SemaDecl.cpp revision cb8e803696224e723e294d7e3ef79e5e393493eb
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29
30using namespace clang;
31
32Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
33                               const CXXScopeSpec *SS) {
34  DeclContext *DC = 0;
35  if (SS) {
36    if (SS->isInvalid())
37      return 0;
38    DC = static_cast<DeclContext*>(SS->getScopeRep());
39  }
40  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
41
42  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
43                 isa<ObjCInterfaceDecl>(IIDecl) ||
44                 isa<TagDecl>(IIDecl) ||
45		 isa<TemplateTypeParmDecl>(IIDecl)))
46    return IIDecl;
47  return 0;
48}
49
50DeclContext *Sema::getContainingDC(DeclContext *DC) {
51  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
52    // A C++ out-of-line method will return to the file declaration context.
53    if (MD->isOutOfLineDefinition())
54      return MD->getLexicalDeclContext();
55
56    // A C++ inline method is parsed *after* the topmost class it was declared in
57    // is fully parsed (it's "complete").
58    // The parsing of a C++ inline method happens at the declaration context of
59    // the topmost (non-nested) class it is lexically declared in.
60    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
61    DC = MD->getParent();
62    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
63      DC = RD;
64
65    // Return the declaration context of the topmost class the inline method is
66    // declared in.
67    return DC;
68  }
69
70  if (isa<ObjCMethodDecl>(DC))
71    return Context.getTranslationUnitDecl();
72
73  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
74    return SD->getLexicalDeclContext();
75
76  return DC->getLexicalParent();
77}
78
79void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
80  assert(getContainingDC(DC) == CurContext &&
81      "The next DeclContext should be lexically contained in the current one.");
82  CurContext = DC;
83  S->setEntity(DC);
84}
85
86void Sema::PopDeclContext() {
87  assert(CurContext && "DeclContext imbalance!");
88
89  CurContext = getContainingDC(CurContext);
90}
91
92/// Add this decl to the scope shadowed decl chains.
93void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
94  S->AddDecl(D);
95
96  // C++ [basic.scope]p4:
97  //   -- exactly one declaration shall declare a class name or
98  //   enumeration name that is not a typedef name and the other
99  //   declarations shall all refer to the same object or
100  //   enumerator, or all refer to functions and function templates;
101  //   in this case the class name or enumeration name is hidden.
102  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
103    // We are pushing the name of a tag (enum or class).
104    if (CurContext == TD->getDeclContext()) {
105      // We're pushing the tag into the current context, which might
106      // require some reshuffling in the identifier resolver.
107      IdentifierResolver::iterator
108        I = IdResolver.begin(TD->getIdentifier(), CurContext,
109                            false/*LookInParentCtx*/);
110      if (I != IdResolver.end()) {
111       // There is already a declaration with the same name in the same
112       // scope. It must be found before we find the new declaration,
113       // so swap the order on the shadowed declaration chain.
114       IdResolver.AddShadowedDecl(TD, *I);
115
116       // Add this declaration to the current context.
117       CurContext->addDecl(Context, TD);
118
119       return;
120      }
121    }
122  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
123    // We are pushing the name of a function, which might be an
124    // overloaded name.
125    FunctionDecl *FD = cast<FunctionDecl>(D);
126    Decl *Prev = LookupDecl(FD->getDeclName(), Decl::IDNS_Ordinary, S,
127                           FD->getDeclContext(), false, false);
128    if (Prev && (isa<OverloadedFunctionDecl>(Prev) || isa<FunctionDecl>(Prev))) {
129      // There is already a declaration with the same name in
130      // the same scope. It must be a function or an overloaded
131      // function.
132      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(Prev);
133      if (!Ovl) {
134        // We haven't yet overloaded this function. Take the existing
135        // FunctionDecl and put it into an OverloadedFunctionDecl.
136        Ovl = OverloadedFunctionDecl::Create(Context,
137                                             FD->getDeclContext(),
138                                             FD->getDeclName());
139        Ovl->addOverload(cast<FunctionDecl>(Prev));
140
141        // If there is a name binding for the existing FunctionDecl,
142        // remove it.
143        for (IdentifierResolver::iterator I
144               = IdResolver.begin(FD->getDeclName(), FD->getDeclContext(),
145                                  false/*LookInParentCtx*/),
146               E = IdResolver.end(); I != E; ++I) {
147          if (*I == Prev) {
148            IdResolver.RemoveDecl(*I);
149            S->RemoveDecl(*I);
150            break;
151          }
152        }
153
154        // Add the name binding for the OverloadedFunctionDecl.
155        IdResolver.AddDecl(Ovl);
156
157        // Update the context with the newly-created overloaded
158        // function set.
159        FD->getDeclContext()->insert(Context, Ovl);
160
161       S->AddDecl(Ovl);
162      }
163
164      // We added this function declaration to the scope earlier, but
165      // we don't want it there because it is part of the overloaded
166      // function declaration.
167      S->RemoveDecl(FD);
168
169      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
170      // to its list of overloads.
171      Ovl->addOverload(FD);
172
173      // Add this new function declaration to the declaration context.
174      CurContext->addDecl(Context, FD, false);
175
176      return;
177    }
178  }
179
180  // Add scoped declarations into their context, so that they can be
181  // found later. Declarations without a context won't be inserted
182  // into any context.
183  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
184    CurContext->addDecl(Context, SD);
185
186  IdResolver.AddDecl(D);
187}
188
189void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
190  if (S->decl_empty()) return;
191  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
192	 "Scope shouldn't contain decls!");
193
194  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
195       I != E; ++I) {
196    Decl *TmpD = static_cast<Decl*>(*I);
197    assert(TmpD && "This decl didn't get pushed??");
198
199    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
200    NamedDecl *D = cast<NamedDecl>(TmpD);
201
202    if (!D->getDeclName()) continue;
203
204    // Remove this name from our lexical scope.
205    IdResolver.RemoveDecl(D);
206  }
207}
208
209/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
210/// return 0 if one not found.
211ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
212  // The third "scope" argument is 0 since we aren't enabling lazy built-in
213  // creation from this context.
214  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
215
216  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
217}
218
219/// LookupDecl - Look up the inner-most declaration in the specified
220/// namespace.
221Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
222                       const DeclContext *LookupCtx,
223                       bool enableLazyBuiltinCreation,
224                      bool LookInParent) {
225  if (!Name) return 0;
226  unsigned NS = NSI;
227  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
228    NS |= Decl::IDNS_Tag;
229
230  if (LookupCtx == 0 &&
231      (!getLangOptions().CPlusPlus || (NS == Decl::IDNS_Label))) {
232    // Unqualified name lookup in C/Objective-C and name lookup for
233    // labels in C++ is purely lexical, so search in the
234    // declarations attached to the name.
235    assert(!LookupCtx && "Can't perform qualified name lookup here");
236    IdentifierResolver::iterator I
237      = IdResolver.begin(Name, CurContext, LookInParent);
238
239    // Scan up the scope chain looking for a decl that matches this
240    // identifier that is in the appropriate namespace.  This search
241    // should not take long, as shadowing of names is uncommon, and
242    // deep shadowing is extremely uncommon.
243    for (; I != IdResolver.end(); ++I)
244      if ((*I)->getIdentifierNamespace() & NS)
245         return *I;
246  } else if (LookupCtx) {
247    assert(getLangOptions().CPlusPlus && "No qualified name lookup in C");
248
249    // Perform qualified name lookup into the LookupCtx.
250    // FIXME: Will need to look into base classes and such.
251    DeclContext::lookup_const_iterator I, E;
252    for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
253      if ((*I)->getIdentifierNamespace() & NS)
254       return *I;
255  } else {
256    // Name lookup for ordinary names and tag names in C++ requires
257    // looking into scopes that aren't strictly lexical, and
258    // therefore we walk through the context as well as walking
259    // through the scopes.
260    IdentifierResolver::iterator
261      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
262      IEnd = IdResolver.end();
263    for (; S; S = S->getParent()) {
264      // Check whether the IdResolver has anything in this scope.
265      // FIXME: The isDeclScope check could be expensive. Can we do better?
266      for (; I != IEnd && S->isDeclScope(*I); ++I)
267        if ((*I)->getIdentifierNamespace() & NS)
268          return *I;
269
270      // If there is an entity associated with this scope, it's a
271      // DeclContext. We might need to perform qualified lookup into
272      // it.
273      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
274      while (Ctx && Ctx->isFunctionOrMethod())
275        Ctx = Ctx->getParent();
276      while (Ctx && (Ctx->isNamespace() || Ctx->isCXXRecord())) {
277        // Look for declarations of this name in this scope.
278        DeclContext::lookup_const_iterator I, E;
279        for (llvm::tie(I, E) = Ctx->lookup(Context, Name); I != E; ++I) {
280          // FIXME: Cache this result in the IdResolver
281          if ((*I)->getIdentifierNamespace() & NS)
282            return  *I;
283        }
284
285        Ctx = Ctx->getParent();
286      }
287
288      if (!LookInParent)
289        return 0;
290    }
291  }
292
293  // If we didn't find a use of this identifier, and if the identifier
294  // corresponds to a compiler builtin, create the decl object for the builtin
295  // now, injecting it into translation unit scope, and return it.
296  if (NS & Decl::IDNS_Ordinary) {
297    IdentifierInfo *II = Name.getAsIdentifierInfo();
298    if (enableLazyBuiltinCreation && II &&
299        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
300      // If this is a builtin on this (or all) targets, create the decl.
301      if (unsigned BuiltinID = II->getBuiltinID())
302        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
303    }
304    if (getLangOptions().ObjC1 && II) {
305      // @interface and @compatibility_alias introduce typedef-like names.
306      // Unlike typedef's, they can only be introduced at file-scope (and are
307      // therefore not scoped decls). They can, however, be shadowed by
308      // other names in IDNS_Ordinary.
309      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
310      if (IDI != ObjCInterfaceDecls.end())
311        return IDI->second;
312      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
313      if (I != ObjCAliasDecls.end())
314        return I->second->getClassInterface();
315    }
316  }
317  return 0;
318}
319
320void Sema::InitBuiltinVaListType() {
321  if (!Context.getBuiltinVaListType().isNull())
322    return;
323
324  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
325  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
326  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
327  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
328}
329
330/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
331/// lazily create a decl for it.
332ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
333                                      Scope *S) {
334  Builtin::ID BID = (Builtin::ID)bid;
335
336  if (Context.BuiltinInfo.hasVAListUse(BID))
337    InitBuiltinVaListType();
338
339  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
340  FunctionDecl *New = FunctionDecl::Create(Context,
341                                           Context.getTranslationUnitDecl(),
342                                           SourceLocation(), II, R,
343                                           FunctionDecl::Extern, false, 0);
344
345  // Create Decl objects for each parameter, adding them to the
346  // FunctionDecl.
347  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
348    llvm::SmallVector<ParmVarDecl*, 16> Params;
349    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
350      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
351                                           FT->getArgType(i), VarDecl::None, 0,
352                                           0));
353    New->setParams(&Params[0], Params.size());
354  }
355
356
357
358  // TUScope is the translation-unit scope to insert this function into.
359  PushOnScopeChains(New, TUScope);
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
370                           0, Global, /*enableLazyBuiltinCreation=*/false);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
377/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
378/// situation, merging decls or emitting diagnostics as appropriate.
379///
380TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
381  // Allow multiple definitions for ObjC built-in typedefs.
382  // FIXME: Verify the underlying types are equivalent!
383  if (getLangOptions().ObjC1) {
384    const IdentifierInfo *TypeID = New->getIdentifier();
385    switch (TypeID->getLength()) {
386    default: break;
387    case 2:
388      if (!TypeID->isStr("id"))
389        break;
390      Context.setObjCIdType(New);
391      return New;
392    case 5:
393      if (!TypeID->isStr("Class"))
394        break;
395      Context.setObjCClassType(New);
396      return New;
397    case 3:
398      if (!TypeID->isStr("SEL"))
399        break;
400      Context.setObjCSelType(New);
401      return New;
402    case 8:
403      if (!TypeID->isStr("Protocol"))
404        break;
405      Context.setObjCProtoType(New->getUnderlyingType());
406      return New;
407    }
408    // Fall through - the typedef name was not a builtin type.
409  }
410  // Verify the old decl was also a typedef.
411  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
412  if (!Old) {
413    Diag(New->getLocation(), diag::err_redefinition_different_kind)
414      << New->getDeclName();
415    Diag(OldD->getLocation(), diag::note_previous_definition);
416    return New;
417  }
418
419  // If the typedef types are not identical, reject them in all languages and
420  // with any extensions enabled.
421  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
422      Context.getCanonicalType(Old->getUnderlyingType()) !=
423      Context.getCanonicalType(New->getUnderlyingType())) {
424    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
425      << New->getUnderlyingType() << Old->getUnderlyingType();
426    Diag(Old->getLocation(), diag::note_previous_definition);
427    return Old;
428  }
429
430  if (getLangOptions().Microsoft) return New;
431
432  // C++ [dcl.typedef]p2:
433  //   In a given non-class scope, a typedef specifier can be used to
434  //   redefine the name of any type declared in that scope to refer
435  //   to the type to which it already refers.
436  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
437    return New;
438
439  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
440  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
441  // *either* declaration is in a system header. The code below implements
442  // this adhoc compatibility rule. FIXME: The following code will not
443  // work properly when compiling ".i" files (containing preprocessed output).
444  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
445    SourceManager &SrcMgr = Context.getSourceManager();
446    if (SrcMgr.isInSystemHeader(Old->getLocation()))
447      return New;
448    if (SrcMgr.isInSystemHeader(New->getLocation()))
449      return New;
450  }
451
452  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
453  Diag(Old->getLocation(), diag::note_previous_definition);
454  return New;
455}
456
457/// DeclhasAttr - returns true if decl Declaration already has the target
458/// attribute.
459static bool DeclHasAttr(const Decl *decl, const Attr *target) {
460  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
461    if (attr->getKind() == target->getKind())
462      return true;
463
464  return false;
465}
466
467/// MergeAttributes - append attributes from the Old decl to the New one.
468static void MergeAttributes(Decl *New, Decl *Old) {
469  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
470
471  while (attr) {
472     tmp = attr;
473     attr = attr->getNext();
474
475    if (!DeclHasAttr(New, tmp)) {
476       New->addAttr(tmp);
477    } else {
478       tmp->setNext(0);
479       delete(tmp);
480    }
481  }
482
483  Old->invalidateAttrs();
484}
485
486/// MergeFunctionDecl - We just parsed a function 'New' from
487/// declarator D which has the same name and scope as a previous
488/// declaration 'Old'.  Figure out how to resolve this situation,
489/// merging decls or emitting diagnostics as appropriate.
490/// Redeclaration will be set true if this New is a redeclaration OldD.
491///
492/// In C++, New and Old must be declarations that are not
493/// overloaded. Use IsOverload to determine whether New and Old are
494/// overloaded, and to select the Old declaration that New should be
495/// merged with.
496FunctionDecl *
497Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
498  assert(!isa<OverloadedFunctionDecl>(OldD) &&
499         "Cannot merge with an overloaded function declaration");
500
501  Redeclaration = false;
502  // Verify the old decl was also a function.
503  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
504  if (!Old) {
505    Diag(New->getLocation(), diag::err_redefinition_different_kind)
506      << New->getDeclName();
507    Diag(OldD->getLocation(), diag::note_previous_definition);
508    return New;
509  }
510
511  // Determine whether the previous declaration was a definition,
512  // implicit declaration, or a declaration.
513  diag::kind PrevDiag;
514  if (Old->isThisDeclarationADefinition())
515    PrevDiag = diag::note_previous_definition;
516  else if (Old->isImplicit())
517    PrevDiag = diag::note_previous_implicit_declaration;
518  else
519    PrevDiag = diag::note_previous_declaration;
520
521  QualType OldQType = Context.getCanonicalType(Old->getType());
522  QualType NewQType = Context.getCanonicalType(New->getType());
523
524  if (getLangOptions().CPlusPlus) {
525    // (C++98 13.1p2):
526    //   Certain function declarations cannot be overloaded:
527    //     -- Function declarations that differ only in the return type
528    //        cannot be overloaded.
529    QualType OldReturnType
530      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
531    QualType NewReturnType
532      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
533    if (OldReturnType != NewReturnType) {
534      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
535      Diag(Old->getLocation(), PrevDiag);
536      return New;
537    }
538
539    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
540    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
541    if (OldMethod && NewMethod) {
542      //    -- Member function declarations with the same name and the
543      //       same parameter types cannot be overloaded if any of them
544      //       is a static member function declaration.
545      if (OldMethod->isStatic() || NewMethod->isStatic()) {
546        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
547        Diag(Old->getLocation(), PrevDiag);
548        return New;
549      }
550
551      // C++ [class.mem]p1:
552      //   [...] A member shall not be declared twice in the
553      //   member-specification, except that a nested class or member
554      //   class template can be declared and then later defined.
555      if (OldMethod->getLexicalDeclContext() ==
556            NewMethod->getLexicalDeclContext()) {
557        unsigned NewDiag;
558        if (isa<CXXConstructorDecl>(OldMethod))
559          NewDiag = diag::err_constructor_redeclared;
560        else if (isa<CXXDestructorDecl>(NewMethod))
561          NewDiag = diag::err_destructor_redeclared;
562        else if (isa<CXXConversionDecl>(NewMethod))
563          NewDiag = diag::err_conv_function_redeclared;
564        else
565          NewDiag = diag::err_member_redeclared;
566
567        Diag(New->getLocation(), NewDiag);
568        Diag(Old->getLocation(), PrevDiag);
569      }
570    }
571
572    // (C++98 8.3.5p3):
573    //   All declarations for a function shall agree exactly in both the
574    //   return type and the parameter-type-list.
575    if (OldQType == NewQType) {
576      // We have a redeclaration.
577      MergeAttributes(New, Old);
578      Redeclaration = true;
579      return MergeCXXFunctionDecl(New, Old);
580    }
581
582    // Fall through for conflicting redeclarations and redefinitions.
583  }
584
585  // C: Function types need to be compatible, not identical. This handles
586  // duplicate function decls like "void f(int); void f(enum X);" properly.
587  if (!getLangOptions().CPlusPlus &&
588      Context.typesAreCompatible(OldQType, NewQType)) {
589    MergeAttributes(New, Old);
590    Redeclaration = true;
591    return New;
592  }
593
594  // A function that has already been declared has been redeclared or defined
595  // with a different type- show appropriate diagnostic
596
597  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
598  // TODO: This is totally simplistic.  It should handle merging functions
599  // together etc, merging extern int X; int X; ...
600  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
601  Diag(Old->getLocation(), PrevDiag);
602  return New;
603}
604
605/// Predicate for C "tentative" external object definitions (C99 6.9.2).
606static bool isTentativeDefinition(VarDecl *VD) {
607  if (VD->isFileVarDecl())
608    return (!VD->getInit() &&
609            (VD->getStorageClass() == VarDecl::None ||
610             VD->getStorageClass() == VarDecl::Static));
611  return false;
612}
613
614/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
615/// when dealing with C "tentative" external object definitions (C99 6.9.2).
616void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
617  bool VDIsTentative = isTentativeDefinition(VD);
618  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
619
620  for (IdentifierResolver::iterator
621       I = IdResolver.begin(VD->getIdentifier(),
622                            VD->getDeclContext(), false/*LookInParentCtx*/),
623       E = IdResolver.end(); I != E; ++I) {
624    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
625      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
626
627      // Handle the following case:
628      //   int a[10];
629      //   int a[];   - the code below makes sure we set the correct type.
630      //   int a[11]; - this is an error, size isn't 10.
631      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
632          OldDecl->getType()->isConstantArrayType())
633        VD->setType(OldDecl->getType());
634
635      // Check for "tentative" definitions. We can't accomplish this in
636      // MergeVarDecl since the initializer hasn't been attached.
637      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
638        continue;
639
640      // Handle __private_extern__ just like extern.
641      if (OldDecl->getStorageClass() != VarDecl::Extern &&
642          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
643          VD->getStorageClass() != VarDecl::Extern &&
644          VD->getStorageClass() != VarDecl::PrivateExtern) {
645        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
646        Diag(OldDecl->getLocation(), diag::note_previous_definition);
647      }
648    }
649  }
650}
651
652/// MergeVarDecl - We just parsed a variable 'New' which has the same name
653/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
654/// situation, merging decls or emitting diagnostics as appropriate.
655///
656/// Tentative definition rules (C99 6.9.2p2) are checked by
657/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
658/// definitions here, since the initializer hasn't been attached.
659///
660VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
661  // Verify the old decl was also a variable.
662  VarDecl *Old = dyn_cast<VarDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return New;
668  }
669
670  MergeAttributes(New, Old);
671
672  // Verify the types match.
673  QualType OldCType = Context.getCanonicalType(Old->getType());
674  QualType NewCType = Context.getCanonicalType(New->getType());
675  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
676    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
677    Diag(Old->getLocation(), diag::note_previous_definition);
678    return New;
679  }
680  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
681  if (New->getStorageClass() == VarDecl::Static &&
682      (Old->getStorageClass() == VarDecl::None ||
683       Old->getStorageClass() == VarDecl::Extern)) {
684    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
685    Diag(Old->getLocation(), diag::note_previous_definition);
686    return New;
687  }
688  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
689  if (New->getStorageClass() != VarDecl::Static &&
690      Old->getStorageClass() == VarDecl::Static) {
691    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
692    Diag(Old->getLocation(), diag::note_previous_definition);
693    return New;
694  }
695  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
696  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
697    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
698    Diag(Old->getLocation(), diag::note_previous_definition);
699  }
700  return New;
701}
702
703/// CheckParmsForFunctionDef - Check that the parameters of the given
704/// function are appropriate for the definition of a function. This
705/// takes care of any checks that cannot be performed on the
706/// declaration itself, e.g., that the types of each of the function
707/// parameters are complete.
708bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
709  bool HasInvalidParm = false;
710  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
711    ParmVarDecl *Param = FD->getParamDecl(p);
712
713    // C99 6.7.5.3p4: the parameters in a parameter type list in a
714    // function declarator that is part of a function definition of
715    // that function shall not have incomplete type.
716    if (Param->getType()->isIncompleteType() &&
717        !Param->isInvalidDecl()) {
718      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
719        << Param->getType();
720      Param->setInvalidDecl();
721      HasInvalidParm = true;
722    }
723  }
724
725  return HasInvalidParm;
726}
727
728/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
729/// no declarator (e.g. "struct foo;") is parsed.
730Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
731  // TODO: emit error on 'int;' or 'const enum foo;'.
732  // TODO: emit error on 'typedef int;'
733  // if (!DS.isMissingDeclaratorOk()) Diag(...);
734
735  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
736}
737
738bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
739  // Get the type before calling CheckSingleAssignmentConstraints(), since
740  // it can promote the expression.
741  QualType InitType = Init->getType();
742
743  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
744  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
745                                  InitType, Init, "initializing");
746}
747
748bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
749  const ArrayType *AT = Context.getAsArrayType(DeclT);
750
751  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
752    // C99 6.7.8p14. We have an array of character type with unknown size
753    // being initialized to a string literal.
754    llvm::APSInt ConstVal(32);
755    ConstVal = strLiteral->getByteLength() + 1;
756    // Return a new array type (C99 6.7.8p22).
757    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
758                                         ArrayType::Normal, 0);
759  } else {
760    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
761    // C99 6.7.8p14. We have an array of character type with known size.
762    // FIXME: Avoid truncation for 64-bit length strings.
763    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
764      Diag(strLiteral->getSourceRange().getBegin(),
765           diag::warn_initializer_string_for_char_array_too_long)
766        << strLiteral->getSourceRange();
767  }
768  // Set type from "char *" to "constant array of char".
769  strLiteral->setType(DeclT);
770  // For now, we always return false (meaning success).
771  return false;
772}
773
774StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
775  const ArrayType *AT = Context.getAsArrayType(DeclType);
776  if (AT && AT->getElementType()->isCharType()) {
777    return dyn_cast<StringLiteral>(Init);
778  }
779  return 0;
780}
781
782bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
783                                 SourceLocation InitLoc,
784                                 DeclarationName InitEntity) {
785  // C++ [dcl.init.ref]p1:
786  //   A variable declared to be a T&, that is "reference to type T"
787  //   (8.3.2), shall be initialized by an object, or function, of
788  //   type T or by an object that can be converted into a T.
789  if (DeclType->isReferenceType())
790    return CheckReferenceInit(Init, DeclType);
791
792  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
793  // of unknown size ("[]") or an object type that is not a variable array type.
794  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
795    return Diag(InitLoc,  diag::err_variable_object_no_init)
796      << VAT->getSizeExpr()->getSourceRange();
797
798  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
799  if (!InitList) {
800    // FIXME: Handle wide strings
801    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
802      return CheckStringLiteralInit(strLiteral, DeclType);
803
804    // C++ [dcl.init]p14:
805    //   -- If the destination type is a (possibly cv-qualified) class
806    //      type:
807    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
808      QualType DeclTypeC = Context.getCanonicalType(DeclType);
809      QualType InitTypeC = Context.getCanonicalType(Init->getType());
810
811      //   -- If the initialization is direct-initialization, or if it is
812      //      copy-initialization where the cv-unqualified version of the
813      //      source type is the same class as, or a derived class of, the
814      //      class of the destination, constructors are considered.
815      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
816          IsDerivedFrom(InitTypeC, DeclTypeC)) {
817        CXXConstructorDecl *Constructor
818          = PerformInitializationByConstructor(DeclType, &Init, 1,
819                                               InitLoc, Init->getSourceRange(),
820                                               InitEntity, IK_Copy);
821        return Constructor == 0;
822      }
823
824      //   -- Otherwise (i.e., for the remaining copy-initialization
825      //      cases), user-defined conversion sequences that can
826      //      convert from the source type to the destination type or
827      //      (when a conversion function is used) to a derived class
828      //      thereof are enumerated as described in 13.3.1.4, and the
829      //      best one is chosen through overload resolution
830      //      (13.3). If the conversion cannot be done or is
831      //      ambiguous, the initialization is ill-formed. The
832      //      function selected is called with the initializer
833      //      expression as its argument; if the function is a
834      //      constructor, the call initializes a temporary of the
835      //      destination type.
836      // FIXME: We're pretending to do copy elision here; return to
837      // this when we have ASTs for such things.
838      if (!PerformImplicitConversion(Init, DeclType))
839        return false;
840
841      return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
842        << DeclType << InitEntity << "initializing"
843        << Init->getSourceRange();
844    }
845
846    // C99 6.7.8p16.
847    if (DeclType->isArrayType())
848      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
849        << Init->getSourceRange();
850
851    return CheckSingleInitializer(Init, DeclType);
852  } else if (getLangOptions().CPlusPlus) {
853    // C++ [dcl.init]p14:
854    //   [...] If the class is an aggregate (8.5.1), and the initializer
855    //   is a brace-enclosed list, see 8.5.1.
856    //
857    // Note: 8.5.1 is handled below; here, we diagnose the case where
858    // we have an initializer list and a destination type that is not
859    // an aggregate.
860    // FIXME: In C++0x, this is yet another form of initialization.
861    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
862      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
863      if (!ClassDecl->isAggregate())
864        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
865           << DeclType << Init->getSourceRange();
866    }
867  }
868
869  InitListChecker CheckInitList(this, InitList, DeclType);
870  return CheckInitList.HadError();
871}
872
873/// GetNameForDeclarator - Determine the full declaration name for the
874/// given Declarator.
875DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
876  switch (D.getKind()) {
877  case Declarator::DK_Abstract:
878    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
879    return DeclarationName();
880
881  case Declarator::DK_Normal:
882    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
883    return DeclarationName(D.getIdentifier());
884
885  case Declarator::DK_Constructor: {
886    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
887    Ty = Context.getCanonicalType(Ty);
888    return Context.DeclarationNames.getCXXConstructorName(Ty);
889  }
890
891  case Declarator::DK_Destructor: {
892    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
893    Ty = Context.getCanonicalType(Ty);
894    return Context.DeclarationNames.getCXXDestructorName(Ty);
895  }
896
897  case Declarator::DK_Conversion: {
898    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
899    Ty = Context.getCanonicalType(Ty);
900    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
901  }
902
903  case Declarator::DK_Operator:
904    assert(D.getIdentifier() == 0 && "operator names have no identifier");
905    return Context.DeclarationNames.getCXXOperatorName(
906                                                D.getOverloadedOperator());
907  }
908
909  assert(false && "Unknown name kind");
910  return DeclarationName();
911}
912
913Sema::DeclTy *
914Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
915  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
916  DeclarationName Name = GetNameForDeclarator(D);
917
918  // All of these full declarators require an identifier.  If it doesn't have
919  // one, the ParsedFreeStandingDeclSpec action should be used.
920  if (!Name) {
921    if (!D.getInvalidType())  // Reject this if we think it is valid.
922      Diag(D.getDeclSpec().getSourceRange().getBegin(),
923           diag::err_declarator_need_ident)
924        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
925    return 0;
926  }
927
928  // The scope passed in may not be a decl scope.  Zip up the scope tree until
929  // we find one that is.
930  while ((S->getFlags() & Scope::DeclScope) == 0 ||
931        (S->getFlags() & Scope::TemplateParamScope) != 0)
932    S = S->getParent();
933
934  DeclContext *DC;
935  Decl *PrevDecl;
936  ScopedDecl *New;
937  bool InvalidDecl = false;
938
939  // See if this is a redefinition of a variable in the same scope.
940  if (!D.getCXXScopeSpec().isSet()) {
941    DC = CurContext;
942    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
943  } else { // Something like "int foo::x;"
944    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
945    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
946
947    // C++ 7.3.1.2p2:
948    // Members (including explicit specializations of templates) of a named
949    // namespace can also be defined outside that namespace by explicit
950    // qualification of the name being defined, provided that the entity being
951    // defined was already declared in the namespace and the definition appears
952    // after the point of declaration in a namespace that encloses the
953    // declarations namespace.
954    //
955    // FIXME: We need to perform this check later, once we know that
956    // we've actually found a redeclaration. Otherwise, just the fact
957    // that there is some entity with the same name will suppress this
958    // diagnostic, e.g., we fail to diagnose:
959    //   class X {
960    //     void f();
961    //   };
962    //
963    //   void X::f(int) { } // ill-formed, but we don't complain.
964    if (PrevDecl == 0) {
965      // No previous declaration in the qualifying scope.
966      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
967        << Name << D.getCXXScopeSpec().getRange();
968      InvalidDecl = true;
969    } else if (!CurContext->Encloses(DC)) {
970      // The qualifying scope doesn't enclose the original declaration.
971      // Emit diagnostic based on current scope.
972      SourceLocation L = D.getIdentifierLoc();
973      SourceRange R = D.getCXXScopeSpec().getRange();
974      if (isa<FunctionDecl>(CurContext)) {
975        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
976      } else {
977        Diag(L, diag::err_invalid_declarator_scope)
978          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
979      }
980      InvalidDecl = true;
981    }
982  }
983
984  if (PrevDecl && PrevDecl->isTemplateParameter()) {
985    // Maybe we will complain about the shadowed template parameter.
986    InvalidDecl = InvalidDecl
987      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
988    // Just pretend that we didn't see the previous declaration.
989    PrevDecl = 0;
990  }
991
992  // In C++, the previous declaration we find might be a tag type
993  // (class or enum). In this case, the new declaration will hide the
994  // tag type.
995  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
996    PrevDecl = 0;
997
998  QualType R = GetTypeForDeclarator(D, S);
999  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1000
1001  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1002    // Check that there are no default arguments (C++ only).
1003    if (getLangOptions().CPlusPlus)
1004      CheckExtraCXXDefaultArguments(D);
1005
1006    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1007    if (!NewTD) return 0;
1008
1009    // Handle attributes prior to checking for duplicates in MergeVarDecl
1010    ProcessDeclAttributes(NewTD, D);
1011    // Merge the decl with the existing one if appropriate. If the decl is
1012    // in an outer scope, it isn't the same thing.
1013    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1014      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1015      if (NewTD == 0) return 0;
1016    }
1017    New = NewTD;
1018    if (S->getFnParent() == 0) {
1019      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1020      // then it shall have block scope.
1021      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1022        if (NewTD->getUnderlyingType()->isVariableArrayType())
1023          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1024        else
1025          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1026
1027        InvalidDecl = true;
1028      }
1029    }
1030  } else if (R.getTypePtr()->isFunctionType()) {
1031    FunctionDecl::StorageClass SC = FunctionDecl::None;
1032    switch (D.getDeclSpec().getStorageClassSpec()) {
1033      default: assert(0 && "Unknown storage class!");
1034      case DeclSpec::SCS_auto:
1035      case DeclSpec::SCS_register:
1036      case DeclSpec::SCS_mutable:
1037        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1038        InvalidDecl = true;
1039        break;
1040      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1041      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1042      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1043      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1044    }
1045
1046    bool isInline = D.getDeclSpec().isInlineSpecified();
1047    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1048    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1049
1050    FunctionDecl *NewFD;
1051    if (D.getKind() == Declarator::DK_Constructor) {
1052      // This is a C++ constructor declaration.
1053      assert(DC->isCXXRecord() &&
1054             "Constructors can only be declared in a member context");
1055
1056      bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
1057
1058      // Create the new declaration
1059      NewFD = CXXConstructorDecl::Create(Context,
1060                                         cast<CXXRecordDecl>(DC),
1061                                         D.getIdentifierLoc(), Name, R,
1062                                         isExplicit, isInline,
1063                                         /*isImplicitlyDeclared=*/false);
1064
1065      if (isInvalidDecl)
1066        NewFD->setInvalidDecl();
1067    } else if (D.getKind() == Declarator::DK_Destructor) {
1068      // This is a C++ destructor declaration.
1069      if (DC->isCXXRecord()) {
1070        bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
1071
1072        NewFD = CXXDestructorDecl::Create(Context,
1073                                          cast<CXXRecordDecl>(DC),
1074                                          D.getIdentifierLoc(), Name, R,
1075                                          isInline,
1076                                          /*isImplicitlyDeclared=*/false);
1077
1078        if (isInvalidDecl)
1079          NewFD->setInvalidDecl();
1080      } else {
1081        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1082        // Create a FunctionDecl to satisfy the function definition parsing
1083        // code path.
1084        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1085                                     Name, R, SC, isInline, LastDeclarator,
1086                                     // FIXME: Move to DeclGroup...
1087                                   D.getDeclSpec().getSourceRange().getBegin());
1088        NewFD->setInvalidDecl();
1089      }
1090    } else if (D.getKind() == Declarator::DK_Conversion) {
1091      if (!DC->isCXXRecord()) {
1092        Diag(D.getIdentifierLoc(),
1093             diag::err_conv_function_not_member);
1094        return 0;
1095      } else {
1096        bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
1097
1098        NewFD = CXXConversionDecl::Create(Context,
1099                                          cast<CXXRecordDecl>(DC),
1100                                          D.getIdentifierLoc(), Name, R,
1101                                          isInline, isExplicit);
1102
1103        if (isInvalidDecl)
1104          NewFD->setInvalidDecl();
1105      }
1106    } else if (DC->isCXXRecord()) {
1107      // This is a C++ method declaration.
1108      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1109                                    D.getIdentifierLoc(), Name, R,
1110                                    (SC == FunctionDecl::Static), isInline,
1111                                    LastDeclarator);
1112    } else {
1113      NewFD = FunctionDecl::Create(Context, DC,
1114                                   D.getIdentifierLoc(),
1115                                   Name, R, SC, isInline, LastDeclarator,
1116                                   // FIXME: Move to DeclGroup...
1117                                   D.getDeclSpec().getSourceRange().getBegin());
1118    }
1119    // Handle attributes.
1120    ProcessDeclAttributes(NewFD, D);
1121
1122    // Set the lexical context. If the declarator has a C++
1123    // scope specifier, the lexical context will be different
1124    // from the semantic context.
1125    NewFD->setLexicalDeclContext(CurContext);
1126
1127    // Handle GNU asm-label extension (encoded as an attribute).
1128    if (Expr *E = (Expr*) D.getAsmLabel()) {
1129      // The parser guarantees this is a string.
1130      StringLiteral *SE = cast<StringLiteral>(E);
1131      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1132                                                  SE->getByteLength())));
1133    }
1134
1135    // Copy the parameter declarations from the declarator D to
1136    // the function declaration NewFD, if they are available.
1137    if (D.getNumTypeObjects() > 0) {
1138      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1139
1140      // Create Decl objects for each parameter, adding them to the
1141      // FunctionDecl.
1142      llvm::SmallVector<ParmVarDecl*, 16> Params;
1143
1144      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1145      // function that takes no arguments, not a function that takes a
1146      // single void argument.
1147      // We let through "const void" here because Sema::GetTypeForDeclarator
1148      // already checks for that case.
1149      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1150          FTI.ArgInfo[0].Param &&
1151          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1152        // empty arg list, don't push any params.
1153        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1154
1155        // In C++, the empty parameter-type-list must be spelled "void"; a
1156        // typedef of void is not permitted.
1157        if (getLangOptions().CPlusPlus &&
1158            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1159          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1160        }
1161      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1162        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1163          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1164      }
1165
1166      NewFD->setParams(&Params[0], Params.size());
1167    } else if (R->getAsTypedefType()) {
1168      // When we're declaring a function with a typedef, as in the
1169      // following example, we'll need to synthesize (unnamed)
1170      // parameters for use in the declaration.
1171      //
1172      // @code
1173      // typedef void fn(int);
1174      // fn f;
1175      // @endcode
1176      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1177      if (!FT) {
1178        // This is a typedef of a function with no prototype, so we
1179        // don't need to do anything.
1180      } else if ((FT->getNumArgs() == 0) ||
1181          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1182           FT->getArgType(0)->isVoidType())) {
1183        // This is a zero-argument function. We don't need to do anything.
1184      } else {
1185        // Synthesize a parameter for each argument type.
1186        llvm::SmallVector<ParmVarDecl*, 16> Params;
1187        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1188             ArgType != FT->arg_type_end(); ++ArgType) {
1189          Params.push_back(ParmVarDecl::Create(Context, DC,
1190                                               SourceLocation(), 0,
1191                                               *ArgType, VarDecl::None,
1192                                               0, 0));
1193        }
1194
1195        NewFD->setParams(&Params[0], Params.size());
1196      }
1197    }
1198
1199    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
1200      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DC);
1201
1202      // C++ [class.copy]p3:
1203      //   A declaration of a constructor for a class X is ill-formed if
1204      //   its first parameter is of type (optionally cv-qualified) X and
1205      //   either there are no other parameters or else all other
1206      //   parameters have default arguments.
1207      if ((Constructor->getNumParams() == 1) ||
1208          (Constructor->getNumParams() > 1 &&
1209           Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1210        QualType ParamType = Constructor->getParamDecl(0)->getType();
1211        QualType ClassTy = Context.getTagDeclType(ClassDecl);
1212        if (Context.getCanonicalType(ParamType).getUnqualifiedType()
1213              == ClassTy) {
1214          Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1215            << SourceRange(Constructor->getParamDecl(0)->getLocation());
1216          Constructor->setInvalidDecl();
1217        }
1218      }
1219
1220      // Notify the class that we've added a constructor.
1221      ClassDecl->addedConstructor(Context, Constructor);
1222    }
1223    else if (isa<CXXDestructorDecl>(NewFD))
1224      cast<CXXRecordDecl>(NewFD->getParent())->setUserDeclaredDestructor(true);
1225    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1226      ActOnConversionDeclarator(Conversion);
1227
1228    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1229    if (NewFD->isOverloadedOperator() &&
1230        CheckOverloadedOperatorDeclaration(NewFD))
1231      NewFD->setInvalidDecl();
1232
1233    // Merge the decl with the existing one if appropriate. Since C functions
1234    // are in a flat namespace, make sure we consider decls in outer scopes.
1235    if (PrevDecl &&
1236        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1237      bool Redeclaration = false;
1238
1239      // If C++, determine whether NewFD is an overload of PrevDecl or
1240      // a declaration that requires merging. If it's an overload,
1241      // there's no more work to do here; we'll just add the new
1242      // function to the scope.
1243      OverloadedFunctionDecl::function_iterator MatchedDecl;
1244      if (!getLangOptions().CPlusPlus ||
1245          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1246        Decl *OldDecl = PrevDecl;
1247
1248        // If PrevDecl was an overloaded function, extract the
1249        // FunctionDecl that matched.
1250        if (isa<OverloadedFunctionDecl>(PrevDecl))
1251          OldDecl = *MatchedDecl;
1252
1253        // NewFD and PrevDecl represent declarations that need to be
1254        // merged.
1255        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1256
1257        if (NewFD == 0) return 0;
1258        if (Redeclaration) {
1259          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1260
1261          if (OldDecl == PrevDecl) {
1262            // Remove the name binding for the previous
1263            // declaration.
1264           if (S->isDeclScope(PrevDecl)) {
1265             IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
1266             S->RemoveDecl(PrevDecl);
1267           }
1268
1269           // Introduce the new binding for this declaration.
1270           IdResolver.AddDecl(NewFD);
1271           if (getLangOptions().CPlusPlus && NewFD->getParent())
1272             NewFD->getParent()->insert(Context, NewFD);
1273
1274           // Add the redeclaration to the current scope, since we'll
1275           // be skipping PushOnScopeChains.
1276           S->AddDecl(NewFD);
1277          } else {
1278            // We need to update the OverloadedFunctionDecl with the
1279            // latest declaration of this function, so that name
1280            // lookup will always refer to the latest declaration of
1281            // this function.
1282            *MatchedDecl = NewFD;
1283         }
1284
1285          if (getLangOptions().CPlusPlus) {
1286            // Add this declaration to the current context.
1287            CurContext->addDecl(Context, NewFD, false);
1288
1289            // Check default arguments now that we have merged decls.
1290            CheckCXXDefaultArguments(NewFD);
1291          }
1292
1293         return NewFD;
1294        }
1295      }
1296    }
1297    New = NewFD;
1298
1299    // In C++, check default arguments now that we have merged decls.
1300    if (getLangOptions().CPlusPlus)
1301      CheckCXXDefaultArguments(NewFD);
1302  } else {
1303    // Check that there are no default arguments (C++ only).
1304    if (getLangOptions().CPlusPlus)
1305      CheckExtraCXXDefaultArguments(D);
1306
1307    if (R.getTypePtr()->isObjCInterfaceType()) {
1308      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1309        << D.getIdentifier();
1310      InvalidDecl = true;
1311    }
1312
1313    VarDecl *NewVD;
1314    VarDecl::StorageClass SC;
1315    switch (D.getDeclSpec().getStorageClassSpec()) {
1316    default: assert(0 && "Unknown storage class!");
1317    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1318    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1319    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1320    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1321    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1322    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1323    case DeclSpec::SCS_mutable:
1324      // mutable can only appear on non-static class members, so it's always
1325      // an error here
1326      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1327      InvalidDecl = true;
1328      SC = VarDecl::None;
1329      break;
1330    }
1331
1332    IdentifierInfo *II = Name.getAsIdentifierInfo();
1333    if (!II) {
1334      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1335       << Name.getAsString();
1336      return 0;
1337    }
1338
1339    if (DC->isCXXRecord()) {
1340      assert(SC == VarDecl::Static && "Invalid storage class for member!");
1341      // This is a static data member for a C++ class.
1342      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1343                                      D.getIdentifierLoc(), II,
1344                                      R, LastDeclarator);
1345    } else {
1346      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1347      if (S->getFnParent() == 0) {
1348        // C99 6.9p2: The storage-class specifiers auto and register shall not
1349        // appear in the declaration specifiers in an external declaration.
1350        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1351          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1352          InvalidDecl = true;
1353        }
1354      }
1355      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1356                              II, R, SC, LastDeclarator,
1357                              // FIXME: Move to DeclGroup...
1358                              D.getDeclSpec().getSourceRange().getBegin());
1359      NewVD->setThreadSpecified(ThreadSpecified);
1360    }
1361    // Handle attributes prior to checking for duplicates in MergeVarDecl
1362    ProcessDeclAttributes(NewVD, D);
1363
1364    // Handle GNU asm-label extension (encoded as an attribute).
1365    if (Expr *E = (Expr*) D.getAsmLabel()) {
1366      // The parser guarantees this is a string.
1367      StringLiteral *SE = cast<StringLiteral>(E);
1368      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1369                                                  SE->getByteLength())));
1370    }
1371
1372    // Emit an error if an address space was applied to decl with local storage.
1373    // This includes arrays of objects with address space qualifiers, but not
1374    // automatic variables that point to other address spaces.
1375    // ISO/IEC TR 18037 S5.1.2
1376    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1377      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1378      InvalidDecl = true;
1379    }
1380    // Merge the decl with the existing one if appropriate. If the decl is
1381    // in an outer scope, it isn't the same thing.
1382    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1383      NewVD = MergeVarDecl(NewVD, PrevDecl);
1384      if (NewVD == 0) return 0;
1385    }
1386    New = NewVD;
1387  }
1388
1389  // Set the lexical context. If the declarator has a C++ scope specifier, the
1390  // lexical context will be different from the semantic context.
1391  New->setLexicalDeclContext(CurContext);
1392
1393  // If this has an identifier, add it to the scope stack.
1394  if (Name)
1395    PushOnScopeChains(New, S);
1396  // If any semantic error occurred, mark the decl as invalid.
1397  if (D.getInvalidType() || InvalidDecl)
1398    New->setInvalidDecl();
1399
1400  return New;
1401}
1402
1403void Sema::InitializerElementNotConstant(const Expr *Init) {
1404  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1405    << Init->getSourceRange();
1406}
1407
1408bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1409  switch (Init->getStmtClass()) {
1410  default:
1411    InitializerElementNotConstant(Init);
1412    return true;
1413  case Expr::ParenExprClass: {
1414    const ParenExpr* PE = cast<ParenExpr>(Init);
1415    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1416  }
1417  case Expr::CompoundLiteralExprClass:
1418    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1419  case Expr::DeclRefExprClass: {
1420    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1421    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1422      if (VD->hasGlobalStorage())
1423        return false;
1424      InitializerElementNotConstant(Init);
1425      return true;
1426    }
1427    if (isa<FunctionDecl>(D))
1428      return false;
1429    InitializerElementNotConstant(Init);
1430    return true;
1431  }
1432  case Expr::MemberExprClass: {
1433    const MemberExpr *M = cast<MemberExpr>(Init);
1434    if (M->isArrow())
1435      return CheckAddressConstantExpression(M->getBase());
1436    return CheckAddressConstantExpressionLValue(M->getBase());
1437  }
1438  case Expr::ArraySubscriptExprClass: {
1439    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1440    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1441    return CheckAddressConstantExpression(ASE->getBase()) ||
1442           CheckArithmeticConstantExpression(ASE->getIdx());
1443  }
1444  case Expr::StringLiteralClass:
1445  case Expr::PredefinedExprClass:
1446    return false;
1447  case Expr::UnaryOperatorClass: {
1448    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1449
1450    // C99 6.6p9
1451    if (Exp->getOpcode() == UnaryOperator::Deref)
1452      return CheckAddressConstantExpression(Exp->getSubExpr());
1453
1454    InitializerElementNotConstant(Init);
1455    return true;
1456  }
1457  }
1458}
1459
1460bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1461  switch (Init->getStmtClass()) {
1462  default:
1463    InitializerElementNotConstant(Init);
1464    return true;
1465  case Expr::ParenExprClass:
1466    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1467  case Expr::StringLiteralClass:
1468  case Expr::ObjCStringLiteralClass:
1469    return false;
1470  case Expr::CallExprClass:
1471  case Expr::CXXOperatorCallExprClass:
1472    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1473    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1474           Builtin::BI__builtin___CFStringMakeConstantString)
1475      return false;
1476
1477    InitializerElementNotConstant(Init);
1478    return true;
1479
1480  case Expr::UnaryOperatorClass: {
1481    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1482
1483    // C99 6.6p9
1484    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1485      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1486
1487    if (Exp->getOpcode() == UnaryOperator::Extension)
1488      return CheckAddressConstantExpression(Exp->getSubExpr());
1489
1490    InitializerElementNotConstant(Init);
1491    return true;
1492  }
1493  case Expr::BinaryOperatorClass: {
1494    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1495    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1496
1497    Expr *PExp = Exp->getLHS();
1498    Expr *IExp = Exp->getRHS();
1499    if (IExp->getType()->isPointerType())
1500      std::swap(PExp, IExp);
1501
1502    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1503    return CheckAddressConstantExpression(PExp) ||
1504           CheckArithmeticConstantExpression(IExp);
1505  }
1506  case Expr::ImplicitCastExprClass:
1507  case Expr::CStyleCastExprClass: {
1508    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1509    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1510      // Check for implicit promotion
1511      if (SubExpr->getType()->isFunctionType() ||
1512          SubExpr->getType()->isArrayType())
1513        return CheckAddressConstantExpressionLValue(SubExpr);
1514    }
1515
1516    // Check for pointer->pointer cast
1517    if (SubExpr->getType()->isPointerType())
1518      return CheckAddressConstantExpression(SubExpr);
1519
1520    if (SubExpr->getType()->isIntegralType()) {
1521      // Check for the special-case of a pointer->int->pointer cast;
1522      // this isn't standard, but some code requires it. See
1523      // PR2720 for an example.
1524      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1525        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1526          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1527          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1528          if (IntWidth >= PointerWidth) {
1529            return CheckAddressConstantExpression(SubCast->getSubExpr());
1530          }
1531        }
1532      }
1533    }
1534    if (SubExpr->getType()->isArithmeticType()) {
1535      return CheckArithmeticConstantExpression(SubExpr);
1536    }
1537
1538    InitializerElementNotConstant(Init);
1539    return true;
1540  }
1541  case Expr::ConditionalOperatorClass: {
1542    // FIXME: Should we pedwarn here?
1543    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1544    if (!Exp->getCond()->getType()->isArithmeticType()) {
1545      InitializerElementNotConstant(Init);
1546      return true;
1547    }
1548    if (CheckArithmeticConstantExpression(Exp->getCond()))
1549      return true;
1550    if (Exp->getLHS() &&
1551        CheckAddressConstantExpression(Exp->getLHS()))
1552      return true;
1553    return CheckAddressConstantExpression(Exp->getRHS());
1554  }
1555  case Expr::AddrLabelExprClass:
1556    return false;
1557  }
1558}
1559
1560static const Expr* FindExpressionBaseAddress(const Expr* E);
1561
1562static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1563  switch (E->getStmtClass()) {
1564  default:
1565    return E;
1566  case Expr::ParenExprClass: {
1567    const ParenExpr* PE = cast<ParenExpr>(E);
1568    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1569  }
1570  case Expr::MemberExprClass: {
1571    const MemberExpr *M = cast<MemberExpr>(E);
1572    if (M->isArrow())
1573      return FindExpressionBaseAddress(M->getBase());
1574    return FindExpressionBaseAddressLValue(M->getBase());
1575  }
1576  case Expr::ArraySubscriptExprClass: {
1577    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1578    return FindExpressionBaseAddress(ASE->getBase());
1579  }
1580  case Expr::UnaryOperatorClass: {
1581    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1582
1583    if (Exp->getOpcode() == UnaryOperator::Deref)
1584      return FindExpressionBaseAddress(Exp->getSubExpr());
1585
1586    return E;
1587  }
1588  }
1589}
1590
1591static const Expr* FindExpressionBaseAddress(const Expr* E) {
1592  switch (E->getStmtClass()) {
1593  default:
1594    return E;
1595  case Expr::ParenExprClass: {
1596    const ParenExpr* PE = cast<ParenExpr>(E);
1597    return FindExpressionBaseAddress(PE->getSubExpr());
1598  }
1599  case Expr::UnaryOperatorClass: {
1600    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1601
1602    // C99 6.6p9
1603    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1604      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1605
1606    if (Exp->getOpcode() == UnaryOperator::Extension)
1607      return FindExpressionBaseAddress(Exp->getSubExpr());
1608
1609    return E;
1610  }
1611  case Expr::BinaryOperatorClass: {
1612    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1613
1614    Expr *PExp = Exp->getLHS();
1615    Expr *IExp = Exp->getRHS();
1616    if (IExp->getType()->isPointerType())
1617      std::swap(PExp, IExp);
1618
1619    return FindExpressionBaseAddress(PExp);
1620  }
1621  case Expr::ImplicitCastExprClass: {
1622    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1623
1624    // Check for implicit promotion
1625    if (SubExpr->getType()->isFunctionType() ||
1626        SubExpr->getType()->isArrayType())
1627      return FindExpressionBaseAddressLValue(SubExpr);
1628
1629    // Check for pointer->pointer cast
1630    if (SubExpr->getType()->isPointerType())
1631      return FindExpressionBaseAddress(SubExpr);
1632
1633    // We assume that we have an arithmetic expression here;
1634    // if we don't, we'll figure it out later
1635    return 0;
1636  }
1637  case Expr::CStyleCastExprClass: {
1638    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1639
1640    // Check for pointer->pointer cast
1641    if (SubExpr->getType()->isPointerType())
1642      return FindExpressionBaseAddress(SubExpr);
1643
1644    // We assume that we have an arithmetic expression here;
1645    // if we don't, we'll figure it out later
1646    return 0;
1647  }
1648  }
1649}
1650
1651bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1652  switch (Init->getStmtClass()) {
1653  default:
1654    InitializerElementNotConstant(Init);
1655    return true;
1656  case Expr::ParenExprClass: {
1657    const ParenExpr* PE = cast<ParenExpr>(Init);
1658    return CheckArithmeticConstantExpression(PE->getSubExpr());
1659  }
1660  case Expr::FloatingLiteralClass:
1661  case Expr::IntegerLiteralClass:
1662  case Expr::CharacterLiteralClass:
1663  case Expr::ImaginaryLiteralClass:
1664  case Expr::TypesCompatibleExprClass:
1665  case Expr::CXXBoolLiteralExprClass:
1666    return false;
1667  case Expr::CallExprClass:
1668  case Expr::CXXOperatorCallExprClass: {
1669    const CallExpr *CE = cast<CallExpr>(Init);
1670
1671    // Allow any constant foldable calls to builtins.
1672    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1673      return false;
1674
1675    InitializerElementNotConstant(Init);
1676    return true;
1677  }
1678  case Expr::DeclRefExprClass: {
1679    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1680    if (isa<EnumConstantDecl>(D))
1681      return false;
1682    InitializerElementNotConstant(Init);
1683    return true;
1684  }
1685  case Expr::CompoundLiteralExprClass:
1686    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1687    // but vectors are allowed to be magic.
1688    if (Init->getType()->isVectorType())
1689      return false;
1690    InitializerElementNotConstant(Init);
1691    return true;
1692  case Expr::UnaryOperatorClass: {
1693    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1694
1695    switch (Exp->getOpcode()) {
1696    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1697    // See C99 6.6p3.
1698    default:
1699      InitializerElementNotConstant(Init);
1700      return true;
1701    case UnaryOperator::OffsetOf:
1702      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1703        return false;
1704      InitializerElementNotConstant(Init);
1705      return true;
1706    case UnaryOperator::Extension:
1707    case UnaryOperator::LNot:
1708    case UnaryOperator::Plus:
1709    case UnaryOperator::Minus:
1710    case UnaryOperator::Not:
1711      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1712    }
1713  }
1714  case Expr::SizeOfAlignOfExprClass: {
1715    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1716    // Special check for void types, which are allowed as an extension
1717    if (Exp->getTypeOfArgument()->isVoidType())
1718      return false;
1719    // alignof always evaluates to a constant.
1720    // FIXME: is sizeof(int[3.0]) a constant expression?
1721    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1722      InitializerElementNotConstant(Init);
1723      return true;
1724    }
1725    return false;
1726  }
1727  case Expr::BinaryOperatorClass: {
1728    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1729
1730    if (Exp->getLHS()->getType()->isArithmeticType() &&
1731        Exp->getRHS()->getType()->isArithmeticType()) {
1732      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1733             CheckArithmeticConstantExpression(Exp->getRHS());
1734    }
1735
1736    if (Exp->getLHS()->getType()->isPointerType() &&
1737        Exp->getRHS()->getType()->isPointerType()) {
1738      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1739      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1740
1741      // Only allow a null (constant integer) base; we could
1742      // allow some additional cases if necessary, but this
1743      // is sufficient to cover offsetof-like constructs.
1744      if (!LHSBase && !RHSBase) {
1745        return CheckAddressConstantExpression(Exp->getLHS()) ||
1746               CheckAddressConstantExpression(Exp->getRHS());
1747      }
1748    }
1749
1750    InitializerElementNotConstant(Init);
1751    return true;
1752  }
1753  case Expr::ImplicitCastExprClass:
1754  case Expr::CStyleCastExprClass: {
1755    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1756    if (SubExpr->getType()->isArithmeticType())
1757      return CheckArithmeticConstantExpression(SubExpr);
1758
1759    if (SubExpr->getType()->isPointerType()) {
1760      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1761      // If the pointer has a null base, this is an offsetof-like construct
1762      if (!Base)
1763        return CheckAddressConstantExpression(SubExpr);
1764    }
1765
1766    InitializerElementNotConstant(Init);
1767    return true;
1768  }
1769  case Expr::ConditionalOperatorClass: {
1770    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1771
1772    // If GNU extensions are disabled, we require all operands to be arithmetic
1773    // constant expressions.
1774    if (getLangOptions().NoExtensions) {
1775      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1776          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1777             CheckArithmeticConstantExpression(Exp->getRHS());
1778    }
1779
1780    // Otherwise, we have to emulate some of the behavior of fold here.
1781    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1782    // because it can constant fold things away.  To retain compatibility with
1783    // GCC code, we see if we can fold the condition to a constant (which we
1784    // should always be able to do in theory).  If so, we only require the
1785    // specified arm of the conditional to be a constant.  This is a horrible
1786    // hack, but is require by real world code that uses __builtin_constant_p.
1787    APValue Val;
1788    if (!Exp->getCond()->Evaluate(Val, Context)) {
1789      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1790      // won't be able to either.  Use it to emit the diagnostic though.
1791      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1792      assert(Res && "Evaluate couldn't evaluate this constant?");
1793      return Res;
1794    }
1795
1796    // Verify that the side following the condition is also a constant.
1797    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1798    if (Val.getInt() == 0)
1799      std::swap(TrueSide, FalseSide);
1800
1801    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1802      return true;
1803
1804    // Okay, the evaluated side evaluates to a constant, so we accept this.
1805    // Check to see if the other side is obviously not a constant.  If so,
1806    // emit a warning that this is a GNU extension.
1807    if (FalseSide && !FalseSide->isEvaluatable(Context))
1808      Diag(Init->getExprLoc(),
1809           diag::ext_typecheck_expression_not_constant_but_accepted)
1810        << FalseSide->getSourceRange();
1811    return false;
1812  }
1813  }
1814}
1815
1816bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1817  Expr::EvalResult Result;
1818
1819  Init = Init->IgnoreParens();
1820
1821  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1822    return false;
1823
1824  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1825  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1826    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1827
1828  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1829    return CheckForConstantInitializer(e->getInitializer(), DclT);
1830
1831  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1832    unsigned numInits = Exp->getNumInits();
1833    for (unsigned i = 0; i < numInits; i++) {
1834      // FIXME: Need to get the type of the declaration for C++,
1835      // because it could be a reference?
1836      if (CheckForConstantInitializer(Exp->getInit(i),
1837                                      Exp->getInit(i)->getType()))
1838        return true;
1839    }
1840    return false;
1841  }
1842
1843  // FIXME: We can probably remove some of this code below, now that
1844  // Expr::Evaluate is doing the heavy lifting for scalars.
1845
1846  if (Init->isNullPointerConstant(Context))
1847    return false;
1848  if (Init->getType()->isArithmeticType()) {
1849    QualType InitTy = Context.getCanonicalType(Init->getType())
1850                             .getUnqualifiedType();
1851    if (InitTy == Context.BoolTy) {
1852      // Special handling for pointers implicitly cast to bool;
1853      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1854      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1855        Expr* SubE = ICE->getSubExpr();
1856        if (SubE->getType()->isPointerType() ||
1857            SubE->getType()->isArrayType() ||
1858            SubE->getType()->isFunctionType()) {
1859          return CheckAddressConstantExpression(Init);
1860        }
1861      }
1862    } else if (InitTy->isIntegralType()) {
1863      Expr* SubE = 0;
1864      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1865        SubE = CE->getSubExpr();
1866      // Special check for pointer cast to int; we allow as an extension
1867      // an address constant cast to an integer if the integer
1868      // is of an appropriate width (this sort of code is apparently used
1869      // in some places).
1870      // FIXME: Add pedwarn?
1871      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1872      if (SubE && (SubE->getType()->isPointerType() ||
1873                   SubE->getType()->isArrayType() ||
1874                   SubE->getType()->isFunctionType())) {
1875        unsigned IntWidth = Context.getTypeSize(Init->getType());
1876        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1877        if (IntWidth >= PointerWidth)
1878          return CheckAddressConstantExpression(Init);
1879      }
1880    }
1881
1882    return CheckArithmeticConstantExpression(Init);
1883  }
1884
1885  if (Init->getType()->isPointerType())
1886    return CheckAddressConstantExpression(Init);
1887
1888  // An array type at the top level that isn't an init-list must
1889  // be a string literal
1890  if (Init->getType()->isArrayType())
1891    return false;
1892
1893  if (Init->getType()->isFunctionType())
1894    return false;
1895
1896  // Allow block exprs at top level.
1897  if (Init->getType()->isBlockPointerType())
1898    return false;
1899
1900  InitializerElementNotConstant(Init);
1901  return true;
1902}
1903
1904void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
1905  Decl *RealDecl = static_cast<Decl *>(dcl);
1906  Expr *Init = static_cast<Expr *>(init.release());
1907  assert(Init && "missing initializer");
1908
1909  // If there is no declaration, there was an error parsing it.  Just ignore
1910  // the initializer.
1911  if (RealDecl == 0) {
1912    delete Init;
1913    return;
1914  }
1915
1916  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1917  if (!VDecl) {
1918    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1919         diag::err_illegal_initializer);
1920    RealDecl->setInvalidDecl();
1921    return;
1922  }
1923  // Get the decls type and save a reference for later, since
1924  // CheckInitializerTypes may change it.
1925  QualType DclT = VDecl->getType(), SavT = DclT;
1926  if (VDecl->isBlockVarDecl()) {
1927    VarDecl::StorageClass SC = VDecl->getStorageClass();
1928    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1929      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1930      VDecl->setInvalidDecl();
1931    } else if (!VDecl->isInvalidDecl()) {
1932      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1933                                VDecl->getDeclName()))
1934        VDecl->setInvalidDecl();
1935
1936      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1937      if (!getLangOptions().CPlusPlus) {
1938        if (SC == VarDecl::Static) // C99 6.7.8p4.
1939          CheckForConstantInitializer(Init, DclT);
1940      }
1941    }
1942  } else if (VDecl->isFileVarDecl()) {
1943    if (VDecl->getStorageClass() == VarDecl::Extern)
1944      Diag(VDecl->getLocation(), diag::warn_extern_init);
1945    if (!VDecl->isInvalidDecl())
1946      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
1947                                VDecl->getDeclName()))
1948        VDecl->setInvalidDecl();
1949
1950    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1951    if (!getLangOptions().CPlusPlus) {
1952      // C99 6.7.8p4. All file scoped initializers need to be constant.
1953      CheckForConstantInitializer(Init, DclT);
1954    }
1955  }
1956  // If the type changed, it means we had an incomplete type that was
1957  // completed by the initializer. For example:
1958  //   int ary[] = { 1, 3, 5 };
1959  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1960  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1961    VDecl->setType(DclT);
1962    Init->setType(DclT);
1963  }
1964
1965  // Attach the initializer to the decl.
1966  VDecl->setInit(Init);
1967  return;
1968}
1969
1970void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1971  Decl *RealDecl = static_cast<Decl *>(dcl);
1972
1973  // If there is no declaration, there was an error parsing it. Just ignore it.
1974  if (RealDecl == 0)
1975    return;
1976
1977  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1978    QualType Type = Var->getType();
1979    // C++ [dcl.init.ref]p3:
1980    //   The initializer can be omitted for a reference only in a
1981    //   parameter declaration (8.3.5), in the declaration of a
1982    //   function return type, in the declaration of a class member
1983    //   within its class declaration (9.2), and where the extern
1984    //   specifier is explicitly used.
1985    if (Type->isReferenceType() &&
1986        Var->getStorageClass() != VarDecl::Extern &&
1987        Var->getStorageClass() != VarDecl::PrivateExtern) {
1988      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
1989        << Var->getDeclName()
1990        << SourceRange(Var->getLocation(), Var->getLocation());
1991      Var->setInvalidDecl();
1992      return;
1993    }
1994
1995    // C++ [dcl.init]p9:
1996    //
1997    //   If no initializer is specified for an object, and the object
1998    //   is of (possibly cv-qualified) non-POD class type (or array
1999    //   thereof), the object shall be default-initialized; if the
2000    //   object is of const-qualified type, the underlying class type
2001    //   shall have a user-declared default constructor.
2002    if (getLangOptions().CPlusPlus) {
2003      QualType InitType = Type;
2004      if (const ArrayType *Array = Context.getAsArrayType(Type))
2005        InitType = Array->getElementType();
2006      if (Var->getStorageClass() != VarDecl::Extern &&
2007          Var->getStorageClass() != VarDecl::PrivateExtern &&
2008          InitType->isRecordType()) {
2009        const CXXConstructorDecl *Constructor
2010          = PerformInitializationByConstructor(InitType, 0, 0,
2011                                               Var->getLocation(),
2012                                               SourceRange(Var->getLocation(),
2013                                                           Var->getLocation()),
2014                                               Var->getDeclName(),
2015                                               IK_Default);
2016        if (!Constructor)
2017          Var->setInvalidDecl();
2018      }
2019    }
2020
2021#if 0
2022    // FIXME: Temporarily disabled because we are not properly parsing
2023    // linkage specifications on declarations, e.g.,
2024    //
2025    //   extern "C" const CGPoint CGPointerZero;
2026    //
2027    // C++ [dcl.init]p9:
2028    //
2029    //     If no initializer is specified for an object, and the
2030    //     object is of (possibly cv-qualified) non-POD class type (or
2031    //     array thereof), the object shall be default-initialized; if
2032    //     the object is of const-qualified type, the underlying class
2033    //     type shall have a user-declared default
2034    //     constructor. Otherwise, if no initializer is specified for
2035    //     an object, the object and its subobjects, if any, have an
2036    //     indeterminate initial value; if the object or any of its
2037    //     subobjects are of const-qualified type, the program is
2038    //     ill-formed.
2039    //
2040    // This isn't technically an error in C, so we don't diagnose it.
2041    //
2042    // FIXME: Actually perform the POD/user-defined default
2043    // constructor check.
2044    if (getLangOptions().CPlusPlus &&
2045        Context.getCanonicalType(Type).isConstQualified() &&
2046        Var->getStorageClass() != VarDecl::Extern)
2047      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2048        << Var->getName()
2049        << SourceRange(Var->getLocation(), Var->getLocation());
2050#endif
2051  }
2052}
2053
2054/// The declarators are chained together backwards, reverse the list.
2055Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2056  // Often we have single declarators, handle them quickly.
2057  Decl *GroupDecl = static_cast<Decl*>(group);
2058  if (GroupDecl == 0)
2059    return 0;
2060
2061  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2062  ScopedDecl *NewGroup = 0;
2063  if (Group->getNextDeclarator() == 0)
2064    NewGroup = Group;
2065  else { // reverse the list.
2066    while (Group) {
2067      ScopedDecl *Next = Group->getNextDeclarator();
2068      Group->setNextDeclarator(NewGroup);
2069      NewGroup = Group;
2070      Group = Next;
2071    }
2072  }
2073  // Perform semantic analysis that depends on having fully processed both
2074  // the declarator and initializer.
2075  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2076    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2077    if (!IDecl)
2078      continue;
2079    QualType T = IDecl->getType();
2080
2081    if (T->isVariableArrayType()) {
2082      const VariableArrayType *VAT =
2083        cast<VariableArrayType>(T.getUnqualifiedType());
2084
2085      // FIXME: This won't give the correct result for
2086      // int a[10][n];
2087      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2088      if (IDecl->isFileVarDecl()) {
2089        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2090          SizeRange;
2091
2092        IDecl->setInvalidDecl();
2093      } else {
2094        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2095        // static storage duration, it shall not have a variable length array.
2096        if (IDecl->getStorageClass() == VarDecl::Static) {
2097          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2098            << SizeRange;
2099          IDecl->setInvalidDecl();
2100        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2101          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2102            << SizeRange;
2103          IDecl->setInvalidDecl();
2104        }
2105      }
2106    } else if (T->isVariablyModifiedType()) {
2107      if (IDecl->isFileVarDecl()) {
2108        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2109        IDecl->setInvalidDecl();
2110      } else {
2111        if (IDecl->getStorageClass() == VarDecl::Extern) {
2112          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2113          IDecl->setInvalidDecl();
2114        }
2115      }
2116    }
2117
2118    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2119    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2120    if (IDecl->isBlockVarDecl() &&
2121        IDecl->getStorageClass() != VarDecl::Extern) {
2122      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2123        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2124        IDecl->setInvalidDecl();
2125      }
2126    }
2127    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2128    // object that has file scope without an initializer, and without a
2129    // storage-class specifier or with the storage-class specifier "static",
2130    // constitutes a tentative definition. Note: A tentative definition with
2131    // external linkage is valid (C99 6.2.2p5).
2132    if (isTentativeDefinition(IDecl)) {
2133      if (T->isIncompleteArrayType()) {
2134        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2135        // array to be completed. Don't issue a diagnostic.
2136      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2137        // C99 6.9.2p3: If the declaration of an identifier for an object is
2138        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2139        // declared type shall not be an incomplete type.
2140        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2141        IDecl->setInvalidDecl();
2142      }
2143    }
2144    if (IDecl->isFileVarDecl())
2145      CheckForFileScopedRedefinitions(S, IDecl);
2146  }
2147  return NewGroup;
2148}
2149
2150/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2151/// to introduce parameters into function prototype scope.
2152Sema::DeclTy *
2153Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2154  // FIXME: disallow CXXScopeSpec for param declarators.
2155  const DeclSpec &DS = D.getDeclSpec();
2156
2157  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2158  VarDecl::StorageClass StorageClass = VarDecl::None;
2159  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2160    StorageClass = VarDecl::Register;
2161  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2162    Diag(DS.getStorageClassSpecLoc(),
2163         diag::err_invalid_storage_class_in_func_decl);
2164    D.getMutableDeclSpec().ClearStorageClassSpecs();
2165  }
2166  if (DS.isThreadSpecified()) {
2167    Diag(DS.getThreadSpecLoc(),
2168         diag::err_invalid_storage_class_in_func_decl);
2169    D.getMutableDeclSpec().ClearStorageClassSpecs();
2170  }
2171
2172  // Check that there are no default arguments inside the type of this
2173  // parameter (C++ only).
2174  if (getLangOptions().CPlusPlus)
2175    CheckExtraCXXDefaultArguments(D);
2176
2177  // In this context, we *do not* check D.getInvalidType(). If the declarator
2178  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2179  // though it will not reflect the user specified type.
2180  QualType parmDeclType = GetTypeForDeclarator(D, S);
2181
2182  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2183
2184  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2185  // Can this happen for params?  We already checked that they don't conflict
2186  // among each other.  Here they can only shadow globals, which is ok.
2187  IdentifierInfo *II = D.getIdentifier();
2188  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2189    if (PrevDecl->isTemplateParameter()) {
2190      // Maybe we will complain about the shadowed template parameter.
2191      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2192      // Just pretend that we didn't see the previous declaration.
2193      PrevDecl = 0;
2194    } else if (S->isDeclScope(PrevDecl)) {
2195      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2196
2197      // Recover by removing the name
2198      II = 0;
2199      D.SetIdentifier(0, D.getIdentifierLoc());
2200    }
2201  }
2202
2203  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2204  // Doing the promotion here has a win and a loss. The win is the type for
2205  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2206  // code generator). The loss is the orginal type isn't preserved. For example:
2207  //
2208  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2209  //    int blockvardecl[5];
2210  //    sizeof(parmvardecl);  // size == 4
2211  //    sizeof(blockvardecl); // size == 20
2212  // }
2213  //
2214  // For expressions, all implicit conversions are captured using the
2215  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2216  //
2217  // FIXME: If a source translation tool needs to see the original type, then
2218  // we need to consider storing both types (in ParmVarDecl)...
2219  //
2220  if (parmDeclType->isArrayType()) {
2221    // int x[restrict 4] ->  int *restrict
2222    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2223  } else if (parmDeclType->isFunctionType())
2224    parmDeclType = Context.getPointerType(parmDeclType);
2225
2226  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2227                                         D.getIdentifierLoc(), II,
2228                                         parmDeclType, StorageClass,
2229                                         0, 0);
2230
2231  if (D.getInvalidType())
2232    New->setInvalidDecl();
2233
2234  // Add the parameter declaration into this scope.
2235  S->AddDecl(New);
2236  if (II)
2237    IdResolver.AddDecl(New);
2238
2239  ProcessDeclAttributes(New, D);
2240  return New;
2241
2242}
2243
2244Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2245  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2246  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2247         "Not a function declarator!");
2248  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2249
2250  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2251  // for a K&R function.
2252  if (!FTI.hasPrototype) {
2253    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2254      if (FTI.ArgInfo[i].Param == 0) {
2255        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2256          << FTI.ArgInfo[i].Ident;
2257        // Implicitly declare the argument as type 'int' for lack of a better
2258        // type.
2259        DeclSpec DS;
2260        const char* PrevSpec; // unused
2261        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2262                           PrevSpec);
2263        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2264        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2265        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2266      }
2267    }
2268  } else {
2269    // FIXME: Diagnose arguments without names in C.
2270  }
2271
2272  Scope *GlobalScope = FnBodyScope->getParent();
2273
2274  return ActOnStartOfFunctionDef(FnBodyScope,
2275                                 ActOnDeclarator(GlobalScope, D, 0));
2276}
2277
2278Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2279  Decl *decl = static_cast<Decl*>(D);
2280  FunctionDecl *FD = cast<FunctionDecl>(decl);
2281
2282  // See if this is a redefinition.
2283  const FunctionDecl *Definition;
2284  if (FD->getBody(Definition)) {
2285    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2286    Diag(Definition->getLocation(), diag::note_previous_definition);
2287  }
2288
2289  PushDeclContext(FnBodyScope, FD);
2290
2291  // Check the validity of our function parameters
2292  CheckParmsForFunctionDef(FD);
2293
2294  // Introduce our parameters into the function scope
2295  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2296    ParmVarDecl *Param = FD->getParamDecl(p);
2297    // If this has an identifier, add it to the scope stack.
2298    if (Param->getIdentifier())
2299      PushOnScopeChains(Param, FnBodyScope);
2300  }
2301
2302  return FD;
2303}
2304
2305Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2306  Decl *dcl = static_cast<Decl *>(D);
2307  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2308  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2309    FD->setBody(Body);
2310    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2311  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2312    MD->setBody((Stmt*)Body);
2313  } else
2314    return 0;
2315  PopDeclContext();
2316  // Verify and clean out per-function state.
2317
2318  // Check goto/label use.
2319  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2320       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2321    // Verify that we have no forward references left.  If so, there was a goto
2322    // or address of a label taken, but no definition of it.  Label fwd
2323    // definitions are indicated with a null substmt.
2324    if (I->second->getSubStmt() == 0) {
2325      LabelStmt *L = I->second;
2326      // Emit error.
2327      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2328
2329      // At this point, we have gotos that use the bogus label.  Stitch it into
2330      // the function body so that they aren't leaked and that the AST is well
2331      // formed.
2332      if (Body) {
2333        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2334        cast<CompoundStmt>(Body)->push_back(L);
2335      } else {
2336        // The whole function wasn't parsed correctly, just delete this.
2337        delete L;
2338      }
2339    }
2340  }
2341  LabelMap.clear();
2342
2343  return D;
2344}
2345
2346/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2347/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2348ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2349                                           IdentifierInfo &II, Scope *S) {
2350  // Extension in C99.  Legal in C90, but warn about it.
2351  if (getLangOptions().C99)
2352    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2353  else
2354    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2355
2356  // FIXME: handle stuff like:
2357  // void foo() { extern float X(); }
2358  // void bar() { X(); }  <-- implicit decl for X in another scope.
2359
2360  // Set a Declarator for the implicit definition: int foo();
2361  const char *Dummy;
2362  DeclSpec DS;
2363  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2364  Error = Error; // Silence warning.
2365  assert(!Error && "Error setting up implicit decl!");
2366  Declarator D(DS, Declarator::BlockContext);
2367  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2368  D.SetIdentifier(&II, Loc);
2369
2370  // Insert this function into translation-unit scope.
2371
2372  DeclContext *PrevDC = CurContext;
2373  CurContext = Context.getTranslationUnitDecl();
2374
2375  FunctionDecl *FD =
2376    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2377  FD->setImplicit();
2378
2379  CurContext = PrevDC;
2380
2381  return FD;
2382}
2383
2384
2385TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2386                                    ScopedDecl *LastDeclarator) {
2387  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2388  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2389
2390  // Scope manipulation handled by caller.
2391  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2392                                           D.getIdentifierLoc(),
2393                                           D.getIdentifier(),
2394                                           T, LastDeclarator);
2395  if (D.getInvalidType())
2396    NewTD->setInvalidDecl();
2397  return NewTD;
2398}
2399
2400/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2401/// former case, Name will be non-null.  In the later case, Name will be null.
2402/// TagType indicates what kind of tag this is. TK indicates whether this is a
2403/// reference/declaration/definition of a tag.
2404Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2405                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2406                             IdentifierInfo *Name, SourceLocation NameLoc,
2407                             AttributeList *Attr) {
2408  // If this is not a definition, it must have a name.
2409  assert((Name != 0 || TK == TK_Definition) &&
2410         "Nameless record must be a definition!");
2411
2412  TagDecl::TagKind Kind;
2413  switch (TagType) {
2414  default: assert(0 && "Unknown tag type!");
2415  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2416  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2417  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2418  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2419  }
2420
2421  DeclContext *DC = CurContext;
2422  ScopedDecl *PrevDecl = 0;
2423
2424  if (Name && SS.isNotEmpty()) {
2425    // We have a nested-name tag ('struct foo::bar').
2426
2427    // Check for invalid 'foo::'.
2428    if (SS.isInvalid()) {
2429      Name = 0;
2430      goto CreateNewDecl;
2431    }
2432
2433    DC = static_cast<DeclContext*>(SS.getScopeRep());
2434    // Look-up name inside 'foo::'.
2435    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2436
2437    // A tag 'foo::bar' must already exist.
2438    if (PrevDecl == 0) {
2439      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2440      Name = 0;
2441      goto CreateNewDecl;
2442    }
2443  } else {
2444    // If this is a named struct, check to see if there was a previous forward
2445    // declaration or definition.
2446    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2447    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2448  }
2449
2450  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2451    // Maybe we will complain about the shadowed template parameter.
2452    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2453    // Just pretend that we didn't see the previous declaration.
2454    PrevDecl = 0;
2455  }
2456
2457  if (PrevDecl) {
2458    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2459            "unexpected Decl type");
2460    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2461      // If this is a use of a previous tag, or if the tag is already declared
2462      // in the same scope (so that the definition/declaration completes or
2463      // rementions the tag), reuse the decl.
2464      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2465        // Make sure that this wasn't declared as an enum and now used as a
2466        // struct or something similar.
2467        if (PrevTagDecl->getTagKind() != Kind) {
2468          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2469          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2470          // Recover by making this an anonymous redefinition.
2471          Name = 0;
2472          PrevDecl = 0;
2473        } else {
2474          // If this is a use, just return the declaration we found.
2475
2476          // FIXME: In the future, return a variant or some other clue
2477          // for the consumer of this Decl to know it doesn't own it.
2478          // For our current ASTs this shouldn't be a problem, but will
2479          // need to be changed with DeclGroups.
2480          if (TK == TK_Reference)
2481            return PrevDecl;
2482
2483          // Diagnose attempts to redefine a tag.
2484          if (TK == TK_Definition) {
2485            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2486              Diag(NameLoc, diag::err_redefinition) << Name;
2487              Diag(Def->getLocation(), diag::note_previous_definition);
2488              // If this is a redefinition, recover by making this struct be
2489              // anonymous, which will make any later references get the previous
2490              // definition.
2491              Name = 0;
2492              PrevDecl = 0;
2493            }
2494            // Okay, this is definition of a previously declared or referenced
2495            // tag PrevDecl. We're going to create a new Decl for it.
2496          }
2497        }
2498        // If we get here we have (another) forward declaration or we
2499        // have a definition.  Just create a new decl.
2500      } else {
2501        // If we get here, this is a definition of a new tag type in a nested
2502        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2503        // new decl/type.  We set PrevDecl to NULL so that the entities
2504        // have distinct types.
2505        PrevDecl = 0;
2506      }
2507      // If we get here, we're going to create a new Decl. If PrevDecl
2508      // is non-NULL, it's a definition of the tag declared by
2509      // PrevDecl. If it's NULL, we have a new definition.
2510    } else {
2511      // PrevDecl is a namespace.
2512      if (isDeclInScope(PrevDecl, DC, S)) {
2513        // The tag name clashes with a namespace name, issue an error and
2514        // recover by making this tag be anonymous.
2515        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2516        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2517        Name = 0;
2518        PrevDecl = 0;
2519      } else {
2520        // The existing declaration isn't relevant to us; we're in a
2521        // new scope, so clear out the previous declaration.
2522        PrevDecl = 0;
2523      }
2524    }
2525  }
2526
2527  CreateNewDecl:
2528
2529  // If there is an identifier, use the location of the identifier as the
2530  // location of the decl, otherwise use the location of the struct/union
2531  // keyword.
2532  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2533
2534  // Otherwise, create a new declaration. If there is a previous
2535  // declaration of the same entity, the two will be linked via
2536  // PrevDecl.
2537  TagDecl *New;
2538  if (Kind == TagDecl::TK_enum) {
2539    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2540    // enum X { A, B, C } D;    D should chain to X.
2541    New = EnumDecl::Create(Context, DC, Loc, Name,
2542                           cast_or_null<EnumDecl>(PrevDecl));
2543    // If this is an undefined enum, warn.
2544    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2545  } else {
2546    // struct/union/class
2547
2548    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2549    // struct X { int A; } D;    D should chain to X.
2550    if (getLangOptions().CPlusPlus)
2551      // FIXME: Look for a way to use RecordDecl for simple structs.
2552      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2553                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2554    else
2555      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2556                               cast_or_null<RecordDecl>(PrevDecl));
2557  }
2558
2559  if (Kind != TagDecl::TK_enum) {
2560    // Handle #pragma pack: if the #pragma pack stack has non-default
2561    // alignment, make up a packed attribute for this decl. These
2562    // attributes are checked when the ASTContext lays out the
2563    // structure.
2564    //
2565    // It is important for implementing the correct semantics that this
2566    // happen here (in act on tag decl). The #pragma pack stack is
2567    // maintained as a result of parser callbacks which can occur at
2568    // many points during the parsing of a struct declaration (because
2569    // the #pragma tokens are effectively skipped over during the
2570    // parsing of the struct).
2571    if (unsigned Alignment = PackContext.getAlignment())
2572      New->addAttr(new PackedAttr(Alignment * 8));
2573  }
2574
2575  if (Attr)
2576    ProcessDeclAttributeList(New, Attr);
2577
2578  // Set the lexical context. If the tag has a C++ scope specifier, the
2579  // lexical context will be different from the semantic context.
2580  New->setLexicalDeclContext(CurContext);
2581
2582  // If this has an identifier, add it to the scope stack.
2583  if (Name) {
2584    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2585    // we find one that is.
2586    while ((S->getFlags() & Scope::DeclScope) == 0)
2587      S = S->getParent();
2588
2589    // Add it to the decl chain.
2590    PushOnScopeChains(New, S);
2591  }
2592
2593  return New;
2594}
2595
2596/// Collect the instance variables declared in an Objective-C object.  Used in
2597/// the creation of structures from objects using the @defs directive.
2598/// FIXME: This should be consolidated with CollectObjCIvars as it is also
2599/// part of the AST generation logic of @defs.
2600static void CollectIvars(ObjCInterfaceDecl *Class, RecordDecl *Record,
2601                         ASTContext& Ctx,
2602                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2603  if (Class->getSuperClass())
2604    CollectIvars(Class->getSuperClass(), Record, Ctx, ivars);
2605
2606  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2607  for (ObjCInterfaceDecl::ivar_iterator
2608        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2609
2610    ObjCIvarDecl* ID = *I;
2611    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, Record,
2612                                                ID->getLocation(),
2613                                                ID->getIdentifier(),
2614                                                ID->getType(),
2615                                                ID->getBitWidth()));
2616  }
2617}
2618
2619/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2620/// instance variables of ClassName into Decls.
2621void Sema::ActOnDefs(Scope *S, DeclTy *TagD, SourceLocation DeclStart,
2622                     IdentifierInfo *ClassName,
2623                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2624  // Check that ClassName is a valid class
2625  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2626  if (!Class) {
2627    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2628    return;
2629  }
2630  // Collect the instance variables
2631  CollectIvars(Class, dyn_cast<RecordDecl>((Decl*)TagD), Context, Decls);
2632
2633  // Introduce all of these fields into the appropriate scope.
2634  for (llvm::SmallVectorImpl<DeclTy*>::iterator D = Decls.begin();
2635       D != Decls.end(); ++D) {
2636    FieldDecl *FD = cast<FieldDecl>((Decl*)*D);
2637    if (getLangOptions().CPlusPlus)
2638      PushOnScopeChains(cast<FieldDecl>(FD), S);
2639    else if (RecordDecl *Record = dyn_cast<RecordDecl>((Decl*)TagD))
2640      Record->addDecl(Context, FD);
2641  }
2642}
2643
2644/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2645/// types into constant array types in certain situations which would otherwise
2646/// be errors (for GCC compatibility).
2647static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2648                                                    ASTContext &Context) {
2649  // This method tries to turn a variable array into a constant
2650  // array even when the size isn't an ICE.  This is necessary
2651  // for compatibility with code that depends on gcc's buggy
2652  // constant expression folding, like struct {char x[(int)(char*)2];}
2653  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2654  if (!VLATy) return QualType();
2655
2656  APValue Result;
2657  if (!VLATy->getSizeExpr() ||
2658      !VLATy->getSizeExpr()->Evaluate(Result, Context))
2659    return QualType();
2660
2661  assert(Result.isInt() && "Size expressions must be integers!");
2662  llvm::APSInt &Res = Result.getInt();
2663  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2664    return Context.getConstantArrayType(VLATy->getElementType(),
2665                                        Res, ArrayType::Normal, 0);
2666  return QualType();
2667}
2668
2669bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2670                          QualType FieldTy, const Expr *BitWidth) {
2671  // FIXME: 6.7.2.1p4 - verify the field type.
2672
2673  llvm::APSInt Value;
2674  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2675    return true;
2676
2677  // Zero-width bitfield is ok for anonymous field.
2678  if (Value == 0 && FieldName)
2679    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
2680
2681  if (Value.isNegative())
2682    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2683
2684  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2685  // FIXME: We won't need the 0 size once we check that the field type is valid.
2686  if (TypeSize && Value.getZExtValue() > TypeSize)
2687    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
2688       << FieldName << (unsigned)TypeSize;
2689
2690  return false;
2691}
2692
2693/// ActOnField - Each field of a struct/union/class is passed into this in order
2694/// to create a FieldDecl object for it.
2695Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
2696                               SourceLocation DeclStart,
2697                               Declarator &D, ExprTy *BitfieldWidth) {
2698  IdentifierInfo *II = D.getIdentifier();
2699  Expr *BitWidth = (Expr*)BitfieldWidth;
2700  SourceLocation Loc = DeclStart;
2701  RecordDecl *Record = (RecordDecl *)TagD;
2702  if (II) Loc = D.getIdentifierLoc();
2703
2704  // FIXME: Unnamed fields can be handled in various different ways, for
2705  // example, unnamed unions inject all members into the struct namespace!
2706
2707  QualType T = GetTypeForDeclarator(D, S);
2708  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2709  bool InvalidDecl = false;
2710
2711  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2712  // than a variably modified type.
2713  if (T->isVariablyModifiedType()) {
2714    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2715    if (!FixedTy.isNull()) {
2716      Diag(Loc, diag::warn_illegal_constant_array_size);
2717      T = FixedTy;
2718    } else {
2719      Diag(Loc, diag::err_typecheck_field_variable_size);
2720      T = Context.IntTy;
2721      InvalidDecl = true;
2722    }
2723  }
2724
2725  if (BitWidth) {
2726    if (VerifyBitField(Loc, II, T, BitWidth))
2727      InvalidDecl = true;
2728  } else {
2729    // Not a bitfield.
2730
2731    // validate II.
2732
2733  }
2734
2735  // FIXME: Chain fielddecls together.
2736  FieldDecl *NewFD;
2737
2738  // FIXME: We don't want CurContext for C, do we? No, we'll need some
2739  // other way to determine the current RecordDecl.
2740  NewFD = FieldDecl::Create(Context, Record,
2741                            Loc, II, T, BitWidth,
2742                            D.getDeclSpec().getStorageClassSpec() ==
2743                              DeclSpec::SCS_mutable,
2744                            /*PrevDecl=*/0);
2745
2746  ProcessDeclAttributes(NewFD, D);
2747
2748  if (D.getInvalidType() || InvalidDecl)
2749    NewFD->setInvalidDecl();
2750
2751  if (II && getLangOptions().CPlusPlus)
2752    PushOnScopeChains(NewFD, S);
2753  else
2754    Record->addDecl(Context, NewFD);
2755
2756  return NewFD;
2757}
2758
2759/// TranslateIvarVisibility - Translate visibility from a token ID to an
2760///  AST enum value.
2761static ObjCIvarDecl::AccessControl
2762TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2763  switch (ivarVisibility) {
2764  default: assert(0 && "Unknown visitibility kind");
2765  case tok::objc_private: return ObjCIvarDecl::Private;
2766  case tok::objc_public: return ObjCIvarDecl::Public;
2767  case tok::objc_protected: return ObjCIvarDecl::Protected;
2768  case tok::objc_package: return ObjCIvarDecl::Package;
2769  }
2770}
2771
2772/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2773/// in order to create an IvarDecl object for it.
2774Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2775                              SourceLocation DeclStart,
2776                              Declarator &D, ExprTy *BitfieldWidth,
2777                              tok::ObjCKeywordKind Visibility) {
2778  IdentifierInfo *II = D.getIdentifier();
2779  Expr *BitWidth = (Expr*)BitfieldWidth;
2780  SourceLocation Loc = DeclStart;
2781  if (II) Loc = D.getIdentifierLoc();
2782
2783  // FIXME: Unnamed fields can be handled in various different ways, for
2784  // example, unnamed unions inject all members into the struct namespace!
2785
2786  QualType T = GetTypeForDeclarator(D, S);
2787  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2788  bool InvalidDecl = false;
2789
2790  if (BitWidth) {
2791    // TODO: Validate.
2792    //printf("WARNING: BITFIELDS IGNORED!\n");
2793
2794    // 6.7.2.1p3
2795    // 6.7.2.1p4
2796
2797  } else {
2798    // Not a bitfield.
2799
2800    // validate II.
2801
2802  }
2803
2804  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2805  // than a variably modified type.
2806  if (T->isVariablyModifiedType()) {
2807    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2808    InvalidDecl = true;
2809  }
2810
2811  // Get the visibility (access control) for this ivar.
2812  ObjCIvarDecl::AccessControl ac =
2813    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2814                                        : ObjCIvarDecl::None;
2815
2816  // Construct the decl.
2817  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2818                                             (Expr *)BitfieldWidth);
2819
2820  // Process attributes attached to the ivar.
2821  ProcessDeclAttributes(NewID, D);
2822
2823  if (D.getInvalidType() || InvalidDecl)
2824    NewID->setInvalidDecl();
2825
2826  return NewID;
2827}
2828
2829void Sema::ActOnFields(Scope* S,
2830                       SourceLocation RecLoc, DeclTy *RecDecl,
2831                       DeclTy **Fields, unsigned NumFields,
2832                       SourceLocation LBrac, SourceLocation RBrac,
2833                       AttributeList *Attr) {
2834  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2835  assert(EnclosingDecl && "missing record or interface decl");
2836  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2837
2838  if (Record)
2839    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2840      // Diagnose code like:
2841      //     struct S { struct S {} X; };
2842      // We discover this when we complete the outer S.  Reject and ignore the
2843      // outer S.
2844      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2845        << DefRecord->getDeclName();
2846      Diag(RecLoc, diag::note_previous_definition);
2847      Record->setInvalidDecl();
2848      return;
2849    }
2850
2851  // Verify that all the fields are okay.
2852  unsigned NumNamedMembers = 0;
2853  llvm::SmallVector<FieldDecl*, 32> RecFields;
2854  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2855
2856  for (unsigned i = 0; i != NumFields; ++i) {
2857
2858    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2859    assert(FD && "missing field decl");
2860
2861    // Remember all fields.
2862    RecFields.push_back(FD);
2863
2864    // Get the type for the field.
2865    Type *FDTy = FD->getType().getTypePtr();
2866
2867    // C99 6.7.2.1p2 - A field may not be a function type.
2868    if (FDTy->isFunctionType()) {
2869      Diag(FD->getLocation(), diag::err_field_declared_as_function)
2870        << FD->getDeclName();
2871      FD->setInvalidDecl();
2872      EnclosingDecl->setInvalidDecl();
2873      continue;
2874    }
2875    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2876    if (FDTy->isIncompleteType()) {
2877      if (!Record) {  // Incomplete ivar type is always an error.
2878        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2879        FD->setInvalidDecl();
2880        EnclosingDecl->setInvalidDecl();
2881        continue;
2882      }
2883      if (i != NumFields-1 ||                   // ... that the last member ...
2884          !Record->isStruct() ||  // ... of a structure ...
2885          !FDTy->isArrayType()) {         //... may have incomplete array type.
2886        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
2887        FD->setInvalidDecl();
2888        EnclosingDecl->setInvalidDecl();
2889        continue;
2890      }
2891      if (NumNamedMembers < 1) {  //... must have more than named member ...
2892        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
2893          << FD->getDeclName();
2894        FD->setInvalidDecl();
2895        EnclosingDecl->setInvalidDecl();
2896        continue;
2897      }
2898      // Okay, we have a legal flexible array member at the end of the struct.
2899      if (Record)
2900        Record->setHasFlexibleArrayMember(true);
2901    }
2902    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2903    /// field of another structure or the element of an array.
2904    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2905      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2906        // If this is a member of a union, then entire union becomes "flexible".
2907        if (Record && Record->isUnion()) {
2908          Record->setHasFlexibleArrayMember(true);
2909        } else {
2910          // If this is a struct/class and this is not the last element, reject
2911          // it.  Note that GCC supports variable sized arrays in the middle of
2912          // structures.
2913          if (i != NumFields-1) {
2914            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
2915              << FD->getDeclName();
2916            FD->setInvalidDecl();
2917            EnclosingDecl->setInvalidDecl();
2918            continue;
2919          }
2920          // We support flexible arrays at the end of structs in other structs
2921          // as an extension.
2922          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
2923            << FD->getDeclName();
2924          if (Record)
2925            Record->setHasFlexibleArrayMember(true);
2926        }
2927      }
2928    }
2929    /// A field cannot be an Objective-c object
2930    if (FDTy->isObjCInterfaceType()) {
2931      Diag(FD->getLocation(), diag::err_statically_allocated_object)
2932        << FD->getDeclName();
2933      FD->setInvalidDecl();
2934      EnclosingDecl->setInvalidDecl();
2935      continue;
2936    }
2937    // Keep track of the number of named members.
2938    if (IdentifierInfo *II = FD->getIdentifier()) {
2939      // Detect duplicate member names.
2940      if (!FieldIDs.insert(II)) {
2941        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
2942        // Find the previous decl.
2943        SourceLocation PrevLoc;
2944        for (unsigned i = 0; ; ++i) {
2945          assert(i != RecFields.size() && "Didn't find previous def!");
2946          if (RecFields[i]->getIdentifier() == II) {
2947            PrevLoc = RecFields[i]->getLocation();
2948            break;
2949          }
2950        }
2951        Diag(PrevLoc, diag::note_previous_definition);
2952        FD->setInvalidDecl();
2953        EnclosingDecl->setInvalidDecl();
2954        continue;
2955      }
2956      ++NumNamedMembers;
2957    }
2958  }
2959
2960  // Okay, we successfully defined 'Record'.
2961  if (Record) {
2962    Record->completeDefinition(Context);
2963    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2964    // Sema::ActOnFinishCXXClassDef.
2965    if (!isa<CXXRecordDecl>(Record))
2966      Consumer.HandleTagDeclDefinition(Record);
2967  } else {
2968    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2969    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
2970      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2971      ID->addRecordToClass(Context);
2972    }
2973    else if (ObjCImplementationDecl *IMPDecl =
2974               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2975      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2976      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2977      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2978    }
2979  }
2980
2981  if (Attr)
2982    ProcessDeclAttributeList(Record, Attr);
2983}
2984
2985Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2986                                      DeclTy *lastEnumConst,
2987                                      SourceLocation IdLoc, IdentifierInfo *Id,
2988                                      SourceLocation EqualLoc, ExprTy *val) {
2989  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2990  EnumConstantDecl *LastEnumConst =
2991    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2992  Expr *Val = static_cast<Expr*>(val);
2993
2994  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2995  // we find one that is.
2996  while ((S->getFlags() & Scope::DeclScope) == 0)
2997    S = S->getParent();
2998
2999  // Verify that there isn't already something declared with this name in this
3000  // scope.
3001  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3002  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3003    // Maybe we will complain about the shadowed template parameter.
3004    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3005    // Just pretend that we didn't see the previous declaration.
3006    PrevDecl = 0;
3007  }
3008
3009  if (PrevDecl) {
3010    // When in C++, we may get a TagDecl with the same name; in this case the
3011    // enum constant will 'hide' the tag.
3012    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3013           "Received TagDecl when not in C++!");
3014    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3015      if (isa<EnumConstantDecl>(PrevDecl))
3016        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3017      else
3018        Diag(IdLoc, diag::err_redefinition) << Id;
3019      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3020      delete Val;
3021      return 0;
3022    }
3023  }
3024
3025  llvm::APSInt EnumVal(32);
3026  QualType EltTy;
3027  if (Val) {
3028    // Make sure to promote the operand type to int.
3029    UsualUnaryConversions(Val);
3030
3031    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3032    SourceLocation ExpLoc;
3033    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3034      delete Val;
3035      Val = 0;  // Just forget about it.
3036    } else {
3037      EltTy = Val->getType();
3038    }
3039  }
3040
3041  if (!Val) {
3042    if (LastEnumConst) {
3043      // Assign the last value + 1.
3044      EnumVal = LastEnumConst->getInitVal();
3045      ++EnumVal;
3046
3047      // Check for overflow on increment.
3048      if (EnumVal < LastEnumConst->getInitVal())
3049        Diag(IdLoc, diag::warn_enum_value_overflow);
3050
3051      EltTy = LastEnumConst->getType();
3052    } else {
3053      // First value, set to zero.
3054      EltTy = Context.IntTy;
3055      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3056    }
3057  }
3058
3059  EnumConstantDecl *New =
3060    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3061                             Val, EnumVal,
3062                             LastEnumConst);
3063
3064  // Register this decl in the current scope stack.
3065  PushOnScopeChains(New, S);
3066  return New;
3067}
3068
3069// FIXME: For consistency with ActOnFields(), we should have the parser
3070// pass in the source location for the left/right braces.
3071void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3072                         DeclTy **Elements, unsigned NumElements) {
3073  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3074
3075  if (Enum) {
3076    if (EnumDecl *Def = cast_or_null<EnumDecl>(Enum->getDefinition(Context))) {
3077      // Diagnose code like:
3078      //   enum e0 {
3079      //     E0 = sizeof(enum e0 { E1 })
3080      //   };
3081      Diag(Def->getLocation(), diag::err_nested_redefinition)
3082        << Enum->getDeclName();
3083      Diag(Enum->getLocation(), diag::note_previous_definition);
3084      Enum->setInvalidDecl();
3085      return;
3086    }
3087  }
3088  // TODO: If the result value doesn't fit in an int, it must be a long or long
3089  // long value.  ISO C does not support this, but GCC does as an extension,
3090  // emit a warning.
3091  unsigned IntWidth = Context.Target.getIntWidth();
3092
3093  // Verify that all the values are okay, compute the size of the values, and
3094  // reverse the list.
3095  unsigned NumNegativeBits = 0;
3096  unsigned NumPositiveBits = 0;
3097
3098  // Keep track of whether all elements have type int.
3099  bool AllElementsInt = true;
3100
3101  QualType EnumType = Context.getTypeDeclType(Enum);
3102  EnumConstantDecl *EltList = 0;
3103  for (unsigned i = 0; i != NumElements; ++i) {
3104    EnumConstantDecl *ECD =
3105      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3106    if (!ECD) continue;  // Already issued a diagnostic.
3107
3108    // If the enum value doesn't fit in an int, emit an extension warning.
3109    const llvm::APSInt &InitVal = ECD->getInitVal();
3110    assert(InitVal.getBitWidth() >= IntWidth &&
3111           "Should have promoted value to int");
3112    if (InitVal.getBitWidth() > IntWidth) {
3113      llvm::APSInt V(InitVal);
3114      V.trunc(IntWidth);
3115      V.extend(InitVal.getBitWidth());
3116      if (V != InitVal)
3117        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3118          << InitVal.toString(10);
3119    }
3120
3121    // Keep track of the size of positive and negative values.
3122    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3123      NumPositiveBits = std::max(NumPositiveBits,
3124                                 (unsigned)InitVal.getActiveBits());
3125    else
3126      NumNegativeBits = std::max(NumNegativeBits,
3127                                 (unsigned)InitVal.getMinSignedBits());
3128
3129    // Keep track of whether every enum element has type int (very commmon).
3130    if (AllElementsInt)
3131      AllElementsInt = ECD->getType() == Context.IntTy;
3132
3133    ECD->setNextDeclarator(EltList);
3134    EltList = ECD;
3135  }
3136
3137  // Figure out the type that should be used for this enum.
3138  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3139  QualType BestType;
3140  unsigned BestWidth;
3141
3142  if (NumNegativeBits) {
3143    // If there is a negative value, figure out the smallest integer type (of
3144    // int/long/longlong) that fits.
3145    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3146      BestType = Context.IntTy;
3147      BestWidth = IntWidth;
3148    } else {
3149      BestWidth = Context.Target.getLongWidth();
3150
3151      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3152        BestType = Context.LongTy;
3153      else {
3154        BestWidth = Context.Target.getLongLongWidth();
3155
3156        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3157          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3158        BestType = Context.LongLongTy;
3159      }
3160    }
3161  } else {
3162    // If there is no negative value, figure out which of uint, ulong, ulonglong
3163    // fits.
3164    if (NumPositiveBits <= IntWidth) {
3165      BestType = Context.UnsignedIntTy;
3166      BestWidth = IntWidth;
3167    } else if (NumPositiveBits <=
3168               (BestWidth = Context.Target.getLongWidth())) {
3169      BestType = Context.UnsignedLongTy;
3170    } else {
3171      BestWidth = Context.Target.getLongLongWidth();
3172      assert(NumPositiveBits <= BestWidth &&
3173             "How could an initializer get larger than ULL?");
3174      BestType = Context.UnsignedLongLongTy;
3175    }
3176  }
3177
3178  // Loop over all of the enumerator constants, changing their types to match
3179  // the type of the enum if needed.
3180  for (unsigned i = 0; i != NumElements; ++i) {
3181    EnumConstantDecl *ECD =
3182      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3183    if (!ECD) continue;  // Already issued a diagnostic.
3184
3185    // Standard C says the enumerators have int type, but we allow, as an
3186    // extension, the enumerators to be larger than int size.  If each
3187    // enumerator value fits in an int, type it as an int, otherwise type it the
3188    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3189    // that X has type 'int', not 'unsigned'.
3190    if (ECD->getType() == Context.IntTy) {
3191      // Make sure the init value is signed.
3192      llvm::APSInt IV = ECD->getInitVal();
3193      IV.setIsSigned(true);
3194      ECD->setInitVal(IV);
3195
3196      if (getLangOptions().CPlusPlus)
3197        // C++ [dcl.enum]p4: Following the closing brace of an
3198        // enum-specifier, each enumerator has the type of its
3199        // enumeration.
3200        ECD->setType(EnumType);
3201      continue;  // Already int type.
3202    }
3203
3204    // Determine whether the value fits into an int.
3205    llvm::APSInt InitVal = ECD->getInitVal();
3206    bool FitsInInt;
3207    if (InitVal.isUnsigned() || !InitVal.isNegative())
3208      FitsInInt = InitVal.getActiveBits() < IntWidth;
3209    else
3210      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3211
3212    // If it fits into an integer type, force it.  Otherwise force it to match
3213    // the enum decl type.
3214    QualType NewTy;
3215    unsigned NewWidth;
3216    bool NewSign;
3217    if (FitsInInt) {
3218      NewTy = Context.IntTy;
3219      NewWidth = IntWidth;
3220      NewSign = true;
3221    } else if (ECD->getType() == BestType) {
3222      // Already the right type!
3223      if (getLangOptions().CPlusPlus)
3224        // C++ [dcl.enum]p4: Following the closing brace of an
3225        // enum-specifier, each enumerator has the type of its
3226        // enumeration.
3227        ECD->setType(EnumType);
3228      continue;
3229    } else {
3230      NewTy = BestType;
3231      NewWidth = BestWidth;
3232      NewSign = BestType->isSignedIntegerType();
3233    }
3234
3235    // Adjust the APSInt value.
3236    InitVal.extOrTrunc(NewWidth);
3237    InitVal.setIsSigned(NewSign);
3238    ECD->setInitVal(InitVal);
3239
3240    // Adjust the Expr initializer and type.
3241    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3242                                          /*isLvalue=*/false));
3243    if (getLangOptions().CPlusPlus)
3244      // C++ [dcl.enum]p4: Following the closing brace of an
3245      // enum-specifier, each enumerator has the type of its
3246      // enumeration.
3247      ECD->setType(EnumType);
3248    else
3249      ECD->setType(NewTy);
3250  }
3251
3252  Enum->completeDefinition(Context, BestType);
3253  Consumer.HandleTagDeclDefinition(Enum);
3254}
3255
3256Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3257                                          ExprArg expr) {
3258  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3259
3260  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3261}
3262
3263Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
3264                                     SourceLocation LBrace,
3265                                     SourceLocation RBrace,
3266                                     const char *Lang,
3267                                     unsigned StrSize,
3268                                     DeclTy *D) {
3269  LinkageSpecDecl::LanguageIDs Language;
3270  Decl *dcl = static_cast<Decl *>(D);
3271  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3272    Language = LinkageSpecDecl::lang_c;
3273  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3274    Language = LinkageSpecDecl::lang_cxx;
3275  else {
3276    Diag(Loc, diag::err_bad_language);
3277    return 0;
3278  }
3279
3280  // FIXME: Add all the various semantics of linkage specifications
3281  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
3282}
3283
3284void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3285                           ExprTy *alignment, SourceLocation PragmaLoc,
3286                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3287  Expr *Alignment = static_cast<Expr *>(alignment);
3288
3289  // If specified then alignment must be a "small" power of two.
3290  unsigned AlignmentVal = 0;
3291  if (Alignment) {
3292    llvm::APSInt Val;
3293    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3294        !Val.isPowerOf2() ||
3295        Val.getZExtValue() > 16) {
3296      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3297      delete Alignment;
3298      return; // Ignore
3299    }
3300
3301    AlignmentVal = (unsigned) Val.getZExtValue();
3302  }
3303
3304  switch (Kind) {
3305  case Action::PPK_Default: // pack([n])
3306    PackContext.setAlignment(AlignmentVal);
3307    break;
3308
3309  case Action::PPK_Show: // pack(show)
3310    // Show the current alignment, making sure to show the right value
3311    // for the default.
3312    AlignmentVal = PackContext.getAlignment();
3313    // FIXME: This should come from the target.
3314    if (AlignmentVal == 0)
3315      AlignmentVal = 8;
3316    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3317    break;
3318
3319  case Action::PPK_Push: // pack(push [, id] [, [n])
3320    PackContext.push(Name);
3321    // Set the new alignment if specified.
3322    if (Alignment)
3323      PackContext.setAlignment(AlignmentVal);
3324    break;
3325
3326  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3327    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3328    // "#pragma pack(pop, identifier, n) is undefined"
3329    if (Alignment && Name)
3330      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3331
3332    // Do the pop.
3333    if (!PackContext.pop(Name)) {
3334      // If a name was specified then failure indicates the name
3335      // wasn't found. Otherwise failure indicates the stack was
3336      // empty.
3337      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3338        << (Name ? "no record matching name" : "stack empty");
3339
3340      // FIXME: Warn about popping named records as MSVC does.
3341    } else {
3342      // Pop succeeded, set the new alignment if specified.
3343      if (Alignment)
3344        PackContext.setAlignment(AlignmentVal);
3345    }
3346    break;
3347
3348  default:
3349    assert(0 && "Invalid #pragma pack kind.");
3350  }
3351}
3352
3353bool PragmaPackStack::pop(IdentifierInfo *Name) {
3354  if (Stack.empty())
3355    return false;
3356
3357  // If name is empty just pop top.
3358  if (!Name) {
3359    Alignment = Stack.back().first;
3360    Stack.pop_back();
3361    return true;
3362  }
3363
3364  // Otherwise, find the named record.
3365  for (unsigned i = Stack.size(); i != 0; ) {
3366    --i;
3367    if (Stack[i].second == Name) {
3368      // Found it, pop up to and including this record.
3369      Alignment = Stack[i].first;
3370      Stack.erase(Stack.begin() + i, Stack.end());
3371      return true;
3372    }
3373  }
3374
3375  return false;
3376}
3377