so go right ahead and check here.
2960  const VarDecl *Def;
2961  if (getLangOpts().CPlusPlus &&
2962      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2963      (Def = Old->getDefinition())) {
2964    Diag(New->getLocation(), diag::err_redefinition)
2965      << New->getDeclName();
2966    Diag(Def->getLocation(), diag::note_previous_definition);
2967    New->setInvalidDecl();
2968    return;
2969  }
2970
2971  if (haveIncompatibleLanguageLinkages(Old, New)) {
2972    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2973    Diag(Old->getLocation(), diag::note_previous_definition);
2974    New->setInvalidDecl();
2975    return;
2976  }
2977
2978  // Merge "used" flag.
2979  if (Old->isUsed(false))
2980    New->setUsed();
2981
2982  // Keep a chain of previous declarations.
2983  New->setPreviousDeclaration(Old);
2984
2985  // Inherit access appropriately.
2986  New->setAccess(Old->getAccess());
2987}
2988
2989/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2990/// no declarator (e.g. "struct foo;") is parsed.
2991Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2992                                       DeclSpec &DS) {
2993  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2994}
2995
2996/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2997/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
2998/// parameters to cope with template friend declarations.
2999Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3000                                       DeclSpec &DS,
3001                                       MultiTemplateParamsArg TemplateParams,
3002                                       bool IsExplicitInstantiation) {
3003  Decl *TagD = 0;
3004  TagDecl *Tag = 0;
3005  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3006      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3007      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3008      DS.getTypeSpecType() == DeclSpec::TST_union ||
3009      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3010    TagD = DS.getRepAsDecl();
3011
3012    if (!TagD) // We probably had an error
3013      return 0;
3014
3015    // Note that the above type specs guarantee that the
3016    // type rep is a Decl, whereas in many of the others
3017    // it's a Type.
3018    if (isa<TagDecl>(TagD))
3019      Tag = cast<TagDecl>(TagD);
3020    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3021      Tag = CTD->getTemplatedDecl();
3022  }
3023
3024  if (Tag) {
3025    getASTContext().addUnnamedTag(Tag);
3026    Tag->setFreeStanding();
3027    if (Tag->isInvalidDecl())
3028      return Tag;
3029  }
3030
3031  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3032    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3033    // or incomplete types shall not be restrict-qualified."
3034    if (TypeQuals & DeclSpec::TQ_restrict)
3035      Diag(DS.getRestrictSpecLoc(),
3036           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3037           << DS.getSourceRange();
3038  }
3039
3040  if (DS.isConstexprSpecified()) {
3041    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3042    // and definitions of functions and variables.
3043    if (Tag)
3044      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3045        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3046            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3047            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3048            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3049    else
3050      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3051    // Don't emit warnings after this error.
3052    return TagD;
3053  }
3054
3055  DiagnoseFunctionSpecifiers(DS);
3056
3057  if (DS.isFriendSpecified()) {
3058    // If we're dealing with a decl but not a TagDecl, assume that
3059    // whatever routines created it handled the friendship aspect.
3060    if (TagD && !Tag)
3061      return 0;
3062    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3063  }
3064
3065  CXXScopeSpec &SS = DS.getTypeSpecScope();
3066  bool IsExplicitSpecialization =
3067    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3068  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3069      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3070    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3071    // nested-name-specifier unless it is an explicit instantiation
3072    // or an explicit specialization.
3073    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3074    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3075      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3076          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3077          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3078          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3079      << SS.getRange();
3080    return 0;
3081  }
3082
3083  // Track whether this decl-specifier declares anything.
3084  bool DeclaresAnything = true;
3085
3086  // Handle anonymous struct definitions.
3087  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3088    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3089        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3090      if (getLangOpts().CPlusPlus ||
3091          Record->getDeclContext()->isRecord())
3092        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3093
3094      DeclaresAnything = false;
3095    }
3096  }
3097
3098  // Check for Microsoft C extension: anonymous struct member.
3099  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3100      CurContext->isRecord() &&
3101      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3102    // Handle 2 kinds of anonymous struct:
3103    //   struct STRUCT;
3104    // and
3105    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3106    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3107    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3108        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3109         DS.getRepAsType().get()->isStructureType())) {
3110      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3111        << DS.getSourceRange();
3112      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3113    }
3114  }
3115
3116  // Skip all the checks below if we have a type error.
3117  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3118      (TagD && TagD->isInvalidDecl()))
3119    return TagD;
3120
3121  if (getLangOpts().CPlusPlus &&
3122      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3123    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3124      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3125          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3126        DeclaresAnything = false;
3127
3128  if (!DS.isMissingDeclaratorOk()) {
3129    // Customize diagnostic for a typedef missing a name.
3130    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3131      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3132        << DS.getSourceRange();
3133    else
3134      DeclaresAnything = false;
3135  }
3136
3137  if (DS.isModulePrivateSpecified() &&
3138      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3139    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3140      << Tag->getTagKind()
3141      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3142
3143  ActOnDocumentableDecl(TagD);
3144
3145  // C 6.7/2:
3146  //   A declaration [...] shall declare at least a declarator [...], a tag,
3147  //   or the members of an enumeration.
3148  // C++ [dcl.dcl]p3:
3149  //   [If there are no declarators], and except for the declaration of an
3150  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3151  //   names into the program, or shall redeclare a name introduced by a
3152  //   previous declaration.
3153  if (!DeclaresAnything) {
3154    // In C, we allow this as a (popular) extension / bug. Don't bother
3155    // producing further diagnostics for redundant qualifiers after this.
3156    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3157    return TagD;
3158  }
3159
3160  // C++ [dcl.stc]p1:
3161  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3162  //   init-declarator-list of the declaration shall not be empty.
3163  // C++ [dcl.fct.spec]p1:
3164  //   If a cv-qualifier appears in a decl-specifier-seq, the
3165  //   init-declarator-list of the declaration shall not be empty.
3166  //
3167  // Spurious qualifiers here appear to be valid in C.
3168  unsigned DiagID = diag::warn_standalone_specifier;
3169  if (getLangOpts().CPlusPlus)
3170    DiagID = diag::ext_standalone_specifier;
3171
3172  // Note that a linkage-specification sets a storage class, but
3173  // 'extern "C" struct foo;' is actually valid and not theoretically
3174  // useless.
3175  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3176    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3177      Diag(DS.getStorageClassSpecLoc(), DiagID)
3178        << DeclSpec::getSpecifierName(SCS);
3179
3180  if (DS.isThreadSpecified())
3181    Diag(DS.getThreadSpecLoc(), DiagID) << "__thread";
3182  if (DS.getTypeQualifiers()) {
3183    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3184      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3185    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3186      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3187    // Restrict is covered above.
3188    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3189      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3190  }
3191
3192  // Warn about ignored type attributes, for example:
3193  // __attribute__((aligned)) struct A;
3194  // Attributes should be placed after tag to apply to type declaration.
3195  if (!DS.getAttributes().empty()) {
3196    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3197    if (TypeSpecType == DeclSpec::TST_class ||
3198        TypeSpecType == DeclSpec::TST_struct ||
3199        TypeSpecType == DeclSpec::TST_interface ||
3200        TypeSpecType == DeclSpec::TST_union ||
3201        TypeSpecType == DeclSpec::TST_enum) {
3202      AttributeList* attrs = DS.getAttributes().getList();
3203      while (attrs) {
3204        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3205        << attrs->getName()
3206        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3207            TypeSpecType == DeclSpec::TST_struct ? 1 :
3208            TypeSpecType == DeclSpec::TST_union ? 2 :
3209            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3210        attrs = attrs->getNext();
3211      }
3212    }
3213  }
3214
3215  return TagD;
3216}
3217
3218/// We are trying to inject an anonymous member into the given scope;
3219/// check if there's an existing declaration that can't be overloaded.
3220///
3221/// \return true if this is a forbidden redeclaration
3222static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3223                                         Scope *S,
3224                                         DeclContext *Owner,
3225                                         DeclarationName Name,
3226                                         SourceLocation NameLoc,
3227                                         unsigned diagnostic) {
3228  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3229                 Sema::ForRedeclaration);
3230  if (!SemaRef.LookupName(R, S)) return false;
3231
3232  if (R.getAsSingle<TagDecl>())
3233    return false;
3234
3235  // Pick a representative declaration.
3236  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3237  assert(PrevDecl && "Expected a non-null Decl");
3238
3239  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3240    return false;
3241
3242  SemaRef.Diag(NameLoc, diagnostic) << Name;
3243  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3244
3245  return true;
3246}
3247
3248/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3249/// anonymous struct or union AnonRecord into the owning context Owner
3250/// and scope S. This routine will be invoked just after we realize
3251/// that an unnamed union or struct is actually an anonymous union or
3252/// struct, e.g.,
3253///
3254/// @code
3255/// union {
3256///   int i;
3257///   float f;
3258/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3259///    // f into the surrounding scope.x
3260/// @endcode
3261///
3262/// This routine is recursive, injecting the names of nested anonymous
3263/// structs/unions into the owning context and scope as well.
3264static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3265                                                DeclContext *Owner,
3266                                                RecordDecl *AnonRecord,
3267                                                AccessSpecifier AS,
3268                              SmallVector<NamedDecl*, 2> &Chaining,
3269                                                      bool MSAnonStruct) {
3270  unsigned diagKind
3271    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3272                            : diag::err_anonymous_struct_member_redecl;
3273
3274  bool Invalid = false;
3275
3276  // Look every FieldDecl and IndirectFieldDecl with a name.
3277  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3278                               DEnd = AnonRecord->decls_end();
3279       D != DEnd; ++D) {
3280    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3281        cast<NamedDecl>(*D)->getDeclName()) {
3282      ValueDecl *VD = cast<ValueDecl>(*D);
3283      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3284                                       VD->getLocation(), diagKind)) {
3285        // C++ [class.union]p2:
3286        //   The names of the members of an anonymous union shall be
3287        //   distinct from the names of any other entity in the
3288        //   scope in which the anonymous union is declared.
3289        Invalid = true;
3290      } else {
3291        // C++ [class.union]p2:
3292        //   For the purpose of name lookup, after the anonymous union
3293        //   definition, the members of the anonymous union are
3294        //   considered to have been defined in the scope in which the
3295        //   anonymous union is declared.
3296        unsigned OldChainingSize = Chaining.size();
3297        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3298          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3299               PE = IF->chain_end(); PI != PE; ++PI)
3300            Chaining.push_back(*PI);
3301        else
3302          Chaining.push_back(VD);
3303
3304        assert(Chaining.size() >= 2);
3305        NamedDecl **NamedChain =
3306          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3307        for (unsigned i = 0; i < Chaining.size(); i++)
3308          NamedChain[i] = Chaining[i];
3309
3310        IndirectFieldDecl* IndirectField =
3311          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3312                                    VD->getIdentifier(), VD->getType(),
3313                                    NamedChain, Chaining.size());
3314
3315        IndirectField->setAccess(AS);
3316        IndirectField->setImplicit();
3317        SemaRef.PushOnScopeChains(IndirectField, S);
3318
3319        // That includes picking up the appropriate access specifier.
3320        if (AS != AS_none) IndirectField->setAccess(AS);
3321
3322        Chaining.resize(OldChainingSize);
3323      }
3324    }
3325  }
3326
3327  return Invalid;
3328}
3329
3330/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3331/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3332/// illegal input values are mapped to SC_None.
3333static StorageClass
3334StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3335  switch (StorageClassSpec) {
3336  case DeclSpec::SCS_unspecified:    return SC_None;
3337  case DeclSpec::SCS_extern:         return SC_Extern;
3338  case DeclSpec::SCS_static:         return SC_Static;
3339  case DeclSpec::SCS_auto:           return SC_Auto;
3340  case DeclSpec::SCS_register:       return SC_Register;
3341  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3342    // Illegal SCSs map to None: error reporting is up to the caller.
3343  case DeclSpec::SCS_mutable:        // Fall through.
3344  case DeclSpec::SCS_typedef:        return SC_None;
3345  }
3346  llvm_unreachable("unknown storage class specifier");
3347}
3348
3349/// BuildAnonymousStructOrUnion - Handle the declaration of an
3350/// anonymous structure or union. Anonymous unions are a C++ feature
3351/// (C++ [class.union]) and a C11 feature; anonymous structures
3352/// are a C11 feature and GNU C++ extension.
3353Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3354                                             AccessSpecifier AS,
3355                                             RecordDecl *Record) {
3356  DeclContext *Owner = Record->getDeclContext();
3357
3358  // Diagnose whether this anonymous struct/union is an extension.
3359  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3360    Diag(Record->getLocation(), diag::ext_anonymous_union);
3361  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3362    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3363  else if (!Record->isUnion() && !getLangOpts().C11)
3364    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3365
3366  // C and C++ require different kinds of checks for anonymous
3367  // structs/unions.
3368  bool Invalid = false;
3369  if (getLangOpts().CPlusPlus) {
3370    const char* PrevSpec = 0;
3371    unsigned DiagID;
3372    if (Record->isUnion()) {
3373      // C++ [class.union]p6:
3374      //   Anonymous unions declared in a named namespace or in the
3375      //   global namespace shall be declared static.
3376      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3377          (isa<TranslationUnitDecl>(Owner) ||
3378           (isa<NamespaceDecl>(Owner) &&
3379            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3380        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3381          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3382
3383        // Recover by adding 'static'.
3384        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3385                               PrevSpec, DiagID);
3386      }
3387      // C++ [class.union]p6:
3388      //   A storage class is not allowed in a declaration of an
3389      //   anonymous union in a class scope.
3390      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3391               isa<RecordDecl>(Owner)) {
3392        Diag(DS.getStorageClassSpecLoc(),
3393             diag::err_anonymous_union_with_storage_spec)
3394          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3395
3396        // Recover by removing the storage specifier.
3397        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3398                               SourceLocation(),
3399                               PrevSpec, DiagID);
3400      }
3401    }
3402
3403    // Ignore const/volatile/restrict qualifiers.
3404    if (DS.getTypeQualifiers()) {
3405      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3406        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3407          << Record->isUnion() << "const"
3408          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3409      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3410        Diag(DS.getVolatileSpecLoc(),
3411             diag::ext_anonymous_struct_union_qualified)
3412          << Record->isUnion() << "volatile"
3413          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3414      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3415        Diag(DS.getRestrictSpecLoc(),
3416             diag::ext_anonymous_struct_union_qualified)
3417          << Record->isUnion() << "restrict"
3418          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3419      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3420        Diag(DS.getAtomicSpecLoc(),
3421             diag::ext_anonymous_struct_union_qualified)
3422          << Record->isUnion() << "_Atomic"
3423          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3424
3425      DS.ClearTypeQualifiers();
3426    }
3427
3428    // C++ [class.union]p2:
3429    //   The member-specification of an anonymous union shall only
3430    //   define non-static data members. [Note: nested types and
3431    //   functions cannot be declared within an anonymous union. ]
3432    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3433                                 MemEnd = Record->decls_end();
3434         Mem != MemEnd; ++Mem) {
3435      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3436        // C++ [class.union]p3:
3437        //   An anonymous union shall not have private or protected
3438        //   members (clause 11).
3439        assert(FD->getAccess() != AS_none);
3440        if (FD->getAccess() != AS_public) {
3441          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3442            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3443          Invalid = true;
3444        }
3445
3446        // C++ [class.union]p1
3447        //   An object of a class with a non-trivial constructor, a non-trivial
3448        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3449        //   assignment operator cannot be a member of a union, nor can an
3450        //   array of such objects.
3451        if (CheckNontrivialField(FD))
3452          Invalid = true;
3453      } else if ((*Mem)->isImplicit()) {
3454        // Any implicit members are fine.
3455      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3456        // This is a type that showed up in an
3457        // elaborated-type-specifier inside the anonymous struct or
3458        // union, but which actually declares a type outside of the
3459        // anonymous struct or union. It's okay.
3460      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3461        if (!MemRecord->isAnonymousStructOrUnion() &&
3462            MemRecord->getDeclName()) {
3463          // Visual C++ allows type definition in anonymous struct or union.
3464          if (getLangOpts().MicrosoftExt)
3465            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3466              << (int)Record->isUnion();
3467          else {
3468            // This is a nested type declaration.
3469            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3470              << (int)Record->isUnion();
3471            Invalid = true;
3472          }
3473        } else {
3474          // This is an anonymous type definition within another anonymous type.
3475          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3476          // not part of standard C++.
3477          Diag(MemRecord->getLocation(),
3478               diag::ext_anonymous_record_with_anonymous_type)
3479            << (int)Record->isUnion();
3480        }
3481      } else if (isa<AccessSpecDecl>(*Mem)) {
3482        // Any access specifier is fine.
3483      } else {
3484        // We have something that isn't a non-static data
3485        // member. Complain about it.
3486        unsigned DK = diag::err_anonymous_record_bad_member;
3487        if (isa<TypeDecl>(*Mem))
3488          DK = diag::err_anonymous_record_with_type;
3489        else if (isa<FunctionDecl>(*Mem))
3490          DK = diag::err_anonymous_record_with_function;
3491        else if (isa<VarDecl>(*Mem))
3492          DK = diag::err_anonymous_record_with_static;
3493
3494        // Visual C++ allows type definition in anonymous struct or union.
3495        if (getLangOpts().MicrosoftExt &&
3496            DK == diag::err_anonymous_record_with_type)
3497          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3498            << (int)Record->isUnion();
3499        else {
3500          Diag((*Mem)->getLocation(), DK)
3501              << (int)Record->isUnion();
3502          Invalid = true;
3503        }
3504      }
3505    }
3506  }
3507
3508  if (!Record->isUnion() && !Owner->isRecord()) {
3509    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3510      << (int)getLangOpts().CPlusPlus;
3511    Invalid = true;
3512  }
3513
3514  // Mock up a declarator.
3515  Declarator Dc(DS, Declarator::MemberContext);
3516  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3517  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3518
3519  // Create a declaration for this anonymous struct/union.
3520  NamedDecl *Anon = 0;
3521  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3522    Anon = FieldDecl::Create(Context, OwningClass,
3523                             DS.getLocStart(),
3524                             Record->getLocation(),
3525                             /*IdentifierInfo=*/0,
3526                             Context.getTypeDeclType(Record),
3527                             TInfo,
3528                             /*BitWidth=*/0, /*Mutable=*/false,
3529                             /*InitStyle=*/ICIS_NoInit);
3530    Anon->setAccess(AS);
3531    if (getLangOpts().CPlusPlus)
3532      FieldCollector->Add(cast<FieldDecl>(Anon));
3533  } else {
3534    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3535    assert(SCSpec != DeclSpec::SCS_typedef &&
3536           "Parser allowed 'typedef' as storage class VarDecl.");
3537    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3538    if (SCSpec == DeclSpec::SCS_mutable) {
3539      // mutable can only appear on non-static class members, so it's always
3540      // an error here
3541      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3542      Invalid = true;
3543      SC = SC_None;
3544    }
3545
3546    Anon = VarDecl::Create(Context, Owner,
3547                           DS.getLocStart(),
3548                           Record->getLocation(), /*IdentifierInfo=*/0,
3549                           Context.getTypeDeclType(Record),
3550                           TInfo, SC);
3551
3552    // Default-initialize the implicit variable. This initialization will be
3553    // trivial in almost all cases, except if a union member has an in-class
3554    // initializer:
3555    //   union { int n = 0; };
3556    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3557  }
3558  Anon->setImplicit();
3559
3560  // Add the anonymous struct/union object to the current
3561  // context. We'll be referencing this object when we refer to one of
3562  // its members.
3563  Owner->addDecl(Anon);
3564
3565  // Inject the members of the anonymous struct/union into the owning
3566  // context and into the identifier resolver chain for name lookup
3567  // purposes.
3568  SmallVector<NamedDecl*, 2> Chain;
3569  Chain.push_back(Anon);
3570
3571  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3572                                          Chain, false))
3573    Invalid = true;
3574
3575  // Mark this as an anonymous struct/union type. Note that we do not
3576  // do this until after we have already checked and injected the
3577  // members of this anonymous struct/union type, because otherwise
3578  // the members could be injected twice: once by DeclContext when it
3579  // builds its lookup table, and once by
3580  // InjectAnonymousStructOrUnionMembers.
3581  Record->setAnonymousStructOrUnion(true);
3582
3583  if (Invalid)
3584    Anon->setInvalidDecl();
3585
3586  return Anon;
3587}
3588
3589/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3590/// Microsoft C anonymous structure.
3591/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3592/// Example:
3593///
3594/// struct A { int a; };
3595/// struct B { struct A; int b; };
3596///
3597/// void foo() {
3598///   B var;
3599///   var.a = 3;
3600/// }
3601///
3602Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3603                                           RecordDecl *Record) {
3604
3605  // If there is no Record, get the record via the typedef.
3606  if (!Record)
3607    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3608
3609  // Mock up a declarator.
3610  Declarator Dc(DS, Declarator::TypeNameContext);
3611  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3612  assert(TInfo && "couldn't build declarator info for anonymous struct");
3613
3614  // Create a declaration for this anonymous struct.
3615  NamedDecl* Anon = FieldDecl::Create(Context,
3616                             cast<RecordDecl>(CurContext),
3617                             DS.getLocStart(),
3618                             DS.getLocStart(),
3619                             /*IdentifierInfo=*/0,
3620                             Context.getTypeDeclType(Record),
3621                             TInfo,
3622                             /*BitWidth=*/0, /*Mutable=*/false,
3623                             /*InitStyle=*/ICIS_NoInit);
3624  Anon->setImplicit();
3625
3626  // Add the anonymous struct object to the current context.
3627  CurContext->addDecl(Anon);
3628
3629  // Inject the members of the anonymous struct into the current
3630  // context and into the identifier resolver chain for name lookup
3631  // purposes.
3632  SmallVector<NamedDecl*, 2> Chain;
3633  Chain.push_back(Anon);
3634
3635  RecordDecl *RecordDef = Record->getDefinition();
3636  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3637                                                        RecordDef, AS_none,
3638                                                        Chain, true))
3639    Anon->setInvalidDecl();
3640
3641  return Anon;
3642}
3643
3644/// GetNameForDeclarator - Determine the full declaration name for the
3645/// given Declarator.
3646DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3647  return GetNameFromUnqualifiedId(D.getName());
3648}
3649
3650/// \brief Retrieves the declaration name from a parsed unqualified-id.
3651DeclarationNameInfo
3652Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3653  DeclarationNameInfo NameInfo;
3654  NameInfo.setLoc(Name.StartLocation);
3655
3656  switch (Name.getKind()) {
3657
3658  case UnqualifiedId::IK_ImplicitSelfParam:
3659  case UnqualifiedId::IK_Identifier:
3660    NameInfo.setName(Name.Identifier);
3661    NameInfo.setLoc(Name.StartLocation);
3662    return NameInfo;
3663
3664  case UnqualifiedId::IK_OperatorFunctionId:
3665    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3666                                           Name.OperatorFunctionId.Operator));
3667    NameInfo.setLoc(Name.StartLocation);
3668    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3669      = Name.OperatorFunctionId.SymbolLocations[0];
3670    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3671      = Name.EndLocation.getRawEncoding();
3672    return NameInfo;
3673
3674  case UnqualifiedId::IK_LiteralOperatorId:
3675    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3676                                                           Name.Identifier));
3677    NameInfo.setLoc(Name.StartLocation);
3678    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3679    return NameInfo;
3680
3681  case UnqualifiedId::IK_ConversionFunctionId: {
3682    TypeSourceInfo *TInfo;
3683    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3684    if (Ty.isNull())
3685      return DeclarationNameInfo();
3686    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3687                                               Context.getCanonicalType(Ty)));
3688    NameInfo.setLoc(Name.StartLocation);
3689    NameInfo.setNamedTypeInfo(TInfo);
3690    return NameInfo;
3691  }
3692
3693  case UnqualifiedId::IK_ConstructorName: {
3694    TypeSourceInfo *TInfo;
3695    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3696    if (Ty.isNull())
3697      return DeclarationNameInfo();
3698    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3699                                              Context.getCanonicalType(Ty)));
3700    NameInfo.setLoc(Name.StartLocation);
3701    NameInfo.setNamedTypeInfo(TInfo);
3702    return NameInfo;
3703  }
3704
3705  case UnqualifiedId::IK_ConstructorTemplateId: {
3706    // In well-formed code, we can only have a constructor
3707    // template-id that refers to the current context, so go there
3708    // to find the actual type being constructed.
3709    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3710    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3711      return DeclarationNameInfo();
3712
3713    // Determine the type of the class being constructed.
3714    QualType CurClassType = Context.getTypeDeclType(CurClass);
3715
3716    // FIXME: Check two things: that the template-id names the same type as
3717    // CurClassType, and that the template-id does not occur when the name
3718    // was qualified.
3719
3720    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3721                                    Context.getCanonicalType(CurClassType)));
3722    NameInfo.setLoc(Name.StartLocation);
3723    // FIXME: should we retrieve TypeSourceInfo?
3724    NameInfo.setNamedTypeInfo(0);
3725    return NameInfo;
3726  }
3727
3728  case UnqualifiedId::IK_DestructorName: {
3729    TypeSourceInfo *TInfo;
3730    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3731    if (Ty.isNull())
3732      return DeclarationNameInfo();
3733    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3734                                              Context.getCanonicalType(Ty)));
3735    NameInfo.setLoc(Name.StartLocation);
3736    NameInfo.setNamedTypeInfo(TInfo);
3737    return NameInfo;
3738  }
3739
3740  case UnqualifiedId::IK_TemplateId: {
3741    TemplateName TName = Name.TemplateId->Template.get();
3742    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3743    return Context.getNameForTemplate(TName, TNameLoc);
3744  }
3745
3746  } // switch (Name.getKind())
3747
3748  llvm_unreachable("Unknown name kind");
3749}
3750
3751static QualType getCoreType(QualType Ty) {
3752  do {
3753    if (Ty->isPointerType() || Ty->isReferenceType())
3754      Ty = Ty->getPointeeType();
3755    else if (Ty->isArrayType())
3756      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3757    else
3758      return Ty.withoutLocalFastQualifiers();
3759  } while (true);
3760}
3761
3762/// hasSimilarParameters - Determine whether the C++ functions Declaration
3763/// and Definition have "nearly" matching parameters. This heuristic is
3764/// used to improve diagnostics in the case where an out-of-line function
3765/// definition doesn't match any declaration within the class or namespace.
3766/// Also sets Params to the list of indices to the parameters that differ
3767/// between the declaration and the definition. If hasSimilarParameters
3768/// returns true and Params is empty, then all of the parameters match.
3769static bool hasSimilarParameters(ASTContext &Context,
3770                                     FunctionDecl *Declaration,
3771                                     FunctionDecl *Definition,
3772                                     SmallVectorImpl<unsigned> &Params) {
3773  Params.clear();
3774  if (Declaration->param_size() != Definition->param_size())
3775    return false;
3776  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3777    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3778    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3779
3780    // The parameter types are identical
3781    if (Context.hasSameType(DefParamTy, DeclParamTy))
3782      continue;
3783
3784    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3785    QualType DefParamBaseTy = getCoreType(DefParamTy);
3786    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3787    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3788
3789    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3790        (DeclTyName && DeclTyName == DefTyName))
3791      Params.push_back(Idx);
3792    else  // The two parameters aren't even close
3793      return false;
3794  }
3795
3796  return true;
3797}
3798
3799/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3800/// declarator needs to be rebuilt in the current instantiation.
3801/// Any bits of declarator which appear before the name are valid for
3802/// consideration here.  That's specifically the type in the decl spec
3803/// and the base type in any member-pointer chunks.
3804static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3805                                                    DeclarationName Name) {
3806  // The types we specifically need to rebuild are:
3807  //   - typenames, typeofs, and decltypes
3808  //   - types which will become injected class names
3809  // Of course, we also need to rebuild any type referencing such a
3810  // type.  It's safest to just say "dependent", but we call out a
3811  // few cases here.
3812
3813  DeclSpec &DS = D.getMutableDeclSpec();
3814  switch (DS.getTypeSpecType()) {
3815  case DeclSpec::TST_typename:
3816  case DeclSpec::TST_typeofType:
3817  case DeclSpec::TST_underlyingType:
3818  case DeclSpec::TST_atomic: {
3819    // Grab the type from the parser.
3820    TypeSourceInfo *TSI = 0;
3821    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3822    if (T.isNull() || !T->isDependentType()) break;
3823
3824    // Make sure there's a type source info.  This isn't really much
3825    // of a waste; most dependent types should have type source info
3826    // attached already.
3827    if (!TSI)
3828      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3829
3830    // Rebuild the type in the current instantiation.
3831    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3832    if (!TSI) return true;
3833
3834    // Store the new type back in the decl spec.
3835    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3836    DS.UpdateTypeRep(LocType);
3837    break;
3838  }
3839
3840  case DeclSpec::TST_decltype:
3841  case DeclSpec::TST_typeofExpr: {
3842    Expr *E = DS.getRepAsExpr();
3843    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3844    if (Result.isInvalid()) return true;
3845    DS.UpdateExprRep(Result.get());
3846    break;
3847  }
3848
3849  default:
3850    // Nothing to do for these decl specs.
3851    break;
3852  }
3853
3854  // It doesn't matter what order we do this in.
3855  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3856    DeclaratorChunk &Chunk = D.getTypeObject(I);
3857
3858    // The only type information in the declarator which can come
3859    // before the declaration name is the base type of a member
3860    // pointer.
3861    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3862      continue;
3863
3864    // Rebuild the scope specifier in-place.
3865    CXXScopeSpec &SS = Chunk.Mem.Scope();
3866    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3867      return true;
3868  }
3869
3870  return false;
3871}
3872
3873Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3874  D.setFunctionDefinitionKind(FDK_Declaration);
3875  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3876
3877  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3878      Dcl && Dcl->getDeclContext()->isFileContext())
3879    Dcl->setTopLevelDeclInObjCContainer();
3880
3881  return Dcl;
3882}
3883
3884/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3885///   If T is the name of a class, then each of the following shall have a
3886///   name different from T:
3887///     - every static data member of class T;
3888///     - every member function of class T
3889///     - every member of class T that is itself a type;
3890/// \returns true if the declaration name violates these rules.
3891bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3892                                   DeclarationNameInfo NameInfo) {
3893  DeclarationName Name = NameInfo.getName();
3894
3895  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3896    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3897      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3898      return true;
3899    }
3900
3901  return false;
3902}
3903
3904/// \brief Diagnose a declaration whose declarator-id has the given
3905/// nested-name-specifier.
3906///
3907/// \param SS The nested-name-specifier of the declarator-id.
3908///
3909/// \param DC The declaration context to which the nested-name-specifier
3910/// resolves.
3911///
3912/// \param Name The name of the entity being declared.
3913///
3914/// \param Loc The location of the name of the entity being declared.
3915///
3916/// \returns true if we cannot safely recover from this error, false otherwise.
3917bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3918                                        DeclarationName Name,
3919                                      SourceLocation Loc) {
3920  DeclContext *Cur = CurContext;
3921  while (isa<LinkageSpecDecl>(Cur))
3922    Cur = Cur->getParent();
3923
3924  // C++ [dcl.meaning]p1:
3925  //   A declarator-id shall not be qualified except for the definition
3926  //   of a member function (9.3) or static data member (9.4) outside of
3927  //   its class, the definition or explicit instantiation of a function
3928  //   or variable member of a namespace outside of its namespace, or the
3929  //   definition of an explicit specialization outside of its namespace,
3930  //   or the declaration of a friend function that is a member of
3931  //   another class or namespace (11.3). [...]
3932
3933  // The user provided a superfluous scope specifier that refers back to the
3934  // class or namespaces in which the entity is already declared.
3935  //
3936  // class X {
3937  //   void X::f();
3938  // };
3939  if (Cur->Equals(DC)) {
3940    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3941                                   : diag::err_member_extra_qualification)
3942      << Name << FixItHint::CreateRemoval(SS.getRange());
3943    SS.clear();
3944    return false;
3945  }
3946
3947  // Check whether the qualifying scope encloses the scope of the original
3948  // declaration.
3949  if (!Cur->Encloses(DC)) {
3950    if (Cur->isRecord())
3951      Diag(Loc, diag::err_member_qualification)
3952        << Name << SS.getRange();
3953    else if (isa<TranslationUnitDecl>(DC))
3954      Diag(Loc, diag::err_invalid_declarator_global_scope)
3955        << Name << SS.getRange();
3956    else if (isa<FunctionDecl>(Cur))
3957      Diag(Loc, diag::err_invalid_declarator_in_function)
3958        << Name << SS.getRange();
3959    else
3960      Diag(Loc, diag::err_invalid_declarator_scope)
3961      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3962
3963    return true;
3964  }
3965
3966  if (Cur->isRecord()) {
3967    // Cannot qualify members within a class.
3968    Diag(Loc, diag::err_member_qualification)
3969      << Name << SS.getRange();
3970    SS.clear();
3971
3972    // C++ constructors and destructors with incorrect scopes can break
3973    // our AST invariants by having the wrong underlying types. If
3974    // that's the case, then drop this declaration entirely.
3975    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3976         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3977        !Context.hasSameType(Name.getCXXNameType(),
3978                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3979      return true;
3980
3981    return false;
3982  }
3983
3984  // C++11 [dcl.meaning]p1:
3985  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3986  //   not begin with a decltype-specifer"
3987  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3988  while (SpecLoc.getPrefix())
3989    SpecLoc = SpecLoc.getPrefix();
3990  if (dyn_cast_or_null<DecltypeType>(
3991        SpecLoc.getNestedNameSpecifier()->getAsType()))
3992    Diag(Loc, diag::err_decltype_in_declarator)
3993      << SpecLoc.getTypeLoc().getSourceRange();
3994
3995  return false;
3996}
3997
3998NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3999                                  MultiTemplateParamsArg TemplateParamLists) {
4000  // TODO: consider using NameInfo for diagnostic.
4001  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4002  DeclarationName Name = NameInfo.getName();
4003
4004  // All of these full declarators require an identifier.  If it doesn't have
4005  // one, the ParsedFreeStandingDeclSpec action should be used.
4006  if (!Name) {
4007    if (!D.isInvalidType())  // Reject this if we think it is valid.
4008      Diag(D.getDeclSpec().getLocStart(),
4009           diag::err_declarator_need_ident)
4010        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4011    return 0;
4012  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4013    return 0;
4014
4015  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4016  // we find one that is.
4017  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4018         (S->getFlags() & Scope::TemplateParamScope) != 0)
4019    S = S->getParent();
4020
4021  DeclContext *DC = CurContext;
4022  if (D.getCXXScopeSpec().isInvalid())
4023    D.setInvalidType();
4024  else if (D.getCXXScopeSpec().isSet()) {
4025    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4026                                        UPPC_DeclarationQualifier))
4027      return 0;
4028
4029    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4030    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4031    if (!DC) {
4032      // If we could not compute the declaration context, it's because the
4033      // declaration context is dependent but does not refer to a class,
4034      // class template, or class template partial specialization. Complain
4035      // and return early, to avoid the coming semantic disaster.
4036      Diag(D.getIdentifierLoc(),
4037           diag::err_template_qualified_declarator_no_match)
4038        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4039        << D.getCXXScopeSpec().getRange();
4040      return 0;
4041    }
4042    bool IsDependentContext = DC->isDependentContext();
4043
4044    if (!IsDependentContext &&
4045        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4046      return 0;
4047
4048    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4049      Diag(D.getIdentifierLoc(),
4050           diag::err_member_def_undefined_record)
4051        << Name << DC << D.getCXXScopeSpec().getRange();
4052      D.setInvalidType();
4053    } else if (!D.getDeclSpec().isFriendSpecified()) {
4054      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4055                                      Name, D.getIdentifierLoc())) {
4056        if (DC->isRecord())
4057          return 0;
4058
4059        D.setInvalidType();
4060      }
4061    }
4062
4063    // Check whether we need to rebuild the type of the given
4064    // declaration in the current instantiation.
4065    if (EnteringContext && IsDependentContext &&
4066        TemplateParamLists.size() != 0) {
4067      ContextRAII SavedContext(*this, DC);
4068      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4069        D.setInvalidType();
4070    }
4071  }
4072
4073  if (DiagnoseClassNameShadow(DC, NameInfo))
4074    // If this is a typedef, we'll end up spewing multiple diagnostics.
4075    // Just return early; it's safer.
4076    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4077      return 0;
4078
4079  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4080  QualType R = TInfo->getType();
4081
4082  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4083                                      UPPC_DeclarationType))
4084    D.setInvalidType();
4085
4086  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4087                        ForRedeclaration);
4088
4089  // See if this is a redefinition of a variable in the same scope.
4090  if (!D.getCXXScopeSpec().isSet()) {
4091    bool IsLinkageLookup = false;
4092
4093    // If the declaration we're planning to build will be a function
4094    // or object with linkage, then look for another declaration with
4095    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4096    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4097      /* Do nothing*/;
4098    else if (R->isFunctionType()) {
4099      if (CurContext->isFunctionOrMethod() ||
4100          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4101        IsLinkageLookup = true;
4102    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4103      IsLinkageLookup = true;
4104    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4105             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4106      IsLinkageLookup = true;
4107
4108    if (IsLinkageLookup)
4109      Previous.clear(LookupRedeclarationWithLinkage);
4110
4111    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4112  } else { // Something like "int foo::x;"
4113    LookupQualifiedName(Previous, DC);
4114
4115    // C++ [dcl.meaning]p1:
4116    //   When the declarator-id is qualified, the declaration shall refer to a
4117    //  previously declared member of the class or namespace to which the
4118    //  qualifier refers (or, in the case of a namespace, of an element of the
4119    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4120    //  thereof; [...]
4121    //
4122    // Note that we already checked the context above, and that we do not have
4123    // enough information to make sure that Previous contains the declaration
4124    // we want to match. For example, given:
4125    //
4126    //   class X {
4127    //     void f();
4128    //     void f(float);
4129    //   };
4130    //
4131    //   void X::f(int) { } // ill-formed
4132    //
4133    // In this case, Previous will point to the overload set
4134    // containing the two f's declared in X, but neither of them
4135    // matches.
4136
4137    // C++ [dcl.meaning]p1:
4138    //   [...] the member shall not merely have been introduced by a
4139    //   using-declaration in the scope of the class or namespace nominated by
4140    //   the nested-name-specifier of the declarator-id.
4141    RemoveUsingDecls(Previous);
4142  }
4143
4144  if (Previous.isSingleResult() &&
4145      Previous.getFoundDecl()->isTemplateParameter()) {
4146    // Maybe we will complain about the shadowed template parameter.
4147    if (!D.isInvalidType())
4148      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4149                                      Previous.getFoundDecl());
4150
4151    // Just pretend that we didn't see the previous declaration.
4152    Previous.clear();
4153  }
4154
4155  // In C++, the previous declaration we find might be a tag type
4156  // (class or enum). In this case, the new declaration will hide the
4157  // tag type. Note that this does does not apply if we're declaring a
4158  // typedef (C++ [dcl.typedef]p4).
4159  if (Previous.isSingleTagDecl() &&
4160      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4161    Previous.clear();
4162
4163  // Check that there are no default arguments other than in the parameters
4164  // of a function declaration (C++ only).
4165  if (getLangOpts().CPlusPlus)
4166    CheckExtraCXXDefaultArguments(D);
4167
4168  NamedDecl *New;
4169
4170  bool AddToScope = true;
4171  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4172    if (TemplateParamLists.size()) {
4173      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4174      return 0;
4175    }
4176
4177    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4178  } else if (R->isFunctionType()) {
4179    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4180                                  TemplateParamLists,
4181                                  AddToScope);
4182  } else {
4183    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4184                                  TemplateParamLists);
4185  }
4186
4187  if (New == 0)
4188    return 0;
4189
4190  // If this has an identifier and is not an invalid redeclaration or
4191  // function template specialization, add it to the scope stack.
4192  if (New->getDeclName() && AddToScope &&
4193       !(D.isRedeclaration() && New->isInvalidDecl()))
4194    PushOnScopeChains(New, S);
4195
4196  return New;
4197}
4198
4199/// Helper method to turn variable array types into constant array
4200/// types in certain situations which would otherwise be errors (for
4201/// GCC compatibility).
4202static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4203                                                    ASTContext &Context,
4204                                                    bool &SizeIsNegative,
4205                                                    llvm::APSInt &Oversized) {
4206  // This method tries to turn a variable array into a constant
4207  // array even when the size isn't an ICE.  This is necessary
4208  // for compatibility with code that depends on gcc's buggy
4209  // constant expression folding, like struct {char x[(int)(char*)2];}
4210  SizeIsNegative = false;
4211  Oversized = 0;
4212
4213  if (T->isDependentType())
4214    return QualType();
4215
4216  QualifierCollector Qs;
4217  const Type *Ty = Qs.strip(T);
4218
4219  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4220    QualType Pointee = PTy->getPointeeType();
4221    QualType FixedType =
4222        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4223                                            Oversized);
4224    if (FixedType.isNull()) return FixedType;
4225    FixedType = Context.getPointerType(FixedType);
4226    return Qs.apply(Context, FixedType);
4227  }
4228  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4229    QualType Inner = PTy->getInnerType();
4230    QualType FixedType =
4231        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4232                                            Oversized);
4233    if (FixedType.isNull()) return FixedType;
4234    FixedType = Context.getParenType(FixedType);
4235    return Qs.apply(Context, FixedType);
4236  }
4237
4238  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4239  if (!VLATy)
4240    return QualType();
4241  // FIXME: We should probably handle this case
4242  if (VLATy->getElementType()->isVariablyModifiedType())
4243    return QualType();
4244
4245  llvm::APSInt Res;
4246  if (!VLATy->getSizeExpr() ||
4247      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4248    return QualType();
4249
4250  // Check whether the array size is negative.
4251  if (Res.isSigned() && Res.isNegative()) {
4252    SizeIsNegative = true;
4253    return QualType();
4254  }
4255
4256  // Check whether the array is too large to be addressed.
4257  unsigned ActiveSizeBits
4258    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4259                                              Res);
4260  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4261    Oversized = Res;
4262    return QualType();
4263  }
4264
4265  return Context.getConstantArrayType(VLATy->getElementType(),
4266                                      Res, ArrayType::Normal, 0);
4267}
4268
4269static void
4270FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4271  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4272    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4273    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4274                                      DstPTL.getPointeeLoc());
4275    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4276    return;
4277  }
4278  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4279    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4280    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4281                                      DstPTL.getInnerLoc());
4282    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4283    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4284    return;
4285  }
4286  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4287  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4288  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4289  TypeLoc DstElemTL = DstATL.getElementLoc();
4290  DstElemTL.initializeFullCopy(SrcElemTL);
4291  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4292  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4293  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4294}
4295
4296/// Helper method to turn variable array types into constant array
4297/// types in certain situations which would otherwise be errors (for
4298/// GCC compatibility).
4299static TypeSourceInfo*
4300TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4301                                              ASTContext &Context,
4302                                              bool &SizeIsNegative,
4303                                              llvm::APSInt &Oversized) {
4304  QualType FixedTy
4305    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4306                                          SizeIsNegative, Oversized);
4307  if (FixedTy.isNull())
4308    return 0;
4309  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4310  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4311                                    FixedTInfo->getTypeLoc());
4312  return FixedTInfo;
4313}
4314
4315/// \brief Register the given locally-scoped extern "C" declaration so
4316/// that it can be found later for redeclarations
4317void
4318Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4319                                       const LookupResult &Previous,
4320                                       Scope *S) {
4321  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4322         "Decl is not a locally-scoped decl!");
4323  // Note that we have a locally-scoped external with this name.
4324  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4325
4326  if (!Previous.isSingleResult())
4327    return;
4328
4329  NamedDecl *PrevDecl = Previous.getFoundDecl();
4330
4331  // If there was a previous declaration of this entity, it may be in
4332  // our identifier chain. Update the identifier chain with the new
4333  // declaration.
4334  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4335    // The previous declaration was found on the identifer resolver
4336    // chain, so remove it from its scope.
4337
4338    if (S->isDeclScope(PrevDecl)) {
4339      // Special case for redeclarations in the SAME scope.
4340      // Because this declaration is going to be added to the identifier chain
4341      // later, we should temporarily take it OFF the chain.
4342      IdResolver.RemoveDecl(ND);
4343
4344    } else {
4345      // Find the scope for the original declaration.
4346      while (S && !S->isDeclScope(PrevDecl))
4347        S = S->getParent();
4348    }
4349
4350    if (S)
4351      S->RemoveDecl(PrevDecl);
4352  }
4353}
4354
4355llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4356Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4357  if (ExternalSource) {
4358    // Load locally-scoped external decls from the external source.
4359    SmallVector<NamedDecl *, 4> Decls;
4360    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4361    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4362      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4363        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4364      if (Pos == LocallyScopedExternCDecls.end())
4365        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4366    }
4367  }
4368
4369  return LocallyScopedExternCDecls.find(Name);
4370}
4371
4372/// \brief Diagnose function specifiers on a declaration of an identifier that
4373/// does not identify a function.
4374void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4375  // FIXME: We should probably indicate the identifier in question to avoid
4376  // confusion for constructs like "inline int a(), b;"
4377  if (DS.isInlineSpecified())
4378    Diag(DS.getInlineSpecLoc(),
4379         diag::err_inline_non_function);
4380
4381  if (DS.isVirtualSpecified())
4382    Diag(DS.getVirtualSpecLoc(),
4383         diag::err_virtual_non_function);
4384
4385  if (DS.isExplicitSpecified())
4386    Diag(DS.getExplicitSpecLoc(),
4387         diag::err_explicit_non_function);
4388
4389  if (DS.isNoreturnSpecified())
4390    Diag(DS.getNoreturnSpecLoc(),
4391         diag::err_noreturn_non_function);
4392}
4393
4394NamedDecl*
4395Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4396                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4397  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4398  if (D.getCXXScopeSpec().isSet()) {
4399    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4400      << D.getCXXScopeSpec().getRange();
4401    D.setInvalidType();
4402    // Pretend we didn't see the scope specifier.
4403    DC = CurContext;
4404    Previous.clear();
4405  }
4406
4407  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4408
4409  if (D.getDeclSpec().isThreadSpecified())
4410    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4411  if (D.getDeclSpec().isConstexprSpecified())
4412    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4413      << 1;
4414
4415  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4416    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4417      << D.getName().getSourceRange();
4418    return 0;
4419  }
4420
4421  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4422  if (!NewTD) return 0;
4423
4424  // Handle attributes prior to checking for duplicates in MergeVarDecl
4425  ProcessDeclAttributes(S, NewTD, D);
4426
4427  CheckTypedefForVariablyModifiedType(S, NewTD);
4428
4429  bool Redeclaration = D.isRedeclaration();
4430  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4431  D.setRedeclaration(Redeclaration);
4432  return ND;
4433}
4434
4435void
4436Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4437  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4438  // then it shall have block scope.
4439  // Note that variably modified types must be fixed before merging the decl so
4440  // that redeclarations will match.
4441  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4442  QualType T = TInfo->getType();
4443  if (T->isVariablyModifiedType()) {
4444    getCurFunction()->setHasBranchProtectedScope();
4445
4446    if (S->getFnParent() == 0) {
4447      bool SizeIsNegative;
4448      llvm::APSInt Oversized;
4449      TypeSourceInfo *FixedTInfo =
4450        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4451                                                      SizeIsNegative,
4452                                                      Oversized);
4453      if (FixedTInfo) {
4454        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4455        NewTD->setTypeSourceInfo(FixedTInfo);
4456      } else {
4457        if (SizeIsNegative)
4458          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4459        else if (T->isVariableArrayType())
4460          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4461        else if (Oversized.getBoolValue())
4462          Diag(NewTD->getLocation(), diag::err_array_too_large)
4463            << Oversized.toString(10);
4464        else
4465          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4466        NewTD->setInvalidDecl();
4467      }
4468    }
4469  }
4470}
4471
4472
4473/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4474/// declares a typedef-name, either using the 'typedef' type specifier or via
4475/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4476NamedDecl*
4477Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4478                           LookupResult &Previous, bool &Redeclaration) {
4479  // Merge the decl with the existing one if appropriate. If the decl is
4480  // in an outer scope, it isn't the same thing.
4481  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4482                       /*ExplicitInstantiationOrSpecialization=*/false);
4483  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4484  if (!Previous.empty()) {
4485    Redeclaration = true;
4486    MergeTypedefNameDecl(NewTD, Previous);
4487  }
4488
4489  // If this is the C FILE type, notify the AST context.
4490  if (IdentifierInfo *II = NewTD->getIdentifier())
4491    if (!NewTD->isInvalidDecl() &&
4492        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4493      if (II->isStr("FILE"))
4494        Context.setFILEDecl(NewTD);
4495      else if (II->isStr("jmp_buf"))
4496        Context.setjmp_bufDecl(NewTD);
4497      else if (II->isStr("sigjmp_buf"))
4498        Context.setsigjmp_bufDecl(NewTD);
4499      else if (II->isStr("ucontext_t"))
4500        Context.setucontext_tDecl(NewTD);
4501    }
4502
4503  return NewTD;
4504}
4505
4506/// \brief Determines whether the given declaration is an out-of-scope
4507/// previous declaration.
4508///
4509/// This routine should be invoked when name lookup has found a
4510/// previous declaration (PrevDecl) that is not in the scope where a
4511/// new declaration by the same name is being introduced. If the new
4512/// declaration occurs in a local scope, previous declarations with
4513/// linkage may still be considered previous declarations (C99
4514/// 6.2.2p4-5, C++ [basic.link]p6).
4515///
4516/// \param PrevDecl the previous declaration found by name
4517/// lookup
4518///
4519/// \param DC the context in which the new declaration is being
4520/// declared.
4521///
4522/// \returns true if PrevDecl is an out-of-scope previous declaration
4523/// for a new delcaration with the same name.
4524static bool
4525isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4526                                ASTContext &Context) {
4527  if (!PrevDecl)
4528    return false;
4529
4530  if (!PrevDecl->hasLinkage())
4531    return false;
4532
4533  if (Context.getLangOpts().CPlusPlus) {
4534    // C++ [basic.link]p6:
4535    //   If there is a visible declaration of an entity with linkage
4536    //   having the same name and type, ignoring entities declared
4537    //   outside the innermost enclosing namespace scope, the block
4538    //   scope declaration declares that same entity and receives the
4539    //   linkage of the previous declaration.
4540    DeclContext *OuterContext = DC->getRedeclContext();
4541    if (!OuterContext->isFunctionOrMethod())
4542      // This rule only applies to block-scope declarations.
4543      return false;
4544
4545    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4546    if (PrevOuterContext->isRecord())
4547      // We found a member function: ignore it.
4548      return false;
4549
4550    // Find the innermost enclosing namespace for the new and
4551    // previous declarations.
4552    OuterContext = OuterContext->getEnclosingNamespaceContext();
4553    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4554
4555    // The previous declaration is in a different namespace, so it
4556    // isn't the same function.
4557    if (!OuterContext->Equals(PrevOuterContext))
4558      return false;
4559  }
4560
4561  return true;
4562}
4563
4564static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4565  CXXScopeSpec &SS = D.getCXXScopeSpec();
4566  if (!SS.isSet()) return;
4567  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4568}
4569
4570bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4571  QualType type = decl->getType();
4572  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4573  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4574    // Various kinds of declaration aren't allowed to be __autoreleasing.
4575    unsigned kind = -1U;
4576    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4577      if (var->hasAttr<BlocksAttr>())
4578        kind = 0; // __block
4579      else if (!var->hasLocalStorage())
4580        kind = 1; // global
4581    } else if (isa<ObjCIvarDecl>(decl)) {
4582      kind = 3; // ivar
4583    } else if (isa<FieldDecl>(decl)) {
4584      kind = 2; // field
4585    }
4586
4587    if (kind != -1U) {
4588      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4589        << kind;
4590    }
4591  } else if (lifetime == Qualifiers::OCL_None) {
4592    // Try to infer lifetime.
4593    if (!type->isObjCLifetimeType())
4594      return false;
4595
4596    lifetime = type->getObjCARCImplicitLifetime();
4597    type = Context.getLifetimeQualifiedType(type, lifetime);
4598    decl->setType(type);
4599  }
4600
4601  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4602    // Thread-local variables cannot have lifetime.
4603    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4604        var->isThreadSpecified()) {
4605      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4606        << var->getType();
4607      return true;
4608    }
4609  }
4610
4611  return false;
4612}
4613
4614static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4615  // 'weak' only applies to declarations with external linkage.
4616  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4617    if (ND.getLinkage() != ExternalLinkage) {
4618      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4619      ND.dropAttr<WeakAttr>();
4620    }
4621  }
4622  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4623    if (ND.hasExternalLinkage()) {
4624      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4625      ND.dropAttr<WeakRefAttr>();
4626    }
4627  }
4628}
4629
4630/// Given that we are within the definition of the given function,
4631/// will that definition behave like C99's 'inline', where the
4632/// definition is discarded except for optimization purposes?
4633static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4634  // Try to avoid calling GetGVALinkageForFunction.
4635
4636  // All cases of this require the 'inline' keyword.
4637  if (!FD->isInlined()) return false;
4638
4639  // This is only possible in C++ with the gnu_inline attribute.
4640  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4641    return false;
4642
4643  // Okay, go ahead and call the relatively-more-expensive function.
4644
4645#ifndef NDEBUG
4646  // AST quite reasonably asserts that it's working on a function
4647  // definition.  We don't really have a way to tell it that we're
4648  // currently defining the function, so just lie to it in +Asserts
4649  // builds.  This is an awful hack.
4650  FD->setLazyBody(1);
4651#endif
4652
4653  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4654
4655#ifndef NDEBUG
4656  FD->setLazyBody(0);
4657#endif
4658
4659  return isC99Inline;
4660}
4661
4662static bool shouldConsiderLinkage(const VarDecl *VD) {
4663  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4664  if (DC->isFunctionOrMethod())
4665    return VD->hasExternalStorage();
4666  if (DC->isFileContext())
4667    return true;
4668  if (DC->isRecord())
4669    return false;
4670  llvm_unreachable("Unexpected context");
4671}
4672
4673static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4674  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4675  if (DC->isFileContext() || DC->isFunctionOrMethod())
4676    return true;
4677  if (DC->isRecord())
4678    return false;
4679  llvm_unreachable("Unexpected context");
4680}
4681
4682NamedDecl*
4683Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4684                              TypeSourceInfo *TInfo, LookupResult &Previous,
4685                              MultiTemplateParamsArg TemplateParamLists) {
4686  QualType R = TInfo->getType();
4687  DeclarationName Name = GetNameForDeclarator(D).getName();
4688
4689  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4690  assert(SCSpec != DeclSpec::SCS_typedef &&
4691         "Parser allowed 'typedef' as storage class VarDecl.");
4692  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4693
4694  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4695  {
4696    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4697    // half array type (unless the cl_khr_fp16 extension is enabled).
4698    if (Context.getBaseElementType(R)->isHalfType()) {
4699      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4700      D.setInvalidType();
4701    }
4702  }
4703
4704  if (SCSpec == DeclSpec::SCS_mutable) {
4705    // mutable can only appear on non-static class members, so it's always
4706    // an error here
4707    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4708    D.setInvalidType();
4709    SC = SC_None;
4710  }
4711
4712  IdentifierInfo *II = Name.getAsIdentifierInfo();
4713  if (!II) {
4714    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4715      << Name;
4716    return 0;
4717  }
4718
4719  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4720
4721  if (!DC->isRecord() && S->getFnParent() == 0) {
4722    // C99 6.9p2: The storage-class specifiers auto and register shall not
4723    // appear in the declaration specifiers in an external declaration.
4724    if (SC == SC_Auto || SC == SC_Register) {
4725
4726      // If this is a register variable with an asm label specified, then this
4727      // is a GNU extension.
4728      if (SC == SC_Register && D.getAsmLabel())
4729        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4730      else
4731        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4732      D.setInvalidType();
4733    }
4734  }
4735
4736  if (getLangOpts().OpenCL) {
4737    // Set up the special work-group-local storage class for variables in the
4738    // OpenCL __local address space.
4739    if (R.getAddressSpace() == LangAS::opencl_local) {
4740      SC = SC_OpenCLWorkGroupLocal;
4741    }
4742
4743    // OpenCL v1.2 s6.9.b p4:
4744    // The sampler type cannot be used with the __local and __global address
4745    // space qualifiers.
4746    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4747      R.getAddressSpace() == LangAS::opencl_global)) {
4748      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4749    }
4750
4751    // OpenCL 1.2 spec, p6.9 r:
4752    // The event type cannot be used to declare a program scope variable.
4753    // The event type cannot be used with the __local, __constant and __global
4754    // address space qualifiers.
4755    if (R->isEventT()) {
4756      if (S->getParent() == 0) {
4757        Diag(D.getLocStart(), diag::err_event_t_global_var);
4758        D.setInvalidType();
4759      }
4760
4761      if (R.getAddressSpace()) {
4762        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4763        D.setInvalidType();
4764      }
4765    }
4766  }
4767
4768  bool isExplicitSpecialization = false;
4769  VarDecl *NewVD;
4770  if (!getLangOpts().CPlusPlus) {
4771    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4772                            D.getIdentifierLoc(), II,
4773                            R, TInfo, SC);
4774
4775    if (D.isInvalidType())
4776      NewVD->setInvalidDecl();
4777  } else {
4778    if (DC->isRecord() && !CurContext->isRecord()) {
4779      // This is an out-of-line definition of a static data member.
4780      if (SC == SC_Static) {
4781        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4782             diag::err_static_out_of_line)
4783          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4784      } else if (SC == SC_None)
4785        SC = SC_Static;
4786    }
4787    if (SC == SC_Static && CurContext->isRecord()) {
4788      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4789        if (RD->isLocalClass())
4790          Diag(D.getIdentifierLoc(),
4791               diag::err_static_data_member_not_allowed_in_local_class)
4792            << Name << RD->getDeclName();
4793
4794        // C++98 [class.union]p1: If a union contains a static data member,
4795        // the program is ill-formed. C++11 drops this restriction.
4796        if (RD->isUnion())
4797          Diag(D.getIdentifierLoc(),
4798               getLangOpts().CPlusPlus11
4799                 ? diag::warn_cxx98_compat_static_data_member_in_union
4800                 : diag::ext_static_data_member_in_union) << Name;
4801        // We conservatively disallow static data members in anonymous structs.
4802        else if (!RD->getDeclName())
4803          Diag(D.getIdentifierLoc(),
4804               diag::err_static_data_member_not_allowed_in_anon_struct)
4805            << Name << RD->isUnion();
4806      }
4807    }
4808
4809    // Match up the template parameter lists with the scope specifier, then
4810    // determine whether we have a template or a template specialization.
4811    isExplicitSpecialization = false;
4812    bool Invalid = false;
4813    if (TemplateParameterList *TemplateParams
4814        = MatchTemplateParametersToScopeSpecifier(
4815                                  D.getDeclSpec().getLocStart(),
4816                                                  D.getIdentifierLoc(),
4817                                                  D.getCXXScopeSpec(),
4818                                                  TemplateParamLists.data(),
4819                                                  TemplateParamLists.size(),
4820                                                  /*never a friend*/ false,
4821                                                  isExplicitSpecialization,
4822                                                  Invalid)) {
4823      if (TemplateParams->size() > 0) {
4824        // There is no such thing as a variable template.
4825        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4826          << II
4827          << SourceRange(TemplateParams->getTemplateLoc(),
4828                         TemplateParams->getRAngleLoc());
4829        return 0;
4830      } else {
4831        // There is an extraneous 'template<>' for this variable. Complain
4832        // about it, but allow the declaration of the variable.
4833        Diag(TemplateParams->getTemplateLoc(),
4834             diag::err_template_variable_noparams)
4835          << II
4836          << SourceRange(TemplateParams->getTemplateLoc(),
4837                         TemplateParams->getRAngleLoc());
4838      }
4839    }
4840
4841    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4842                            D.getIdentifierLoc(), II,
4843                            R, TInfo, SC);
4844
4845    // If this decl has an auto type in need of deduction, make a note of the
4846    // Decl so we can diagnose uses of it in its own initializer.
4847    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4848        R->getContainedAutoType())
4849      ParsingInitForAutoVars.insert(NewVD);
4850
4851    if (D.isInvalidType() || Invalid)
4852      NewVD->setInvalidDecl();
4853
4854    SetNestedNameSpecifier(NewVD, D);
4855
4856    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4857      NewVD->setTemplateParameterListsInfo(Context,
4858                                           TemplateParamLists.size(),
4859                                           TemplateParamLists.data());
4860    }
4861
4862    if (D.getDeclSpec().isConstexprSpecified())
4863      NewVD->setConstexpr(true);
4864  }
4865
4866  // Set the lexical context. If the declarator has a C++ scope specifier, the
4867  // lexical context will be different from the semantic context.
4868  NewVD->setLexicalDeclContext(CurContext);
4869
4870  if (D.getDeclSpec().isThreadSpecified()) {
4871    if (NewVD->hasLocalStorage())
4872      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4873    else if (!Context.getTargetInfo().isTLSSupported())
4874      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4875    else
4876      NewVD->setThreadSpecified(true);
4877  }
4878
4879  // C99 6.7.4p3
4880  //   An inline definition of a function with external linkage shall
4881  //   not contain a definition of a modifiable object with static or
4882  //   thread storage duration...
4883  // We only apply this when the function is required to be defined
4884  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4885  // that a local variable with thread storage duration still has to
4886  // be marked 'static'.  Also note that it's possible to get these
4887  // semantics in C++ using __attribute__((gnu_inline)).
4888  if (SC == SC_Static && S->getFnParent() != 0 &&
4889      !NewVD->getType().isConstQualified()) {
4890    FunctionDecl *CurFD = getCurFunctionDecl();
4891    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4892      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4893           diag::warn_static_local_in_extern_inline);
4894      MaybeSuggestAddingStaticToDecl(CurFD);
4895    }
4896  }
4897
4898  if (D.getDeclSpec().isModulePrivateSpecified()) {
4899    if (isExplicitSpecialization)
4900      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4901        << 2
4902        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4903    else if (NewVD->hasLocalStorage())
4904      Diag(NewVD->getLocation(), diag::err_module_private_local)
4905        << 0 << NewVD->getDeclName()
4906        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4907        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4908    else
4909      NewVD->setModulePrivate();
4910  }
4911
4912  // Handle attributes prior to checking for duplicates in MergeVarDecl
4913  ProcessDeclAttributes(S, NewVD, D);
4914
4915  if (NewVD->hasAttrs())
4916    CheckAlignasUnderalignment(NewVD);
4917
4918  if (getLangOpts().CUDA) {
4919    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4920    // storage [duration]."
4921    if (SC == SC_None && S->getFnParent() != 0 &&
4922        (NewVD->hasAttr<CUDASharedAttr>() ||
4923         NewVD->hasAttr<CUDAConstantAttr>())) {
4924      NewVD->setStorageClass(SC_Static);
4925    }
4926  }
4927
4928  // In auto-retain/release, infer strong retension for variables of
4929  // retainable type.
4930  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4931    NewVD->setInvalidDecl();
4932
4933  // Handle GNU asm-label extension (encoded as an attribute).
4934  if (Expr *E = (Expr*)D.getAsmLabel()) {
4935    // The parser guarantees this is a string.
4936    StringLiteral *SE = cast<StringLiteral>(E);
4937    StringRef Label = SE->getString();
4938    if (S->getFnParent() != 0) {
4939      switch (SC) {
4940      case SC_None:
4941      case SC_Auto:
4942        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4943        break;
4944      case SC_Register:
4945        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4946          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4947        break;
4948      case SC_Static:
4949      case SC_Extern:
4950      case SC_PrivateExtern:
4951      case SC_OpenCLWorkGroupLocal:
4952        break;
4953      }
4954    }
4955
4956    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4957                                                Context, Label));
4958  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4959    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4960      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4961    if (I != ExtnameUndeclaredIdentifiers.end()) {
4962      NewVD->addAttr(I->second);
4963      ExtnameUndeclaredIdentifiers.erase(I);
4964    }
4965  }
4966
4967  // Diagnose shadowed variables before filtering for scope.
4968  if (!D.getCXXScopeSpec().isSet())
4969    CheckShadow(S, NewVD, Previous);
4970
4971  // Don't consider existing declarations that are in a different
4972  // scope and are out-of-semantic-context declarations (if the new
4973  // declaration has linkage).
4974  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4975                       isExplicitSpecialization);
4976
4977  if (!getLangOpts().CPlusPlus) {
4978    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4979  } else {
4980    // Merge the decl with the existing one if appropriate.
4981    if (!Previous.empty()) {
4982      if (Previous.isSingleResult() &&
4983          isa<FieldDecl>(Previous.getFoundDecl()) &&
4984          D.getCXXScopeSpec().isSet()) {
4985        // The user tried to define a non-static data member
4986        // out-of-line (C++ [dcl.meaning]p1).
4987        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4988          << D.getCXXScopeSpec().getRange();
4989        Previous.clear();
4990        NewVD->setInvalidDecl();
4991      }
4992    } else if (D.getCXXScopeSpec().isSet()) {
4993      // No previous declaration in the qualifying scope.
4994      Diag(D.getIdentifierLoc(), diag::err_no_member)
4995        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4996        << D.getCXXScopeSpec().getRange();
4997      NewVD->setInvalidDecl();
4998    }
4999
5000    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5001
5002    // This is an explicit specialization of a static data member. Check it.
5003    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5004        CheckMemberSpecialization(NewVD, Previous))
5005      NewVD->setInvalidDecl();
5006  }
5007
5008  ProcessPragmaWeak(S, NewVD);
5009  checkAttributesAfterMerging(*this, *NewVD);
5010
5011  // If this is a locally-scoped extern C variable, update the map of
5012  // such variables.
5013  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
5014      !NewVD->isInvalidDecl())
5015    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
5016
5017  return NewVD;
5018}
5019
5020/// \brief Diagnose variable or built-in function shadowing.  Implements
5021/// -Wshadow.
5022///
5023/// This method is called whenever a VarDecl is added to a "useful"
5024/// scope.
5025///
5026/// \param S the scope in which the shadowing name is being declared
5027/// \param R the lookup of the name
5028///
5029void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5030  // Return if warning is ignored.
5031  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5032        DiagnosticsEngine::Ignored)
5033    return;
5034
5035  // Don't diagnose declarations at file scope.
5036  if (D->hasGlobalStorage())
5037    return;
5038
5039  DeclContext *NewDC = D->getDeclContext();
5040
5041  // Only diagnose if we're shadowing an unambiguous field or variable.
5042  if (R.getResultKind() != LookupResult::Found)
5043    return;
5044
5045  NamedDecl* ShadowedDecl = R.getFoundDecl();
5046  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5047    return;
5048
5049  // Fields are not shadowed by variables in C++ static methods.
5050  if (isa<FieldDecl>(ShadowedDecl))
5051    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5052      if (MD->isStatic())
5053        return;
5054
5055  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5056    if (shadowedVar->isExternC()) {
5057      // For shadowing external vars, make sure that we point to the global
5058      // declaration, not a locally scoped extern declaration.
5059      for (VarDecl::redecl_iterator
5060             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5061           I != E; ++I)
5062        if (I->isFileVarDecl()) {
5063          ShadowedDecl = *I;
5064          break;
5065        }
5066    }
5067
5068  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5069
5070  // Only warn about certain kinds of shadowing for class members.
5071  if (NewDC && NewDC->isRecord()) {
5072    // In particular, don't warn about shadowing non-class members.
5073    if (!OldDC->isRecord())
5074      return;
5075
5076    // TODO: should we warn about static data members shadowing
5077    // static data members from base classes?
5078
5079    // TODO: don't diagnose for inaccessible shadowed members.
5080    // This is hard to do perfectly because we might friend the
5081    // shadowing context, but that's just a false negative.
5082  }
5083
5084  // Determine what kind of declaration we're shadowing.
5085  unsigned Kind;
5086  if (isa<RecordDecl>(OldDC)) {
5087    if (isa<FieldDecl>(ShadowedDecl))
5088      Kind = 3; // field
5089    else
5090      Kind = 2; // static data member
5091  } else if (OldDC->isFileContext())
5092    Kind = 1; // global
5093  else
5094    Kind = 0; // local
5095
5096  DeclarationName Name = R.getLookupName();
5097
5098  // Emit warning and note.
5099  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5100  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5101}
5102
5103/// \brief Check -Wshadow without the advantage of a previous lookup.
5104void Sema::CheckShadow(Scope *S, VarDecl *D) {
5105  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5106        DiagnosticsEngine::Ignored)
5107    return;
5108
5109  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5110                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5111  LookupName(R, S);
5112  CheckShadow(S, D, R);
5113}
5114
5115template<typename T>
5116static bool mayConflictWithNonVisibleExternC(const T *ND) {
5117  const DeclContext *DC = ND->getDeclContext();
5118  if (DC->getRedeclContext()->isTranslationUnit())
5119    return true;
5120
5121  // We know that is the first decl we see, other than function local
5122  // extern C ones. If this is C++ and the decl is not in a extern C context
5123  // it cannot have C language linkage. Avoid calling isExternC in that case.
5124  // We need to this because of code like
5125  //
5126  // namespace { struct bar {}; }
5127  // auto foo = bar();
5128  //
5129  // This code runs before the init of foo is set, and therefore before
5130  // the type of foo is known. Not knowing the type we cannot know its linkage
5131  // unless it is in an extern C block.
5132  if (!DC->isExternCContext()) {
5133    const ASTContext &Context = ND->getASTContext();
5134    if (Context.getLangOpts().CPlusPlus)
5135      return false;
5136  }
5137
5138  return ND->isExternC();
5139}
5140
5141/// \brief Perform semantic checking on a newly-created variable
5142/// declaration.
5143///
5144/// This routine performs all of the type-checking required for a
5145/// variable declaration once it has been built. It is used both to
5146/// check variables after they have been parsed and their declarators
5147/// have been translated into a declaration, and to check variables
5148/// that have been instantiated from a template.
5149///
5150/// Sets NewVD->isInvalidDecl() if an error was encountered.
5151///
5152/// Returns true if the variable declaration is a redeclaration.
5153bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5154                                    LookupResult &Previous) {
5155  // If the decl is already known invalid, don't check it.
5156  if (NewVD->isInvalidDecl())
5157    return false;
5158
5159  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5160  QualType T = TInfo->getType();
5161
5162  if (T->isObjCObjectType()) {
5163    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5164      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5165    T = Context.getObjCObjectPointerType(T);
5166    NewVD->setType(T);
5167  }
5168
5169  // Emit an error if an address space was applied to decl with local storage.
5170  // This includes arrays of objects with address space qualifiers, but not
5171  // automatic variables that point to other address spaces.
5172  // ISO/IEC TR 18037 S5.1.2
5173  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5174    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5175    NewVD->setInvalidDecl();
5176    return false;
5177  }
5178
5179  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5180  // scope.
5181  if ((getLangOpts().OpenCLVersion >= 120)
5182      && NewVD->isStaticLocal()) {
5183    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5184    NewVD->setInvalidDecl();
5185    return false;
5186  }
5187
5188  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5189      && !NewVD->hasAttr<BlocksAttr>()) {
5190    if (getLangOpts().getGC() != LangOptions::NonGC)
5191      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5192    else {
5193      assert(!getLangOpts().ObjCAutoRefCount);
5194      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5195    }
5196  }
5197
5198  bool isVM = T->isVariablyModifiedType();
5199  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5200      NewVD->hasAttr<BlocksAttr>())
5201    getCurFunction()->setHasBranchProtectedScope();
5202
5203  if ((isVM && NewVD->hasLinkage()) ||
5204      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5205    bool SizeIsNegative;
5206    llvm::APSInt Oversized;
5207    TypeSourceInfo *FixedTInfo =
5208      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5209                                                    SizeIsNegative, Oversized);
5210    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5211      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5212      // FIXME: This won't give the correct result for
5213      // int a[10][n];
5214      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5215
5216      if (NewVD->isFileVarDecl())
5217        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5218        << SizeRange;
5219      else if (NewVD->getStorageClass() == SC_Static)
5220        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5221        << SizeRange;
5222      else
5223        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5224        << SizeRange;
5225      NewVD->setInvalidDecl();
5226      return false;
5227    }
5228
5229    if (FixedTInfo == 0) {
5230      if (NewVD->isFileVarDecl())
5231        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5232      else
5233        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5234      NewVD->setInvalidDecl();
5235      return false;
5236    }
5237
5238    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5239    NewVD->setType(FixedTInfo->getType());
5240    NewVD->setTypeSourceInfo(FixedTInfo);
5241  }
5242
5243  // If we did not find anything by this name, look for a non-visible
5244  // extern "C" declaration with the same name.
5245  //
5246  // Clang has a lot of problems with extern local declarations.
5247  // The actual standards text here is:
5248  //
5249  // C++11 [basic.link]p6:
5250  //   The name of a function declared in block scope and the name
5251  //   of a variable declared by a block scope extern declaration
5252  //   have linkage. If there is a visible declaration of an entity
5253  //   with linkage having the same name and type, ignoring entities
5254  //   declared outside the innermost enclosing namespace scope, the
5255  //   block scope declaration declares that same entity and
5256  //   receives the linkage of the previous declaration.
5257  //
5258  // C11 6.2.7p4:
5259  //   For an identifier with internal or external linkage declared
5260  //   in a scope in which a prior declaration of that identifier is
5261  //   visible, if the prior declaration specifies internal or
5262  //   external linkage, the type of the identifier at the later
5263  //   declaration becomes the composite type.
5264  //
5265  // The most important point here is that we're not allowed to
5266  // update our understanding of the type according to declarations
5267  // not in scope.
5268  bool PreviousWasHidden = false;
5269  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5270    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5271      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5272    if (Pos != LocallyScopedExternCDecls.end()) {
5273      Previous.addDecl(Pos->second);
5274      PreviousWasHidden = true;
5275    }
5276  }
5277
5278  // Filter out any non-conflicting previous declarations.
5279  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5280
5281  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5282    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5283      << T;
5284    NewVD->setInvalidDecl();
5285    return false;
5286  }
5287
5288  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5289    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5290    NewVD->setInvalidDecl();
5291    return false;
5292  }
5293
5294  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5295    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5296    NewVD->setInvalidDecl();
5297    return false;
5298  }
5299
5300  if (NewVD->isConstexpr() && !T->isDependentType() &&
5301      RequireLiteralType(NewVD->getLocation(), T,
5302                         diag::err_constexpr_var_non_literal)) {
5303    NewVD->setInvalidDecl();
5304    return false;
5305  }
5306
5307  if (!Previous.empty()) {
5308    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5309    return true;
5310  }
5311  return false;
5312}
5313
5314/// \brief Data used with FindOverriddenMethod
5315struct FindOverriddenMethodData {
5316  Sema *S;
5317  CXXMethodDecl *Method;
5318};
5319
5320/// \brief Member lookup function that determines whether a given C++
5321/// method overrides a method in a base class, to be used with
5322/// CXXRecordDecl::lookupInBases().
5323static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5324                                 CXXBasePath &Path,
5325                                 void *UserData) {
5326  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5327
5328  FindOverriddenMethodData *Data
5329    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5330
5331  DeclarationName Name = Data->Method->getDeclName();
5332
5333  // FIXME: Do we care about other names here too?
5334  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5335    // We really want to find the base class destructor here.
5336    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5337    CanQualType CT = Data->S->Context.getCanonicalType(T);
5338
5339    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5340  }
5341
5342  for (Path.Decls = BaseRecord->lookup(Name);
5343       !Path.Decls.empty();
5344       Path.Decls = Path.Decls.slice(1)) {
5345    NamedDecl *D = Path.Decls.front();
5346    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5347      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5348        return true;
5349    }
5350  }
5351
5352  return false;
5353}
5354
5355namespace {
5356  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5357}
5358/// \brief Report an error regarding overriding, along with any relevant
5359/// overriden methods.
5360///
5361/// \param DiagID the primary error to report.
5362/// \param MD the overriding method.
5363/// \param OEK which overrides to include as notes.
5364static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5365                            OverrideErrorKind OEK = OEK_All) {
5366  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5367  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5368                                      E = MD->end_overridden_methods();
5369       I != E; ++I) {
5370    // This check (& the OEK parameter) could be replaced by a predicate, but
5371    // without lambdas that would be overkill. This is still nicer than writing
5372    // out the diag loop 3 times.
5373    if ((OEK == OEK_All) ||
5374        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5375        (OEK == OEK_Deleted && (*I)->isDeleted()))
5376      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5377  }
5378}
5379
5380/// AddOverriddenMethods - See if a method overrides any in the base classes,
5381/// and if so, check that it's a valid override and remember it.
5382bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5383  // Look for virtual methods in base classes that this method might override.
5384  CXXBasePaths Paths;
5385  FindOverriddenMethodData Data;
5386  Data.Method = MD;
5387  Data.S = this;
5388  bool hasDeletedOverridenMethods = false;
5389  bool hasNonDeletedOverridenMethods = false;
5390  bool AddedAny = false;
5391  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5392    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5393         E = Paths.found_decls_end(); I != E; ++I) {
5394      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5395        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5396        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5397            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5398            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5399            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5400          hasDeletedOverridenMethods |= OldMD->isDeleted();
5401          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5402          AddedAny = true;
5403        }
5404      }
5405    }
5406  }
5407
5408  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5409    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5410  }
5411  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5412    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5413  }
5414
5415  return AddedAny;
5416}
5417
5418namespace {
5419  // Struct for holding all of the extra arguments needed by
5420  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5421  struct ActOnFDArgs {
5422    Scope *S;
5423    Declarator &D;
5424    MultiTemplateParamsArg TemplateParamLists;
5425    bool AddToScope;
5426  };
5427}
5428
5429namespace {
5430
5431// Callback to only accept typo corrections that have a non-zero edit distance.
5432// Also only accept corrections that have the same parent decl.
5433class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5434 public:
5435  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5436                            CXXRecordDecl *Parent)
5437      : Context(Context), OriginalFD(TypoFD),
5438        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5439
5440  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5441    if (candidate.getEditDistance() == 0)
5442      return false;
5443
5444    SmallVector<unsigned, 1> MismatchedParams;
5445    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5446                                          CDeclEnd = candidate.end();
5447         CDecl != CDeclEnd; ++CDecl) {
5448      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5449
5450      if (FD && !FD->hasBody() &&
5451          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5452        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5453          CXXRecordDecl *Parent = MD->getParent();
5454          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5455            return true;
5456        } else if (!ExpectedParent) {
5457          return true;
5458        }
5459      }
5460    }
5461
5462    return false;
5463  }
5464
5465 private:
5466  ASTContext &Context;
5467  FunctionDecl *OriginalFD;
5468  CXXRecordDecl *ExpectedParent;
5469};
5470
5471}
5472
5473/// \brief Generate diagnostics for an invalid function redeclaration.
5474///
5475/// This routine handles generating the diagnostic messages for an invalid
5476/// function redeclaration, including finding possible similar declarations
5477/// or performing typo correction if there are no previous declarations with
5478/// the same name.
5479///
5480/// Returns a NamedDecl iff typo correction was performed and substituting in
5481/// the new declaration name does not cause new errors.
5482static NamedDecl* DiagnoseInvalidRedeclaration(
5483    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5484    ActOnFDArgs &ExtraArgs) {
5485  NamedDecl *Result = NULL;
5486  DeclarationName Name = NewFD->getDeclName();
5487  DeclContext *NewDC = NewFD->getDeclContext();
5488  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5489                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5490  SmallVector<unsigned, 1> MismatchedParams;
5491  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5492  TypoCorrection Correction;
5493  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5494                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5495  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5496                                  : diag::err_member_def_does_not_match;
5497
5498  NewFD->setInvalidDecl();
5499  SemaRef.LookupQualifiedName(Prev, NewDC);
5500  assert(!Prev.isAmbiguous() &&
5501         "Cannot have an ambiguity in previous-declaration lookup");
5502  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5503  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5504                                      MD ? MD->getParent() : 0);
5505  if (!Prev.empty()) {
5506    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5507         Func != FuncEnd; ++Func) {
5508      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5509      if (FD &&
5510          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5511        // Add 1 to the index so that 0 can mean the mismatch didn't
5512        // involve a parameter
5513        unsigned ParamNum =
5514            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5515        NearMatches.push_back(std::make_pair(FD, ParamNum));
5516      }
5517    }
5518  // If the qualified name lookup yielded nothing, try typo correction
5519  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5520                                         Prev.getLookupKind(), 0, 0,
5521                                         Validator, NewDC))) {
5522    // Trap errors.
5523    Sema::SFINAETrap Trap(SemaRef);
5524
5525    // Set up everything for the call to ActOnFunctionDeclarator
5526    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5527                              ExtraArgs.D.getIdentifierLoc());
5528    Previous.clear();
5529    Previous.setLookupName(Correction.getCorrection());
5530    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5531                                    CDeclEnd = Correction.end();
5532         CDecl != CDeclEnd; ++CDecl) {
5533      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5534      if (FD && !FD->hasBody() &&
5535          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5536        Previous.addDecl(FD);
5537      }
5538    }
5539    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5540    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5541    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5542    // eliminate the need for the parameter pack ExtraArgs.
5543    Result = SemaRef.ActOnFunctionDeclarator(
5544        ExtraArgs.S, ExtraArgs.D,
5545        Correction.getCorrectionDecl()->getDeclContext(),
5546        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5547        ExtraArgs.AddToScope);
5548    if (Trap.hasErrorOccurred()) {
5549      // Pretend the typo correction never occurred
5550      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5551                                ExtraArgs.D.getIdentifierLoc());
5552      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5553      Previous.clear();
5554      Previous.setLookupName(Name);
5555      Result = NULL;
5556    } else {
5557      for (LookupResult::iterator Func = Previous.begin(),
5558                               FuncEnd = Previous.end();
5559           Func != FuncEnd; ++Func) {
5560        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5561          NearMatches.push_back(std::make_pair(FD, 0));
5562      }
5563    }
5564    if (NearMatches.empty()) {
5565      // Ignore the correction if it didn't yield any close FunctionDecl matches
5566      Correction = TypoCorrection();
5567    } else {
5568      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5569                             : diag::err_member_def_does_not_match_suggest;
5570    }
5571  }
5572
5573  if (Correction) {
5574    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5575    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5576    // turn causes the correction to fully qualify the name. If we fix
5577    // CorrectTypo to minimally qualify then this change should be good.
5578    SourceRange FixItLoc(NewFD->getLocation());
5579    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5580    if (Correction.getCorrectionSpecifier() && SS.isValid())
5581      FixItLoc.setBegin(SS.getBeginLoc());
5582    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5583        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5584        << FixItHint::CreateReplacement(
5585            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5586  } else {
5587    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5588        << Name << NewDC << NewFD->getLocation();
5589  }
5590
5591  bool NewFDisConst = false;
5592  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5593    NewFDisConst = NewMD->isConst();
5594
5595  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5596       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5597       NearMatch != NearMatchEnd; ++NearMatch) {
5598    FunctionDecl *FD = NearMatch->first;
5599    bool FDisConst = false;
5600    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5601      FDisConst = MD->isConst();
5602
5603    if (unsigned Idx = NearMatch->second) {
5604      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5605      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5606      if (Loc.isInvalid()) Loc = FD->getLocation();
5607      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5608          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5609    } else if (Correction) {
5610      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5611          << Correction.getQuoted(SemaRef.getLangOpts());
5612    } else if (FDisConst != NewFDisConst) {
5613      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5614          << NewFDisConst << FD->getSourceRange().getEnd();
5615    } else
5616      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5617  }
5618  return Result;
5619}
5620
5621static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5622                                                          Declarator &D) {
5623  switch (D.getDeclSpec().getStorageClassSpec()) {
5624  default: llvm_unreachable("Unknown storage class!");
5625  case DeclSpec::SCS_auto:
5626  case DeclSpec::SCS_register:
5627  case DeclSpec::SCS_mutable:
5628    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5629                 diag::err_typecheck_sclass_func);
5630    D.setInvalidType();
5631    break;
5632  case DeclSpec::SCS_unspecified: break;
5633  case DeclSpec::SCS_extern: return SC_Extern;
5634  case DeclSpec::SCS_static: {
5635    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5636      // C99 6.7.1p5:
5637      //   The declaration of an identifier for a function that has
5638      //   block scope shall have no explicit storage-class specifier
5639      //   other than extern
5640      // See also (C++ [dcl.stc]p4).
5641      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5642                   diag::err_static_block_func);
5643      break;
5644    } else
5645      return SC_Static;
5646  }
5647  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5648  }
5649
5650  // No explicit storage class has already been returned
5651  return SC_None;
5652}
5653
5654static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5655                                           DeclContext *DC, QualType &R,
5656                                           TypeSourceInfo *TInfo,
5657                                           FunctionDecl::StorageClass SC,
5658                                           bool &IsVirtualOkay) {
5659  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5660  DeclarationName Name = NameInfo.getName();
5661
5662  FunctionDecl *NewFD = 0;
5663  bool isInline = D.getDeclSpec().isInlineSpecified();
5664
5665  if (!SemaRef.getLangOpts().CPlusPlus) {
5666    // Determine whether the function was written with a
5667    // prototype. This true when:
5668    //   - there is a prototype in the declarator, or
5669    //   - the type R of the function is some kind of typedef or other reference
5670    //     to a type name (which eventually refers to a function type).
5671    bool HasPrototype =
5672      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5673      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5674
5675    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5676                                 D.getLocStart(), NameInfo, R,
5677                                 TInfo, SC, isInline,
5678                                 HasPrototype, false);
5679    if (D.isInvalidType())
5680      NewFD->setInvalidDecl();
5681
5682    // Set the lexical context.
5683    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5684
5685    return NewFD;
5686  }
5687
5688  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5689  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5690
5691  // Check that the return type is not an abstract class type.
5692  // For record types, this is done by the AbstractClassUsageDiagnoser once
5693  // the class has been completely parsed.
5694  if (!DC->isRecord() &&
5695      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5696                                     R->getAs<FunctionType>()->getResultType(),
5697                                     diag::err_abstract_type_in_decl,
5698                                     SemaRef.AbstractReturnType))
5699    D.setInvalidType();
5700
5701  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5702    // This is a C++ constructor declaration.
5703    assert(DC->isRecord() &&
5704           "Constructors can only be declared in a member context");
5705
5706    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5707    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5708                                      D.getLocStart(), NameInfo,
5709                                      R, TInfo, isExplicit, isInline,
5710                                      /*isImplicitlyDeclared=*/false,
5711                                      isConstexpr);
5712
5713  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5714    // This is a C++ destructor declaration.
5715    if (DC->isRecord()) {
5716      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5717      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5718      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5719                                        SemaRef.Context, Record,
5720                                        D.getLocStart(),
5721                                        NameInfo, R, TInfo, isInline,
5722                                        /*isImplicitlyDeclared=*/false);
5723
5724      // If the class is complete, then we now create the implicit exception
5725      // specification. If the class is incomplete or dependent, we can't do
5726      // it yet.
5727      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5728          Record->getDefinition() && !Record->isBeingDefined() &&
5729          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5730        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5731      }
5732
5733      IsVirtualOkay = true;
5734      return NewDD;
5735
5736    } else {
5737      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5738      D.setInvalidType();
5739
5740      // Create a FunctionDecl to satisfy the function definition parsing
5741      // code path.
5742      return FunctionDecl::Create(SemaRef.Context, DC,
5743                                  D.getLocStart(),
5744                                  D.getIdentifierLoc(), Name, R, TInfo,
5745                                  SC, isInline,
5746                                  /*hasPrototype=*/true, isConstexpr);
5747    }
5748
5749  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5750    if (!DC->isRecord()) {
5751      SemaRef.Diag(D.getIdentifierLoc(),
5752           diag::err_conv_function_not_member);
5753      return 0;
5754    }
5755
5756    SemaRef.CheckConversionDeclarator(D, R, SC);
5757    IsVirtualOkay = true;
5758    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5759                                     D.getLocStart(), NameInfo,
5760                                     R, TInfo, isInline, isExplicit,
5761                                     isConstexpr, SourceLocation());
5762
5763  } else if (DC->isRecord()) {
5764    // If the name of the function is the same as the name of the record,
5765    // then this must be an invalid constructor that has a return type.
5766    // (The parser checks for a return type and makes the declarator a
5767    // constructor if it has no return type).
5768    if (Name.getAsIdentifierInfo() &&
5769        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5770      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5771        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5772        << SourceRange(D.getIdentifierLoc());
5773      return 0;
5774    }
5775
5776    // This is a C++ method declaration.
5777    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5778                                               cast<CXXRecordDecl>(DC),
5779                                               D.getLocStart(), NameInfo, R,
5780                                               TInfo, SC, isInline,
5781                                               isConstexpr, SourceLocation());
5782    IsVirtualOkay = !Ret->isStatic();
5783    return Ret;
5784  } else {
5785    // Determine whether the function was written with a
5786    // prototype. This true when:
5787    //   - we're in C++ (where every function has a prototype),
5788    return FunctionDecl::Create(SemaRef.Context, DC,
5789                                D.getLocStart(),
5790                                NameInfo, R, TInfo, SC, isInline,
5791                                true/*HasPrototype*/, isConstexpr);
5792  }
5793}
5794
5795void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5796  // In C++, the empty parameter-type-list must be spelled "void"; a
5797  // typedef of void is not permitted.
5798  if (getLangOpts().CPlusPlus &&
5799      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5800    bool IsTypeAlias = false;
5801    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5802      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5803    else if (const TemplateSpecializationType *TST =
5804               Param->getType()->getAs<TemplateSpecializationType>())
5805      IsTypeAlias = TST->isTypeAlias();
5806    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5807      << IsTypeAlias;
5808  }
5809}
5810
5811NamedDecl*
5812Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5813                              TypeSourceInfo *TInfo, LookupResult &Previous,
5814                              MultiTemplateParamsArg TemplateParamLists,
5815                              bool &AddToScope) {
5816  QualType R = TInfo->getType();
5817
5818  assert(R.getTypePtr()->isFunctionType());
5819
5820  // TODO: consider using NameInfo for diagnostic.
5821  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5822  DeclarationName Name = NameInfo.getName();
5823  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5824
5825  if (D.getDeclSpec().isThreadSpecified())
5826    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5827
5828  // Do not allow returning a objc interface by-value.
5829  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5830    Diag(D.getIdentifierLoc(),
5831         diag::err_object_cannot_be_passed_returned_by_value) << 0
5832    << R->getAs<FunctionType>()->getResultType()
5833    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5834
5835    QualType T = R->getAs<FunctionType>()->getResultType();
5836    T = Context.getObjCObjectPointerType(T);
5837    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5838      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5839      R = Context.getFunctionType(T,
5840                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5841                                                     FPT->getNumArgs()),
5842                                  EPI);
5843    }
5844    else if (isa<FunctionNoProtoType>(R))
5845      R = Context.getFunctionNoProtoType(T);
5846  }
5847
5848  bool isFriend = false;
5849  FunctionTemplateDecl *FunctionTemplate = 0;
5850  bool isExplicitSpecialization = false;
5851  bool isFunctionTemplateSpecialization = false;
5852
5853  bool isDependentClassScopeExplicitSpecialization = false;
5854  bool HasExplicitTemplateArgs = false;
5855  TemplateArgumentListInfo TemplateArgs;
5856
5857  bool isVirtualOkay = false;
5858
5859  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5860                                              isVirtualOkay);
5861  if (!NewFD) return 0;
5862
5863  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5864    NewFD->setTopLevelDeclInObjCContainer();
5865
5866  if (getLangOpts().CPlusPlus) {
5867    bool isInline = D.getDeclSpec().isInlineSpecified();
5868    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5869    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5870    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5871    isFriend = D.getDeclSpec().isFriendSpecified();
5872    if (isFriend && !isInline && D.isFunctionDefinition()) {
5873      // C++ [class.friend]p5
5874      //   A function can be defined in a friend declaration of a
5875      //   class . . . . Such a function is implicitly inline.
5876      NewFD->setImplicitlyInline();
5877    }
5878
5879    // If this is a method defined in an __interface, and is not a constructor
5880    // or an overloaded operator, then set the pure flag (isVirtual will already
5881    // return true).
5882    if (const CXXRecordDecl *Parent =
5883          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5884      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5885        NewFD->setPure(true);
5886    }
5887
5888    SetNestedNameSpecifier(NewFD, D);
5889    isExplicitSpecialization = false;
5890    isFunctionTemplateSpecialization = false;
5891    if (D.isInvalidType())
5892      NewFD->setInvalidDecl();
5893
5894    // Set the lexical context. If the declarator has a C++
5895    // scope specifier, or is the object of a friend declaration, the
5896    // lexical context will be different from the semantic context.
5897    NewFD->setLexicalDeclContext(CurContext);
5898
5899    // Match up the template parameter lists with the scope specifier, then
5900    // determine whether we have a template or a template specialization.
5901    bool Invalid = false;
5902    if (TemplateParameterList *TemplateParams
5903          = MatchTemplateParametersToScopeSpecifier(
5904                                  D.getDeclSpec().getLocStart(),
5905                                  D.getIdentifierLoc(),
5906                                  D.getCXXScopeSpec(),
5907                                  TemplateParamLists.data(),
5908                                  TemplateParamLists.size(),
5909                                  isFriend,
5910                                  isExplicitSpecialization,
5911                                  Invalid)) {
5912      if (TemplateParams->size() > 0) {
5913        // This is a function template
5914
5915        // Check that we can declare a template here.
5916        if (CheckTemplateDeclScope(S, TemplateParams))
5917          return 0;
5918
5919        // A destructor cannot be a template.
5920        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5921          Diag(NewFD->getLocation(), diag::err_destructor_template);
5922          return 0;
5923        }
5924
5925        // If we're adding a template to a dependent context, we may need to
5926        // rebuilding some of the types used within the template parameter list,
5927        // now that we know what the current instantiation is.
5928        if (DC->isDependentContext()) {
5929          ContextRAII SavedContext(*this, DC);
5930          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5931            Invalid = true;
5932        }
5933
5934
5935        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5936                                                        NewFD->getLocation(),
5937                                                        Name, TemplateParams,
5938                                                        NewFD);
5939        FunctionTemplate->setLexicalDeclContext(CurContext);
5940        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5941
5942        // For source fidelity, store the other template param lists.
5943        if (TemplateParamLists.size() > 1) {
5944          NewFD->setTemplateParameterListsInfo(Context,
5945                                               TemplateParamLists.size() - 1,
5946                                               TemplateParamLists.data());
5947        }
5948      } else {
5949        // This is a function template specialization.
5950        isFunctionTemplateSpecialization = true;
5951        // For source fidelity, store all the template param lists.
5952        NewFD->setTemplateParameterListsInfo(Context,
5953                                             TemplateParamLists.size(),
5954                                             TemplateParamLists.data());
5955
5956        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5957        if (isFriend) {
5958          // We want to remove the "template<>", found here.
5959          SourceRange RemoveRange = TemplateParams->getSourceRange();
5960
5961          // If we remove the template<> and the name is not a
5962          // template-id, we're actually silently creating a problem:
5963          // the friend declaration will refer to an untemplated decl,
5964          // and clearly the user wants a template specialization.  So
5965          // we need to insert '<>' after the name.
5966          SourceLocation InsertLoc;
5967          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5968            InsertLoc = D.getName().getSourceRange().getEnd();
5969            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5970          }
5971
5972          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5973            << Name << RemoveRange
5974            << FixItHint::CreateRemoval(RemoveRange)
5975            << FixItHint::CreateInsertion(InsertLoc, "<>");
5976        }
5977      }
5978    }
5979    else {
5980      // All template param lists were matched against the scope specifier:
5981      // this is NOT (an explicit specialization of) a template.
5982      if (TemplateParamLists.size() > 0)
5983        // For source fidelity, store all the template param lists.
5984        NewFD->setTemplateParameterListsInfo(Context,
5985                                             TemplateParamLists.size(),
5986                                             TemplateParamLists.data());
5987    }
5988
5989    if (Invalid) {
5990      NewFD->setInvalidDecl();
5991      if (FunctionTemplate)
5992        FunctionTemplate->setInvalidDecl();
5993    }
5994
5995    // C++ [dcl.fct.spec]p5:
5996    //   The virtual specifier shall only be used in declarations of
5997    //   nonstatic class member functions that appear within a
5998    //   member-specification of a class declaration; see 10.3.
5999    //
6000    if (isVirtual && !NewFD->isInvalidDecl()) {
6001      if (!isVirtualOkay) {
6002        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6003             diag::err_virtual_non_function);
6004      } else if (!CurContext->isRecord()) {
6005        // 'virtual' was specified outside of the class.
6006        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6007             diag::err_virtual_out_of_class)
6008          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6009      } else if (NewFD->getDescribedFunctionTemplate()) {
6010        // C++ [temp.mem]p3:
6011        //  A member function template shall not be virtual.
6012        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6013             diag::err_virtual_member_function_template)
6014          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6015      } else {
6016        // Okay: Add virtual to the method.
6017        NewFD->setVirtualAsWritten(true);
6018      }
6019    }
6020
6021    // C++ [dcl.fct.spec]p3:
6022    //  The inline specifier shall not appear on a block scope function
6023    //  declaration.
6024    if (isInline && !NewFD->isInvalidDecl()) {
6025      if (CurContext->isFunctionOrMethod()) {
6026        // 'inline' is not allowed on block scope function declaration.
6027        Diag(D.getDeclSpec().getInlineSpecLoc(),
6028             diag::err_inline_declaration_block_scope) << Name
6029          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6030      }
6031    }
6032
6033    // C++ [dcl.fct.spec]p6:
6034    //  The explicit specifier shall be used only in the declaration of a
6035    //  constructor or conversion function within its class definition;
6036    //  see 12.3.1 and 12.3.2.
6037    if (isExplicit && !NewFD->isInvalidDecl()) {
6038      if (!CurContext->isRecord()) {
6039        // 'explicit' was specified outside of the class.
6040        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6041             diag::err_explicit_out_of_class)
6042          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6043      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6044                 !isa<CXXConversionDecl>(NewFD)) {
6045        // 'explicit' was specified on a function that wasn't a constructor
6046        // or conversion function.
6047        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6048             diag::err_explicit_non_ctor_or_conv_function)
6049          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6050      }
6051    }
6052
6053    if (isConstexpr) {
6054      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6055      // are implicitly inline.
6056      NewFD->setImplicitlyInline();
6057
6058      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6059      // be either constructors or to return a literal type. Therefore,
6060      // destructors cannot be declared constexpr.
6061      if (isa<CXXDestructorDecl>(NewFD))
6062        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6063    }
6064
6065    // If __module_private__ was specified, mark the function accordingly.
6066    if (D.getDeclSpec().isModulePrivateSpecified()) {
6067      if (isFunctionTemplateSpecialization) {
6068        SourceLocation ModulePrivateLoc
6069          = D.getDeclSpec().getModulePrivateSpecLoc();
6070        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6071          << 0
6072          << FixItHint::CreateRemoval(ModulePrivateLoc);
6073      } else {
6074        NewFD->setModulePrivate();
6075        if (FunctionTemplate)
6076          FunctionTemplate->setModulePrivate();
6077      }
6078    }
6079
6080    if (isFriend) {
6081      // For now, claim that the objects have no previous declaration.
6082      if (FunctionTemplate) {
6083        FunctionTemplate->setObjectOfFriendDecl(false);
6084        FunctionTemplate->setAccess(AS_public);
6085      }
6086      NewFD->setObjectOfFriendDecl(false);
6087      NewFD->setAccess(AS_public);
6088    }
6089
6090    // If a function is defined as defaulted or deleted, mark it as such now.
6091    switch (D.getFunctionDefinitionKind()) {
6092      case FDK_Declaration:
6093      case FDK_Definition:
6094        break;
6095
6096      case FDK_Defaulted:
6097        NewFD->setDefaulted();
6098        break;
6099
6100      case FDK_Deleted:
6101        NewFD->setDeletedAsWritten();
6102        break;
6103    }
6104
6105    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6106        D.isFunctionDefinition()) {
6107      // C++ [class.mfct]p2:
6108      //   A member function may be defined (8.4) in its class definition, in
6109      //   which case it is an inline member function (7.1.2)
6110      NewFD->setImplicitlyInline();
6111    }
6112
6113    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6114        !CurContext->isRecord()) {
6115      // C++ [class.static]p1:
6116      //   A data or function member of a class may be declared static
6117      //   in a class definition, in which case it is a static member of
6118      //   the class.
6119
6120      // Complain about the 'static' specifier if it's on an out-of-line
6121      // member function definition.
6122      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6123           diag::err_static_out_of_line)
6124        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6125    }
6126
6127    // C++11 [except.spec]p15:
6128    //   A deallocation function with no exception-specification is treated
6129    //   as if it were specified with noexcept(true).
6130    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6131    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6132         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6133        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6134      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6135      EPI.ExceptionSpecType = EST_BasicNoexcept;
6136      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6137                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6138                                                         FPT->getNumArgs()),
6139                                             EPI));
6140    }
6141  }
6142
6143  // Filter out previous declarations that don't match the scope.
6144  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6145                       isExplicitSpecialization ||
6146                       isFunctionTemplateSpecialization);
6147
6148  // Handle GNU asm-label extension (encoded as an attribute).
6149  if (Expr *E = (Expr*) D.getAsmLabel()) {
6150    // The parser guarantees this is a string.
6151    StringLiteral *SE = cast<StringLiteral>(E);
6152    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6153                                                SE->getString()));
6154  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6155    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6156      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6157    if (I != ExtnameUndeclaredIdentifiers.end()) {
6158      NewFD->addAttr(I->second);
6159      ExtnameUndeclaredIdentifiers.erase(I);
6160    }
6161  }
6162
6163  // Copy the parameter declarations from the declarator D to the function
6164  // declaration NewFD, if they are available.  First scavenge them into Params.
6165  SmallVector<ParmVarDecl*, 16> Params;
6166  if (D.isFunctionDeclarator()) {
6167    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6168
6169    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6170    // function that takes no arguments, not a function that takes a
6171    // single void argument.
6172    // We let through "const void" here because Sema::GetTypeForDeclarator
6173    // already checks for that case.
6174    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6175        FTI.ArgInfo[0].Param &&
6176        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6177      // Empty arg list, don't push any params.
6178      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6179    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6180      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6181        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6182        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6183        Param->setDeclContext(NewFD);
6184        Params.push_back(Param);
6185
6186        if (Param->isInvalidDecl())
6187          NewFD->setInvalidDecl();
6188      }
6189    }
6190
6191  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6192    // When we're declaring a function with a typedef, typeof, etc as in the
6193    // following example, we'll need to synthesize (unnamed)
6194    // parameters for use in the declaration.
6195    //
6196    // @code
6197    // typedef void fn(int);
6198    // fn f;
6199    // @endcode
6200
6201    // Synthesize a parameter for each argument type.
6202    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6203         AE = FT->arg_type_end(); AI != AE; ++AI) {
6204      ParmVarDecl *Param =
6205        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6206      Param->setScopeInfo(0, Params.size());
6207      Params.push_back(Param);
6208    }
6209  } else {
6210    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6211           "Should not need args for typedef of non-prototype fn");
6212  }
6213
6214  // Finally, we know we have the right number of parameters, install them.
6215  NewFD->setParams(Params);
6216
6217  // Find all anonymous symbols defined during the declaration of this function
6218  // and add to NewFD. This lets us track decls such 'enum Y' in:
6219  //
6220  //   void f(enum Y {AA} x) {}
6221  //
6222  // which would otherwise incorrectly end up in the translation unit scope.
6223  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6224  DeclsInPrototypeScope.clear();
6225
6226  if (D.getDeclSpec().isNoreturnSpecified())
6227    NewFD->addAttr(
6228        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6229                                       Context));
6230
6231  // Process the non-inheritable attributes on this declaration.
6232  ProcessDeclAttributes(S, NewFD, D,
6233                        /*NonInheritable=*/true, /*Inheritable=*/false);
6234
6235  // Functions returning a variably modified type violate C99 6.7.5.2p2
6236  // because all functions have linkage.
6237  if (!NewFD->isInvalidDecl() &&
6238      NewFD->getResultType()->isVariablyModifiedType()) {
6239    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6240    NewFD->setInvalidDecl();
6241  }
6242
6243  // Handle attributes.
6244  ProcessDeclAttributes(S, NewFD, D,
6245                        /*NonInheritable=*/false, /*Inheritable=*/true);
6246
6247  QualType RetType = NewFD->getResultType();
6248  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6249      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6250  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6251      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6252    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6253    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6254      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6255                                                        Context));
6256    }
6257  }
6258
6259  if (!getLangOpts().CPlusPlus) {
6260    // Perform semantic checking on the function declaration.
6261    bool isExplicitSpecialization=false;
6262    if (!NewFD->isInvalidDecl()) {
6263      if (NewFD->isMain())
6264        CheckMain(NewFD, D.getDeclSpec());
6265      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6266                                                  isExplicitSpecialization));
6267    }
6268    // Make graceful recovery from an invalid redeclaration.
6269    else if (!Previous.empty())
6270           D.setRedeclaration(true);
6271    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6272            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6273           "previous declaration set still overloaded");
6274  } else {
6275    // If the declarator is a template-id, translate the parser's template
6276    // argument list into our AST format.
6277    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6278      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6279      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6280      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6281      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6282                                         TemplateId->NumArgs);
6283      translateTemplateArguments(TemplateArgsPtr,
6284                                 TemplateArgs);
6285
6286      HasExplicitTemplateArgs = true;
6287
6288      if (NewFD->isInvalidDecl()) {
6289        HasExplicitTemplateArgs = false;
6290      } else if (FunctionTemplate) {
6291        // Function template with explicit template arguments.
6292        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6293          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6294
6295        HasExplicitTemplateArgs = false;
6296      } else if (!isFunctionTemplateSpecialization &&
6297                 !D.getDeclSpec().isFriendSpecified()) {
6298        // We have encountered something that the user meant to be a
6299        // specialization (because it has explicitly-specified template
6300        // arguments) but that was not introduced with a "template<>" (or had
6301        // too few of them).
6302        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6303          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6304          << FixItHint::CreateInsertion(
6305                                    D.getDeclSpec().getLocStart(),
6306                                        "template<> ");
6307        isFunctionTemplateSpecialization = true;
6308      } else {
6309        // "friend void foo<>(int);" is an implicit specialization decl.
6310        isFunctionTemplateSpecialization = true;
6311      }
6312    } else if (isFriend && isFunctionTemplateSpecialization) {
6313      // This combination is only possible in a recovery case;  the user
6314      // wrote something like:
6315      //   template <> friend void foo(int);
6316      // which we're recovering from as if the user had written:
6317      //   friend void foo<>(int);
6318      // Go ahead and fake up a template id.
6319      HasExplicitTemplateArgs = true;
6320        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6321      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6322    }
6323
6324    // If it's a friend (and only if it's a friend), it's possible
6325    // that either the specialized function type or the specialized
6326    // template is dependent, and therefore matching will fail.  In
6327    // this case, don't check the specialization yet.
6328    bool InstantiationDependent = false;
6329    if (isFunctionTemplateSpecialization && isFriend &&
6330        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6331         TemplateSpecializationType::anyDependentTemplateArguments(
6332            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6333            InstantiationDependent))) {
6334      assert(HasExplicitTemplateArgs &&
6335             "friend function specialization without template args");
6336      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6337                                                       Previous))
6338        NewFD->setInvalidDecl();
6339    } else if (isFunctionTemplateSpecialization) {
6340      if (CurContext->isDependentContext() && CurContext->isRecord()
6341          && !isFriend) {
6342        isDependentClassScopeExplicitSpecialization = true;
6343        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6344          diag::ext_function_specialization_in_class :
6345          diag::err_function_specialization_in_class)
6346          << NewFD->getDeclName();
6347      } else if (CheckFunctionTemplateSpecialization(NewFD,
6348                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6349                                                     Previous))
6350        NewFD->setInvalidDecl();
6351
6352      // C++ [dcl.stc]p1:
6353      //   A storage-class-specifier shall not be specified in an explicit
6354      //   specialization (14.7.3)
6355      if (SC != SC_None) {
6356        if (SC != NewFD->getTemplateSpecializationInfo()->getTemplate()->getTemplatedDecl()->getStorageClass())
6357          Diag(NewFD->getLocation(),
6358               diag::err_explicit_specialization_inconsistent_storage_class)
6359            << SC
6360            << FixItHint::CreateRemoval(
6361                                      D.getDeclSpec().getStorageClassSpecLoc());
6362
6363        else
6364          Diag(NewFD->getLocation(),
6365               diag::ext_explicit_specialization_storage_class)
6366            << FixItHint::CreateRemoval(
6367                                      D.getDeclSpec().getStorageClassSpecLoc());
6368      }
6369
6370    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6371      if (CheckMemberSpecialization(NewFD, Previous))
6372          NewFD->setInvalidDecl();
6373    }
6374
6375    // Perform semantic checking on the function declaration.
6376    if (!isDependentClassScopeExplicitSpecialization) {
6377      if (NewFD->isInvalidDecl()) {
6378        // If this is a class member, mark the class invalid immediately.
6379        // This avoids some consistency errors later.
6380        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6381          methodDecl->getParent()->setInvalidDecl();
6382      } else {
6383        if (NewFD->isMain())
6384          CheckMain(NewFD, D.getDeclSpec());
6385        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6386                                                    isExplicitSpecialization));
6387      }
6388    }
6389
6390    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6391            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6392           "previous declaration set still overloaded");
6393
6394    NamedDecl *PrincipalDecl = (FunctionTemplate
6395                                ? cast<NamedDecl>(FunctionTemplate)
6396                                : NewFD);
6397
6398    if (isFriend && D.isRedeclaration()) {
6399      AccessSpecifier Access = AS_public;
6400      if (!NewFD->isInvalidDecl())
6401        Access = NewFD->getPreviousDecl()->getAccess();
6402
6403      NewFD->setAccess(Access);
6404      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6405
6406      PrincipalDecl->setObjectOfFriendDecl(true);
6407    }
6408
6409    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6410        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6411      PrincipalDecl->setNonMemberOperator();
6412
6413    // If we have a function template, check the template parameter
6414    // list. This will check and merge default template arguments.
6415    if (FunctionTemplate) {
6416      FunctionTemplateDecl *PrevTemplate =
6417                                     FunctionTemplate->getPreviousDecl();
6418      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6419                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6420                            D.getDeclSpec().isFriendSpecified()
6421                              ? (D.isFunctionDefinition()
6422                                   ? TPC_FriendFunctionTemplateDefinition
6423                                   : TPC_FriendFunctionTemplate)
6424                              : (D.getCXXScopeSpec().isSet() &&
6425                                 DC && DC->isRecord() &&
6426                                 DC->isDependentContext())
6427                                  ? TPC_ClassTemplateMember
6428                                  : TPC_FunctionTemplate);
6429    }
6430
6431    if (NewFD->isInvalidDecl()) {
6432      // Ignore all the rest of this.
6433    } else if (!D.isRedeclaration()) {
6434      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6435                                       AddToScope };
6436      // Fake up an access specifier if it's supposed to be a class member.
6437      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6438        NewFD->setAccess(AS_public);
6439
6440      // Qualified decls generally require a previous declaration.
6441      if (D.getCXXScopeSpec().isSet()) {
6442        // ...with the major exception of templated-scope or
6443        // dependent-scope friend declarations.
6444
6445        // TODO: we currently also suppress this check in dependent
6446        // contexts because (1) the parameter depth will be off when
6447        // matching friend templates and (2) we might actually be
6448        // selecting a friend based on a dependent factor.  But there
6449        // are situations where these conditions don't apply and we
6450        // can actually do this check immediately.
6451        if (isFriend &&
6452            (TemplateParamLists.size() ||
6453             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6454             CurContext->isDependentContext())) {
6455          // ignore these
6456        } else {
6457          // The user tried to provide an out-of-line definition for a
6458          // function that is a member of a class or namespace, but there
6459          // was no such member function declared (C++ [class.mfct]p2,
6460          // C++ [namespace.memdef]p2). For example:
6461          //
6462          // class X {
6463          //   void f() const;
6464          // };
6465          //
6466          // void X::f() { } // ill-formed
6467          //
6468          // Complain about this problem, and attempt to suggest close
6469          // matches (e.g., those that differ only in cv-qualifiers and
6470          // whether the parameter types are references).
6471
6472          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6473                                                               NewFD,
6474                                                               ExtraArgs)) {
6475            AddToScope = ExtraArgs.AddToScope;
6476            return Result;
6477          }
6478        }
6479
6480        // Unqualified local friend declarations are required to resolve
6481        // to something.
6482      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6483        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6484                                                             NewFD,
6485                                                             ExtraArgs)) {
6486          AddToScope = ExtraArgs.AddToScope;
6487          return Result;
6488        }
6489      }
6490
6491    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6492               !isFriend && !isFunctionTemplateSpecialization &&
6493               !isExplicitSpecialization) {
6494      // An out-of-line member function declaration must also be a
6495      // definition (C++ [dcl.meaning]p1).
6496      // Note that this is not the case for explicit specializations of
6497      // function templates or member functions of class templates, per
6498      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6499      // extension for compatibility with old SWIG code which likes to
6500      // generate them.
6501      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6502        << D.getCXXScopeSpec().getRange();
6503    }
6504  }
6505
6506  ProcessPragmaWeak(S, NewFD);
6507  checkAttributesAfterMerging(*this, *NewFD);
6508
6509  AddKnownFunctionAttributes(NewFD);
6510
6511  if (NewFD->hasAttr<OverloadableAttr>() &&
6512      !NewFD->getType()->getAs<FunctionProtoType>()) {
6513    Diag(NewFD->getLocation(),
6514         diag::err_attribute_overloadable_no_prototype)
6515      << NewFD;
6516
6517    // Turn this into a variadic function with no parameters.
6518    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6519    FunctionProtoType::ExtProtoInfo EPI;
6520    EPI.Variadic = true;
6521    EPI.ExtInfo = FT->getExtInfo();
6522
6523    QualType R = Context.getFunctionType(FT->getResultType(),
6524                                         ArrayRef<QualType>(),
6525                                         EPI);
6526    NewFD->setType(R);
6527  }
6528
6529  // If there's a #pragma GCC visibility in scope, and this isn't a class
6530  // member, set the visibility of this function.
6531  if (!DC->isRecord() && NewFD->hasExternalLinkage())
6532    AddPushedVisibilityAttribute(NewFD);
6533
6534  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6535  // marking the function.
6536  AddCFAuditedAttribute(NewFD);
6537
6538  // If this is a locally-scoped extern C function, update the
6539  // map of such names.
6540  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6541      && !NewFD->isInvalidDecl())
6542    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6543
6544  // Set this FunctionDecl's range up to the right paren.
6545  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6546
6547  if (getLangOpts().CPlusPlus) {
6548    if (FunctionTemplate) {
6549      if (NewFD->isInvalidDecl())
6550        FunctionTemplate->setInvalidDecl();
6551      return FunctionTemplate;
6552    }
6553  }
6554
6555  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6556    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6557    if ((getLangOpts().OpenCLVersion >= 120)
6558        && (SC == SC_Static)) {
6559      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6560      D.setInvalidType();
6561    }
6562
6563    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6564    if (!NewFD->getResultType()->isVoidType()) {
6565      Diag(D.getIdentifierLoc(),
6566           diag::err_expected_kernel_void_return_type);
6567      D.setInvalidType();
6568    }
6569
6570    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6571         PE = NewFD->param_end(); PI != PE; ++PI) {
6572      ParmVarDecl *Param = *PI;
6573      QualType PT = Param->getType();
6574
6575      // OpenCL v1.2 s6.9.a:
6576      // A kernel function argument cannot be declared as a
6577      // pointer to a pointer type.
6578      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6579        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6580        D.setInvalidType();
6581      }
6582
6583      // OpenCL v1.2 s6.8 n:
6584      // A kernel function argument cannot be declared
6585      // of event_t type.
6586      if (PT->isEventT()) {
6587        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6588        D.setInvalidType();
6589      }
6590    }
6591  }
6592
6593  MarkUnusedFileScopedDecl(NewFD);
6594
6595  if (getLangOpts().CUDA)
6596    if (IdentifierInfo *II = NewFD->getIdentifier())
6597      if (!NewFD->isInvalidDecl() &&
6598          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6599        if (II->isStr("cudaConfigureCall")) {
6600          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6601            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6602
6603          Context.setcudaConfigureCallDecl(NewFD);
6604        }
6605      }
6606
6607  // Here we have an function template explicit specialization at class scope.
6608  // The actually specialization will be postponed to template instatiation
6609  // time via the ClassScopeFunctionSpecializationDecl node.
6610  if (isDependentClassScopeExplicitSpecialization) {
6611    ClassScopeFunctionSpecializationDecl *NewSpec =
6612                         ClassScopeFunctionSpecializationDecl::Create(
6613                                Context, CurContext, SourceLocation(),
6614                                cast<CXXMethodDecl>(NewFD),
6615                                HasExplicitTemplateArgs, TemplateArgs);
6616    CurContext->addDecl(NewSpec);
6617    AddToScope = false;
6618  }
6619
6620  return NewFD;
6621}
6622
6623/// \brief Perform semantic checking of a new function declaration.
6624///
6625/// Performs semantic analysis of the new function declaration
6626/// NewFD. This routine performs all semantic checking that does not
6627/// require the actual declarator involved in the declaration, and is
6628/// used both for the declaration of functions as they are parsed
6629/// (called via ActOnDeclarator) and for the declaration of functions
6630/// that have been instantiated via C++ template instantiation (called
6631/// via InstantiateDecl).
6632///
6633/// \param IsExplicitSpecialization whether this new function declaration is
6634/// an explicit specialization of the previous declaration.
6635///
6636/// This sets NewFD->isInvalidDecl() to true if there was an error.
6637///
6638/// \returns true if the function declaration is a redeclaration.
6639bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6640                                    LookupResult &Previous,
6641                                    bool IsExplicitSpecialization) {
6642  assert(!NewFD->getResultType()->isVariablyModifiedType()
6643         && "Variably modified return types are not handled here");
6644
6645  // Check for a previous declaration of this name.
6646  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6647    // Since we did not find anything by this name, look for a non-visible
6648    // extern "C" declaration with the same name.
6649    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6650      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6651    if (Pos != LocallyScopedExternCDecls.end())
6652      Previous.addDecl(Pos->second);
6653  }
6654
6655  // Filter out any non-conflicting previous declarations.
6656  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6657
6658  bool Redeclaration = false;
6659  NamedDecl *OldDecl = 0;
6660
6661  // Merge or overload the declaration with an existing declaration of
6662  // the same name, if appropriate.
6663  if (!Previous.empty()) {
6664    // Determine whether NewFD is an overload of PrevDecl or
6665    // a declaration that requires merging. If it's an overload,
6666    // there's no more work to do here; we'll just add the new
6667    // function to the scope.
6668    if (!AllowOverloadingOfFunction(Previous, Context)) {
6669      Redeclaration = true;
6670      OldDecl = Previous.getFoundDecl();
6671    } else {
6672      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6673                            /*NewIsUsingDecl*/ false)) {
6674      case Ovl_Match:
6675        Redeclaration = true;
6676        break;
6677
6678      case Ovl_NonFunction:
6679        Redeclaration = true;
6680        break;
6681
6682      case Ovl_Overload:
6683        Redeclaration = false;
6684        break;
6685      }
6686
6687      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6688        // If a function name is overloadable in C, then every function
6689        // with that name must be marked "overloadable".
6690        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6691          << Redeclaration << NewFD;
6692        NamedDecl *OverloadedDecl = 0;
6693        if (Redeclaration)
6694          OverloadedDecl = OldDecl;
6695        else if (!Previous.empty())
6696          OverloadedDecl = Previous.getRepresentativeDecl();
6697        if (OverloadedDecl)
6698          Diag(OverloadedDecl->getLocation(),
6699               diag::note_attribute_overloadable_prev_overload);
6700        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6701                                                        Context));
6702      }
6703    }
6704  }
6705
6706  // C++11 [dcl.constexpr]p8:
6707  //   A constexpr specifier for a non-static member function that is not
6708  //   a constructor declares that member function to be const.
6709  //
6710  // This needs to be delayed until we know whether this is an out-of-line
6711  // definition of a static member function.
6712  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6713  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6714      !isa<CXXConstructorDecl>(MD) &&
6715      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6716    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6717    if (FunctionTemplateDecl *OldTD =
6718          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6719      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6720    if (!OldMD || !OldMD->isStatic()) {
6721      const FunctionProtoType *FPT =
6722        MD->getType()->castAs<FunctionProtoType>();
6723      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6724      EPI.TypeQuals |= Qualifiers::Const;
6725      MD->setType(Context.getFunctionType(FPT->getResultType(),
6726                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6727                                                         FPT->getNumArgs()),
6728                                          EPI));
6729    }
6730  }
6731
6732  if (Redeclaration) {
6733    // NewFD and OldDecl represent declarations that need to be
6734    // merged.
6735    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6736      NewFD->setInvalidDecl();
6737      return Redeclaration;
6738    }
6739
6740    Previous.clear();
6741    Previous.addDecl(OldDecl);
6742
6743    if (FunctionTemplateDecl *OldTemplateDecl
6744                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6745      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6746      FunctionTemplateDecl *NewTemplateDecl
6747        = NewFD->getDescribedFunctionTemplate();
6748      assert(NewTemplateDecl && "Template/non-template mismatch");
6749      if (CXXMethodDecl *Method
6750            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6751        Method->setAccess(OldTemplateDecl->getAccess());
6752        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6753      }
6754
6755      // If this is an explicit specialization of a member that is a function
6756      // template, mark it as a member specialization.
6757      if (IsExplicitSpecialization &&
6758          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6759        NewTemplateDecl->setMemberSpecialization();
6760        assert(OldTemplateDecl->isMemberSpecialization());
6761      }
6762
6763    } else {
6764      // This needs to happen first so that 'inline' propagates.
6765      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6766
6767      if (isa<CXXMethodDecl>(NewFD)) {
6768        // A valid redeclaration of a C++ method must be out-of-line,
6769        // but (unfortunately) it's not necessarily a definition
6770        // because of templates, which means that the previous
6771        // declaration is not necessarily from the class definition.
6772
6773        // For just setting the access, that doesn't matter.
6774        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6775        NewFD->setAccess(oldMethod->getAccess());
6776
6777        // Update the key-function state if necessary for this ABI.
6778        if (NewFD->isInlined() &&
6779            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6780          // setNonKeyFunction needs to work with the original
6781          // declaration from the class definition, and isVirtual() is
6782          // just faster in that case, so map back to that now.
6783          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6784          if (oldMethod->isVirtual()) {
6785            Context.setNonKeyFunction(oldMethod);
6786          }
6787        }
6788      }
6789    }
6790  }
6791
6792  // Semantic checking for this function declaration (in isolation).
6793  if (getLangOpts().CPlusPlus) {
6794    // C++-specific checks.
6795    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6796      CheckConstructor(Constructor);
6797    } else if (CXXDestructorDecl *Destructor =
6798                dyn_cast<CXXDestructorDecl>(NewFD)) {
6799      CXXRecordDecl *Record = Destructor->getParent();
6800      QualType ClassType = Context.getTypeDeclType(Record);
6801
6802      // FIXME: Shouldn't we be able to perform this check even when the class
6803      // type is dependent? Both gcc and edg can handle that.
6804      if (!ClassType->isDependentType()) {
6805        DeclarationName Name
6806          = Context.DeclarationNames.getCXXDestructorName(
6807                                        Context.getCanonicalType(ClassType));
6808        if (NewFD->getDeclName() != Name) {
6809          Diag(NewFD->getLocation(), diag::err_destructor_name);
6810          NewFD->setInvalidDecl();
6811          return Redeclaration;
6812        }
6813      }
6814    } else if (CXXConversionDecl *Conversion
6815               = dyn_cast<CXXConversionDecl>(NewFD)) {
6816      ActOnConversionDeclarator(Conversion);
6817    }
6818
6819    // Find any virtual functions that this function overrides.
6820    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6821      if (!Method->isFunctionTemplateSpecialization() &&
6822          !Method->getDescribedFunctionTemplate() &&
6823          Method->isCanonicalDecl()) {
6824        if (AddOverriddenMethods(Method->getParent(), Method)) {
6825          // If the function was marked as "static", we have a problem.
6826          if (NewFD->getStorageClass() == SC_Static) {
6827            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6828          }
6829        }
6830      }
6831
6832      if (Method->isStatic())
6833        checkThisInStaticMemberFunctionType(Method);
6834    }
6835
6836    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6837    if (NewFD->isOverloadedOperator() &&
6838        CheckOverloadedOperatorDeclaration(NewFD)) {
6839      NewFD->setInvalidDecl();
6840      return Redeclaration;
6841    }
6842
6843    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6844    if (NewFD->getLiteralIdentifier() &&
6845        CheckLiteralOperatorDeclaration(NewFD)) {
6846      NewFD->setInvalidDecl();
6847      return Redeclaration;
6848    }
6849
6850    // In C++, check default arguments now that we have merged decls. Unless
6851    // the lexical context is the class, because in this case this is done
6852    // during delayed parsing anyway.
6853    if (!CurContext->isRecord())
6854      CheckCXXDefaultArguments(NewFD);
6855
6856    // If this function declares a builtin function, check the type of this
6857    // declaration against the expected type for the builtin.
6858    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6859      ASTContext::GetBuiltinTypeError Error;
6860      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6861      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6862      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6863        // The type of this function differs from the type of the builtin,
6864        // so forget about the builtin entirely.
6865        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6866      }
6867    }
6868
6869    // If this function is declared as being extern "C", then check to see if
6870    // the function returns a UDT (class, struct, or union type) that is not C
6871    // compatible, and if it does, warn the user.
6872    // But, issue any diagnostic on the first declaration only.
6873    if (NewFD->isExternC() && Previous.empty()) {
6874      QualType R = NewFD->getResultType();
6875      if (R->isIncompleteType() && !R->isVoidType())
6876        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6877            << NewFD << R;
6878      else if (!R.isPODType(Context) && !R->isVoidType() &&
6879               !R->isObjCObjectPointerType())
6880        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6881    }
6882  }
6883  return Redeclaration;
6884}
6885
6886static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6887  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6888  if (!TSI)
6889    return SourceRange();
6890
6891  TypeLoc TL = TSI->getTypeLoc();
6892  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6893  if (!FunctionTL)
6894    return SourceRange();
6895
6896  TypeLoc ResultTL = FunctionTL.getResultLoc();
6897  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6898    return ResultTL.getSourceRange();
6899
6900  return SourceRange();
6901}
6902
6903void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6904  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6905  //   static or constexpr is ill-formed.
6906  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6907  //   appear in a declaration of main.
6908  // static main is not an error under C99, but we should warn about it.
6909  // We accept _Noreturn main as an extension.
6910  if (FD->getStorageClass() == SC_Static)
6911    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6912         ? diag::err_static_main : diag::warn_static_main)
6913      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6914  if (FD->isInlineSpecified())
6915    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6916      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6917  if (DS.isNoreturnSpecified()) {
6918    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6919    SourceRange NoreturnRange(NoreturnLoc,
6920                              PP.getLocForEndOfToken(NoreturnLoc));
6921    Diag(NoreturnLoc, diag::ext_noreturn_main);
6922    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6923      << FixItHint::CreateRemoval(NoreturnRange);
6924  }
6925  if (FD->isConstexpr()) {
6926    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6927      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6928    FD->setConstexpr(false);
6929  }
6930
6931  QualType T = FD->getType();
6932  assert(T->isFunctionType() && "function decl is not of function type");
6933  const FunctionType* FT = T->castAs<FunctionType>();
6934
6935  // All the standards say that main() should should return 'int'.
6936  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6937    // In C and C++, main magically returns 0 if you fall off the end;
6938    // set the flag which tells us that.
6939    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6940    FD->setHasImplicitReturnZero(true);
6941
6942  // In C with GNU extensions we allow main() to have non-integer return
6943  // type, but we should warn about the extension, and we disable the
6944  // implicit-return-zero rule.
6945  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6946    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6947
6948    SourceRange ResultRange = getResultSourceRange(FD);
6949    if (ResultRange.isValid())
6950      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6951          << FixItHint::CreateReplacement(ResultRange, "int");
6952
6953  // Otherwise, this is just a flat-out error.
6954  } else {
6955    SourceRange ResultRange = getResultSourceRange(FD);
6956    if (ResultRange.isValid())
6957      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6958          << FixItHint::CreateReplacement(ResultRange, "int");
6959    else
6960      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6961
6962    FD->setInvalidDecl(true);
6963  }
6964
6965  // Treat protoless main() as nullary.
6966  if (isa<FunctionNoProtoType>(FT)) return;
6967
6968  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6969  unsigned nparams = FTP->getNumArgs();
6970  assert(FD->getNumParams() == nparams);
6971
6972  bool HasExtraParameters = (nparams > 3);
6973
6974  // Darwin passes an undocumented fourth argument of type char**.  If
6975  // other platforms start sprouting these, the logic below will start
6976  // getting shifty.
6977  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6978    HasExtraParameters = false;
6979
6980  if (HasExtraParameters) {
6981    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6982    FD->setInvalidDecl(true);
6983    nparams = 3;
6984  }
6985
6986  // FIXME: a lot of the following diagnostics would be improved
6987  // if we had some location information about types.
6988
6989  QualType CharPP =
6990    Context.getPointerType(Context.getPointerType(Context.CharTy));
6991  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6992
6993  for (unsigned i = 0; i < nparams; ++i) {
6994    QualType AT = FTP->getArgType(i);
6995
6996    bool mismatch = true;
6997
6998    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6999      mismatch = false;
7000    else if (Expected[i] == CharPP) {
7001      // As an extension, the following forms are okay:
7002      //   char const **
7003      //   char const * const *
7004      //   char * const *
7005
7006      QualifierCollector qs;
7007      const PointerType* PT;
7008      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7009          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7010          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7011                              Context.CharTy)) {
7012        qs.removeConst();
7013        mismatch = !qs.empty();
7014      }
7015    }
7016
7017    if (mismatch) {
7018      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7019      // TODO: suggest replacing given type with expected type
7020      FD->setInvalidDecl(true);
7021    }
7022  }
7023
7024  if (nparams == 1 && !FD->isInvalidDecl()) {
7025    Diag(FD->getLocation(), diag::warn_main_one_arg);
7026  }
7027
7028  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7029    Diag(FD->getLocation(), diag::err_main_template_decl);
7030    FD->setInvalidDecl();
7031  }
7032}
7033
7034bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7035  // FIXME: Need strict checking.  In C89, we need to check for
7036  // any assignment, increment, decrement, function-calls, or
7037  // commas outside of a sizeof.  In C99, it's the same list,
7038  // except that the aforementioned are allowed in unevaluated
7039  // expressions.  Everything else falls under the
7040  // "may accept other forms of constant expressions" exception.
7041  // (We never end up here for C++, so the constant expression
7042  // rules there don't matter.)
7043  if (Init->isConstantInitializer(Context, false))
7044    return false;
7045  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7046    << Init->getSourceRange();
7047  return true;
7048}
7049
7050namespace {
7051  // Visits an initialization expression to see if OrigDecl is evaluated in
7052  // its own initialization and throws a warning if it does.
7053  class SelfReferenceChecker
7054      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7055    Sema &S;
7056    Decl *OrigDecl;
7057    bool isRecordType;
7058    bool isPODType;
7059    bool isReferenceType;
7060
7061  public:
7062    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7063
7064    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7065                                                    S(S), OrigDecl(OrigDecl) {
7066      isPODType = false;
7067      isRecordType = false;
7068      isReferenceType = false;
7069      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7070        isPODType = VD->getType().isPODType(S.Context);
7071        isRecordType = VD->getType()->isRecordType();
7072        isReferenceType = VD->getType()->isReferenceType();
7073      }
7074    }
7075
7076    // For most expressions, the cast is directly above the DeclRefExpr.
7077    // For conditional operators, the cast can be outside the conditional
7078    // operator if both expressions are DeclRefExpr's.
7079    void HandleValue(Expr *E) {
7080      if (isReferenceType)
7081        return;
7082      E = E->IgnoreParenImpCasts();
7083      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7084        HandleDeclRefExpr(DRE);
7085        return;
7086      }
7087
7088      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7089        HandleValue(CO->getTrueExpr());
7090        HandleValue(CO->getFalseExpr());
7091        return;
7092      }
7093
7094      if (isa<MemberExpr>(E)) {
7095        Expr *Base = E->IgnoreParenImpCasts();
7096        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7097          // Check for static member variables and don't warn on them.
7098          if (!isa<FieldDecl>(ME->getMemberDecl()))
7099            return;
7100          Base = ME->getBase()->IgnoreParenImpCasts();
7101        }
7102        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7103          HandleDeclRefExpr(DRE);
7104        return;
7105      }
7106    }
7107
7108    // Reference types are handled here since all uses of references are
7109    // bad, not just r-value uses.
7110    void VisitDeclRefExpr(DeclRefExpr *E) {
7111      if (isReferenceType)
7112        HandleDeclRefExpr(E);
7113    }
7114
7115    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7116      if (E->getCastKind() == CK_LValueToRValue ||
7117          (isRecordType && E->getCastKind() == CK_NoOp))
7118        HandleValue(E->getSubExpr());
7119
7120      Inherited::VisitImplicitCastExpr(E);
7121    }
7122
7123    void VisitMemberExpr(MemberExpr *E) {
7124      // Don't warn on arrays since they can be treated as pointers.
7125      if (E->getType()->canDecayToPointerType()) return;
7126
7127      // Warn when a non-static method call is followed by non-static member
7128      // field accesses, which is followed by a DeclRefExpr.
7129      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7130      bool Warn = (MD && !MD->isStatic());
7131      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7132      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7133        if (!isa<FieldDecl>(ME->getMemberDecl()))
7134          Warn = false;
7135        Base = ME->getBase()->IgnoreParenImpCasts();
7136      }
7137
7138      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7139        if (Warn)
7140          HandleDeclRefExpr(DRE);
7141        return;
7142      }
7143
7144      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7145      // Visit that expression.
7146      Visit(Base);
7147    }
7148
7149    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7150      if (E->getNumArgs() > 0)
7151        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7152          HandleDeclRefExpr(DRE);
7153
7154      Inherited::VisitCXXOperatorCallExpr(E);
7155    }
7156
7157    void VisitUnaryOperator(UnaryOperator *E) {
7158      // For POD record types, addresses of its own members are well-defined.
7159      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7160          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7161        if (!isPODType)
7162          HandleValue(E->getSubExpr());
7163        return;
7164      }
7165      Inherited::VisitUnaryOperator(E);
7166    }
7167
7168    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7169
7170    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7171      Decl* ReferenceDecl = DRE->getDecl();
7172      if (OrigDecl != ReferenceDecl) return;
7173      unsigned diag;
7174      if (isReferenceType) {
7175        diag = diag::warn_uninit_self_reference_in_reference_init;
7176      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7177        diag = diag::warn_static_self_reference_in_init;
7178      } else {
7179        diag = diag::warn_uninit_self_reference_in_init;
7180      }
7181
7182      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7183                            S.PDiag(diag)
7184                              << DRE->getNameInfo().getName()
7185                              << OrigDecl->getLocation()
7186                              << DRE->getSourceRange());
7187    }
7188  };
7189
7190  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7191  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7192                                 bool DirectInit) {
7193    // Parameters arguments are occassionially constructed with itself,
7194    // for instance, in recursive functions.  Skip them.
7195    if (isa<ParmVarDecl>(OrigDecl))
7196      return;
7197
7198    E = E->IgnoreParens();
7199
7200    // Skip checking T a = a where T is not a record or reference type.
7201    // Doing so is a way to silence uninitialized warnings.
7202    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7203      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7204        if (ICE->getCastKind() == CK_LValueToRValue)
7205          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7206            if (DRE->getDecl() == OrigDecl)
7207              return;
7208
7209    SelfReferenceChecker(S, OrigDecl).Visit(E);
7210  }
7211}
7212
7213/// AddInitializerToDecl - Adds the initializer Init to the
7214/// declaration dcl. If DirectInit is true, this is C++ direct
7215/// initialization rather than copy initialization.
7216void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7217                                bool DirectInit, bool TypeMayContainAuto) {
7218  // If there is no declaration, there was an error parsing it.  Just ignore
7219  // the initializer.
7220  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7221    return;
7222
7223  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7224    // With declarators parsed the way they are, the parser cannot
7225    // distinguish between a normal initializer and a pure-specifier.
7226    // Thus this grotesque test.
7227    IntegerLiteral *IL;
7228    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7229        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7230      CheckPureMethod(Method, Init->getSourceRange());
7231    else {
7232      Diag(Method->getLocation(), diag::err_member_function_initialization)
7233        << Method->getDeclName() << Init->getSourceRange();
7234      Method->setInvalidDecl();
7235    }
7236    return;
7237  }
7238
7239  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7240  if (!VDecl) {
7241    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7242    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7243    RealDecl->setInvalidDecl();
7244    return;
7245  }
7246
7247  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7248
7249  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7250  AutoType *Auto = 0;
7251  if (TypeMayContainAuto &&
7252      (Auto = VDecl->getType()->getContainedAutoType()) &&
7253      !Auto->isDeduced()) {
7254    Expr *DeduceInit = Init;
7255    // Initializer could be a C++ direct-initializer. Deduction only works if it
7256    // contains exactly one expression.
7257    if (CXXDirectInit) {
7258      if (CXXDirectInit->getNumExprs() == 0) {
7259        // It isn't possible to write this directly, but it is possible to
7260        // end up in this situation with "auto x(some_pack...);"
7261        Diag(CXXDirectInit->getLocStart(),
7262             diag::err_auto_var_init_no_expression)
7263          << VDecl->getDeclName() << VDecl->getType()
7264          << VDecl->getSourceRange();
7265        RealDecl->setInvalidDecl();
7266        return;
7267      } else if (CXXDirectInit->getNumExprs() > 1) {
7268        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7269             diag::err_auto_var_init_multiple_expressions)
7270          << VDecl->getDeclName() << VDecl->getType()
7271          << VDecl->getSourceRange();
7272        RealDecl->setInvalidDecl();
7273        return;
7274      } else {
7275        DeduceInit = CXXDirectInit->getExpr(0);
7276      }
7277    }
7278
7279    // Expressions default to 'id' when we're in a debugger.
7280    bool DefaultedToAuto = false;
7281    if (getLangOpts().DebuggerCastResultToId &&
7282        Init->getType() == Context.UnknownAnyTy) {
7283      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7284      if (Result.isInvalid()) {
7285        VDecl->setInvalidDecl();
7286        return;
7287      }
7288      Init = Result.take();
7289      DefaultedToAuto = true;
7290    }
7291
7292    TypeSourceInfo *DeducedType = 0;
7293    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7294            DAR_Failed)
7295      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7296    if (!DeducedType) {
7297      RealDecl->setInvalidDecl();
7298      return;
7299    }
7300    VDecl->setTypeSourceInfo(DeducedType);
7301    VDecl->setType(DeducedType->getType());
7302    assert(VDecl->isLinkageValid());
7303
7304    // In ARC, infer lifetime.
7305    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7306      VDecl->setInvalidDecl();
7307
7308    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7309    // 'id' instead of a specific object type prevents most of our usual checks.
7310    // We only want to warn outside of template instantiations, though:
7311    // inside a template, the 'id' could have come from a parameter.
7312    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7313        DeducedType->getType()->isObjCIdType()) {
7314      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7315      Diag(Loc, diag::warn_auto_var_is_id)
7316        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7317    }
7318
7319    // If this is a redeclaration, check that the type we just deduced matches
7320    // the previously declared type.
7321    if (VarDecl *Old = VDecl->getPreviousDecl())
7322      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7323  }
7324
7325  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7326    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7327    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7328    VDecl->setInvalidDecl();
7329    return;
7330  }
7331
7332  if (!VDecl->getType()->isDependentType()) {
7333    // A definition must end up with a complete type, which means it must be
7334    // complete with the restriction that an array type might be completed by
7335    // the initializer; note that later code assumes this restriction.
7336    QualType BaseDeclType = VDecl->getType();
7337    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7338      BaseDeclType = Array->getElementType();
7339    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7340                            diag::err_typecheck_decl_incomplete_type)) {
7341      RealDecl->setInvalidDecl();
7342      return;
7343    }
7344
7345    // The variable can not have an abstract class type.
7346    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7347                               diag::err_abstract_type_in_decl,
7348                               AbstractVariableType))
7349      VDecl->setInvalidDecl();
7350  }
7351
7352  const VarDecl *Def;
7353  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7354    Diag(VDecl->getLocation(), diag::err_redefinition)
7355      << VDecl->getDeclName();
7356    Diag(Def->getLocation(), diag::note_previous_definition);
7357    VDecl->setInvalidDecl();
7358    return;
7359  }
7360
7361  const VarDecl* PrevInit = 0;
7362  if (getLangOpts().CPlusPlus) {
7363    // C++ [class.static.data]p4
7364    //   If a static data member is of const integral or const
7365    //   enumeration type, its declaration in the class definition can
7366    //   specify a constant-initializer which shall be an integral
7367    //   constant expression (5.19). In that case, the member can appear
7368    //   in integral constant expressions. The member shall still be
7369    //   defined in a namespace scope if it is used in the program and the
7370    //   namespace scope definition shall not contain an initializer.
7371    //
7372    // We already performed a redefinition check above, but for static
7373    // data members we also need to check whether there was an in-class
7374    // declaration with an initializer.
7375    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7376      Diag(VDecl->getLocation(), diag::err_redefinition)
7377        << VDecl->getDeclName();
7378      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7379      return;
7380    }
7381
7382    if (VDecl->hasLocalStorage())
7383      getCurFunction()->setHasBranchProtectedScope();
7384
7385    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7386      VDecl->setInvalidDecl();
7387      return;
7388    }
7389  }
7390
7391  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7392  // a kernel function cannot be initialized."
7393  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7394    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7395    VDecl->setInvalidDecl();
7396    return;
7397  }
7398
7399  // Get the decls type and save a reference for later, since
7400  // CheckInitializerTypes may change it.
7401  QualType DclT = VDecl->getType(), SavT = DclT;
7402
7403  // Expressions default to 'id' when we're in a debugger
7404  // and we are assigning it to a variable of Objective-C pointer type.
7405  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7406      Init->getType() == Context.UnknownAnyTy) {
7407    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7408    if (Result.isInvalid()) {
7409      VDecl->setInvalidDecl();
7410      return;
7411    }
7412    Init = Result.take();
7413  }
7414
7415  // Perform the initialization.
7416  if (!VDecl->isInvalidDecl()) {
7417    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7418    InitializationKind Kind
7419      = DirectInit ?
7420          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7421                                                           Init->getLocStart(),
7422                                                           Init->getLocEnd())
7423                        : InitializationKind::CreateDirectList(
7424                                                          VDecl->getLocation())
7425                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7426                                                    Init->getLocStart());
7427
7428    Expr **Args = &Init;
7429    unsigned NumArgs = 1;
7430    if (CXXDirectInit) {
7431      Args = CXXDirectInit->getExprs();
7432      NumArgs = CXXDirectInit->getNumExprs();
7433    }
7434    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7435    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7436                                        MultiExprArg(Args, NumArgs), &DclT);
7437    if (Result.isInvalid()) {
7438      VDecl->setInvalidDecl();
7439      return;
7440    }
7441
7442    Init = Result.takeAs<Expr>();
7443  }
7444
7445  // Check for self-references within variable initializers.
7446  // Variables declared within a function/method body (except for references)
7447  // are handled by a dataflow analysis.
7448  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7449      VDecl->getType()->isReferenceType()) {
7450    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7451  }
7452
7453  // If the type changed, it means we had an incomplete type that was
7454  // completed by the initializer. For example:
7455  //   int ary[] = { 1, 3, 5 };
7456  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7457  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7458    VDecl->setType(DclT);
7459
7460  if (!VDecl->isInvalidDecl()) {
7461    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7462
7463    if (VDecl->hasAttr<BlocksAttr>())
7464      checkRetainCycles(VDecl, Init);
7465
7466    // It is safe to assign a weak reference into a strong variable.
7467    // Although this code can still have problems:
7468    //   id x = self.weakProp;
7469    //   id y = self.weakProp;
7470    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7471    // paths through the function. This should be revisited if
7472    // -Wrepeated-use-of-weak is made flow-sensitive.
7473    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7474      DiagnosticsEngine::Level Level =
7475        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7476                                 Init->getLocStart());
7477      if (Level != DiagnosticsEngine::Ignored)
7478        getCurFunction()->markSafeWeakUse(Init);
7479    }
7480  }
7481
7482  // The initialization is usually a full-expression.
7483  //
7484  // FIXME: If this is a braced initialization of an aggregate, it is not
7485  // an expression, and each individual field initializer is a separate
7486  // full-expression. For instance, in:
7487  //
7488  //   struct Temp { ~Temp(); };
7489  //   struct S { S(Temp); };
7490  //   struct T { S a, b; } t = { Temp(), Temp() }
7491  //
7492  // we should destroy the first Temp before constructing the second.
7493  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7494                                          false,
7495                                          VDecl->isConstexpr());
7496  if (Result.isInvalid()) {
7497    VDecl->setInvalidDecl();
7498    return;
7499  }
7500  Init = Result.take();
7501
7502  // Attach the initializer to the decl.
7503  VDecl->setInit(Init);
7504
7505  if (VDecl->isLocalVarDecl()) {
7506    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7507    // static storage duration shall be constant expressions or string literals.
7508    // C++ does not have this restriction.
7509    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7510        VDecl->getStorageClass() == SC_Static)
7511      CheckForConstantInitializer(Init, DclT);
7512  } else if (VDecl->isStaticDataMember() &&
7513             VDecl->getLexicalDeclContext()->isRecord()) {
7514    // This is an in-class initialization for a static data member, e.g.,
7515    //
7516    // struct S {
7517    //   static const int value = 17;
7518    // };
7519
7520    // C++ [class.mem]p4:
7521    //   A member-declarator can contain a constant-initializer only
7522    //   if it declares a static member (9.4) of const integral or
7523    //   const enumeration type, see 9.4.2.
7524    //
7525    // C++11 [class.static.data]p3:
7526    //   If a non-volatile const static data member is of integral or
7527    //   enumeration type, its declaration in the class definition can
7528    //   specify a brace-or-equal-initializer in which every initalizer-clause
7529    //   that is an assignment-expression is a constant expression. A static
7530    //   data member of literal type can be declared in the class definition
7531    //   with the constexpr specifier; if so, its declaration shall specify a
7532    //   brace-or-equal-initializer in which every initializer-clause that is
7533    //   an assignment-expression is a constant expression.
7534
7535    // Do nothing on dependent types.
7536    if (DclT->isDependentType()) {
7537
7538    // Allow any 'static constexpr' members, whether or not they are of literal
7539    // type. We separately check that every constexpr variable is of literal
7540    // type.
7541    } else if (VDecl->isConstexpr()) {
7542
7543    // Require constness.
7544    } else if (!DclT.isConstQualified()) {
7545      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7546        << Init->getSourceRange();
7547      VDecl->setInvalidDecl();
7548
7549    // We allow integer constant expressions in all cases.
7550    } else if (DclT->isIntegralOrEnumerationType()) {
7551      // Check whether the expression is a constant expression.
7552      SourceLocation Loc;
7553      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7554        // In C++11, a non-constexpr const static data member with an
7555        // in-class initializer cannot be volatile.
7556        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7557      else if (Init->isValueDependent())
7558        ; // Nothing to check.
7559      else if (Init->isIntegerConstantExpr(Context, &Loc))
7560        ; // Ok, it's an ICE!
7561      else if (Init->isEvaluatable(Context)) {
7562        // If we can constant fold the initializer through heroics, accept it,
7563        // but report this as a use of an extension for -pedantic.
7564        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7565          << Init->getSourceRange();
7566      } else {
7567        // Otherwise, this is some crazy unknown case.  Report the issue at the
7568        // location provided by the isIntegerConstantExpr failed check.
7569        Diag(Loc, diag::err_in_class_initializer_non_constant)
7570          << Init->getSourceRange();
7571        VDecl->setInvalidDecl();
7572      }
7573
7574    // We allow foldable floating-point constants as an extension.
7575    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7576      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7577      // it anyway and provide a fixit to add the 'constexpr'.
7578      if (getLangOpts().CPlusPlus11) {
7579        Diag(VDecl->getLocation(),
7580             diag::ext_in_class_initializer_float_type_cxx11)
7581            << DclT << Init->getSourceRange();
7582        Diag(VDecl->getLocStart(),
7583             diag::note_in_class_initializer_float_type_cxx11)
7584            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7585      } else {
7586        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7587          << DclT << Init->getSourceRange();
7588
7589        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7590          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7591            << Init->getSourceRange();
7592          VDecl->setInvalidDecl();
7593        }
7594      }
7595
7596    // Suggest adding 'constexpr' in C++11 for literal types.
7597    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7598      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7599        << DclT << Init->getSourceRange()
7600        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7601      VDecl->setConstexpr(true);
7602
7603    } else {
7604      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7605        << DclT << Init->getSourceRange();
7606      VDecl->setInvalidDecl();
7607    }
7608  } else if (VDecl->isFileVarDecl()) {
7609    if (VDecl->getStorageClass() == SC_Extern &&
7610        (!getLangOpts().CPlusPlus ||
7611         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7612           VDecl->isExternC())))
7613      Diag(VDecl->getLocation(), diag::warn_extern_init);
7614
7615    // C99 6.7.8p4. All file scoped initializers need to be constant.
7616    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7617      CheckForConstantInitializer(Init, DclT);
7618  }
7619
7620  // We will represent direct-initialization similarly to copy-initialization:
7621  //    int x(1);  -as-> int x = 1;
7622  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7623  //
7624  // Clients that want to distinguish between the two forms, can check for
7625  // direct initializer using VarDecl::getInitStyle().
7626  // A major benefit is that clients that don't particularly care about which
7627  // exactly form was it (like the CodeGen) can handle both cases without
7628  // special case code.
7629
7630  // C++ 8.5p11:
7631  // The form of initialization (using parentheses or '=') is generally
7632  // insignificant, but does matter when the entity being initialized has a
7633  // class type.
7634  if (CXXDirectInit) {
7635    assert(DirectInit && "Call-style initializer must be direct init.");
7636    VDecl->setInitStyle(VarDecl::CallInit);
7637  } else if (DirectInit) {
7638    // This must be list-initialization. No other way is direct-initialization.
7639    VDecl->setInitStyle(VarDecl::ListInit);
7640  }
7641
7642  CheckCompleteVariableDeclaration(VDecl);
7643}
7644
7645/// ActOnInitializerError - Given that there was an error parsing an
7646/// initializer for the given declaration, try to return to some form
7647/// of sanity.
7648void Sema::ActOnInitializerError(Decl *D) {
7649  // Our main concern here is re-establishing invariants like "a
7650  // variable's type is either dependent or complete".
7651  if (!D || D->isInvalidDecl()) return;
7652
7653  VarDecl *VD = dyn_cast<VarDecl>(D);
7654  if (!VD) return;
7655
7656  // Auto types are meaningless if we can't make sense of the initializer.
7657  if (ParsingInitForAutoVars.count(D)) {
7658    D->setInvalidDecl();
7659    return;
7660  }
7661
7662  QualType Ty = VD->getType();
7663  if (Ty->isDependentType()) return;
7664
7665  // Require a complete type.
7666  if (RequireCompleteType(VD->getLocation(),
7667                          Context.getBaseElementType(Ty),
7668                          diag::err_typecheck_decl_incomplete_type)) {
7669    VD->setInvalidDecl();
7670    return;
7671  }
7672
7673  // Require an abstract type.
7674  if (RequireNonAbstractType(VD->getLocation(), Ty,
7675                             diag::err_abstract_type_in_decl,
7676                             AbstractVariableType)) {
7677    VD->setInvalidDecl();
7678    return;
7679  }
7680
7681  // Don't bother complaining about constructors or destructors,
7682  // though.
7683}
7684
7685void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7686                                  bool TypeMayContainAuto) {
7687  // If there is no declaration, there was an error parsing it. Just ignore it.
7688  if (RealDecl == 0)
7689    return;
7690
7691  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7692    QualType Type = Var->getType();
7693
7694    // C++11 [dcl.spec.auto]p3
7695    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7696      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7697        << Var->getDeclName() << Type;
7698      Var->setInvalidDecl();
7699      return;
7700    }
7701
7702    // C++11 [class.static.data]p3: A static data member can be declared with
7703    // the constexpr specifier; if so, its declaration shall specify
7704    // a brace-or-equal-initializer.
7705    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7706    // the definition of a variable [...] or the declaration of a static data
7707    // member.
7708    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7709      if (Var->isStaticDataMember())
7710        Diag(Var->getLocation(),
7711             diag::err_constexpr_static_mem_var_requires_init)
7712          << Var->getDeclName();
7713      else
7714        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7715      Var->setInvalidDecl();
7716      return;
7717    }
7718
7719    switch (Var->isThisDeclarationADefinition()) {
7720    case VarDecl::Definition:
7721      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7722        break;
7723
7724      // We have an out-of-line definition of a static data member
7725      // that has an in-class initializer, so we type-check this like
7726      // a declaration.
7727      //
7728      // Fall through
7729
7730    case VarDecl::DeclarationOnly:
7731      // It's only a declaration.
7732
7733      // Block scope. C99 6.7p7: If an identifier for an object is
7734      // declared with no linkage (C99 6.2.2p6), the type for the
7735      // object shall be complete.
7736      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7737          !Var->getLinkage() && !Var->isInvalidDecl() &&
7738          RequireCompleteType(Var->getLocation(), Type,
7739                              diag::err_typecheck_decl_incomplete_type))
7740        Var->setInvalidDecl();
7741
7742      // Make sure that the type is not abstract.
7743      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7744          RequireNonAbstractType(Var->getLocation(), Type,
7745                                 diag::err_abstract_type_in_decl,
7746                                 AbstractVariableType))
7747        Var->setInvalidDecl();
7748      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7749          Var->getStorageClass() == SC_PrivateExtern) {
7750        Diag(Var->getLocation(), diag::warn_private_extern);
7751        Diag(Var->getLocation(), diag::note_private_extern);
7752      }
7753
7754      return;
7755
7756    case VarDecl::TentativeDefinition:
7757      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7758      // object that has file scope without an initializer, and without a
7759      // storage-class specifier or with the storage-class specifier "static",
7760      // constitutes a tentative definition. Note: A tentative definition with
7761      // external linkage is valid (C99 6.2.2p5).
7762      if (!Var->isInvalidDecl()) {
7763        if (const IncompleteArrayType *ArrayT
7764                                    = Context.getAsIncompleteArrayType(Type)) {
7765          if (RequireCompleteType(Var->getLocation(),
7766                                  ArrayT->getElementType(),
7767                                  diag::err_illegal_decl_array_incomplete_type))
7768            Var->setInvalidDecl();
7769        } else if (Var->getStorageClass() == SC_Static) {
7770          // C99 6.9.2p3: If the declaration of an identifier for an object is
7771          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7772          // declared type shall not be an incomplete type.
7773          // NOTE: code such as the following
7774          //     static struct s;
7775          //     struct s { int a; };
7776          // is accepted by gcc. Hence here we issue a warning instead of
7777          // an error and we do not invalidate the static declaration.
7778          // NOTE: to avoid multiple warnings, only check the first declaration.
7779          if (Var->getPreviousDecl() == 0)
7780            RequireCompleteType(Var->getLocation(), Type,
7781                                diag::ext_typecheck_decl_incomplete_type);
7782        }
7783      }
7784
7785      // Record the tentative definition; we're done.
7786      if (!Var->isInvalidDecl())
7787        TentativeDefinitions.push_back(Var);
7788      return;
7789    }
7790
7791    // Provide a specific diagnostic for uninitialized variable
7792    // definitions with incomplete array type.
7793    if (Type->isIncompleteArrayType()) {
7794      Diag(Var->getLocation(),
7795           diag::err_typecheck_incomplete_array_needs_initializer);
7796      Var->setInvalidDecl();
7797      return;
7798    }
7799
7800    // Provide a specific diagnostic for uninitialized variable
7801    // definitions with reference type.
7802    if (Type->isReferenceType()) {
7803      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7804        << Var->getDeclName()
7805        << SourceRange(Var->getLocation(), Var->getLocation());
7806      Var->setInvalidDecl();
7807      return;
7808    }
7809
7810    // Do not attempt to type-check the default initializer for a
7811    // variable with dependent type.
7812    if (Type->isDependentType())
7813      return;
7814
7815    if (Var->isInvalidDecl())
7816      return;
7817
7818    if (RequireCompleteType(Var->getLocation(),
7819                            Context.getBaseElementType(Type),
7820                            diag::err_typecheck_decl_incomplete_type)) {
7821      Var->setInvalidDecl();
7822      return;
7823    }
7824
7825    // The variable can not have an abstract class type.
7826    if (RequireNonAbstractType(Var->getLocation(), Type,
7827                               diag::err_abstract_type_in_decl,
7828                               AbstractVariableType)) {
7829      Var->setInvalidDecl();
7830      return;
7831    }
7832
7833    // Check for jumps past the implicit initializer.  C++0x
7834    // clarifies that this applies to a "variable with automatic
7835    // storage duration", not a "local variable".
7836    // C++11 [stmt.dcl]p3
7837    //   A program that jumps from a point where a variable with automatic
7838    //   storage duration is not in scope to a point where it is in scope is
7839    //   ill-formed unless the variable has scalar type, class type with a
7840    //   trivial default constructor and a trivial destructor, a cv-qualified
7841    //   version of one of these types, or an array of one of the preceding
7842    //   types and is declared without an initializer.
7843    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7844      if (const RecordType *Record
7845            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7846        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7847        // Mark the function for further checking even if the looser rules of
7848        // C++11 do not require such checks, so that we can diagnose
7849        // incompatibilities with C++98.
7850        if (!CXXRecord->isPOD())
7851          getCurFunction()->setHasBranchProtectedScope();
7852      }
7853    }
7854
7855    // C++03 [dcl.init]p9:
7856    //   If no initializer is specified for an object, and the
7857    //   object is of (possibly cv-qualified) non-POD class type (or
7858    //   array thereof), the object shall be default-initialized; if
7859    //   the object is of const-qualified type, the underlying class
7860    //   type shall have a user-declared default
7861    //   constructor. Otherwise, if no initializer is specified for
7862    //   a non- static object, the object and its subobjects, if
7863    //   any, have an indeterminate initial value); if the object
7864    //   or any of its subobjects are of const-qualified type, the
7865    //   program is ill-formed.
7866    // C++0x [dcl.init]p11:
7867    //   If no initializer is specified for an object, the object is
7868    //   default-initialized; [...].
7869    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7870    InitializationKind Kind
7871      = InitializationKind::CreateDefault(Var->getLocation());
7872
7873    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7874    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7875    if (Init.isInvalid())
7876      Var->setInvalidDecl();
7877    else if (Init.get()) {
7878      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7879      // This is important for template substitution.
7880      Var->setInitStyle(VarDecl::CallInit);
7881    }
7882
7883    CheckCompleteVariableDeclaration(Var);
7884  }
7885}
7886
7887void Sema::ActOnCXXForRangeDecl(Decl *D) {
7888  VarDecl *VD = dyn_cast<VarDecl>(D);
7889  if (!VD) {
7890    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7891    D->setInvalidDecl();
7892    return;
7893  }
7894
7895  VD->setCXXForRangeDecl(true);
7896
7897  // for-range-declaration cannot be given a storage class specifier.
7898  int Error = -1;
7899  switch (VD->getStorageClass()) {
7900  case SC_None:
7901    break;
7902  case SC_Extern:
7903    Error = 0;
7904    break;
7905  case SC_Static:
7906    Error = 1;
7907    break;
7908  case SC_PrivateExtern:
7909    Error = 2;
7910    break;
7911  case SC_Auto:
7912    Error = 3;
7913    break;
7914  case SC_Register:
7915    Error = 4;
7916    break;
7917  case SC_OpenCLWorkGroupLocal:
7918    llvm_unreachable("Unexpected storage class");
7919  }
7920  if (VD->isConstexpr())
7921    Error = 5;
7922  if (Error != -1) {
7923    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7924      << VD->getDeclName() << Error;
7925    D->setInvalidDecl();
7926  }
7927}
7928
7929void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7930  if (var->isInvalidDecl()) return;
7931
7932  // In ARC, don't allow jumps past the implicit initialization of a
7933  // local retaining variable.
7934  if (getLangOpts().ObjCAutoRefCount &&
7935      var->hasLocalStorage()) {
7936    switch (var->getType().getObjCLifetime()) {
7937    case Qualifiers::OCL_None:
7938    case Qualifiers::OCL_ExplicitNone:
7939    case Qualifiers::OCL_Autoreleasing:
7940      break;
7941
7942    case Qualifiers::OCL_Weak:
7943    case Qualifiers::OCL_Strong:
7944      getCurFunction()->setHasBranchProtectedScope();
7945      break;
7946    }
7947  }
7948
7949  if (var->isThisDeclarationADefinition() &&
7950      var->hasExternalLinkage() &&
7951      getDiagnostics().getDiagnosticLevel(
7952                       diag::warn_missing_variable_declarations,
7953                       var->getLocation())) {
7954    // Find a previous declaration that's not a definition.
7955    VarDecl *prev = var->getPreviousDecl();
7956    while (prev && prev->isThisDeclarationADefinition())
7957      prev = prev->getPreviousDecl();
7958
7959    if (!prev)
7960      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7961  }
7962
7963  // All the following checks are C++ only.
7964  if (!getLangOpts().CPlusPlus) return;
7965
7966  QualType type = var->getType();
7967  if (type->isDependentType()) return;
7968
7969  // __block variables might require us to capture a copy-initializer.
7970  if (var->hasAttr<BlocksAttr>()) {
7971    // It's currently invalid to ever have a __block variable with an
7972    // array type; should we diagnose that here?
7973
7974    // Regardless, we don't want to ignore array nesting when
7975    // constructing this copy.
7976    if (type->isStructureOrClassType()) {
7977      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
7978      SourceLocation poi = var->getLocation();
7979      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7980      ExprResult result
7981        = PerformMoveOrCopyInitialization(
7982            InitializedEntity::InitializeBlock(poi, type, false),
7983            var, var->getType(), varRef, /*AllowNRVO=*/true);
7984      if (!result.isInvalid()) {
7985        result = MaybeCreateExprWithCleanups(result);
7986        Expr *init = result.takeAs<Expr>();
7987        Context.setBlockVarCopyInits(var, init);
7988      }
7989    }
7990  }
7991
7992  Expr *Init = var->getInit();
7993  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7994  QualType baseType = Context.getBaseElementType(type);
7995
7996  if (!var->getDeclContext()->isDependentContext() &&
7997      Init && !Init->isValueDependent()) {
7998    if (IsGlobal && !var->isConstexpr() &&
7999        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8000                                            var->getLocation())
8001          != DiagnosticsEngine::Ignored &&
8002        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8003      Diag(var->getLocation(), diag::warn_global_constructor)
8004        << Init->getSourceRange();
8005
8006    if (var->isConstexpr()) {
8007      SmallVector<PartialDiagnosticAt, 8> Notes;
8008      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8009        SourceLocation DiagLoc = var->getLocation();
8010        // If the note doesn't add any useful information other than a source
8011        // location, fold it into the primary diagnostic.
8012        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8013              diag::note_invalid_subexpr_in_const_expr) {
8014          DiagLoc = Notes[0].first;
8015          Notes.clear();
8016        }
8017        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8018          << var << Init->getSourceRange();
8019        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8020          Diag(Notes[I].first, Notes[I].second);
8021      }
8022    } else if (var->isUsableInConstantExpressions(Context)) {
8023      // Check whether the initializer of a const variable of integral or
8024      // enumeration type is an ICE now, since we can't tell whether it was
8025      // initialized by a constant expression if we check later.
8026      var->checkInitIsICE();
8027    }
8028  }
8029
8030  // Require the destructor.
8031  if (const RecordType *recordType = baseType->getAs<RecordType>())
8032    FinalizeVarWithDestructor(var, recordType);
8033}
8034
8035/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8036/// any semantic actions necessary after any initializer has been attached.
8037void
8038Sema::FinalizeDeclaration(Decl *ThisDecl) {
8039  // Note that we are no longer parsing the initializer for this declaration.
8040  ParsingInitForAutoVars.erase(ThisDecl);
8041
8042  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8043  if (!VD)
8044    return;
8045
8046  const DeclContext *DC = VD->getDeclContext();
8047  // If there's a #pragma GCC visibility in scope, and this isn't a class
8048  // member, set the visibility of this variable.
8049  if (!DC->isRecord() && VD->hasExternalLinkage())
8050    AddPushedVisibilityAttribute(VD);
8051
8052  if (VD->isFileVarDecl())
8053    MarkUnusedFileScopedDecl(VD);
8054
8055  // Now we have parsed the initializer and can update the table of magic
8056  // tag values.
8057  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8058      !VD->getType()->isIntegralOrEnumerationType())
8059    return;
8060
8061  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8062         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8063         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8064       I != E; ++I) {
8065    const Expr *MagicValueExpr = VD->getInit();
8066    if (!MagicValueExpr) {
8067      continue;
8068    }
8069    llvm::APSInt MagicValueInt;
8070    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8071      Diag(I->getRange().getBegin(),
8072           diag::err_type_tag_for_datatype_not_ice)
8073        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8074      continue;
8075    }
8076    if (MagicValueInt.getActiveBits() > 64) {
8077      Diag(I->getRange().getBegin(),
8078           diag::err_type_tag_for_datatype_too_large)
8079        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8080      continue;
8081    }
8082    uint64_t MagicValue = MagicValueInt.getZExtValue();
8083    RegisterTypeTagForDatatype(I->getArgumentKind(),
8084                               MagicValue,
8085                               I->getMatchingCType(),
8086                               I->getLayoutCompatible(),
8087                               I->getMustBeNull());
8088  }
8089}
8090
8091Sema::DeclGroupPtrTy
8092Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8093                              Decl **Group, unsigned NumDecls) {
8094  SmallVector<Decl*, 8> Decls;
8095
8096  if (DS.isTypeSpecOwned())
8097    Decls.push_back(DS.getRepAsDecl());
8098
8099  for (unsigned i = 0; i != NumDecls; ++i)
8100    if (Decl *D = Group[i])
8101      Decls.push_back(D);
8102
8103  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8104    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8105      getASTContext().addUnnamedTag(Tag);
8106
8107  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8108                              DS.getTypeSpecType() == DeclSpec::TST_auto);
8109}
8110
8111/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8112/// group, performing any necessary semantic checking.
8113Sema::DeclGroupPtrTy
8114Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8115                           bool TypeMayContainAuto) {
8116  // C++0x [dcl.spec.auto]p7:
8117  //   If the type deduced for the template parameter U is not the same in each
8118  //   deduction, the program is ill-formed.
8119  // FIXME: When initializer-list support is added, a distinction is needed
8120  // between the deduced type U and the deduced type which 'auto' stands for.
8121  //   auto a = 0, b = { 1, 2, 3 };
8122  // is legal because the deduced type U is 'int' in both cases.
8123  if (TypeMayContainAuto && NumDecls > 1) {
8124    QualType Deduced;
8125    CanQualType DeducedCanon;
8126    VarDecl *DeducedDecl = 0;
8127    for (unsigned i = 0; i != NumDecls; ++i) {
8128      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8129        AutoType *AT = D->getType()->getContainedAutoType();
8130        // Don't reissue diagnostics when instantiating a template.
8131        if (AT && D->isInvalidDecl())
8132          break;
8133        if (AT && AT->isDeduced()) {
8134          QualType U = AT->getDeducedType();
8135          CanQualType UCanon = Context.getCanonicalType(U);
8136          if (Deduced.isNull()) {
8137            Deduced = U;
8138            DeducedCanon = UCanon;
8139            DeducedDecl = D;
8140          } else if (DeducedCanon != UCanon) {
8141            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8142                 diag::err_auto_different_deductions)
8143              << Deduced << DeducedDecl->getDeclName()
8144              << U << D->getDeclName()
8145              << DeducedDecl->getInit()->getSourceRange()
8146              << D->getInit()->getSourceRange();
8147            D->setInvalidDecl();
8148            break;
8149          }
8150        }
8151      }
8152    }
8153  }
8154
8155  ActOnDocumentableDecls(Group, NumDecls);
8156
8157  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8158}
8159
8160void Sema::ActOnDocumentableDecl(Decl *D) {
8161  ActOnDocumentableDecls(&D, 1);
8162}
8163
8164void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8165  // Don't parse the comment if Doxygen diagnostics are ignored.
8166  if (NumDecls == 0 || !Group[0])
8167   return;
8168
8169  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8170                               Group[0]->getLocation())
8171        == DiagnosticsEngine::Ignored)
8172    return;
8173
8174  if (NumDecls >= 2) {
8175    // This is a decl group.  Normally it will contain only declarations
8176    // procuded from declarator list.  But in case we have any definitions or
8177    // additional declaration references:
8178    //   'typedef struct S {} S;'
8179    //   'typedef struct S *S;'
8180    //   'struct S *pS;'
8181    // FinalizeDeclaratorGroup adds these as separate declarations.
8182    Decl *MaybeTagDecl = Group[0];
8183    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8184      Group++;
8185      NumDecls--;
8186    }
8187  }
8188
8189  // See if there are any new comments that are not attached to a decl.
8190  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8191  if (!Comments.empty() &&
8192      !Comments.back()->isAttached()) {
8193    // There is at least one comment that not attached to a decl.
8194    // Maybe it should be attached to one of these decls?
8195    //
8196    // Note that this way we pick up not only comments that precede the
8197    // declaration, but also comments that *follow* the declaration -- thanks to
8198    // the lookahead in the lexer: we've consumed the semicolon and looked
8199    // ahead through comments.
8200    for (unsigned i = 0; i != NumDecls; ++i)
8201      Context.getCommentForDecl(Group[i], &PP);
8202  }
8203}
8204
8205/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8206/// to introduce parameters into function prototype scope.
8207Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8208  const DeclSpec &DS = D.getDeclSpec();
8209
8210  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8211  // C++03 [dcl.stc]p2 also permits 'auto'.
8212  VarDecl::StorageClass StorageClass = SC_None;
8213  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8214    StorageClass = SC_Register;
8215  } else if (getLangOpts().CPlusPlus &&
8216             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8217    StorageClass = SC_Auto;
8218  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8219    Diag(DS.getStorageClassSpecLoc(),
8220         diag::err_invalid_storage_class_in_func_decl);
8221    D.getMutableDeclSpec().ClearStorageClassSpecs();
8222  }
8223
8224  if (D.getDeclSpec().isThreadSpecified())
8225    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8226  if (D.getDeclSpec().isConstexprSpecified())
8227    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8228      << 0;
8229
8230  DiagnoseFunctionSpecifiers(D.getDeclSpec());
8231
8232  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8233  QualType parmDeclType = TInfo->getType();
8234
8235  if (getLangOpts().CPlusPlus) {
8236    // Check that there are no default arguments inside the type of this
8237    // parameter.
8238    CheckExtraCXXDefaultArguments(D);
8239
8240    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8241    if (D.getCXXScopeSpec().isSet()) {
8242      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8243        << D.getCXXScopeSpec().getRange();
8244      D.getCXXScopeSpec().clear();
8245    }
8246  }
8247
8248  // Ensure we have a valid name
8249  IdentifierInfo *II = 0;
8250  if (D.hasName()) {
8251    II = D.getIdentifier();
8252    if (!II) {
8253      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8254        << GetNameForDeclarator(D).getName().getAsString();
8255      D.setInvalidType(true);
8256    }
8257  }
8258
8259  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8260  if (II) {
8261    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8262                   ForRedeclaration);
8263    LookupName(R, S);
8264    if (R.isSingleResult()) {
8265      NamedDecl *PrevDecl = R.getFoundDecl();
8266      if (PrevDecl->isTemplateParameter()) {
8267        // Maybe we will complain about the shadowed template parameter.
8268        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8269        // Just pretend that we didn't see the previous declaration.
8270        PrevDecl = 0;
8271      } else if (S->isDeclScope(PrevDecl)) {
8272        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8273        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8274
8275        // Recover by removing the name
8276        II = 0;
8277        D.SetIdentifier(0, D.getIdentifierLoc());
8278        D.setInvalidType(true);
8279      }
8280    }
8281  }
8282
8283  // Temporarily put parameter variables in the translation unit, not
8284  // the enclosing context.  This prevents them from accidentally
8285  // looking like class members in C++.
8286  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8287                                    D.getLocStart(),
8288                                    D.getIdentifierLoc(), II,
8289                                    parmDeclType, TInfo,
8290                                    StorageClass);
8291
8292  if (D.isInvalidType())
8293    New->setInvalidDecl();
8294
8295  assert(S->isFunctionPrototypeScope());
8296  assert(S->getFunctionPrototypeDepth() >= 1);
8297  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8298                    S->getNextFunctionPrototypeIndex());
8299
8300  // Add the parameter declaration into this scope.
8301  S->AddDecl(New);
8302  if (II)
8303    IdResolver.AddDecl(New);
8304
8305  ProcessDeclAttributes(S, New, D);
8306
8307  if (D.getDeclSpec().isModulePrivateSpecified())
8308    Diag(New->getLocation(), diag::err_module_private_local)
8309      << 1 << New->getDeclName()
8310      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8311      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8312
8313  if (New->hasAttr<BlocksAttr>()) {
8314    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8315  }
8316  return New;
8317}
8318
8319/// \brief Synthesizes a variable for a parameter arising from a
8320/// typedef.
8321ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8322                                              SourceLocation Loc,
8323                                              QualType T) {
8324  /* FIXME: setting StartLoc == Loc.
8325     Would it be worth to modify callers so as to provide proper source
8326     location for the unnamed parameters, embedding the parameter's type? */
8327  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8328                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8329                                           SC_None, 0);
8330  Param->setImplicit();
8331  return Param;
8332}
8333
8334void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8335                                    ParmVarDecl * const *ParamEnd) {
8336  // Don't diagnose unused-parameter errors in template instantiations; we
8337  // will already have done so in the template itself.
8338  if (!ActiveTemplateInstantiations.empty())
8339    return;
8340
8341  for (; Param != ParamEnd; ++Param) {
8342    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8343        !(*Param)->hasAttr<UnusedAttr>()) {
8344      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8345        << (*Param)->getDeclName();
8346    }
8347  }
8348}
8349
8350void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8351                                                  ParmVarDecl * const *ParamEnd,
8352                                                  QualType ReturnTy,
8353                                                  NamedDecl *D) {
8354  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8355    return;
8356
8357  // Warn if the return value is pass-by-value and larger than the specified
8358  // threshold.
8359  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8360    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8361    if (Size > LangOpts.NumLargeByValueCopy)
8362      Diag(D->getLocation(), diag::warn_return_value_size)
8363          << D->getDeclName() << Size;
8364  }
8365
8366  // Warn if any parameter is pass-by-value and larger than the specified
8367  // threshold.
8368  for (; Param != ParamEnd; ++Param) {
8369    QualType T = (*Param)->getType();
8370    if (T->isDependentType() || !T.isPODType(Context))
8371      continue;
8372    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8373    if (Size > LangOpts.NumLargeByValueCopy)
8374      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8375          << (*Param)->getDeclName() << Size;
8376  }
8377}
8378
8379ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8380                                  SourceLocation NameLoc, IdentifierInfo *Name,
8381                                  QualType T, TypeSourceInfo *TSInfo,
8382                                  VarDecl::StorageClass StorageClass) {
8383  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8384  if (getLangOpts().ObjCAutoRefCount &&
8385      T.getObjCLifetime() == Qualifiers::OCL_None &&
8386      T->isObjCLifetimeType()) {
8387
8388    Qualifiers::ObjCLifetime lifetime;
8389
8390    // Special cases for arrays:
8391    //   - if it's const, use __unsafe_unretained
8392    //   - otherwise, it's an error
8393    if (T->isArrayType()) {
8394      if (!T.isConstQualified()) {
8395        DelayedDiagnostics.add(
8396            sema::DelayedDiagnostic::makeForbiddenType(
8397            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8398      }
8399      lifetime = Qualifiers::OCL_ExplicitNone;
8400    } else {
8401      lifetime = T->getObjCARCImplicitLifetime();
8402    }
8403    T = Context.getLifetimeQualifiedType(T, lifetime);
8404  }
8405
8406  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8407                                         Context.getAdjustedParameterType(T),
8408                                         TSInfo,
8409                                         StorageClass, 0);
8410
8411  // Parameters can not be abstract class types.
8412  // For record types, this is done by the AbstractClassUsageDiagnoser once
8413  // the class has been completely parsed.
8414  if (!CurContext->isRecord() &&
8415      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8416                             AbstractParamType))
8417    New->setInvalidDecl();
8418
8419  // Parameter declarators cannot be interface types. All ObjC objects are
8420  // passed by reference.
8421  if (T->isObjCObjectType()) {
8422    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8423    Diag(NameLoc,
8424         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8425      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8426    T = Context.getObjCObjectPointerType(T);
8427    New->setType(T);
8428  }
8429
8430  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8431  // duration shall not be qualified by an address-space qualifier."
8432  // Since all parameters have automatic store duration, they can not have
8433  // an address space.
8434  if (T.getAddressSpace() != 0) {
8435    Diag(NameLoc, diag::err_arg_with_address_space);
8436    New->setInvalidDecl();
8437  }
8438
8439  return New;
8440}
8441
8442void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8443                                           SourceLocation LocAfterDecls) {
8444  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8445
8446  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8447  // for a K&R function.
8448  if (!FTI.hasPrototype) {
8449    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8450      --i;
8451      if (FTI.ArgInfo[i].Param == 0) {
8452        SmallString<256> Code;
8453        llvm::raw_svector_ostream(Code) << "  int "
8454                                        << FTI.ArgInfo[i].Ident->getName()
8455                                        << ";\n";
8456        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8457          << FTI.ArgInfo[i].Ident
8458          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8459
8460        // Implicitly declare the argument as type 'int' for lack of a better
8461        // type.
8462        AttributeFactory attrs;
8463        DeclSpec DS(attrs);
8464        const char* PrevSpec; // unused
8465        unsigned DiagID; // unused
8466        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8467                           PrevSpec, DiagID);
8468        // Use the identifier location for the type source range.
8469        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8470        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8471        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8472        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8473        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8474      }
8475    }
8476  }
8477}
8478
8479Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8480  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8481  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8482  Scope *ParentScope = FnBodyScope->getParent();
8483
8484  D.setFunctionDefinitionKind(FDK_Definition);
8485  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8486  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8487}
8488
8489static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8490                             const FunctionDecl*& PossibleZeroParamPrototype) {
8491  // Don't warn about invalid declarations.
8492  if (FD->isInvalidDecl())
8493    return false;
8494
8495  // Or declarations that aren't global.
8496  if (!FD->isGlobal())
8497    return false;
8498
8499  // Don't warn about C++ member functions.
8500  if (isa<CXXMethodDecl>(FD))
8501    return false;
8502
8503  // Don't warn about 'main'.
8504  if (FD->isMain())
8505    return false;
8506
8507  // Don't warn about inline functions.
8508  if (FD->isInlined())
8509    return false;
8510
8511  // Don't warn about function templates.
8512  if (FD->getDescribedFunctionTemplate())
8513    return false;
8514
8515  // Don't warn about function template specializations.
8516  if (FD->isFunctionTemplateSpecialization())
8517    return false;
8518
8519  // Don't warn for OpenCL kernels.
8520  if (FD->hasAttr<OpenCLKernelAttr>())
8521    return false;
8522
8523  bool MissingPrototype = true;
8524  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8525       Prev; Prev = Prev->getPreviousDecl()) {
8526    // Ignore any declarations that occur in function or method
8527    // scope, because they aren't visible from the header.
8528    if (Prev->getDeclContext()->isFunctionOrMethod())
8529      continue;
8530
8531    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8532    if (FD->getNumParams() == 0)
8533      PossibleZeroParamPrototype = Prev;
8534    break;
8535  }
8536
8537  return MissingPrototype;
8538}
8539
8540void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8541  // Don't complain if we're in GNU89 mode and the previous definition
8542  // was an extern inline function.
8543  const FunctionDecl *Definition;
8544  if (FD->isDefined(Definition) &&
8545      !canRedefineFunction(Definition, getLangOpts())) {
8546    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8547        Definition->getStorageClass() == SC_Extern)
8548      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8549        << FD->getDeclName() << getLangOpts().CPlusPlus;
8550    else
8551      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8552    Diag(Definition->getLocation(), diag::note_previous_definition);
8553    FD->setInvalidDecl();
8554  }
8555}
8556
8557Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8558  // Clear the last template instantiation error context.
8559  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8560
8561  if (!D)
8562    return D;
8563  FunctionDecl *FD = 0;
8564
8565  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8566    FD = FunTmpl->getTemplatedDecl();
8567  else
8568    FD = cast<FunctionDecl>(D);
8569
8570  // Enter a new function scope
8571  PushFunctionScope();
8572
8573  // See if this is a redefinition.
8574  if (!FD->isLateTemplateParsed())
8575    CheckForFunctionRedefinition(FD);
8576
8577  // Builtin functions cannot be defined.
8578  if (unsigned BuiltinID = FD->getBuiltinID()) {
8579    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8580      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8581      FD->setInvalidDecl();
8582    }
8583  }
8584
8585  // The return type of a function definition must be complete
8586  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8587  QualType ResultType = FD->getResultType();
8588  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8589      !FD->isInvalidDecl() &&
8590      RequireCompleteType(FD->getLocation(), ResultType,
8591                          diag::err_func_def_incomplete_result))
8592    FD->setInvalidDecl();
8593
8594  // GNU warning -Wmissing-prototypes:
8595  //   Warn if a global function is defined without a previous
8596  //   prototype declaration. This warning is issued even if the
8597  //   definition itself provides a prototype. The aim is to detect
8598  //   global functions that fail to be declared in header files.
8599  const FunctionDecl *PossibleZeroParamPrototype = 0;
8600  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8601    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8602
8603    if (PossibleZeroParamPrototype) {
8604      // We found a declaration that is not a prototype,
8605      // but that could be a zero-parameter prototype
8606      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8607      TypeLoc TL = TI->getTypeLoc();
8608      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8609        Diag(PossibleZeroParamPrototype->getLocation(),
8610             diag::note_declaration_not_a_prototype)
8611          << PossibleZeroParamPrototype
8612          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8613    }
8614  }
8615
8616  if (FnBodyScope)
8617    PushDeclContext(FnBodyScope, FD);
8618
8619  // Check the validity of our function parameters
8620  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8621                           /*CheckParameterNames=*/true);
8622
8623  // Introduce our parameters into the function scope
8624  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8625    ParmVarDecl *Param = FD->getParamDecl(p);
8626    Param->setOwningFunction(FD);
8627
8628    // If this has an identifier, add it to the scope stack.
8629    if (Param->getIdentifier() && FnBodyScope) {
8630      CheckShadow(FnBodyScope, Param);
8631
8632      PushOnScopeChains(Param, FnBodyScope);
8633    }
8634  }
8635
8636  // If we had any tags defined in the function prototype,
8637  // introduce them into the function scope.
8638  if (FnBodyScope) {
8639    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8640           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8641      NamedDecl *D = *I;
8642
8643      // Some of these decls (like enums) may have been pinned to the translation unit
8644      // for lack of a real context earlier. If so, remove from the translation unit
8645      // and reattach to the current context.
8646      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8647        // Is the decl actually in the context?
8648        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8649               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8650          if (*DI == D) {
8651            Context.getTranslationUnitDecl()->removeDecl(D);
8652            break;
8653          }
8654        }
8655        // Either way, reassign the lexical decl context to our FunctionDecl.
8656        D->setLexicalDeclContext(CurContext);
8657      }
8658
8659      // If the decl has a non-null name, make accessible in the current scope.
8660      if (!D->getName().empty())
8661        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8662
8663      // Similarly, dive into enums and fish their constants out, making them
8664      // accessible in this scope.
8665      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8666        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8667               EE = ED->enumerator_end(); EI != EE; ++EI)
8668          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8669      }
8670    }
8671  }
8672
8673  // Ensure that the function's exception specification is instantiated.
8674  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8675    ResolveExceptionSpec(D->getLocation(), FPT);
8676
8677  // Checking attributes of current function definition
8678  // dllimport attribute.
8679  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8680  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8681    // dllimport attribute cannot be directly applied to definition.
8682    // Microsoft accepts dllimport for functions defined within class scope.
8683    if (!DA->isInherited() &&
8684        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8685      Diag(FD->getLocation(),
8686           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8687        << "dllimport";
8688      FD->setInvalidDecl();
8689      return D;
8690    }
8691
8692    // Visual C++ appears to not think this is an issue, so only issue
8693    // a warning when Microsoft extensions are disabled.
8694    if (!LangOpts.MicrosoftExt) {
8695      // If a symbol previously declared dllimport is later defined, the
8696      // attribute is ignored in subsequent references, and a warning is
8697      // emitted.
8698      Diag(FD->getLocation(),
8699           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8700        << FD->getName() << "dllimport";
8701    }
8702  }
8703  // We want to attach documentation to original Decl (which might be
8704  // a function template).
8705  ActOnDocumentableDecl(D);
8706  return D;
8707}
8708
8709/// \brief Given the set of return statements within a function body,
8710/// compute the variables that are subject to the named return value
8711/// optimization.
8712///
8713/// Each of the variables that is subject to the named return value
8714/// optimization will be marked as NRVO variables in the AST, and any
8715/// return statement that has a marked NRVO variable as its NRVO candidate can
8716/// use the named return value optimization.
8717///
8718/// This function applies a very simplistic algorithm for NRVO: if every return
8719/// statement in the function has the same NRVO candidate, that candidate is
8720/// the NRVO variable.
8721///
8722/// FIXME: Employ a smarter algorithm that accounts for multiple return
8723/// statements and the lifetimes of the NRVO candidates. We should be able to
8724/// find a maximal set of NRVO variables.
8725void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8726  ReturnStmt **Returns = Scope->Returns.data();
8727
8728  const VarDecl *NRVOCandidate = 0;
8729  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8730    if (!Returns[I]->getNRVOCandidate())
8731      return;
8732
8733    if (!NRVOCandidate)
8734      NRVOCandidate = Returns[I]->getNRVOCandidate();
8735    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8736      return;
8737  }
8738
8739  if (NRVOCandidate)
8740    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8741}
8742
8743bool Sema::canSkipFunctionBody(Decl *D) {
8744  if (!Consumer.shouldSkipFunctionBody(D))
8745    return false;
8746
8747  if (isa<ObjCMethodDecl>(D))
8748    return true;
8749
8750  FunctionDecl *FD = 0;
8751  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8752    FD = FTD->getTemplatedDecl();
8753  else
8754    FD = cast<FunctionDecl>(D);
8755
8756  // We cannot skip the body of a function (or function template) which is
8757  // constexpr, since we may need to evaluate its body in order to parse the
8758  // rest of the file.
8759  return !FD->isConstexpr();
8760}
8761
8762Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8763  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8764    FD->setHasSkippedBody();
8765  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8766    MD->setHasSkippedBody();
8767  return ActOnFinishFunctionBody(Decl, 0);
8768}
8769
8770Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8771  return ActOnFinishFunctionBody(D, BodyArg, false);
8772}
8773
8774Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8775                                    bool IsInstantiation) {
8776  FunctionDecl *FD = 0;
8777  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8778  if (FunTmpl)
8779    FD = FunTmpl->getTemplatedDecl();
8780  else
8781    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8782
8783  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8784  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8785
8786  if (FD) {
8787    FD->setBody(Body);
8788
8789    // The only way to be included in UndefinedButUsed is if there is an
8790    // ODR use before the definition. Avoid the expensive map lookup if this
8791    // is the first declaration.
8792    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8793      if (FD->getLinkage() != ExternalLinkage)
8794        UndefinedButUsed.erase(FD);
8795      else if (FD->isInlined() &&
8796               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8797               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8798        UndefinedButUsed.erase(FD);
8799    }
8800
8801    // If the function implicitly returns zero (like 'main') or is naked,
8802    // don't complain about missing return statements.
8803    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8804      WP.disableCheckFallThrough();
8805
8806    // MSVC permits the use of pure specifier (=0) on function definition,
8807    // defined at class scope, warn about this non standard construct.
8808    if (getLangOpts().MicrosoftExt && FD->isPure())
8809      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8810
8811    if (!FD->isInvalidDecl()) {
8812      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8813      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8814                                             FD->getResultType(), FD);
8815
8816      // If this is a constructor, we need a vtable.
8817      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8818        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8819
8820      // Try to apply the named return value optimization. We have to check
8821      // if we can do this here because lambdas keep return statements around
8822      // to deduce an implicit return type.
8823      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8824          !FD->isDependentContext())
8825        computeNRVO(Body, getCurFunction());
8826    }
8827
8828    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8829           "Function parsing confused");
8830  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8831    assert(MD == getCurMethodDecl() && "Method parsing confused");
8832    MD->setBody(Body);
8833    if (!MD->isInvalidDecl()) {
8834      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8835      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8836                                             MD->getResultType(), MD);
8837
8838      if (Body)
8839        computeNRVO(Body, getCurFunction());
8840    }
8841    if (getCurFunction()->ObjCShouldCallSuper) {
8842      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8843        << MD->getSelector().getAsString();
8844      getCurFunction()->ObjCShouldCallSuper = false;
8845    }
8846  } else {
8847    return 0;
8848  }
8849
8850  assert(!getCurFunction()->ObjCShouldCallSuper &&
8851         "This should only be set for ObjC methods, which should have been "
8852         "handled in the block above.");
8853
8854  // Verify and clean out per-function state.
8855  if (Body) {
8856    // C++ constructors that have function-try-blocks can't have return
8857    // statements in the handlers of that block. (C++ [except.handle]p14)
8858    // Verify this.
8859    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8860      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8861
8862    // Verify that gotos and switch cases don't jump into scopes illegally.
8863    if (getCurFunction()->NeedsScopeChecking() &&
8864        !dcl->isInvalidDecl() &&
8865        !hasAnyUnrecoverableErrorsInThisFunction() &&
8866        !PP.isCodeCompletionEnabled())
8867      DiagnoseInvalidJumps(Body);
8868
8869    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8870      if (!Destructor->getParent()->isDependentType())
8871        CheckDestructor(Destructor);
8872
8873      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8874                                             Destructor->getParent());
8875    }
8876
8877    // If any errors have occurred, clear out any temporaries that may have
8878    // been leftover. This ensures that these temporaries won't be picked up for
8879    // deletion in some later function.
8880    if (PP.getDiagnostics().hasErrorOccurred() ||
8881        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8882      DiscardCleanupsInEvaluationContext();
8883    }
8884    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8885        !isa<FunctionTemplateDecl>(dcl)) {
8886      // Since the body is valid, issue any analysis-based warnings that are
8887      // enabled.
8888      ActivePolicy = &WP;
8889    }
8890
8891    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8892        (!CheckConstexprFunctionDecl(FD) ||
8893         !CheckConstexprFunctionBody(FD, Body)))
8894      FD->setInvalidDecl();
8895
8896    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8897    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8898    assert(MaybeODRUseExprs.empty() &&
8899           "Leftover expressions for odr-use checking");
8900  }
8901
8902  if (!IsInstantiation)
8903    PopDeclContext();
8904
8905  PopFunctionScopeInfo(ActivePolicy, dcl);
8906
8907  // If any errors have occurred, clear out any temporaries that may have
8908  // been leftover. This ensures that these temporaries won't be picked up for
8909  // deletion in some later function.
8910  if (getDiagnostics().hasErrorOccurred()) {
8911    DiscardCleanupsInEvaluationContext();
8912  }
8913
8914  return dcl;
8915}
8916
8917
8918/// When we finish delayed parsing of an attribute, we must attach it to the
8919/// relevant Decl.
8920void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8921                                       ParsedAttributes &Attrs) {
8922  // Always attach attributes to the underlying decl.
8923  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8924    D = TD->getTemplatedDecl();
8925  ProcessDeclAttributeList(S, D, Attrs.getList());
8926
8927  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8928    if (Method->isStatic())
8929      checkThisInStaticMemberFunctionAttributes(Method);
8930}
8931
8932
8933/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8934/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8935NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8936                                          IdentifierInfo &II, Scope *S) {
8937  // Before we produce a declaration for an implicitly defined
8938  // function, see whether there was a locally-scoped declaration of
8939  // this name as a function or variable. If so, use that
8940  // (non-visible) declaration, and complain about it.
8941  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8942    = findLocallyScopedExternCDecl(&II);
8943  if (Pos != LocallyScopedExternCDecls.end()) {
8944    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8945    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8946    return Pos->second;
8947  }
8948
8949  // Extension in C99.  Legal in C90, but warn about it.
8950  unsigned diag_id;
8951  if (II.getName().startswith("__builtin_"))
8952    diag_id = diag::warn_builtin_unknown;
8953  else if (getLangOpts().C99)
8954    diag_id = diag::ext_implicit_function_decl;
8955  else
8956    diag_id = diag::warn_implicit_function_decl;
8957  Diag(Loc, diag_id) << &II;
8958
8959  // Because typo correction is expensive, only do it if the implicit
8960  // function declaration is going to be treated as an error.
8961  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8962    TypoCorrection Corrected;
8963    DeclFilterCCC<FunctionDecl> Validator;
8964    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8965                                      LookupOrdinaryName, S, 0, Validator))) {
8966      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8967      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8968      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8969
8970      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8971          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8972
8973      if (Func->getLocation().isValid()
8974          && !II.getName().startswith("__builtin_"))
8975        Diag(Func->getLocation(), diag::note_previous_decl)
8976            << CorrectedQuotedStr;
8977    }
8978  }
8979
8980  // Set a Declarator for the implicit definition: int foo();
8981  const char *Dummy;
8982  AttributeFactory attrFactory;
8983  DeclSpec DS(attrFactory);
8984  unsigned DiagID;
8985  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8986  (void)Error; // Silence warning.
8987  assert(!Error && "Error setting up implicit decl!");
8988  SourceLocation NoLoc;
8989  Declarator D(DS, Declarator::BlockContext);
8990  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8991                                             /*IsAmbiguous=*/false,
8992                                             /*RParenLoc=*/NoLoc,
8993                                             /*ArgInfo=*/0,
8994                                             /*NumArgs=*/0,
8995                                             /*EllipsisLoc=*/NoLoc,
8996                                             /*RParenLoc=*/NoLoc,
8997                                             /*TypeQuals=*/0,
8998                                             /*RefQualifierIsLvalueRef=*/true,
8999                                             /*RefQualifierLoc=*/NoLoc,
9000                                             /*ConstQualifierLoc=*/NoLoc,
9001                                             /*VolatileQualifierLoc=*/NoLoc,
9002                                             /*MutableLoc=*/NoLoc,
9003                                             EST_None,
9004                                             /*ESpecLoc=*/NoLoc,
9005                                             /*Exceptions=*/0,
9006                                             /*ExceptionRanges=*/0,
9007                                             /*NumExceptions=*/0,
9008                                             /*NoexceptExpr=*/0,
9009                                             Loc, Loc, D),
9010                DS.getAttributes(),
9011                SourceLocation());
9012  D.SetIdentifier(&II, Loc);
9013
9014  // Insert this function into translation-unit scope.
9015
9016  DeclContext *PrevDC = CurContext;
9017  CurContext = Context.getTranslationUnitDecl();
9018
9019  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9020  FD->setImplicit();
9021
9022  CurContext = PrevDC;
9023
9024  AddKnownFunctionAttributes(FD);
9025
9026  return FD;
9027}
9028
9029/// \brief Adds any function attributes that we know a priori based on
9030/// the declaration of this function.
9031///
9032/// These attributes can apply both to implicitly-declared builtins
9033/// (like __builtin___printf_chk) or to library-declared functions
9034/// like NSLog or printf.
9035///
9036/// We need to check for duplicate attributes both here and where user-written
9037/// attributes are applied to declarations.
9038void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9039  if (FD->isInvalidDecl())
9040    return;
9041
9042  // If this is a built-in function, map its builtin attributes to
9043  // actual attributes.
9044  if (unsigned BuiltinID = FD->getBuiltinID()) {
9045    // Handle printf-formatting attributes.
9046    unsigned FormatIdx;
9047    bool HasVAListArg;
9048    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9049      if (!FD->getAttr<FormatAttr>()) {
9050        const char *fmt = "printf";
9051        unsigned int NumParams = FD->getNumParams();
9052        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9053            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9054          fmt = "NSString";
9055        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9056                                               fmt, FormatIdx+1,
9057                                               HasVAListArg ? 0 : FormatIdx+2));
9058      }
9059    }
9060    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9061                                             HasVAListArg)) {
9062     if (!FD->getAttr<FormatAttr>())
9063       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9064                                              "scanf", FormatIdx+1,
9065                                              HasVAListArg ? 0 : FormatIdx+2));
9066    }
9067
9068    // Mark const if we don't care about errno and that is the only
9069    // thing preventing the function from being const. This allows
9070    // IRgen to use LLVM intrinsics for such functions.
9071    if (!getLangOpts().MathErrno &&
9072        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9073      if (!FD->getAttr<ConstAttr>())
9074        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9075    }
9076
9077    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9078        !FD->getAttr<ReturnsTwiceAttr>())
9079      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9080    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9081      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9082    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9083      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9084  }
9085
9086  IdentifierInfo *Name = FD->getIdentifier();
9087  if (!Name)
9088    return;
9089  if ((!getLangOpts().CPlusPlus &&
9090       FD->getDeclContext()->isTranslationUnit()) ||
9091      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9092       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9093       LinkageSpecDecl::lang_c)) {
9094    // Okay: this could be a libc/libm/Objective-C function we know
9095    // about.
9096  } else
9097    return;
9098
9099  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9100    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9101    // target-specific builtins, perhaps?
9102    if (!FD->getAttr<FormatAttr>())
9103      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9104                                             "printf", 2,
9105                                             Name->isStr("vasprintf") ? 0 : 3));
9106  }
9107
9108  if (Name->isStr("__CFStringMakeConstantString")) {
9109    // We already have a __builtin___CFStringMakeConstantString,
9110    // but builds that use -fno-constant-cfstrings don't go through that.
9111    if (!FD->getAttr<FormatArgAttr>())
9112      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9113  }
9114}
9115
9116TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9117                                    TypeSourceInfo *TInfo) {
9118  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9119  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9120
9121  if (!TInfo) {
9122    assert(D.isInvalidType() && "no declarator info for valid type");
9123    TInfo = Context.getTrivialTypeSourceInfo(T);
9124  }
9125
9126  // Scope manipulation handled by caller.
9127  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9128                                           D.getLocStart(),
9129                                           D.getIdentifierLoc(),
9130                                           D.getIdentifier(),
9131                                           TInfo);
9132
9133  // Bail out immediately if we have an invalid declaration.
9134  if (D.isInvalidType()) {
9135    NewTD->setInvalidDecl();
9136    return NewTD;
9137  }
9138
9139  if (D.getDeclSpec().isModulePrivateSpecified()) {
9140    if (CurContext->isFunctionOrMethod())
9141      Diag(NewTD->getLocation(), diag::err_module_private_local)
9142        << 2 << NewTD->getDeclName()
9143        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9144        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9145    else
9146      NewTD->setModulePrivate();
9147  }
9148
9149  // C++ [dcl.typedef]p8:
9150  //   If the typedef declaration defines an unnamed class (or
9151  //   enum), the first typedef-name declared by the declaration
9152  //   to be that class type (or enum type) is used to denote the
9153  //   class type (or enum type) for linkage purposes only.
9154  // We need to check whether the type was declared in the declaration.
9155  switch (D.getDeclSpec().getTypeSpecType()) {
9156  case TST_enum:
9157  case TST_struct:
9158  case TST_interface:
9159  case TST_union:
9160  case TST_class: {
9161    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9162
9163    // Do nothing if the tag is not anonymous or already has an
9164    // associated typedef (from an earlier typedef in this decl group).
9165    if (tagFromDeclSpec->getIdentifier()) break;
9166    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9167
9168    // A well-formed anonymous tag must always be a TUK_Definition.
9169    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9170
9171    // The type must match the tag exactly;  no qualifiers allowed.
9172    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9173      break;
9174
9175    // Otherwise, set this is the anon-decl typedef for the tag.
9176    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9177    break;
9178  }
9179
9180  default:
9181    break;
9182  }
9183
9184  return NewTD;
9185}
9186
9187
9188/// \brief Check that this is a valid underlying type for an enum declaration.
9189bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9190  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9191  QualType T = TI->getType();
9192
9193  if (T->isDependentType())
9194    return false;
9195
9196  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9197    if (BT->isInteger())
9198      return false;
9199
9200  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9201  return true;
9202}
9203
9204/// Check whether this is a valid redeclaration of a previous enumeration.
9205/// \return true if the redeclaration was invalid.
9206bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9207                                  QualType EnumUnderlyingTy,
9208                                  const EnumDecl *Prev) {
9209  bool IsFixed = !EnumUnderlyingTy.isNull();
9210
9211  if (IsScoped != Prev->isScoped()) {
9212    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9213      << Prev->isScoped();
9214    Diag(Prev->getLocation(), diag::note_previous_use);
9215    return true;
9216  }
9217
9218  if (IsFixed && Prev->isFixed()) {
9219    if (!EnumUnderlyingTy->isDependentType() &&
9220        !Prev->getIntegerType()->isDependentType() &&
9221        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9222                                        Prev->getIntegerType())) {
9223      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9224        << EnumUnderlyingTy << Prev->getIntegerType();
9225      Diag(Prev->getLocation(), diag::note_previous_use);
9226      return true;
9227    }
9228  } else if (IsFixed != Prev->isFixed()) {
9229    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9230      << Prev->isFixed();
9231    Diag(Prev->getLocation(), diag::note_previous_use);
9232    return true;
9233  }
9234
9235  return false;
9236}
9237
9238/// \brief Get diagnostic %select index for tag kind for
9239/// redeclaration diagnostic message.
9240/// WARNING: Indexes apply to particular diagnostics only!
9241///
9242/// \returns diagnostic %select index.
9243static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9244  switch (Tag) {
9245  case TTK_Struct: return 0;
9246  case TTK_Interface: return 1;
9247  case TTK_Class:  return 2;
9248  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9249  }
9250}
9251
9252/// \brief Determine if tag kind is a class-key compatible with
9253/// class for redeclaration (class, struct, or __interface).
9254///
9255/// \returns true iff the tag kind is compatible.
9256static bool isClassCompatTagKind(TagTypeKind Tag)
9257{
9258  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9259}
9260
9261/// \brief Determine whether a tag with a given kind is acceptable
9262/// as a redeclaration of the given tag declaration.
9263///
9264/// \returns true if the new tag kind is acceptable, false otherwise.
9265bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9266                                        TagTypeKind NewTag, bool isDefinition,
9267                                        SourceLocation NewTagLoc,
9268                                        const IdentifierInfo &Name) {
9269  // C++ [dcl.type.elab]p3:
9270  //   The class-key or enum keyword present in the
9271  //   elaborated-type-specifier shall agree in kind with the
9272  //   declaration to which the name in the elaborated-type-specifier
9273  //   refers. This rule also applies to the form of
9274  //   elaborated-type-specifier that declares a class-name or
9275  //   friend class since it can be construed as referring to the
9276  //   definition of the class. Thus, in any
9277  //   elaborated-type-specifier, the enum keyword shall be used to
9278  //   refer to an enumeration (7.2), the union class-key shall be
9279  //   used to refer to a union (clause 9), and either the class or
9280  //   struct class-key shall be used to refer to a class (clause 9)
9281  //   declared using the class or struct class-key.
9282  TagTypeKind OldTag = Previous->getTagKind();
9283  if (!isDefinition || !isClassCompatTagKind(NewTag))
9284    if (OldTag == NewTag)
9285      return true;
9286
9287  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9288    // Warn about the struct/class tag mismatch.
9289    bool isTemplate = false;
9290    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9291      isTemplate = Record->getDescribedClassTemplate();
9292
9293    if (!ActiveTemplateInstantiations.empty()) {
9294      // In a template instantiation, do not offer fix-its for tag mismatches
9295      // since they usually mess up the template instead of fixing the problem.
9296      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9297        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9298        << getRedeclDiagFromTagKind(OldTag);
9299      return true;
9300    }
9301
9302    if (isDefinition) {
9303      // On definitions, check previous tags and issue a fix-it for each
9304      // one that doesn't match the current tag.
9305      if (Previous->getDefinition()) {
9306        // Don't suggest fix-its for redefinitions.
9307        return true;
9308      }
9309
9310      bool previousMismatch = false;
9311      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9312           E(Previous->redecls_end()); I != E; ++I) {
9313        if (I->getTagKind() != NewTag) {
9314          if (!previousMismatch) {
9315            previousMismatch = true;
9316            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9317              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9318              << getRedeclDiagFromTagKind(I->getTagKind());
9319          }
9320          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9321            << getRedeclDiagFromTagKind(NewTag)
9322            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9323                 TypeWithKeyword::getTagTypeKindName(NewTag));
9324        }
9325      }
9326      return true;
9327    }
9328
9329    // Check for a previous definition.  If current tag and definition
9330    // are same type, do nothing.  If no definition, but disagree with
9331    // with previous tag type, give a warning, but no fix-it.
9332    const TagDecl *Redecl = Previous->getDefinition() ?
9333                            Previous->getDefinition() : Previous;
9334    if (Redecl->getTagKind() == NewTag) {
9335      return true;
9336    }
9337
9338    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9339      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9340      << getRedeclDiagFromTagKind(OldTag);
9341    Diag(Redecl->getLocation(), diag::note_previous_use);
9342
9343    // If there is a previous defintion, suggest a fix-it.
9344    if (Previous->getDefinition()) {
9345        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9346          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9347          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9348               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9349    }
9350
9351    return true;
9352  }
9353  return false;
9354}
9355
9356/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9357/// former case, Name will be non-null.  In the later case, Name will be null.
9358/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9359/// reference/declaration/definition of a tag.
9360Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9361                     SourceLocation KWLoc, CXXScopeSpec &SS,
9362                     IdentifierInfo *Name, SourceLocation NameLoc,
9363                     AttributeList *Attr, AccessSpecifier AS,
9364                     SourceLocation ModulePrivateLoc,
9365                     MultiTemplateParamsArg TemplateParameterLists,
9366                     bool &OwnedDecl, bool &IsDependent,
9367                     SourceLocation ScopedEnumKWLoc,
9368                     bool ScopedEnumUsesClassTag,
9369                     TypeResult UnderlyingType) {
9370  // If this is not a definition, it must have a name.
9371  IdentifierInfo *OrigName = Name;
9372  assert((Name != 0 || TUK == TUK_Definition) &&
9373         "Nameless record must be a definition!");
9374  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9375
9376  OwnedDecl = false;
9377  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9378  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9379
9380  // FIXME: Check explicit specializations more carefully.
9381  bool isExplicitSpecialization = false;
9382  bool Invalid = false;
9383
9384  // We only need to do this matching if we have template parameters
9385  // or a scope specifier, which also conveniently avoids this work
9386  // for non-C++ cases.
9387  if (TemplateParameterLists.size() > 0 ||
9388      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9389    if (TemplateParameterList *TemplateParams
9390          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9391                                                TemplateParameterLists.data(),
9392                                                TemplateParameterLists.size(),
9393                                                    TUK == TUK_Friend,
9394                                                    isExplicitSpecialization,
9395                                                    Invalid)) {
9396      if (Kind == TTK_Enum) {
9397        Diag(KWLoc, diag::err_enum_template);
9398        return 0;
9399      }
9400
9401      if (TemplateParams->size() > 0) {
9402        // This is a declaration or definition of a class template (which may
9403        // be a member of another template).
9404
9405        if (Invalid)
9406          return 0;
9407
9408        OwnedDecl = false;
9409        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9410                                               SS, Name, NameLoc, Attr,
9411                                               TemplateParams, AS,
9412                                               ModulePrivateLoc,
9413                                               TemplateParameterLists.size()-1,
9414                                               TemplateParameterLists.data());
9415        return Result.get();
9416      } else {
9417        // The "template<>" header is extraneous.
9418        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9419          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9420        isExplicitSpecialization = true;
9421      }
9422    }
9423  }
9424
9425  // Figure out the underlying type if this a enum declaration. We need to do
9426  // this early, because it's needed to detect if this is an incompatible
9427  // redeclaration.
9428  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9429
9430  if (Kind == TTK_Enum) {
9431    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9432      // No underlying type explicitly specified, or we failed to parse the
9433      // type, default to int.
9434      EnumUnderlying = Context.IntTy.getTypePtr();
9435    else if (UnderlyingType.get()) {
9436      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9437      // integral type; any cv-qualification is ignored.
9438      TypeSourceInfo *TI = 0;
9439      GetTypeFromParser(UnderlyingType.get(), &TI);
9440      EnumUnderlying = TI;
9441
9442      if (CheckEnumUnderlyingType(TI))
9443        // Recover by falling back to int.
9444        EnumUnderlying = Context.IntTy.getTypePtr();
9445
9446      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9447                                          UPPC_FixedUnderlyingType))
9448        EnumUnderlying = Context.IntTy.getTypePtr();
9449
9450    } else if (getLangOpts().MicrosoftMode)
9451      // Microsoft enums are always of int type.
9452      EnumUnderlying = Context.IntTy.getTypePtr();
9453  }
9454
9455  DeclContext *SearchDC = CurContext;
9456  DeclContext *DC = CurContext;
9457  bool isStdBadAlloc = false;
9458
9459  RedeclarationKind Redecl = ForRedeclaration;
9460  if (TUK == TUK_Friend || TUK == TUK_Reference)
9461    Redecl = NotForRedeclaration;
9462
9463  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9464
9465  if (Name && SS.isNotEmpty()) {
9466    // We have a nested-name tag ('struct foo::bar').
9467
9468    // Check for invalid 'foo::'.
9469    if (SS.isInvalid()) {
9470      Name = 0;
9471      goto CreateNewDecl;
9472    }
9473
9474    // If this is a friend or a reference to a class in a dependent
9475    // context, don't try to make a decl for it.
9476    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9477      DC = computeDeclContext(SS, false);
9478      if (!DC) {
9479        IsDependent = true;
9480        return 0;
9481      }
9482    } else {
9483      DC = computeDeclContext(SS, true);
9484      if (!DC) {
9485        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9486          << SS.getRange();
9487        return 0;
9488      }
9489    }
9490
9491    if (RequireCompleteDeclContext(SS, DC))
9492      return 0;
9493
9494    SearchDC = DC;
9495    // Look-up name inside 'foo::'.
9496    LookupQualifiedName(Previous, DC);
9497
9498    if (Previous.isAmbiguous())
9499      return 0;
9500
9501    if (Previous.empty()) {
9502      // Name lookup did not find anything. However, if the
9503      // nested-name-specifier refers to the current instantiation,
9504      // and that current instantiation has any dependent base
9505      // classes, we might find something at instantiation time: treat
9506      // this as a dependent elaborated-type-specifier.
9507      // But this only makes any sense for reference-like lookups.
9508      if (Previous.wasNotFoundInCurrentInstantiation() &&
9509          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9510        IsDependent = true;
9511        return 0;
9512      }
9513
9514      // A tag 'foo::bar' must already exist.
9515      Diag(NameLoc, diag::err_not_tag_in_scope)
9516        << Kind << Name << DC << SS.getRange();
9517      Name = 0;
9518      Invalid = true;
9519      goto CreateNewDecl;
9520    }
9521  } else if (Name) {
9522    // If this is a named struct, check to see if there was a previous forward
9523    // declaration or definition.
9524    // FIXME: We're looking into outer scopes here, even when we
9525    // shouldn't be. Doing so can result in ambiguities that we
9526    // shouldn't be diagnosing.
9527    LookupName(Previous, S);
9528
9529    // When declaring or defining a tag, ignore ambiguities introduced
9530    // by types using'ed into this scope.
9531    if (Previous.isAmbiguous() &&
9532        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9533      LookupResult::Filter F = Previous.makeFilter();
9534      while (F.hasNext()) {
9535        NamedDecl *ND = F.next();
9536        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9537          F.erase();
9538      }
9539      F.done();
9540    }
9541
9542    // C++11 [namespace.memdef]p3:
9543    //   If the name in a friend declaration is neither qualified nor
9544    //   a template-id and the declaration is a function or an
9545    //   elaborated-type-specifier, the lookup to determine whether
9546    //   the entity has been previously declared shall not consider
9547    //   any scopes outside the innermost enclosing namespace.
9548    //
9549    // Does it matter that this should be by scope instead of by
9550    // semantic context?
9551    if (!Previous.empty() && TUK == TUK_Friend) {
9552      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9553      LookupResult::Filter F = Previous.makeFilter();
9554      while (F.hasNext()) {
9555        NamedDecl *ND = F.next();
9556        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9557        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9558          F.erase();
9559      }
9560      F.done();
9561    }
9562
9563    // Note:  there used to be some attempt at recovery here.
9564    if (Previous.isAmbiguous())
9565      return 0;
9566
9567    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9568      // FIXME: This makes sure that we ignore the contexts associated
9569      // with C structs, unions, and enums when looking for a matching
9570      // tag declaration or definition. See the similar lookup tweak
9571      // in Sema::LookupName; is there a better way to deal with this?
9572      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9573        SearchDC = SearchDC->getParent();
9574    }
9575  } else if (S->isFunctionPrototypeScope()) {
9576    // If this is an enum declaration in function prototype scope, set its
9577    // initial context to the translation unit.
9578    // FIXME: [citation needed]
9579    SearchDC = Context.getTranslationUnitDecl();
9580  }
9581
9582  if (Previous.isSingleResult() &&
9583      Previous.getFoundDecl()->isTemplateParameter()) {
9584    // Maybe we will complain about the shadowed template parameter.
9585    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9586    // Just pretend that we didn't see the previous declaration.
9587    Previous.clear();
9588  }
9589
9590  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9591      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9592    // This is a declaration of or a reference to "std::bad_alloc".
9593    isStdBadAlloc = true;
9594
9595    if (Previous.empty() && StdBadAlloc) {
9596      // std::bad_alloc has been implicitly declared (but made invisible to
9597      // name lookup). Fill in this implicit declaration as the previous
9598      // declaration, so that the declarations get chained appropriately.
9599      Previous.addDecl(getStdBadAlloc());
9600    }
9601  }
9602
9603  // If we didn't find a previous declaration, and this is a reference
9604  // (or friend reference), move to the correct scope.  In C++, we
9605  // also need to do a redeclaration lookup there, just in case
9606  // there's a shadow friend decl.
9607  if (Name && Previous.empty() &&
9608      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9609    if (Invalid) goto CreateNewDecl;
9610    assert(SS.isEmpty());
9611
9612    if (TUK == TUK_Reference) {
9613      // C++ [basic.scope.pdecl]p5:
9614      //   -- for an elaborated-type-specifier of the form
9615      //
9616      //          class-key identifier
9617      //
9618      //      if the elaborated-type-specifier is used in the
9619      //      decl-specifier-seq or parameter-declaration-clause of a
9620      //      function defined in namespace scope, the identifier is
9621      //      declared as a class-name in the namespace that contains
9622      //      the declaration; otherwise, except as a friend
9623      //      declaration, the identifier is declared in the smallest
9624      //      non-class, non-function-prototype scope that contains the
9625      //      declaration.
9626      //
9627      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9628      // C structs and unions.
9629      //
9630      // It is an error in C++ to declare (rather than define) an enum
9631      // type, including via an elaborated type specifier.  We'll
9632      // diagnose that later; for now, declare the enum in the same
9633      // scope as we would have picked for any other tag type.
9634      //
9635      // GNU C also supports this behavior as part of its incomplete
9636      // enum types extension, while GNU C++ does not.
9637      //
9638      // Find the context where we'll be declaring the tag.
9639      // FIXME: We would like to maintain the current DeclContext as the
9640      // lexical context,
9641      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9642        SearchDC = SearchDC->getParent();
9643
9644      // Find the scope where we'll be declaring the tag.
9645      while (S->isClassScope() ||
9646             (getLangOpts().CPlusPlus &&
9647              S->isFunctionPrototypeScope()) ||
9648             ((S->getFlags() & Scope::DeclScope) == 0) ||
9649             (S->getEntity() &&
9650              ((DeclContext *)S->getEntity())->isTransparentContext()))
9651        S = S->getParent();
9652    } else {
9653      assert(TUK == TUK_Friend);
9654      // C++ [namespace.memdef]p3:
9655      //   If a friend declaration in a non-local class first declares a
9656      //   class or function, the friend class or function is a member of
9657      //   the innermost enclosing namespace.
9658      SearchDC = SearchDC->getEnclosingNamespaceContext();
9659    }
9660
9661    // In C++, we need to do a redeclaration lookup to properly
9662    // diagnose some problems.
9663    if (getLangOpts().CPlusPlus) {
9664      Previous.setRedeclarationKind(ForRedeclaration);
9665      LookupQualifiedName(Previous, SearchDC);
9666    }
9667  }
9668
9669  if (!Previous.empty()) {
9670    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9671
9672    // It's okay to have a tag decl in the same scope as a typedef
9673    // which hides a tag decl in the same scope.  Finding this
9674    // insanity with a redeclaration lookup can only actually happen
9675    // in C++.
9676    //
9677    // This is also okay for elaborated-type-specifiers, which is
9678    // technically forbidden by the current standard but which is
9679    // okay according to the likely resolution of an open issue;
9680    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9681    if (getLangOpts().CPlusPlus) {
9682      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9683        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9684          TagDecl *Tag = TT->getDecl();
9685          if (Tag->getDeclName() == Name &&
9686              Tag->getDeclContext()->getRedeclContext()
9687                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9688            PrevDecl = Tag;
9689            Previous.clear();
9690            Previous.addDecl(Tag);
9691            Previous.resolveKind();
9692          }
9693        }
9694      }
9695    }
9696
9697    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9698      // If this is a use of a previous tag, or if the tag is already declared
9699      // in the same scope (so that the definition/declaration completes or
9700      // rementions the tag), reuse the decl.
9701      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9702          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9703        // Make sure that this wasn't declared as an enum and now used as a
9704        // struct or something similar.
9705        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9706                                          TUK == TUK_Definition, KWLoc,
9707                                          *Name)) {
9708          bool SafeToContinue
9709            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9710               Kind != TTK_Enum);
9711          if (SafeToContinue)
9712            Diag(KWLoc, diag::err_use_with_wrong_tag)
9713              << Name
9714              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9715                                              PrevTagDecl->getKindName());
9716          else
9717            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9718          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9719
9720          if (SafeToContinue)
9721            Kind = PrevTagDecl->getTagKind();
9722          else {
9723            // Recover by making this an anonymous redefinition.
9724            Name = 0;
9725            Previous.clear();
9726            Invalid = true;
9727          }
9728        }
9729
9730        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9731          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9732
9733          // If this is an elaborated-type-specifier for a scoped enumeration,
9734          // the 'class' keyword is not necessary and not permitted.
9735          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9736            if (ScopedEnum)
9737              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9738                << PrevEnum->isScoped()
9739                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9740            return PrevTagDecl;
9741          }
9742
9743          QualType EnumUnderlyingTy;
9744          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9745            EnumUnderlyingTy = TI->getType();
9746          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9747            EnumUnderlyingTy = QualType(T, 0);
9748
9749          // All conflicts with previous declarations are recovered by
9750          // returning the previous declaration, unless this is a definition,
9751          // in which case we want the caller to bail out.
9752          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9753                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9754            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9755        }
9756
9757        if (!Invalid) {
9758          // If this is a use, just return the declaration we found.
9759
9760          // FIXME: In the future, return a variant or some other clue
9761          // for the consumer of this Decl to know it doesn't own it.
9762          // For our current ASTs this shouldn't be a problem, but will
9763          // need to be changed with DeclGroups.
9764          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9765               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9766            return PrevTagDecl;
9767
9768          // Diagnose attempts to redefine a tag.
9769          if (TUK == TUK_Definition) {
9770            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9771              // If we're defining a specialization and the previous definition
9772              // is from an implicit instantiation, don't emit an error
9773              // here; we'll catch this in the general case below.
9774              bool IsExplicitSpecializationAfterInstantiation = false;
9775              if (isExplicitSpecialization) {
9776                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9777                  IsExplicitSpecializationAfterInstantiation =
9778                    RD->getTemplateSpecializationKind() !=
9779                    TSK_ExplicitSpecialization;
9780                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9781                  IsExplicitSpecializationAfterInstantiation =
9782                    ED->getTemplateSpecializationKind() !=
9783                    TSK_ExplicitSpecialization;
9784              }
9785
9786              if (!IsExplicitSpecializationAfterInstantiation) {
9787                // A redeclaration in function prototype scope in C isn't
9788                // visible elsewhere, so merely issue a warning.
9789                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9790                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9791                else
9792                  Diag(NameLoc, diag::err_redefinition) << Name;
9793                Diag(Def->getLocation(), diag::note_previous_definition);
9794                // If this is a redefinition, recover by making this
9795                // struct be anonymous, which will make any later
9796                // references get the previous definition.
9797                Name = 0;
9798                Previous.clear();
9799                Invalid = true;
9800              }
9801            } else {
9802              // If the type is currently being defined, complain
9803              // about a nested redefinition.
9804              const TagType *Tag
9805                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9806              if (Tag->isBeingDefined()) {
9807                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9808                Diag(PrevTagDecl->getLocation(),
9809                     diag::note_previous_definition);
9810                Name = 0;
9811                Previous.clear();
9812                Invalid = true;
9813              }
9814            }
9815
9816            // Okay, this is definition of a previously declared or referenced
9817            // tag PrevDecl. We're going to create a new Decl for it.
9818          }
9819        }
9820        // If we get here we have (another) forward declaration or we
9821        // have a definition.  Just create a new decl.
9822
9823      } else {
9824        // If we get here, this is a definition of a new tag type in a nested
9825        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9826        // new decl/type.  We set PrevDecl to NULL so that the entities
9827        // have distinct types.
9828        Previous.clear();
9829      }
9830      // If we get here, we're going to create a new Decl. If PrevDecl
9831      // is non-NULL, it's a definition of the tag declared by
9832      // PrevDecl. If it's NULL, we have a new definition.
9833
9834
9835    // Otherwise, PrevDecl is not a tag, but was found with tag
9836    // lookup.  This is only actually possible in C++, where a few
9837    // things like templates still live in the tag namespace.
9838    } else {
9839      // Use a better diagnostic if an elaborated-type-specifier
9840      // found the wrong kind of type on the first
9841      // (non-redeclaration) lookup.
9842      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9843          !Previous.isForRedeclaration()) {
9844        unsigned Kind = 0;
9845        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9846        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9847        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9848        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9849        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9850        Invalid = true;
9851
9852      // Otherwise, only diagnose if the declaration is in scope.
9853      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9854                                isExplicitSpecialization)) {
9855        // do nothing
9856
9857      // Diagnose implicit declarations introduced by elaborated types.
9858      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9859        unsigned Kind = 0;
9860        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9861        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9862        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9863        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9864        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9865        Invalid = true;
9866
9867      // Otherwise it's a declaration.  Call out a particularly common
9868      // case here.
9869      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9870        unsigned Kind = 0;
9871        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9872        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9873          << Name << Kind << TND->getUnderlyingType();
9874        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9875        Invalid = true;
9876
9877      // Otherwise, diagnose.
9878      } else {
9879        // The tag name clashes with something else in the target scope,
9880        // issue an error and recover by making this tag be anonymous.
9881        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9882        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9883        Name = 0;
9884        Invalid = true;
9885      }
9886
9887      // The existing declaration isn't relevant to us; we're in a
9888      // new scope, so clear out the previous declaration.
9889      Previous.clear();
9890    }
9891  }
9892
9893CreateNewDecl:
9894
9895  TagDecl *PrevDecl = 0;
9896  if (Previous.isSingleResult())
9897    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9898
9899  // If there is an identifier, use the location of the identifier as the
9900  // location of the decl, otherwise use the location of the struct/union
9901  // keyword.
9902  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9903
9904  // Otherwise, create a new declaration. If there is a previous
9905  // declaration of the same entity, the two will be linked via
9906  // PrevDecl.
9907  TagDecl *New;
9908
9909  bool IsForwardReference = false;
9910  if (Kind == TTK_Enum) {
9911    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9912    // enum X { A, B, C } D;    D should chain to X.
9913    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9914                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9915                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9916    // If this is an undefined enum, warn.
9917    if (TUK != TUK_Definition && !Invalid) {
9918      TagDecl *Def;
9919      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
9920          cast<EnumDecl>(New)->isFixed()) {
9921        // C++0x: 7.2p2: opaque-enum-declaration.
9922        // Conflicts are diagnosed above. Do nothing.
9923      }
9924      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9925        Diag(Loc, diag::ext_forward_ref_enum_def)
9926          << New;
9927        Diag(Def->getLocation(), diag::note_previous_definition);
9928      } else {
9929        unsigned DiagID = diag::ext_forward_ref_enum;
9930        if (getLangOpts().MicrosoftMode)
9931          DiagID = diag::ext_ms_forward_ref_enum;
9932        else if (getLangOpts().CPlusPlus)
9933          DiagID = diag::err_forward_ref_enum;
9934        Diag(Loc, DiagID);
9935
9936        // If this is a forward-declared reference to an enumeration, make a
9937        // note of it; we won't actually be introducing the declaration into
9938        // the declaration context.
9939        if (TUK == TUK_Reference)
9940          IsForwardReference = true;
9941      }
9942    }
9943
9944    if (EnumUnderlying) {
9945      EnumDecl *ED = cast<EnumDecl>(New);
9946      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9947        ED->setIntegerTypeSourceInfo(TI);
9948      else
9949        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9950      ED->setPromotionType(ED->getIntegerType());
9951    }
9952
9953  } else {
9954    // struct/union/class
9955
9956    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9957    // struct X { int A; } D;    D should chain to X.
9958    if (getLangOpts().CPlusPlus) {
9959      // FIXME: Look for a way to use RecordDecl for simple structs.
9960      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9961                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9962
9963      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9964        StdBadAlloc = cast<CXXRecordDecl>(New);
9965    } else
9966      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9967                               cast_or_null<RecordDecl>(PrevDecl));
9968  }
9969
9970  // Maybe add qualifier info.
9971  if (SS.isNotEmpty()) {
9972    if (SS.isSet()) {
9973      // If this is either a declaration or a definition, check the
9974      // nested-name-specifier against the current context. We don't do this
9975      // for explicit specializations, because they have similar checking
9976      // (with more specific diagnostics) in the call to
9977      // CheckMemberSpecialization, below.
9978      if (!isExplicitSpecialization &&
9979          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9980          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9981        Invalid = true;
9982
9983      New->setQualifierInfo(SS.getWithLocInContext(Context));
9984      if (TemplateParameterLists.size() > 0) {
9985        New->setTemplateParameterListsInfo(Context,
9986                                           TemplateParameterLists.size(),
9987                                           TemplateParameterLists.data());
9988      }
9989    }
9990    else
9991      Invalid = true;
9992  }
9993
9994  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9995    // Add alignment attributes if necessary; these attributes are checked when
9996    // the ASTContext lays out the structure.
9997    //
9998    // It is important for implementing the correct semantics that this
9999    // happen here (in act on tag decl). The #pragma pack stack is
10000    // maintained as a result of parser callbacks which can occur at
10001    // many points during the parsing of a struct declaration (because
10002    // the #pragma tokens are effectively skipped over during the
10003    // parsing of the struct).
10004    if (TUK == TUK_Definition) {
10005      AddAlignmentAttributesForRecord(RD);
10006      AddMsStructLayoutForRecord(RD);
10007    }
10008  }
10009
10010  if (ModulePrivateLoc.isValid()) {
10011    if (isExplicitSpecialization)
10012      Diag(New->getLocation(), diag::err_module_private_specialization)
10013        << 2
10014        << FixItHint::CreateRemoval(ModulePrivateLoc);
10015    // __module_private__ does not apply to local classes. However, we only
10016    // diagnose this as an error when the declaration specifiers are
10017    // freestanding. Here, we just ignore the __module_private__.
10018    else if (!SearchDC->isFunctionOrMethod())
10019      New->setModulePrivate();
10020  }
10021
10022  // If this is a specialization of a member class (of a class template),
10023  // check the specialization.
10024  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10025    Invalid = true;
10026
10027  if (Invalid)
10028    New->setInvalidDecl();
10029
10030  if (Attr)
10031    ProcessDeclAttributeList(S, New, Attr);
10032
10033  // If we're declaring or defining a tag in function prototype scope
10034  // in C, note that this type can only be used within the function.
10035  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10036    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10037
10038  // Set the lexical context. If the tag has a C++ scope specifier, the
10039  // lexical context will be different from the semantic context.
10040  New->setLexicalDeclContext(CurContext);
10041
10042  // Mark this as a friend decl if applicable.
10043  // In Microsoft mode, a friend declaration also acts as a forward
10044  // declaration so we always pass true to setObjectOfFriendDecl to make
10045  // the tag name visible.
10046  if (TUK == TUK_Friend)
10047    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10048                               getLangOpts().MicrosoftExt);
10049
10050  // Set the access specifier.
10051  if (!Invalid && SearchDC->isRecord())
10052    SetMemberAccessSpecifier(New, PrevDecl, AS);
10053
10054  if (TUK == TUK_Definition)
10055    New->startDefinition();
10056
10057  // If this has an identifier, add it to the scope stack.
10058  if (TUK == TUK_Friend) {
10059    // We might be replacing an existing declaration in the lookup tables;
10060    // if so, borrow its access specifier.
10061    if (PrevDecl)
10062      New->setAccess(PrevDecl->getAccess());
10063
10064    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10065    DC->makeDeclVisibleInContext(New);
10066    if (Name) // can be null along some error paths
10067      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10068        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10069  } else if (Name) {
10070    S = getNonFieldDeclScope(S);
10071    PushOnScopeChains(New, S, !IsForwardReference);
10072    if (IsForwardReference)
10073      SearchDC->makeDeclVisibleInContext(New);
10074
10075  } else {
10076    CurContext->addDecl(New);
10077  }
10078
10079  // If this is the C FILE type, notify the AST context.
10080  if (IdentifierInfo *II = New->getIdentifier())
10081    if (!New->isInvalidDecl() &&
10082        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10083        II->isStr("FILE"))
10084      Context.setFILEDecl(New);
10085
10086  // If we were in function prototype scope (and not in C++ mode), add this
10087  // tag to the list of decls to inject into the function definition scope.
10088  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10089      InFunctionDeclarator && Name)
10090    DeclsInPrototypeScope.push_back(New);
10091
10092  if (PrevDecl)
10093    mergeDeclAttributes(New, PrevDecl);
10094
10095  // If there's a #pragma GCC visibility in scope, set the visibility of this
10096  // record.
10097  AddPushedVisibilityAttribute(New);
10098
10099  OwnedDecl = true;
10100  // In C++, don't return an invalid declaration. We can't recover well from
10101  // the cases where we make the type anonymous.
10102  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10103}
10104
10105void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10106  AdjustDeclIfTemplate(TagD);
10107  TagDecl *Tag = cast<TagDecl>(TagD);
10108
10109  // Enter the tag context.
10110  PushDeclContext(S, Tag);
10111
10112  ActOnDocumentableDecl(TagD);
10113
10114  // If there's a #pragma GCC visibility in scope, set the visibility of this
10115  // record.
10116  AddPushedVisibilityAttribute(Tag);
10117}
10118
10119Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10120  assert(isa<ObjCContainerDecl>(IDecl) &&
10121         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10122  DeclContext *OCD = cast<DeclContext>(IDecl);
10123  assert(getContainingDC(OCD) == CurContext &&
10124      "The next DeclContext should be lexically contained in the current one.");
10125  CurContext = OCD;
10126  return IDecl;
10127}
10128
10129void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10130                                           SourceLocation FinalLoc,
10131                                           SourceLocation LBraceLoc) {
10132  AdjustDeclIfTemplate(TagD);
10133  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10134
10135  FieldCollector->StartClass();
10136
10137  if (!Record->getIdentifier())
10138    return;
10139
10140  if (FinalLoc.isValid())
10141    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10142
10143  // C++ [class]p2:
10144  //   [...] The class-name is also inserted into the scope of the
10145  //   class itself; this is known as the injected-class-name. For
10146  //   purposes of access checking, the injected-class-name is treated
10147  //   as if it were a public member name.
10148  CXXRecordDecl *InjectedClassName
10149    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10150                            Record->getLocStart(), Record->getLocation(),
10151                            Record->getIdentifier(),
10152                            /*PrevDecl=*/0,
10153                            /*DelayTypeCreation=*/true);
10154  Context.getTypeDeclType(InjectedClassName, Record);
10155  InjectedClassName->setImplicit();
10156  InjectedClassName->setAccess(AS_public);
10157  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10158      InjectedClassName->setDescribedClassTemplate(Template);
10159  PushOnScopeChains(InjectedClassName, S);
10160  assert(InjectedClassName->isInjectedClassName() &&
10161         "Broken injected-class-name");
10162}
10163
10164void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10165                                    SourceLocation RBraceLoc) {
10166  AdjustDeclIfTemplate(TagD);
10167  TagDecl *Tag = cast<TagDecl>(TagD);
10168  Tag->setRBraceLoc(RBraceLoc);
10169
10170  // Make sure we "complete" the definition even it is invalid.
10171  if (Tag->isBeingDefined()) {
10172    assert(Tag->isInvalidDecl() && "We should already have completed it");
10173    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10174      RD->completeDefinition();
10175  }
10176
10177  if (isa<CXXRecordDecl>(Tag))
10178    FieldCollector->FinishClass();
10179
10180  // Exit this scope of this tag's definition.
10181  PopDeclContext();
10182
10183  if (getCurLexicalContext()->isObjCContainer() &&
10184      Tag->getDeclContext()->isFileContext())
10185    Tag->setTopLevelDeclInObjCContainer();
10186
10187  // Notify the consumer that we've defined a tag.
10188  Consumer.HandleTagDeclDefinition(Tag);
10189}
10190
10191void Sema::ActOnObjCContainerFinishDefinition() {
10192  // Exit this scope of this interface definition.
10193  PopDeclContext();
10194}
10195
10196void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10197  assert(DC == CurContext && "Mismatch of container contexts");
10198  OriginalLexicalContext = DC;
10199  ActOnObjCContainerFinishDefinition();
10200}
10201
10202void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10203  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10204  OriginalLexicalContext = 0;
10205}
10206
10207void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10208  AdjustDeclIfTemplate(TagD);
10209  TagDecl *Tag = cast<TagDecl>(TagD);
10210  Tag->setInvalidDecl();
10211
10212  // Make sure we "complete" the definition even it is invalid.
10213  if (Tag->isBeingDefined()) {
10214    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10215      RD->completeDefinition();
10216  }
10217
10218  // We're undoing ActOnTagStartDefinition here, not
10219  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10220  // the FieldCollector.
10221
10222  PopDeclContext();
10223}
10224
10225// Note that FieldName may be null for anonymous bitfields.
10226ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10227                                IdentifierInfo *FieldName,
10228                                QualType FieldTy, Expr *BitWidth,
10229                                bool *ZeroWidth) {
10230  // Default to true; that shouldn't confuse checks for emptiness
10231  if (ZeroWidth)
10232    *ZeroWidth = true;
10233
10234  // C99 6.7.2.1p4 - verify the field type.
10235  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10236  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10237    // Handle incomplete types with specific error.
10238    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10239      return ExprError();
10240    if (FieldName)
10241      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10242        << FieldName << FieldTy << BitWidth->getSourceRange();
10243    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10244      << FieldTy << BitWidth->getSourceRange();
10245  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10246                                             UPPC_BitFieldWidth))
10247    return ExprError();
10248
10249  // If the bit-width is type- or value-dependent, don't try to check
10250  // it now.
10251  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10252    return Owned(BitWidth);
10253
10254  llvm::APSInt Value;
10255  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10256  if (ICE.isInvalid())
10257    return ICE;
10258  BitWidth = ICE.take();
10259
10260  if (Value != 0 && ZeroWidth)
10261    *ZeroWidth = false;
10262
10263  // Zero-width bitfield is ok for anonymous field.
10264  if (Value == 0 && FieldName)
10265    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10266
10267  if (Value.isSigned() && Value.isNegative()) {
10268    if (FieldName)
10269      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10270               << FieldName << Value.toString(10);
10271    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10272      << Value.toString(10);
10273  }
10274
10275  if (!FieldTy->isDependentType()) {
10276    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10277    if (Value.getZExtValue() > TypeSize) {
10278      if (!getLangOpts().CPlusPlus) {
10279        if (FieldName)
10280          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10281            << FieldName << (unsigned)Value.getZExtValue()
10282            << (unsigned)TypeSize;
10283
10284        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10285          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10286      }
10287
10288      if (FieldName)
10289        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10290          << FieldName << (unsigned)Value.getZExtValue()
10291          << (unsigned)TypeSize;
10292      else
10293        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10294          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10295    }
10296  }
10297
10298  return Owned(BitWidth);
10299}
10300
10301/// ActOnField - Each field of a C struct/union is passed into this in order
10302/// to create a FieldDecl object for it.
10303Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10304                       Declarator &D, Expr *BitfieldWidth) {
10305  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10306                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10307                               /*InitStyle=*/ICIS_NoInit, AS_public);
10308  return Res;
10309}
10310
10311/// HandleField - Analyze a field of a C struct or a C++ data member.
10312///
10313FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10314                             SourceLocation DeclStart,
10315                             Declarator &D, Expr *BitWidth,
10316                             InClassInitStyle InitStyle,
10317                             AccessSpecifier AS) {
10318  IdentifierInfo *II = D.getIdentifier();
10319  SourceLocation Loc = DeclStart;
10320  if (II) Loc = D.getIdentifierLoc();
10321
10322  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10323  QualType T = TInfo->getType();
10324  if (getLangOpts().CPlusPlus) {
10325    CheckExtraCXXDefaultArguments(D);
10326
10327    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10328                                        UPPC_DataMemberType)) {
10329      D.setInvalidType();
10330      T = Context.IntTy;
10331      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10332    }
10333  }
10334
10335  // TR 18037 does not allow fields to be declared with address spaces.
10336  if (T.getQualifiers().hasAddressSpace()) {
10337    Diag(Loc, diag::err_field_with_address_space);
10338    D.setInvalidType();
10339  }
10340
10341  // OpenCL 1.2 spec, s6.9 r:
10342  // The event type cannot be used to declare a structure or union field.
10343  if (LangOpts.OpenCL && T->isEventT()) {
10344    Diag(Loc, diag::err_event_t_struct_field);
10345    D.setInvalidType();
10346  }
10347
10348  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10349
10350  if (D.getDeclSpec().isThreadSpecified())
10351    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10352
10353  // Check to see if this name was declared as a member previously
10354  NamedDecl *PrevDecl = 0;
10355  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10356  LookupName(Previous, S);
10357  switch (Previous.getResultKind()) {
10358    case LookupResult::Found:
10359    case LookupResult::FoundUnresolvedValue:
10360      PrevDecl = Previous.getAsSingle<NamedDecl>();
10361      break;
10362
10363    case LookupResult::FoundOverloaded:
10364      PrevDecl = Previous.getRepresentativeDecl();
10365      break;
10366
10367    case LookupResult::NotFound:
10368    case LookupResult::NotFoundInCurrentInstantiation:
10369    case LookupResult::Ambiguous:
10370      break;
10371  }
10372  Previous.suppressDiagnostics();
10373
10374  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10375    // Maybe we will complain about the shadowed template parameter.
10376    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10377    // Just pretend that we didn't see the previous declaration.
10378    PrevDecl = 0;
10379  }
10380
10381  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10382    PrevDecl = 0;
10383
10384  bool Mutable
10385    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10386  SourceLocation TSSL = D.getLocStart();
10387  FieldDecl *NewFD
10388    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10389                     TSSL, AS, PrevDecl, &D);
10390
10391  if (NewFD->isInvalidDecl())
10392    Record->setInvalidDecl();
10393
10394  if (D.getDeclSpec().isModulePrivateSpecified())
10395    NewFD->setModulePrivate();
10396
10397  if (NewFD->isInvalidDecl() && PrevDecl) {
10398    // Don't introduce NewFD into scope; there's already something
10399    // with the same name in the same scope.
10400  } else if (II) {
10401    PushOnScopeChains(NewFD, S);
10402  } else
10403    Record->addDecl(NewFD);
10404
10405  return NewFD;
10406}
10407
10408/// \brief Build a new FieldDecl and check its well-formedness.
10409///
10410/// This routine builds a new FieldDecl given the fields name, type,
10411/// record, etc. \p PrevDecl should refer to any previous declaration
10412/// with the same name and in the same scope as the field to be
10413/// created.
10414///
10415/// \returns a new FieldDecl.
10416///
10417/// \todo The Declarator argument is a hack. It will be removed once
10418FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10419                                TypeSourceInfo *TInfo,
10420                                RecordDecl *Record, SourceLocation Loc,
10421                                bool Mutable, Expr *BitWidth,
10422                                InClassInitStyle InitStyle,
10423                                SourceLocation TSSL,
10424                                AccessSpecifier AS, NamedDecl *PrevDecl,
10425                                Declarator *D) {
10426  IdentifierInfo *II = Name.getAsIdentifierInfo();
10427  bool InvalidDecl = false;
10428  if (D) InvalidDecl = D->isInvalidType();
10429
10430  // If we receive a broken type, recover by assuming 'int' and
10431  // marking this declaration as invalid.
10432  if (T.isNull()) {
10433    InvalidDecl = true;
10434    T = Context.IntTy;
10435  }
10436
10437  QualType EltTy = Context.getBaseElementType(T);
10438  if (!EltTy->isDependentType()) {
10439    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10440      // Fields of incomplete type force their record to be invalid.
10441      Record->setInvalidDecl();
10442      InvalidDecl = true;
10443    } else {
10444      NamedDecl *Def;
10445      EltTy->isIncompleteType(&Def);
10446      if (Def && Def->isInvalidDecl()) {
10447        Record->setInvalidDecl();
10448        InvalidDecl = true;
10449      }
10450    }
10451  }
10452
10453  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10454  if (BitWidth && getLangOpts().OpenCL) {
10455    Diag(Loc, diag::err_opencl_bitfields);
10456    InvalidDecl = true;
10457  }
10458
10459  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10460  // than a variably modified type.
10461  if (!InvalidDecl && T->isVariablyModifiedType()) {
10462    bool SizeIsNegative;
10463    llvm::APSInt Oversized;
10464
10465    TypeSourceInfo *FixedTInfo =
10466      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10467                                                    SizeIsNegative,
10468                                                    Oversized);
10469    if (FixedTInfo) {
10470      Diag(Loc, diag::warn_illegal_constant_array_size);
10471      TInfo = FixedTInfo;
10472      T = FixedTInfo->getType();
10473    } else {
10474      if (SizeIsNegative)
10475        Diag(Loc, diag::err_typecheck_negative_array_size);
10476      else if (Oversized.getBoolValue())
10477        Diag(Loc, diag::err_array_too_large)
10478          << Oversized.toString(10);
10479      else
10480        Diag(Loc, diag::err_typecheck_field_variable_size);
10481      InvalidDecl = true;
10482    }
10483  }
10484
10485  // Fields can not have abstract class types
10486  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10487                                             diag::err_abstract_type_in_decl,
10488                                             AbstractFieldType))
10489    InvalidDecl = true;
10490
10491  bool ZeroWidth = false;
10492  // If this is declared as a bit-field, check the bit-field.
10493  if (!InvalidDecl && BitWidth) {
10494    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10495    if (!BitWidth) {
10496      InvalidDecl = true;
10497      BitWidth = 0;
10498      ZeroWidth = false;
10499    }
10500  }
10501
10502  // Check that 'mutable' is consistent with the type of the declaration.
10503  if (!InvalidDecl && Mutable) {
10504    unsigned DiagID = 0;
10505    if (T->isReferenceType())
10506      DiagID = diag::err_mutable_reference;
10507    else if (T.isConstQualified())
10508      DiagID = diag::err_mutable_const;
10509
10510    if (DiagID) {
10511      SourceLocation ErrLoc = Loc;
10512      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10513        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10514      Diag(ErrLoc, DiagID);
10515      Mutable = false;
10516      InvalidDecl = true;
10517    }
10518  }
10519
10520  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10521                                       BitWidth, Mutable, InitStyle);
10522  if (InvalidDecl)
10523    NewFD->setInvalidDecl();
10524
10525  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10526    Diag(Loc, diag::err_duplicate_member) << II;
10527    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10528    NewFD->setInvalidDecl();
10529  }
10530
10531  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10532    if (Record->isUnion()) {
10533      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10534        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10535        if (RDecl->getDefinition()) {
10536          // C++ [class.union]p1: An object of a class with a non-trivial
10537          // constructor, a non-trivial copy constructor, a non-trivial
10538          // destructor, or a non-trivial copy assignment operator
10539          // cannot be a member of a union, nor can an array of such
10540          // objects.
10541          if (CheckNontrivialField(NewFD))
10542            NewFD->setInvalidDecl();
10543        }
10544      }
10545
10546      // C++ [class.union]p1: If a union contains a member of reference type,
10547      // the program is ill-formed.
10548      if (EltTy->isReferenceType()) {
10549        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10550          << NewFD->getDeclName() << EltTy;
10551        NewFD->setInvalidDecl();
10552      }
10553    }
10554  }
10555
10556  // FIXME: We need to pass in the attributes given an AST
10557  // representation, not a parser representation.
10558  if (D) {
10559    // FIXME: What to pass instead of TUScope?
10560    ProcessDeclAttributes(TUScope, NewFD, *D);
10561
10562    if (NewFD->hasAttrs())
10563      CheckAlignasUnderalignment(NewFD);
10564  }
10565
10566  // In auto-retain/release, infer strong retension for fields of
10567  // retainable type.
10568  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10569    NewFD->setInvalidDecl();
10570
10571  if (T.isObjCGCWeak())
10572    Diag(Loc, diag::warn_attribute_weak_on_field);
10573
10574  NewFD->setAccess(AS);
10575  return NewFD;
10576}
10577
10578bool Sema::CheckNontrivialField(FieldDecl *FD) {
10579  assert(FD);
10580  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10581
10582  if (FD->isInvalidDecl())
10583    return true;
10584
10585  QualType EltTy = Context.getBaseElementType(FD->getType());
10586  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10587    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10588    if (RDecl->getDefinition()) {
10589      // We check for copy constructors before constructors
10590      // because otherwise we'll never get complaints about
10591      // copy constructors.
10592
10593      CXXSpecialMember member = CXXInvalid;
10594      // We're required to check for any non-trivial constructors. Since the
10595      // implicit default constructor is suppressed if there are any
10596      // user-declared constructors, we just need to check that there is a
10597      // trivial default constructor and a trivial copy constructor. (We don't
10598      // worry about move constructors here, since this is a C++98 check.)
10599      if (RDecl->hasNonTrivialCopyConstructor())
10600        member = CXXCopyConstructor;
10601      else if (!RDecl->hasTrivialDefaultConstructor())
10602        member = CXXDefaultConstructor;
10603      else if (RDecl->hasNonTrivialCopyAssignment())
10604        member = CXXCopyAssignment;
10605      else if (RDecl->hasNonTrivialDestructor())
10606        member = CXXDestructor;
10607
10608      if (member != CXXInvalid) {
10609        if (!getLangOpts().CPlusPlus11 &&
10610            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10611          // Objective-C++ ARC: it is an error to have a non-trivial field of
10612          // a union. However, system headers in Objective-C programs
10613          // occasionally have Objective-C lifetime objects within unions,
10614          // and rather than cause the program to fail, we make those
10615          // members unavailable.
10616          SourceLocation Loc = FD->getLocation();
10617          if (getSourceManager().isInSystemHeader(Loc)) {
10618            if (!FD->hasAttr<UnavailableAttr>())
10619              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10620                                  "this system field has retaining ownership"));
10621            return false;
10622          }
10623        }
10624
10625        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10626               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10627               diag::err_illegal_union_or_anon_struct_member)
10628          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10629        DiagnoseNontrivial(RDecl, member);
10630        return !getLangOpts().CPlusPlus11;
10631      }
10632    }
10633  }
10634
10635  return false;
10636}
10637
10638/// TranslateIvarVisibility - Translate visibility from a token ID to an
10639///  AST enum value.
10640static ObjCIvarDecl::AccessControl
10641TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10642  switch (ivarVisibility) {
10643  default: llvm_unreachable("Unknown visitibility kind");
10644  case tok::objc_private: return ObjCIvarDecl::Private;
10645  case tok::objc_public: return ObjCIvarDecl::Public;
10646  case tok::objc_protected: return ObjCIvarDecl::Protected;
10647  case tok::objc_package: return ObjCIvarDecl::Package;
10648  }
10649}
10650
10651/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10652/// in order to create an IvarDecl object for it.
10653Decl *Sema::ActOnIvar(Scope *S,
10654                                SourceLocation DeclStart,
10655                                Declarator &D, Expr *BitfieldWidth,
10656                                tok::ObjCKeywordKind Visibility) {
10657
10658  IdentifierInfo *II = D.getIdentifier();
10659  Expr *BitWidth = (Expr*)BitfieldWidth;
10660  SourceLocation Loc = DeclStart;
10661  if (II) Loc = D.getIdentifierLoc();
10662
10663  // FIXME: Unnamed fields can be handled in various different ways, for
10664  // example, unnamed unions inject all members into the struct namespace!
10665
10666  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10667  QualType T = TInfo->getType();
10668
10669  if (BitWidth) {
10670    // 6.7.2.1p3, 6.7.2.1p4
10671    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10672    if (!BitWidth)
10673      D.setInvalidType();
10674  } else {
10675    // Not a bitfield.
10676
10677    // validate II.
10678
10679  }
10680  if (T->isReferenceType()) {
10681    Diag(Loc, diag::err_ivar_reference_type);
10682    D.setInvalidType();
10683  }
10684  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10685  // than a variably modified type.
10686  else if (T->isVariablyModifiedType()) {
10687    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10688    D.setInvalidType();
10689  }
10690
10691  // Get the visibility (access control) for this ivar.
10692  ObjCIvarDecl::AccessControl ac =
10693    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10694                                        : ObjCIvarDecl::None;
10695  // Must set ivar's DeclContext to its enclosing interface.
10696  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10697  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10698    return 0;
10699  ObjCContainerDecl *EnclosingContext;
10700  if (ObjCImplementationDecl *IMPDecl =
10701      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10702    if (LangOpts.ObjCRuntime.isFragile()) {
10703    // Case of ivar declared in an implementation. Context is that of its class.
10704      EnclosingContext = IMPDecl->getClassInterface();
10705      assert(EnclosingContext && "Implementation has no class interface!");
10706    }
10707    else
10708      EnclosingContext = EnclosingDecl;
10709  } else {
10710    if (ObjCCategoryDecl *CDecl =
10711        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10712      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10713        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10714        return 0;
10715      }
10716    }
10717    EnclosingContext = EnclosingDecl;
10718  }
10719
10720  // Construct the decl.
10721  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10722                                             DeclStart, Loc, II, T,
10723                                             TInfo, ac, (Expr *)BitfieldWidth);
10724
10725  if (II) {
10726    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10727                                           ForRedeclaration);
10728    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10729        && !isa<TagDecl>(PrevDecl)) {
10730      Diag(Loc, diag::err_duplicate_member) << II;
10731      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10732      NewID->setInvalidDecl();
10733    }
10734  }
10735
10736  // Process attributes attached to the ivar.
10737  ProcessDeclAttributes(S, NewID, D);
10738
10739  if (D.isInvalidType())
10740    NewID->setInvalidDecl();
10741
10742  // In ARC, infer 'retaining' for ivars of retainable type.
10743  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10744    NewID->setInvalidDecl();
10745
10746  if (D.getDeclSpec().isModulePrivateSpecified())
10747    NewID->setModulePrivate();
10748
10749  if (II) {
10750    // FIXME: When interfaces are DeclContexts, we'll need to add
10751    // these to the interface.
10752    S->AddDecl(NewID);
10753    IdResolver.AddDecl(NewID);
10754  }
10755
10756  if (LangOpts.ObjCRuntime.isNonFragile() &&
10757      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10758    Diag(Loc, diag::warn_ivars_in_interface);
10759
10760  return NewID;
10761}
10762
10763/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10764/// class and class extensions. For every class \@interface and class
10765/// extension \@interface, if the last ivar is a bitfield of any type,
10766/// then add an implicit `char :0` ivar to the end of that interface.
10767void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10768                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10769  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10770    return;
10771
10772  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10773  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10774
10775  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10776    return;
10777  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10778  if (!ID) {
10779    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10780      if (!CD->IsClassExtension())
10781        return;
10782    }
10783    // No need to add this to end of @implementation.
10784    else
10785      return;
10786  }
10787  // All conditions are met. Add a new bitfield to the tail end of ivars.
10788  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10789  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10790
10791  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10792                              DeclLoc, DeclLoc, 0,
10793                              Context.CharTy,
10794                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10795                                                               DeclLoc),
10796                              ObjCIvarDecl::Private, BW,
10797                              true);
10798  AllIvarDecls.push_back(Ivar);
10799}
10800
10801void Sema::ActOnFields(Scope* S,
10802                       SourceLocation RecLoc, Decl *EnclosingDecl,
10803                       llvm::ArrayRef<Decl *> Fields,
10804                       SourceLocation LBrac, SourceLocation RBrac,
10805                       AttributeList *Attr) {
10806  assert(EnclosingDecl && "missing record or interface decl");
10807
10808  // If this is an Objective-C @implementation or category and we have
10809  // new fields here we should reset the layout of the interface since
10810  // it will now change.
10811  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10812    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10813    switch (DC->getKind()) {
10814    default: break;
10815    case Decl::ObjCCategory:
10816      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10817      break;
10818    case Decl::ObjCImplementation:
10819      Context.
10820        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10821      break;
10822    }
10823  }
10824
10825  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10826
10827  // Start counting up the number of named members; make sure to include
10828  // members of anonymous structs and unions in the total.
10829  unsigned NumNamedMembers = 0;
10830  if (Record) {
10831    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10832                                   e = Record->decls_end(); i != e; i++) {
10833      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10834        if (IFD->getDeclName())
10835          ++NumNamedMembers;
10836    }
10837  }
10838
10839  // Verify that all the fields are okay.
10840  SmallVector<FieldDecl*, 32> RecFields;
10841
10842  bool ARCErrReported = false;
10843  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10844       i != end; ++i) {
10845    FieldDecl *FD = cast<FieldDecl>(*i);
10846
10847    // Get the type for the field.
10848    const Type *FDTy = FD->getType().getTypePtr();
10849
10850    if (!FD->isAnonymousStructOrUnion()) {
10851      // Remember all fields written by the user.
10852      RecFields.push_back(FD);
10853    }
10854
10855    // If the field is already invalid for some reason, don't emit more
10856    // diagnostics about it.
10857    if (FD->isInvalidDecl()) {
10858      EnclosingDecl->setInvalidDecl();
10859      continue;
10860    }
10861
10862    // C99 6.7.2.1p2:
10863    //   A structure or union shall not contain a member with
10864    //   incomplete or function type (hence, a structure shall not
10865    //   contain an instance of itself, but may contain a pointer to
10866    //   an instance of itself), except that the last member of a
10867    //   structure with more than one named member may have incomplete
10868    //   array type; such a structure (and any union containing,
10869    //   possibly recursively, a member that is such a structure)
10870    //   shall not be a member of a structure or an element of an
10871    //   array.
10872    if (FDTy->isFunctionType()) {
10873      // Field declared as a function.
10874      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10875        << FD->getDeclName();
10876      FD->setInvalidDecl();
10877      EnclosingDecl->setInvalidDecl();
10878      continue;
10879    } else if (FDTy->isIncompleteArrayType() && Record &&
10880               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10881                ((getLangOpts().MicrosoftExt ||
10882                  getLangOpts().CPlusPlus) &&
10883                 (i + 1 == Fields.end() || Record->isUnion())))) {
10884      // Flexible array member.
10885      // Microsoft and g++ is more permissive regarding flexible array.
10886      // It will accept flexible array in union and also
10887      // as the sole element of a struct/class.
10888      if (getLangOpts().MicrosoftExt) {
10889        if (Record->isUnion())
10890          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10891            << FD->getDeclName();
10892        else if (Fields.size() == 1)
10893          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10894            << FD->getDeclName() << Record->getTagKind();
10895      } else if (getLangOpts().CPlusPlus) {
10896        if (Record->isUnion())
10897          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10898            << FD->getDeclName();
10899        else if (Fields.size() == 1)
10900          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10901            << FD->getDeclName() << Record->getTagKind();
10902      } else if (!getLangOpts().C99) {
10903      if (Record->isUnion())
10904        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10905          << FD->getDeclName();
10906      else
10907        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10908          << FD->getDeclName() << Record->getTagKind();
10909      } else if (NumNamedMembers < 1) {
10910        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10911          << FD->getDeclName();
10912        FD->setInvalidDecl();
10913        EnclosingDecl->setInvalidDecl();
10914        continue;
10915      }
10916      if (!FD->getType()->isDependentType() &&
10917          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10918        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10919          << FD->getDeclName() << FD->getType();
10920        FD->setInvalidDecl();
10921        EnclosingDecl->setInvalidDecl();
10922        continue;
10923      }
10924      // Okay, we have a legal flexible array member at the end of the struct.
10925      if (Record)
10926        Record->setHasFlexibleArrayMember(true);
10927    } else if (!FDTy->isDependentType() &&
10928               RequireCompleteType(FD->getLocation(), FD->getType(),
10929                                   diag::err_field_incomplete)) {
10930      // Incomplete type
10931      FD->setInvalidDecl();
10932      EnclosingDecl->setInvalidDecl();
10933      continue;
10934    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10935      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10936        // If this is a member of a union, then entire union becomes "flexible".
10937        if (Record && Record->isUnion()) {
10938          Record->setHasFlexibleArrayMember(true);
10939        } else {
10940          // If this is a struct/class and this is not the last element, reject
10941          // it.  Note that GCC supports variable sized arrays in the middle of
10942          // structures.
10943          if (i + 1 != Fields.end())
10944            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10945              << FD->getDeclName() << FD->getType();
10946          else {
10947            // We support flexible arrays at the end of structs in
10948            // other structs as an extension.
10949            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10950              << FD->getDeclName();
10951            if (Record)
10952              Record->setHasFlexibleArrayMember(true);
10953          }
10954        }
10955      }
10956      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10957          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10958                                 diag::err_abstract_type_in_decl,
10959                                 AbstractIvarType)) {
10960        // Ivars can not have abstract class types
10961        FD->setInvalidDecl();
10962      }
10963      if (Record && FDTTy->getDecl()->hasObjectMember())
10964        Record->setHasObjectMember(true);
10965      if (Record && FDTTy->getDecl()->hasVolatileMember())
10966        Record->setHasVolatileMember(true);
10967    } else if (FDTy->isObjCObjectType()) {
10968      /// A field cannot be an Objective-c object
10969      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10970        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10971      QualType T = Context.getObjCObjectPointerType(FD->getType());
10972      FD->setType(T);
10973    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10974               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10975      // It's an error in ARC if a field has lifetime.
10976      // We don't want to report this in a system header, though,
10977      // so we just make the field unavailable.
10978      // FIXME: that's really not sufficient; we need to make the type
10979      // itself invalid to, say, initialize or copy.
10980      QualType T = FD->getType();
10981      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10982      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10983        SourceLocation loc = FD->getLocation();
10984        if (getSourceManager().isInSystemHeader(loc)) {
10985          if (!FD->hasAttr<UnavailableAttr>()) {
10986            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10987                              "this system field has retaining ownership"));
10988          }
10989        } else {
10990          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10991            << T->isBlockPointerType() << Record->getTagKind();
10992        }
10993        ARCErrReported = true;
10994      }
10995    } else if (getLangOpts().ObjC1 &&
10996               getLangOpts().getGC() != LangOptions::NonGC &&
10997               Record && !Record->hasObjectMember()) {
10998      if (FD->getType()->isObjCObjectPointerType() ||
10999          FD->getType().isObjCGCStrong())
11000        Record->setHasObjectMember(true);
11001      else if (Context.getAsArrayType(FD->getType())) {
11002        QualType BaseType = Context.getBaseElementType(FD->getType());
11003        if (BaseType->isRecordType() &&
11004            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11005          Record->setHasObjectMember(true);
11006        else if (BaseType->isObjCObjectPointerType() ||
11007                 BaseType.isObjCGCStrong())
11008               Record->setHasObjectMember(true);
11009      }
11010    }
11011    if (Record && FD->getType().isVolatileQualified())
11012      Record->setHasVolatileMember(true);
11013    // Keep track of the number of named members.
11014    if (FD->getIdentifier())
11015      ++NumNamedMembers;
11016  }
11017
11018  // Okay, we successfully defined 'Record'.
11019  if (Record) {
11020    bool Completed = false;
11021    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11022      if (!CXXRecord->isInvalidDecl()) {
11023        // Set access bits correctly on the directly-declared conversions.
11024        for (CXXRecordDecl::conversion_iterator
11025               I = CXXRecord->conversion_begin(),
11026               E = CXXRecord->conversion_end(); I != E; ++I)
11027          I.setAccess((*I)->getAccess());
11028
11029        if (!CXXRecord->isDependentType()) {
11030          // Adjust user-defined destructor exception spec.
11031          if (getLangOpts().CPlusPlus11 &&
11032              CXXRecord->hasUserDeclaredDestructor())
11033            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
11034
11035          // Add any implicitly-declared members to this class.
11036          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11037
11038          // If we have virtual base classes, we may end up finding multiple
11039          // final overriders for a given virtual function. Check for this
11040          // problem now.
11041          if (CXXRecord->getNumVBases()) {
11042            CXXFinalOverriderMap FinalOverriders;
11043            CXXRecord->getFinalOverriders(FinalOverriders);
11044
11045            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11046                                             MEnd = FinalOverriders.end();
11047                 M != MEnd; ++M) {
11048              for (OverridingMethods::iterator SO = M->second.begin(),
11049                                            SOEnd = M->second.end();
11050                   SO != SOEnd; ++SO) {
11051                assert(SO->second.size() > 0 &&
11052                       "Virtual function without overridding functions?");
11053                if (SO->second.size() == 1)
11054                  continue;
11055
11056                // C++ [class.virtual]p2:
11057                //   In a derived class, if a virtual member function of a base
11058                //   class subobject has more than one final overrider the
11059                //   program is ill-formed.
11060                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11061                  << (const NamedDecl *)M->first << Record;
11062                Diag(M->first->getLocation(),
11063                     diag::note_overridden_virtual_function);
11064                for (OverridingMethods::overriding_iterator
11065                          OM = SO->second.begin(),
11066                       OMEnd = SO->second.end();
11067                     OM != OMEnd; ++OM)
11068                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11069                    << (const NamedDecl *)M->first << OM->Method->getParent();
11070
11071                Record->setInvalidDecl();
11072              }
11073            }
11074            CXXRecord->completeDefinition(&FinalOverriders);
11075            Completed = true;
11076          }
11077        }
11078      }
11079    }
11080
11081    if (!Completed)
11082      Record->completeDefinition();
11083
11084    if (Record->hasAttrs())
11085      CheckAlignasUnderalignment(Record);
11086  } else {
11087    ObjCIvarDecl **ClsFields =
11088      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11089    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11090      ID->setEndOfDefinitionLoc(RBrac);
11091      // Add ivar's to class's DeclContext.
11092      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11093        ClsFields[i]->setLexicalDeclContext(ID);
11094        ID->addDecl(ClsFields[i]);
11095      }
11096      // Must enforce the rule that ivars in the base classes may not be
11097      // duplicates.
11098      if (ID->getSuperClass())
11099        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11100    } else if (ObjCImplementationDecl *IMPDecl =
11101                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11102      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11103      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11104        // Ivar declared in @implementation never belongs to the implementation.
11105        // Only it is in implementation's lexical context.
11106        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11107      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11108      IMPDecl->setIvarLBraceLoc(LBrac);
11109      IMPDecl->setIvarRBraceLoc(RBrac);
11110    } else if (ObjCCategoryDecl *CDecl =
11111                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11112      // case of ivars in class extension; all other cases have been
11113      // reported as errors elsewhere.
11114      // FIXME. Class extension does not have a LocEnd field.
11115      // CDecl->setLocEnd(RBrac);
11116      // Add ivar's to class extension's DeclContext.
11117      // Diagnose redeclaration of private ivars.
11118      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11119      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11120        if (IDecl) {
11121          if (const ObjCIvarDecl *ClsIvar =
11122              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11123            Diag(ClsFields[i]->getLocation(),
11124                 diag::err_duplicate_ivar_declaration);
11125            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11126            continue;
11127          }
11128          for (ObjCInterfaceDecl::known_extensions_iterator
11129                 Ext = IDecl->known_extensions_begin(),
11130                 ExtEnd = IDecl->known_extensions_end();
11131               Ext != ExtEnd; ++Ext) {
11132            if (const ObjCIvarDecl *ClsExtIvar
11133                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11134              Diag(ClsFields[i]->getLocation(),
11135                   diag::err_duplicate_ivar_declaration);
11136              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11137              continue;
11138            }
11139          }
11140        }
11141        ClsFields[i]->setLexicalDeclContext(CDecl);
11142        CDecl->addDecl(ClsFields[i]);
11143      }
11144      CDecl->setIvarLBraceLoc(LBrac);
11145      CDecl->setIvarRBraceLoc(RBrac);
11146    }
11147  }
11148
11149  if (Attr)
11150    ProcessDeclAttributeList(S, Record, Attr);
11151}
11152
11153/// \brief Determine whether the given integral value is representable within
11154/// the given type T.
11155static bool isRepresentableIntegerValue(ASTContext &Context,
11156                                        llvm::APSInt &Value,
11157                                        QualType T) {
11158  assert(T->isIntegralType(Context) && "Integral type required!");
11159  unsigned BitWidth = Context.getIntWidth(T);
11160
11161  if (Value.isUnsigned() || Value.isNonNegative()) {
11162    if (T->isSignedIntegerOrEnumerationType())
11163      --BitWidth;
11164    return Value.getActiveBits() <= BitWidth;
11165  }
11166  return Value.getMinSignedBits() <= BitWidth;
11167}
11168
11169// \brief Given an integral type, return the next larger integral type
11170// (or a NULL type of no such type exists).
11171static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11172  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11173  // enum checking below.
11174  assert(T->isIntegralType(Context) && "Integral type required!");
11175  const unsigned NumTypes = 4;
11176  QualType SignedIntegralTypes[NumTypes] = {
11177    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11178  };
11179  QualType UnsignedIntegralTypes[NumTypes] = {
11180    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11181    Context.UnsignedLongLongTy
11182  };
11183
11184  unsigned BitWidth = Context.getTypeSize(T);
11185  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11186                                                        : UnsignedIntegralTypes;
11187  for (unsigned I = 0; I != NumTypes; ++I)
11188    if (Context.getTypeSize(Types[I]) > BitWidth)
11189      return Types[I];
11190
11191  return QualType();
11192}
11193
11194EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11195                                          EnumConstantDecl *LastEnumConst,
11196                                          SourceLocation IdLoc,
11197                                          IdentifierInfo *Id,
11198                                          Expr *Val) {
11199  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11200  llvm::APSInt EnumVal(IntWidth);
11201  QualType EltTy;
11202
11203  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11204    Val = 0;
11205
11206  if (Val)
11207    Val = DefaultLvalueConversion(Val).take();
11208
11209  if (Val) {
11210    if (Enum->isDependentType() || Val->isTypeDependent())
11211      EltTy = Context.DependentTy;
11212    else {
11213      SourceLocation ExpLoc;
11214      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11215          !getLangOpts().MicrosoftMode) {
11216        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11217        // constant-expression in the enumerator-definition shall be a converted
11218        // constant expression of the underlying type.
11219        EltTy = Enum->getIntegerType();
11220        ExprResult Converted =
11221          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11222                                           CCEK_Enumerator);
11223        if (Converted.isInvalid())
11224          Val = 0;
11225        else
11226          Val = Converted.take();
11227      } else if (!Val->isValueDependent() &&
11228                 !(Val = VerifyIntegerConstantExpression(Val,
11229                                                         &EnumVal).take())) {
11230        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11231      } else {
11232        if (Enum->isFixed()) {
11233          EltTy = Enum->getIntegerType();
11234
11235          // In Obj-C and Microsoft mode, require the enumeration value to be
11236          // representable in the underlying type of the enumeration. In C++11,
11237          // we perform a non-narrowing conversion as part of converted constant
11238          // expression checking.
11239          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11240            if (getLangOpts().MicrosoftMode) {
11241              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11242              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11243            } else
11244              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11245          } else
11246            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11247        } else if (getLangOpts().CPlusPlus) {
11248          // C++11 [dcl.enum]p5:
11249          //   If the underlying type is not fixed, the type of each enumerator
11250          //   is the type of its initializing value:
11251          //     - If an initializer is specified for an enumerator, the
11252          //       initializing value has the same type as the expression.
11253          EltTy = Val->getType();
11254        } else {
11255          // C99 6.7.2.2p2:
11256          //   The expression that defines the value of an enumeration constant
11257          //   shall be an integer constant expression that has a value
11258          //   representable as an int.
11259
11260          // Complain if the value is not representable in an int.
11261          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11262            Diag(IdLoc, diag::ext_enum_value_not_int)
11263              << EnumVal.toString(10) << Val->getSourceRange()
11264              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11265          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11266            // Force the type of the expression to 'int'.
11267            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11268          }
11269          EltTy = Val->getType();
11270        }
11271      }
11272    }
11273  }
11274
11275  if (!Val) {
11276    if (Enum->isDependentType())
11277      EltTy = Context.DependentTy;
11278    else if (!LastEnumConst) {
11279      // C++0x [dcl.enum]p5:
11280      //   If the underlying type is not fixed, the type of each enumerator
11281      //   is the type of its initializing value:
11282      //     - If no initializer is specified for the first enumerator, the
11283      //       initializing value has an unspecified integral type.
11284      //
11285      // GCC uses 'int' for its unspecified integral type, as does
11286      // C99 6.7.2.2p3.
11287      if (Enum->isFixed()) {
11288        EltTy = Enum->getIntegerType();
11289      }
11290      else {
11291        EltTy = Context.IntTy;
11292      }
11293    } else {
11294      // Assign the last value + 1.
11295      EnumVal = LastEnumConst->getInitVal();
11296      ++EnumVal;
11297      EltTy = LastEnumConst->getType();
11298
11299      // Check for overflow on increment.
11300      if (EnumVal < LastEnumConst->getInitVal()) {
11301        // C++0x [dcl.enum]p5:
11302        //   If the underlying type is not fixed, the type of each enumerator
11303        //   is the type of its initializing value:
11304        //
11305        //     - Otherwise the type of the initializing value is the same as
11306        //       the type of the initializing value of the preceding enumerator
11307        //       unless the incremented value is not representable in that type,
11308        //       in which case the type is an unspecified integral type
11309        //       sufficient to contain the incremented value. If no such type
11310        //       exists, the program is ill-formed.
11311        QualType T = getNextLargerIntegralType(Context, EltTy);
11312        if (T.isNull() || Enum->isFixed()) {
11313          // There is no integral type larger enough to represent this
11314          // value. Complain, then allow the value to wrap around.
11315          EnumVal = LastEnumConst->getInitVal();
11316          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11317          ++EnumVal;
11318          if (Enum->isFixed())
11319            // When the underlying type is fixed, this is ill-formed.
11320            Diag(IdLoc, diag::err_enumerator_wrapped)
11321              << EnumVal.toString(10)
11322              << EltTy;
11323          else
11324            Diag(IdLoc, diag::warn_enumerator_too_large)
11325              << EnumVal.toString(10);
11326        } else {
11327          EltTy = T;
11328        }
11329
11330        // Retrieve the last enumerator's value, extent that type to the
11331        // type that is supposed to be large enough to represent the incremented
11332        // value, then increment.
11333        EnumVal = LastEnumConst->getInitVal();
11334        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11335        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11336        ++EnumVal;
11337
11338        // If we're not in C++, diagnose the overflow of enumerator values,
11339        // which in C99 means that the enumerator value is not representable in
11340        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11341        // permits enumerator values that are representable in some larger
11342        // integral type.
11343        if (!getLangOpts().CPlusPlus && !T.isNull())
11344          Diag(IdLoc, diag::warn_enum_value_overflow);
11345      } else if (!getLangOpts().CPlusPlus &&
11346                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11347        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11348        Diag(IdLoc, diag::ext_enum_value_not_int)
11349          << EnumVal.toString(10) << 1;
11350      }
11351    }
11352  }
11353
11354  if (!EltTy->isDependentType()) {
11355    // Make the enumerator value match the signedness and size of the
11356    // enumerator's type.
11357    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11358    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11359  }
11360
11361  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11362                                  Val, EnumVal);
11363}
11364
11365
11366Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11367                              SourceLocation IdLoc, IdentifierInfo *Id,
11368                              AttributeList *Attr,
11369                              SourceLocation EqualLoc, Expr *Val) {
11370  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11371  EnumConstantDecl *LastEnumConst =
11372    cast_or_null<EnumConstantDecl>(lastEnumConst);
11373
11374  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11375  // we find one that is.
11376  S = getNonFieldDeclScope(S);
11377
11378  // Verify that there isn't already something declared with this name in this
11379  // scope.
11380  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11381                                         ForRedeclaration);
11382  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11383    // Maybe we will complain about the shadowed template parameter.
11384    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11385    // Just pretend that we didn't see the previous declaration.
11386    PrevDecl = 0;
11387  }
11388
11389  if (PrevDecl) {
11390    // When in C++, we may get a TagDecl with the same name; in this case the
11391    // enum constant will 'hide' the tag.
11392    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11393           "Received TagDecl when not in C++!");
11394    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11395      if (isa<EnumConstantDecl>(PrevDecl))
11396        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11397      else
11398        Diag(IdLoc, diag::err_redefinition) << Id;
11399      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11400      return 0;
11401    }
11402  }
11403
11404  // C++ [class.mem]p15:
11405  // If T is the name of a class, then each of the following shall have a name
11406  // different from T:
11407  // - every enumerator of every member of class T that is an unscoped
11408  // enumerated type
11409  if (CXXRecordDecl *Record
11410                      = dyn_cast<CXXRecordDecl>(
11411                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11412    if (!TheEnumDecl->isScoped() &&
11413        Record->getIdentifier() && Record->getIdentifier() == Id)
11414      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11415
11416  EnumConstantDecl *New =
11417    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11418
11419  if (New) {
11420    // Process attributes.
11421    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11422
11423    // Register this decl in the current scope stack.
11424    New->setAccess(TheEnumDecl->getAccess());
11425    PushOnScopeChains(New, S);
11426  }
11427
11428  ActOnDocumentableDecl(New);
11429
11430  return New;
11431}
11432
11433// Returns true when the enum initial expression does not trigger the
11434// duplicate enum warning.  A few common cases are exempted as follows:
11435// Element2 = Element1
11436// Element2 = Element1 + 1
11437// Element2 = Element1 - 1
11438// Where Element2 and Element1 are from the same enum.
11439static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11440  Expr *InitExpr = ECD->getInitExpr();
11441  if (!InitExpr)
11442    return true;
11443  InitExpr = InitExpr->IgnoreImpCasts();
11444
11445  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11446    if (!BO->isAdditiveOp())
11447      return true;
11448    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11449    if (!IL)
11450      return true;
11451    if (IL->getValue() != 1)
11452      return true;
11453
11454    InitExpr = BO->getLHS();
11455  }
11456
11457  // This checks if the elements are from the same enum.
11458  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11459  if (!DRE)
11460    return true;
11461
11462  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11463  if (!EnumConstant)
11464    return true;
11465
11466  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11467      Enum)
11468    return true;
11469
11470  return false;
11471}
11472
11473struct DupKey {
11474  int64_t val;
11475  bool isTombstoneOrEmptyKey;
11476  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11477    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11478};
11479
11480static DupKey GetDupKey(const llvm::APSInt& Val) {
11481  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11482                false);
11483}
11484
11485struct DenseMapInfoDupKey {
11486  static DupKey getEmptyKey() { return DupKey(0, true); }
11487  static DupKey getTombstoneKey() { return DupKey(1, true); }
11488  static unsigned getHashValue(const DupKey Key) {
11489    return (unsigned)(Key.val * 37);
11490  }
11491  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11492    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11493           LHS.val == RHS.val;
11494  }
11495};
11496
11497// Emits a warning when an element is implicitly set a value that
11498// a previous element has already been set to.
11499static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11500                                        unsigned NumElements, EnumDecl *Enum,
11501                                        QualType EnumType) {
11502  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11503                                 Enum->getLocation()) ==
11504      DiagnosticsEngine::Ignored)
11505    return;
11506  // Avoid anonymous enums
11507  if (!Enum->getIdentifier())
11508    return;
11509
11510  // Only check for small enums.
11511  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11512    return;
11513
11514  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11515  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11516
11517  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11518  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11519          ValueToVectorMap;
11520
11521  DuplicatesVector DupVector;
11522  ValueToVectorMap EnumMap;
11523
11524  // Populate the EnumMap with all values represented by enum constants without
11525  // an initialier.
11526  for (unsigned i = 0; i < NumElements; ++i) {
11527    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11528
11529    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11530    // this constant.  Skip this enum since it may be ill-formed.
11531    if (!ECD) {
11532      return;
11533    }
11534
11535    if (ECD->getInitExpr())
11536      continue;
11537
11538    DupKey Key = GetDupKey(ECD->getInitVal());
11539    DeclOrVector &Entry = EnumMap[Key];
11540
11541    // First time encountering this value.
11542    if (Entry.isNull())
11543      Entry = ECD;
11544  }
11545
11546  // Create vectors for any values that has duplicates.
11547  for (unsigned i = 0; i < NumElements; ++i) {
11548    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11549    if (!ValidDuplicateEnum(ECD, Enum))
11550      continue;
11551
11552    DupKey Key = GetDupKey(ECD->getInitVal());
11553
11554    DeclOrVector& Entry = EnumMap[Key];
11555    if (Entry.isNull())
11556      continue;
11557
11558    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11559      // Ensure constants are different.
11560      if (D == ECD)
11561        continue;
11562
11563      // Create new vector and push values onto it.
11564      ECDVector *Vec = new ECDVector();
11565      Vec->push_back(D);
11566      Vec->push_back(ECD);
11567
11568      // Update entry to point to the duplicates vector.
11569      Entry = Vec;
11570
11571      // Store the vector somewhere we can consult later for quick emission of
11572      // diagnostics.
11573      DupVector.push_back(Vec);
11574      continue;
11575    }
11576
11577    ECDVector *Vec = Entry.get<ECDVector*>();
11578    // Make sure constants are not added more than once.
11579    if (*Vec->begin() == ECD)
11580      continue;
11581
11582    Vec->push_back(ECD);
11583  }
11584
11585  // Emit diagnostics.
11586  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11587                                  DupVectorEnd = DupVector.end();
11588       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11589    ECDVector *Vec = *DupVectorIter;
11590    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11591
11592    // Emit warning for one enum constant.
11593    ECDVector::iterator I = Vec->begin();
11594    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11595      << (*I)->getName() << (*I)->getInitVal().toString(10)
11596      << (*I)->getSourceRange();
11597    ++I;
11598
11599    // Emit one note for each of the remaining enum constants with
11600    // the same value.
11601    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11602      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11603        << (*I)->getName() << (*I)->getInitVal().toString(10)
11604        << (*I)->getSourceRange();
11605    delete Vec;
11606  }
11607}
11608
11609void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11610                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11611                         Decl **Elements, unsigned NumElements,
11612                         Scope *S, AttributeList *Attr) {
11613  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11614  QualType EnumType = Context.getTypeDeclType(Enum);
11615
11616  if (Attr)
11617    ProcessDeclAttributeList(S, Enum, Attr);
11618
11619  if (Enum->isDependentType()) {
11620    for (unsigned i = 0; i != NumElements; ++i) {
11621      EnumConstantDecl *ECD =
11622        cast_or_null<EnumConstantDecl>(Elements[i]);
11623      if (!ECD) continue;
11624
11625      ECD->setType(EnumType);
11626    }
11627
11628    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11629    return;
11630  }
11631
11632  // TODO: If the result value doesn't fit in an int, it must be a long or long
11633  // long value.  ISO C does not support this, but GCC does as an extension,
11634  // emit a warning.
11635  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11636  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11637  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11638
11639  // Verify that all the values are okay, compute the size of the values, and
11640  // reverse the list.
11641  unsigned NumNegativeBits = 0;
11642  unsigned NumPositiveBits = 0;
11643
11644  // Keep track of whether all elements have type int.
11645  bool AllElementsInt = true;
11646
11647  for (unsigned i = 0; i != NumElements; ++i) {
11648    EnumConstantDecl *ECD =
11649      cast_or_null<EnumConstantDecl>(Elements[i]);
11650    if (!ECD) continue;  // Already issued a diagnostic.
11651
11652    const llvm::APSInt &InitVal = ECD->getInitVal();
11653
11654    // Keep track of the size of positive and negative values.
11655    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11656      NumPositiveBits = std::max(NumPositiveBits,
11657                                 (unsigned)InitVal.getActiveBits());
11658    else
11659      NumNegativeBits = std::max(NumNegativeBits,
11660                                 (unsigned)InitVal.getMinSignedBits());
11661
11662    // Keep track of whether every enum element has type int (very commmon).
11663    if (AllElementsInt)
11664      AllElementsInt = ECD->getType() == Context.IntTy;
11665  }
11666
11667  // Figure out the type that should be used for this enum.
11668  QualType BestType;
11669  unsigned BestWidth;
11670
11671  // C++0x N3000 [conv.prom]p3:
11672  //   An rvalue of an unscoped enumeration type whose underlying
11673  //   type is not fixed can be converted to an rvalue of the first
11674  //   of the following types that can represent all the values of
11675  //   the enumeration: int, unsigned int, long int, unsigned long
11676  //   int, long long int, or unsigned long long int.
11677  // C99 6.4.4.3p2:
11678  //   An identifier declared as an enumeration constant has type int.
11679  // The C99 rule is modified by a gcc extension
11680  QualType BestPromotionType;
11681
11682  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11683  // -fshort-enums is the equivalent to specifying the packed attribute on all
11684  // enum definitions.
11685  if (LangOpts.ShortEnums)
11686    Packed = true;
11687
11688  if (Enum->isFixed()) {
11689    BestType = Enum->getIntegerType();
11690    if (BestType->isPromotableIntegerType())
11691      BestPromotionType = Context.getPromotedIntegerType(BestType);
11692    else
11693      BestPromotionType = BestType;
11694    // We don't need to set BestWidth, because BestType is going to be the type
11695    // of the enumerators, but we do anyway because otherwise some compilers
11696    // warn that it might be used uninitialized.
11697    BestWidth = CharWidth;
11698  }
11699  else if (NumNegativeBits) {
11700    // If there is a negative value, figure out the smallest integer type (of
11701    // int/long/longlong) that fits.
11702    // If it's packed, check also if it fits a char or a short.
11703    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11704      BestType = Context.SignedCharTy;
11705      BestWidth = CharWidth;
11706    } else if (Packed && NumNegativeBits <= ShortWidth &&
11707               NumPositiveBits < ShortWidth) {
11708      BestType = Context.ShortTy;
11709      BestWidth = ShortWidth;
11710    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11711      BestType = Context.IntTy;
11712      BestWidth = IntWidth;
11713    } else {
11714      BestWidth = Context.getTargetInfo().getLongWidth();
11715
11716      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11717        BestType = Context.LongTy;
11718      } else {
11719        BestWidth = Context.getTargetInfo().getLongLongWidth();
11720
11721        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11722          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11723        BestType = Context.LongLongTy;
11724      }
11725    }
11726    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11727  } else {
11728    // If there is no negative value, figure out the smallest type that fits
11729    // all of the enumerator values.
11730    // If it's packed, check also if it fits a char or a short.
11731    if (Packed && NumPositiveBits <= CharWidth) {
11732      BestType = Context.UnsignedCharTy;
11733      BestPromotionType = Context.IntTy;
11734      BestWidth = CharWidth;
11735    } else if (Packed && NumPositiveBits <= ShortWidth) {
11736      BestType = Context.UnsignedShortTy;
11737      BestPromotionType = Context.IntTy;
11738      BestWidth = ShortWidth;
11739    } else if (NumPositiveBits <= IntWidth) {
11740      BestType = Context.UnsignedIntTy;
11741      BestWidth = IntWidth;
11742      BestPromotionType
11743        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11744                           ? Context.UnsignedIntTy : Context.IntTy;
11745    } else if (NumPositiveBits <=
11746               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11747      BestType = Context.UnsignedLongTy;
11748      BestPromotionType
11749        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11750                           ? Context.UnsignedLongTy : Context.LongTy;
11751    } else {
11752      BestWidth = Context.getTargetInfo().getLongLongWidth();
11753      assert(NumPositiveBits <= BestWidth &&
11754             "How could an initializer get larger than ULL?");
11755      BestType = Context.UnsignedLongLongTy;
11756      BestPromotionType
11757        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11758                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11759    }
11760  }
11761
11762  // Loop over all of the enumerator constants, changing their types to match
11763  // the type of the enum if needed.
11764  for (unsigned i = 0; i != NumElements; ++i) {
11765    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11766    if (!ECD) continue;  // Already issued a diagnostic.
11767
11768    // Standard C says the enumerators have int type, but we allow, as an
11769    // extension, the enumerators to be larger than int size.  If each
11770    // enumerator value fits in an int, type it as an int, otherwise type it the
11771    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11772    // that X has type 'int', not 'unsigned'.
11773
11774    // Determine whether the value fits into an int.
11775    llvm::APSInt InitVal = ECD->getInitVal();
11776
11777    // If it fits into an integer type, force it.  Otherwise force it to match
11778    // the enum decl type.
11779    QualType NewTy;
11780    unsigned NewWidth;
11781    bool NewSign;
11782    if (!getLangOpts().CPlusPlus &&
11783        !Enum->isFixed() &&
11784        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11785      NewTy = Context.IntTy;
11786      NewWidth = IntWidth;
11787      NewSign = true;
11788    } else if (ECD->getType() == BestType) {
11789      // Already the right type!
11790      if (getLangOpts().CPlusPlus)
11791        // C++ [dcl.enum]p4: Following the closing brace of an
11792        // enum-specifier, each enumerator has the type of its
11793        // enumeration.
11794        ECD->setType(EnumType);
11795      continue;
11796    } else {
11797      NewTy = BestType;
11798      NewWidth = BestWidth;
11799      NewSign = BestType->isSignedIntegerOrEnumerationType();
11800    }
11801
11802    // Adjust the APSInt value.
11803    InitVal = InitVal.extOrTrunc(NewWidth);
11804    InitVal.setIsSigned(NewSign);
11805    ECD->setInitVal(InitVal);
11806
11807    // Adjust the Expr initializer and type.
11808    if (ECD->getInitExpr() &&
11809        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11810      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11811                                                CK_IntegralCast,
11812                                                ECD->getInitExpr(),
11813                                                /*base paths*/ 0,
11814                                                VK_RValue));
11815    if (getLangOpts().CPlusPlus)
11816      // C++ [dcl.enum]p4: Following the closing brace of an
11817      // enum-specifier, each enumerator has the type of its
11818      // enumeration.
11819      ECD->setType(EnumType);
11820    else
11821      ECD->setType(NewTy);
11822  }
11823
11824  Enum->completeDefinition(BestType, BestPromotionType,
11825                           NumPositiveBits, NumNegativeBits);
11826
11827  // If we're declaring a function, ensure this decl isn't forgotten about -
11828  // it needs to go into the function scope.
11829  if (InFunctionDeclarator)
11830    DeclsInPrototypeScope.push_back(Enum);
11831
11832  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11833
11834  // Now that the enum type is defined, ensure it's not been underaligned.
11835  if (Enum->hasAttrs())
11836    CheckAlignasUnderalignment(Enum);
11837}
11838
11839Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11840                                  SourceLocation StartLoc,
11841                                  SourceLocation EndLoc) {
11842  StringLiteral *AsmString = cast<StringLiteral>(expr);
11843
11844  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11845                                                   AsmString, StartLoc,
11846                                                   EndLoc);
11847  CurContext->addDecl(New);
11848  return New;
11849}
11850
11851DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11852                                   SourceLocation ImportLoc,
11853                                   ModuleIdPath Path) {
11854  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11855                                                Module::AllVisible,
11856                                                /*IsIncludeDirective=*/false);
11857  if (!Mod)
11858    return true;
11859
11860  SmallVector<SourceLocation, 2> IdentifierLocs;
11861  Module *ModCheck = Mod;
11862  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11863    // If we've run out of module parents, just drop the remaining identifiers.
11864    // We need the length to be consistent.
11865    if (!ModCheck)
11866      break;
11867    ModCheck = ModCheck->Parent;
11868
11869    IdentifierLocs.push_back(Path[I].second);
11870  }
11871
11872  ImportDecl *Import = ImportDecl::Create(Context,
11873                                          Context.getTranslationUnitDecl(),
11874                                          AtLoc.isValid()? AtLoc : ImportLoc,
11875                                          Mod, IdentifierLocs);
11876  Context.getTranslationUnitDecl()->addDecl(Import);
11877  return Import;
11878}
11879
11880void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11881  // Create the implicit import declaration.
11882  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11883  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11884                                                   Loc, Mod, Loc);
11885  TU->addDecl(ImportD);
11886  Consumer.HandleImplicitImportDecl(ImportD);
11887
11888  // Make the module visible.
11889  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
11890                                         /*Complain=*/false);
11891}
11892
11893void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11894                                      IdentifierInfo* AliasName,
11895                                      SourceLocation PragmaLoc,
11896                                      SourceLocation NameLoc,
11897                                      SourceLocation AliasNameLoc) {
11898  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11899                                    LookupOrdinaryName);
11900  AsmLabelAttr *Attr =
11901     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11902
11903  if (PrevDecl)
11904    PrevDecl->addAttr(Attr);
11905  else
11906    (void)ExtnameUndeclaredIdentifiers.insert(
11907      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11908}
11909
11910void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11911                             SourceLocation PragmaLoc,
11912                             SourceLocation NameLoc) {
11913  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11914
11915  if (PrevDecl) {
11916    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11917  } else {
11918    (void)WeakUndeclaredIdentifiers.insert(
11919      std::pair<IdentifierInfo*,WeakInfo>
11920        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11921  }
11922}
11923
11924void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11925                                IdentifierInfo* AliasName,
11926                                SourceLocation PragmaLoc,
11927                                SourceLocation NameLoc,
11928                                SourceLocation AliasNameLoc) {
11929  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11930                                    LookupOrdinaryName);
11931  WeakInfo W = WeakInfo(Name, NameLoc);
11932
11933  if (PrevDecl) {
11934    if (!PrevDecl->hasAttr<AliasAttr>())
11935      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11936        DeclApplyPragmaWeak(TUScope, ND, W);
11937  } else {
11938    (void)WeakUndeclaredIdentifiers.insert(
11939      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11940  }
11941}
11942
11943Decl *Sema::getObjCDeclContext() const {
11944  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11945}
11946
11947AvailabilityResult Sema::getCurContextAvailability() const {
11948  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11949  return D->getAvailability();
11950}
11951