SemaDecl.cpp revision cb710a4df50b79659399f0722ea29e90251ea834
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Lex/HeaderSearch.h"
40#include "llvm/ADT/Triple.h"
41#include <algorithm>
42#include <cstring>
43#include <functional>
44using namespace clang;
45using namespace sema;
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName, bool HasTrailingDot,
65                             ParsedType ObjectTypePtr,
66                             bool WantNontrivialTypeSourceInfo) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = ObjectTypePtr.get();
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return ParsedType();
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        if (WantNontrivialTypeSourceInfo)
93          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
94
95        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
96        QualType T =
97          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
98                            II, NameLoc);
99
100          return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS && SS->isNotEmpty()) {
200      if (WantNontrivialTypeSourceInfo) {
201        // Construct a type with type-source information.
202        TypeLocBuilder Builder;
203        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
204
205        T = getElaboratedType(ETK_None, *SS, T);
206        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
207        ElabTL.setKeywordLoc(SourceLocation());
208        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
209        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
210      } else {
211        T = getElaboratedType(ETK_None, *SS, T);
212      }
213    }
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    if (!HasTrailingDot)
216      T = Context.getObjCInterfaceType(IDecl);
217  }
218
219  if (T.isNull()) {
220    // If it's not plausibly a type, suppress diagnostics.
221    Result.suppressDiagnostics();
222    return ParsedType();
223  }
224  return ParsedType::make(T);
225}
226
227/// isTagName() - This method is called *for error recovery purposes only*
228/// to determine if the specified name is a valid tag name ("struct foo").  If
229/// so, this returns the TST for the tag corresponding to it (TST_enum,
230/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
231/// where the user forgot to specify the tag.
232DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
233  // Do a tag name lookup in this scope.
234  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
235  LookupName(R, S, false);
236  R.suppressDiagnostics();
237  if (R.getResultKind() == LookupResult::Found)
238    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
239      switch (TD->getTagKind()) {
240      default:         return DeclSpec::TST_unspecified;
241      case TTK_Struct: return DeclSpec::TST_struct;
242      case TTK_Union:  return DeclSpec::TST_union;
243      case TTK_Class:  return DeclSpec::TST_class;
244      case TTK_Enum:   return DeclSpec::TST_enum;
245      }
246    }
247
248  return DeclSpec::TST_unspecified;
249}
250
251bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
252                                   SourceLocation IILoc,
253                                   Scope *S,
254                                   CXXScopeSpec *SS,
255                                   ParsedType &SuggestedType) {
256  // We don't have anything to suggest (yet).
257  SuggestedType = ParsedType();
258
259  // There may have been a typo in the name of the type. Look up typo
260  // results, in case we have something that we can suggest.
261  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
262                      NotForRedeclaration);
263
264  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
265    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
266      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
267          !Result->isInvalidDecl()) {
268        // We found a similarly-named type or interface; suggest that.
269        if (!SS || !SS->isSet())
270          Diag(IILoc, diag::err_unknown_typename_suggest)
271            << &II << Lookup.getLookupName()
272            << FixItHint::CreateReplacement(SourceRange(IILoc),
273                                            Result->getNameAsString());
274        else if (DeclContext *DC = computeDeclContext(*SS, false))
275          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
276            << &II << DC << Lookup.getLookupName() << SS->getRange()
277            << FixItHint::CreateReplacement(SourceRange(IILoc),
278                                            Result->getNameAsString());
279        else
280          llvm_unreachable("could not have corrected a typo here");
281
282        Diag(Result->getLocation(), diag::note_previous_decl)
283          << Result->getDeclName();
284
285        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
286                                    false, false, ParsedType(),
287                                    /*NonTrivialTypeSourceInfo=*/true);
288        return true;
289      }
290    } else if (Lookup.empty()) {
291      // We corrected to a keyword.
292      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
293      Diag(IILoc, diag::err_unknown_typename_suggest)
294        << &II << Corrected;
295      return true;
296    }
297  }
298
299  if (getLangOptions().CPlusPlus) {
300    // See if II is a class template that the user forgot to pass arguments to.
301    UnqualifiedId Name;
302    Name.setIdentifier(&II, IILoc);
303    CXXScopeSpec EmptySS;
304    TemplateTy TemplateResult;
305    bool MemberOfUnknownSpecialization;
306    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
307                       Name, ParsedType(), true, TemplateResult,
308                       MemberOfUnknownSpecialization) == TNK_Type_template) {
309      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
310      Diag(IILoc, diag::err_template_missing_args) << TplName;
311      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
312        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
313          << TplDecl->getTemplateParameters()->getSourceRange();
314      }
315      return true;
316    }
317  }
318
319  // FIXME: Should we move the logic that tries to recover from a missing tag
320  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
321
322  if (!SS || (!SS->isSet() && !SS->isInvalid()))
323    Diag(IILoc, diag::err_unknown_typename) << &II;
324  else if (DeclContext *DC = computeDeclContext(*SS, false))
325    Diag(IILoc, diag::err_typename_nested_not_found)
326      << &II << DC << SS->getRange();
327  else if (isDependentScopeSpecifier(*SS)) {
328    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
329      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
330      << SourceRange(SS->getRange().getBegin(), IILoc)
331      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
332    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
333  } else {
334    assert(SS && SS->isInvalid() &&
335           "Invalid scope specifier has already been diagnosed");
336  }
337
338  return true;
339}
340
341// Determines the context to return to after temporarily entering a
342// context.  This depends in an unnecessarily complicated way on the
343// exact ordering of callbacks from the parser.
344DeclContext *Sema::getContainingDC(DeclContext *DC) {
345
346  // Functions defined inline within classes aren't parsed until we've
347  // finished parsing the top-level class, so the top-level class is
348  // the context we'll need to return to.
349  if (isa<FunctionDecl>(DC)) {
350    DC = DC->getLexicalParent();
351
352    // A function not defined within a class will always return to its
353    // lexical context.
354    if (!isa<CXXRecordDecl>(DC))
355      return DC;
356
357    // A C++ inline method/friend is parsed *after* the topmost class
358    // it was declared in is fully parsed ("complete");  the topmost
359    // class is the context we need to return to.
360    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
361      DC = RD;
362
363    // Return the declaration context of the topmost class the inline method is
364    // declared in.
365    return DC;
366  }
367
368  // ObjCMethodDecls are parsed (for some reason) outside the context
369  // of the class.
370  if (isa<ObjCMethodDecl>(DC))
371    return DC->getLexicalParent()->getLexicalParent();
372
373  return DC->getLexicalParent();
374}
375
376void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
377  assert(getContainingDC(DC) == CurContext &&
378      "The next DeclContext should be lexically contained in the current one.");
379  CurContext = DC;
380  S->setEntity(DC);
381}
382
383void Sema::PopDeclContext() {
384  assert(CurContext && "DeclContext imbalance!");
385
386  CurContext = getContainingDC(CurContext);
387  assert(CurContext && "Popped translation unit!");
388}
389
390/// EnterDeclaratorContext - Used when we must lookup names in the context
391/// of a declarator's nested name specifier.
392///
393void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
394  // C++0x [basic.lookup.unqual]p13:
395  //   A name used in the definition of a static data member of class
396  //   X (after the qualified-id of the static member) is looked up as
397  //   if the name was used in a member function of X.
398  // C++0x [basic.lookup.unqual]p14:
399  //   If a variable member of a namespace is defined outside of the
400  //   scope of its namespace then any name used in the definition of
401  //   the variable member (after the declarator-id) is looked up as
402  //   if the definition of the variable member occurred in its
403  //   namespace.
404  // Both of these imply that we should push a scope whose context
405  // is the semantic context of the declaration.  We can't use
406  // PushDeclContext here because that context is not necessarily
407  // lexically contained in the current context.  Fortunately,
408  // the containing scope should have the appropriate information.
409
410  assert(!S->getEntity() && "scope already has entity");
411
412#ifndef NDEBUG
413  Scope *Ancestor = S->getParent();
414  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
415  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
416#endif
417
418  CurContext = DC;
419  S->setEntity(DC);
420}
421
422void Sema::ExitDeclaratorContext(Scope *S) {
423  assert(S->getEntity() == CurContext && "Context imbalance!");
424
425  // Switch back to the lexical context.  The safety of this is
426  // enforced by an assert in EnterDeclaratorContext.
427  Scope *Ancestor = S->getParent();
428  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
429  CurContext = (DeclContext*) Ancestor->getEntity();
430
431  // We don't need to do anything with the scope, which is going to
432  // disappear.
433}
434
435/// \brief Determine whether we allow overloading of the function
436/// PrevDecl with another declaration.
437///
438/// This routine determines whether overloading is possible, not
439/// whether some new function is actually an overload. It will return
440/// true in C++ (where we can always provide overloads) or, as an
441/// extension, in C when the previous function is already an
442/// overloaded function declaration or has the "overloadable"
443/// attribute.
444static bool AllowOverloadingOfFunction(LookupResult &Previous,
445                                       ASTContext &Context) {
446  if (Context.getLangOptions().CPlusPlus)
447    return true;
448
449  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
450    return true;
451
452  return (Previous.getResultKind() == LookupResult::Found
453          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
454}
455
456/// Add this decl to the scope shadowed decl chains.
457void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
458  // Move up the scope chain until we find the nearest enclosing
459  // non-transparent context. The declaration will be introduced into this
460  // scope.
461  while (S->getEntity() &&
462         ((DeclContext *)S->getEntity())->isTransparentContext())
463    S = S->getParent();
464
465  // Add scoped declarations into their context, so that they can be
466  // found later. Declarations without a context won't be inserted
467  // into any context.
468  if (AddToContext)
469    CurContext->addDecl(D);
470
471  // Out-of-line definitions shouldn't be pushed into scope in C++.
472  // Out-of-line variable and function definitions shouldn't even in C.
473  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
474      D->isOutOfLine())
475    return;
476
477  // Template instantiations should also not be pushed into scope.
478  if (isa<FunctionDecl>(D) &&
479      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
480    return;
481
482  // If this replaces anything in the current scope,
483  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
484                               IEnd = IdResolver.end();
485  for (; I != IEnd; ++I) {
486    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
487      S->RemoveDecl(*I);
488      IdResolver.RemoveDecl(*I);
489
490      // Should only need to replace one decl.
491      break;
492    }
493  }
494
495  S->AddDecl(D);
496  IdResolver.AddDecl(D);
497}
498
499bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
500  return IdResolver.isDeclInScope(D, Ctx, Context, S);
501}
502
503Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
504  DeclContext *TargetDC = DC->getPrimaryContext();
505  do {
506    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
507      if (ScopeDC->getPrimaryContext() == TargetDC)
508        return S;
509  } while ((S = S->getParent()));
510
511  return 0;
512}
513
514static bool isOutOfScopePreviousDeclaration(NamedDecl *,
515                                            DeclContext*,
516                                            ASTContext&);
517
518/// Filters out lookup results that don't fall within the given scope
519/// as determined by isDeclInScope.
520static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
521                                 DeclContext *Ctx, Scope *S,
522                                 bool ConsiderLinkage) {
523  LookupResult::Filter F = R.makeFilter();
524  while (F.hasNext()) {
525    NamedDecl *D = F.next();
526
527    if (SemaRef.isDeclInScope(D, Ctx, S))
528      continue;
529
530    if (ConsiderLinkage &&
531        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
532      continue;
533
534    F.erase();
535  }
536
537  F.done();
538}
539
540static bool isUsingDecl(NamedDecl *D) {
541  return isa<UsingShadowDecl>(D) ||
542         isa<UnresolvedUsingTypenameDecl>(D) ||
543         isa<UnresolvedUsingValueDecl>(D);
544}
545
546/// Removes using shadow declarations from the lookup results.
547static void RemoveUsingDecls(LookupResult &R) {
548  LookupResult::Filter F = R.makeFilter();
549  while (F.hasNext())
550    if (isUsingDecl(F.next()))
551      F.erase();
552
553  F.done();
554}
555
556/// \brief Check for this common pattern:
557/// @code
558/// class S {
559///   S(const S&); // DO NOT IMPLEMENT
560///   void operator=(const S&); // DO NOT IMPLEMENT
561/// };
562/// @endcode
563static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
564  // FIXME: Should check for private access too but access is set after we get
565  // the decl here.
566  if (D->isThisDeclarationADefinition())
567    return false;
568
569  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
570    return CD->isCopyConstructor();
571  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
572    return Method->isCopyAssignmentOperator();
573  return false;
574}
575
576bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
577  assert(D);
578
579  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
580    return false;
581
582  // Ignore class templates.
583  if (D->getDeclContext()->isDependentContext() ||
584      D->getLexicalDeclContext()->isDependentContext())
585    return false;
586
587  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
588    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
592      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
593        return false;
594    } else {
595      // 'static inline' functions are used in headers; don't warn.
596      if (FD->getStorageClass() == SC_Static &&
597          FD->isInlineSpecified())
598        return false;
599    }
600
601    if (FD->isThisDeclarationADefinition() &&
602        Context.DeclMustBeEmitted(FD))
603      return false;
604
605  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
606    if (!VD->isFileVarDecl() ||
607        VD->getType().isConstant(Context) ||
608        Context.DeclMustBeEmitted(VD))
609      return false;
610
611    if (VD->isStaticDataMember() &&
612        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
613      return false;
614
615  } else {
616    return false;
617  }
618
619  // Only warn for unused decls internal to the translation unit.
620  if (D->getLinkage() == ExternalLinkage)
621    return false;
622
623  return true;
624}
625
626void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
627  if (!D)
628    return;
629
630  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
631    const FunctionDecl *First = FD->getFirstDeclaration();
632    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
633      return; // First should already be in the vector.
634  }
635
636  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
637    const VarDecl *First = VD->getFirstDeclaration();
638    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
639      return; // First should already be in the vector.
640  }
641
642   if (ShouldWarnIfUnusedFileScopedDecl(D))
643     UnusedFileScopedDecls.push_back(D);
644 }
645
646static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
647  if (D->isInvalidDecl())
648    return false;
649
650  if (D->isUsed() || D->hasAttr<UnusedAttr>())
651    return false;
652
653  if (isa<LabelDecl>(D))
654    return true;
655
656  // White-list anything that isn't a local variable.
657  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
658      !D->getDeclContext()->isFunctionOrMethod())
659    return false;
660
661  // Types of valid local variables should be complete, so this should succeed.
662  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
663
664    // White-list anything with an __attribute__((unused)) type.
665    QualType Ty = VD->getType();
666
667    // Only look at the outermost level of typedef.
668    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
669      if (TT->getDecl()->hasAttr<UnusedAttr>())
670        return false;
671    }
672
673    // If we failed to complete the type for some reason, or if the type is
674    // dependent, don't diagnose the variable.
675    if (Ty->isIncompleteType() || Ty->isDependentType())
676      return false;
677
678    if (const TagType *TT = Ty->getAs<TagType>()) {
679      const TagDecl *Tag = TT->getDecl();
680      if (Tag->hasAttr<UnusedAttr>())
681        return false;
682
683      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
684        // FIXME: Checking for the presence of a user-declared constructor
685        // isn't completely accurate; we'd prefer to check that the initializer
686        // has no side effects.
687        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
688          return false;
689      }
690    }
691
692    // TODO: __attribute__((unused)) templates?
693  }
694
695  return true;
696}
697
698/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
699/// unless they are marked attr(unused).
700void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
701  if (!ShouldDiagnoseUnusedDecl(D))
702    return;
703
704  unsigned DiagID;
705  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
706    DiagID = diag::warn_unused_exception_param;
707  else if (isa<LabelDecl>(D))
708    DiagID = diag::warn_unused_label;
709  else
710    DiagID = diag::warn_unused_variable;
711
712  Diag(D->getLocation(), DiagID) << D->getDeclName();
713}
714
715static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
716  // Verify that we have no forward references left.  If so, there was a goto
717  // or address of a label taken, but no definition of it.  Label fwd
718  // definitions are indicated with a null substmt.
719  if (L->getStmt() == 0)
720    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
721}
722
723void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
724  if (S->decl_empty()) return;
725  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
726         "Scope shouldn't contain decls!");
727
728  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
729       I != E; ++I) {
730    Decl *TmpD = (*I);
731    assert(TmpD && "This decl didn't get pushed??");
732
733    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
734    NamedDecl *D = cast<NamedDecl>(TmpD);
735
736    if (!D->getDeclName()) continue;
737
738    // Diagnose unused variables in this scope.
739    if (!S->hasErrorOccurred())
740      DiagnoseUnusedDecl(D);
741
742    // If this was a forward reference to a label, verify it was defined.
743    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
744      CheckPoppedLabel(LD, *this);
745
746    // Remove this name from our lexical scope.
747    IdResolver.RemoveDecl(D);
748  }
749}
750
751/// \brief Look for an Objective-C class in the translation unit.
752///
753/// \param Id The name of the Objective-C class we're looking for. If
754/// typo-correction fixes this name, the Id will be updated
755/// to the fixed name.
756///
757/// \param IdLoc The location of the name in the translation unit.
758///
759/// \param TypoCorrection If true, this routine will attempt typo correction
760/// if there is no class with the given name.
761///
762/// \returns The declaration of the named Objective-C class, or NULL if the
763/// class could not be found.
764ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
765                                              SourceLocation IdLoc,
766                                              bool TypoCorrection) {
767  // The third "scope" argument is 0 since we aren't enabling lazy built-in
768  // creation from this context.
769  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
770
771  if (!IDecl && TypoCorrection) {
772    // Perform typo correction at the given location, but only if we
773    // find an Objective-C class name.
774    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
775    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
776        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
777      Diag(IdLoc, diag::err_undef_interface_suggest)
778        << Id << IDecl->getDeclName()
779        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
780      Diag(IDecl->getLocation(), diag::note_previous_decl)
781        << IDecl->getDeclName();
782
783      Id = IDecl->getIdentifier();
784    }
785  }
786
787  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
788}
789
790/// getNonFieldDeclScope - Retrieves the innermost scope, starting
791/// from S, where a non-field would be declared. This routine copes
792/// with the difference between C and C++ scoping rules in structs and
793/// unions. For example, the following code is well-formed in C but
794/// ill-formed in C++:
795/// @code
796/// struct S6 {
797///   enum { BAR } e;
798/// };
799///
800/// void test_S6() {
801///   struct S6 a;
802///   a.e = BAR;
803/// }
804/// @endcode
805/// For the declaration of BAR, this routine will return a different
806/// scope. The scope S will be the scope of the unnamed enumeration
807/// within S6. In C++, this routine will return the scope associated
808/// with S6, because the enumeration's scope is a transparent
809/// context but structures can contain non-field names. In C, this
810/// routine will return the translation unit scope, since the
811/// enumeration's scope is a transparent context and structures cannot
812/// contain non-field names.
813Scope *Sema::getNonFieldDeclScope(Scope *S) {
814  while (((S->getFlags() & Scope::DeclScope) == 0) ||
815         (S->getEntity() &&
816          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
817         (S->isClassScope() && !getLangOptions().CPlusPlus))
818    S = S->getParent();
819  return S;
820}
821
822/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
823/// file scope.  lazily create a decl for it. ForRedeclaration is true
824/// if we're creating this built-in in anticipation of redeclaring the
825/// built-in.
826NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
827                                     Scope *S, bool ForRedeclaration,
828                                     SourceLocation Loc) {
829  Builtin::ID BID = (Builtin::ID)bid;
830
831  ASTContext::GetBuiltinTypeError Error;
832  QualType R = Context.GetBuiltinType(BID, Error);
833  switch (Error) {
834  case ASTContext::GE_None:
835    // Okay
836    break;
837
838  case ASTContext::GE_Missing_stdio:
839    if (ForRedeclaration)
840      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
841        << Context.BuiltinInfo.GetName(BID);
842    return 0;
843
844  case ASTContext::GE_Missing_setjmp:
845    if (ForRedeclaration)
846      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
847        << Context.BuiltinInfo.GetName(BID);
848    return 0;
849  }
850
851  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
852    Diag(Loc, diag::ext_implicit_lib_function_decl)
853      << Context.BuiltinInfo.GetName(BID)
854      << R;
855    if (Context.BuiltinInfo.getHeaderName(BID) &&
856        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
857          != Diagnostic::Ignored)
858      Diag(Loc, diag::note_please_include_header)
859        << Context.BuiltinInfo.getHeaderName(BID)
860        << Context.BuiltinInfo.GetName(BID);
861  }
862
863  FunctionDecl *New = FunctionDecl::Create(Context,
864                                           Context.getTranslationUnitDecl(),
865                                           Loc, II, R, /*TInfo=*/0,
866                                           SC_Extern,
867                                           SC_None, false,
868                                           /*hasPrototype=*/true);
869  New->setImplicit();
870
871  // Create Decl objects for each parameter, adding them to the
872  // FunctionDecl.
873  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
874    llvm::SmallVector<ParmVarDecl*, 16> Params;
875    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
876      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
877                                           FT->getArgType(i), /*TInfo=*/0,
878                                           SC_None, SC_None, 0));
879    New->setParams(Params.data(), Params.size());
880  }
881
882  AddKnownFunctionAttributes(New);
883
884  // TUScope is the translation-unit scope to insert this function into.
885  // FIXME: This is hideous. We need to teach PushOnScopeChains to
886  // relate Scopes to DeclContexts, and probably eliminate CurContext
887  // entirely, but we're not there yet.
888  DeclContext *SavedContext = CurContext;
889  CurContext = Context.getTranslationUnitDecl();
890  PushOnScopeChains(New, TUScope);
891  CurContext = SavedContext;
892  return New;
893}
894
895/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
896/// same name and scope as a previous declaration 'Old'.  Figure out
897/// how to resolve this situation, merging decls or emitting
898/// diagnostics as appropriate. If there was an error, set New to be invalid.
899///
900void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
901  // If the new decl is known invalid already, don't bother doing any
902  // merging checks.
903  if (New->isInvalidDecl()) return;
904
905  // Allow multiple definitions for ObjC built-in typedefs.
906  // FIXME: Verify the underlying types are equivalent!
907  if (getLangOptions().ObjC1) {
908    const IdentifierInfo *TypeID = New->getIdentifier();
909    switch (TypeID->getLength()) {
910    default: break;
911    case 2:
912      if (!TypeID->isStr("id"))
913        break;
914      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
915      // Install the built-in type for 'id', ignoring the current definition.
916      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
917      return;
918    case 5:
919      if (!TypeID->isStr("Class"))
920        break;
921      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
922      // Install the built-in type for 'Class', ignoring the current definition.
923      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
924      return;
925    case 3:
926      if (!TypeID->isStr("SEL"))
927        break;
928      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
929      // Install the built-in type for 'SEL', ignoring the current definition.
930      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
931      return;
932    case 8:
933      if (!TypeID->isStr("Protocol"))
934        break;
935      Context.setObjCProtoType(New->getUnderlyingType());
936      return;
937    }
938    // Fall through - the typedef name was not a builtin type.
939  }
940
941  // Verify the old decl was also a type.
942  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
943  if (!Old) {
944    Diag(New->getLocation(), diag::err_redefinition_different_kind)
945      << New->getDeclName();
946
947    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
948    if (OldD->getLocation().isValid())
949      Diag(OldD->getLocation(), diag::note_previous_definition);
950
951    return New->setInvalidDecl();
952  }
953
954  // If the old declaration is invalid, just give up here.
955  if (Old->isInvalidDecl())
956    return New->setInvalidDecl();
957
958  // Determine the "old" type we'll use for checking and diagnostics.
959  QualType OldType;
960  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
961    OldType = OldTypedef->getUnderlyingType();
962  else
963    OldType = Context.getTypeDeclType(Old);
964
965  // If the typedef types are not identical, reject them in all languages and
966  // with any extensions enabled.
967
968  if (OldType != New->getUnderlyingType() &&
969      Context.getCanonicalType(OldType) !=
970      Context.getCanonicalType(New->getUnderlyingType())) {
971    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
972      << New->getUnderlyingType() << OldType;
973    if (Old->getLocation().isValid())
974      Diag(Old->getLocation(), diag::note_previous_definition);
975    return New->setInvalidDecl();
976  }
977
978  // The types match.  Link up the redeclaration chain if the old
979  // declaration was a typedef.
980  // FIXME: this is a potential source of wierdness if the type
981  // spellings don't match exactly.
982  if (isa<TypedefDecl>(Old))
983    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
984
985  if (getLangOptions().Microsoft)
986    return;
987
988  if (getLangOptions().CPlusPlus) {
989    // C++ [dcl.typedef]p2:
990    //   In a given non-class scope, a typedef specifier can be used to
991    //   redefine the name of any type declared in that scope to refer
992    //   to the type to which it already refers.
993    if (!isa<CXXRecordDecl>(CurContext))
994      return;
995
996    // C++0x [dcl.typedef]p4:
997    //   In a given class scope, a typedef specifier can be used to redefine
998    //   any class-name declared in that scope that is not also a typedef-name
999    //   to refer to the type to which it already refers.
1000    //
1001    // This wording came in via DR424, which was a correction to the
1002    // wording in DR56, which accidentally banned code like:
1003    //
1004    //   struct S {
1005    //     typedef struct A { } A;
1006    //   };
1007    //
1008    // in the C++03 standard. We implement the C++0x semantics, which
1009    // allow the above but disallow
1010    //
1011    //   struct S {
1012    //     typedef int I;
1013    //     typedef int I;
1014    //   };
1015    //
1016    // since that was the intent of DR56.
1017    if (!isa<TypedefDecl >(Old))
1018      return;
1019
1020    Diag(New->getLocation(), diag::err_redefinition)
1021      << New->getDeclName();
1022    Diag(Old->getLocation(), diag::note_previous_definition);
1023    return New->setInvalidDecl();
1024  }
1025
1026  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1027  // is normally mapped to an error, but can be controlled with
1028  // -Wtypedef-redefinition.  If either the original or the redefinition is
1029  // in a system header, don't emit this for compatibility with GCC.
1030  if (getDiagnostics().getSuppressSystemWarnings() &&
1031      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1032       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1033    return;
1034
1035  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1036    << New->getDeclName();
1037  Diag(Old->getLocation(), diag::note_previous_definition);
1038  return;
1039}
1040
1041/// DeclhasAttr - returns true if decl Declaration already has the target
1042/// attribute.
1043static bool
1044DeclHasAttr(const Decl *D, const Attr *A) {
1045  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1046  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1047    if ((*i)->getKind() == A->getKind()) {
1048      // FIXME: Don't hardcode this check
1049      if (OA && isa<OwnershipAttr>(*i))
1050        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1051      return true;
1052    }
1053
1054  return false;
1055}
1056
1057/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1058static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1059                                ASTContext &C) {
1060  if (!oldDecl->hasAttrs())
1061    return;
1062
1063  bool foundAny = newDecl->hasAttrs();
1064
1065  // Ensure that any moving of objects within the allocated map is done before
1066  // we process them.
1067  if (!foundAny) newDecl->setAttrs(AttrVec());
1068
1069  for (specific_attr_iterator<InheritableAttr>
1070       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1071       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1072    if (!DeclHasAttr(newDecl, *i)) {
1073      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1074      newAttr->setInherited(true);
1075      newDecl->addAttr(newAttr);
1076      foundAny = true;
1077    }
1078  }
1079
1080  if (!foundAny) newDecl->dropAttrs();
1081}
1082
1083/// mergeParamDeclAttributes - Copy attributes from the old parameter
1084/// to the new one.
1085static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1086                                     const ParmVarDecl *oldDecl,
1087                                     ASTContext &C) {
1088  if (!oldDecl->hasAttrs())
1089    return;
1090
1091  bool foundAny = newDecl->hasAttrs();
1092
1093  // Ensure that any moving of objects within the allocated map is
1094  // done before we process them.
1095  if (!foundAny) newDecl->setAttrs(AttrVec());
1096
1097  for (specific_attr_iterator<InheritableParamAttr>
1098       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1099       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1100    if (!DeclHasAttr(newDecl, *i)) {
1101      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1102      newAttr->setInherited(true);
1103      newDecl->addAttr(newAttr);
1104      foundAny = true;
1105    }
1106  }
1107
1108  if (!foundAny) newDecl->dropAttrs();
1109}
1110
1111namespace {
1112
1113/// Used in MergeFunctionDecl to keep track of function parameters in
1114/// C.
1115struct GNUCompatibleParamWarning {
1116  ParmVarDecl *OldParm;
1117  ParmVarDecl *NewParm;
1118  QualType PromotedType;
1119};
1120
1121}
1122
1123/// getSpecialMember - get the special member enum for a method.
1124Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1125  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1126    if (Ctor->isCopyConstructor())
1127      return Sema::CXXCopyConstructor;
1128
1129    return Sema::CXXConstructor;
1130  }
1131
1132  if (isa<CXXDestructorDecl>(MD))
1133    return Sema::CXXDestructor;
1134
1135  assert(MD->isCopyAssignmentOperator() &&
1136         "Must have copy assignment operator");
1137  return Sema::CXXCopyAssignment;
1138}
1139
1140/// canRedefineFunction - checks if a function can be redefined. Currently,
1141/// only extern inline functions can be redefined, and even then only in
1142/// GNU89 mode.
1143static bool canRedefineFunction(const FunctionDecl *FD,
1144                                const LangOptions& LangOpts) {
1145  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1146          FD->isInlineSpecified() &&
1147          FD->getStorageClass() == SC_Extern);
1148}
1149
1150/// MergeFunctionDecl - We just parsed a function 'New' from
1151/// declarator D which has the same name and scope as a previous
1152/// declaration 'Old'.  Figure out how to resolve this situation,
1153/// merging decls or emitting diagnostics as appropriate.
1154///
1155/// In C++, New and Old must be declarations that are not
1156/// overloaded. Use IsOverload to determine whether New and Old are
1157/// overloaded, and to select the Old declaration that New should be
1158/// merged with.
1159///
1160/// Returns true if there was an error, false otherwise.
1161bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1162  // Verify the old decl was also a function.
1163  FunctionDecl *Old = 0;
1164  if (FunctionTemplateDecl *OldFunctionTemplate
1165        = dyn_cast<FunctionTemplateDecl>(OldD))
1166    Old = OldFunctionTemplate->getTemplatedDecl();
1167  else
1168    Old = dyn_cast<FunctionDecl>(OldD);
1169  if (!Old) {
1170    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1171      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1172      Diag(Shadow->getTargetDecl()->getLocation(),
1173           diag::note_using_decl_target);
1174      Diag(Shadow->getUsingDecl()->getLocation(),
1175           diag::note_using_decl) << 0;
1176      return true;
1177    }
1178
1179    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1180      << New->getDeclName();
1181    Diag(OldD->getLocation(), diag::note_previous_definition);
1182    return true;
1183  }
1184
1185  // Determine whether the previous declaration was a definition,
1186  // implicit declaration, or a declaration.
1187  diag::kind PrevDiag;
1188  if (Old->isThisDeclarationADefinition())
1189    PrevDiag = diag::note_previous_definition;
1190  else if (Old->isImplicit())
1191    PrevDiag = diag::note_previous_implicit_declaration;
1192  else
1193    PrevDiag = diag::note_previous_declaration;
1194
1195  QualType OldQType = Context.getCanonicalType(Old->getType());
1196  QualType NewQType = Context.getCanonicalType(New->getType());
1197
1198  // Don't complain about this if we're in GNU89 mode and the old function
1199  // is an extern inline function.
1200  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1201      New->getStorageClass() == SC_Static &&
1202      Old->getStorageClass() != SC_Static &&
1203      !canRedefineFunction(Old, getLangOptions())) {
1204    Diag(New->getLocation(), diag::err_static_non_static)
1205      << New;
1206    Diag(Old->getLocation(), PrevDiag);
1207    return true;
1208  }
1209
1210  // If a function is first declared with a calling convention, but is
1211  // later declared or defined without one, the second decl assumes the
1212  // calling convention of the first.
1213  //
1214  // For the new decl, we have to look at the NON-canonical type to tell the
1215  // difference between a function that really doesn't have a calling
1216  // convention and one that is declared cdecl. That's because in
1217  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1218  // because it is the default calling convention.
1219  //
1220  // Note also that we DO NOT return at this point, because we still have
1221  // other tests to run.
1222  const FunctionType *OldType = cast<FunctionType>(OldQType);
1223  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1224  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1225  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1226  bool RequiresAdjustment = false;
1227  if (OldTypeInfo.getCC() != CC_Default &&
1228      NewTypeInfo.getCC() == CC_Default) {
1229    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1230    RequiresAdjustment = true;
1231  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1232                                     NewTypeInfo.getCC())) {
1233    // Calling conventions really aren't compatible, so complain.
1234    Diag(New->getLocation(), diag::err_cconv_change)
1235      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1236      << (OldTypeInfo.getCC() == CC_Default)
1237      << (OldTypeInfo.getCC() == CC_Default ? "" :
1238          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1239    Diag(Old->getLocation(), diag::note_previous_declaration);
1240    return true;
1241  }
1242
1243  // FIXME: diagnose the other way around?
1244  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1245    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1246    RequiresAdjustment = true;
1247  }
1248
1249  // Merge regparm attribute.
1250  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1251    if (NewTypeInfo.getRegParm()) {
1252      Diag(New->getLocation(), diag::err_regparm_mismatch)
1253        << NewType->getRegParmType()
1254        << OldType->getRegParmType();
1255      Diag(Old->getLocation(), diag::note_previous_declaration);
1256      return true;
1257    }
1258
1259    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1260    RequiresAdjustment = true;
1261  }
1262
1263  if (RequiresAdjustment) {
1264    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1265    New->setType(QualType(NewType, 0));
1266    NewQType = Context.getCanonicalType(New->getType());
1267  }
1268
1269  if (getLangOptions().CPlusPlus) {
1270    // (C++98 13.1p2):
1271    //   Certain function declarations cannot be overloaded:
1272    //     -- Function declarations that differ only in the return type
1273    //        cannot be overloaded.
1274    QualType OldReturnType = OldType->getResultType();
1275    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1276    QualType ResQT;
1277    if (OldReturnType != NewReturnType) {
1278      if (NewReturnType->isObjCObjectPointerType()
1279          && OldReturnType->isObjCObjectPointerType())
1280        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1281      if (ResQT.isNull()) {
1282        if (New->isCXXClassMember() && New->isOutOfLine())
1283          Diag(New->getLocation(),
1284               diag::err_member_def_does_not_match_ret_type) << New;
1285        else
1286          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1287        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1288        return true;
1289      }
1290      else
1291        NewQType = ResQT;
1292    }
1293
1294    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1295    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1296    if (OldMethod && NewMethod) {
1297      // Preserve triviality.
1298      NewMethod->setTrivial(OldMethod->isTrivial());
1299
1300      bool isFriend = NewMethod->getFriendObjectKind();
1301
1302      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1303        //    -- Member function declarations with the same name and the
1304        //       same parameter types cannot be overloaded if any of them
1305        //       is a static member function declaration.
1306        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1307          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1308          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1309          return true;
1310        }
1311
1312        // C++ [class.mem]p1:
1313        //   [...] A member shall not be declared twice in the
1314        //   member-specification, except that a nested class or member
1315        //   class template can be declared and then later defined.
1316        unsigned NewDiag;
1317        if (isa<CXXConstructorDecl>(OldMethod))
1318          NewDiag = diag::err_constructor_redeclared;
1319        else if (isa<CXXDestructorDecl>(NewMethod))
1320          NewDiag = diag::err_destructor_redeclared;
1321        else if (isa<CXXConversionDecl>(NewMethod))
1322          NewDiag = diag::err_conv_function_redeclared;
1323        else
1324          NewDiag = diag::err_member_redeclared;
1325
1326        Diag(New->getLocation(), NewDiag);
1327        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1328
1329      // Complain if this is an explicit declaration of a special
1330      // member that was initially declared implicitly.
1331      //
1332      // As an exception, it's okay to befriend such methods in order
1333      // to permit the implicit constructor/destructor/operator calls.
1334      } else if (OldMethod->isImplicit()) {
1335        if (isFriend) {
1336          NewMethod->setImplicit();
1337        } else {
1338          Diag(NewMethod->getLocation(),
1339               diag::err_definition_of_implicitly_declared_member)
1340            << New << getSpecialMember(OldMethod);
1341          return true;
1342        }
1343      }
1344    }
1345
1346    // (C++98 8.3.5p3):
1347    //   All declarations for a function shall agree exactly in both the
1348    //   return type and the parameter-type-list.
1349    // We also want to respect all the extended bits except noreturn.
1350
1351    // noreturn should now match unless the old type info didn't have it.
1352    QualType OldQTypeForComparison = OldQType;
1353    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1354      assert(OldQType == QualType(OldType, 0));
1355      const FunctionType *OldTypeForComparison
1356        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1357      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1358      assert(OldQTypeForComparison.isCanonical());
1359    }
1360
1361    if (OldQTypeForComparison == NewQType)
1362      return MergeCompatibleFunctionDecls(New, Old);
1363
1364    // Fall through for conflicting redeclarations and redefinitions.
1365  }
1366
1367  // C: Function types need to be compatible, not identical. This handles
1368  // duplicate function decls like "void f(int); void f(enum X);" properly.
1369  if (!getLangOptions().CPlusPlus &&
1370      Context.typesAreCompatible(OldQType, NewQType)) {
1371    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1372    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1373    const FunctionProtoType *OldProto = 0;
1374    if (isa<FunctionNoProtoType>(NewFuncType) &&
1375        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1376      // The old declaration provided a function prototype, but the
1377      // new declaration does not. Merge in the prototype.
1378      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1379      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1380                                                 OldProto->arg_type_end());
1381      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1382                                         ParamTypes.data(), ParamTypes.size(),
1383                                         OldProto->getExtProtoInfo());
1384      New->setType(NewQType);
1385      New->setHasInheritedPrototype();
1386
1387      // Synthesize a parameter for each argument type.
1388      llvm::SmallVector<ParmVarDecl*, 16> Params;
1389      for (FunctionProtoType::arg_type_iterator
1390             ParamType = OldProto->arg_type_begin(),
1391             ParamEnd = OldProto->arg_type_end();
1392           ParamType != ParamEnd; ++ParamType) {
1393        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1394                                                 SourceLocation(), 0,
1395                                                 *ParamType, /*TInfo=*/0,
1396                                                 SC_None, SC_None,
1397                                                 0);
1398        Param->setImplicit();
1399        Params.push_back(Param);
1400      }
1401
1402      New->setParams(Params.data(), Params.size());
1403    }
1404
1405    return MergeCompatibleFunctionDecls(New, Old);
1406  }
1407
1408  // GNU C permits a K&R definition to follow a prototype declaration
1409  // if the declared types of the parameters in the K&R definition
1410  // match the types in the prototype declaration, even when the
1411  // promoted types of the parameters from the K&R definition differ
1412  // from the types in the prototype. GCC then keeps the types from
1413  // the prototype.
1414  //
1415  // If a variadic prototype is followed by a non-variadic K&R definition,
1416  // the K&R definition becomes variadic.  This is sort of an edge case, but
1417  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1418  // C99 6.9.1p8.
1419  if (!getLangOptions().CPlusPlus &&
1420      Old->hasPrototype() && !New->hasPrototype() &&
1421      New->getType()->getAs<FunctionProtoType>() &&
1422      Old->getNumParams() == New->getNumParams()) {
1423    llvm::SmallVector<QualType, 16> ArgTypes;
1424    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1425    const FunctionProtoType *OldProto
1426      = Old->getType()->getAs<FunctionProtoType>();
1427    const FunctionProtoType *NewProto
1428      = New->getType()->getAs<FunctionProtoType>();
1429
1430    // Determine whether this is the GNU C extension.
1431    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1432                                               NewProto->getResultType());
1433    bool LooseCompatible = !MergedReturn.isNull();
1434    for (unsigned Idx = 0, End = Old->getNumParams();
1435         LooseCompatible && Idx != End; ++Idx) {
1436      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1437      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1438      if (Context.typesAreCompatible(OldParm->getType(),
1439                                     NewProto->getArgType(Idx))) {
1440        ArgTypes.push_back(NewParm->getType());
1441      } else if (Context.typesAreCompatible(OldParm->getType(),
1442                                            NewParm->getType(),
1443                                            /*CompareUnqualified=*/true)) {
1444        GNUCompatibleParamWarning Warn
1445          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1446        Warnings.push_back(Warn);
1447        ArgTypes.push_back(NewParm->getType());
1448      } else
1449        LooseCompatible = false;
1450    }
1451
1452    if (LooseCompatible) {
1453      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1454        Diag(Warnings[Warn].NewParm->getLocation(),
1455             diag::ext_param_promoted_not_compatible_with_prototype)
1456          << Warnings[Warn].PromotedType
1457          << Warnings[Warn].OldParm->getType();
1458        if (Warnings[Warn].OldParm->getLocation().isValid())
1459          Diag(Warnings[Warn].OldParm->getLocation(),
1460               diag::note_previous_declaration);
1461      }
1462
1463      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1464                                           ArgTypes.size(),
1465                                           OldProto->getExtProtoInfo()));
1466      return MergeCompatibleFunctionDecls(New, Old);
1467    }
1468
1469    // Fall through to diagnose conflicting types.
1470  }
1471
1472  // A function that has already been declared has been redeclared or defined
1473  // with a different type- show appropriate diagnostic
1474  if (unsigned BuiltinID = Old->getBuiltinID()) {
1475    // The user has declared a builtin function with an incompatible
1476    // signature.
1477    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1478      // The function the user is redeclaring is a library-defined
1479      // function like 'malloc' or 'printf'. Warn about the
1480      // redeclaration, then pretend that we don't know about this
1481      // library built-in.
1482      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1483      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1484        << Old << Old->getType();
1485      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1486      Old->setInvalidDecl();
1487      return false;
1488    }
1489
1490    PrevDiag = diag::note_previous_builtin_declaration;
1491  }
1492
1493  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1494  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1495  return true;
1496}
1497
1498/// \brief Completes the merge of two function declarations that are
1499/// known to be compatible.
1500///
1501/// This routine handles the merging of attributes and other
1502/// properties of function declarations form the old declaration to
1503/// the new declaration, once we know that New is in fact a
1504/// redeclaration of Old.
1505///
1506/// \returns false
1507bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1508  // Merge the attributes
1509  mergeDeclAttributes(New, Old, Context);
1510
1511  // Merge the storage class.
1512  if (Old->getStorageClass() != SC_Extern &&
1513      Old->getStorageClass() != SC_None)
1514    New->setStorageClass(Old->getStorageClass());
1515
1516  // Merge "pure" flag.
1517  if (Old->isPure())
1518    New->setPure();
1519
1520  // Merge the "deleted" flag.
1521  if (Old->isDeleted())
1522    New->setDeleted();
1523
1524  // Merge attributes from the parameters.  These can mismatch with K&R
1525  // declarations.
1526  if (New->getNumParams() == Old->getNumParams())
1527    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1528      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1529                               Context);
1530
1531  if (getLangOptions().CPlusPlus)
1532    return MergeCXXFunctionDecl(New, Old);
1533
1534  return false;
1535}
1536
1537void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1538                                const ObjCMethodDecl *oldMethod) {
1539  // Merge the attributes.
1540  mergeDeclAttributes(newMethod, oldMethod, Context);
1541
1542  // Merge attributes from the parameters.
1543  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1544         ni = newMethod->param_begin(), ne = newMethod->param_end();
1545       ni != ne; ++ni, ++oi)
1546    mergeParamDeclAttributes(*ni, *oi, Context);
1547}
1548
1549/// MergeVarDecl - We parsed a variable 'New' which has the same name and scope
1550/// as a previous declaration 'Old'.  Figure out how to merge their types,
1551/// emitting diagnostics as appropriate.
1552///
1553/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1554/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1555/// check them before the initializer is attached.
1556///
1557void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1558  if (New->isInvalidDecl() || Old->isInvalidDecl())
1559    return;
1560
1561  QualType MergedT;
1562  if (getLangOptions().CPlusPlus) {
1563    AutoType *AT = New->getType()->getContainedAutoType();
1564    if (AT && !AT->isDeduced()) {
1565      // We don't know what the new type is until the initializer is attached.
1566      return;
1567    } else if (Context.hasSameType(New->getType(), Old->getType()))
1568      return;
1569    // C++ [basic.link]p10:
1570    //   [...] the types specified by all declarations referring to a given
1571    //   object or function shall be identical, except that declarations for an
1572    //   array object can specify array types that differ by the presence or
1573    //   absence of a major array bound (8.3.4).
1574    else if (Old->getType()->isIncompleteArrayType() &&
1575             New->getType()->isArrayType()) {
1576      CanQual<ArrayType> OldArray
1577        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1578      CanQual<ArrayType> NewArray
1579        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1580      if (OldArray->getElementType() == NewArray->getElementType())
1581        MergedT = New->getType();
1582    } else if (Old->getType()->isArrayType() &&
1583             New->getType()->isIncompleteArrayType()) {
1584      CanQual<ArrayType> OldArray
1585        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1586      CanQual<ArrayType> NewArray
1587        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1588      if (OldArray->getElementType() == NewArray->getElementType())
1589        MergedT = Old->getType();
1590    } else if (New->getType()->isObjCObjectPointerType()
1591               && Old->getType()->isObjCObjectPointerType()) {
1592        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1593                                                        Old->getType());
1594    }
1595  } else {
1596    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1597  }
1598  if (MergedT.isNull()) {
1599    Diag(New->getLocation(), diag::err_redefinition_different_type)
1600      << New->getDeclName();
1601    Diag(Old->getLocation(), diag::note_previous_definition);
1602    return New->setInvalidDecl();
1603  }
1604  New->setType(MergedT);
1605}
1606
1607/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1608/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1609/// situation, merging decls or emitting diagnostics as appropriate.
1610///
1611/// Tentative definition rules (C99 6.9.2p2) are checked by
1612/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1613/// definitions here, since the initializer hasn't been attached.
1614///
1615void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1616  // If the new decl is already invalid, don't do any other checking.
1617  if (New->isInvalidDecl())
1618    return;
1619
1620  // Verify the old decl was also a variable.
1621  VarDecl *Old = 0;
1622  if (!Previous.isSingleResult() ||
1623      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1624    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1625      << New->getDeclName();
1626    Diag(Previous.getRepresentativeDecl()->getLocation(),
1627         diag::note_previous_definition);
1628    return New->setInvalidDecl();
1629  }
1630
1631  // C++ [class.mem]p1:
1632  //   A member shall not be declared twice in the member-specification [...]
1633  //
1634  // Here, we need only consider static data members.
1635  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1636    Diag(New->getLocation(), diag::err_duplicate_member)
1637      << New->getIdentifier();
1638    Diag(Old->getLocation(), diag::note_previous_declaration);
1639    New->setInvalidDecl();
1640  }
1641
1642  mergeDeclAttributes(New, Old, Context);
1643
1644  // Merge the types.
1645  MergeVarDeclTypes(New, Old);
1646  if (New->isInvalidDecl())
1647    return;
1648
1649  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1650  if (New->getStorageClass() == SC_Static &&
1651      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1652    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1653    Diag(Old->getLocation(), diag::note_previous_definition);
1654    return New->setInvalidDecl();
1655  }
1656  // C99 6.2.2p4:
1657  //   For an identifier declared with the storage-class specifier
1658  //   extern in a scope in which a prior declaration of that
1659  //   identifier is visible,23) if the prior declaration specifies
1660  //   internal or external linkage, the linkage of the identifier at
1661  //   the later declaration is the same as the linkage specified at
1662  //   the prior declaration. If no prior declaration is visible, or
1663  //   if the prior declaration specifies no linkage, then the
1664  //   identifier has external linkage.
1665  if (New->hasExternalStorage() && Old->hasLinkage())
1666    /* Okay */;
1667  else if (New->getStorageClass() != SC_Static &&
1668           Old->getStorageClass() == SC_Static) {
1669    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1670    Diag(Old->getLocation(), diag::note_previous_definition);
1671    return New->setInvalidDecl();
1672  }
1673
1674  // Check if extern is followed by non-extern and vice-versa.
1675  if (New->hasExternalStorage() &&
1676      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1677    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1678    Diag(Old->getLocation(), diag::note_previous_definition);
1679    return New->setInvalidDecl();
1680  }
1681  if (Old->hasExternalStorage() &&
1682      !New->hasLinkage() && New->isLocalVarDecl()) {
1683    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1684    Diag(Old->getLocation(), diag::note_previous_definition);
1685    return New->setInvalidDecl();
1686  }
1687
1688  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1689
1690  // FIXME: The test for external storage here seems wrong? We still
1691  // need to check for mismatches.
1692  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1693      // Don't complain about out-of-line definitions of static members.
1694      !(Old->getLexicalDeclContext()->isRecord() &&
1695        !New->getLexicalDeclContext()->isRecord())) {
1696    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1697    Diag(Old->getLocation(), diag::note_previous_definition);
1698    return New->setInvalidDecl();
1699  }
1700
1701  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1702    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1703    Diag(Old->getLocation(), diag::note_previous_definition);
1704  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1705    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1706    Diag(Old->getLocation(), diag::note_previous_definition);
1707  }
1708
1709  // C++ doesn't have tentative definitions, so go right ahead and check here.
1710  const VarDecl *Def;
1711  if (getLangOptions().CPlusPlus &&
1712      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1713      (Def = Old->getDefinition())) {
1714    Diag(New->getLocation(), diag::err_redefinition)
1715      << New->getDeclName();
1716    Diag(Def->getLocation(), diag::note_previous_definition);
1717    New->setInvalidDecl();
1718    return;
1719  }
1720  // c99 6.2.2 P4.
1721  // For an identifier declared with the storage-class specifier extern in a
1722  // scope in which a prior declaration of that identifier is visible, if
1723  // the prior declaration specifies internal or external linkage, the linkage
1724  // of the identifier at the later declaration is the same as the linkage
1725  // specified at the prior declaration.
1726  // FIXME. revisit this code.
1727  if (New->hasExternalStorage() &&
1728      Old->getLinkage() == InternalLinkage &&
1729      New->getDeclContext() == Old->getDeclContext())
1730    New->setStorageClass(Old->getStorageClass());
1731
1732  // Keep a chain of previous declarations.
1733  New->setPreviousDeclaration(Old);
1734
1735  // Inherit access appropriately.
1736  New->setAccess(Old->getAccess());
1737}
1738
1739/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1740/// no declarator (e.g. "struct foo;") is parsed.
1741Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1742                                            DeclSpec &DS) {
1743  // FIXME: Error on inline/virtual/explicit
1744  // FIXME: Warn on useless __thread
1745  // FIXME: Warn on useless const/volatile
1746  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1747  // FIXME: Warn on useless attributes
1748  Decl *TagD = 0;
1749  TagDecl *Tag = 0;
1750  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1751      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1752      DS.getTypeSpecType() == DeclSpec::TST_union ||
1753      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1754    TagD = DS.getRepAsDecl();
1755
1756    if (!TagD) // We probably had an error
1757      return 0;
1758
1759    // Note that the above type specs guarantee that the
1760    // type rep is a Decl, whereas in many of the others
1761    // it's a Type.
1762    Tag = dyn_cast<TagDecl>(TagD);
1763  }
1764
1765  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1766    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1767    // or incomplete types shall not be restrict-qualified."
1768    if (TypeQuals & DeclSpec::TQ_restrict)
1769      Diag(DS.getRestrictSpecLoc(),
1770           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1771           << DS.getSourceRange();
1772  }
1773
1774  if (DS.isFriendSpecified()) {
1775    // If we're dealing with a decl but not a TagDecl, assume that
1776    // whatever routines created it handled the friendship aspect.
1777    if (TagD && !Tag)
1778      return 0;
1779    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1780  }
1781
1782  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1783    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1784
1785    if (!Record->getDeclName() && Record->isDefinition() &&
1786        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1787      if (getLangOptions().CPlusPlus ||
1788          Record->getDeclContext()->isRecord())
1789        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1790
1791      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1792        << DS.getSourceRange();
1793    }
1794  }
1795
1796  // Check for Microsoft C extension: anonymous struct.
1797  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1798      CurContext->isRecord() &&
1799      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1800    // Handle 2 kinds of anonymous struct:
1801    //   struct STRUCT;
1802    // and
1803    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1804    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1805    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1806        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1807         DS.getRepAsType().get()->isStructureType())) {
1808      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1809        << DS.getSourceRange();
1810      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1811    }
1812  }
1813
1814  if (getLangOptions().CPlusPlus &&
1815      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1816    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1817      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1818          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1819        Diag(Enum->getLocation(), diag::ext_no_declarators)
1820          << DS.getSourceRange();
1821
1822  if (!DS.isMissingDeclaratorOk() &&
1823      DS.getTypeSpecType() != DeclSpec::TST_error) {
1824    // Warn about typedefs of enums without names, since this is an
1825    // extension in both Microsoft and GNU.
1826    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1827        Tag && isa<EnumDecl>(Tag)) {
1828      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1829        << DS.getSourceRange();
1830      return Tag;
1831    }
1832
1833    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1834      << DS.getSourceRange();
1835  }
1836
1837  return TagD;
1838}
1839
1840/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1841/// builds a statement for it and returns it so it is evaluated.
1842StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1843  StmtResult R;
1844  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1845    Expr *Exp = DS.getRepAsExpr();
1846    QualType Ty = Exp->getType();
1847    if (Ty->isPointerType()) {
1848      do
1849        Ty = Ty->getAs<PointerType>()->getPointeeType();
1850      while (Ty->isPointerType());
1851    }
1852    if (Ty->isVariableArrayType()) {
1853      R = ActOnExprStmt(MakeFullExpr(Exp));
1854    }
1855  }
1856  return R;
1857}
1858
1859/// We are trying to inject an anonymous member into the given scope;
1860/// check if there's an existing declaration that can't be overloaded.
1861///
1862/// \return true if this is a forbidden redeclaration
1863static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1864                                         Scope *S,
1865                                         DeclContext *Owner,
1866                                         DeclarationName Name,
1867                                         SourceLocation NameLoc,
1868                                         unsigned diagnostic) {
1869  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1870                 Sema::ForRedeclaration);
1871  if (!SemaRef.LookupName(R, S)) return false;
1872
1873  if (R.getAsSingle<TagDecl>())
1874    return false;
1875
1876  // Pick a representative declaration.
1877  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1878  assert(PrevDecl && "Expected a non-null Decl");
1879
1880  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1881    return false;
1882
1883  SemaRef.Diag(NameLoc, diagnostic) << Name;
1884  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1885
1886  return true;
1887}
1888
1889/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1890/// anonymous struct or union AnonRecord into the owning context Owner
1891/// and scope S. This routine will be invoked just after we realize
1892/// that an unnamed union or struct is actually an anonymous union or
1893/// struct, e.g.,
1894///
1895/// @code
1896/// union {
1897///   int i;
1898///   float f;
1899/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1900///    // f into the surrounding scope.x
1901/// @endcode
1902///
1903/// This routine is recursive, injecting the names of nested anonymous
1904/// structs/unions into the owning context and scope as well.
1905static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1906                                                DeclContext *Owner,
1907                                                RecordDecl *AnonRecord,
1908                                                AccessSpecifier AS,
1909                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1910                                                      bool MSAnonStruct) {
1911  unsigned diagKind
1912    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1913                            : diag::err_anonymous_struct_member_redecl;
1914
1915  bool Invalid = false;
1916
1917  // Look every FieldDecl and IndirectFieldDecl with a name.
1918  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1919                               DEnd = AnonRecord->decls_end();
1920       D != DEnd; ++D) {
1921    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1922        cast<NamedDecl>(*D)->getDeclName()) {
1923      ValueDecl *VD = cast<ValueDecl>(*D);
1924      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1925                                       VD->getLocation(), diagKind)) {
1926        // C++ [class.union]p2:
1927        //   The names of the members of an anonymous union shall be
1928        //   distinct from the names of any other entity in the
1929        //   scope in which the anonymous union is declared.
1930        Invalid = true;
1931      } else {
1932        // C++ [class.union]p2:
1933        //   For the purpose of name lookup, after the anonymous union
1934        //   definition, the members of the anonymous union are
1935        //   considered to have been defined in the scope in which the
1936        //   anonymous union is declared.
1937        unsigned OldChainingSize = Chaining.size();
1938        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1939          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1940               PE = IF->chain_end(); PI != PE; ++PI)
1941            Chaining.push_back(*PI);
1942        else
1943          Chaining.push_back(VD);
1944
1945        assert(Chaining.size() >= 2);
1946        NamedDecl **NamedChain =
1947          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1948        for (unsigned i = 0; i < Chaining.size(); i++)
1949          NamedChain[i] = Chaining[i];
1950
1951        IndirectFieldDecl* IndirectField =
1952          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1953                                    VD->getIdentifier(), VD->getType(),
1954                                    NamedChain, Chaining.size());
1955
1956        IndirectField->setAccess(AS);
1957        IndirectField->setImplicit();
1958        SemaRef.PushOnScopeChains(IndirectField, S);
1959
1960        // That includes picking up the appropriate access specifier.
1961        if (AS != AS_none) IndirectField->setAccess(AS);
1962
1963        Chaining.resize(OldChainingSize);
1964      }
1965    }
1966  }
1967
1968  return Invalid;
1969}
1970
1971/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1972/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1973/// illegal input values are mapped to SC_None.
1974static StorageClass
1975StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1976  switch (StorageClassSpec) {
1977  case DeclSpec::SCS_unspecified:    return SC_None;
1978  case DeclSpec::SCS_extern:         return SC_Extern;
1979  case DeclSpec::SCS_static:         return SC_Static;
1980  case DeclSpec::SCS_auto:           return SC_Auto;
1981  case DeclSpec::SCS_register:       return SC_Register;
1982  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1983    // Illegal SCSs map to None: error reporting is up to the caller.
1984  case DeclSpec::SCS_mutable:        // Fall through.
1985  case DeclSpec::SCS_typedef:        return SC_None;
1986  }
1987  llvm_unreachable("unknown storage class specifier");
1988}
1989
1990/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1991/// a StorageClass. Any error reporting is up to the caller:
1992/// illegal input values are mapped to SC_None.
1993static StorageClass
1994StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1995  switch (StorageClassSpec) {
1996  case DeclSpec::SCS_unspecified:    return SC_None;
1997  case DeclSpec::SCS_extern:         return SC_Extern;
1998  case DeclSpec::SCS_static:         return SC_Static;
1999  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2000    // Illegal SCSs map to None: error reporting is up to the caller.
2001  case DeclSpec::SCS_auto:           // Fall through.
2002  case DeclSpec::SCS_mutable:        // Fall through.
2003  case DeclSpec::SCS_register:       // Fall through.
2004  case DeclSpec::SCS_typedef:        return SC_None;
2005  }
2006  llvm_unreachable("unknown storage class specifier");
2007}
2008
2009/// BuildAnonymousStructOrUnion - Handle the declaration of an
2010/// anonymous structure or union. Anonymous unions are a C++ feature
2011/// (C++ [class.union]) and a GNU C extension; anonymous structures
2012/// are a GNU C and GNU C++ extension.
2013Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2014                                             AccessSpecifier AS,
2015                                             RecordDecl *Record) {
2016  DeclContext *Owner = Record->getDeclContext();
2017
2018  // Diagnose whether this anonymous struct/union is an extension.
2019  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2020    Diag(Record->getLocation(), diag::ext_anonymous_union);
2021  else if (!Record->isUnion())
2022    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2023
2024  // C and C++ require different kinds of checks for anonymous
2025  // structs/unions.
2026  bool Invalid = false;
2027  if (getLangOptions().CPlusPlus) {
2028    const char* PrevSpec = 0;
2029    unsigned DiagID;
2030    // C++ [class.union]p3:
2031    //   Anonymous unions declared in a named namespace or in the
2032    //   global namespace shall be declared static.
2033    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2034        (isa<TranslationUnitDecl>(Owner) ||
2035         (isa<NamespaceDecl>(Owner) &&
2036          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2037      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2038      Invalid = true;
2039
2040      // Recover by adding 'static'.
2041      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2042                             PrevSpec, DiagID, getLangOptions());
2043    }
2044    // C++ [class.union]p3:
2045    //   A storage class is not allowed in a declaration of an
2046    //   anonymous union in a class scope.
2047    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2048             isa<RecordDecl>(Owner)) {
2049      Diag(DS.getStorageClassSpecLoc(),
2050           diag::err_anonymous_union_with_storage_spec);
2051      Invalid = true;
2052
2053      // Recover by removing the storage specifier.
2054      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2055                             PrevSpec, DiagID, getLangOptions());
2056    }
2057
2058    // C++ [class.union]p2:
2059    //   The member-specification of an anonymous union shall only
2060    //   define non-static data members. [Note: nested types and
2061    //   functions cannot be declared within an anonymous union. ]
2062    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2063                                 MemEnd = Record->decls_end();
2064         Mem != MemEnd; ++Mem) {
2065      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2066        // C++ [class.union]p3:
2067        //   An anonymous union shall not have private or protected
2068        //   members (clause 11).
2069        assert(FD->getAccess() != AS_none);
2070        if (FD->getAccess() != AS_public) {
2071          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2072            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2073          Invalid = true;
2074        }
2075
2076        if (CheckNontrivialField(FD))
2077          Invalid = true;
2078      } else if ((*Mem)->isImplicit()) {
2079        // Any implicit members are fine.
2080      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2081        // This is a type that showed up in an
2082        // elaborated-type-specifier inside the anonymous struct or
2083        // union, but which actually declares a type outside of the
2084        // anonymous struct or union. It's okay.
2085      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2086        if (!MemRecord->isAnonymousStructOrUnion() &&
2087            MemRecord->getDeclName()) {
2088          // Visual C++ allows type definition in anonymous struct or union.
2089          if (getLangOptions().Microsoft)
2090            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2091              << (int)Record->isUnion();
2092          else {
2093            // This is a nested type declaration.
2094            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2095              << (int)Record->isUnion();
2096            Invalid = true;
2097          }
2098        }
2099      } else if (isa<AccessSpecDecl>(*Mem)) {
2100        // Any access specifier is fine.
2101      } else {
2102        // We have something that isn't a non-static data
2103        // member. Complain about it.
2104        unsigned DK = diag::err_anonymous_record_bad_member;
2105        if (isa<TypeDecl>(*Mem))
2106          DK = diag::err_anonymous_record_with_type;
2107        else if (isa<FunctionDecl>(*Mem))
2108          DK = diag::err_anonymous_record_with_function;
2109        else if (isa<VarDecl>(*Mem))
2110          DK = diag::err_anonymous_record_with_static;
2111
2112        // Visual C++ allows type definition in anonymous struct or union.
2113        if (getLangOptions().Microsoft &&
2114            DK == diag::err_anonymous_record_with_type)
2115          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2116            << (int)Record->isUnion();
2117        else {
2118          Diag((*Mem)->getLocation(), DK)
2119              << (int)Record->isUnion();
2120          Invalid = true;
2121        }
2122      }
2123    }
2124  }
2125
2126  if (!Record->isUnion() && !Owner->isRecord()) {
2127    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2128      << (int)getLangOptions().CPlusPlus;
2129    Invalid = true;
2130  }
2131
2132  // Mock up a declarator.
2133  Declarator Dc(DS, Declarator::TypeNameContext);
2134  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2135  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2136
2137  // Create a declaration for this anonymous struct/union.
2138  NamedDecl *Anon = 0;
2139  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2140    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2141                             /*IdentifierInfo=*/0,
2142                             Context.getTypeDeclType(Record),
2143                             TInfo,
2144                             /*BitWidth=*/0, /*Mutable=*/false);
2145    Anon->setAccess(AS);
2146    if (getLangOptions().CPlusPlus)
2147      FieldCollector->Add(cast<FieldDecl>(Anon));
2148  } else {
2149    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2150    assert(SCSpec != DeclSpec::SCS_typedef &&
2151           "Parser allowed 'typedef' as storage class VarDecl.");
2152    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2153    if (SCSpec == DeclSpec::SCS_mutable) {
2154      // mutable can only appear on non-static class members, so it's always
2155      // an error here
2156      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2157      Invalid = true;
2158      SC = SC_None;
2159    }
2160    SCSpec = DS.getStorageClassSpecAsWritten();
2161    VarDecl::StorageClass SCAsWritten
2162      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2163
2164    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2165                           /*IdentifierInfo=*/0,
2166                           Context.getTypeDeclType(Record),
2167                           TInfo, SC, SCAsWritten);
2168  }
2169  Anon->setImplicit();
2170
2171  // Add the anonymous struct/union object to the current
2172  // context. We'll be referencing this object when we refer to one of
2173  // its members.
2174  Owner->addDecl(Anon);
2175
2176  // Inject the members of the anonymous struct/union into the owning
2177  // context and into the identifier resolver chain for name lookup
2178  // purposes.
2179  llvm::SmallVector<NamedDecl*, 2> Chain;
2180  Chain.push_back(Anon);
2181
2182  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2183                                          Chain, false))
2184    Invalid = true;
2185
2186  // Mark this as an anonymous struct/union type. Note that we do not
2187  // do this until after we have already checked and injected the
2188  // members of this anonymous struct/union type, because otherwise
2189  // the members could be injected twice: once by DeclContext when it
2190  // builds its lookup table, and once by
2191  // InjectAnonymousStructOrUnionMembers.
2192  Record->setAnonymousStructOrUnion(true);
2193
2194  if (Invalid)
2195    Anon->setInvalidDecl();
2196
2197  return Anon;
2198}
2199
2200/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2201/// Microsoft C anonymous structure.
2202/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2203/// Example:
2204///
2205/// struct A { int a; };
2206/// struct B { struct A; int b; };
2207///
2208/// void foo() {
2209///   B var;
2210///   var.a = 3;
2211/// }
2212///
2213Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2214                                           RecordDecl *Record) {
2215
2216  // If there is no Record, get the record via the typedef.
2217  if (!Record)
2218    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2219
2220  // Mock up a declarator.
2221  Declarator Dc(DS, Declarator::TypeNameContext);
2222  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2223  assert(TInfo && "couldn't build declarator info for anonymous struct");
2224
2225  // Create a declaration for this anonymous struct.
2226  NamedDecl* Anon = FieldDecl::Create(Context,
2227                             cast<RecordDecl>(CurContext),
2228                             DS.getSourceRange().getBegin(),
2229                             /*IdentifierInfo=*/0,
2230                             Context.getTypeDeclType(Record),
2231                             TInfo,
2232                             /*BitWidth=*/0, /*Mutable=*/false);
2233  Anon->setImplicit();
2234
2235  // Add the anonymous struct object to the current context.
2236  CurContext->addDecl(Anon);
2237
2238  // Inject the members of the anonymous struct into the current
2239  // context and into the identifier resolver chain for name lookup
2240  // purposes.
2241  llvm::SmallVector<NamedDecl*, 2> Chain;
2242  Chain.push_back(Anon);
2243
2244  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2245                                          Record->getDefinition(),
2246                                          AS_none, Chain, true))
2247    Anon->setInvalidDecl();
2248
2249  return Anon;
2250}
2251
2252/// GetNameForDeclarator - Determine the full declaration name for the
2253/// given Declarator.
2254DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2255  return GetNameFromUnqualifiedId(D.getName());
2256}
2257
2258/// \brief Retrieves the declaration name from a parsed unqualified-id.
2259DeclarationNameInfo
2260Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2261  DeclarationNameInfo NameInfo;
2262  NameInfo.setLoc(Name.StartLocation);
2263
2264  switch (Name.getKind()) {
2265
2266  case UnqualifiedId::IK_Identifier:
2267    NameInfo.setName(Name.Identifier);
2268    NameInfo.setLoc(Name.StartLocation);
2269    return NameInfo;
2270
2271  case UnqualifiedId::IK_OperatorFunctionId:
2272    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2273                                           Name.OperatorFunctionId.Operator));
2274    NameInfo.setLoc(Name.StartLocation);
2275    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2276      = Name.OperatorFunctionId.SymbolLocations[0];
2277    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2278      = Name.EndLocation.getRawEncoding();
2279    return NameInfo;
2280
2281  case UnqualifiedId::IK_LiteralOperatorId:
2282    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2283                                                           Name.Identifier));
2284    NameInfo.setLoc(Name.StartLocation);
2285    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2286    return NameInfo;
2287
2288  case UnqualifiedId::IK_ConversionFunctionId: {
2289    TypeSourceInfo *TInfo;
2290    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2291    if (Ty.isNull())
2292      return DeclarationNameInfo();
2293    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2294                                               Context.getCanonicalType(Ty)));
2295    NameInfo.setLoc(Name.StartLocation);
2296    NameInfo.setNamedTypeInfo(TInfo);
2297    return NameInfo;
2298  }
2299
2300  case UnqualifiedId::IK_ConstructorName: {
2301    TypeSourceInfo *TInfo;
2302    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2303    if (Ty.isNull())
2304      return DeclarationNameInfo();
2305    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2306                                              Context.getCanonicalType(Ty)));
2307    NameInfo.setLoc(Name.StartLocation);
2308    NameInfo.setNamedTypeInfo(TInfo);
2309    return NameInfo;
2310  }
2311
2312  case UnqualifiedId::IK_ConstructorTemplateId: {
2313    // In well-formed code, we can only have a constructor
2314    // template-id that refers to the current context, so go there
2315    // to find the actual type being constructed.
2316    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2317    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2318      return DeclarationNameInfo();
2319
2320    // Determine the type of the class being constructed.
2321    QualType CurClassType = Context.getTypeDeclType(CurClass);
2322
2323    // FIXME: Check two things: that the template-id names the same type as
2324    // CurClassType, and that the template-id does not occur when the name
2325    // was qualified.
2326
2327    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2328                                    Context.getCanonicalType(CurClassType)));
2329    NameInfo.setLoc(Name.StartLocation);
2330    // FIXME: should we retrieve TypeSourceInfo?
2331    NameInfo.setNamedTypeInfo(0);
2332    return NameInfo;
2333  }
2334
2335  case UnqualifiedId::IK_DestructorName: {
2336    TypeSourceInfo *TInfo;
2337    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2338    if (Ty.isNull())
2339      return DeclarationNameInfo();
2340    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2341                                              Context.getCanonicalType(Ty)));
2342    NameInfo.setLoc(Name.StartLocation);
2343    NameInfo.setNamedTypeInfo(TInfo);
2344    return NameInfo;
2345  }
2346
2347  case UnqualifiedId::IK_TemplateId: {
2348    TemplateName TName = Name.TemplateId->Template.get();
2349    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2350    return Context.getNameForTemplate(TName, TNameLoc);
2351  }
2352
2353  } // switch (Name.getKind())
2354
2355  assert(false && "Unknown name kind");
2356  return DeclarationNameInfo();
2357}
2358
2359/// isNearlyMatchingFunction - Determine whether the C++ functions
2360/// Declaration and Definition are "nearly" matching. This heuristic
2361/// is used to improve diagnostics in the case where an out-of-line
2362/// function definition doesn't match any declaration within
2363/// the class or namespace.
2364static bool isNearlyMatchingFunction(ASTContext &Context,
2365                                     FunctionDecl *Declaration,
2366                                     FunctionDecl *Definition) {
2367  if (Declaration->param_size() != Definition->param_size())
2368    return false;
2369  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2370    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2371    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2372
2373    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2374                                        DefParamTy.getNonReferenceType()))
2375      return false;
2376  }
2377
2378  return true;
2379}
2380
2381/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2382/// declarator needs to be rebuilt in the current instantiation.
2383/// Any bits of declarator which appear before the name are valid for
2384/// consideration here.  That's specifically the type in the decl spec
2385/// and the base type in any member-pointer chunks.
2386static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2387                                                    DeclarationName Name) {
2388  // The types we specifically need to rebuild are:
2389  //   - typenames, typeofs, and decltypes
2390  //   - types which will become injected class names
2391  // Of course, we also need to rebuild any type referencing such a
2392  // type.  It's safest to just say "dependent", but we call out a
2393  // few cases here.
2394
2395  DeclSpec &DS = D.getMutableDeclSpec();
2396  switch (DS.getTypeSpecType()) {
2397  case DeclSpec::TST_typename:
2398  case DeclSpec::TST_typeofType:
2399  case DeclSpec::TST_decltype: {
2400    // Grab the type from the parser.
2401    TypeSourceInfo *TSI = 0;
2402    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2403    if (T.isNull() || !T->isDependentType()) break;
2404
2405    // Make sure there's a type source info.  This isn't really much
2406    // of a waste; most dependent types should have type source info
2407    // attached already.
2408    if (!TSI)
2409      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2410
2411    // Rebuild the type in the current instantiation.
2412    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2413    if (!TSI) return true;
2414
2415    // Store the new type back in the decl spec.
2416    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2417    DS.UpdateTypeRep(LocType);
2418    break;
2419  }
2420
2421  case DeclSpec::TST_typeofExpr: {
2422    Expr *E = DS.getRepAsExpr();
2423    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2424    if (Result.isInvalid()) return true;
2425    DS.UpdateExprRep(Result.get());
2426    break;
2427  }
2428
2429  default:
2430    // Nothing to do for these decl specs.
2431    break;
2432  }
2433
2434  // It doesn't matter what order we do this in.
2435  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2436    DeclaratorChunk &Chunk = D.getTypeObject(I);
2437
2438    // The only type information in the declarator which can come
2439    // before the declaration name is the base type of a member
2440    // pointer.
2441    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2442      continue;
2443
2444    // Rebuild the scope specifier in-place.
2445    CXXScopeSpec &SS = Chunk.Mem.Scope();
2446    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2447      return true;
2448  }
2449
2450  return false;
2451}
2452
2453Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2454  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2455}
2456
2457Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2458                             MultiTemplateParamsArg TemplateParamLists,
2459                             bool IsFunctionDefinition) {
2460  // TODO: consider using NameInfo for diagnostic.
2461  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2462  DeclarationName Name = NameInfo.getName();
2463
2464  // All of these full declarators require an identifier.  If it doesn't have
2465  // one, the ParsedFreeStandingDeclSpec action should be used.
2466  if (!Name) {
2467    if (!D.isInvalidType())  // Reject this if we think it is valid.
2468      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2469           diag::err_declarator_need_ident)
2470        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2471    return 0;
2472  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2473    return 0;
2474
2475  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2476  // we find one that is.
2477  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2478         (S->getFlags() & Scope::TemplateParamScope) != 0)
2479    S = S->getParent();
2480
2481  DeclContext *DC = CurContext;
2482  if (D.getCXXScopeSpec().isInvalid())
2483    D.setInvalidType();
2484  else if (D.getCXXScopeSpec().isSet()) {
2485    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2486                                        UPPC_DeclarationQualifier))
2487      return 0;
2488
2489    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2490    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2491    if (!DC) {
2492      // If we could not compute the declaration context, it's because the
2493      // declaration context is dependent but does not refer to a class,
2494      // class template, or class template partial specialization. Complain
2495      // and return early, to avoid the coming semantic disaster.
2496      Diag(D.getIdentifierLoc(),
2497           diag::err_template_qualified_declarator_no_match)
2498        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2499        << D.getCXXScopeSpec().getRange();
2500      return 0;
2501    }
2502
2503    bool IsDependentContext = DC->isDependentContext();
2504
2505    if (!IsDependentContext &&
2506        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2507      return 0;
2508
2509    if (isa<CXXRecordDecl>(DC)) {
2510      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2511        Diag(D.getIdentifierLoc(),
2512             diag::err_member_def_undefined_record)
2513          << Name << DC << D.getCXXScopeSpec().getRange();
2514        D.setInvalidType();
2515      } else if (isa<CXXRecordDecl>(CurContext) &&
2516                 !D.getDeclSpec().isFriendSpecified()) {
2517        // The user provided a superfluous scope specifier inside a class
2518        // definition:
2519        //
2520        // class X {
2521        //   void X::f();
2522        // };
2523        if (CurContext->Equals(DC))
2524          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2525            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2526        else
2527          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2528            << Name << D.getCXXScopeSpec().getRange();
2529
2530        // Pretend that this qualifier was not here.
2531        D.getCXXScopeSpec().clear();
2532      }
2533    }
2534
2535    // Check whether we need to rebuild the type of the given
2536    // declaration in the current instantiation.
2537    if (EnteringContext && IsDependentContext &&
2538        TemplateParamLists.size() != 0) {
2539      ContextRAII SavedContext(*this, DC);
2540      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2541        D.setInvalidType();
2542    }
2543  }
2544
2545  // C++ [class.mem]p13:
2546  //   If T is the name of a class, then each of the following shall have a
2547  //   name different from T:
2548  //     - every static data member of class T;
2549  //     - every member function of class T
2550  //     - every member of class T that is itself a type;
2551  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2552    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2553      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2554        << Name;
2555
2556      // If this is a typedef, we'll end up spewing multiple diagnostics.
2557      // Just return early; it's safer.
2558      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2559        return 0;
2560    }
2561
2562  NamedDecl *New;
2563
2564  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2565  QualType R = TInfo->getType();
2566
2567  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2568                                      UPPC_DeclarationType))
2569    D.setInvalidType();
2570
2571  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2572                        ForRedeclaration);
2573
2574  // See if this is a redefinition of a variable in the same scope.
2575  if (!D.getCXXScopeSpec().isSet()) {
2576    bool IsLinkageLookup = false;
2577
2578    // If the declaration we're planning to build will be a function
2579    // or object with linkage, then look for another declaration with
2580    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2581    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2582      /* Do nothing*/;
2583    else if (R->isFunctionType()) {
2584      if (CurContext->isFunctionOrMethod() ||
2585          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2586        IsLinkageLookup = true;
2587    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2588      IsLinkageLookup = true;
2589    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2590             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2591      IsLinkageLookup = true;
2592
2593    if (IsLinkageLookup)
2594      Previous.clear(LookupRedeclarationWithLinkage);
2595
2596    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2597  } else { // Something like "int foo::x;"
2598    LookupQualifiedName(Previous, DC);
2599
2600    // Don't consider using declarations as previous declarations for
2601    // out-of-line members.
2602    RemoveUsingDecls(Previous);
2603
2604    // C++ 7.3.1.2p2:
2605    // Members (including explicit specializations of templates) of a named
2606    // namespace can also be defined outside that namespace by explicit
2607    // qualification of the name being defined, provided that the entity being
2608    // defined was already declared in the namespace and the definition appears
2609    // after the point of declaration in a namespace that encloses the
2610    // declarations namespace.
2611    //
2612    // Note that we only check the context at this point. We don't yet
2613    // have enough information to make sure that PrevDecl is actually
2614    // the declaration we want to match. For example, given:
2615    //
2616    //   class X {
2617    //     void f();
2618    //     void f(float);
2619    //   };
2620    //
2621    //   void X::f(int) { } // ill-formed
2622    //
2623    // In this case, PrevDecl will point to the overload set
2624    // containing the two f's declared in X, but neither of them
2625    // matches.
2626
2627    // First check whether we named the global scope.
2628    if (isa<TranslationUnitDecl>(DC)) {
2629      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2630        << Name << D.getCXXScopeSpec().getRange();
2631    } else {
2632      DeclContext *Cur = CurContext;
2633      while (isa<LinkageSpecDecl>(Cur))
2634        Cur = Cur->getParent();
2635      if (!Cur->Encloses(DC)) {
2636        // The qualifying scope doesn't enclose the original declaration.
2637        // Emit diagnostic based on current scope.
2638        SourceLocation L = D.getIdentifierLoc();
2639        SourceRange R = D.getCXXScopeSpec().getRange();
2640        if (isa<FunctionDecl>(Cur))
2641          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2642        else
2643          Diag(L, diag::err_invalid_declarator_scope)
2644            << Name << cast<NamedDecl>(DC) << R;
2645        D.setInvalidType();
2646      }
2647    }
2648  }
2649
2650  if (Previous.isSingleResult() &&
2651      Previous.getFoundDecl()->isTemplateParameter()) {
2652    // Maybe we will complain about the shadowed template parameter.
2653    if (!D.isInvalidType())
2654      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2655                                          Previous.getFoundDecl()))
2656        D.setInvalidType();
2657
2658    // Just pretend that we didn't see the previous declaration.
2659    Previous.clear();
2660  }
2661
2662  // In C++, the previous declaration we find might be a tag type
2663  // (class or enum). In this case, the new declaration will hide the
2664  // tag type. Note that this does does not apply if we're declaring a
2665  // typedef (C++ [dcl.typedef]p4).
2666  if (Previous.isSingleTagDecl() &&
2667      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2668    Previous.clear();
2669
2670  bool Redeclaration = false;
2671  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2672    if (TemplateParamLists.size()) {
2673      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2674      return 0;
2675    }
2676
2677    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2678  } else if (R->isFunctionType()) {
2679    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2680                                  move(TemplateParamLists),
2681                                  IsFunctionDefinition, Redeclaration);
2682  } else {
2683    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2684                                  move(TemplateParamLists),
2685                                  Redeclaration);
2686  }
2687
2688  if (New == 0)
2689    return 0;
2690
2691  // If this has an identifier and is not an invalid redeclaration or
2692  // function template specialization, add it to the scope stack.
2693  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2694    PushOnScopeChains(New, S);
2695
2696  return New;
2697}
2698
2699/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2700/// types into constant array types in certain situations which would otherwise
2701/// be errors (for GCC compatibility).
2702static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2703                                                    ASTContext &Context,
2704                                                    bool &SizeIsNegative,
2705                                                    llvm::APSInt &Oversized) {
2706  // This method tries to turn a variable array into a constant
2707  // array even when the size isn't an ICE.  This is necessary
2708  // for compatibility with code that depends on gcc's buggy
2709  // constant expression folding, like struct {char x[(int)(char*)2];}
2710  SizeIsNegative = false;
2711  Oversized = 0;
2712
2713  if (T->isDependentType())
2714    return QualType();
2715
2716  QualifierCollector Qs;
2717  const Type *Ty = Qs.strip(T);
2718
2719  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2720    QualType Pointee = PTy->getPointeeType();
2721    QualType FixedType =
2722        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2723                                            Oversized);
2724    if (FixedType.isNull()) return FixedType;
2725    FixedType = Context.getPointerType(FixedType);
2726    return Qs.apply(Context, FixedType);
2727  }
2728  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2729    QualType Inner = PTy->getInnerType();
2730    QualType FixedType =
2731        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2732                                            Oversized);
2733    if (FixedType.isNull()) return FixedType;
2734    FixedType = Context.getParenType(FixedType);
2735    return Qs.apply(Context, FixedType);
2736  }
2737
2738  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2739  if (!VLATy)
2740    return QualType();
2741  // FIXME: We should probably handle this case
2742  if (VLATy->getElementType()->isVariablyModifiedType())
2743    return QualType();
2744
2745  Expr::EvalResult EvalResult;
2746  if (!VLATy->getSizeExpr() ||
2747      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2748      !EvalResult.Val.isInt())
2749    return QualType();
2750
2751  // Check whether the array size is negative.
2752  llvm::APSInt &Res = EvalResult.Val.getInt();
2753  if (Res.isSigned() && Res.isNegative()) {
2754    SizeIsNegative = true;
2755    return QualType();
2756  }
2757
2758  // Check whether the array is too large to be addressed.
2759  unsigned ActiveSizeBits
2760    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2761                                              Res);
2762  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2763    Oversized = Res;
2764    return QualType();
2765  }
2766
2767  return Context.getConstantArrayType(VLATy->getElementType(),
2768                                      Res, ArrayType::Normal, 0);
2769}
2770
2771/// \brief Register the given locally-scoped external C declaration so
2772/// that it can be found later for redeclarations
2773void
2774Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2775                                       const LookupResult &Previous,
2776                                       Scope *S) {
2777  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2778         "Decl is not a locally-scoped decl!");
2779  // Note that we have a locally-scoped external with this name.
2780  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2781
2782  if (!Previous.isSingleResult())
2783    return;
2784
2785  NamedDecl *PrevDecl = Previous.getFoundDecl();
2786
2787  // If there was a previous declaration of this variable, it may be
2788  // in our identifier chain. Update the identifier chain with the new
2789  // declaration.
2790  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2791    // The previous declaration was found on the identifer resolver
2792    // chain, so remove it from its scope.
2793    while (S && !S->isDeclScope(PrevDecl))
2794      S = S->getParent();
2795
2796    if (S)
2797      S->RemoveDecl(PrevDecl);
2798  }
2799}
2800
2801/// \brief Diagnose function specifiers on a declaration of an identifier that
2802/// does not identify a function.
2803void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2804  // FIXME: We should probably indicate the identifier in question to avoid
2805  // confusion for constructs like "inline int a(), b;"
2806  if (D.getDeclSpec().isInlineSpecified())
2807    Diag(D.getDeclSpec().getInlineSpecLoc(),
2808         diag::err_inline_non_function);
2809
2810  if (D.getDeclSpec().isVirtualSpecified())
2811    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2812         diag::err_virtual_non_function);
2813
2814  if (D.getDeclSpec().isExplicitSpecified())
2815    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2816         diag::err_explicit_non_function);
2817}
2818
2819NamedDecl*
2820Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2821                             QualType R,  TypeSourceInfo *TInfo,
2822                             LookupResult &Previous, bool &Redeclaration) {
2823  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2824  if (D.getCXXScopeSpec().isSet()) {
2825    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2826      << D.getCXXScopeSpec().getRange();
2827    D.setInvalidType();
2828    // Pretend we didn't see the scope specifier.
2829    DC = CurContext;
2830    Previous.clear();
2831  }
2832
2833  if (getLangOptions().CPlusPlus) {
2834    // Check that there are no default arguments (C++ only).
2835    CheckExtraCXXDefaultArguments(D);
2836  }
2837
2838  DiagnoseFunctionSpecifiers(D);
2839
2840  if (D.getDeclSpec().isThreadSpecified())
2841    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2842
2843  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2844    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2845      << D.getName().getSourceRange();
2846    return 0;
2847  }
2848
2849  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2850  if (!NewTD) return 0;
2851
2852  // Handle attributes prior to checking for duplicates in MergeVarDecl
2853  ProcessDeclAttributes(S, NewTD, D);
2854
2855  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2856  // then it shall have block scope.
2857  // Note that variably modified types must be fixed before merging the decl so
2858  // that redeclarations will match.
2859  QualType T = NewTD->getUnderlyingType();
2860  if (T->isVariablyModifiedType()) {
2861    getCurFunction()->setHasBranchProtectedScope();
2862
2863    if (S->getFnParent() == 0) {
2864      bool SizeIsNegative;
2865      llvm::APSInt Oversized;
2866      QualType FixedTy =
2867          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2868                                              Oversized);
2869      if (!FixedTy.isNull()) {
2870        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2871        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2872      } else {
2873        if (SizeIsNegative)
2874          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2875        else if (T->isVariableArrayType())
2876          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2877        else if (Oversized.getBoolValue())
2878          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2879            << Oversized.toString(10);
2880        else
2881          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2882        NewTD->setInvalidDecl();
2883      }
2884    }
2885  }
2886
2887  // Merge the decl with the existing one if appropriate. If the decl is
2888  // in an outer scope, it isn't the same thing.
2889  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2890  if (!Previous.empty()) {
2891    Redeclaration = true;
2892    MergeTypeDefDecl(NewTD, Previous);
2893  }
2894
2895  // If this is the C FILE type, notify the AST context.
2896  if (IdentifierInfo *II = NewTD->getIdentifier())
2897    if (!NewTD->isInvalidDecl() &&
2898        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2899      if (II->isStr("FILE"))
2900        Context.setFILEDecl(NewTD);
2901      else if (II->isStr("jmp_buf"))
2902        Context.setjmp_bufDecl(NewTD);
2903      else if (II->isStr("sigjmp_buf"))
2904        Context.setsigjmp_bufDecl(NewTD);
2905      else if (II->isStr("__builtin_va_list"))
2906        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2907    }
2908
2909  return NewTD;
2910}
2911
2912/// \brief Determines whether the given declaration is an out-of-scope
2913/// previous declaration.
2914///
2915/// This routine should be invoked when name lookup has found a
2916/// previous declaration (PrevDecl) that is not in the scope where a
2917/// new declaration by the same name is being introduced. If the new
2918/// declaration occurs in a local scope, previous declarations with
2919/// linkage may still be considered previous declarations (C99
2920/// 6.2.2p4-5, C++ [basic.link]p6).
2921///
2922/// \param PrevDecl the previous declaration found by name
2923/// lookup
2924///
2925/// \param DC the context in which the new declaration is being
2926/// declared.
2927///
2928/// \returns true if PrevDecl is an out-of-scope previous declaration
2929/// for a new delcaration with the same name.
2930static bool
2931isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2932                                ASTContext &Context) {
2933  if (!PrevDecl)
2934    return false;
2935
2936  if (!PrevDecl->hasLinkage())
2937    return false;
2938
2939  if (Context.getLangOptions().CPlusPlus) {
2940    // C++ [basic.link]p6:
2941    //   If there is a visible declaration of an entity with linkage
2942    //   having the same name and type, ignoring entities declared
2943    //   outside the innermost enclosing namespace scope, the block
2944    //   scope declaration declares that same entity and receives the
2945    //   linkage of the previous declaration.
2946    DeclContext *OuterContext = DC->getRedeclContext();
2947    if (!OuterContext->isFunctionOrMethod())
2948      // This rule only applies to block-scope declarations.
2949      return false;
2950
2951    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2952    if (PrevOuterContext->isRecord())
2953      // We found a member function: ignore it.
2954      return false;
2955
2956    // Find the innermost enclosing namespace for the new and
2957    // previous declarations.
2958    OuterContext = OuterContext->getEnclosingNamespaceContext();
2959    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2960
2961    // The previous declaration is in a different namespace, so it
2962    // isn't the same function.
2963    if (!OuterContext->Equals(PrevOuterContext))
2964      return false;
2965  }
2966
2967  return true;
2968}
2969
2970static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2971  CXXScopeSpec &SS = D.getCXXScopeSpec();
2972  if (!SS.isSet()) return;
2973  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
2974}
2975
2976NamedDecl*
2977Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2978                              QualType R, TypeSourceInfo *TInfo,
2979                              LookupResult &Previous,
2980                              MultiTemplateParamsArg TemplateParamLists,
2981                              bool &Redeclaration) {
2982  DeclarationName Name = GetNameForDeclarator(D).getName();
2983
2984  // Check that there are no default arguments (C++ only).
2985  if (getLangOptions().CPlusPlus)
2986    CheckExtraCXXDefaultArguments(D);
2987
2988  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2989  assert(SCSpec != DeclSpec::SCS_typedef &&
2990         "Parser allowed 'typedef' as storage class VarDecl.");
2991  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2992  if (SCSpec == DeclSpec::SCS_mutable) {
2993    // mutable can only appear on non-static class members, so it's always
2994    // an error here
2995    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2996    D.setInvalidType();
2997    SC = SC_None;
2998  }
2999  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3000  VarDecl::StorageClass SCAsWritten
3001    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3002
3003  IdentifierInfo *II = Name.getAsIdentifierInfo();
3004  if (!II) {
3005    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3006      << Name.getAsString();
3007    return 0;
3008  }
3009
3010  DiagnoseFunctionSpecifiers(D);
3011
3012  if (!DC->isRecord() && S->getFnParent() == 0) {
3013    // C99 6.9p2: The storage-class specifiers auto and register shall not
3014    // appear in the declaration specifiers in an external declaration.
3015    if (SC == SC_Auto || SC == SC_Register) {
3016
3017      // If this is a register variable with an asm label specified, then this
3018      // is a GNU extension.
3019      if (SC == SC_Register && D.getAsmLabel())
3020        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3021      else
3022        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3023      D.setInvalidType();
3024    }
3025  }
3026
3027  bool isExplicitSpecialization = false;
3028  VarDecl *NewVD;
3029  if (!getLangOptions().CPlusPlus) {
3030      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
3031                              II, R, TInfo, SC, SCAsWritten);
3032
3033    if (D.isInvalidType())
3034      NewVD->setInvalidDecl();
3035  } else {
3036    if (DC->isRecord() && !CurContext->isRecord()) {
3037      // This is an out-of-line definition of a static data member.
3038      if (SC == SC_Static) {
3039        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3040             diag::err_static_out_of_line)
3041          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3042      } else if (SC == SC_None)
3043        SC = SC_Static;
3044    }
3045    if (SC == SC_Static) {
3046      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3047        if (RD->isLocalClass())
3048          Diag(D.getIdentifierLoc(),
3049               diag::err_static_data_member_not_allowed_in_local_class)
3050            << Name << RD->getDeclName();
3051
3052        // C++ [class.union]p1: If a union contains a static data member,
3053        // the program is ill-formed.
3054        //
3055        // We also disallow static data members in anonymous structs.
3056        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3057          Diag(D.getIdentifierLoc(),
3058               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3059            << Name << RD->isUnion();
3060      }
3061    }
3062
3063    // Match up the template parameter lists with the scope specifier, then
3064    // determine whether we have a template or a template specialization.
3065    isExplicitSpecialization = false;
3066    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3067    bool Invalid = false;
3068    if (TemplateParameterList *TemplateParams
3069        = MatchTemplateParametersToScopeSpecifier(
3070                                                  D.getDeclSpec().getSourceRange().getBegin(),
3071                                                  D.getCXXScopeSpec(),
3072                                                  TemplateParamLists.get(),
3073                                                  TemplateParamLists.size(),
3074                                                  /*never a friend*/ false,
3075                                                  isExplicitSpecialization,
3076                                                  Invalid)) {
3077      // All but one template parameter lists have been matching.
3078      --NumMatchedTemplateParamLists;
3079
3080      if (TemplateParams->size() > 0) {
3081        // There is no such thing as a variable template.
3082        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3083          << II
3084          << SourceRange(TemplateParams->getTemplateLoc(),
3085                         TemplateParams->getRAngleLoc());
3086        return 0;
3087      } else {
3088        // There is an extraneous 'template<>' for this variable. Complain
3089        // about it, but allow the declaration of the variable.
3090        Diag(TemplateParams->getTemplateLoc(),
3091             diag::err_template_variable_noparams)
3092          << II
3093          << SourceRange(TemplateParams->getTemplateLoc(),
3094                         TemplateParams->getRAngleLoc());
3095
3096        isExplicitSpecialization = true;
3097      }
3098    }
3099
3100    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
3101                            II, R, TInfo, SC, SCAsWritten);
3102
3103    // If this decl has an auto type in need of deduction, make a note of the
3104    // Decl so we can diagnose uses of it in its own initializer.
3105    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3106        R->getContainedAutoType())
3107      ParsingInitForAutoVars.insert(NewVD);
3108
3109    if (D.isInvalidType() || Invalid)
3110      NewVD->setInvalidDecl();
3111
3112    SetNestedNameSpecifier(NewVD, D);
3113
3114    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3115      NewVD->setTemplateParameterListsInfo(Context,
3116                                           NumMatchedTemplateParamLists,
3117                                           TemplateParamLists.release());
3118    }
3119  }
3120
3121  if (D.getDeclSpec().isThreadSpecified()) {
3122    if (NewVD->hasLocalStorage())
3123      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3124    else if (!Context.Target.isTLSSupported())
3125      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3126    else
3127      NewVD->setThreadSpecified(true);
3128  }
3129
3130  // Set the lexical context. If the declarator has a C++ scope specifier, the
3131  // lexical context will be different from the semantic context.
3132  NewVD->setLexicalDeclContext(CurContext);
3133
3134  // Handle attributes prior to checking for duplicates in MergeVarDecl
3135  ProcessDeclAttributes(S, NewVD, D);
3136
3137  // Handle GNU asm-label extension (encoded as an attribute).
3138  if (Expr *E = (Expr*)D.getAsmLabel()) {
3139    // The parser guarantees this is a string.
3140    StringLiteral *SE = cast<StringLiteral>(E);
3141    llvm::StringRef Label = SE->getString();
3142    if (S->getFnParent() != 0) {
3143      switch (SC) {
3144      case SC_None:
3145      case SC_Auto:
3146        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3147        break;
3148      case SC_Register:
3149        if (!Context.Target.isValidGCCRegisterName(Label))
3150          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3151        break;
3152      case SC_Static:
3153      case SC_Extern:
3154      case SC_PrivateExtern:
3155        break;
3156      }
3157    }
3158
3159    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3160                                                Context, Label));
3161  }
3162
3163  // Diagnose shadowed variables before filtering for scope.
3164  if (!D.getCXXScopeSpec().isSet())
3165    CheckShadow(S, NewVD, Previous);
3166
3167  // Don't consider existing declarations that are in a different
3168  // scope and are out-of-semantic-context declarations (if the new
3169  // declaration has linkage).
3170  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
3171
3172  if (!getLangOptions().CPlusPlus)
3173    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3174  else {
3175    // Merge the decl with the existing one if appropriate.
3176    if (!Previous.empty()) {
3177      if (Previous.isSingleResult() &&
3178          isa<FieldDecl>(Previous.getFoundDecl()) &&
3179          D.getCXXScopeSpec().isSet()) {
3180        // The user tried to define a non-static data member
3181        // out-of-line (C++ [dcl.meaning]p1).
3182        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3183          << D.getCXXScopeSpec().getRange();
3184        Previous.clear();
3185        NewVD->setInvalidDecl();
3186      }
3187    } else if (D.getCXXScopeSpec().isSet()) {
3188      // No previous declaration in the qualifying scope.
3189      Diag(D.getIdentifierLoc(), diag::err_no_member)
3190        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3191        << D.getCXXScopeSpec().getRange();
3192      NewVD->setInvalidDecl();
3193    }
3194
3195    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3196
3197    // This is an explicit specialization of a static data member. Check it.
3198    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3199        CheckMemberSpecialization(NewVD, Previous))
3200      NewVD->setInvalidDecl();
3201  }
3202
3203  // attributes declared post-definition are currently ignored
3204  // FIXME: This should be handled in attribute merging, not
3205  // here.
3206  if (Previous.isSingleResult()) {
3207    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3208    if (Def && (Def = Def->getDefinition()) &&
3209        Def != NewVD && D.hasAttributes()) {
3210      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3211      Diag(Def->getLocation(), diag::note_previous_definition);
3212    }
3213  }
3214
3215  // If this is a locally-scoped extern C variable, update the map of
3216  // such variables.
3217  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3218      !NewVD->isInvalidDecl())
3219    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3220
3221  // If there's a #pragma GCC visibility in scope, and this isn't a class
3222  // member, set the visibility of this variable.
3223  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3224    AddPushedVisibilityAttribute(NewVD);
3225
3226  MarkUnusedFileScopedDecl(NewVD);
3227
3228  return NewVD;
3229}
3230
3231/// \brief Diagnose variable or built-in function shadowing.  Implements
3232/// -Wshadow.
3233///
3234/// This method is called whenever a VarDecl is added to a "useful"
3235/// scope.
3236///
3237/// \param S the scope in which the shadowing name is being declared
3238/// \param R the lookup of the name
3239///
3240void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3241  // Return if warning is ignored.
3242  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3243        Diagnostic::Ignored)
3244    return;
3245
3246  // Don't diagnose declarations at file scope.
3247  DeclContext *NewDC = D->getDeclContext();
3248  if (NewDC->isFileContext())
3249    return;
3250
3251  // Only diagnose if we're shadowing an unambiguous field or variable.
3252  if (R.getResultKind() != LookupResult::Found)
3253    return;
3254
3255  NamedDecl* ShadowedDecl = R.getFoundDecl();
3256  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3257    return;
3258
3259  // Fields are not shadowed by variables in C++ static methods.
3260  if (isa<FieldDecl>(ShadowedDecl))
3261    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3262      if (MD->isStatic())
3263        return;
3264
3265  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3266    if (shadowedVar->isExternC()) {
3267      // Don't warn for this case:
3268      //
3269      // @code
3270      // extern int bob;
3271      // void f() {
3272      //   extern int bob;
3273      // }
3274      // @endcode
3275      if (D->isExternC())
3276        return;
3277
3278      // For shadowing external vars, make sure that we point to the global
3279      // declaration, not a locally scoped extern declaration.
3280      for (VarDecl::redecl_iterator
3281             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3282           I != E; ++I)
3283        if (I->isFileVarDecl()) {
3284          ShadowedDecl = *I;
3285          break;
3286        }
3287    }
3288
3289  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3290
3291  // Only warn about certain kinds of shadowing for class members.
3292  if (NewDC && NewDC->isRecord()) {
3293    // In particular, don't warn about shadowing non-class members.
3294    if (!OldDC->isRecord())
3295      return;
3296
3297    // TODO: should we warn about static data members shadowing
3298    // static data members from base classes?
3299
3300    // TODO: don't diagnose for inaccessible shadowed members.
3301    // This is hard to do perfectly because we might friend the
3302    // shadowing context, but that's just a false negative.
3303  }
3304
3305  // Determine what kind of declaration we're shadowing.
3306  unsigned Kind;
3307  if (isa<RecordDecl>(OldDC)) {
3308    if (isa<FieldDecl>(ShadowedDecl))
3309      Kind = 3; // field
3310    else
3311      Kind = 2; // static data member
3312  } else if (OldDC->isFileContext())
3313    Kind = 1; // global
3314  else
3315    Kind = 0; // local
3316
3317  DeclarationName Name = R.getLookupName();
3318
3319  // Emit warning and note.
3320  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3321  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3322}
3323
3324/// \brief Check -Wshadow without the advantage of a previous lookup.
3325void Sema::CheckShadow(Scope *S, VarDecl *D) {
3326  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3327        Diagnostic::Ignored)
3328    return;
3329
3330  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3331                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3332  LookupName(R, S);
3333  CheckShadow(S, D, R);
3334}
3335
3336/// \brief Perform semantic checking on a newly-created variable
3337/// declaration.
3338///
3339/// This routine performs all of the type-checking required for a
3340/// variable declaration once it has been built. It is used both to
3341/// check variables after they have been parsed and their declarators
3342/// have been translated into a declaration, and to check variables
3343/// that have been instantiated from a template.
3344///
3345/// Sets NewVD->isInvalidDecl() if an error was encountered.
3346void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3347                                    LookupResult &Previous,
3348                                    bool &Redeclaration) {
3349  // If the decl is already known invalid, don't check it.
3350  if (NewVD->isInvalidDecl())
3351    return;
3352
3353  QualType T = NewVD->getType();
3354
3355  if (T->isObjCObjectType()) {
3356    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3357    return NewVD->setInvalidDecl();
3358  }
3359
3360  // Emit an error if an address space was applied to decl with local storage.
3361  // This includes arrays of objects with address space qualifiers, but not
3362  // automatic variables that point to other address spaces.
3363  // ISO/IEC TR 18037 S5.1.2
3364  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3365    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3366    return NewVD->setInvalidDecl();
3367  }
3368
3369  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3370      && !NewVD->hasAttr<BlocksAttr>())
3371    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3372
3373  bool isVM = T->isVariablyModifiedType();
3374  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3375      NewVD->hasAttr<BlocksAttr>())
3376    getCurFunction()->setHasBranchProtectedScope();
3377
3378  if ((isVM && NewVD->hasLinkage()) ||
3379      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3380    bool SizeIsNegative;
3381    llvm::APSInt Oversized;
3382    QualType FixedTy =
3383        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3384                                            Oversized);
3385
3386    if (FixedTy.isNull() && T->isVariableArrayType()) {
3387      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3388      // FIXME: This won't give the correct result for
3389      // int a[10][n];
3390      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3391
3392      if (NewVD->isFileVarDecl())
3393        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3394        << SizeRange;
3395      else if (NewVD->getStorageClass() == SC_Static)
3396        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3397        << SizeRange;
3398      else
3399        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3400        << SizeRange;
3401      return NewVD->setInvalidDecl();
3402    }
3403
3404    if (FixedTy.isNull()) {
3405      if (NewVD->isFileVarDecl())
3406        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3407      else
3408        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3409      return NewVD->setInvalidDecl();
3410    }
3411
3412    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3413    NewVD->setType(FixedTy);
3414  }
3415
3416  if (Previous.empty() && NewVD->isExternC()) {
3417    // Since we did not find anything by this name and we're declaring
3418    // an extern "C" variable, look for a non-visible extern "C"
3419    // declaration with the same name.
3420    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3421      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3422    if (Pos != LocallyScopedExternalDecls.end())
3423      Previous.addDecl(Pos->second);
3424  }
3425
3426  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3427    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3428      << T;
3429    return NewVD->setInvalidDecl();
3430  }
3431
3432  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3433    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3434    return NewVD->setInvalidDecl();
3435  }
3436
3437  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3438    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3439    return NewVD->setInvalidDecl();
3440  }
3441
3442  // Function pointers and references cannot have qualified function type, only
3443  // function pointer-to-members can do that.
3444  QualType Pointee;
3445  unsigned PtrOrRef = 0;
3446  if (const PointerType *Ptr = T->getAs<PointerType>())
3447    Pointee = Ptr->getPointeeType();
3448  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3449    Pointee = Ref->getPointeeType();
3450    PtrOrRef = 1;
3451  }
3452  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3453      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3454    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3455        << PtrOrRef;
3456    return NewVD->setInvalidDecl();
3457  }
3458
3459  if (!Previous.empty()) {
3460    Redeclaration = true;
3461    MergeVarDecl(NewVD, Previous);
3462  }
3463}
3464
3465/// \brief Data used with FindOverriddenMethod
3466struct FindOverriddenMethodData {
3467  Sema *S;
3468  CXXMethodDecl *Method;
3469};
3470
3471/// \brief Member lookup function that determines whether a given C++
3472/// method overrides a method in a base class, to be used with
3473/// CXXRecordDecl::lookupInBases().
3474static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3475                                 CXXBasePath &Path,
3476                                 void *UserData) {
3477  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3478
3479  FindOverriddenMethodData *Data
3480    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3481
3482  DeclarationName Name = Data->Method->getDeclName();
3483
3484  // FIXME: Do we care about other names here too?
3485  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3486    // We really want to find the base class destructor here.
3487    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3488    CanQualType CT = Data->S->Context.getCanonicalType(T);
3489
3490    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3491  }
3492
3493  for (Path.Decls = BaseRecord->lookup(Name);
3494       Path.Decls.first != Path.Decls.second;
3495       ++Path.Decls.first) {
3496    NamedDecl *D = *Path.Decls.first;
3497    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3498      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3499        return true;
3500    }
3501  }
3502
3503  return false;
3504}
3505
3506/// AddOverriddenMethods - See if a method overrides any in the base classes,
3507/// and if so, check that it's a valid override and remember it.
3508bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3509  // Look for virtual methods in base classes that this method might override.
3510  CXXBasePaths Paths;
3511  FindOverriddenMethodData Data;
3512  Data.Method = MD;
3513  Data.S = this;
3514  bool AddedAny = false;
3515  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3516    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3517         E = Paths.found_decls_end(); I != E; ++I) {
3518      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3519        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3520            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3521            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3522          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3523          AddedAny = true;
3524        }
3525      }
3526    }
3527  }
3528
3529  return AddedAny;
3530}
3531
3532static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3533  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3534                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3535  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3536  assert(!Prev.isAmbiguous() &&
3537         "Cannot have an ambiguity in previous-declaration lookup");
3538  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3539       Func != FuncEnd; ++Func) {
3540    if (isa<FunctionDecl>(*Func) &&
3541        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3542      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3543  }
3544}
3545
3546NamedDecl*
3547Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3548                              QualType R, TypeSourceInfo *TInfo,
3549                              LookupResult &Previous,
3550                              MultiTemplateParamsArg TemplateParamLists,
3551                              bool IsFunctionDefinition, bool &Redeclaration) {
3552  assert(R.getTypePtr()->isFunctionType());
3553
3554  // TODO: consider using NameInfo for diagnostic.
3555  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3556  DeclarationName Name = NameInfo.getName();
3557  FunctionDecl::StorageClass SC = SC_None;
3558  switch (D.getDeclSpec().getStorageClassSpec()) {
3559  default: assert(0 && "Unknown storage class!");
3560  case DeclSpec::SCS_auto:
3561  case DeclSpec::SCS_register:
3562  case DeclSpec::SCS_mutable:
3563    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3564         diag::err_typecheck_sclass_func);
3565    D.setInvalidType();
3566    break;
3567  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3568  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3569  case DeclSpec::SCS_static: {
3570    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3571      // C99 6.7.1p5:
3572      //   The declaration of an identifier for a function that has
3573      //   block scope shall have no explicit storage-class specifier
3574      //   other than extern
3575      // See also (C++ [dcl.stc]p4).
3576      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3577           diag::err_static_block_func);
3578      SC = SC_None;
3579    } else
3580      SC = SC_Static;
3581    break;
3582  }
3583  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3584  }
3585
3586  if (D.getDeclSpec().isThreadSpecified())
3587    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3588
3589  // Do not allow returning a objc interface by-value.
3590  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3591    Diag(D.getIdentifierLoc(),
3592         diag::err_object_cannot_be_passed_returned_by_value) << 0
3593    << R->getAs<FunctionType>()->getResultType();
3594    D.setInvalidType();
3595  }
3596
3597  FunctionDecl *NewFD;
3598  bool isInline = D.getDeclSpec().isInlineSpecified();
3599  bool isFriend = false;
3600  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3601  FunctionDecl::StorageClass SCAsWritten
3602    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3603  FunctionTemplateDecl *FunctionTemplate = 0;
3604  bool isExplicitSpecialization = false;
3605  bool isFunctionTemplateSpecialization = false;
3606  unsigned NumMatchedTemplateParamLists = 0;
3607
3608  if (!getLangOptions().CPlusPlus) {
3609    // Determine whether the function was written with a
3610    // prototype. This true when:
3611    //   - there is a prototype in the declarator, or
3612    //   - the type R of the function is some kind of typedef or other reference
3613    //     to a type name (which eventually refers to a function type).
3614    bool HasPrototype =
3615    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3616    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3617
3618    NewFD = FunctionDecl::Create(Context, DC,
3619                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3620                                 HasPrototype);
3621    if (D.isInvalidType())
3622      NewFD->setInvalidDecl();
3623
3624    // Set the lexical context.
3625    NewFD->setLexicalDeclContext(CurContext);
3626    // Filter out previous declarations that don't match the scope.
3627    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3628  } else {
3629    isFriend = D.getDeclSpec().isFriendSpecified();
3630    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3631    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3632    bool isVirtualOkay = false;
3633
3634    // Check that the return type is not an abstract class type.
3635    // For record types, this is done by the AbstractClassUsageDiagnoser once
3636    // the class has been completely parsed.
3637    if (!DC->isRecord() &&
3638      RequireNonAbstractType(D.getIdentifierLoc(),
3639                             R->getAs<FunctionType>()->getResultType(),
3640                             diag::err_abstract_type_in_decl,
3641                             AbstractReturnType))
3642      D.setInvalidType();
3643
3644
3645    if (isFriend) {
3646      // C++ [class.friend]p5
3647      //   A function can be defined in a friend declaration of a
3648      //   class . . . . Such a function is implicitly inline.
3649      isInline |= IsFunctionDefinition;
3650    }
3651
3652    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3653      // This is a C++ constructor declaration.
3654      assert(DC->isRecord() &&
3655             "Constructors can only be declared in a member context");
3656
3657      R = CheckConstructorDeclarator(D, R, SC);
3658
3659      // Create the new declaration
3660      NewFD = CXXConstructorDecl::Create(Context,
3661                                         cast<CXXRecordDecl>(DC),
3662                                         NameInfo, R, TInfo,
3663                                         isExplicit, isInline,
3664                                         /*isImplicitlyDeclared=*/false);
3665    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3666      // This is a C++ destructor declaration.
3667      if (DC->isRecord()) {
3668        R = CheckDestructorDeclarator(D, R, SC);
3669
3670        NewFD = CXXDestructorDecl::Create(Context,
3671                                          cast<CXXRecordDecl>(DC),
3672                                          NameInfo, R, TInfo,
3673                                          isInline,
3674                                          /*isImplicitlyDeclared=*/false);
3675        isVirtualOkay = true;
3676      } else {
3677        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3678
3679        // Create a FunctionDecl to satisfy the function definition parsing
3680        // code path.
3681        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3682                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3683                                     /*hasPrototype=*/true);
3684        D.setInvalidType();
3685      }
3686    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3687      if (!DC->isRecord()) {
3688        Diag(D.getIdentifierLoc(),
3689             diag::err_conv_function_not_member);
3690        return 0;
3691      }
3692
3693      CheckConversionDeclarator(D, R, SC);
3694      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3695                                        NameInfo, R, TInfo,
3696                                        isInline, isExplicit);
3697
3698      isVirtualOkay = true;
3699    } else if (DC->isRecord()) {
3700      // If the of the function is the same as the name of the record, then this
3701      // must be an invalid constructor that has a return type.
3702      // (The parser checks for a return type and makes the declarator a
3703      // constructor if it has no return type).
3704      // must have an invalid constructor that has a return type
3705      if (Name.getAsIdentifierInfo() &&
3706          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3707        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3708          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3709          << SourceRange(D.getIdentifierLoc());
3710        return 0;
3711      }
3712
3713      bool isStatic = SC == SC_Static;
3714
3715      // [class.free]p1:
3716      // Any allocation function for a class T is a static member
3717      // (even if not explicitly declared static).
3718      if (Name.getCXXOverloadedOperator() == OO_New ||
3719          Name.getCXXOverloadedOperator() == OO_Array_New)
3720        isStatic = true;
3721
3722      // [class.free]p6 Any deallocation function for a class X is a static member
3723      // (even if not explicitly declared static).
3724      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3725          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3726        isStatic = true;
3727
3728      // This is a C++ method declaration.
3729      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3730                                    NameInfo, R, TInfo,
3731                                    isStatic, SCAsWritten, isInline);
3732
3733      isVirtualOkay = !isStatic;
3734    } else {
3735      // Determine whether the function was written with a
3736      // prototype. This true when:
3737      //   - we're in C++ (where every function has a prototype),
3738      NewFD = FunctionDecl::Create(Context, DC,
3739                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3740                                   true/*HasPrototype*/);
3741    }
3742    SetNestedNameSpecifier(NewFD, D);
3743    isExplicitSpecialization = false;
3744    isFunctionTemplateSpecialization = false;
3745    NumMatchedTemplateParamLists = TemplateParamLists.size();
3746    if (D.isInvalidType())
3747      NewFD->setInvalidDecl();
3748
3749    // Set the lexical context. If the declarator has a C++
3750    // scope specifier, or is the object of a friend declaration, the
3751    // lexical context will be different from the semantic context.
3752    NewFD->setLexicalDeclContext(CurContext);
3753
3754    // Match up the template parameter lists with the scope specifier, then
3755    // determine whether we have a template or a template specialization.
3756    bool Invalid = false;
3757    if (TemplateParameterList *TemplateParams
3758          = MatchTemplateParametersToScopeSpecifier(
3759                                  D.getDeclSpec().getSourceRange().getBegin(),
3760                                  D.getCXXScopeSpec(),
3761                                  TemplateParamLists.get(),
3762                                  TemplateParamLists.size(),
3763                                  isFriend,
3764                                  isExplicitSpecialization,
3765                                  Invalid)) {
3766          // All but one template parameter lists have been matching.
3767          --NumMatchedTemplateParamLists;
3768
3769          if (TemplateParams->size() > 0) {
3770            // This is a function template
3771
3772            // Check that we can declare a template here.
3773            if (CheckTemplateDeclScope(S, TemplateParams))
3774              return 0;
3775
3776            // A destructor cannot be a template.
3777            if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3778              Diag(NewFD->getLocation(), diag::err_destructor_template);
3779              return 0;
3780            }
3781
3782
3783            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3784                                                      NewFD->getLocation(),
3785                                                      Name, TemplateParams,
3786                                                      NewFD);
3787            FunctionTemplate->setLexicalDeclContext(CurContext);
3788            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3789          } else {
3790            // This is a function template specialization.
3791            isFunctionTemplateSpecialization = true;
3792
3793            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3794            if (isFriend && isFunctionTemplateSpecialization) {
3795              // We want to remove the "template<>", found here.
3796              SourceRange RemoveRange = TemplateParams->getSourceRange();
3797
3798              // If we remove the template<> and the name is not a
3799              // template-id, we're actually silently creating a problem:
3800              // the friend declaration will refer to an untemplated decl,
3801              // and clearly the user wants a template specialization.  So
3802              // we need to insert '<>' after the name.
3803              SourceLocation InsertLoc;
3804              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3805                InsertLoc = D.getName().getSourceRange().getEnd();
3806                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3807              }
3808
3809              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3810              << Name << RemoveRange
3811              << FixItHint::CreateRemoval(RemoveRange)
3812              << FixItHint::CreateInsertion(InsertLoc, "<>");
3813            }
3814          }
3815        }
3816
3817    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3818      NewFD->setTemplateParameterListsInfo(Context,
3819                                           NumMatchedTemplateParamLists,
3820                                           TemplateParamLists.release());
3821    }
3822
3823    if (Invalid) {
3824      NewFD->setInvalidDecl();
3825      if (FunctionTemplate)
3826        FunctionTemplate->setInvalidDecl();
3827    }
3828
3829    // C++ [dcl.fct.spec]p5:
3830    //   The virtual specifier shall only be used in declarations of
3831    //   nonstatic class member functions that appear within a
3832    //   member-specification of a class declaration; see 10.3.
3833    //
3834    if (isVirtual && !NewFD->isInvalidDecl()) {
3835      if (!isVirtualOkay) {
3836        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3837             diag::err_virtual_non_function);
3838      } else if (!CurContext->isRecord()) {
3839        // 'virtual' was specified outside of the class.
3840        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3841             diag::err_virtual_out_of_class)
3842          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3843      } else if (NewFD->getDescribedFunctionTemplate()) {
3844        // C++ [temp.mem]p3:
3845        //  A member function template shall not be virtual.
3846        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3847             diag::err_virtual_member_function_template)
3848          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3849      } else {
3850        // Okay: Add virtual to the method.
3851        NewFD->setVirtualAsWritten(true);
3852      }
3853    }
3854
3855    // C++ [dcl.fct.spec]p3:
3856    //  The inline specifier shall not appear on a block scope function declaration.
3857    if (isInline && !NewFD->isInvalidDecl()) {
3858      if (CurContext->isFunctionOrMethod()) {
3859        // 'inline' is not allowed on block scope function declaration.
3860        Diag(D.getDeclSpec().getInlineSpecLoc(),
3861             diag::err_inline_declaration_block_scope) << Name
3862          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3863      }
3864    }
3865
3866    // C++ [dcl.fct.spec]p6:
3867    //  The explicit specifier shall be used only in the declaration of a
3868    //  constructor or conversion function within its class definition; see 12.3.1
3869    //  and 12.3.2.
3870    if (isExplicit && !NewFD->isInvalidDecl()) {
3871      if (!CurContext->isRecord()) {
3872        // 'explicit' was specified outside of the class.
3873        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3874             diag::err_explicit_out_of_class)
3875          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3876      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3877                 !isa<CXXConversionDecl>(NewFD)) {
3878        // 'explicit' was specified on a function that wasn't a constructor
3879        // or conversion function.
3880        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3881             diag::err_explicit_non_ctor_or_conv_function)
3882          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3883      }
3884    }
3885
3886    // Filter out previous declarations that don't match the scope.
3887    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3888
3889    if (isFriend) {
3890      // For now, claim that the objects have no previous declaration.
3891      if (FunctionTemplate) {
3892        FunctionTemplate->setObjectOfFriendDecl(false);
3893        FunctionTemplate->setAccess(AS_public);
3894      }
3895      NewFD->setObjectOfFriendDecl(false);
3896      NewFD->setAccess(AS_public);
3897    }
3898
3899    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3900      // A method is implicitly inline if it's defined in its class
3901      // definition.
3902      NewFD->setImplicitlyInline();
3903    }
3904
3905    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3906        !CurContext->isRecord()) {
3907      // C++ [class.static]p1:
3908      //   A data or function member of a class may be declared static
3909      //   in a class definition, in which case it is a static member of
3910      //   the class.
3911
3912      // Complain about the 'static' specifier if it's on an out-of-line
3913      // member function definition.
3914      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3915           diag::err_static_out_of_line)
3916        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3917    }
3918  }
3919
3920  // Handle GNU asm-label extension (encoded as an attribute).
3921  if (Expr *E = (Expr*) D.getAsmLabel()) {
3922    // The parser guarantees this is a string.
3923    StringLiteral *SE = cast<StringLiteral>(E);
3924    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3925                                                SE->getString()));
3926  }
3927
3928  // Copy the parameter declarations from the declarator D to the function
3929  // declaration NewFD, if they are available.  First scavenge them into Params.
3930  llvm::SmallVector<ParmVarDecl*, 16> Params;
3931  if (D.isFunctionDeclarator()) {
3932    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3933
3934    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3935    // function that takes no arguments, not a function that takes a
3936    // single void argument.
3937    // We let through "const void" here because Sema::GetTypeForDeclarator
3938    // already checks for that case.
3939    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3940        FTI.ArgInfo[0].Param &&
3941        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3942      // Empty arg list, don't push any params.
3943      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3944
3945      // In C++, the empty parameter-type-list must be spelled "void"; a
3946      // typedef of void is not permitted.
3947      if (getLangOptions().CPlusPlus &&
3948          Param->getType().getUnqualifiedType() != Context.VoidTy)
3949        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3950    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3951      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3952        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3953        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3954        Param->setDeclContext(NewFD);
3955        Params.push_back(Param);
3956
3957        if (Param->isInvalidDecl())
3958          NewFD->setInvalidDecl();
3959      }
3960    }
3961
3962  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3963    // When we're declaring a function with a typedef, typeof, etc as in the
3964    // following example, we'll need to synthesize (unnamed)
3965    // parameters for use in the declaration.
3966    //
3967    // @code
3968    // typedef void fn(int);
3969    // fn f;
3970    // @endcode
3971
3972    // Synthesize a parameter for each argument type.
3973    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3974         AE = FT->arg_type_end(); AI != AE; ++AI) {
3975      ParmVarDecl *Param =
3976        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3977      Params.push_back(Param);
3978    }
3979  } else {
3980    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3981           "Should not need args for typedef of non-prototype fn");
3982  }
3983  // Finally, we know we have the right number of parameters, install them.
3984  NewFD->setParams(Params.data(), Params.size());
3985
3986  // Process the non-inheritable attributes on this declaration.
3987  ProcessDeclAttributes(S, NewFD, D,
3988                        /*NonInheritable=*/true, /*Inheritable=*/false);
3989
3990  if (!getLangOptions().CPlusPlus) {
3991    // Perform semantic checking on the function declaration.
3992    bool isExplctSpecialization=false;
3993    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
3994                             Redeclaration);
3995    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3996            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3997           "previous declaration set still overloaded");
3998  } else {
3999    // If the declarator is a template-id, translate the parser's template
4000    // argument list into our AST format.
4001    bool HasExplicitTemplateArgs = false;
4002    TemplateArgumentListInfo TemplateArgs;
4003    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4004      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4005      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4006      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4007      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4008                                         TemplateId->getTemplateArgs(),
4009                                         TemplateId->NumArgs);
4010      translateTemplateArguments(TemplateArgsPtr,
4011                                 TemplateArgs);
4012      TemplateArgsPtr.release();
4013
4014      HasExplicitTemplateArgs = true;
4015
4016      if (FunctionTemplate) {
4017        // Function template with explicit template arguments.
4018        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4019          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4020
4021        HasExplicitTemplateArgs = false;
4022      } else if (!isFunctionTemplateSpecialization &&
4023                 !D.getDeclSpec().isFriendSpecified()) {
4024        // We have encountered something that the user meant to be a
4025        // specialization (because it has explicitly-specified template
4026        // arguments) but that was not introduced with a "template<>" (or had
4027        // too few of them).
4028        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4029          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4030          << FixItHint::CreateInsertion(
4031                                        D.getDeclSpec().getSourceRange().getBegin(),
4032                                                  "template<> ");
4033        isFunctionTemplateSpecialization = true;
4034      } else {
4035        // "friend void foo<>(int);" is an implicit specialization decl.
4036        isFunctionTemplateSpecialization = true;
4037      }
4038    } else if (isFriend && isFunctionTemplateSpecialization) {
4039      // This combination is only possible in a recovery case;  the user
4040      // wrote something like:
4041      //   template <> friend void foo(int);
4042      // which we're recovering from as if the user had written:
4043      //   friend void foo<>(int);
4044      // Go ahead and fake up a template id.
4045      HasExplicitTemplateArgs = true;
4046        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4047      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4048    }
4049
4050    // If it's a friend (and only if it's a friend), it's possible
4051    // that either the specialized function type or the specialized
4052    // template is dependent, and therefore matching will fail.  In
4053    // this case, don't check the specialization yet.
4054    if (isFunctionTemplateSpecialization && isFriend &&
4055        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4056      assert(HasExplicitTemplateArgs &&
4057             "friend function specialization without template args");
4058      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4059                                                       Previous))
4060        NewFD->setInvalidDecl();
4061    } else if (isFunctionTemplateSpecialization) {
4062      if (CheckFunctionTemplateSpecialization(NewFD,
4063                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4064                                              Previous))
4065        NewFD->setInvalidDecl();
4066    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4067      if (CheckMemberSpecialization(NewFD, Previous))
4068          NewFD->setInvalidDecl();
4069    }
4070
4071    // Perform semantic checking on the function declaration.
4072    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4073                             Redeclaration);
4074
4075    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4076            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4077           "previous declaration set still overloaded");
4078
4079    NamedDecl *PrincipalDecl = (FunctionTemplate
4080                                ? cast<NamedDecl>(FunctionTemplate)
4081                                : NewFD);
4082
4083    if (isFriend && Redeclaration) {
4084      AccessSpecifier Access = AS_public;
4085      if (!NewFD->isInvalidDecl())
4086        Access = NewFD->getPreviousDeclaration()->getAccess();
4087
4088      NewFD->setAccess(Access);
4089      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4090
4091      PrincipalDecl->setObjectOfFriendDecl(true);
4092    }
4093
4094    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4095        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4096      PrincipalDecl->setNonMemberOperator();
4097
4098    // If we have a function template, check the template parameter
4099    // list. This will check and merge default template arguments.
4100    if (FunctionTemplate) {
4101      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4102      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4103                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4104                            D.getDeclSpec().isFriendSpecified()
4105                              ? (IsFunctionDefinition
4106                                   ? TPC_FriendFunctionTemplateDefinition
4107                                   : TPC_FriendFunctionTemplate)
4108                              : (D.getCXXScopeSpec().isSet() &&
4109                                 DC && DC->isRecord() &&
4110                                 DC->isDependentContext())
4111                                  ? TPC_ClassTemplateMember
4112                                  : TPC_FunctionTemplate);
4113    }
4114
4115    if (NewFD->isInvalidDecl()) {
4116      // Ignore all the rest of this.
4117    } else if (!Redeclaration) {
4118      // Fake up an access specifier if it's supposed to be a class member.
4119      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4120        NewFD->setAccess(AS_public);
4121
4122      // Qualified decls generally require a previous declaration.
4123      if (D.getCXXScopeSpec().isSet()) {
4124        // ...with the major exception of templated-scope or
4125        // dependent-scope friend declarations.
4126
4127        // TODO: we currently also suppress this check in dependent
4128        // contexts because (1) the parameter depth will be off when
4129        // matching friend templates and (2) we might actually be
4130        // selecting a friend based on a dependent factor.  But there
4131        // are situations where these conditions don't apply and we
4132        // can actually do this check immediately.
4133        if (isFriend &&
4134            (NumMatchedTemplateParamLists ||
4135             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4136             CurContext->isDependentContext())) {
4137              // ignore these
4138            } else {
4139              // The user tried to provide an out-of-line definition for a
4140              // function that is a member of a class or namespace, but there
4141              // was no such member function declared (C++ [class.mfct]p2,
4142              // C++ [namespace.memdef]p2). For example:
4143              //
4144              // class X {
4145              //   void f() const;
4146              // };
4147              //
4148              // void X::f() { } // ill-formed
4149              //
4150              // Complain about this problem, and attempt to suggest close
4151              // matches (e.g., those that differ only in cv-qualifiers and
4152              // whether the parameter types are references).
4153              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4154              << Name << DC << D.getCXXScopeSpec().getRange();
4155              NewFD->setInvalidDecl();
4156
4157              DiagnoseInvalidRedeclaration(*this, NewFD);
4158            }
4159
4160        // Unqualified local friend declarations are required to resolve
4161        // to something.
4162        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4163          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4164          NewFD->setInvalidDecl();
4165          DiagnoseInvalidRedeclaration(*this, NewFD);
4166        }
4167
4168    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4169               !isFriend && !isFunctionTemplateSpecialization &&
4170               !isExplicitSpecialization) {
4171      // An out-of-line member function declaration must also be a
4172      // definition (C++ [dcl.meaning]p1).
4173      // Note that this is not the case for explicit specializations of
4174      // function templates or member functions of class templates, per
4175      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4176      // for compatibility with old SWIG code which likes to generate them.
4177      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4178        << D.getCXXScopeSpec().getRange();
4179    }
4180  }
4181
4182
4183  // Handle attributes. We need to have merged decls when handling attributes
4184  // (for example to check for conflicts, etc).
4185  // FIXME: This needs to happen before we merge declarations. Then,
4186  // let attribute merging cope with attribute conflicts.
4187  ProcessDeclAttributes(S, NewFD, D,
4188                        /*NonInheritable=*/false, /*Inheritable=*/true);
4189
4190  // attributes declared post-definition are currently ignored
4191  // FIXME: This should happen during attribute merging
4192  if (Redeclaration && Previous.isSingleResult()) {
4193    const FunctionDecl *Def;
4194    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4195    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4196      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4197      Diag(Def->getLocation(), diag::note_previous_definition);
4198    }
4199  }
4200
4201  AddKnownFunctionAttributes(NewFD);
4202
4203  if (NewFD->hasAttr<OverloadableAttr>() &&
4204      !NewFD->getType()->getAs<FunctionProtoType>()) {
4205    Diag(NewFD->getLocation(),
4206         diag::err_attribute_overloadable_no_prototype)
4207      << NewFD;
4208
4209    // Turn this into a variadic function with no parameters.
4210    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4211    FunctionProtoType::ExtProtoInfo EPI;
4212    EPI.Variadic = true;
4213    EPI.ExtInfo = FT->getExtInfo();
4214
4215    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4216    NewFD->setType(R);
4217  }
4218
4219  // If there's a #pragma GCC visibility in scope, and this isn't a class
4220  // member, set the visibility of this function.
4221  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4222    AddPushedVisibilityAttribute(NewFD);
4223
4224  // If this is a locally-scoped extern C function, update the
4225  // map of such names.
4226  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4227      && !NewFD->isInvalidDecl())
4228    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4229
4230  // Set this FunctionDecl's range up to the right paren.
4231  NewFD->setLocEnd(D.getSourceRange().getEnd());
4232
4233  if (getLangOptions().CPlusPlus) {
4234    if (FunctionTemplate) {
4235      if (NewFD->isInvalidDecl())
4236        FunctionTemplate->setInvalidDecl();
4237      return FunctionTemplate;
4238    }
4239  }
4240
4241  MarkUnusedFileScopedDecl(NewFD);
4242
4243  if (getLangOptions().CUDA)
4244    if (IdentifierInfo *II = NewFD->getIdentifier())
4245      if (!NewFD->isInvalidDecl() &&
4246          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4247        if (II->isStr("cudaConfigureCall")) {
4248          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4249            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4250
4251          Context.setcudaConfigureCallDecl(NewFD);
4252        }
4253      }
4254
4255  return NewFD;
4256}
4257
4258/// \brief Perform semantic checking of a new function declaration.
4259///
4260/// Performs semantic analysis of the new function declaration
4261/// NewFD. This routine performs all semantic checking that does not
4262/// require the actual declarator involved in the declaration, and is
4263/// used both for the declaration of functions as they are parsed
4264/// (called via ActOnDeclarator) and for the declaration of functions
4265/// that have been instantiated via C++ template instantiation (called
4266/// via InstantiateDecl).
4267///
4268/// \param IsExplicitSpecialiation whether this new function declaration is
4269/// an explicit specialization of the previous declaration.
4270///
4271/// This sets NewFD->isInvalidDecl() to true if there was an error.
4272void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4273                                    LookupResult &Previous,
4274                                    bool IsExplicitSpecialization,
4275                                    bool &Redeclaration) {
4276  // If NewFD is already known erroneous, don't do any of this checking.
4277  if (NewFD->isInvalidDecl()) {
4278    // If this is a class member, mark the class invalid immediately.
4279    // This avoids some consistency errors later.
4280    if (isa<CXXMethodDecl>(NewFD))
4281      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4282
4283    return;
4284  }
4285
4286  if (NewFD->getResultType()->isVariablyModifiedType()) {
4287    // Functions returning a variably modified type violate C99 6.7.5.2p2
4288    // because all functions have linkage.
4289    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4290    return NewFD->setInvalidDecl();
4291  }
4292
4293  if (NewFD->isMain())
4294    CheckMain(NewFD);
4295
4296  // Check for a previous declaration of this name.
4297  if (Previous.empty() && NewFD->isExternC()) {
4298    // Since we did not find anything by this name and we're declaring
4299    // an extern "C" function, look for a non-visible extern "C"
4300    // declaration with the same name.
4301    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4302      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4303    if (Pos != LocallyScopedExternalDecls.end())
4304      Previous.addDecl(Pos->second);
4305  }
4306
4307  // Merge or overload the declaration with an existing declaration of
4308  // the same name, if appropriate.
4309  if (!Previous.empty()) {
4310    // Determine whether NewFD is an overload of PrevDecl or
4311    // a declaration that requires merging. If it's an overload,
4312    // there's no more work to do here; we'll just add the new
4313    // function to the scope.
4314
4315    NamedDecl *OldDecl = 0;
4316    if (!AllowOverloadingOfFunction(Previous, Context)) {
4317      Redeclaration = true;
4318      OldDecl = Previous.getFoundDecl();
4319    } else {
4320      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4321                            /*NewIsUsingDecl*/ false)) {
4322      case Ovl_Match:
4323        Redeclaration = true;
4324        break;
4325
4326      case Ovl_NonFunction:
4327        Redeclaration = true;
4328        break;
4329
4330      case Ovl_Overload:
4331        Redeclaration = false;
4332        break;
4333      }
4334
4335      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4336        // If a function name is overloadable in C, then every function
4337        // with that name must be marked "overloadable".
4338        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4339          << Redeclaration << NewFD;
4340        NamedDecl *OverloadedDecl = 0;
4341        if (Redeclaration)
4342          OverloadedDecl = OldDecl;
4343        else if (!Previous.empty())
4344          OverloadedDecl = Previous.getRepresentativeDecl();
4345        if (OverloadedDecl)
4346          Diag(OverloadedDecl->getLocation(),
4347               diag::note_attribute_overloadable_prev_overload);
4348        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4349                                                        Context));
4350      }
4351    }
4352
4353    if (Redeclaration) {
4354      // NewFD and OldDecl represent declarations that need to be
4355      // merged.
4356      if (MergeFunctionDecl(NewFD, OldDecl))
4357        return NewFD->setInvalidDecl();
4358
4359      Previous.clear();
4360      Previous.addDecl(OldDecl);
4361
4362      if (FunctionTemplateDecl *OldTemplateDecl
4363                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4364        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4365        FunctionTemplateDecl *NewTemplateDecl
4366          = NewFD->getDescribedFunctionTemplate();
4367        assert(NewTemplateDecl && "Template/non-template mismatch");
4368        if (CXXMethodDecl *Method
4369              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4370          Method->setAccess(OldTemplateDecl->getAccess());
4371          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4372        }
4373
4374        // If this is an explicit specialization of a member that is a function
4375        // template, mark it as a member specialization.
4376        if (IsExplicitSpecialization &&
4377            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4378          NewTemplateDecl->setMemberSpecialization();
4379          assert(OldTemplateDecl->isMemberSpecialization());
4380        }
4381      } else {
4382        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4383          NewFD->setAccess(OldDecl->getAccess());
4384        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4385      }
4386    }
4387  }
4388
4389  // Semantic checking for this function declaration (in isolation).
4390  if (getLangOptions().CPlusPlus) {
4391    // C++-specific checks.
4392    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4393      CheckConstructor(Constructor);
4394    } else if (CXXDestructorDecl *Destructor =
4395                dyn_cast<CXXDestructorDecl>(NewFD)) {
4396      CXXRecordDecl *Record = Destructor->getParent();
4397      QualType ClassType = Context.getTypeDeclType(Record);
4398
4399      // FIXME: Shouldn't we be able to perform this check even when the class
4400      // type is dependent? Both gcc and edg can handle that.
4401      if (!ClassType->isDependentType()) {
4402        DeclarationName Name
4403          = Context.DeclarationNames.getCXXDestructorName(
4404                                        Context.getCanonicalType(ClassType));
4405        if (NewFD->getDeclName() != Name) {
4406          Diag(NewFD->getLocation(), diag::err_destructor_name);
4407          return NewFD->setInvalidDecl();
4408        }
4409      }
4410    } else if (CXXConversionDecl *Conversion
4411               = dyn_cast<CXXConversionDecl>(NewFD)) {
4412      ActOnConversionDeclarator(Conversion);
4413    }
4414
4415    // Find any virtual functions that this function overrides.
4416    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4417      if (!Method->isFunctionTemplateSpecialization() &&
4418          !Method->getDescribedFunctionTemplate()) {
4419        if (AddOverriddenMethods(Method->getParent(), Method)) {
4420          // If the function was marked as "static", we have a problem.
4421          if (NewFD->getStorageClass() == SC_Static) {
4422            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4423              << NewFD->getDeclName();
4424            for (CXXMethodDecl::method_iterator
4425                      Overridden = Method->begin_overridden_methods(),
4426                   OverriddenEnd = Method->end_overridden_methods();
4427                 Overridden != OverriddenEnd;
4428                 ++Overridden) {
4429              Diag((*Overridden)->getLocation(),
4430                   diag::note_overridden_virtual_function);
4431            }
4432          }
4433        }
4434      }
4435    }
4436
4437    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4438    if (NewFD->isOverloadedOperator() &&
4439        CheckOverloadedOperatorDeclaration(NewFD))
4440      return NewFD->setInvalidDecl();
4441
4442    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4443    if (NewFD->getLiteralIdentifier() &&
4444        CheckLiteralOperatorDeclaration(NewFD))
4445      return NewFD->setInvalidDecl();
4446
4447    // In C++, check default arguments now that we have merged decls. Unless
4448    // the lexical context is the class, because in this case this is done
4449    // during delayed parsing anyway.
4450    if (!CurContext->isRecord())
4451      CheckCXXDefaultArguments(NewFD);
4452
4453    // If this function declares a builtin function, check the type of this
4454    // declaration against the expected type for the builtin.
4455    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4456      ASTContext::GetBuiltinTypeError Error;
4457      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4458      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4459        // The type of this function differs from the type of the builtin,
4460        // so forget about the builtin entirely.
4461        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4462      }
4463    }
4464  }
4465}
4466
4467void Sema::CheckMain(FunctionDecl* FD) {
4468  // C++ [basic.start.main]p3:  A program that declares main to be inline
4469  //   or static is ill-formed.
4470  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4471  //   shall not appear in a declaration of main.
4472  // static main is not an error under C99, but we should warn about it.
4473  bool isInline = FD->isInlineSpecified();
4474  bool isStatic = FD->getStorageClass() == SC_Static;
4475  if (isInline || isStatic) {
4476    unsigned diagID = diag::warn_unusual_main_decl;
4477    if (isInline || getLangOptions().CPlusPlus)
4478      diagID = diag::err_unusual_main_decl;
4479
4480    int which = isStatic + (isInline << 1) - 1;
4481    Diag(FD->getLocation(), diagID) << which;
4482  }
4483
4484  QualType T = FD->getType();
4485  assert(T->isFunctionType() && "function decl is not of function type");
4486  const FunctionType* FT = T->getAs<FunctionType>();
4487
4488  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4489    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4490    FD->setInvalidDecl(true);
4491  }
4492
4493  // Treat protoless main() as nullary.
4494  if (isa<FunctionNoProtoType>(FT)) return;
4495
4496  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4497  unsigned nparams = FTP->getNumArgs();
4498  assert(FD->getNumParams() == nparams);
4499
4500  bool HasExtraParameters = (nparams > 3);
4501
4502  // Darwin passes an undocumented fourth argument of type char**.  If
4503  // other platforms start sprouting these, the logic below will start
4504  // getting shifty.
4505  if (nparams == 4 &&
4506      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4507    HasExtraParameters = false;
4508
4509  if (HasExtraParameters) {
4510    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4511    FD->setInvalidDecl(true);
4512    nparams = 3;
4513  }
4514
4515  // FIXME: a lot of the following diagnostics would be improved
4516  // if we had some location information about types.
4517
4518  QualType CharPP =
4519    Context.getPointerType(Context.getPointerType(Context.CharTy));
4520  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4521
4522  for (unsigned i = 0; i < nparams; ++i) {
4523    QualType AT = FTP->getArgType(i);
4524
4525    bool mismatch = true;
4526
4527    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4528      mismatch = false;
4529    else if (Expected[i] == CharPP) {
4530      // As an extension, the following forms are okay:
4531      //   char const **
4532      //   char const * const *
4533      //   char * const *
4534
4535      QualifierCollector qs;
4536      const PointerType* PT;
4537      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4538          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4539          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4540        qs.removeConst();
4541        mismatch = !qs.empty();
4542      }
4543    }
4544
4545    if (mismatch) {
4546      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4547      // TODO: suggest replacing given type with expected type
4548      FD->setInvalidDecl(true);
4549    }
4550  }
4551
4552  if (nparams == 1 && !FD->isInvalidDecl()) {
4553    Diag(FD->getLocation(), diag::warn_main_one_arg);
4554  }
4555
4556  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4557    Diag(FD->getLocation(), diag::err_main_template_decl);
4558    FD->setInvalidDecl();
4559  }
4560}
4561
4562bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4563  // FIXME: Need strict checking.  In C89, we need to check for
4564  // any assignment, increment, decrement, function-calls, or
4565  // commas outside of a sizeof.  In C99, it's the same list,
4566  // except that the aforementioned are allowed in unevaluated
4567  // expressions.  Everything else falls under the
4568  // "may accept other forms of constant expressions" exception.
4569  // (We never end up here for C++, so the constant expression
4570  // rules there don't matter.)
4571  if (Init->isConstantInitializer(Context, false))
4572    return false;
4573  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4574    << Init->getSourceRange();
4575  return true;
4576}
4577
4578/// AddInitializerToDecl - Adds the initializer Init to the
4579/// declaration dcl. If DirectInit is true, this is C++ direct
4580/// initialization rather than copy initialization.
4581void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4582                                bool DirectInit, bool TypeMayContainAuto) {
4583  // If there is no declaration, there was an error parsing it.  Just ignore
4584  // the initializer.
4585  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4586    return;
4587
4588  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4589    // With declarators parsed the way they are, the parser cannot
4590    // distinguish between a normal initializer and a pure-specifier.
4591    // Thus this grotesque test.
4592    IntegerLiteral *IL;
4593    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4594        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4595      CheckPureMethod(Method, Init->getSourceRange());
4596    else {
4597      Diag(Method->getLocation(), diag::err_member_function_initialization)
4598        << Method->getDeclName() << Init->getSourceRange();
4599      Method->setInvalidDecl();
4600    }
4601    return;
4602  }
4603
4604  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4605  if (!VDecl) {
4606    if (getLangOptions().CPlusPlus &&
4607        RealDecl->getLexicalDeclContext()->isRecord() &&
4608        isa<NamedDecl>(RealDecl))
4609      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4610    else
4611      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4612    RealDecl->setInvalidDecl();
4613    return;
4614  }
4615
4616  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4617  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4618    QualType DeducedType;
4619    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
4620      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4621        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4622        << Init->getSourceRange();
4623      RealDecl->setInvalidDecl();
4624      return;
4625    }
4626    VDecl->setType(DeducedType);
4627
4628    // If this is a redeclaration, check that the type we just deduced matches
4629    // the previously declared type.
4630    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4631      MergeVarDeclTypes(VDecl, Old);
4632  }
4633
4634
4635  // A definition must end up with a complete type, which means it must be
4636  // complete with the restriction that an array type might be completed by the
4637  // initializer; note that later code assumes this restriction.
4638  QualType BaseDeclType = VDecl->getType();
4639  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4640    BaseDeclType = Array->getElementType();
4641  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4642                          diag::err_typecheck_decl_incomplete_type)) {
4643    RealDecl->setInvalidDecl();
4644    return;
4645  }
4646
4647  // The variable can not have an abstract class type.
4648  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4649                             diag::err_abstract_type_in_decl,
4650                             AbstractVariableType))
4651    VDecl->setInvalidDecl();
4652
4653  const VarDecl *Def;
4654  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4655    Diag(VDecl->getLocation(), diag::err_redefinition)
4656      << VDecl->getDeclName();
4657    Diag(Def->getLocation(), diag::note_previous_definition);
4658    VDecl->setInvalidDecl();
4659    return;
4660  }
4661
4662  const VarDecl* PrevInit = 0;
4663  if (getLangOptions().CPlusPlus) {
4664    // C++ [class.static.data]p4
4665    //   If a static data member is of const integral or const
4666    //   enumeration type, its declaration in the class definition can
4667    //   specify a constant-initializer which shall be an integral
4668    //   constant expression (5.19). In that case, the member can appear
4669    //   in integral constant expressions. The member shall still be
4670    //   defined in a namespace scope if it is used in the program and the
4671    //   namespace scope definition shall not contain an initializer.
4672    //
4673    // We already performed a redefinition check above, but for static
4674    // data members we also need to check whether there was an in-class
4675    // declaration with an initializer.
4676    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4677      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4678      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4679      return;
4680    }
4681
4682    if (VDecl->hasLocalStorage())
4683      getCurFunction()->setHasBranchProtectedScope();
4684
4685    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4686      VDecl->setInvalidDecl();
4687      return;
4688    }
4689  }
4690
4691  // Capture the variable that is being initialized and the style of
4692  // initialization.
4693  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4694
4695  // FIXME: Poor source location information.
4696  InitializationKind Kind
4697    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4698                                                   Init->getLocStart(),
4699                                                   Init->getLocEnd())
4700                : InitializationKind::CreateCopy(VDecl->getLocation(),
4701                                                 Init->getLocStart());
4702
4703  // Get the decls type and save a reference for later, since
4704  // CheckInitializerTypes may change it.
4705  QualType DclT = VDecl->getType(), SavT = DclT;
4706  if (VDecl->isLocalVarDecl()) {
4707    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4708      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4709      VDecl->setInvalidDecl();
4710    } else if (!VDecl->isInvalidDecl()) {
4711      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4712      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4713                                                MultiExprArg(*this, &Init, 1),
4714                                                &DclT);
4715      if (Result.isInvalid()) {
4716        VDecl->setInvalidDecl();
4717        return;
4718      }
4719
4720      Init = Result.takeAs<Expr>();
4721
4722      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4723      // Don't check invalid declarations to avoid emitting useless diagnostics.
4724      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4725        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4726          CheckForConstantInitializer(Init, DclT);
4727      }
4728    }
4729  } else if (VDecl->isStaticDataMember() &&
4730             VDecl->getLexicalDeclContext()->isRecord()) {
4731    // This is an in-class initialization for a static data member, e.g.,
4732    //
4733    // struct S {
4734    //   static const int value = 17;
4735    // };
4736
4737    // Try to perform the initialization regardless.
4738    if (!VDecl->isInvalidDecl()) {
4739      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4740      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4741                                          MultiExprArg(*this, &Init, 1),
4742                                          &DclT);
4743      if (Result.isInvalid()) {
4744        VDecl->setInvalidDecl();
4745        return;
4746      }
4747
4748      Init = Result.takeAs<Expr>();
4749    }
4750
4751    // C++ [class.mem]p4:
4752    //   A member-declarator can contain a constant-initializer only
4753    //   if it declares a static member (9.4) of const integral or
4754    //   const enumeration type, see 9.4.2.
4755    QualType T = VDecl->getType();
4756
4757    // Do nothing on dependent types.
4758    if (T->isDependentType()) {
4759
4760    // Require constness.
4761    } else if (!T.isConstQualified()) {
4762      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4763        << Init->getSourceRange();
4764      VDecl->setInvalidDecl();
4765
4766    // We allow integer constant expressions in all cases.
4767    } else if (T->isIntegralOrEnumerationType()) {
4768      if (!Init->isValueDependent()) {
4769        // Check whether the expression is a constant expression.
4770        llvm::APSInt Value;
4771        SourceLocation Loc;
4772        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4773          Diag(Loc, diag::err_in_class_initializer_non_constant)
4774            << Init->getSourceRange();
4775          VDecl->setInvalidDecl();
4776        }
4777      }
4778
4779    // We allow floating-point constants as an extension in C++03, and
4780    // C++0x has far more complicated rules that we don't really
4781    // implement fully.
4782    } else {
4783      bool Allowed = false;
4784      if (getLangOptions().CPlusPlus0x) {
4785        Allowed = T->isLiteralType();
4786      } else if (T->isFloatingType()) { // also permits complex, which is ok
4787        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4788          << T << Init->getSourceRange();
4789        Allowed = true;
4790      }
4791
4792      if (!Allowed) {
4793        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4794          << T << Init->getSourceRange();
4795        VDecl->setInvalidDecl();
4796
4797      // TODO: there are probably expressions that pass here that shouldn't.
4798      } else if (!Init->isValueDependent() &&
4799                 !Init->isConstantInitializer(Context, false)) {
4800        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4801          << Init->getSourceRange();
4802        VDecl->setInvalidDecl();
4803      }
4804    }
4805  } else if (VDecl->isFileVarDecl()) {
4806    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4807        (!getLangOptions().CPlusPlus ||
4808         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4809      Diag(VDecl->getLocation(), diag::warn_extern_init);
4810    if (!VDecl->isInvalidDecl()) {
4811      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4812      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4813                                                MultiExprArg(*this, &Init, 1),
4814                                                &DclT);
4815      if (Result.isInvalid()) {
4816        VDecl->setInvalidDecl();
4817        return;
4818      }
4819
4820      Init = Result.takeAs<Expr>();
4821    }
4822
4823    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4824    // Don't check invalid declarations to avoid emitting useless diagnostics.
4825    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4826      // C99 6.7.8p4. All file scoped initializers need to be constant.
4827      CheckForConstantInitializer(Init, DclT);
4828    }
4829  }
4830  // If the type changed, it means we had an incomplete type that was
4831  // completed by the initializer. For example:
4832  //   int ary[] = { 1, 3, 5 };
4833  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4834  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4835    VDecl->setType(DclT);
4836    Init->setType(DclT);
4837  }
4838
4839
4840  // If this variable is a local declaration with record type, make sure it
4841  // doesn't have a flexible member initialization.  We only support this as a
4842  // global/static definition.
4843  if (VDecl->hasLocalStorage())
4844    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4845      if (RT->getDecl()->hasFlexibleArrayMember()) {
4846        // Check whether the initializer tries to initialize the flexible
4847        // array member itself to anything other than an empty initializer list.
4848        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4849          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4850                                         RT->getDecl()->field_end()) - 1;
4851          if (Index < ILE->getNumInits() &&
4852              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4853                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4854            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4855            VDecl->setInvalidDecl();
4856          }
4857        }
4858      }
4859
4860  // Check any implicit conversions within the expression.
4861  CheckImplicitConversions(Init, VDecl->getLocation());
4862
4863  Init = MaybeCreateExprWithCleanups(Init);
4864  // Attach the initializer to the decl.
4865  VDecl->setInit(Init);
4866
4867  CheckCompleteVariableDeclaration(VDecl);
4868}
4869
4870/// ActOnInitializerError - Given that there was an error parsing an
4871/// initializer for the given declaration, try to return to some form
4872/// of sanity.
4873void Sema::ActOnInitializerError(Decl *D) {
4874  // Our main concern here is re-establishing invariants like "a
4875  // variable's type is either dependent or complete".
4876  if (!D || D->isInvalidDecl()) return;
4877
4878  VarDecl *VD = dyn_cast<VarDecl>(D);
4879  if (!VD) return;
4880
4881  // Auto types are meaningless if we can't make sense of the initializer.
4882  if (ParsingInitForAutoVars.count(D)) {
4883    D->setInvalidDecl();
4884    return;
4885  }
4886
4887  QualType Ty = VD->getType();
4888  if (Ty->isDependentType()) return;
4889
4890  // Require a complete type.
4891  if (RequireCompleteType(VD->getLocation(),
4892                          Context.getBaseElementType(Ty),
4893                          diag::err_typecheck_decl_incomplete_type)) {
4894    VD->setInvalidDecl();
4895    return;
4896  }
4897
4898  // Require an abstract type.
4899  if (RequireNonAbstractType(VD->getLocation(), Ty,
4900                             diag::err_abstract_type_in_decl,
4901                             AbstractVariableType)) {
4902    VD->setInvalidDecl();
4903    return;
4904  }
4905
4906  // Don't bother complaining about constructors or destructors,
4907  // though.
4908}
4909
4910void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4911                                  bool TypeMayContainAuto) {
4912  // If there is no declaration, there was an error parsing it. Just ignore it.
4913  if (RealDecl == 0)
4914    return;
4915
4916  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4917    QualType Type = Var->getType();
4918
4919    // C++0x [dcl.spec.auto]p3
4920    if (TypeMayContainAuto && Type->getContainedAutoType()) {
4921      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4922        << Var->getDeclName() << Type;
4923      Var->setInvalidDecl();
4924      return;
4925    }
4926
4927    switch (Var->isThisDeclarationADefinition()) {
4928    case VarDecl::Definition:
4929      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4930        break;
4931
4932      // We have an out-of-line definition of a static data member
4933      // that has an in-class initializer, so we type-check this like
4934      // a declaration.
4935      //
4936      // Fall through
4937
4938    case VarDecl::DeclarationOnly:
4939      // It's only a declaration.
4940
4941      // Block scope. C99 6.7p7: If an identifier for an object is
4942      // declared with no linkage (C99 6.2.2p6), the type for the
4943      // object shall be complete.
4944      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4945          !Var->getLinkage() && !Var->isInvalidDecl() &&
4946          RequireCompleteType(Var->getLocation(), Type,
4947                              diag::err_typecheck_decl_incomplete_type))
4948        Var->setInvalidDecl();
4949
4950      // Make sure that the type is not abstract.
4951      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4952          RequireNonAbstractType(Var->getLocation(), Type,
4953                                 diag::err_abstract_type_in_decl,
4954                                 AbstractVariableType))
4955        Var->setInvalidDecl();
4956      return;
4957
4958    case VarDecl::TentativeDefinition:
4959      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4960      // object that has file scope without an initializer, and without a
4961      // storage-class specifier or with the storage-class specifier "static",
4962      // constitutes a tentative definition. Note: A tentative definition with
4963      // external linkage is valid (C99 6.2.2p5).
4964      if (!Var->isInvalidDecl()) {
4965        if (const IncompleteArrayType *ArrayT
4966                                    = Context.getAsIncompleteArrayType(Type)) {
4967          if (RequireCompleteType(Var->getLocation(),
4968                                  ArrayT->getElementType(),
4969                                  diag::err_illegal_decl_array_incomplete_type))
4970            Var->setInvalidDecl();
4971        } else if (Var->getStorageClass() == SC_Static) {
4972          // C99 6.9.2p3: If the declaration of an identifier for an object is
4973          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4974          // declared type shall not be an incomplete type.
4975          // NOTE: code such as the following
4976          //     static struct s;
4977          //     struct s { int a; };
4978          // is accepted by gcc. Hence here we issue a warning instead of
4979          // an error and we do not invalidate the static declaration.
4980          // NOTE: to avoid multiple warnings, only check the first declaration.
4981          if (Var->getPreviousDeclaration() == 0)
4982            RequireCompleteType(Var->getLocation(), Type,
4983                                diag::ext_typecheck_decl_incomplete_type);
4984        }
4985      }
4986
4987      // Record the tentative definition; we're done.
4988      if (!Var->isInvalidDecl())
4989        TentativeDefinitions.push_back(Var);
4990      return;
4991    }
4992
4993    // Provide a specific diagnostic for uninitialized variable
4994    // definitions with incomplete array type.
4995    if (Type->isIncompleteArrayType()) {
4996      Diag(Var->getLocation(),
4997           diag::err_typecheck_incomplete_array_needs_initializer);
4998      Var->setInvalidDecl();
4999      return;
5000    }
5001
5002    // Provide a specific diagnostic for uninitialized variable
5003    // definitions with reference type.
5004    if (Type->isReferenceType()) {
5005      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5006        << Var->getDeclName()
5007        << SourceRange(Var->getLocation(), Var->getLocation());
5008      Var->setInvalidDecl();
5009      return;
5010    }
5011
5012    // Do not attempt to type-check the default initializer for a
5013    // variable with dependent type.
5014    if (Type->isDependentType())
5015      return;
5016
5017    if (Var->isInvalidDecl())
5018      return;
5019
5020    if (RequireCompleteType(Var->getLocation(),
5021                            Context.getBaseElementType(Type),
5022                            diag::err_typecheck_decl_incomplete_type)) {
5023      Var->setInvalidDecl();
5024      return;
5025    }
5026
5027    // The variable can not have an abstract class type.
5028    if (RequireNonAbstractType(Var->getLocation(), Type,
5029                               diag::err_abstract_type_in_decl,
5030                               AbstractVariableType)) {
5031      Var->setInvalidDecl();
5032      return;
5033    }
5034
5035    const RecordType *Record
5036      = Context.getBaseElementType(Type)->getAs<RecordType>();
5037    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5038        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5039      // C++03 [dcl.init]p9:
5040      //   If no initializer is specified for an object, and the
5041      //   object is of (possibly cv-qualified) non-POD class type (or
5042      //   array thereof), the object shall be default-initialized; if
5043      //   the object is of const-qualified type, the underlying class
5044      //   type shall have a user-declared default
5045      //   constructor. Otherwise, if no initializer is specified for
5046      //   a non- static object, the object and its subobjects, if
5047      //   any, have an indeterminate initial value); if the object
5048      //   or any of its subobjects are of const-qualified type, the
5049      //   program is ill-formed.
5050      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5051    } else {
5052      // Check for jumps past the implicit initializer.  C++0x
5053      // clarifies that this applies to a "variable with automatic
5054      // storage duration", not a "local variable".
5055      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5056        getCurFunction()->setHasBranchProtectedScope();
5057
5058      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5059      InitializationKind Kind
5060        = InitializationKind::CreateDefault(Var->getLocation());
5061
5062      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5063      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5064                                        MultiExprArg(*this, 0, 0));
5065      if (Init.isInvalid())
5066        Var->setInvalidDecl();
5067      else if (Init.get())
5068        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5069    }
5070
5071    CheckCompleteVariableDeclaration(Var);
5072  }
5073}
5074
5075void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5076  if (var->isInvalidDecl()) return;
5077
5078  // All the following checks are C++ only.
5079  if (!getLangOptions().CPlusPlus) return;
5080
5081  QualType baseType = Context.getBaseElementType(var->getType());
5082  if (baseType->isDependentType()) return;
5083
5084  // __block variables might require us to capture a copy-initializer.
5085  if (var->hasAttr<BlocksAttr>()) {
5086    // It's currently invalid to ever have a __block variable with an
5087    // array type; should we diagnose that here?
5088
5089    // Regardless, we don't want to ignore array nesting when
5090    // constructing this copy.
5091    QualType type = var->getType();
5092
5093    if (type->isStructureOrClassType()) {
5094      SourceLocation poi = var->getLocation();
5095      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5096      ExprResult result =
5097        PerformCopyInitialization(
5098                        InitializedEntity::InitializeBlock(poi, type, false),
5099                                  poi, Owned(varRef));
5100      if (!result.isInvalid()) {
5101        result = MaybeCreateExprWithCleanups(result);
5102        Expr *init = result.takeAs<Expr>();
5103        Context.setBlockVarCopyInits(var, init);
5104      }
5105    }
5106  }
5107
5108  // Check for global constructors.
5109  if (!var->getDeclContext()->isDependentContext() &&
5110      var->hasGlobalStorage() &&
5111      !var->isStaticLocal() &&
5112      var->getInit() &&
5113      !var->getInit()->isConstantInitializer(Context,
5114                                             baseType->isReferenceType()))
5115    Diag(var->getLocation(), diag::warn_global_constructor)
5116      << var->getInit()->getSourceRange();
5117
5118  // Require the destructor.
5119  if (const RecordType *recordType = baseType->getAs<RecordType>())
5120    FinalizeVarWithDestructor(var, recordType);
5121}
5122
5123/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5124/// any semantic actions necessary after any initializer has been attached.
5125void
5126Sema::FinalizeDeclaration(Decl *ThisDecl) {
5127  // Note that we are no longer parsing the initializer for this declaration.
5128  ParsingInitForAutoVars.erase(ThisDecl);
5129}
5130
5131Sema::DeclGroupPtrTy
5132Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5133                              Decl **Group, unsigned NumDecls) {
5134  llvm::SmallVector<Decl*, 8> Decls;
5135
5136  if (DS.isTypeSpecOwned())
5137    Decls.push_back(DS.getRepAsDecl());
5138
5139  for (unsigned i = 0; i != NumDecls; ++i)
5140    if (Decl *D = Group[i])
5141      Decls.push_back(D);
5142
5143  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5144                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5145}
5146
5147/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5148/// group, performing any necessary semantic checking.
5149Sema::DeclGroupPtrTy
5150Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5151                           bool TypeMayContainAuto) {
5152  // C++0x [dcl.spec.auto]p7:
5153  //   If the type deduced for the template parameter U is not the same in each
5154  //   deduction, the program is ill-formed.
5155  // FIXME: When initializer-list support is added, a distinction is needed
5156  // between the deduced type U and the deduced type which 'auto' stands for.
5157  //   auto a = 0, b = { 1, 2, 3 };
5158  // is legal because the deduced type U is 'int' in both cases.
5159  if (TypeMayContainAuto && NumDecls > 1) {
5160    QualType Deduced;
5161    CanQualType DeducedCanon;
5162    VarDecl *DeducedDecl = 0;
5163    for (unsigned i = 0; i != NumDecls; ++i) {
5164      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5165        AutoType *AT = D->getType()->getContainedAutoType();
5166        // Don't reissue diagnostics when instantiating a template.
5167        if (AT && D->isInvalidDecl())
5168          break;
5169        if (AT && AT->isDeduced()) {
5170          QualType U = AT->getDeducedType();
5171          CanQualType UCanon = Context.getCanonicalType(U);
5172          if (Deduced.isNull()) {
5173            Deduced = U;
5174            DeducedCanon = UCanon;
5175            DeducedDecl = D;
5176          } else if (DeducedCanon != UCanon) {
5177            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5178                 diag::err_auto_different_deductions)
5179              << Deduced << DeducedDecl->getDeclName()
5180              << U << D->getDeclName()
5181              << DeducedDecl->getInit()->getSourceRange()
5182              << D->getInit()->getSourceRange();
5183            D->setInvalidDecl();
5184            break;
5185          }
5186        }
5187      }
5188    }
5189  }
5190
5191  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5192}
5193
5194
5195/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5196/// to introduce parameters into function prototype scope.
5197Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5198  const DeclSpec &DS = D.getDeclSpec();
5199
5200  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5201  VarDecl::StorageClass StorageClass = SC_None;
5202  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5203  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5204    StorageClass = SC_Register;
5205    StorageClassAsWritten = SC_Register;
5206  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5207    Diag(DS.getStorageClassSpecLoc(),
5208         diag::err_invalid_storage_class_in_func_decl);
5209    D.getMutableDeclSpec().ClearStorageClassSpecs();
5210  }
5211
5212  if (D.getDeclSpec().isThreadSpecified())
5213    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5214
5215  DiagnoseFunctionSpecifiers(D);
5216
5217  TagDecl *OwnedDecl = 0;
5218  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5219  QualType parmDeclType = TInfo->getType();
5220
5221  if (getLangOptions().CPlusPlus) {
5222    // Check that there are no default arguments inside the type of this
5223    // parameter.
5224    CheckExtraCXXDefaultArguments(D);
5225
5226    if (OwnedDecl && OwnedDecl->isDefinition()) {
5227      // C++ [dcl.fct]p6:
5228      //   Types shall not be defined in return or parameter types.
5229      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5230        << Context.getTypeDeclType(OwnedDecl);
5231    }
5232
5233    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5234    if (D.getCXXScopeSpec().isSet()) {
5235      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5236        << D.getCXXScopeSpec().getRange();
5237      D.getCXXScopeSpec().clear();
5238    }
5239  }
5240
5241  // Ensure we have a valid name
5242  IdentifierInfo *II = 0;
5243  if (D.hasName()) {
5244    II = D.getIdentifier();
5245    if (!II) {
5246      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5247        << GetNameForDeclarator(D).getName().getAsString();
5248      D.setInvalidType(true);
5249    }
5250  }
5251
5252  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5253  if (II) {
5254    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5255                   ForRedeclaration);
5256    LookupName(R, S);
5257    if (R.isSingleResult()) {
5258      NamedDecl *PrevDecl = R.getFoundDecl();
5259      if (PrevDecl->isTemplateParameter()) {
5260        // Maybe we will complain about the shadowed template parameter.
5261        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5262        // Just pretend that we didn't see the previous declaration.
5263        PrevDecl = 0;
5264      } else if (S->isDeclScope(PrevDecl)) {
5265        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5266        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5267
5268        // Recover by removing the name
5269        II = 0;
5270        D.SetIdentifier(0, D.getIdentifierLoc());
5271        D.setInvalidType(true);
5272      }
5273    }
5274  }
5275
5276  // Temporarily put parameter variables in the translation unit, not
5277  // the enclosing context.  This prevents them from accidentally
5278  // looking like class members in C++.
5279  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5280                                    TInfo, parmDeclType, II,
5281                                    D.getIdentifierLoc(),
5282                                    StorageClass, StorageClassAsWritten);
5283
5284  if (D.isInvalidType())
5285    New->setInvalidDecl();
5286
5287  // Add the parameter declaration into this scope.
5288  S->AddDecl(New);
5289  if (II)
5290    IdResolver.AddDecl(New);
5291
5292  ProcessDeclAttributes(S, New, D);
5293
5294  if (New->hasAttr<BlocksAttr>()) {
5295    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5296  }
5297  return New;
5298}
5299
5300/// \brief Synthesizes a variable for a parameter arising from a
5301/// typedef.
5302ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5303                                              SourceLocation Loc,
5304                                              QualType T) {
5305  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5306                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5307                                           SC_None, SC_None, 0);
5308  Param->setImplicit();
5309  return Param;
5310}
5311
5312void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5313                                    ParmVarDecl * const *ParamEnd) {
5314  // Don't diagnose unused-parameter errors in template instantiations; we
5315  // will already have done so in the template itself.
5316  if (!ActiveTemplateInstantiations.empty())
5317    return;
5318
5319  for (; Param != ParamEnd; ++Param) {
5320    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5321        !(*Param)->hasAttr<UnusedAttr>()) {
5322      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5323        << (*Param)->getDeclName();
5324    }
5325  }
5326}
5327
5328void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5329                                                  ParmVarDecl * const *ParamEnd,
5330                                                  QualType ReturnTy,
5331                                                  NamedDecl *D) {
5332  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5333    return;
5334
5335  // Warn if the return value is pass-by-value and larger than the specified
5336  // threshold.
5337  if (ReturnTy->isPODType()) {
5338    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5339    if (Size > LangOpts.NumLargeByValueCopy)
5340      Diag(D->getLocation(), diag::warn_return_value_size)
5341          << D->getDeclName() << Size;
5342  }
5343
5344  // Warn if any parameter is pass-by-value and larger than the specified
5345  // threshold.
5346  for (; Param != ParamEnd; ++Param) {
5347    QualType T = (*Param)->getType();
5348    if (!T->isPODType())
5349      continue;
5350    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5351    if (Size > LangOpts.NumLargeByValueCopy)
5352      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5353          << (*Param)->getDeclName() << Size;
5354  }
5355}
5356
5357ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5358                                  TypeSourceInfo *TSInfo, QualType T,
5359                                  IdentifierInfo *Name,
5360                                  SourceLocation NameLoc,
5361                                  VarDecl::StorageClass StorageClass,
5362                                  VarDecl::StorageClass StorageClassAsWritten) {
5363  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5364                                         adjustParameterType(T), TSInfo,
5365                                         StorageClass, StorageClassAsWritten,
5366                                         0);
5367
5368  // Parameters can not be abstract class types.
5369  // For record types, this is done by the AbstractClassUsageDiagnoser once
5370  // the class has been completely parsed.
5371  if (!CurContext->isRecord() &&
5372      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5373                             AbstractParamType))
5374    New->setInvalidDecl();
5375
5376  // Parameter declarators cannot be interface types. All ObjC objects are
5377  // passed by reference.
5378  if (T->isObjCObjectType()) {
5379    Diag(NameLoc,
5380         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5381    New->setInvalidDecl();
5382  }
5383
5384  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5385  // duration shall not be qualified by an address-space qualifier."
5386  // Since all parameters have automatic store duration, they can not have
5387  // an address space.
5388  if (T.getAddressSpace() != 0) {
5389    Diag(NameLoc, diag::err_arg_with_address_space);
5390    New->setInvalidDecl();
5391  }
5392
5393  return New;
5394}
5395
5396void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5397                                           SourceLocation LocAfterDecls) {
5398  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5399
5400  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5401  // for a K&R function.
5402  if (!FTI.hasPrototype) {
5403    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5404      --i;
5405      if (FTI.ArgInfo[i].Param == 0) {
5406        llvm::SmallString<256> Code;
5407        llvm::raw_svector_ostream(Code) << "  int "
5408                                        << FTI.ArgInfo[i].Ident->getName()
5409                                        << ";\n";
5410        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5411          << FTI.ArgInfo[i].Ident
5412          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5413
5414        // Implicitly declare the argument as type 'int' for lack of a better
5415        // type.
5416        DeclSpec DS;
5417        const char* PrevSpec; // unused
5418        unsigned DiagID; // unused
5419        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5420                           PrevSpec, DiagID);
5421        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5422        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5423        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5424      }
5425    }
5426  }
5427}
5428
5429Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5430                                         Declarator &D) {
5431  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5432  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5433  Scope *ParentScope = FnBodyScope->getParent();
5434
5435  Decl *DP = HandleDeclarator(ParentScope, D,
5436                              MultiTemplateParamsArg(*this),
5437                              /*IsFunctionDefinition=*/true);
5438  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5439}
5440
5441static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5442  // Don't warn about invalid declarations.
5443  if (FD->isInvalidDecl())
5444    return false;
5445
5446  // Or declarations that aren't global.
5447  if (!FD->isGlobal())
5448    return false;
5449
5450  // Don't warn about C++ member functions.
5451  if (isa<CXXMethodDecl>(FD))
5452    return false;
5453
5454  // Don't warn about 'main'.
5455  if (FD->isMain())
5456    return false;
5457
5458  // Don't warn about inline functions.
5459  if (FD->isInlineSpecified())
5460    return false;
5461
5462  // Don't warn about function templates.
5463  if (FD->getDescribedFunctionTemplate())
5464    return false;
5465
5466  // Don't warn about function template specializations.
5467  if (FD->isFunctionTemplateSpecialization())
5468    return false;
5469
5470  bool MissingPrototype = true;
5471  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5472       Prev; Prev = Prev->getPreviousDeclaration()) {
5473    // Ignore any declarations that occur in function or method
5474    // scope, because they aren't visible from the header.
5475    if (Prev->getDeclContext()->isFunctionOrMethod())
5476      continue;
5477
5478    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5479    break;
5480  }
5481
5482  return MissingPrototype;
5483}
5484
5485Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5486  // Clear the last template instantiation error context.
5487  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5488
5489  if (!D)
5490    return D;
5491  FunctionDecl *FD = 0;
5492
5493  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5494    FD = FunTmpl->getTemplatedDecl();
5495  else
5496    FD = cast<FunctionDecl>(D);
5497
5498  // Enter a new function scope
5499  PushFunctionScope();
5500
5501  // See if this is a redefinition.
5502  // But don't complain if we're in GNU89 mode and the previous definition
5503  // was an extern inline function.
5504  const FunctionDecl *Definition;
5505  if (FD->hasBody(Definition) &&
5506      !canRedefineFunction(Definition, getLangOptions())) {
5507    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5508        Definition->getStorageClass() == SC_Extern)
5509      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5510        << FD->getDeclName() << getLangOptions().CPlusPlus;
5511    else
5512      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5513    Diag(Definition->getLocation(), diag::note_previous_definition);
5514  }
5515
5516  // Builtin functions cannot be defined.
5517  if (unsigned BuiltinID = FD->getBuiltinID()) {
5518    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5519      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5520      FD->setInvalidDecl();
5521    }
5522  }
5523
5524  // The return type of a function definition must be complete
5525  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5526  QualType ResultType = FD->getResultType();
5527  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5528      !FD->isInvalidDecl() &&
5529      RequireCompleteType(FD->getLocation(), ResultType,
5530                          diag::err_func_def_incomplete_result))
5531    FD->setInvalidDecl();
5532
5533  // GNU warning -Wmissing-prototypes:
5534  //   Warn if a global function is defined without a previous
5535  //   prototype declaration. This warning is issued even if the
5536  //   definition itself provides a prototype. The aim is to detect
5537  //   global functions that fail to be declared in header files.
5538  if (ShouldWarnAboutMissingPrototype(FD))
5539    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5540
5541  if (FnBodyScope)
5542    PushDeclContext(FnBodyScope, FD);
5543
5544  // Check the validity of our function parameters
5545  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5546                           /*CheckParameterNames=*/true);
5547
5548  // Introduce our parameters into the function scope
5549  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5550    ParmVarDecl *Param = FD->getParamDecl(p);
5551    Param->setOwningFunction(FD);
5552
5553    // If this has an identifier, add it to the scope stack.
5554    if (Param->getIdentifier() && FnBodyScope) {
5555      CheckShadow(FnBodyScope, Param);
5556
5557      PushOnScopeChains(Param, FnBodyScope);
5558    }
5559  }
5560
5561  // Checking attributes of current function definition
5562  // dllimport attribute.
5563  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5564  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5565    // dllimport attribute cannot be directly applied to definition.
5566    if (!DA->isInherited()) {
5567      Diag(FD->getLocation(),
5568           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5569        << "dllimport";
5570      FD->setInvalidDecl();
5571      return FD;
5572    }
5573
5574    // Visual C++ appears to not think this is an issue, so only issue
5575    // a warning when Microsoft extensions are disabled.
5576    if (!LangOpts.Microsoft) {
5577      // If a symbol previously declared dllimport is later defined, the
5578      // attribute is ignored in subsequent references, and a warning is
5579      // emitted.
5580      Diag(FD->getLocation(),
5581           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5582        << FD->getName() << "dllimport";
5583    }
5584  }
5585  return FD;
5586}
5587
5588/// \brief Given the set of return statements within a function body,
5589/// compute the variables that are subject to the named return value
5590/// optimization.
5591///
5592/// Each of the variables that is subject to the named return value
5593/// optimization will be marked as NRVO variables in the AST, and any
5594/// return statement that has a marked NRVO variable as its NRVO candidate can
5595/// use the named return value optimization.
5596///
5597/// This function applies a very simplistic algorithm for NRVO: if every return
5598/// statement in the function has the same NRVO candidate, that candidate is
5599/// the NRVO variable.
5600///
5601/// FIXME: Employ a smarter algorithm that accounts for multiple return
5602/// statements and the lifetimes of the NRVO candidates. We should be able to
5603/// find a maximal set of NRVO variables.
5604static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5605  ReturnStmt **Returns = Scope->Returns.data();
5606
5607  const VarDecl *NRVOCandidate = 0;
5608  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5609    if (!Returns[I]->getNRVOCandidate())
5610      return;
5611
5612    if (!NRVOCandidate)
5613      NRVOCandidate = Returns[I]->getNRVOCandidate();
5614    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5615      return;
5616  }
5617
5618  if (NRVOCandidate)
5619    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5620}
5621
5622Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5623  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5624}
5625
5626Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5627                                    bool IsInstantiation) {
5628  FunctionDecl *FD = 0;
5629  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5630  if (FunTmpl)
5631    FD = FunTmpl->getTemplatedDecl();
5632  else
5633    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5634
5635  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5636  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5637
5638  if (FD) {
5639    FD->setBody(Body);
5640    if (FD->isMain()) {
5641      // C and C++ allow for main to automagically return 0.
5642      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5643      FD->setHasImplicitReturnZero(true);
5644      WP.disableCheckFallThrough();
5645    }
5646
5647    if (!FD->isInvalidDecl()) {
5648      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5649      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5650                                             FD->getResultType(), FD);
5651
5652      // If this is a constructor, we need a vtable.
5653      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5654        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5655
5656      ComputeNRVO(Body, getCurFunction());
5657    }
5658
5659    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5660  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5661    assert(MD == getCurMethodDecl() && "Method parsing confused");
5662    MD->setBody(Body);
5663    if (Body)
5664      MD->setEndLoc(Body->getLocEnd());
5665    if (!MD->isInvalidDecl()) {
5666      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5667      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5668                                             MD->getResultType(), MD);
5669    }
5670  } else {
5671    return 0;
5672  }
5673
5674  // Verify and clean out per-function state.
5675  if (Body) {
5676    // C++ constructors that have function-try-blocks can't have return
5677    // statements in the handlers of that block. (C++ [except.handle]p14)
5678    // Verify this.
5679    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5680      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5681
5682    // Verify that that gotos and switch cases don't jump into scopes illegally.
5683    // Verify that that gotos and switch cases don't jump into scopes illegally.
5684    if (getCurFunction()->NeedsScopeChecking() &&
5685        !dcl->isInvalidDecl() &&
5686        !hasAnyErrorsInThisFunction())
5687      DiagnoseInvalidJumps(Body);
5688
5689    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5690      if (!Destructor->getParent()->isDependentType())
5691        CheckDestructor(Destructor);
5692
5693      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5694                                             Destructor->getParent());
5695    }
5696
5697    // If any errors have occurred, clear out any temporaries that may have
5698    // been leftover. This ensures that these temporaries won't be picked up for
5699    // deletion in some later function.
5700    if (PP.getDiagnostics().hasErrorOccurred())
5701      ExprTemporaries.clear();
5702    else if (!isa<FunctionTemplateDecl>(dcl)) {
5703      // Since the body is valid, issue any analysis-based warnings that are
5704      // enabled.
5705      ActivePolicy = &WP;
5706    }
5707
5708    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5709  }
5710
5711  if (!IsInstantiation)
5712    PopDeclContext();
5713
5714  PopFunctionOrBlockScope(ActivePolicy, dcl);
5715
5716  // If any errors have occurred, clear out any temporaries that may have
5717  // been leftover. This ensures that these temporaries won't be picked up for
5718  // deletion in some later function.
5719  if (getDiagnostics().hasErrorOccurred())
5720    ExprTemporaries.clear();
5721
5722  return dcl;
5723}
5724
5725/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5726/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5727NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5728                                          IdentifierInfo &II, Scope *S) {
5729  // Before we produce a declaration for an implicitly defined
5730  // function, see whether there was a locally-scoped declaration of
5731  // this name as a function or variable. If so, use that
5732  // (non-visible) declaration, and complain about it.
5733  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5734    = LocallyScopedExternalDecls.find(&II);
5735  if (Pos != LocallyScopedExternalDecls.end()) {
5736    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5737    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5738    return Pos->second;
5739  }
5740
5741  // Extension in C99.  Legal in C90, but warn about it.
5742  if (II.getName().startswith("__builtin_"))
5743    Diag(Loc, diag::warn_builtin_unknown) << &II;
5744  else if (getLangOptions().C99)
5745    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5746  else
5747    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5748
5749  // Set a Declarator for the implicit definition: int foo();
5750  const char *Dummy;
5751  DeclSpec DS;
5752  unsigned DiagID;
5753  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5754  (void)Error; // Silence warning.
5755  assert(!Error && "Error setting up implicit decl!");
5756  Declarator D(DS, Declarator::BlockContext);
5757  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5758                                             false, false, SourceLocation(), 0,
5759                                             0, 0, true, SourceLocation(),
5760                                             false, SourceLocation(),
5761                                             false, 0,0,0, Loc, Loc, D),
5762                SourceLocation());
5763  D.SetIdentifier(&II, Loc);
5764
5765  // Insert this function into translation-unit scope.
5766
5767  DeclContext *PrevDC = CurContext;
5768  CurContext = Context.getTranslationUnitDecl();
5769
5770  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5771  FD->setImplicit();
5772
5773  CurContext = PrevDC;
5774
5775  AddKnownFunctionAttributes(FD);
5776
5777  return FD;
5778}
5779
5780/// \brief Adds any function attributes that we know a priori based on
5781/// the declaration of this function.
5782///
5783/// These attributes can apply both to implicitly-declared builtins
5784/// (like __builtin___printf_chk) or to library-declared functions
5785/// like NSLog or printf.
5786void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5787  if (FD->isInvalidDecl())
5788    return;
5789
5790  // If this is a built-in function, map its builtin attributes to
5791  // actual attributes.
5792  if (unsigned BuiltinID = FD->getBuiltinID()) {
5793    // Handle printf-formatting attributes.
5794    unsigned FormatIdx;
5795    bool HasVAListArg;
5796    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5797      if (!FD->getAttr<FormatAttr>())
5798        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5799                                                "printf", FormatIdx+1,
5800                                               HasVAListArg ? 0 : FormatIdx+2));
5801    }
5802    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5803                                             HasVAListArg)) {
5804     if (!FD->getAttr<FormatAttr>())
5805       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5806                                              "scanf", FormatIdx+1,
5807                                              HasVAListArg ? 0 : FormatIdx+2));
5808    }
5809
5810    // Mark const if we don't care about errno and that is the only
5811    // thing preventing the function from being const. This allows
5812    // IRgen to use LLVM intrinsics for such functions.
5813    if (!getLangOptions().MathErrno &&
5814        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5815      if (!FD->getAttr<ConstAttr>())
5816        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5817    }
5818
5819    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5820      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5821    if (Context.BuiltinInfo.isConst(BuiltinID))
5822      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5823  }
5824
5825  IdentifierInfo *Name = FD->getIdentifier();
5826  if (!Name)
5827    return;
5828  if ((!getLangOptions().CPlusPlus &&
5829       FD->getDeclContext()->isTranslationUnit()) ||
5830      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5831       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5832       LinkageSpecDecl::lang_c)) {
5833    // Okay: this could be a libc/libm/Objective-C function we know
5834    // about.
5835  } else
5836    return;
5837
5838  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5839    // FIXME: NSLog and NSLogv should be target specific
5840    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5841      // FIXME: We known better than our headers.
5842      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5843    } else
5844      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5845                                             "printf", 1,
5846                                             Name->isStr("NSLogv") ? 0 : 2));
5847  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5848    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5849    // target-specific builtins, perhaps?
5850    if (!FD->getAttr<FormatAttr>())
5851      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5852                                             "printf", 2,
5853                                             Name->isStr("vasprintf") ? 0 : 3));
5854  }
5855}
5856
5857TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5858                                    TypeSourceInfo *TInfo) {
5859  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5860  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5861
5862  if (!TInfo) {
5863    assert(D.isInvalidType() && "no declarator info for valid type");
5864    TInfo = Context.getTrivialTypeSourceInfo(T);
5865  }
5866
5867  // Scope manipulation handled by caller.
5868  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5869                                           D.getIdentifierLoc(),
5870                                           D.getIdentifier(),
5871                                           TInfo);
5872
5873  // Bail out immediately if we have an invalid declaration.
5874  if (D.isInvalidType()) {
5875    NewTD->setInvalidDecl();
5876    return NewTD;
5877  }
5878
5879  // C++ [dcl.typedef]p8:
5880  //   If the typedef declaration defines an unnamed class (or
5881  //   enum), the first typedef-name declared by the declaration
5882  //   to be that class type (or enum type) is used to denote the
5883  //   class type (or enum type) for linkage purposes only.
5884  // We need to check whether the type was declared in the declaration.
5885  switch (D.getDeclSpec().getTypeSpecType()) {
5886  case TST_enum:
5887  case TST_struct:
5888  case TST_union:
5889  case TST_class: {
5890    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5891
5892    // Do nothing if the tag is not anonymous or already has an
5893    // associated typedef (from an earlier typedef in this decl group).
5894    if (tagFromDeclSpec->getIdentifier()) break;
5895    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5896
5897    // A well-formed anonymous tag must always be a TUK_Definition.
5898    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5899
5900    // The type must match the tag exactly;  no qualifiers allowed.
5901    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5902      break;
5903
5904    // Otherwise, set this is the anon-decl typedef for the tag.
5905    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5906    break;
5907  }
5908
5909  default:
5910    break;
5911  }
5912
5913  return NewTD;
5914}
5915
5916
5917/// \brief Determine whether a tag with a given kind is acceptable
5918/// as a redeclaration of the given tag declaration.
5919///
5920/// \returns true if the new tag kind is acceptable, false otherwise.
5921bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5922                                        TagTypeKind NewTag,
5923                                        SourceLocation NewTagLoc,
5924                                        const IdentifierInfo &Name) {
5925  // C++ [dcl.type.elab]p3:
5926  //   The class-key or enum keyword present in the
5927  //   elaborated-type-specifier shall agree in kind with the
5928  //   declaration to which the name in the elaborated-type-specifier
5929  //   refers. This rule also applies to the form of
5930  //   elaborated-type-specifier that declares a class-name or
5931  //   friend class since it can be construed as referring to the
5932  //   definition of the class. Thus, in any
5933  //   elaborated-type-specifier, the enum keyword shall be used to
5934  //   refer to an enumeration (7.2), the union class-key shall be
5935  //   used to refer to a union (clause 9), and either the class or
5936  //   struct class-key shall be used to refer to a class (clause 9)
5937  //   declared using the class or struct class-key.
5938  TagTypeKind OldTag = Previous->getTagKind();
5939  if (OldTag == NewTag)
5940    return true;
5941
5942  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5943      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5944    // Warn about the struct/class tag mismatch.
5945    bool isTemplate = false;
5946    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5947      isTemplate = Record->getDescribedClassTemplate();
5948
5949    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5950      << (NewTag == TTK_Class)
5951      << isTemplate << &Name
5952      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5953                              OldTag == TTK_Class? "class" : "struct");
5954    Diag(Previous->getLocation(), diag::note_previous_use);
5955    return true;
5956  }
5957  return false;
5958}
5959
5960/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5961/// former case, Name will be non-null.  In the later case, Name will be null.
5962/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5963/// reference/declaration/definition of a tag.
5964Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5965                     SourceLocation KWLoc, CXXScopeSpec &SS,
5966                     IdentifierInfo *Name, SourceLocation NameLoc,
5967                     AttributeList *Attr, AccessSpecifier AS,
5968                     MultiTemplateParamsArg TemplateParameterLists,
5969                     bool &OwnedDecl, bool &IsDependent,
5970                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5971                     TypeResult UnderlyingType) {
5972  // If this is not a definition, it must have a name.
5973  assert((Name != 0 || TUK == TUK_Definition) &&
5974         "Nameless record must be a definition!");
5975  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5976
5977  OwnedDecl = false;
5978  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5979
5980  // FIXME: Check explicit specializations more carefully.
5981  bool isExplicitSpecialization = false;
5982  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5983  bool Invalid = false;
5984
5985  // We only need to do this matching if we have template parameters
5986  // or a scope specifier, which also conveniently avoids this work
5987  // for non-C++ cases.
5988  if (NumMatchedTemplateParamLists ||
5989      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5990    if (TemplateParameterList *TemplateParams
5991          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5992                                                TemplateParameterLists.get(),
5993                                               TemplateParameterLists.size(),
5994                                                    TUK == TUK_Friend,
5995                                                    isExplicitSpecialization,
5996                                                    Invalid)) {
5997      // All but one template parameter lists have been matching.
5998      --NumMatchedTemplateParamLists;
5999
6000      if (TemplateParams->size() > 0) {
6001        // This is a declaration or definition of a class template (which may
6002        // be a member of another template).
6003        if (Invalid)
6004          return 0;
6005
6006        OwnedDecl = false;
6007        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6008                                               SS, Name, NameLoc, Attr,
6009                                               TemplateParams,
6010                                               AS);
6011        TemplateParameterLists.release();
6012        return Result.get();
6013      } else {
6014        // The "template<>" header is extraneous.
6015        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6016          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6017        isExplicitSpecialization = true;
6018      }
6019    }
6020  }
6021
6022  // Figure out the underlying type if this a enum declaration. We need to do
6023  // this early, because it's needed to detect if this is an incompatible
6024  // redeclaration.
6025  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6026
6027  if (Kind == TTK_Enum) {
6028    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6029      // No underlying type explicitly specified, or we failed to parse the
6030      // type, default to int.
6031      EnumUnderlying = Context.IntTy.getTypePtr();
6032    else if (UnderlyingType.get()) {
6033      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6034      // integral type; any cv-qualification is ignored.
6035      TypeSourceInfo *TI = 0;
6036      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6037      EnumUnderlying = TI;
6038
6039      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6040
6041      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6042        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6043          << T;
6044        // Recover by falling back to int.
6045        EnumUnderlying = Context.IntTy.getTypePtr();
6046      }
6047
6048      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6049                                          UPPC_FixedUnderlyingType))
6050        EnumUnderlying = Context.IntTy.getTypePtr();
6051
6052    } else if (getLangOptions().Microsoft)
6053      // Microsoft enums are always of int type.
6054      EnumUnderlying = Context.IntTy.getTypePtr();
6055  }
6056
6057  DeclContext *SearchDC = CurContext;
6058  DeclContext *DC = CurContext;
6059  bool isStdBadAlloc = false;
6060
6061  RedeclarationKind Redecl = ForRedeclaration;
6062  if (TUK == TUK_Friend || TUK == TUK_Reference)
6063    Redecl = NotForRedeclaration;
6064
6065  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6066
6067  if (Name && SS.isNotEmpty()) {
6068    // We have a nested-name tag ('struct foo::bar').
6069
6070    // Check for invalid 'foo::'.
6071    if (SS.isInvalid()) {
6072      Name = 0;
6073      goto CreateNewDecl;
6074    }
6075
6076    // If this is a friend or a reference to a class in a dependent
6077    // context, don't try to make a decl for it.
6078    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6079      DC = computeDeclContext(SS, false);
6080      if (!DC) {
6081        IsDependent = true;
6082        return 0;
6083      }
6084    } else {
6085      DC = computeDeclContext(SS, true);
6086      if (!DC) {
6087        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6088          << SS.getRange();
6089        return 0;
6090      }
6091    }
6092
6093    if (RequireCompleteDeclContext(SS, DC))
6094      return 0;
6095
6096    SearchDC = DC;
6097    // Look-up name inside 'foo::'.
6098    LookupQualifiedName(Previous, DC);
6099
6100    if (Previous.isAmbiguous())
6101      return 0;
6102
6103    if (Previous.empty()) {
6104      // Name lookup did not find anything. However, if the
6105      // nested-name-specifier refers to the current instantiation,
6106      // and that current instantiation has any dependent base
6107      // classes, we might find something at instantiation time: treat
6108      // this as a dependent elaborated-type-specifier.
6109      // But this only makes any sense for reference-like lookups.
6110      if (Previous.wasNotFoundInCurrentInstantiation() &&
6111          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6112        IsDependent = true;
6113        return 0;
6114      }
6115
6116      // A tag 'foo::bar' must already exist.
6117      Diag(NameLoc, diag::err_not_tag_in_scope)
6118        << Kind << Name << DC << SS.getRange();
6119      Name = 0;
6120      Invalid = true;
6121      goto CreateNewDecl;
6122    }
6123  } else if (Name) {
6124    // If this is a named struct, check to see if there was a previous forward
6125    // declaration or definition.
6126    // FIXME: We're looking into outer scopes here, even when we
6127    // shouldn't be. Doing so can result in ambiguities that we
6128    // shouldn't be diagnosing.
6129    LookupName(Previous, S);
6130
6131    // Note:  there used to be some attempt at recovery here.
6132    if (Previous.isAmbiguous())
6133      return 0;
6134
6135    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6136      // FIXME: This makes sure that we ignore the contexts associated
6137      // with C structs, unions, and enums when looking for a matching
6138      // tag declaration or definition. See the similar lookup tweak
6139      // in Sema::LookupName; is there a better way to deal with this?
6140      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6141        SearchDC = SearchDC->getParent();
6142    }
6143  } else if (S->isFunctionPrototypeScope()) {
6144    // If this is an enum declaration in function prototype scope, set its
6145    // initial context to the translation unit.
6146    SearchDC = Context.getTranslationUnitDecl();
6147  }
6148
6149  if (Previous.isSingleResult() &&
6150      Previous.getFoundDecl()->isTemplateParameter()) {
6151    // Maybe we will complain about the shadowed template parameter.
6152    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6153    // Just pretend that we didn't see the previous declaration.
6154    Previous.clear();
6155  }
6156
6157  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6158      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6159    // This is a declaration of or a reference to "std::bad_alloc".
6160    isStdBadAlloc = true;
6161
6162    if (Previous.empty() && StdBadAlloc) {
6163      // std::bad_alloc has been implicitly declared (but made invisible to
6164      // name lookup). Fill in this implicit declaration as the previous
6165      // declaration, so that the declarations get chained appropriately.
6166      Previous.addDecl(getStdBadAlloc());
6167    }
6168  }
6169
6170  // If we didn't find a previous declaration, and this is a reference
6171  // (or friend reference), move to the correct scope.  In C++, we
6172  // also need to do a redeclaration lookup there, just in case
6173  // there's a shadow friend decl.
6174  if (Name && Previous.empty() &&
6175      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6176    if (Invalid) goto CreateNewDecl;
6177    assert(SS.isEmpty());
6178
6179    if (TUK == TUK_Reference) {
6180      // C++ [basic.scope.pdecl]p5:
6181      //   -- for an elaborated-type-specifier of the form
6182      //
6183      //          class-key identifier
6184      //
6185      //      if the elaborated-type-specifier is used in the
6186      //      decl-specifier-seq or parameter-declaration-clause of a
6187      //      function defined in namespace scope, the identifier is
6188      //      declared as a class-name in the namespace that contains
6189      //      the declaration; otherwise, except as a friend
6190      //      declaration, the identifier is declared in the smallest
6191      //      non-class, non-function-prototype scope that contains the
6192      //      declaration.
6193      //
6194      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6195      // C structs and unions.
6196      //
6197      // It is an error in C++ to declare (rather than define) an enum
6198      // type, including via an elaborated type specifier.  We'll
6199      // diagnose that later; for now, declare the enum in the same
6200      // scope as we would have picked for any other tag type.
6201      //
6202      // GNU C also supports this behavior as part of its incomplete
6203      // enum types extension, while GNU C++ does not.
6204      //
6205      // Find the context where we'll be declaring the tag.
6206      // FIXME: We would like to maintain the current DeclContext as the
6207      // lexical context,
6208      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6209        SearchDC = SearchDC->getParent();
6210
6211      // Find the scope where we'll be declaring the tag.
6212      while (S->isClassScope() ||
6213             (getLangOptions().CPlusPlus &&
6214              S->isFunctionPrototypeScope()) ||
6215             ((S->getFlags() & Scope::DeclScope) == 0) ||
6216             (S->getEntity() &&
6217              ((DeclContext *)S->getEntity())->isTransparentContext()))
6218        S = S->getParent();
6219    } else {
6220      assert(TUK == TUK_Friend);
6221      // C++ [namespace.memdef]p3:
6222      //   If a friend declaration in a non-local class first declares a
6223      //   class or function, the friend class or function is a member of
6224      //   the innermost enclosing namespace.
6225      SearchDC = SearchDC->getEnclosingNamespaceContext();
6226    }
6227
6228    // In C++, we need to do a redeclaration lookup to properly
6229    // diagnose some problems.
6230    if (getLangOptions().CPlusPlus) {
6231      Previous.setRedeclarationKind(ForRedeclaration);
6232      LookupQualifiedName(Previous, SearchDC);
6233    }
6234  }
6235
6236  if (!Previous.empty()) {
6237    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6238
6239    // It's okay to have a tag decl in the same scope as a typedef
6240    // which hides a tag decl in the same scope.  Finding this
6241    // insanity with a redeclaration lookup can only actually happen
6242    // in C++.
6243    //
6244    // This is also okay for elaborated-type-specifiers, which is
6245    // technically forbidden by the current standard but which is
6246    // okay according to the likely resolution of an open issue;
6247    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6248    if (getLangOptions().CPlusPlus) {
6249      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6250        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6251          TagDecl *Tag = TT->getDecl();
6252          if (Tag->getDeclName() == Name &&
6253              Tag->getDeclContext()->getRedeclContext()
6254                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6255            PrevDecl = Tag;
6256            Previous.clear();
6257            Previous.addDecl(Tag);
6258            Previous.resolveKind();
6259          }
6260        }
6261      }
6262    }
6263
6264    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6265      // If this is a use of a previous tag, or if the tag is already declared
6266      // in the same scope (so that the definition/declaration completes or
6267      // rementions the tag), reuse the decl.
6268      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6269          isDeclInScope(PrevDecl, SearchDC, S)) {
6270        // Make sure that this wasn't declared as an enum and now used as a
6271        // struct or something similar.
6272        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6273          bool SafeToContinue
6274            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6275               Kind != TTK_Enum);
6276          if (SafeToContinue)
6277            Diag(KWLoc, diag::err_use_with_wrong_tag)
6278              << Name
6279              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6280                                              PrevTagDecl->getKindName());
6281          else
6282            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6283          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6284
6285          if (SafeToContinue)
6286            Kind = PrevTagDecl->getTagKind();
6287          else {
6288            // Recover by making this an anonymous redefinition.
6289            Name = 0;
6290            Previous.clear();
6291            Invalid = true;
6292          }
6293        }
6294
6295        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6296          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6297
6298          // All conflicts with previous declarations are recovered by
6299          // returning the previous declaration.
6300          if (ScopedEnum != PrevEnum->isScoped()) {
6301            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6302              << PrevEnum->isScoped();
6303            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6304            return PrevTagDecl;
6305          }
6306          else if (EnumUnderlying && PrevEnum->isFixed()) {
6307            QualType T;
6308            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6309                T = TI->getType();
6310            else
6311                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6312
6313            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6314              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6315                   diag::err_enum_redeclare_type_mismatch)
6316                << T
6317                << PrevEnum->getIntegerType();
6318              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6319              return PrevTagDecl;
6320            }
6321          }
6322          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6323            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6324              << PrevEnum->isFixed();
6325            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6326            return PrevTagDecl;
6327          }
6328        }
6329
6330        if (!Invalid) {
6331          // If this is a use, just return the declaration we found.
6332
6333          // FIXME: In the future, return a variant or some other clue
6334          // for the consumer of this Decl to know it doesn't own it.
6335          // For our current ASTs this shouldn't be a problem, but will
6336          // need to be changed with DeclGroups.
6337          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6338              TUK == TUK_Friend)
6339            return PrevTagDecl;
6340
6341          // Diagnose attempts to redefine a tag.
6342          if (TUK == TUK_Definition) {
6343            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6344              // If we're defining a specialization and the previous definition
6345              // is from an implicit instantiation, don't emit an error
6346              // here; we'll catch this in the general case below.
6347              if (!isExplicitSpecialization ||
6348                  !isa<CXXRecordDecl>(Def) ||
6349                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6350                                               == TSK_ExplicitSpecialization) {
6351                Diag(NameLoc, diag::err_redefinition) << Name;
6352                Diag(Def->getLocation(), diag::note_previous_definition);
6353                // If this is a redefinition, recover by making this
6354                // struct be anonymous, which will make any later
6355                // references get the previous definition.
6356                Name = 0;
6357                Previous.clear();
6358                Invalid = true;
6359              }
6360            } else {
6361              // If the type is currently being defined, complain
6362              // about a nested redefinition.
6363              const TagType *Tag
6364                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6365              if (Tag->isBeingDefined()) {
6366                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6367                Diag(PrevTagDecl->getLocation(),
6368                     diag::note_previous_definition);
6369                Name = 0;
6370                Previous.clear();
6371                Invalid = true;
6372              }
6373            }
6374
6375            // Okay, this is definition of a previously declared or referenced
6376            // tag PrevDecl. We're going to create a new Decl for it.
6377          }
6378        }
6379        // If we get here we have (another) forward declaration or we
6380        // have a definition.  Just create a new decl.
6381
6382      } else {
6383        // If we get here, this is a definition of a new tag type in a nested
6384        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6385        // new decl/type.  We set PrevDecl to NULL so that the entities
6386        // have distinct types.
6387        Previous.clear();
6388      }
6389      // If we get here, we're going to create a new Decl. If PrevDecl
6390      // is non-NULL, it's a definition of the tag declared by
6391      // PrevDecl. If it's NULL, we have a new definition.
6392
6393
6394    // Otherwise, PrevDecl is not a tag, but was found with tag
6395    // lookup.  This is only actually possible in C++, where a few
6396    // things like templates still live in the tag namespace.
6397    } else {
6398      assert(getLangOptions().CPlusPlus);
6399
6400      // Use a better diagnostic if an elaborated-type-specifier
6401      // found the wrong kind of type on the first
6402      // (non-redeclaration) lookup.
6403      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6404          !Previous.isForRedeclaration()) {
6405        unsigned Kind = 0;
6406        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6407        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6408        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6409        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6410        Invalid = true;
6411
6412      // Otherwise, only diagnose if the declaration is in scope.
6413      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6414        // do nothing
6415
6416      // Diagnose implicit declarations introduced by elaborated types.
6417      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6418        unsigned Kind = 0;
6419        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6420        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6421        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6422        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6423        Invalid = true;
6424
6425      // Otherwise it's a declaration.  Call out a particularly common
6426      // case here.
6427      } else if (isa<TypedefDecl>(PrevDecl)) {
6428        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6429          << Name
6430          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6431        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6432        Invalid = true;
6433
6434      // Otherwise, diagnose.
6435      } else {
6436        // The tag name clashes with something else in the target scope,
6437        // issue an error and recover by making this tag be anonymous.
6438        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6439        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6440        Name = 0;
6441        Invalid = true;
6442      }
6443
6444      // The existing declaration isn't relevant to us; we're in a
6445      // new scope, so clear out the previous declaration.
6446      Previous.clear();
6447    }
6448  }
6449
6450CreateNewDecl:
6451
6452  TagDecl *PrevDecl = 0;
6453  if (Previous.isSingleResult())
6454    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6455
6456  // If there is an identifier, use the location of the identifier as the
6457  // location of the decl, otherwise use the location of the struct/union
6458  // keyword.
6459  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6460
6461  // Otherwise, create a new declaration. If there is a previous
6462  // declaration of the same entity, the two will be linked via
6463  // PrevDecl.
6464  TagDecl *New;
6465
6466  bool IsForwardReference = false;
6467  if (Kind == TTK_Enum) {
6468    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6469    // enum X { A, B, C } D;    D should chain to X.
6470    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6471                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6472                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6473    // If this is an undefined enum, warn.
6474    if (TUK != TUK_Definition && !Invalid) {
6475      TagDecl *Def;
6476      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6477        // C++0x: 7.2p2: opaque-enum-declaration.
6478        // Conflicts are diagnosed above. Do nothing.
6479      }
6480      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6481        Diag(Loc, diag::ext_forward_ref_enum_def)
6482          << New;
6483        Diag(Def->getLocation(), diag::note_previous_definition);
6484      } else {
6485        unsigned DiagID = diag::ext_forward_ref_enum;
6486        if (getLangOptions().Microsoft)
6487          DiagID = diag::ext_ms_forward_ref_enum;
6488        else if (getLangOptions().CPlusPlus)
6489          DiagID = diag::err_forward_ref_enum;
6490        Diag(Loc, DiagID);
6491
6492        // If this is a forward-declared reference to an enumeration, make a
6493        // note of it; we won't actually be introducing the declaration into
6494        // the declaration context.
6495        if (TUK == TUK_Reference)
6496          IsForwardReference = true;
6497      }
6498    }
6499
6500    if (EnumUnderlying) {
6501      EnumDecl *ED = cast<EnumDecl>(New);
6502      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6503        ED->setIntegerTypeSourceInfo(TI);
6504      else
6505        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6506      ED->setPromotionType(ED->getIntegerType());
6507    }
6508
6509  } else {
6510    // struct/union/class
6511
6512    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6513    // struct X { int A; } D;    D should chain to X.
6514    if (getLangOptions().CPlusPlus) {
6515      // FIXME: Look for a way to use RecordDecl for simple structs.
6516      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6517                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6518
6519      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6520        StdBadAlloc = cast<CXXRecordDecl>(New);
6521    } else
6522      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6523                               cast_or_null<RecordDecl>(PrevDecl));
6524  }
6525
6526  // Maybe add qualifier info.
6527  if (SS.isNotEmpty()) {
6528    if (SS.isSet()) {
6529      New->setQualifierInfo(SS.getWithLocInContext(Context));
6530      if (NumMatchedTemplateParamLists > 0) {
6531        New->setTemplateParameterListsInfo(Context,
6532                                           NumMatchedTemplateParamLists,
6533                    (TemplateParameterList**) TemplateParameterLists.release());
6534      }
6535    }
6536    else
6537      Invalid = true;
6538  }
6539
6540  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6541    // Add alignment attributes if necessary; these attributes are checked when
6542    // the ASTContext lays out the structure.
6543    //
6544    // It is important for implementing the correct semantics that this
6545    // happen here (in act on tag decl). The #pragma pack stack is
6546    // maintained as a result of parser callbacks which can occur at
6547    // many points during the parsing of a struct declaration (because
6548    // the #pragma tokens are effectively skipped over during the
6549    // parsing of the struct).
6550    AddAlignmentAttributesForRecord(RD);
6551  }
6552
6553  // If this is a specialization of a member class (of a class template),
6554  // check the specialization.
6555  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6556    Invalid = true;
6557
6558  if (Invalid)
6559    New->setInvalidDecl();
6560
6561  if (Attr)
6562    ProcessDeclAttributeList(S, New, Attr);
6563
6564  // If we're declaring or defining a tag in function prototype scope
6565  // in C, note that this type can only be used within the function.
6566  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6567    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6568
6569  // Set the lexical context. If the tag has a C++ scope specifier, the
6570  // lexical context will be different from the semantic context.
6571  New->setLexicalDeclContext(CurContext);
6572
6573  // Mark this as a friend decl if applicable.
6574  if (TUK == TUK_Friend)
6575    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6576
6577  // Set the access specifier.
6578  if (!Invalid && SearchDC->isRecord())
6579    SetMemberAccessSpecifier(New, PrevDecl, AS);
6580
6581  if (TUK == TUK_Definition)
6582    New->startDefinition();
6583
6584  // If this has an identifier, add it to the scope stack.
6585  if (TUK == TUK_Friend) {
6586    // We might be replacing an existing declaration in the lookup tables;
6587    // if so, borrow its access specifier.
6588    if (PrevDecl)
6589      New->setAccess(PrevDecl->getAccess());
6590
6591    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6592    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6593    if (Name) // can be null along some error paths
6594      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6595        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6596  } else if (Name) {
6597    S = getNonFieldDeclScope(S);
6598    PushOnScopeChains(New, S, !IsForwardReference);
6599    if (IsForwardReference)
6600      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6601
6602  } else {
6603    CurContext->addDecl(New);
6604  }
6605
6606  // If this is the C FILE type, notify the AST context.
6607  if (IdentifierInfo *II = New->getIdentifier())
6608    if (!New->isInvalidDecl() &&
6609        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6610        II->isStr("FILE"))
6611      Context.setFILEDecl(New);
6612
6613  OwnedDecl = true;
6614  return New;
6615}
6616
6617void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6618  AdjustDeclIfTemplate(TagD);
6619  TagDecl *Tag = cast<TagDecl>(TagD);
6620
6621  // Enter the tag context.
6622  PushDeclContext(S, Tag);
6623}
6624
6625void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6626                                           ClassVirtSpecifiers &CVS,
6627                                           SourceLocation LBraceLoc) {
6628  AdjustDeclIfTemplate(TagD);
6629  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6630
6631  FieldCollector->StartClass();
6632
6633  if (!Record->getIdentifier())
6634    return;
6635
6636  if (CVS.isFinalSpecified())
6637    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6638  if (CVS.isExplicitSpecified())
6639    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6640
6641  // C++ [class]p2:
6642  //   [...] The class-name is also inserted into the scope of the
6643  //   class itself; this is known as the injected-class-name. For
6644  //   purposes of access checking, the injected-class-name is treated
6645  //   as if it were a public member name.
6646  CXXRecordDecl *InjectedClassName
6647    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6648                            CurContext, Record->getLocation(),
6649                            Record->getIdentifier(),
6650                            Record->getTagKeywordLoc(),
6651                            /*PrevDecl=*/0,
6652                            /*DelayTypeCreation=*/true);
6653  Context.getTypeDeclType(InjectedClassName, Record);
6654  InjectedClassName->setImplicit();
6655  InjectedClassName->setAccess(AS_public);
6656  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6657      InjectedClassName->setDescribedClassTemplate(Template);
6658  PushOnScopeChains(InjectedClassName, S);
6659  assert(InjectedClassName->isInjectedClassName() &&
6660         "Broken injected-class-name");
6661}
6662
6663void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6664                                    SourceLocation RBraceLoc) {
6665  AdjustDeclIfTemplate(TagD);
6666  TagDecl *Tag = cast<TagDecl>(TagD);
6667  Tag->setRBraceLoc(RBraceLoc);
6668
6669  if (isa<CXXRecordDecl>(Tag))
6670    FieldCollector->FinishClass();
6671
6672  // Exit this scope of this tag's definition.
6673  PopDeclContext();
6674
6675  // Notify the consumer that we've defined a tag.
6676  Consumer.HandleTagDeclDefinition(Tag);
6677}
6678
6679void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6680  AdjustDeclIfTemplate(TagD);
6681  TagDecl *Tag = cast<TagDecl>(TagD);
6682  Tag->setInvalidDecl();
6683
6684  // We're undoing ActOnTagStartDefinition here, not
6685  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6686  // the FieldCollector.
6687
6688  PopDeclContext();
6689}
6690
6691// Note that FieldName may be null for anonymous bitfields.
6692bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6693                          QualType FieldTy, const Expr *BitWidth,
6694                          bool *ZeroWidth) {
6695  // Default to true; that shouldn't confuse checks for emptiness
6696  if (ZeroWidth)
6697    *ZeroWidth = true;
6698
6699  // C99 6.7.2.1p4 - verify the field type.
6700  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6701  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6702    // Handle incomplete types with specific error.
6703    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6704      return true;
6705    if (FieldName)
6706      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6707        << FieldName << FieldTy << BitWidth->getSourceRange();
6708    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6709      << FieldTy << BitWidth->getSourceRange();
6710  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6711                                             UPPC_BitFieldWidth))
6712    return true;
6713
6714  // If the bit-width is type- or value-dependent, don't try to check
6715  // it now.
6716  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6717    return false;
6718
6719  llvm::APSInt Value;
6720  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6721    return true;
6722
6723  if (Value != 0 && ZeroWidth)
6724    *ZeroWidth = false;
6725
6726  // Zero-width bitfield is ok for anonymous field.
6727  if (Value == 0 && FieldName)
6728    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6729
6730  if (Value.isSigned() && Value.isNegative()) {
6731    if (FieldName)
6732      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6733               << FieldName << Value.toString(10);
6734    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6735      << Value.toString(10);
6736  }
6737
6738  if (!FieldTy->isDependentType()) {
6739    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6740    if (Value.getZExtValue() > TypeSize) {
6741      if (!getLangOptions().CPlusPlus) {
6742        if (FieldName)
6743          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6744            << FieldName << (unsigned)Value.getZExtValue()
6745            << (unsigned)TypeSize;
6746
6747        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6748          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6749      }
6750
6751      if (FieldName)
6752        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6753          << FieldName << (unsigned)Value.getZExtValue()
6754          << (unsigned)TypeSize;
6755      else
6756        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6757          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6758    }
6759  }
6760
6761  return false;
6762}
6763
6764/// ActOnField - Each field of a struct/union/class is passed into this in order
6765/// to create a FieldDecl object for it.
6766Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6767                                 SourceLocation DeclStart,
6768                                 Declarator &D, ExprTy *BitfieldWidth) {
6769  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6770                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6771                               AS_public);
6772  return Res;
6773}
6774
6775/// HandleField - Analyze a field of a C struct or a C++ data member.
6776///
6777FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6778                             SourceLocation DeclStart,
6779                             Declarator &D, Expr *BitWidth,
6780                             AccessSpecifier AS) {
6781  IdentifierInfo *II = D.getIdentifier();
6782  SourceLocation Loc = DeclStart;
6783  if (II) Loc = D.getIdentifierLoc();
6784
6785  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6786  QualType T = TInfo->getType();
6787  if (getLangOptions().CPlusPlus) {
6788    CheckExtraCXXDefaultArguments(D);
6789
6790    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6791                                        UPPC_DataMemberType)) {
6792      D.setInvalidType();
6793      T = Context.IntTy;
6794      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6795    }
6796  }
6797
6798  DiagnoseFunctionSpecifiers(D);
6799
6800  if (D.getDeclSpec().isThreadSpecified())
6801    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6802
6803  // Check to see if this name was declared as a member previously
6804  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6805  LookupName(Previous, S);
6806  assert((Previous.empty() || Previous.isOverloadedResult() ||
6807          Previous.isSingleResult())
6808    && "Lookup of member name should be either overloaded, single or null");
6809
6810  // If the name is overloaded then get any declaration else get the single result
6811  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6812    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6813
6814  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6815    // Maybe we will complain about the shadowed template parameter.
6816    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6817    // Just pretend that we didn't see the previous declaration.
6818    PrevDecl = 0;
6819  }
6820
6821  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6822    PrevDecl = 0;
6823
6824  bool Mutable
6825    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6826  SourceLocation TSSL = D.getSourceRange().getBegin();
6827  FieldDecl *NewFD
6828    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6829                     AS, PrevDecl, &D);
6830
6831  if (NewFD->isInvalidDecl())
6832    Record->setInvalidDecl();
6833
6834  if (NewFD->isInvalidDecl() && PrevDecl) {
6835    // Don't introduce NewFD into scope; there's already something
6836    // with the same name in the same scope.
6837  } else if (II) {
6838    PushOnScopeChains(NewFD, S);
6839  } else
6840    Record->addDecl(NewFD);
6841
6842  return NewFD;
6843}
6844
6845/// \brief Build a new FieldDecl and check its well-formedness.
6846///
6847/// This routine builds a new FieldDecl given the fields name, type,
6848/// record, etc. \p PrevDecl should refer to any previous declaration
6849/// with the same name and in the same scope as the field to be
6850/// created.
6851///
6852/// \returns a new FieldDecl.
6853///
6854/// \todo The Declarator argument is a hack. It will be removed once
6855FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6856                                TypeSourceInfo *TInfo,
6857                                RecordDecl *Record, SourceLocation Loc,
6858                                bool Mutable, Expr *BitWidth,
6859                                SourceLocation TSSL,
6860                                AccessSpecifier AS, NamedDecl *PrevDecl,
6861                                Declarator *D) {
6862  IdentifierInfo *II = Name.getAsIdentifierInfo();
6863  bool InvalidDecl = false;
6864  if (D) InvalidDecl = D->isInvalidType();
6865
6866  // If we receive a broken type, recover by assuming 'int' and
6867  // marking this declaration as invalid.
6868  if (T.isNull()) {
6869    InvalidDecl = true;
6870    T = Context.IntTy;
6871  }
6872
6873  QualType EltTy = Context.getBaseElementType(T);
6874  if (!EltTy->isDependentType() &&
6875      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6876    // Fields of incomplete type force their record to be invalid.
6877    Record->setInvalidDecl();
6878    InvalidDecl = true;
6879  }
6880
6881  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6882  // than a variably modified type.
6883  if (!InvalidDecl && T->isVariablyModifiedType()) {
6884    bool SizeIsNegative;
6885    llvm::APSInt Oversized;
6886    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6887                                                           SizeIsNegative,
6888                                                           Oversized);
6889    if (!FixedTy.isNull()) {
6890      Diag(Loc, diag::warn_illegal_constant_array_size);
6891      T = FixedTy;
6892    } else {
6893      if (SizeIsNegative)
6894        Diag(Loc, diag::err_typecheck_negative_array_size);
6895      else if (Oversized.getBoolValue())
6896        Diag(Loc, diag::err_array_too_large)
6897          << Oversized.toString(10);
6898      else
6899        Diag(Loc, diag::err_typecheck_field_variable_size);
6900      InvalidDecl = true;
6901    }
6902  }
6903
6904  // Fields can not have abstract class types
6905  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6906                                             diag::err_abstract_type_in_decl,
6907                                             AbstractFieldType))
6908    InvalidDecl = true;
6909
6910  bool ZeroWidth = false;
6911  // If this is declared as a bit-field, check the bit-field.
6912  if (!InvalidDecl && BitWidth &&
6913      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6914    InvalidDecl = true;
6915    BitWidth = 0;
6916    ZeroWidth = false;
6917  }
6918
6919  // Check that 'mutable' is consistent with the type of the declaration.
6920  if (!InvalidDecl && Mutable) {
6921    unsigned DiagID = 0;
6922    if (T->isReferenceType())
6923      DiagID = diag::err_mutable_reference;
6924    else if (T.isConstQualified())
6925      DiagID = diag::err_mutable_const;
6926
6927    if (DiagID) {
6928      SourceLocation ErrLoc = Loc;
6929      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6930        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6931      Diag(ErrLoc, DiagID);
6932      Mutable = false;
6933      InvalidDecl = true;
6934    }
6935  }
6936
6937  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6938                                       BitWidth, Mutable);
6939  if (InvalidDecl)
6940    NewFD->setInvalidDecl();
6941
6942  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6943    Diag(Loc, diag::err_duplicate_member) << II;
6944    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6945    NewFD->setInvalidDecl();
6946  }
6947
6948  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6949    if (Record->isUnion()) {
6950      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6951        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6952        if (RDecl->getDefinition()) {
6953          // C++ [class.union]p1: An object of a class with a non-trivial
6954          // constructor, a non-trivial copy constructor, a non-trivial
6955          // destructor, or a non-trivial copy assignment operator
6956          // cannot be a member of a union, nor can an array of such
6957          // objects.
6958          // TODO: C++0x alters this restriction significantly.
6959          if (CheckNontrivialField(NewFD))
6960            NewFD->setInvalidDecl();
6961        }
6962      }
6963
6964      // C++ [class.union]p1: If a union contains a member of reference type,
6965      // the program is ill-formed.
6966      if (EltTy->isReferenceType()) {
6967        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6968          << NewFD->getDeclName() << EltTy;
6969        NewFD->setInvalidDecl();
6970      }
6971    }
6972  }
6973
6974  // FIXME: We need to pass in the attributes given an AST
6975  // representation, not a parser representation.
6976  if (D)
6977    // FIXME: What to pass instead of TUScope?
6978    ProcessDeclAttributes(TUScope, NewFD, *D);
6979
6980  if (T.isObjCGCWeak())
6981    Diag(Loc, diag::warn_attribute_weak_on_field);
6982
6983  NewFD->setAccess(AS);
6984  return NewFD;
6985}
6986
6987bool Sema::CheckNontrivialField(FieldDecl *FD) {
6988  assert(FD);
6989  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6990
6991  if (FD->isInvalidDecl())
6992    return true;
6993
6994  QualType EltTy = Context.getBaseElementType(FD->getType());
6995  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6996    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6997    if (RDecl->getDefinition()) {
6998      // We check for copy constructors before constructors
6999      // because otherwise we'll never get complaints about
7000      // copy constructors.
7001
7002      CXXSpecialMember member = CXXInvalid;
7003      if (!RDecl->hasTrivialCopyConstructor())
7004        member = CXXCopyConstructor;
7005      else if (!RDecl->hasTrivialConstructor())
7006        member = CXXConstructor;
7007      else if (!RDecl->hasTrivialCopyAssignment())
7008        member = CXXCopyAssignment;
7009      else if (!RDecl->hasTrivialDestructor())
7010        member = CXXDestructor;
7011
7012      if (member != CXXInvalid) {
7013        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7014              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7015        DiagnoseNontrivial(RT, member);
7016        return true;
7017      }
7018    }
7019  }
7020
7021  return false;
7022}
7023
7024/// DiagnoseNontrivial - Given that a class has a non-trivial
7025/// special member, figure out why.
7026void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7027  QualType QT(T, 0U);
7028  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7029
7030  // Check whether the member was user-declared.
7031  switch (member) {
7032  case CXXInvalid:
7033    break;
7034
7035  case CXXConstructor:
7036    if (RD->hasUserDeclaredConstructor()) {
7037      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7038      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7039        const FunctionDecl *body = 0;
7040        ci->hasBody(body);
7041        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7042          SourceLocation CtorLoc = ci->getLocation();
7043          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7044          return;
7045        }
7046      }
7047
7048      assert(0 && "found no user-declared constructors");
7049      return;
7050    }
7051    break;
7052
7053  case CXXCopyConstructor:
7054    if (RD->hasUserDeclaredCopyConstructor()) {
7055      SourceLocation CtorLoc =
7056        RD->getCopyConstructor(Context, 0)->getLocation();
7057      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7058      return;
7059    }
7060    break;
7061
7062  case CXXCopyAssignment:
7063    if (RD->hasUserDeclaredCopyAssignment()) {
7064      // FIXME: this should use the location of the copy
7065      // assignment, not the type.
7066      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7067      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7068      return;
7069    }
7070    break;
7071
7072  case CXXDestructor:
7073    if (RD->hasUserDeclaredDestructor()) {
7074      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7075      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7076      return;
7077    }
7078    break;
7079  }
7080
7081  typedef CXXRecordDecl::base_class_iterator base_iter;
7082
7083  // Virtual bases and members inhibit trivial copying/construction,
7084  // but not trivial destruction.
7085  if (member != CXXDestructor) {
7086    // Check for virtual bases.  vbases includes indirect virtual bases,
7087    // so we just iterate through the direct bases.
7088    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7089      if (bi->isVirtual()) {
7090        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7091        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7092        return;
7093      }
7094
7095    // Check for virtual methods.
7096    typedef CXXRecordDecl::method_iterator meth_iter;
7097    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7098         ++mi) {
7099      if (mi->isVirtual()) {
7100        SourceLocation MLoc = mi->getSourceRange().getBegin();
7101        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7102        return;
7103      }
7104    }
7105  }
7106
7107  bool (CXXRecordDecl::*hasTrivial)() const;
7108  switch (member) {
7109  case CXXConstructor:
7110    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7111  case CXXCopyConstructor:
7112    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7113  case CXXCopyAssignment:
7114    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7115  case CXXDestructor:
7116    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7117  default:
7118    assert(0 && "unexpected special member"); return;
7119  }
7120
7121  // Check for nontrivial bases (and recurse).
7122  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7123    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7124    assert(BaseRT && "Don't know how to handle dependent bases");
7125    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7126    if (!(BaseRecTy->*hasTrivial)()) {
7127      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7128      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7129      DiagnoseNontrivial(BaseRT, member);
7130      return;
7131    }
7132  }
7133
7134  // Check for nontrivial members (and recurse).
7135  typedef RecordDecl::field_iterator field_iter;
7136  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7137       ++fi) {
7138    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7139    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7140      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7141
7142      if (!(EltRD->*hasTrivial)()) {
7143        SourceLocation FLoc = (*fi)->getLocation();
7144        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7145        DiagnoseNontrivial(EltRT, member);
7146        return;
7147      }
7148    }
7149  }
7150
7151  assert(0 && "found no explanation for non-trivial member");
7152}
7153
7154/// TranslateIvarVisibility - Translate visibility from a token ID to an
7155///  AST enum value.
7156static ObjCIvarDecl::AccessControl
7157TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7158  switch (ivarVisibility) {
7159  default: assert(0 && "Unknown visitibility kind");
7160  case tok::objc_private: return ObjCIvarDecl::Private;
7161  case tok::objc_public: return ObjCIvarDecl::Public;
7162  case tok::objc_protected: return ObjCIvarDecl::Protected;
7163  case tok::objc_package: return ObjCIvarDecl::Package;
7164  }
7165}
7166
7167/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7168/// in order to create an IvarDecl object for it.
7169Decl *Sema::ActOnIvar(Scope *S,
7170                                SourceLocation DeclStart,
7171                                Decl *IntfDecl,
7172                                Declarator &D, ExprTy *BitfieldWidth,
7173                                tok::ObjCKeywordKind Visibility) {
7174
7175  IdentifierInfo *II = D.getIdentifier();
7176  Expr *BitWidth = (Expr*)BitfieldWidth;
7177  SourceLocation Loc = DeclStart;
7178  if (II) Loc = D.getIdentifierLoc();
7179
7180  // FIXME: Unnamed fields can be handled in various different ways, for
7181  // example, unnamed unions inject all members into the struct namespace!
7182
7183  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7184  QualType T = TInfo->getType();
7185
7186  if (BitWidth) {
7187    // 6.7.2.1p3, 6.7.2.1p4
7188    if (VerifyBitField(Loc, II, T, BitWidth)) {
7189      D.setInvalidType();
7190      BitWidth = 0;
7191    }
7192  } else {
7193    // Not a bitfield.
7194
7195    // validate II.
7196
7197  }
7198  if (T->isReferenceType()) {
7199    Diag(Loc, diag::err_ivar_reference_type);
7200    D.setInvalidType();
7201  }
7202  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7203  // than a variably modified type.
7204  else if (T->isVariablyModifiedType()) {
7205    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7206    D.setInvalidType();
7207  }
7208
7209  // Get the visibility (access control) for this ivar.
7210  ObjCIvarDecl::AccessControl ac =
7211    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7212                                        : ObjCIvarDecl::None;
7213  // Must set ivar's DeclContext to its enclosing interface.
7214  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7215  ObjCContainerDecl *EnclosingContext;
7216  if (ObjCImplementationDecl *IMPDecl =
7217      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7218    if (!LangOpts.ObjCNonFragileABI2) {
7219    // Case of ivar declared in an implementation. Context is that of its class.
7220      EnclosingContext = IMPDecl->getClassInterface();
7221      assert(EnclosingContext && "Implementation has no class interface!");
7222    }
7223    else
7224      EnclosingContext = EnclosingDecl;
7225  } else {
7226    if (ObjCCategoryDecl *CDecl =
7227        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7228      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7229        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7230        return 0;
7231      }
7232    }
7233    EnclosingContext = EnclosingDecl;
7234  }
7235
7236  // Construct the decl.
7237  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7238                                             EnclosingContext, Loc, II, T,
7239                                             TInfo, ac, (Expr *)BitfieldWidth);
7240
7241  if (II) {
7242    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7243                                           ForRedeclaration);
7244    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7245        && !isa<TagDecl>(PrevDecl)) {
7246      Diag(Loc, diag::err_duplicate_member) << II;
7247      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7248      NewID->setInvalidDecl();
7249    }
7250  }
7251
7252  // Process attributes attached to the ivar.
7253  ProcessDeclAttributes(S, NewID, D);
7254
7255  if (D.isInvalidType())
7256    NewID->setInvalidDecl();
7257
7258  if (II) {
7259    // FIXME: When interfaces are DeclContexts, we'll need to add
7260    // these to the interface.
7261    S->AddDecl(NewID);
7262    IdResolver.AddDecl(NewID);
7263  }
7264
7265  return NewID;
7266}
7267
7268/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7269/// class and class extensions. For every class @interface and class
7270/// extension @interface, if the last ivar is a bitfield of any type,
7271/// then add an implicit `char :0` ivar to the end of that interface.
7272void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7273                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7274  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7275    return;
7276
7277  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7278  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7279
7280  if (!Ivar->isBitField())
7281    return;
7282  uint64_t BitFieldSize =
7283    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7284  if (BitFieldSize == 0)
7285    return;
7286  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7287  if (!ID) {
7288    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7289      if (!CD->IsClassExtension())
7290        return;
7291    }
7292    // No need to add this to end of @implementation.
7293    else
7294      return;
7295  }
7296  // All conditions are met. Add a new bitfield to the tail end of ivars.
7297  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7298  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7299
7300  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7301                              DeclLoc, 0,
7302                              Context.CharTy,
7303                              Context.CreateTypeSourceInfo(Context.CharTy),
7304                              ObjCIvarDecl::Private, BW,
7305                              true);
7306  AllIvarDecls.push_back(Ivar);
7307}
7308
7309void Sema::ActOnFields(Scope* S,
7310                       SourceLocation RecLoc, Decl *EnclosingDecl,
7311                       Decl **Fields, unsigned NumFields,
7312                       SourceLocation LBrac, SourceLocation RBrac,
7313                       AttributeList *Attr) {
7314  assert(EnclosingDecl && "missing record or interface decl");
7315
7316  // If the decl this is being inserted into is invalid, then it may be a
7317  // redeclaration or some other bogus case.  Don't try to add fields to it.
7318  if (EnclosingDecl->isInvalidDecl()) {
7319    // FIXME: Deallocate fields?
7320    return;
7321  }
7322
7323
7324  // Verify that all the fields are okay.
7325  unsigned NumNamedMembers = 0;
7326  llvm::SmallVector<FieldDecl*, 32> RecFields;
7327
7328  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7329  for (unsigned i = 0; i != NumFields; ++i) {
7330    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7331
7332    // Get the type for the field.
7333    const Type *FDTy = FD->getType().getTypePtr();
7334
7335    if (!FD->isAnonymousStructOrUnion()) {
7336      // Remember all fields written by the user.
7337      RecFields.push_back(FD);
7338    }
7339
7340    // If the field is already invalid for some reason, don't emit more
7341    // diagnostics about it.
7342    if (FD->isInvalidDecl()) {
7343      EnclosingDecl->setInvalidDecl();
7344      continue;
7345    }
7346
7347    // C99 6.7.2.1p2:
7348    //   A structure or union shall not contain a member with
7349    //   incomplete or function type (hence, a structure shall not
7350    //   contain an instance of itself, but may contain a pointer to
7351    //   an instance of itself), except that the last member of a
7352    //   structure with more than one named member may have incomplete
7353    //   array type; such a structure (and any union containing,
7354    //   possibly recursively, a member that is such a structure)
7355    //   shall not be a member of a structure or an element of an
7356    //   array.
7357    if (FDTy->isFunctionType()) {
7358      // Field declared as a function.
7359      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7360        << FD->getDeclName();
7361      FD->setInvalidDecl();
7362      EnclosingDecl->setInvalidDecl();
7363      continue;
7364    } else if (FDTy->isIncompleteArrayType() && Record &&
7365               ((i == NumFields - 1 && !Record->isUnion()) ||
7366                (getLangOptions().Microsoft &&
7367                 (i == NumFields - 1 || Record->isUnion())))) {
7368      // Flexible array member.
7369      // Microsoft is more permissive regarding flexible array.
7370      // It will accept flexible array in union and also
7371      // as the sole element of a struct/class.
7372      if (getLangOptions().Microsoft) {
7373        if (Record->isUnion())
7374          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7375            << FD->getDeclName();
7376        else if (NumFields == 1)
7377          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7378            << FD->getDeclName() << Record->getTagKind();
7379      } else  if (NumNamedMembers < 1) {
7380        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7381          << FD->getDeclName();
7382        FD->setInvalidDecl();
7383        EnclosingDecl->setInvalidDecl();
7384        continue;
7385      }
7386      if (!FD->getType()->isDependentType() &&
7387          !Context.getBaseElementType(FD->getType())->isPODType()) {
7388        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7389          << FD->getDeclName() << FD->getType();
7390        FD->setInvalidDecl();
7391        EnclosingDecl->setInvalidDecl();
7392        continue;
7393      }
7394      // Okay, we have a legal flexible array member at the end of the struct.
7395      if (Record)
7396        Record->setHasFlexibleArrayMember(true);
7397    } else if (!FDTy->isDependentType() &&
7398               RequireCompleteType(FD->getLocation(), FD->getType(),
7399                                   diag::err_field_incomplete)) {
7400      // Incomplete type
7401      FD->setInvalidDecl();
7402      EnclosingDecl->setInvalidDecl();
7403      continue;
7404    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7405      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7406        // If this is a member of a union, then entire union becomes "flexible".
7407        if (Record && Record->isUnion()) {
7408          Record->setHasFlexibleArrayMember(true);
7409        } else {
7410          // If this is a struct/class and this is not the last element, reject
7411          // it.  Note that GCC supports variable sized arrays in the middle of
7412          // structures.
7413          if (i != NumFields-1)
7414            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7415              << FD->getDeclName() << FD->getType();
7416          else {
7417            // We support flexible arrays at the end of structs in
7418            // other structs as an extension.
7419            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7420              << FD->getDeclName();
7421            if (Record)
7422              Record->setHasFlexibleArrayMember(true);
7423          }
7424        }
7425      }
7426      if (Record && FDTTy->getDecl()->hasObjectMember())
7427        Record->setHasObjectMember(true);
7428    } else if (FDTy->isObjCObjectType()) {
7429      /// A field cannot be an Objective-c object
7430      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7431      FD->setInvalidDecl();
7432      EnclosingDecl->setInvalidDecl();
7433      continue;
7434    } else if (getLangOptions().ObjC1 &&
7435               getLangOptions().getGCMode() != LangOptions::NonGC &&
7436               Record &&
7437               (FD->getType()->isObjCObjectPointerType() ||
7438                FD->getType().isObjCGCStrong()))
7439      Record->setHasObjectMember(true);
7440    else if (Context.getAsArrayType(FD->getType())) {
7441      QualType BaseType = Context.getBaseElementType(FD->getType());
7442      if (Record && BaseType->isRecordType() &&
7443          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7444        Record->setHasObjectMember(true);
7445    }
7446    // Keep track of the number of named members.
7447    if (FD->getIdentifier())
7448      ++NumNamedMembers;
7449  }
7450
7451  // Okay, we successfully defined 'Record'.
7452  if (Record) {
7453    bool Completed = false;
7454    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7455      if (!CXXRecord->isInvalidDecl()) {
7456        // Set access bits correctly on the directly-declared conversions.
7457        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7458        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7459             I != E; ++I)
7460          Convs->setAccess(I, (*I)->getAccess());
7461
7462        if (!CXXRecord->isDependentType()) {
7463          // Add any implicitly-declared members to this class.
7464          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7465
7466          // If we have virtual base classes, we may end up finding multiple
7467          // final overriders for a given virtual function. Check for this
7468          // problem now.
7469          if (CXXRecord->getNumVBases()) {
7470            CXXFinalOverriderMap FinalOverriders;
7471            CXXRecord->getFinalOverriders(FinalOverriders);
7472
7473            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7474                                             MEnd = FinalOverriders.end();
7475                 M != MEnd; ++M) {
7476              for (OverridingMethods::iterator SO = M->second.begin(),
7477                                            SOEnd = M->second.end();
7478                   SO != SOEnd; ++SO) {
7479                assert(SO->second.size() > 0 &&
7480                       "Virtual function without overridding functions?");
7481                if (SO->second.size() == 1)
7482                  continue;
7483
7484                // C++ [class.virtual]p2:
7485                //   In a derived class, if a virtual member function of a base
7486                //   class subobject has more than one final overrider the
7487                //   program is ill-formed.
7488                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7489                  << (NamedDecl *)M->first << Record;
7490                Diag(M->first->getLocation(),
7491                     diag::note_overridden_virtual_function);
7492                for (OverridingMethods::overriding_iterator
7493                          OM = SO->second.begin(),
7494                       OMEnd = SO->second.end();
7495                     OM != OMEnd; ++OM)
7496                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7497                    << (NamedDecl *)M->first << OM->Method->getParent();
7498
7499                Record->setInvalidDecl();
7500              }
7501            }
7502            CXXRecord->completeDefinition(&FinalOverriders);
7503            Completed = true;
7504          }
7505        }
7506      }
7507    }
7508
7509    if (!Completed)
7510      Record->completeDefinition();
7511  } else {
7512    ObjCIvarDecl **ClsFields =
7513      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7514    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7515      ID->setLocEnd(RBrac);
7516      // Add ivar's to class's DeclContext.
7517      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7518        ClsFields[i]->setLexicalDeclContext(ID);
7519        ID->addDecl(ClsFields[i]);
7520      }
7521      // Must enforce the rule that ivars in the base classes may not be
7522      // duplicates.
7523      if (ID->getSuperClass())
7524        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7525    } else if (ObjCImplementationDecl *IMPDecl =
7526                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7527      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7528      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7529        // Ivar declared in @implementation never belongs to the implementation.
7530        // Only it is in implementation's lexical context.
7531        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7532      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7533    } else if (ObjCCategoryDecl *CDecl =
7534                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7535      // case of ivars in class extension; all other cases have been
7536      // reported as errors elsewhere.
7537      // FIXME. Class extension does not have a LocEnd field.
7538      // CDecl->setLocEnd(RBrac);
7539      // Add ivar's to class extension's DeclContext.
7540      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7541        ClsFields[i]->setLexicalDeclContext(CDecl);
7542        CDecl->addDecl(ClsFields[i]);
7543      }
7544    }
7545  }
7546
7547  if (Attr)
7548    ProcessDeclAttributeList(S, Record, Attr);
7549
7550  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7551  // set the visibility of this record.
7552  if (Record && !Record->getDeclContext()->isRecord())
7553    AddPushedVisibilityAttribute(Record);
7554}
7555
7556/// \brief Determine whether the given integral value is representable within
7557/// the given type T.
7558static bool isRepresentableIntegerValue(ASTContext &Context,
7559                                        llvm::APSInt &Value,
7560                                        QualType T) {
7561  assert(T->isIntegralType(Context) && "Integral type required!");
7562  unsigned BitWidth = Context.getIntWidth(T);
7563
7564  if (Value.isUnsigned() || Value.isNonNegative()) {
7565    if (T->isSignedIntegerType())
7566      --BitWidth;
7567    return Value.getActiveBits() <= BitWidth;
7568  }
7569  return Value.getMinSignedBits() <= BitWidth;
7570}
7571
7572// \brief Given an integral type, return the next larger integral type
7573// (or a NULL type of no such type exists).
7574static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7575  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7576  // enum checking below.
7577  assert(T->isIntegralType(Context) && "Integral type required!");
7578  const unsigned NumTypes = 4;
7579  QualType SignedIntegralTypes[NumTypes] = {
7580    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7581  };
7582  QualType UnsignedIntegralTypes[NumTypes] = {
7583    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7584    Context.UnsignedLongLongTy
7585  };
7586
7587  unsigned BitWidth = Context.getTypeSize(T);
7588  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7589                                            : UnsignedIntegralTypes;
7590  for (unsigned I = 0; I != NumTypes; ++I)
7591    if (Context.getTypeSize(Types[I]) > BitWidth)
7592      return Types[I];
7593
7594  return QualType();
7595}
7596
7597EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7598                                          EnumConstantDecl *LastEnumConst,
7599                                          SourceLocation IdLoc,
7600                                          IdentifierInfo *Id,
7601                                          Expr *Val) {
7602  unsigned IntWidth = Context.Target.getIntWidth();
7603  llvm::APSInt EnumVal(IntWidth);
7604  QualType EltTy;
7605
7606  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7607    Val = 0;
7608
7609  if (Val) {
7610    if (Enum->isDependentType() || Val->isTypeDependent())
7611      EltTy = Context.DependentTy;
7612    else {
7613      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7614      SourceLocation ExpLoc;
7615      if (!Val->isValueDependent() &&
7616          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7617        Val = 0;
7618      } else {
7619        if (!getLangOptions().CPlusPlus) {
7620          // C99 6.7.2.2p2:
7621          //   The expression that defines the value of an enumeration constant
7622          //   shall be an integer constant expression that has a value
7623          //   representable as an int.
7624
7625          // Complain if the value is not representable in an int.
7626          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7627            Diag(IdLoc, diag::ext_enum_value_not_int)
7628              << EnumVal.toString(10) << Val->getSourceRange()
7629              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7630          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7631            // Force the type of the expression to 'int'.
7632            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7633          }
7634        }
7635
7636        if (Enum->isFixed()) {
7637          EltTy = Enum->getIntegerType();
7638
7639          // C++0x [dcl.enum]p5:
7640          //   ... if the initializing value of an enumerator cannot be
7641          //   represented by the underlying type, the program is ill-formed.
7642          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7643            if (getLangOptions().Microsoft) {
7644              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7645              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7646            } else
7647              Diag(IdLoc, diag::err_enumerator_too_large)
7648                << EltTy;
7649          } else
7650            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7651        }
7652        else {
7653          // C++0x [dcl.enum]p5:
7654          //   If the underlying type is not fixed, the type of each enumerator
7655          //   is the type of its initializing value:
7656          //     - If an initializer is specified for an enumerator, the
7657          //       initializing value has the same type as the expression.
7658          EltTy = Val->getType();
7659        }
7660      }
7661    }
7662  }
7663
7664  if (!Val) {
7665    if (Enum->isDependentType())
7666      EltTy = Context.DependentTy;
7667    else if (!LastEnumConst) {
7668      // C++0x [dcl.enum]p5:
7669      //   If the underlying type is not fixed, the type of each enumerator
7670      //   is the type of its initializing value:
7671      //     - If no initializer is specified for the first enumerator, the
7672      //       initializing value has an unspecified integral type.
7673      //
7674      // GCC uses 'int' for its unspecified integral type, as does
7675      // C99 6.7.2.2p3.
7676      if (Enum->isFixed()) {
7677        EltTy = Enum->getIntegerType();
7678      }
7679      else {
7680        EltTy = Context.IntTy;
7681      }
7682    } else {
7683      // Assign the last value + 1.
7684      EnumVal = LastEnumConst->getInitVal();
7685      ++EnumVal;
7686      EltTy = LastEnumConst->getType();
7687
7688      // Check for overflow on increment.
7689      if (EnumVal < LastEnumConst->getInitVal()) {
7690        // C++0x [dcl.enum]p5:
7691        //   If the underlying type is not fixed, the type of each enumerator
7692        //   is the type of its initializing value:
7693        //
7694        //     - Otherwise the type of the initializing value is the same as
7695        //       the type of the initializing value of the preceding enumerator
7696        //       unless the incremented value is not representable in that type,
7697        //       in which case the type is an unspecified integral type
7698        //       sufficient to contain the incremented value. If no such type
7699        //       exists, the program is ill-formed.
7700        QualType T = getNextLargerIntegralType(Context, EltTy);
7701        if (T.isNull() || Enum->isFixed()) {
7702          // There is no integral type larger enough to represent this
7703          // value. Complain, then allow the value to wrap around.
7704          EnumVal = LastEnumConst->getInitVal();
7705          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7706          ++EnumVal;
7707          if (Enum->isFixed())
7708            // When the underlying type is fixed, this is ill-formed.
7709            Diag(IdLoc, diag::err_enumerator_wrapped)
7710              << EnumVal.toString(10)
7711              << EltTy;
7712          else
7713            Diag(IdLoc, diag::warn_enumerator_too_large)
7714              << EnumVal.toString(10);
7715        } else {
7716          EltTy = T;
7717        }
7718
7719        // Retrieve the last enumerator's value, extent that type to the
7720        // type that is supposed to be large enough to represent the incremented
7721        // value, then increment.
7722        EnumVal = LastEnumConst->getInitVal();
7723        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7724        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7725        ++EnumVal;
7726
7727        // If we're not in C++, diagnose the overflow of enumerator values,
7728        // which in C99 means that the enumerator value is not representable in
7729        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7730        // permits enumerator values that are representable in some larger
7731        // integral type.
7732        if (!getLangOptions().CPlusPlus && !T.isNull())
7733          Diag(IdLoc, diag::warn_enum_value_overflow);
7734      } else if (!getLangOptions().CPlusPlus &&
7735                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7736        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7737        Diag(IdLoc, diag::ext_enum_value_not_int)
7738          << EnumVal.toString(10) << 1;
7739      }
7740    }
7741  }
7742
7743  if (!EltTy->isDependentType()) {
7744    // Make the enumerator value match the signedness and size of the
7745    // enumerator's type.
7746    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7747    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7748  }
7749
7750  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7751                                  Val, EnumVal);
7752}
7753
7754
7755Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7756                              SourceLocation IdLoc, IdentifierInfo *Id,
7757                              AttributeList *Attr,
7758                              SourceLocation EqualLoc, ExprTy *val) {
7759  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7760  EnumConstantDecl *LastEnumConst =
7761    cast_or_null<EnumConstantDecl>(lastEnumConst);
7762  Expr *Val = static_cast<Expr*>(val);
7763
7764  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7765  // we find one that is.
7766  S = getNonFieldDeclScope(S);
7767
7768  // Verify that there isn't already something declared with this name in this
7769  // scope.
7770  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7771                                         ForRedeclaration);
7772  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7773    // Maybe we will complain about the shadowed template parameter.
7774    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7775    // Just pretend that we didn't see the previous declaration.
7776    PrevDecl = 0;
7777  }
7778
7779  if (PrevDecl) {
7780    // When in C++, we may get a TagDecl with the same name; in this case the
7781    // enum constant will 'hide' the tag.
7782    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7783           "Received TagDecl when not in C++!");
7784    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7785      if (isa<EnumConstantDecl>(PrevDecl))
7786        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7787      else
7788        Diag(IdLoc, diag::err_redefinition) << Id;
7789      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7790      return 0;
7791    }
7792  }
7793
7794  // C++ [class.mem]p13:
7795  //   If T is the name of a class, then each of the following shall have a
7796  //   name different from T:
7797  //     - every enumerator of every member of class T that is an enumerated
7798  //       type
7799  if (CXXRecordDecl *Record
7800                      = dyn_cast<CXXRecordDecl>(
7801                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7802    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7803      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7804
7805  EnumConstantDecl *New =
7806    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7807
7808  if (New) {
7809    // Process attributes.
7810    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7811
7812    // Register this decl in the current scope stack.
7813    New->setAccess(TheEnumDecl->getAccess());
7814    PushOnScopeChains(New, S);
7815  }
7816
7817  return New;
7818}
7819
7820void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7821                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7822                         Decl **Elements, unsigned NumElements,
7823                         Scope *S, AttributeList *Attr) {
7824  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7825  QualType EnumType = Context.getTypeDeclType(Enum);
7826
7827  if (Attr)
7828    ProcessDeclAttributeList(S, Enum, Attr);
7829
7830  if (Enum->isDependentType()) {
7831    for (unsigned i = 0; i != NumElements; ++i) {
7832      EnumConstantDecl *ECD =
7833        cast_or_null<EnumConstantDecl>(Elements[i]);
7834      if (!ECD) continue;
7835
7836      ECD->setType(EnumType);
7837    }
7838
7839    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7840    return;
7841  }
7842
7843  // TODO: If the result value doesn't fit in an int, it must be a long or long
7844  // long value.  ISO C does not support this, but GCC does as an extension,
7845  // emit a warning.
7846  unsigned IntWidth = Context.Target.getIntWidth();
7847  unsigned CharWidth = Context.Target.getCharWidth();
7848  unsigned ShortWidth = Context.Target.getShortWidth();
7849
7850  // Verify that all the values are okay, compute the size of the values, and
7851  // reverse the list.
7852  unsigned NumNegativeBits = 0;
7853  unsigned NumPositiveBits = 0;
7854
7855  // Keep track of whether all elements have type int.
7856  bool AllElementsInt = true;
7857
7858  for (unsigned i = 0; i != NumElements; ++i) {
7859    EnumConstantDecl *ECD =
7860      cast_or_null<EnumConstantDecl>(Elements[i]);
7861    if (!ECD) continue;  // Already issued a diagnostic.
7862
7863    const llvm::APSInt &InitVal = ECD->getInitVal();
7864
7865    // Keep track of the size of positive and negative values.
7866    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7867      NumPositiveBits = std::max(NumPositiveBits,
7868                                 (unsigned)InitVal.getActiveBits());
7869    else
7870      NumNegativeBits = std::max(NumNegativeBits,
7871                                 (unsigned)InitVal.getMinSignedBits());
7872
7873    // Keep track of whether every enum element has type int (very commmon).
7874    if (AllElementsInt)
7875      AllElementsInt = ECD->getType() == Context.IntTy;
7876  }
7877
7878  // Figure out the type that should be used for this enum.
7879  QualType BestType;
7880  unsigned BestWidth;
7881
7882  // C++0x N3000 [conv.prom]p3:
7883  //   An rvalue of an unscoped enumeration type whose underlying
7884  //   type is not fixed can be converted to an rvalue of the first
7885  //   of the following types that can represent all the values of
7886  //   the enumeration: int, unsigned int, long int, unsigned long
7887  //   int, long long int, or unsigned long long int.
7888  // C99 6.4.4.3p2:
7889  //   An identifier declared as an enumeration constant has type int.
7890  // The C99 rule is modified by a gcc extension
7891  QualType BestPromotionType;
7892
7893  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7894  // -fshort-enums is the equivalent to specifying the packed attribute on all
7895  // enum definitions.
7896  if (LangOpts.ShortEnums)
7897    Packed = true;
7898
7899  if (Enum->isFixed()) {
7900    BestType = BestPromotionType = Enum->getIntegerType();
7901    // We don't need to set BestWidth, because BestType is going to be the type
7902    // of the enumerators, but we do anyway because otherwise some compilers
7903    // warn that it might be used uninitialized.
7904    BestWidth = CharWidth;
7905  }
7906  else if (NumNegativeBits) {
7907    // If there is a negative value, figure out the smallest integer type (of
7908    // int/long/longlong) that fits.
7909    // If it's packed, check also if it fits a char or a short.
7910    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7911      BestType = Context.SignedCharTy;
7912      BestWidth = CharWidth;
7913    } else if (Packed && NumNegativeBits <= ShortWidth &&
7914               NumPositiveBits < ShortWidth) {
7915      BestType = Context.ShortTy;
7916      BestWidth = ShortWidth;
7917    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7918      BestType = Context.IntTy;
7919      BestWidth = IntWidth;
7920    } else {
7921      BestWidth = Context.Target.getLongWidth();
7922
7923      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7924        BestType = Context.LongTy;
7925      } else {
7926        BestWidth = Context.Target.getLongLongWidth();
7927
7928        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7929          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7930        BestType = Context.LongLongTy;
7931      }
7932    }
7933    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7934  } else {
7935    // If there is no negative value, figure out the smallest type that fits
7936    // all of the enumerator values.
7937    // If it's packed, check also if it fits a char or a short.
7938    if (Packed && NumPositiveBits <= CharWidth) {
7939      BestType = Context.UnsignedCharTy;
7940      BestPromotionType = Context.IntTy;
7941      BestWidth = CharWidth;
7942    } else if (Packed && NumPositiveBits <= ShortWidth) {
7943      BestType = Context.UnsignedShortTy;
7944      BestPromotionType = Context.IntTy;
7945      BestWidth = ShortWidth;
7946    } else if (NumPositiveBits <= IntWidth) {
7947      BestType = Context.UnsignedIntTy;
7948      BestWidth = IntWidth;
7949      BestPromotionType
7950        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7951                           ? Context.UnsignedIntTy : Context.IntTy;
7952    } else if (NumPositiveBits <=
7953               (BestWidth = Context.Target.getLongWidth())) {
7954      BestType = Context.UnsignedLongTy;
7955      BestPromotionType
7956        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7957                           ? Context.UnsignedLongTy : Context.LongTy;
7958    } else {
7959      BestWidth = Context.Target.getLongLongWidth();
7960      assert(NumPositiveBits <= BestWidth &&
7961             "How could an initializer get larger than ULL?");
7962      BestType = Context.UnsignedLongLongTy;
7963      BestPromotionType
7964        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7965                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7966    }
7967  }
7968
7969  // Loop over all of the enumerator constants, changing their types to match
7970  // the type of the enum if needed.
7971  for (unsigned i = 0; i != NumElements; ++i) {
7972    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7973    if (!ECD) continue;  // Already issued a diagnostic.
7974
7975    // Standard C says the enumerators have int type, but we allow, as an
7976    // extension, the enumerators to be larger than int size.  If each
7977    // enumerator value fits in an int, type it as an int, otherwise type it the
7978    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7979    // that X has type 'int', not 'unsigned'.
7980
7981    // Determine whether the value fits into an int.
7982    llvm::APSInt InitVal = ECD->getInitVal();
7983
7984    // If it fits into an integer type, force it.  Otherwise force it to match
7985    // the enum decl type.
7986    QualType NewTy;
7987    unsigned NewWidth;
7988    bool NewSign;
7989    if (!getLangOptions().CPlusPlus &&
7990        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7991      NewTy = Context.IntTy;
7992      NewWidth = IntWidth;
7993      NewSign = true;
7994    } else if (ECD->getType() == BestType) {
7995      // Already the right type!
7996      if (getLangOptions().CPlusPlus)
7997        // C++ [dcl.enum]p4: Following the closing brace of an
7998        // enum-specifier, each enumerator has the type of its
7999        // enumeration.
8000        ECD->setType(EnumType);
8001      continue;
8002    } else {
8003      NewTy = BestType;
8004      NewWidth = BestWidth;
8005      NewSign = BestType->isSignedIntegerType();
8006    }
8007
8008    // Adjust the APSInt value.
8009    InitVal = InitVal.extOrTrunc(NewWidth);
8010    InitVal.setIsSigned(NewSign);
8011    ECD->setInitVal(InitVal);
8012
8013    // Adjust the Expr initializer and type.
8014    if (ECD->getInitExpr() &&
8015	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8016      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8017                                                CK_IntegralCast,
8018                                                ECD->getInitExpr(),
8019                                                /*base paths*/ 0,
8020                                                VK_RValue));
8021    if (getLangOptions().CPlusPlus)
8022      // C++ [dcl.enum]p4: Following the closing brace of an
8023      // enum-specifier, each enumerator has the type of its
8024      // enumeration.
8025      ECD->setType(EnumType);
8026    else
8027      ECD->setType(NewTy);
8028  }
8029
8030  Enum->completeDefinition(BestType, BestPromotionType,
8031                           NumPositiveBits, NumNegativeBits);
8032}
8033
8034Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8035                                  SourceLocation StartLoc,
8036                                  SourceLocation EndLoc) {
8037  StringLiteral *AsmString = cast<StringLiteral>(expr);
8038
8039  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8040                                                   AsmString, StartLoc,
8041                                                   EndLoc);
8042  CurContext->addDecl(New);
8043  return New;
8044}
8045
8046void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8047                             SourceLocation PragmaLoc,
8048                             SourceLocation NameLoc) {
8049  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8050
8051  if (PrevDecl) {
8052    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8053  } else {
8054    (void)WeakUndeclaredIdentifiers.insert(
8055      std::pair<IdentifierInfo*,WeakInfo>
8056        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8057  }
8058}
8059
8060void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8061                                IdentifierInfo* AliasName,
8062                                SourceLocation PragmaLoc,
8063                                SourceLocation NameLoc,
8064                                SourceLocation AliasNameLoc) {
8065  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8066                                    LookupOrdinaryName);
8067  WeakInfo W = WeakInfo(Name, NameLoc);
8068
8069  if (PrevDecl) {
8070    if (!PrevDecl->hasAttr<AliasAttr>())
8071      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8072        DeclApplyPragmaWeak(TUScope, ND, W);
8073  } else {
8074    (void)WeakUndeclaredIdentifiers.insert(
8075      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8076  }
8077}
8078