SemaDecl.cpp revision cb8f951deacd251d9b3a73dc65f341477e039de1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo,
75                             IdentifierInfo **CorrectedII) {
76  // Determine where we will perform name lookup.
77  DeclContext *LookupCtx = 0;
78  if (ObjectTypePtr) {
79    QualType ObjectType = ObjectTypePtr.get();
80    if (ObjectType->isRecordType())
81      LookupCtx = computeDeclContext(ObjectType);
82  } else if (SS && SS->isNotEmpty()) {
83    LookupCtx = computeDeclContext(*SS, false);
84
85    if (!LookupCtx) {
86      if (isDependentScopeSpecifier(*SS)) {
87        // C++ [temp.res]p3:
88        //   A qualified-id that refers to a type and in which the
89        //   nested-name-specifier depends on a template-parameter (14.6.2)
90        //   shall be prefixed by the keyword typename to indicate that the
91        //   qualified-id denotes a type, forming an
92        //   elaborated-type-specifier (7.1.5.3).
93        //
94        // We therefore do not perform any name lookup if the result would
95        // refer to a member of an unknown specialization.
96        if (!isClassName)
97          return ParsedType();
98
99        // We know from the grammar that this name refers to a type,
100        // so build a dependent node to describe the type.
101        if (WantNontrivialTypeSourceInfo)
102          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
103
104        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
105        QualType T =
106          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
107                            II, NameLoc);
108
109          return ParsedType::make(T);
110      }
111
112      return ParsedType();
113    }
114
115    if (!LookupCtx->isDependentContext() &&
116        RequireCompleteDeclContext(*SS, LookupCtx))
117      return ParsedType();
118  }
119
120  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
121  // lookup for class-names.
122  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
123                                      LookupOrdinaryName;
124  LookupResult Result(*this, &II, NameLoc, Kind);
125  if (LookupCtx) {
126    // Perform "qualified" name lookup into the declaration context we
127    // computed, which is either the type of the base of a member access
128    // expression or the declaration context associated with a prior
129    // nested-name-specifier.
130    LookupQualifiedName(Result, LookupCtx);
131
132    if (ObjectTypePtr && Result.empty()) {
133      // C++ [basic.lookup.classref]p3:
134      //   If the unqualified-id is ~type-name, the type-name is looked up
135      //   in the context of the entire postfix-expression. If the type T of
136      //   the object expression is of a class type C, the type-name is also
137      //   looked up in the scope of class C. At least one of the lookups shall
138      //   find a name that refers to (possibly cv-qualified) T.
139      LookupName(Result, S);
140    }
141  } else {
142    // Perform unqualified name lookup.
143    LookupName(Result, S);
144  }
145
146  NamedDecl *IIDecl = 0;
147  switch (Result.getResultKind()) {
148  case LookupResult::NotFound:
149  case LookupResult::NotFoundInCurrentInstantiation:
150    if (CorrectedII) {
151      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
152                                              Kind, S, SS, 0, false,
153                                              Sema::CTC_Type);
154      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
155      TemplateTy Template;
156      bool MemberOfUnknownSpecialization;
157      UnqualifiedId TemplateName;
158      TemplateName.setIdentifier(NewII, NameLoc);
159      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
160      CXXScopeSpec NewSS, *NewSSPtr = SS;
161      if (SS && NNS) {
162        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
163        NewSSPtr = &NewSS;
164      }
165      if (Correction && (NNS || NewII != &II) &&
166          // Ignore a correction to a template type as the to-be-corrected
167          // identifier is not a template (typo correction for template names
168          // is handled elsewhere).
169          !(getLangOptions().CPlusPlus && NewSSPtr &&
170            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
171                           false, Template, MemberOfUnknownSpecialization))) {
172        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
173                                    isClassName, HasTrailingDot, ObjectTypePtr,
174                                    WantNontrivialTypeSourceInfo);
175        if (Ty) {
176          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
177          std::string CorrectedQuotedStr(
178              Correction.getQuoted(getLangOptions()));
179          Diag(NameLoc, diag::err_unknown_typename_suggest)
180              << Result.getLookupName() << CorrectedQuotedStr
181              << FixItHint::CreateReplacement(SourceRange(NameLoc),
182                                              CorrectedStr);
183          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
184            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
185              << CorrectedQuotedStr;
186
187          if (SS && NNS)
188            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
189          *CorrectedII = NewII;
190          return Ty;
191        }
192      }
193    }
194    // If typo correction failed or was not performed, fall through
195  case LookupResult::FoundOverloaded:
196  case LookupResult::FoundUnresolvedValue:
197    Result.suppressDiagnostics();
198    return ParsedType();
199
200  case LookupResult::Ambiguous:
201    // Recover from type-hiding ambiguities by hiding the type.  We'll
202    // do the lookup again when looking for an object, and we can
203    // diagnose the error then.  If we don't do this, then the error
204    // about hiding the type will be immediately followed by an error
205    // that only makes sense if the identifier was treated like a type.
206    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
207      Result.suppressDiagnostics();
208      return ParsedType();
209    }
210
211    // Look to see if we have a type anywhere in the list of results.
212    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
213         Res != ResEnd; ++Res) {
214      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
215        if (!IIDecl ||
216            (*Res)->getLocation().getRawEncoding() <
217              IIDecl->getLocation().getRawEncoding())
218          IIDecl = *Res;
219      }
220    }
221
222    if (!IIDecl) {
223      // None of the entities we found is a type, so there is no way
224      // to even assume that the result is a type. In this case, don't
225      // complain about the ambiguity. The parser will either try to
226      // perform this lookup again (e.g., as an object name), which
227      // will produce the ambiguity, or will complain that it expected
228      // a type name.
229      Result.suppressDiagnostics();
230      return ParsedType();
231    }
232
233    // We found a type within the ambiguous lookup; diagnose the
234    // ambiguity and then return that type. This might be the right
235    // answer, or it might not be, but it suppresses any attempt to
236    // perform the name lookup again.
237    break;
238
239  case LookupResult::Found:
240    IIDecl = Result.getFoundDecl();
241    break;
242  }
243
244  assert(IIDecl && "Didn't find decl");
245
246  QualType T;
247  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
248    DiagnoseUseOfDecl(IIDecl, NameLoc);
249
250    if (T.isNull())
251      T = Context.getTypeDeclType(TD);
252
253    if (SS && SS->isNotEmpty()) {
254      if (WantNontrivialTypeSourceInfo) {
255        // Construct a type with type-source information.
256        TypeLocBuilder Builder;
257        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
258
259        T = getElaboratedType(ETK_None, *SS, T);
260        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
261        ElabTL.setKeywordLoc(SourceLocation());
262        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
263        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264      } else {
265        T = getElaboratedType(ETK_None, *SS, T);
266      }
267    }
268  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
269    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
270    if (!HasTrailingDot)
271      T = Context.getObjCInterfaceType(IDecl);
272  }
273
274  if (T.isNull()) {
275    // If it's not plausibly a type, suppress diagnostics.
276    Result.suppressDiagnostics();
277    return ParsedType();
278  }
279  return ParsedType::make(T);
280}
281
282/// isTagName() - This method is called *for error recovery purposes only*
283/// to determine if the specified name is a valid tag name ("struct foo").  If
284/// so, this returns the TST for the tag corresponding to it (TST_enum,
285/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
286/// where the user forgot to specify the tag.
287DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
288  // Do a tag name lookup in this scope.
289  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
290  LookupName(R, S, false);
291  R.suppressDiagnostics();
292  if (R.getResultKind() == LookupResult::Found)
293    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
294      switch (TD->getTagKind()) {
295      default:         return DeclSpec::TST_unspecified;
296      case TTK_Struct: return DeclSpec::TST_struct;
297      case TTK_Union:  return DeclSpec::TST_union;
298      case TTK_Class:  return DeclSpec::TST_class;
299      case TTK_Enum:   return DeclSpec::TST_enum;
300      }
301    }
302
303  return DeclSpec::TST_unspecified;
304}
305
306/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
307/// if a CXXScopeSpec's type is equal to the type of one of the base classes
308/// then downgrade the missing typename error to a warning.
309/// This is needed for MSVC compatibility; Example:
310/// @code
311/// template<class T> class A {
312/// public:
313///   typedef int TYPE;
314/// };
315/// template<class T> class B : public A<T> {
316/// public:
317///   A<T>::TYPE a; // no typename required because A<T> is a base class.
318/// };
319/// @endcode
320bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
321  if (CurContext->isRecord()) {
322    const Type *Ty = SS->getScopeRep()->getAsType();
323
324    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
325    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
326          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
327      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
328        return true;
329    return S->isFunctionPrototypeScope();
330  }
331  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
332}
333
334bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
335                                   SourceLocation IILoc,
336                                   Scope *S,
337                                   CXXScopeSpec *SS,
338                                   ParsedType &SuggestedType) {
339  // We don't have anything to suggest (yet).
340  SuggestedType = ParsedType();
341
342  // There may have been a typo in the name of the type. Look up typo
343  // results, in case we have something that we can suggest.
344  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
345                                             LookupOrdinaryName, S, SS, NULL,
346                                             false, CTC_Type)) {
347    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
348    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
349
350    if (Corrected.isKeyword()) {
351      // We corrected to a keyword.
352      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
353      Diag(IILoc, diag::err_unknown_typename_suggest)
354        << &II << CorrectedQuotedStr;
355      return true;
356    } else {
357      NamedDecl *Result = Corrected.getCorrectionDecl();
358      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
359          !Result->isInvalidDecl()) {
360        // We found a similarly-named type or interface; suggest that.
361        if (!SS || !SS->isSet())
362          Diag(IILoc, diag::err_unknown_typename_suggest)
363            << &II << CorrectedQuotedStr
364            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
365        else if (DeclContext *DC = computeDeclContext(*SS, false))
366          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
367            << &II << DC << CorrectedQuotedStr << SS->getRange()
368            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
369        else
370          llvm_unreachable("could not have corrected a typo here");
371
372        Diag(Result->getLocation(), diag::note_previous_decl)
373          << CorrectedQuotedStr;
374
375        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
376                                    false, false, ParsedType(),
377                                    /*NonTrivialTypeSourceInfo=*/true);
378        return true;
379      }
380    }
381  }
382
383  if (getLangOptions().CPlusPlus) {
384    // See if II is a class template that the user forgot to pass arguments to.
385    UnqualifiedId Name;
386    Name.setIdentifier(&II, IILoc);
387    CXXScopeSpec EmptySS;
388    TemplateTy TemplateResult;
389    bool MemberOfUnknownSpecialization;
390    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
391                       Name, ParsedType(), true, TemplateResult,
392                       MemberOfUnknownSpecialization) == TNK_Type_template) {
393      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
394      Diag(IILoc, diag::err_template_missing_args) << TplName;
395      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
396        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
397          << TplDecl->getTemplateParameters()->getSourceRange();
398      }
399      return true;
400    }
401  }
402
403  // FIXME: Should we move the logic that tries to recover from a missing tag
404  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
405
406  if (!SS || (!SS->isSet() && !SS->isInvalid()))
407    Diag(IILoc, diag::err_unknown_typename) << &II;
408  else if (DeclContext *DC = computeDeclContext(*SS, false))
409    Diag(IILoc, diag::err_typename_nested_not_found)
410      << &II << DC << SS->getRange();
411  else if (isDependentScopeSpecifier(*SS)) {
412    unsigned DiagID = diag::err_typename_missing;
413    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
414      DiagID = diag::warn_typename_missing;
415
416    Diag(SS->getRange().getBegin(), DiagID)
417      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
418      << SourceRange(SS->getRange().getBegin(), IILoc)
419      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
420    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
421                                                                         .get();
422  } else {
423    assert(SS && SS->isInvalid() &&
424           "Invalid scope specifier has already been diagnosed");
425  }
426
427  return true;
428}
429
430/// \brief Determine whether the given result set contains either a type name
431/// or
432static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
433  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
434                       NextToken.is(tok::less);
435
436  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
437    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
438      return true;
439
440    if (CheckTemplate && isa<TemplateDecl>(*I))
441      return true;
442  }
443
444  return false;
445}
446
447Sema::NameClassification Sema::ClassifyName(Scope *S,
448                                            CXXScopeSpec &SS,
449                                            IdentifierInfo *&Name,
450                                            SourceLocation NameLoc,
451                                            const Token &NextToken) {
452  DeclarationNameInfo NameInfo(Name, NameLoc);
453  ObjCMethodDecl *CurMethod = getCurMethodDecl();
454
455  if (NextToken.is(tok::coloncolon)) {
456    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
457                                QualType(), false, SS, 0, false);
458
459  }
460
461  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
462  LookupParsedName(Result, S, &SS, !CurMethod);
463
464  // Perform lookup for Objective-C instance variables (including automatically
465  // synthesized instance variables), if we're in an Objective-C method.
466  // FIXME: This lookup really, really needs to be folded in to the normal
467  // unqualified lookup mechanism.
468  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
469    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
470    if (E.get() || E.isInvalid())
471      return E;
472  }
473
474  bool SecondTry = false;
475  bool IsFilteredTemplateName = false;
476
477Corrected:
478  switch (Result.getResultKind()) {
479  case LookupResult::NotFound:
480    // If an unqualified-id is followed by a '(', then we have a function
481    // call.
482    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
483      // In C++, this is an ADL-only call.
484      // FIXME: Reference?
485      if (getLangOptions().CPlusPlus)
486        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
487
488      // C90 6.3.2.2:
489      //   If the expression that precedes the parenthesized argument list in a
490      //   function call consists solely of an identifier, and if no
491      //   declaration is visible for this identifier, the identifier is
492      //   implicitly declared exactly as if, in the innermost block containing
493      //   the function call, the declaration
494      //
495      //     extern int identifier ();
496      //
497      //   appeared.
498      //
499      // We also allow this in C99 as an extension.
500      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
501        Result.addDecl(D);
502        Result.resolveKind();
503        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
504      }
505    }
506
507    // In C, we first see whether there is a tag type by the same name, in
508    // which case it's likely that the user just forget to write "enum",
509    // "struct", or "union".
510    if (!getLangOptions().CPlusPlus && !SecondTry) {
511      Result.clear(LookupTagName);
512      LookupParsedName(Result, S, &SS);
513      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
514        const char *TagName = 0;
515        const char *FixItTagName = 0;
516        switch (Tag->getTagKind()) {
517          case TTK_Class:
518            TagName = "class";
519            FixItTagName = "class ";
520            break;
521
522          case TTK_Enum:
523            TagName = "enum";
524            FixItTagName = "enum ";
525            break;
526
527          case TTK_Struct:
528            TagName = "struct";
529            FixItTagName = "struct ";
530            break;
531
532          case TTK_Union:
533            TagName = "union";
534            FixItTagName = "union ";
535            break;
536        }
537
538        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
539          << Name << TagName << getLangOptions().CPlusPlus
540          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
541        break;
542      }
543
544      Result.clear(LookupOrdinaryName);
545    }
546
547    // Perform typo correction to determine if there is another name that is
548    // close to this name.
549    if (!SecondTry) {
550      SecondTry = true;
551      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
552                                                 Result.getLookupKind(), S,
553                                                 &SS)) {
554        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
555        unsigned QualifiedDiag = diag::err_no_member_suggest;
556        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
557        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
558
559        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
560        NamedDecl *UnderlyingFirstDecl
561          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
562        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
563            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
564          UnqualifiedDiag = diag::err_no_template_suggest;
565          QualifiedDiag = diag::err_no_member_template_suggest;
566        } else if (UnderlyingFirstDecl &&
567                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
569                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
570           UnqualifiedDiag = diag::err_unknown_typename_suggest;
571           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
572         }
573
574        if (SS.isEmpty())
575          Diag(NameLoc, UnqualifiedDiag)
576            << Name << CorrectedQuotedStr
577            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
578        else
579          Diag(NameLoc, QualifiedDiag)
580            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
581            << SS.getRange()
582            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
583
584        // Update the name, so that the caller has the new name.
585        Name = Corrected.getCorrectionAsIdentifierInfo();
586
587        // Also update the LookupResult...
588        // FIXME: This should probably go away at some point
589        Result.clear();
590        Result.setLookupName(Corrected.getCorrection());
591        if (FirstDecl) Result.addDecl(FirstDecl);
592
593        // Typo correction corrected to a keyword.
594        if (Corrected.isKeyword())
595          return Corrected.getCorrectionAsIdentifierInfo();
596
597        if (FirstDecl)
598          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
599            << CorrectedQuotedStr;
600
601        // If we found an Objective-C instance variable, let
602        // LookupInObjCMethod build the appropriate expression to
603        // reference the ivar.
604        // FIXME: This is a gross hack.
605        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
606          Result.clear();
607          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
608          return move(E);
609        }
610
611        goto Corrected;
612      }
613    }
614
615    // We failed to correct; just fall through and let the parser deal with it.
616    Result.suppressDiagnostics();
617    return NameClassification::Unknown();
618
619  case LookupResult::NotFoundInCurrentInstantiation:
620    // We performed name lookup into the current instantiation, and there were
621    // dependent bases, so we treat this result the same way as any other
622    // dependent nested-name-specifier.
623
624    // C++ [temp.res]p2:
625    //   A name used in a template declaration or definition and that is
626    //   dependent on a template-parameter is assumed not to name a type
627    //   unless the applicable name lookup finds a type name or the name is
628    //   qualified by the keyword typename.
629    //
630    // FIXME: If the next token is '<', we might want to ask the parser to
631    // perform some heroics to see if we actually have a
632    // template-argument-list, which would indicate a missing 'template'
633    // keyword here.
634    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
635
636  case LookupResult::Found:
637  case LookupResult::FoundOverloaded:
638  case LookupResult::FoundUnresolvedValue:
639    break;
640
641  case LookupResult::Ambiguous:
642    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
643        hasAnyAcceptableTemplateNames(Result)) {
644      // C++ [temp.local]p3:
645      //   A lookup that finds an injected-class-name (10.2) can result in an
646      //   ambiguity in certain cases (for example, if it is found in more than
647      //   one base class). If all of the injected-class-names that are found
648      //   refer to specializations of the same class template, and if the name
649      //   is followed by a template-argument-list, the reference refers to the
650      //   class template itself and not a specialization thereof, and is not
651      //   ambiguous.
652      //
653      // This filtering can make an ambiguous result into an unambiguous one,
654      // so try again after filtering out template names.
655      FilterAcceptableTemplateNames(Result);
656      if (!Result.isAmbiguous()) {
657        IsFilteredTemplateName = true;
658        break;
659      }
660    }
661
662    // Diagnose the ambiguity and return an error.
663    return NameClassification::Error();
664  }
665
666  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
667      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
668    // C++ [temp.names]p3:
669    //   After name lookup (3.4) finds that a name is a template-name or that
670    //   an operator-function-id or a literal- operator-id refers to a set of
671    //   overloaded functions any member of which is a function template if
672    //   this is followed by a <, the < is always taken as the delimiter of a
673    //   template-argument-list and never as the less-than operator.
674    if (!IsFilteredTemplateName)
675      FilterAcceptableTemplateNames(Result);
676
677    if (!Result.empty()) {
678      bool IsFunctionTemplate;
679      TemplateName Template;
680      if (Result.end() - Result.begin() > 1) {
681        IsFunctionTemplate = true;
682        Template = Context.getOverloadedTemplateName(Result.begin(),
683                                                     Result.end());
684      } else {
685        TemplateDecl *TD
686          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
687        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
688
689        if (SS.isSet() && !SS.isInvalid())
690          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
691                                                    /*TemplateKeyword=*/false,
692                                                      TD);
693        else
694          Template = TemplateName(TD);
695      }
696
697      if (IsFunctionTemplate) {
698        // Function templates always go through overload resolution, at which
699        // point we'll perform the various checks (e.g., accessibility) we need
700        // to based on which function we selected.
701        Result.suppressDiagnostics();
702
703        return NameClassification::FunctionTemplate(Template);
704      }
705
706      return NameClassification::TypeTemplate(Template);
707    }
708  }
709
710  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
711  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
712    DiagnoseUseOfDecl(Type, NameLoc);
713    QualType T = Context.getTypeDeclType(Type);
714    return ParsedType::make(T);
715  }
716
717  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
718  if (!Class) {
719    // FIXME: It's unfortunate that we don't have a Type node for handling this.
720    if (ObjCCompatibleAliasDecl *Alias
721                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
722      Class = Alias->getClassInterface();
723  }
724
725  if (Class) {
726    DiagnoseUseOfDecl(Class, NameLoc);
727
728    if (NextToken.is(tok::period)) {
729      // Interface. <something> is parsed as a property reference expression.
730      // Just return "unknown" as a fall-through for now.
731      Result.suppressDiagnostics();
732      return NameClassification::Unknown();
733    }
734
735    QualType T = Context.getObjCInterfaceType(Class);
736    return ParsedType::make(T);
737  }
738
739  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
740    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
741
742  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
743  return BuildDeclarationNameExpr(SS, Result, ADL);
744}
745
746// Determines the context to return to after temporarily entering a
747// context.  This depends in an unnecessarily complicated way on the
748// exact ordering of callbacks from the parser.
749DeclContext *Sema::getContainingDC(DeclContext *DC) {
750
751  // Functions defined inline within classes aren't parsed until we've
752  // finished parsing the top-level class, so the top-level class is
753  // the context we'll need to return to.
754  if (isa<FunctionDecl>(DC)) {
755    DC = DC->getLexicalParent();
756
757    // A function not defined within a class will always return to its
758    // lexical context.
759    if (!isa<CXXRecordDecl>(DC))
760      return DC;
761
762    // A C++ inline method/friend is parsed *after* the topmost class
763    // it was declared in is fully parsed ("complete");  the topmost
764    // class is the context we need to return to.
765    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
766      DC = RD;
767
768    // Return the declaration context of the topmost class the inline method is
769    // declared in.
770    return DC;
771  }
772
773  return DC->getLexicalParent();
774}
775
776void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
777  assert(getContainingDC(DC) == CurContext &&
778      "The next DeclContext should be lexically contained in the current one.");
779  CurContext = DC;
780  S->setEntity(DC);
781}
782
783void Sema::PopDeclContext() {
784  assert(CurContext && "DeclContext imbalance!");
785
786  CurContext = getContainingDC(CurContext);
787  assert(CurContext && "Popped translation unit!");
788}
789
790/// EnterDeclaratorContext - Used when we must lookup names in the context
791/// of a declarator's nested name specifier.
792///
793void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
794  // C++0x [basic.lookup.unqual]p13:
795  //   A name used in the definition of a static data member of class
796  //   X (after the qualified-id of the static member) is looked up as
797  //   if the name was used in a member function of X.
798  // C++0x [basic.lookup.unqual]p14:
799  //   If a variable member of a namespace is defined outside of the
800  //   scope of its namespace then any name used in the definition of
801  //   the variable member (after the declarator-id) is looked up as
802  //   if the definition of the variable member occurred in its
803  //   namespace.
804  // Both of these imply that we should push a scope whose context
805  // is the semantic context of the declaration.  We can't use
806  // PushDeclContext here because that context is not necessarily
807  // lexically contained in the current context.  Fortunately,
808  // the containing scope should have the appropriate information.
809
810  assert(!S->getEntity() && "scope already has entity");
811
812#ifndef NDEBUG
813  Scope *Ancestor = S->getParent();
814  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
815  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
816#endif
817
818  CurContext = DC;
819  S->setEntity(DC);
820}
821
822void Sema::ExitDeclaratorContext(Scope *S) {
823  assert(S->getEntity() == CurContext && "Context imbalance!");
824
825  // Switch back to the lexical context.  The safety of this is
826  // enforced by an assert in EnterDeclaratorContext.
827  Scope *Ancestor = S->getParent();
828  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
829  CurContext = (DeclContext*) Ancestor->getEntity();
830
831  // We don't need to do anything with the scope, which is going to
832  // disappear.
833}
834
835
836void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
837  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
838  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
839    // We assume that the caller has already called
840    // ActOnReenterTemplateScope
841    FD = TFD->getTemplatedDecl();
842  }
843  if (!FD)
844    return;
845
846  PushDeclContext(S, FD);
847  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
848    ParmVarDecl *Param = FD->getParamDecl(P);
849    // If the parameter has an identifier, then add it to the scope
850    if (Param->getIdentifier()) {
851      S->AddDecl(Param);
852      IdResolver.AddDecl(Param);
853    }
854  }
855}
856
857
858/// \brief Determine whether we allow overloading of the function
859/// PrevDecl with another declaration.
860///
861/// This routine determines whether overloading is possible, not
862/// whether some new function is actually an overload. It will return
863/// true in C++ (where we can always provide overloads) or, as an
864/// extension, in C when the previous function is already an
865/// overloaded function declaration or has the "overloadable"
866/// attribute.
867static bool AllowOverloadingOfFunction(LookupResult &Previous,
868                                       ASTContext &Context) {
869  if (Context.getLangOptions().CPlusPlus)
870    return true;
871
872  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
873    return true;
874
875  return (Previous.getResultKind() == LookupResult::Found
876          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
877}
878
879/// Add this decl to the scope shadowed decl chains.
880void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
881  // Move up the scope chain until we find the nearest enclosing
882  // non-transparent context. The declaration will be introduced into this
883  // scope.
884  while (S->getEntity() &&
885         ((DeclContext *)S->getEntity())->isTransparentContext())
886    S = S->getParent();
887
888  // Add scoped declarations into their context, so that they can be
889  // found later. Declarations without a context won't be inserted
890  // into any context.
891  if (AddToContext)
892    CurContext->addDecl(D);
893
894  // Out-of-line definitions shouldn't be pushed into scope in C++.
895  // Out-of-line variable and function definitions shouldn't even in C.
896  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
897      D->isOutOfLine() &&
898      !D->getDeclContext()->getRedeclContext()->Equals(
899        D->getLexicalDeclContext()->getRedeclContext()))
900    return;
901
902  // Template instantiations should also not be pushed into scope.
903  if (isa<FunctionDecl>(D) &&
904      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
905    return;
906
907  // If this replaces anything in the current scope,
908  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
909                               IEnd = IdResolver.end();
910  for (; I != IEnd; ++I) {
911    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
912      S->RemoveDecl(*I);
913      IdResolver.RemoveDecl(*I);
914
915      // Should only need to replace one decl.
916      break;
917    }
918  }
919
920  S->AddDecl(D);
921
922  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
923    // Implicitly-generated labels may end up getting generated in an order that
924    // isn't strictly lexical, which breaks name lookup. Be careful to insert
925    // the label at the appropriate place in the identifier chain.
926    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
927      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
928      if (IDC == CurContext) {
929        if (!S->isDeclScope(*I))
930          continue;
931      } else if (IDC->Encloses(CurContext))
932        break;
933    }
934
935    IdResolver.InsertDeclAfter(I, D);
936  } else {
937    IdResolver.AddDecl(D);
938  }
939}
940
941bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
942                         bool ExplicitInstantiationOrSpecialization) {
943  return IdResolver.isDeclInScope(D, Ctx, Context, S,
944                                  ExplicitInstantiationOrSpecialization);
945}
946
947Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
948  DeclContext *TargetDC = DC->getPrimaryContext();
949  do {
950    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
951      if (ScopeDC->getPrimaryContext() == TargetDC)
952        return S;
953  } while ((S = S->getParent()));
954
955  return 0;
956}
957
958static bool isOutOfScopePreviousDeclaration(NamedDecl *,
959                                            DeclContext*,
960                                            ASTContext&);
961
962/// Filters out lookup results that don't fall within the given scope
963/// as determined by isDeclInScope.
964void Sema::FilterLookupForScope(LookupResult &R,
965                                DeclContext *Ctx, Scope *S,
966                                bool ConsiderLinkage,
967                                bool ExplicitInstantiationOrSpecialization) {
968  LookupResult::Filter F = R.makeFilter();
969  while (F.hasNext()) {
970    NamedDecl *D = F.next();
971
972    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
973      continue;
974
975    if (ConsiderLinkage &&
976        isOutOfScopePreviousDeclaration(D, Ctx, Context))
977      continue;
978
979    F.erase();
980  }
981
982  F.done();
983}
984
985static bool isUsingDecl(NamedDecl *D) {
986  return isa<UsingShadowDecl>(D) ||
987         isa<UnresolvedUsingTypenameDecl>(D) ||
988         isa<UnresolvedUsingValueDecl>(D);
989}
990
991/// Removes using shadow declarations from the lookup results.
992static void RemoveUsingDecls(LookupResult &R) {
993  LookupResult::Filter F = R.makeFilter();
994  while (F.hasNext())
995    if (isUsingDecl(F.next()))
996      F.erase();
997
998  F.done();
999}
1000
1001/// \brief Check for this common pattern:
1002/// @code
1003/// class S {
1004///   S(const S&); // DO NOT IMPLEMENT
1005///   void operator=(const S&); // DO NOT IMPLEMENT
1006/// };
1007/// @endcode
1008static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1009  // FIXME: Should check for private access too but access is set after we get
1010  // the decl here.
1011  if (D->doesThisDeclarationHaveABody())
1012    return false;
1013
1014  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1015    return CD->isCopyConstructor();
1016  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1017    return Method->isCopyAssignmentOperator();
1018  return false;
1019}
1020
1021bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1022  assert(D);
1023
1024  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  // Ignore class templates.
1028  if (D->getDeclContext()->isDependentContext() ||
1029      D->getLexicalDeclContext()->isDependentContext())
1030    return false;
1031
1032  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1033    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1034      return false;
1035
1036    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1037      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1038        return false;
1039    } else {
1040      // 'static inline' functions are used in headers; don't warn.
1041      if (FD->getStorageClass() == SC_Static &&
1042          FD->isInlineSpecified())
1043        return false;
1044    }
1045
1046    if (FD->doesThisDeclarationHaveABody() &&
1047        Context.DeclMustBeEmitted(FD))
1048      return false;
1049  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1050    if (!VD->isFileVarDecl() ||
1051        VD->getType().isConstant(Context) ||
1052        Context.DeclMustBeEmitted(VD))
1053      return false;
1054
1055    if (VD->isStaticDataMember() &&
1056        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1057      return false;
1058
1059  } else {
1060    return false;
1061  }
1062
1063  // Only warn for unused decls internal to the translation unit.
1064  if (D->getLinkage() == ExternalLinkage)
1065    return false;
1066
1067  return true;
1068}
1069
1070void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1071  if (!D)
1072    return;
1073
1074  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1075    const FunctionDecl *First = FD->getFirstDeclaration();
1076    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1077      return; // First should already be in the vector.
1078  }
1079
1080  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1081    const VarDecl *First = VD->getFirstDeclaration();
1082    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1083      return; // First should already be in the vector.
1084  }
1085
1086   if (ShouldWarnIfUnusedFileScopedDecl(D))
1087     UnusedFileScopedDecls.push_back(D);
1088 }
1089
1090static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1091  if (D->isInvalidDecl())
1092    return false;
1093
1094  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1095    return false;
1096
1097  if (isa<LabelDecl>(D))
1098    return true;
1099
1100  // White-list anything that isn't a local variable.
1101  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1102      !D->getDeclContext()->isFunctionOrMethod())
1103    return false;
1104
1105  // Types of valid local variables should be complete, so this should succeed.
1106  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1107
1108    // White-list anything with an __attribute__((unused)) type.
1109    QualType Ty = VD->getType();
1110
1111    // Only look at the outermost level of typedef.
1112    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1113      if (TT->getDecl()->hasAttr<UnusedAttr>())
1114        return false;
1115    }
1116
1117    // If we failed to complete the type for some reason, or if the type is
1118    // dependent, don't diagnose the variable.
1119    if (Ty->isIncompleteType() || Ty->isDependentType())
1120      return false;
1121
1122    if (const TagType *TT = Ty->getAs<TagType>()) {
1123      const TagDecl *Tag = TT->getDecl();
1124      if (Tag->hasAttr<UnusedAttr>())
1125        return false;
1126
1127      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1128        // FIXME: Checking for the presence of a user-declared constructor
1129        // isn't completely accurate; we'd prefer to check that the initializer
1130        // has no side effects.
1131        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1132          return false;
1133      }
1134    }
1135
1136    // TODO: __attribute__((unused)) templates?
1137  }
1138
1139  return true;
1140}
1141
1142static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1143                                     FixItHint &Hint) {
1144  if (isa<LabelDecl>(D)) {
1145    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1146                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1147    if (AfterColon.isInvalid())
1148      return;
1149    Hint = FixItHint::CreateRemoval(CharSourceRange::
1150                                    getCharRange(D->getLocStart(), AfterColon));
1151  }
1152  return;
1153}
1154
1155/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1156/// unless they are marked attr(unused).
1157void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1158  FixItHint Hint;
1159  if (!ShouldDiagnoseUnusedDecl(D))
1160    return;
1161
1162  GenerateFixForUnusedDecl(D, Context, Hint);
1163
1164  unsigned DiagID;
1165  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1166    DiagID = diag::warn_unused_exception_param;
1167  else if (isa<LabelDecl>(D))
1168    DiagID = diag::warn_unused_label;
1169  else
1170    DiagID = diag::warn_unused_variable;
1171
1172  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1173}
1174
1175static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1176  // Verify that we have no forward references left.  If so, there was a goto
1177  // or address of a label taken, but no definition of it.  Label fwd
1178  // definitions are indicated with a null substmt.
1179  if (L->getStmt() == 0)
1180    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1181}
1182
1183void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1184  if (S->decl_empty()) return;
1185  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1186         "Scope shouldn't contain decls!");
1187
1188  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1189       I != E; ++I) {
1190    Decl *TmpD = (*I);
1191    assert(TmpD && "This decl didn't get pushed??");
1192
1193    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1194    NamedDecl *D = cast<NamedDecl>(TmpD);
1195
1196    if (!D->getDeclName()) continue;
1197
1198    // Diagnose unused variables in this scope.
1199    if (!S->hasErrorOccurred())
1200      DiagnoseUnusedDecl(D);
1201
1202    // If this was a forward reference to a label, verify it was defined.
1203    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1204      CheckPoppedLabel(LD, *this);
1205
1206    // Remove this name from our lexical scope.
1207    IdResolver.RemoveDecl(D);
1208  }
1209}
1210
1211/// \brief Look for an Objective-C class in the translation unit.
1212///
1213/// \param Id The name of the Objective-C class we're looking for. If
1214/// typo-correction fixes this name, the Id will be updated
1215/// to the fixed name.
1216///
1217/// \param IdLoc The location of the name in the translation unit.
1218///
1219/// \param TypoCorrection If true, this routine will attempt typo correction
1220/// if there is no class with the given name.
1221///
1222/// \returns The declaration of the named Objective-C class, or NULL if the
1223/// class could not be found.
1224ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1225                                              SourceLocation IdLoc,
1226                                              bool DoTypoCorrection) {
1227  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1228  // creation from this context.
1229  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1230
1231  if (!IDecl && DoTypoCorrection) {
1232    // Perform typo correction at the given location, but only if we
1233    // find an Objective-C class name.
1234    TypoCorrection C;
1235    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1236                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1237        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1238      Diag(IdLoc, diag::err_undef_interface_suggest)
1239        << Id << IDecl->getDeclName()
1240        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1241      Diag(IDecl->getLocation(), diag::note_previous_decl)
1242        << IDecl->getDeclName();
1243
1244      Id = IDecl->getIdentifier();
1245    }
1246  }
1247
1248  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1249}
1250
1251/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1252/// from S, where a non-field would be declared. This routine copes
1253/// with the difference between C and C++ scoping rules in structs and
1254/// unions. For example, the following code is well-formed in C but
1255/// ill-formed in C++:
1256/// @code
1257/// struct S6 {
1258///   enum { BAR } e;
1259/// };
1260///
1261/// void test_S6() {
1262///   struct S6 a;
1263///   a.e = BAR;
1264/// }
1265/// @endcode
1266/// For the declaration of BAR, this routine will return a different
1267/// scope. The scope S will be the scope of the unnamed enumeration
1268/// within S6. In C++, this routine will return the scope associated
1269/// with S6, because the enumeration's scope is a transparent
1270/// context but structures can contain non-field names. In C, this
1271/// routine will return the translation unit scope, since the
1272/// enumeration's scope is a transparent context and structures cannot
1273/// contain non-field names.
1274Scope *Sema::getNonFieldDeclScope(Scope *S) {
1275  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1276         (S->getEntity() &&
1277          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1278         (S->isClassScope() && !getLangOptions().CPlusPlus))
1279    S = S->getParent();
1280  return S;
1281}
1282
1283/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1284/// file scope.  lazily create a decl for it. ForRedeclaration is true
1285/// if we're creating this built-in in anticipation of redeclaring the
1286/// built-in.
1287NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1288                                     Scope *S, bool ForRedeclaration,
1289                                     SourceLocation Loc) {
1290  Builtin::ID BID = (Builtin::ID)bid;
1291
1292  ASTContext::GetBuiltinTypeError Error;
1293  QualType R = Context.GetBuiltinType(BID, Error);
1294  switch (Error) {
1295  case ASTContext::GE_None:
1296    // Okay
1297    break;
1298
1299  case ASTContext::GE_Missing_stdio:
1300    if (ForRedeclaration)
1301      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1302        << Context.BuiltinInfo.GetName(BID);
1303    return 0;
1304
1305  case ASTContext::GE_Missing_setjmp:
1306    if (ForRedeclaration)
1307      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1308        << Context.BuiltinInfo.GetName(BID);
1309    return 0;
1310  }
1311
1312  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1313    Diag(Loc, diag::ext_implicit_lib_function_decl)
1314      << Context.BuiltinInfo.GetName(BID)
1315      << R;
1316    if (Context.BuiltinInfo.getHeaderName(BID) &&
1317        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1318          != DiagnosticsEngine::Ignored)
1319      Diag(Loc, diag::note_please_include_header)
1320        << Context.BuiltinInfo.getHeaderName(BID)
1321        << Context.BuiltinInfo.GetName(BID);
1322  }
1323
1324  FunctionDecl *New = FunctionDecl::Create(Context,
1325                                           Context.getTranslationUnitDecl(),
1326                                           Loc, Loc, II, R, /*TInfo=*/0,
1327                                           SC_Extern,
1328                                           SC_None, false,
1329                                           /*hasPrototype=*/true);
1330  New->setImplicit();
1331
1332  // Create Decl objects for each parameter, adding them to the
1333  // FunctionDecl.
1334  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1335    SmallVector<ParmVarDecl*, 16> Params;
1336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1337      ParmVarDecl *parm =
1338        ParmVarDecl::Create(Context, New, SourceLocation(),
1339                            SourceLocation(), 0,
1340                            FT->getArgType(i), /*TInfo=*/0,
1341                            SC_None, SC_None, 0);
1342      parm->setScopeInfo(0, i);
1343      Params.push_back(parm);
1344    }
1345    New->setParams(Params);
1346  }
1347
1348  AddKnownFunctionAttributes(New);
1349
1350  // TUScope is the translation-unit scope to insert this function into.
1351  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1352  // relate Scopes to DeclContexts, and probably eliminate CurContext
1353  // entirely, but we're not there yet.
1354  DeclContext *SavedContext = CurContext;
1355  CurContext = Context.getTranslationUnitDecl();
1356  PushOnScopeChains(New, TUScope);
1357  CurContext = SavedContext;
1358  return New;
1359}
1360
1361/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1362/// same name and scope as a previous declaration 'Old'.  Figure out
1363/// how to resolve this situation, merging decls or emitting
1364/// diagnostics as appropriate. If there was an error, set New to be invalid.
1365///
1366void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1367  // If the new decl is known invalid already, don't bother doing any
1368  // merging checks.
1369  if (New->isInvalidDecl()) return;
1370
1371  // Allow multiple definitions for ObjC built-in typedefs.
1372  // FIXME: Verify the underlying types are equivalent!
1373  if (getLangOptions().ObjC1) {
1374    const IdentifierInfo *TypeID = New->getIdentifier();
1375    switch (TypeID->getLength()) {
1376    default: break;
1377    case 2:
1378      if (!TypeID->isStr("id"))
1379        break;
1380      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1381      // Install the built-in type for 'id', ignoring the current definition.
1382      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1383      return;
1384    case 5:
1385      if (!TypeID->isStr("Class"))
1386        break;
1387      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1388      // Install the built-in type for 'Class', ignoring the current definition.
1389      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1390      return;
1391    case 3:
1392      if (!TypeID->isStr("SEL"))
1393        break;
1394      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1395      // Install the built-in type for 'SEL', ignoring the current definition.
1396      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1397      return;
1398    }
1399    // Fall through - the typedef name was not a builtin type.
1400  }
1401
1402  // Verify the old decl was also a type.
1403  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1404  if (!Old) {
1405    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1406      << New->getDeclName();
1407
1408    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1409    if (OldD->getLocation().isValid())
1410      Diag(OldD->getLocation(), diag::note_previous_definition);
1411
1412    return New->setInvalidDecl();
1413  }
1414
1415  // If the old declaration is invalid, just give up here.
1416  if (Old->isInvalidDecl())
1417    return New->setInvalidDecl();
1418
1419  // Determine the "old" type we'll use for checking and diagnostics.
1420  QualType OldType;
1421  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1422    OldType = OldTypedef->getUnderlyingType();
1423  else
1424    OldType = Context.getTypeDeclType(Old);
1425
1426  // If the typedef types are not identical, reject them in all languages and
1427  // with any extensions enabled.
1428
1429  if (OldType != New->getUnderlyingType() &&
1430      Context.getCanonicalType(OldType) !=
1431      Context.getCanonicalType(New->getUnderlyingType())) {
1432    int Kind = 0;
1433    if (isa<TypeAliasDecl>(Old))
1434      Kind = 1;
1435    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1436      << Kind << New->getUnderlyingType() << OldType;
1437    if (Old->getLocation().isValid())
1438      Diag(Old->getLocation(), diag::note_previous_definition);
1439    return New->setInvalidDecl();
1440  }
1441
1442  // The types match.  Link up the redeclaration chain if the old
1443  // declaration was a typedef.
1444  // FIXME: this is a potential source of weirdness if the type
1445  // spellings don't match exactly.
1446  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1447    New->setPreviousDeclaration(Typedef);
1448
1449  // __module_private__ is propagated to later declarations.
1450  if (Old->isModulePrivate())
1451    New->setModulePrivate();
1452  else if (New->isModulePrivate())
1453    diagnoseModulePrivateRedeclaration(New, Old);
1454
1455  if (getLangOptions().MicrosoftExt)
1456    return;
1457
1458  if (getLangOptions().CPlusPlus) {
1459    // C++ [dcl.typedef]p2:
1460    //   In a given non-class scope, a typedef specifier can be used to
1461    //   redefine the name of any type declared in that scope to refer
1462    //   to the type to which it already refers.
1463    if (!isa<CXXRecordDecl>(CurContext))
1464      return;
1465
1466    // C++0x [dcl.typedef]p4:
1467    //   In a given class scope, a typedef specifier can be used to redefine
1468    //   any class-name declared in that scope that is not also a typedef-name
1469    //   to refer to the type to which it already refers.
1470    //
1471    // This wording came in via DR424, which was a correction to the
1472    // wording in DR56, which accidentally banned code like:
1473    //
1474    //   struct S {
1475    //     typedef struct A { } A;
1476    //   };
1477    //
1478    // in the C++03 standard. We implement the C++0x semantics, which
1479    // allow the above but disallow
1480    //
1481    //   struct S {
1482    //     typedef int I;
1483    //     typedef int I;
1484    //   };
1485    //
1486    // since that was the intent of DR56.
1487    if (!isa<TypedefNameDecl>(Old))
1488      return;
1489
1490    Diag(New->getLocation(), diag::err_redefinition)
1491      << New->getDeclName();
1492    Diag(Old->getLocation(), diag::note_previous_definition);
1493    return New->setInvalidDecl();
1494  }
1495
1496  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1497  // is normally mapped to an error, but can be controlled with
1498  // -Wtypedef-redefinition.  If either the original or the redefinition is
1499  // in a system header, don't emit this for compatibility with GCC.
1500  if (getDiagnostics().getSuppressSystemWarnings() &&
1501      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1502       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1503    return;
1504
1505  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1506    << New->getDeclName();
1507  Diag(Old->getLocation(), diag::note_previous_definition);
1508  return;
1509}
1510
1511/// DeclhasAttr - returns true if decl Declaration already has the target
1512/// attribute.
1513static bool
1514DeclHasAttr(const Decl *D, const Attr *A) {
1515  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1516  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1517  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1518    if ((*i)->getKind() == A->getKind()) {
1519      if (Ann) {
1520        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1521          return true;
1522        continue;
1523      }
1524      // FIXME: Don't hardcode this check
1525      if (OA && isa<OwnershipAttr>(*i))
1526        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1527      return true;
1528    }
1529
1530  return false;
1531}
1532
1533/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1534static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1535                                ASTContext &C, bool mergeDeprecation = true) {
1536  if (!oldDecl->hasAttrs())
1537    return;
1538
1539  bool foundAny = newDecl->hasAttrs();
1540
1541  // Ensure that any moving of objects within the allocated map is done before
1542  // we process them.
1543  if (!foundAny) newDecl->setAttrs(AttrVec());
1544
1545  for (specific_attr_iterator<InheritableAttr>
1546       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1547       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1548    // Ignore deprecated/unavailable/availability attributes if requested.
1549    if (!mergeDeprecation &&
1550        (isa<DeprecatedAttr>(*i) ||
1551         isa<UnavailableAttr>(*i) ||
1552         isa<AvailabilityAttr>(*i)))
1553      continue;
1554
1555    if (!DeclHasAttr(newDecl, *i)) {
1556      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1557      newAttr->setInherited(true);
1558      newDecl->addAttr(newAttr);
1559      foundAny = true;
1560    }
1561  }
1562
1563  if (!foundAny) newDecl->dropAttrs();
1564}
1565
1566/// mergeParamDeclAttributes - Copy attributes from the old parameter
1567/// to the new one.
1568static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1569                                     const ParmVarDecl *oldDecl,
1570                                     ASTContext &C) {
1571  if (!oldDecl->hasAttrs())
1572    return;
1573
1574  bool foundAny = newDecl->hasAttrs();
1575
1576  // Ensure that any moving of objects within the allocated map is
1577  // done before we process them.
1578  if (!foundAny) newDecl->setAttrs(AttrVec());
1579
1580  for (specific_attr_iterator<InheritableParamAttr>
1581       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1582       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1583    if (!DeclHasAttr(newDecl, *i)) {
1584      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1585      newAttr->setInherited(true);
1586      newDecl->addAttr(newAttr);
1587      foundAny = true;
1588    }
1589  }
1590
1591  if (!foundAny) newDecl->dropAttrs();
1592}
1593
1594namespace {
1595
1596/// Used in MergeFunctionDecl to keep track of function parameters in
1597/// C.
1598struct GNUCompatibleParamWarning {
1599  ParmVarDecl *OldParm;
1600  ParmVarDecl *NewParm;
1601  QualType PromotedType;
1602};
1603
1604}
1605
1606/// getSpecialMember - get the special member enum for a method.
1607Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1608  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1609    if (Ctor->isDefaultConstructor())
1610      return Sema::CXXDefaultConstructor;
1611
1612    if (Ctor->isCopyConstructor())
1613      return Sema::CXXCopyConstructor;
1614
1615    if (Ctor->isMoveConstructor())
1616      return Sema::CXXMoveConstructor;
1617  } else if (isa<CXXDestructorDecl>(MD)) {
1618    return Sema::CXXDestructor;
1619  } else if (MD->isCopyAssignmentOperator()) {
1620    return Sema::CXXCopyAssignment;
1621  } else if (MD->isMoveAssignmentOperator()) {
1622    return Sema::CXXMoveAssignment;
1623  }
1624
1625  return Sema::CXXInvalid;
1626}
1627
1628/// canRedefineFunction - checks if a function can be redefined. Currently,
1629/// only extern inline functions can be redefined, and even then only in
1630/// GNU89 mode.
1631static bool canRedefineFunction(const FunctionDecl *FD,
1632                                const LangOptions& LangOpts) {
1633  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1634          !LangOpts.CPlusPlus &&
1635          FD->isInlineSpecified() &&
1636          FD->getStorageClass() == SC_Extern);
1637}
1638
1639/// MergeFunctionDecl - We just parsed a function 'New' from
1640/// declarator D which has the same name and scope as a previous
1641/// declaration 'Old'.  Figure out how to resolve this situation,
1642/// merging decls or emitting diagnostics as appropriate.
1643///
1644/// In C++, New and Old must be declarations that are not
1645/// overloaded. Use IsOverload to determine whether New and Old are
1646/// overloaded, and to select the Old declaration that New should be
1647/// merged with.
1648///
1649/// Returns true if there was an error, false otherwise.
1650bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1651  // Verify the old decl was also a function.
1652  FunctionDecl *Old = 0;
1653  if (FunctionTemplateDecl *OldFunctionTemplate
1654        = dyn_cast<FunctionTemplateDecl>(OldD))
1655    Old = OldFunctionTemplate->getTemplatedDecl();
1656  else
1657    Old = dyn_cast<FunctionDecl>(OldD);
1658  if (!Old) {
1659    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1660      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1661      Diag(Shadow->getTargetDecl()->getLocation(),
1662           diag::note_using_decl_target);
1663      Diag(Shadow->getUsingDecl()->getLocation(),
1664           diag::note_using_decl) << 0;
1665      return true;
1666    }
1667
1668    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1669      << New->getDeclName();
1670    Diag(OldD->getLocation(), diag::note_previous_definition);
1671    return true;
1672  }
1673
1674  // Determine whether the previous declaration was a definition,
1675  // implicit declaration, or a declaration.
1676  diag::kind PrevDiag;
1677  if (Old->isThisDeclarationADefinition())
1678    PrevDiag = diag::note_previous_definition;
1679  else if (Old->isImplicit())
1680    PrevDiag = diag::note_previous_implicit_declaration;
1681  else
1682    PrevDiag = diag::note_previous_declaration;
1683
1684  QualType OldQType = Context.getCanonicalType(Old->getType());
1685  QualType NewQType = Context.getCanonicalType(New->getType());
1686
1687  // Don't complain about this if we're in GNU89 mode and the old function
1688  // is an extern inline function.
1689  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1690      New->getStorageClass() == SC_Static &&
1691      Old->getStorageClass() != SC_Static &&
1692      !canRedefineFunction(Old, getLangOptions())) {
1693    if (getLangOptions().MicrosoftExt) {
1694      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1695      Diag(Old->getLocation(), PrevDiag);
1696    } else {
1697      Diag(New->getLocation(), diag::err_static_non_static) << New;
1698      Diag(Old->getLocation(), PrevDiag);
1699      return true;
1700    }
1701  }
1702
1703  // If a function is first declared with a calling convention, but is
1704  // later declared or defined without one, the second decl assumes the
1705  // calling convention of the first.
1706  //
1707  // For the new decl, we have to look at the NON-canonical type to tell the
1708  // difference between a function that really doesn't have a calling
1709  // convention and one that is declared cdecl. That's because in
1710  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1711  // because it is the default calling convention.
1712  //
1713  // Note also that we DO NOT return at this point, because we still have
1714  // other tests to run.
1715  const FunctionType *OldType = cast<FunctionType>(OldQType);
1716  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1717  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1718  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1719  bool RequiresAdjustment = false;
1720  if (OldTypeInfo.getCC() != CC_Default &&
1721      NewTypeInfo.getCC() == CC_Default) {
1722    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1723    RequiresAdjustment = true;
1724  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1725                                     NewTypeInfo.getCC())) {
1726    // Calling conventions really aren't compatible, so complain.
1727    Diag(New->getLocation(), diag::err_cconv_change)
1728      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1729      << (OldTypeInfo.getCC() == CC_Default)
1730      << (OldTypeInfo.getCC() == CC_Default ? "" :
1731          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1732    Diag(Old->getLocation(), diag::note_previous_declaration);
1733    return true;
1734  }
1735
1736  // FIXME: diagnose the other way around?
1737  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1738    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1739    RequiresAdjustment = true;
1740  }
1741
1742  // Merge regparm attribute.
1743  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1744      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1745    if (NewTypeInfo.getHasRegParm()) {
1746      Diag(New->getLocation(), diag::err_regparm_mismatch)
1747        << NewType->getRegParmType()
1748        << OldType->getRegParmType();
1749      Diag(Old->getLocation(), diag::note_previous_declaration);
1750      return true;
1751    }
1752
1753    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1754    RequiresAdjustment = true;
1755  }
1756
1757  // Merge ns_returns_retained attribute.
1758  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1759    if (NewTypeInfo.getProducesResult()) {
1760      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1761      Diag(Old->getLocation(), diag::note_previous_declaration);
1762      return true;
1763    }
1764
1765    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1766    RequiresAdjustment = true;
1767  }
1768
1769  if (RequiresAdjustment) {
1770    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1771    New->setType(QualType(NewType, 0));
1772    NewQType = Context.getCanonicalType(New->getType());
1773  }
1774
1775  if (getLangOptions().CPlusPlus) {
1776    // (C++98 13.1p2):
1777    //   Certain function declarations cannot be overloaded:
1778    //     -- Function declarations that differ only in the return type
1779    //        cannot be overloaded.
1780    QualType OldReturnType = OldType->getResultType();
1781    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1782    QualType ResQT;
1783    if (OldReturnType != NewReturnType) {
1784      if (NewReturnType->isObjCObjectPointerType()
1785          && OldReturnType->isObjCObjectPointerType())
1786        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1787      if (ResQT.isNull()) {
1788        if (New->isCXXClassMember() && New->isOutOfLine())
1789          Diag(New->getLocation(),
1790               diag::err_member_def_does_not_match_ret_type) << New;
1791        else
1792          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1793        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1794        return true;
1795      }
1796      else
1797        NewQType = ResQT;
1798    }
1799
1800    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1801    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1802    if (OldMethod && NewMethod) {
1803      // Preserve triviality.
1804      NewMethod->setTrivial(OldMethod->isTrivial());
1805
1806      // MSVC allows explicit template specialization at class scope:
1807      // 2 CXMethodDecls referring to the same function will be injected.
1808      // We don't want a redeclartion error.
1809      bool IsClassScopeExplicitSpecialization =
1810                              OldMethod->isFunctionTemplateSpecialization() &&
1811                              NewMethod->isFunctionTemplateSpecialization();
1812      bool isFriend = NewMethod->getFriendObjectKind();
1813
1814      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1815          !IsClassScopeExplicitSpecialization) {
1816        //    -- Member function declarations with the same name and the
1817        //       same parameter types cannot be overloaded if any of them
1818        //       is a static member function declaration.
1819        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1820          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1821          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1822          return true;
1823        }
1824
1825        // C++ [class.mem]p1:
1826        //   [...] A member shall not be declared twice in the
1827        //   member-specification, except that a nested class or member
1828        //   class template can be declared and then later defined.
1829        unsigned NewDiag;
1830        if (isa<CXXConstructorDecl>(OldMethod))
1831          NewDiag = diag::err_constructor_redeclared;
1832        else if (isa<CXXDestructorDecl>(NewMethod))
1833          NewDiag = diag::err_destructor_redeclared;
1834        else if (isa<CXXConversionDecl>(NewMethod))
1835          NewDiag = diag::err_conv_function_redeclared;
1836        else
1837          NewDiag = diag::err_member_redeclared;
1838
1839        Diag(New->getLocation(), NewDiag);
1840        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1841
1842      // Complain if this is an explicit declaration of a special
1843      // member that was initially declared implicitly.
1844      //
1845      // As an exception, it's okay to befriend such methods in order
1846      // to permit the implicit constructor/destructor/operator calls.
1847      } else if (OldMethod->isImplicit()) {
1848        if (isFriend) {
1849          NewMethod->setImplicit();
1850        } else {
1851          Diag(NewMethod->getLocation(),
1852               diag::err_definition_of_implicitly_declared_member)
1853            << New << getSpecialMember(OldMethod);
1854          return true;
1855        }
1856      } else if (OldMethod->isExplicitlyDefaulted()) {
1857        Diag(NewMethod->getLocation(),
1858             diag::err_definition_of_explicitly_defaulted_member)
1859          << getSpecialMember(OldMethod);
1860        return true;
1861      }
1862    }
1863
1864    // (C++98 8.3.5p3):
1865    //   All declarations for a function shall agree exactly in both the
1866    //   return type and the parameter-type-list.
1867    // We also want to respect all the extended bits except noreturn.
1868
1869    // noreturn should now match unless the old type info didn't have it.
1870    QualType OldQTypeForComparison = OldQType;
1871    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1872      assert(OldQType == QualType(OldType, 0));
1873      const FunctionType *OldTypeForComparison
1874        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1875      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1876      assert(OldQTypeForComparison.isCanonical());
1877    }
1878
1879    if (OldQTypeForComparison == NewQType)
1880      return MergeCompatibleFunctionDecls(New, Old);
1881
1882    // Fall through for conflicting redeclarations and redefinitions.
1883  }
1884
1885  // C: Function types need to be compatible, not identical. This handles
1886  // duplicate function decls like "void f(int); void f(enum X);" properly.
1887  if (!getLangOptions().CPlusPlus &&
1888      Context.typesAreCompatible(OldQType, NewQType)) {
1889    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1890    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1891    const FunctionProtoType *OldProto = 0;
1892    if (isa<FunctionNoProtoType>(NewFuncType) &&
1893        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1894      // The old declaration provided a function prototype, but the
1895      // new declaration does not. Merge in the prototype.
1896      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1897      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1898                                                 OldProto->arg_type_end());
1899      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1900                                         ParamTypes.data(), ParamTypes.size(),
1901                                         OldProto->getExtProtoInfo());
1902      New->setType(NewQType);
1903      New->setHasInheritedPrototype();
1904
1905      // Synthesize a parameter for each argument type.
1906      SmallVector<ParmVarDecl*, 16> Params;
1907      for (FunctionProtoType::arg_type_iterator
1908             ParamType = OldProto->arg_type_begin(),
1909             ParamEnd = OldProto->arg_type_end();
1910           ParamType != ParamEnd; ++ParamType) {
1911        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1912                                                 SourceLocation(),
1913                                                 SourceLocation(), 0,
1914                                                 *ParamType, /*TInfo=*/0,
1915                                                 SC_None, SC_None,
1916                                                 0);
1917        Param->setScopeInfo(0, Params.size());
1918        Param->setImplicit();
1919        Params.push_back(Param);
1920      }
1921
1922      New->setParams(Params);
1923    }
1924
1925    return MergeCompatibleFunctionDecls(New, Old);
1926  }
1927
1928  // GNU C permits a K&R definition to follow a prototype declaration
1929  // if the declared types of the parameters in the K&R definition
1930  // match the types in the prototype declaration, even when the
1931  // promoted types of the parameters from the K&R definition differ
1932  // from the types in the prototype. GCC then keeps the types from
1933  // the prototype.
1934  //
1935  // If a variadic prototype is followed by a non-variadic K&R definition,
1936  // the K&R definition becomes variadic.  This is sort of an edge case, but
1937  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1938  // C99 6.9.1p8.
1939  if (!getLangOptions().CPlusPlus &&
1940      Old->hasPrototype() && !New->hasPrototype() &&
1941      New->getType()->getAs<FunctionProtoType>() &&
1942      Old->getNumParams() == New->getNumParams()) {
1943    SmallVector<QualType, 16> ArgTypes;
1944    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1945    const FunctionProtoType *OldProto
1946      = Old->getType()->getAs<FunctionProtoType>();
1947    const FunctionProtoType *NewProto
1948      = New->getType()->getAs<FunctionProtoType>();
1949
1950    // Determine whether this is the GNU C extension.
1951    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1952                                               NewProto->getResultType());
1953    bool LooseCompatible = !MergedReturn.isNull();
1954    for (unsigned Idx = 0, End = Old->getNumParams();
1955         LooseCompatible && Idx != End; ++Idx) {
1956      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1957      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1958      if (Context.typesAreCompatible(OldParm->getType(),
1959                                     NewProto->getArgType(Idx))) {
1960        ArgTypes.push_back(NewParm->getType());
1961      } else if (Context.typesAreCompatible(OldParm->getType(),
1962                                            NewParm->getType(),
1963                                            /*CompareUnqualified=*/true)) {
1964        GNUCompatibleParamWarning Warn
1965          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1966        Warnings.push_back(Warn);
1967        ArgTypes.push_back(NewParm->getType());
1968      } else
1969        LooseCompatible = false;
1970    }
1971
1972    if (LooseCompatible) {
1973      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1974        Diag(Warnings[Warn].NewParm->getLocation(),
1975             diag::ext_param_promoted_not_compatible_with_prototype)
1976          << Warnings[Warn].PromotedType
1977          << Warnings[Warn].OldParm->getType();
1978        if (Warnings[Warn].OldParm->getLocation().isValid())
1979          Diag(Warnings[Warn].OldParm->getLocation(),
1980               diag::note_previous_declaration);
1981      }
1982
1983      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1984                                           ArgTypes.size(),
1985                                           OldProto->getExtProtoInfo()));
1986      return MergeCompatibleFunctionDecls(New, Old);
1987    }
1988
1989    // Fall through to diagnose conflicting types.
1990  }
1991
1992  // A function that has already been declared has been redeclared or defined
1993  // with a different type- show appropriate diagnostic
1994  if (unsigned BuiltinID = Old->getBuiltinID()) {
1995    // The user has declared a builtin function with an incompatible
1996    // signature.
1997    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1998      // The function the user is redeclaring is a library-defined
1999      // function like 'malloc' or 'printf'. Warn about the
2000      // redeclaration, then pretend that we don't know about this
2001      // library built-in.
2002      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2003      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2004        << Old << Old->getType();
2005      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2006      Old->setInvalidDecl();
2007      return false;
2008    }
2009
2010    PrevDiag = diag::note_previous_builtin_declaration;
2011  }
2012
2013  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2014  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2015  return true;
2016}
2017
2018/// \brief Completes the merge of two function declarations that are
2019/// known to be compatible.
2020///
2021/// This routine handles the merging of attributes and other
2022/// properties of function declarations form the old declaration to
2023/// the new declaration, once we know that New is in fact a
2024/// redeclaration of Old.
2025///
2026/// \returns false
2027bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2028  // Merge the attributes
2029  mergeDeclAttributes(New, Old, Context);
2030
2031  // Merge the storage class.
2032  if (Old->getStorageClass() != SC_Extern &&
2033      Old->getStorageClass() != SC_None)
2034    New->setStorageClass(Old->getStorageClass());
2035
2036  // Merge "pure" flag.
2037  if (Old->isPure())
2038    New->setPure();
2039
2040  // __module_private__ is propagated to later declarations.
2041  if (Old->isModulePrivate())
2042    New->setModulePrivate();
2043  else if (New->isModulePrivate())
2044    diagnoseModulePrivateRedeclaration(New, Old);
2045
2046  // Merge attributes from the parameters.  These can mismatch with K&R
2047  // declarations.
2048  if (New->getNumParams() == Old->getNumParams())
2049    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2050      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2051                               Context);
2052
2053  if (getLangOptions().CPlusPlus)
2054    return MergeCXXFunctionDecl(New, Old);
2055
2056  return false;
2057}
2058
2059
2060void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2061                                const ObjCMethodDecl *oldMethod) {
2062  // We don't want to merge unavailable and deprecated attributes
2063  // except from interface to implementation.
2064  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2065
2066  // Merge the attributes.
2067  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2068
2069  // Merge attributes from the parameters.
2070  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2071  for (ObjCMethodDecl::param_iterator
2072         ni = newMethod->param_begin(), ne = newMethod->param_end();
2073       ni != ne; ++ni, ++oi)
2074    mergeParamDeclAttributes(*ni, *oi, Context);
2075
2076  CheckObjCMethodOverride(newMethod, oldMethod, true);
2077}
2078
2079/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2080/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2081/// emitting diagnostics as appropriate.
2082///
2083/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2084/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2085/// check them before the initializer is attached.
2086///
2087void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2088  if (New->isInvalidDecl() || Old->isInvalidDecl())
2089    return;
2090
2091  QualType MergedT;
2092  if (getLangOptions().CPlusPlus) {
2093    AutoType *AT = New->getType()->getContainedAutoType();
2094    if (AT && !AT->isDeduced()) {
2095      // We don't know what the new type is until the initializer is attached.
2096      return;
2097    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2098      // These could still be something that needs exception specs checked.
2099      return MergeVarDeclExceptionSpecs(New, Old);
2100    }
2101    // C++ [basic.link]p10:
2102    //   [...] the types specified by all declarations referring to a given
2103    //   object or function shall be identical, except that declarations for an
2104    //   array object can specify array types that differ by the presence or
2105    //   absence of a major array bound (8.3.4).
2106    else if (Old->getType()->isIncompleteArrayType() &&
2107             New->getType()->isArrayType()) {
2108      CanQual<ArrayType> OldArray
2109        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2110      CanQual<ArrayType> NewArray
2111        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2112      if (OldArray->getElementType() == NewArray->getElementType())
2113        MergedT = New->getType();
2114    } else if (Old->getType()->isArrayType() &&
2115             New->getType()->isIncompleteArrayType()) {
2116      CanQual<ArrayType> OldArray
2117        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2118      CanQual<ArrayType> NewArray
2119        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2120      if (OldArray->getElementType() == NewArray->getElementType())
2121        MergedT = Old->getType();
2122    } else if (New->getType()->isObjCObjectPointerType()
2123               && Old->getType()->isObjCObjectPointerType()) {
2124        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2125                                                        Old->getType());
2126    }
2127  } else {
2128    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2129  }
2130  if (MergedT.isNull()) {
2131    Diag(New->getLocation(), diag::err_redefinition_different_type)
2132      << New->getDeclName();
2133    Diag(Old->getLocation(), diag::note_previous_definition);
2134    return New->setInvalidDecl();
2135  }
2136  New->setType(MergedT);
2137}
2138
2139/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2140/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2141/// situation, merging decls or emitting diagnostics as appropriate.
2142///
2143/// Tentative definition rules (C99 6.9.2p2) are checked by
2144/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2145/// definitions here, since the initializer hasn't been attached.
2146///
2147void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2148  // If the new decl is already invalid, don't do any other checking.
2149  if (New->isInvalidDecl())
2150    return;
2151
2152  // Verify the old decl was also a variable.
2153  VarDecl *Old = 0;
2154  if (!Previous.isSingleResult() ||
2155      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2156    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157      << New->getDeclName();
2158    Diag(Previous.getRepresentativeDecl()->getLocation(),
2159         diag::note_previous_definition);
2160    return New->setInvalidDecl();
2161  }
2162
2163  // C++ [class.mem]p1:
2164  //   A member shall not be declared twice in the member-specification [...]
2165  //
2166  // Here, we need only consider static data members.
2167  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2168    Diag(New->getLocation(), diag::err_duplicate_member)
2169      << New->getIdentifier();
2170    Diag(Old->getLocation(), diag::note_previous_declaration);
2171    New->setInvalidDecl();
2172  }
2173
2174  mergeDeclAttributes(New, Old, Context);
2175  // Warn if an already-declared variable is made a weak_import in a subsequent
2176  // declaration
2177  if (New->getAttr<WeakImportAttr>() &&
2178      Old->getStorageClass() == SC_None &&
2179      !Old->getAttr<WeakImportAttr>()) {
2180    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2181    Diag(Old->getLocation(), diag::note_previous_definition);
2182    // Remove weak_import attribute on new declaration.
2183    New->dropAttr<WeakImportAttr>();
2184  }
2185
2186  // Merge the types.
2187  MergeVarDeclTypes(New, Old);
2188  if (New->isInvalidDecl())
2189    return;
2190
2191  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2192  if (New->getStorageClass() == SC_Static &&
2193      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2194    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2195    Diag(Old->getLocation(), diag::note_previous_definition);
2196    return New->setInvalidDecl();
2197  }
2198  // C99 6.2.2p4:
2199  //   For an identifier declared with the storage-class specifier
2200  //   extern in a scope in which a prior declaration of that
2201  //   identifier is visible,23) if the prior declaration specifies
2202  //   internal or external linkage, the linkage of the identifier at
2203  //   the later declaration is the same as the linkage specified at
2204  //   the prior declaration. If no prior declaration is visible, or
2205  //   if the prior declaration specifies no linkage, then the
2206  //   identifier has external linkage.
2207  if (New->hasExternalStorage() && Old->hasLinkage())
2208    /* Okay */;
2209  else if (New->getStorageClass() != SC_Static &&
2210           Old->getStorageClass() == SC_Static) {
2211    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2212    Diag(Old->getLocation(), diag::note_previous_definition);
2213    return New->setInvalidDecl();
2214  }
2215
2216  // Check if extern is followed by non-extern and vice-versa.
2217  if (New->hasExternalStorage() &&
2218      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2219    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2220    Diag(Old->getLocation(), diag::note_previous_definition);
2221    return New->setInvalidDecl();
2222  }
2223  if (Old->hasExternalStorage() &&
2224      !New->hasLinkage() && New->isLocalVarDecl()) {
2225    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2226    Diag(Old->getLocation(), diag::note_previous_definition);
2227    return New->setInvalidDecl();
2228  }
2229
2230  // __module_private__ is propagated to later declarations.
2231  if (Old->isModulePrivate())
2232    New->setModulePrivate();
2233  else if (New->isModulePrivate())
2234    diagnoseModulePrivateRedeclaration(New, Old);
2235
2236  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2237
2238  // FIXME: The test for external storage here seems wrong? We still
2239  // need to check for mismatches.
2240  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2241      // Don't complain about out-of-line definitions of static members.
2242      !(Old->getLexicalDeclContext()->isRecord() &&
2243        !New->getLexicalDeclContext()->isRecord())) {
2244    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2245    Diag(Old->getLocation(), diag::note_previous_definition);
2246    return New->setInvalidDecl();
2247  }
2248
2249  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2250    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2251    Diag(Old->getLocation(), diag::note_previous_definition);
2252  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2253    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2254    Diag(Old->getLocation(), diag::note_previous_definition);
2255  }
2256
2257  // C++ doesn't have tentative definitions, so go right ahead and check here.
2258  const VarDecl *Def;
2259  if (getLangOptions().CPlusPlus &&
2260      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2261      (Def = Old->getDefinition())) {
2262    Diag(New->getLocation(), diag::err_redefinition)
2263      << New->getDeclName();
2264    Diag(Def->getLocation(), diag::note_previous_definition);
2265    New->setInvalidDecl();
2266    return;
2267  }
2268  // c99 6.2.2 P4.
2269  // For an identifier declared with the storage-class specifier extern in a
2270  // scope in which a prior declaration of that identifier is visible, if
2271  // the prior declaration specifies internal or external linkage, the linkage
2272  // of the identifier at the later declaration is the same as the linkage
2273  // specified at the prior declaration.
2274  // FIXME. revisit this code.
2275  if (New->hasExternalStorage() &&
2276      Old->getLinkage() == InternalLinkage &&
2277      New->getDeclContext() == Old->getDeclContext())
2278    New->setStorageClass(Old->getStorageClass());
2279
2280  // Keep a chain of previous declarations.
2281  New->setPreviousDeclaration(Old);
2282
2283  // Inherit access appropriately.
2284  New->setAccess(Old->getAccess());
2285}
2286
2287/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2288/// no declarator (e.g. "struct foo;") is parsed.
2289Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2290                                       DeclSpec &DS) {
2291  return ParsedFreeStandingDeclSpec(S, AS, DS,
2292                                    MultiTemplateParamsArg(*this, 0, 0));
2293}
2294
2295/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2296/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2297/// parameters to cope with template friend declarations.
2298Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2299                                       DeclSpec &DS,
2300                                       MultiTemplateParamsArg TemplateParams) {
2301  Decl *TagD = 0;
2302  TagDecl *Tag = 0;
2303  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2304      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2305      DS.getTypeSpecType() == DeclSpec::TST_union ||
2306      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2307    TagD = DS.getRepAsDecl();
2308
2309    if (!TagD) // We probably had an error
2310      return 0;
2311
2312    // Note that the above type specs guarantee that the
2313    // type rep is a Decl, whereas in many of the others
2314    // it's a Type.
2315    Tag = dyn_cast<TagDecl>(TagD);
2316  }
2317
2318  if (Tag)
2319    Tag->setFreeStanding();
2320
2321  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2322    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2323    // or incomplete types shall not be restrict-qualified."
2324    if (TypeQuals & DeclSpec::TQ_restrict)
2325      Diag(DS.getRestrictSpecLoc(),
2326           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2327           << DS.getSourceRange();
2328  }
2329
2330  if (DS.isConstexprSpecified()) {
2331    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2332    // and definitions of functions and variables.
2333    if (Tag)
2334      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2335        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2336            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2337            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2338    else
2339      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2340    // Don't emit warnings after this error.
2341    return TagD;
2342  }
2343
2344  if (DS.isFriendSpecified()) {
2345    // If we're dealing with a decl but not a TagDecl, assume that
2346    // whatever routines created it handled the friendship aspect.
2347    if (TagD && !Tag)
2348      return 0;
2349    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2350  }
2351
2352  // Track whether we warned about the fact that there aren't any
2353  // declarators.
2354  bool emittedWarning = false;
2355
2356  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2357    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2358
2359    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2360        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2361      if (getLangOptions().CPlusPlus ||
2362          Record->getDeclContext()->isRecord())
2363        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2364
2365      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2366        << DS.getSourceRange();
2367      emittedWarning = true;
2368    }
2369  }
2370
2371  // Check for Microsoft C extension: anonymous struct.
2372  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2373      CurContext->isRecord() &&
2374      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2375    // Handle 2 kinds of anonymous struct:
2376    //   struct STRUCT;
2377    // and
2378    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2379    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2380    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2381        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2382         DS.getRepAsType().get()->isStructureType())) {
2383      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2384        << DS.getSourceRange();
2385      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2386    }
2387  }
2388
2389  if (getLangOptions().CPlusPlus &&
2390      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2391    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2392      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2393          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2394        Diag(Enum->getLocation(), diag::ext_no_declarators)
2395          << DS.getSourceRange();
2396        emittedWarning = true;
2397      }
2398
2399  // Skip all the checks below if we have a type error.
2400  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2401
2402  if (!DS.isMissingDeclaratorOk()) {
2403    // Warn about typedefs of enums without names, since this is an
2404    // extension in both Microsoft and GNU.
2405    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2406        Tag && isa<EnumDecl>(Tag)) {
2407      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2408        << DS.getSourceRange();
2409      return Tag;
2410    }
2411
2412    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2413      << DS.getSourceRange();
2414    emittedWarning = true;
2415  }
2416
2417  // We're going to complain about a bunch of spurious specifiers;
2418  // only do this if we're declaring a tag, because otherwise we
2419  // should be getting diag::ext_no_declarators.
2420  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2421    return TagD;
2422
2423  // Note that a linkage-specification sets a storage class, but
2424  // 'extern "C" struct foo;' is actually valid and not theoretically
2425  // useless.
2426  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2427    if (!DS.isExternInLinkageSpec())
2428      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2429        << DeclSpec::getSpecifierName(scs);
2430
2431  if (DS.isThreadSpecified())
2432    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2433  if (DS.getTypeQualifiers()) {
2434    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2435      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2436    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2437      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2438    // Restrict is covered above.
2439  }
2440  if (DS.isInlineSpecified())
2441    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2442  if (DS.isVirtualSpecified())
2443    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2444  if (DS.isExplicitSpecified())
2445    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2446
2447  if (DS.isModulePrivateSpecified() &&
2448      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2449    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2450      << Tag->getTagKind()
2451      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2452
2453  // FIXME: Warn on useless attributes
2454
2455  return TagD;
2456}
2457
2458/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2459/// builds a statement for it and returns it so it is evaluated.
2460StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2461  StmtResult R;
2462  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2463    Expr *Exp = DS.getRepAsExpr();
2464    QualType Ty = Exp->getType();
2465    if (Ty->isPointerType()) {
2466      do
2467        Ty = Ty->getAs<PointerType>()->getPointeeType();
2468      while (Ty->isPointerType());
2469    }
2470    if (Ty->isVariableArrayType()) {
2471      R = ActOnExprStmt(MakeFullExpr(Exp));
2472    }
2473  }
2474  return R;
2475}
2476
2477/// We are trying to inject an anonymous member into the given scope;
2478/// check if there's an existing declaration that can't be overloaded.
2479///
2480/// \return true if this is a forbidden redeclaration
2481static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2482                                         Scope *S,
2483                                         DeclContext *Owner,
2484                                         DeclarationName Name,
2485                                         SourceLocation NameLoc,
2486                                         unsigned diagnostic) {
2487  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2488                 Sema::ForRedeclaration);
2489  if (!SemaRef.LookupName(R, S)) return false;
2490
2491  if (R.getAsSingle<TagDecl>())
2492    return false;
2493
2494  // Pick a representative declaration.
2495  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2496  assert(PrevDecl && "Expected a non-null Decl");
2497
2498  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2499    return false;
2500
2501  SemaRef.Diag(NameLoc, diagnostic) << Name;
2502  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2503
2504  return true;
2505}
2506
2507/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2508/// anonymous struct or union AnonRecord into the owning context Owner
2509/// and scope S. This routine will be invoked just after we realize
2510/// that an unnamed union or struct is actually an anonymous union or
2511/// struct, e.g.,
2512///
2513/// @code
2514/// union {
2515///   int i;
2516///   float f;
2517/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2518///    // f into the surrounding scope.x
2519/// @endcode
2520///
2521/// This routine is recursive, injecting the names of nested anonymous
2522/// structs/unions into the owning context and scope as well.
2523static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2524                                                DeclContext *Owner,
2525                                                RecordDecl *AnonRecord,
2526                                                AccessSpecifier AS,
2527                              SmallVector<NamedDecl*, 2> &Chaining,
2528                                                      bool MSAnonStruct) {
2529  unsigned diagKind
2530    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2531                            : diag::err_anonymous_struct_member_redecl;
2532
2533  bool Invalid = false;
2534
2535  // Look every FieldDecl and IndirectFieldDecl with a name.
2536  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2537                               DEnd = AnonRecord->decls_end();
2538       D != DEnd; ++D) {
2539    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2540        cast<NamedDecl>(*D)->getDeclName()) {
2541      ValueDecl *VD = cast<ValueDecl>(*D);
2542      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2543                                       VD->getLocation(), diagKind)) {
2544        // C++ [class.union]p2:
2545        //   The names of the members of an anonymous union shall be
2546        //   distinct from the names of any other entity in the
2547        //   scope in which the anonymous union is declared.
2548        Invalid = true;
2549      } else {
2550        // C++ [class.union]p2:
2551        //   For the purpose of name lookup, after the anonymous union
2552        //   definition, the members of the anonymous union are
2553        //   considered to have been defined in the scope in which the
2554        //   anonymous union is declared.
2555        unsigned OldChainingSize = Chaining.size();
2556        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2557          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2558               PE = IF->chain_end(); PI != PE; ++PI)
2559            Chaining.push_back(*PI);
2560        else
2561          Chaining.push_back(VD);
2562
2563        assert(Chaining.size() >= 2);
2564        NamedDecl **NamedChain =
2565          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2566        for (unsigned i = 0; i < Chaining.size(); i++)
2567          NamedChain[i] = Chaining[i];
2568
2569        IndirectFieldDecl* IndirectField =
2570          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2571                                    VD->getIdentifier(), VD->getType(),
2572                                    NamedChain, Chaining.size());
2573
2574        IndirectField->setAccess(AS);
2575        IndirectField->setImplicit();
2576        SemaRef.PushOnScopeChains(IndirectField, S);
2577
2578        // That includes picking up the appropriate access specifier.
2579        if (AS != AS_none) IndirectField->setAccess(AS);
2580
2581        Chaining.resize(OldChainingSize);
2582      }
2583    }
2584  }
2585
2586  return Invalid;
2587}
2588
2589/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2590/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2591/// illegal input values are mapped to SC_None.
2592static StorageClass
2593StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2594  switch (StorageClassSpec) {
2595  case DeclSpec::SCS_unspecified:    return SC_None;
2596  case DeclSpec::SCS_extern:         return SC_Extern;
2597  case DeclSpec::SCS_static:         return SC_Static;
2598  case DeclSpec::SCS_auto:           return SC_Auto;
2599  case DeclSpec::SCS_register:       return SC_Register;
2600  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2601    // Illegal SCSs map to None: error reporting is up to the caller.
2602  case DeclSpec::SCS_mutable:        // Fall through.
2603  case DeclSpec::SCS_typedef:        return SC_None;
2604  }
2605  llvm_unreachable("unknown storage class specifier");
2606}
2607
2608/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2609/// a StorageClass. Any error reporting is up to the caller:
2610/// illegal input values are mapped to SC_None.
2611static StorageClass
2612StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2613  switch (StorageClassSpec) {
2614  case DeclSpec::SCS_unspecified:    return SC_None;
2615  case DeclSpec::SCS_extern:         return SC_Extern;
2616  case DeclSpec::SCS_static:         return SC_Static;
2617  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2618    // Illegal SCSs map to None: error reporting is up to the caller.
2619  case DeclSpec::SCS_auto:           // Fall through.
2620  case DeclSpec::SCS_mutable:        // Fall through.
2621  case DeclSpec::SCS_register:       // Fall through.
2622  case DeclSpec::SCS_typedef:        return SC_None;
2623  }
2624  llvm_unreachable("unknown storage class specifier");
2625}
2626
2627/// BuildAnonymousStructOrUnion - Handle the declaration of an
2628/// anonymous structure or union. Anonymous unions are a C++ feature
2629/// (C++ [class.union]) and a GNU C extension; anonymous structures
2630/// are a GNU C and GNU C++ extension.
2631Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2632                                             AccessSpecifier AS,
2633                                             RecordDecl *Record) {
2634  DeclContext *Owner = Record->getDeclContext();
2635
2636  // Diagnose whether this anonymous struct/union is an extension.
2637  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2638    Diag(Record->getLocation(), diag::ext_anonymous_union);
2639  else if (!Record->isUnion())
2640    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2641
2642  // C and C++ require different kinds of checks for anonymous
2643  // structs/unions.
2644  bool Invalid = false;
2645  if (getLangOptions().CPlusPlus) {
2646    const char* PrevSpec = 0;
2647    unsigned DiagID;
2648    if (Record->isUnion()) {
2649      // C++ [class.union]p6:
2650      //   Anonymous unions declared in a named namespace or in the
2651      //   global namespace shall be declared static.
2652      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2653          (isa<TranslationUnitDecl>(Owner) ||
2654           (isa<NamespaceDecl>(Owner) &&
2655            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2656        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2657          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2658        Invalid = true;
2659
2660        // Recover by adding 'static'.
2661        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2662                               PrevSpec, DiagID);
2663      }
2664      // C++ [class.union]p6:
2665      //   A storage class is not allowed in a declaration of an
2666      //   anonymous union in a class scope.
2667      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2668               isa<RecordDecl>(Owner)) {
2669        Diag(DS.getStorageClassSpecLoc(),
2670             diag::err_anonymous_union_with_storage_spec)
2671          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2672        Invalid = true;
2673
2674        // Recover by removing the storage specifier.
2675        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2676                               SourceLocation(),
2677                               PrevSpec, DiagID);
2678      }
2679    }
2680
2681    // Ignore const/volatile/restrict qualifiers.
2682    if (DS.getTypeQualifiers()) {
2683      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2684        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2685          << Record->isUnion() << 0
2686          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2687      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2688        Diag(DS.getVolatileSpecLoc(),
2689             diag::ext_anonymous_struct_union_qualified)
2690          << Record->isUnion() << 1
2691          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2692      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2693        Diag(DS.getRestrictSpecLoc(),
2694             diag::ext_anonymous_struct_union_qualified)
2695          << Record->isUnion() << 2
2696          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2697
2698      DS.ClearTypeQualifiers();
2699    }
2700
2701    // C++ [class.union]p2:
2702    //   The member-specification of an anonymous union shall only
2703    //   define non-static data members. [Note: nested types and
2704    //   functions cannot be declared within an anonymous union. ]
2705    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2706                                 MemEnd = Record->decls_end();
2707         Mem != MemEnd; ++Mem) {
2708      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2709        // C++ [class.union]p3:
2710        //   An anonymous union shall not have private or protected
2711        //   members (clause 11).
2712        assert(FD->getAccess() != AS_none);
2713        if (FD->getAccess() != AS_public) {
2714          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2715            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2716          Invalid = true;
2717        }
2718
2719        // C++ [class.union]p1
2720        //   An object of a class with a non-trivial constructor, a non-trivial
2721        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2722        //   assignment operator cannot be a member of a union, nor can an
2723        //   array of such objects.
2724        if (CheckNontrivialField(FD))
2725          Invalid = true;
2726      } else if ((*Mem)->isImplicit()) {
2727        // Any implicit members are fine.
2728      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2729        // This is a type that showed up in an
2730        // elaborated-type-specifier inside the anonymous struct or
2731        // union, but which actually declares a type outside of the
2732        // anonymous struct or union. It's okay.
2733      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2734        if (!MemRecord->isAnonymousStructOrUnion() &&
2735            MemRecord->getDeclName()) {
2736          // Visual C++ allows type definition in anonymous struct or union.
2737          if (getLangOptions().MicrosoftExt)
2738            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2739              << (int)Record->isUnion();
2740          else {
2741            // This is a nested type declaration.
2742            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2743              << (int)Record->isUnion();
2744            Invalid = true;
2745          }
2746        }
2747      } else if (isa<AccessSpecDecl>(*Mem)) {
2748        // Any access specifier is fine.
2749      } else {
2750        // We have something that isn't a non-static data
2751        // member. Complain about it.
2752        unsigned DK = diag::err_anonymous_record_bad_member;
2753        if (isa<TypeDecl>(*Mem))
2754          DK = diag::err_anonymous_record_with_type;
2755        else if (isa<FunctionDecl>(*Mem))
2756          DK = diag::err_anonymous_record_with_function;
2757        else if (isa<VarDecl>(*Mem))
2758          DK = diag::err_anonymous_record_with_static;
2759
2760        // Visual C++ allows type definition in anonymous struct or union.
2761        if (getLangOptions().MicrosoftExt &&
2762            DK == diag::err_anonymous_record_with_type)
2763          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2764            << (int)Record->isUnion();
2765        else {
2766          Diag((*Mem)->getLocation(), DK)
2767              << (int)Record->isUnion();
2768          Invalid = true;
2769        }
2770      }
2771    }
2772  }
2773
2774  if (!Record->isUnion() && !Owner->isRecord()) {
2775    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2776      << (int)getLangOptions().CPlusPlus;
2777    Invalid = true;
2778  }
2779
2780  // Mock up a declarator.
2781  Declarator Dc(DS, Declarator::MemberContext);
2782  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2783  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2784
2785  // Create a declaration for this anonymous struct/union.
2786  NamedDecl *Anon = 0;
2787  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2788    Anon = FieldDecl::Create(Context, OwningClass,
2789                             DS.getSourceRange().getBegin(),
2790                             Record->getLocation(),
2791                             /*IdentifierInfo=*/0,
2792                             Context.getTypeDeclType(Record),
2793                             TInfo,
2794                             /*BitWidth=*/0, /*Mutable=*/false,
2795                             /*HasInit=*/false);
2796    Anon->setAccess(AS);
2797    if (getLangOptions().CPlusPlus)
2798      FieldCollector->Add(cast<FieldDecl>(Anon));
2799  } else {
2800    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2801    assert(SCSpec != DeclSpec::SCS_typedef &&
2802           "Parser allowed 'typedef' as storage class VarDecl.");
2803    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2804    if (SCSpec == DeclSpec::SCS_mutable) {
2805      // mutable can only appear on non-static class members, so it's always
2806      // an error here
2807      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2808      Invalid = true;
2809      SC = SC_None;
2810    }
2811    SCSpec = DS.getStorageClassSpecAsWritten();
2812    VarDecl::StorageClass SCAsWritten
2813      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2814
2815    Anon = VarDecl::Create(Context, Owner,
2816                           DS.getSourceRange().getBegin(),
2817                           Record->getLocation(), /*IdentifierInfo=*/0,
2818                           Context.getTypeDeclType(Record),
2819                           TInfo, SC, SCAsWritten);
2820
2821    // Default-initialize the implicit variable. This initialization will be
2822    // trivial in almost all cases, except if a union member has an in-class
2823    // initializer:
2824    //   union { int n = 0; };
2825    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2826  }
2827  Anon->setImplicit();
2828
2829  // Add the anonymous struct/union object to the current
2830  // context. We'll be referencing this object when we refer to one of
2831  // its members.
2832  Owner->addDecl(Anon);
2833
2834  // Inject the members of the anonymous struct/union into the owning
2835  // context and into the identifier resolver chain for name lookup
2836  // purposes.
2837  SmallVector<NamedDecl*, 2> Chain;
2838  Chain.push_back(Anon);
2839
2840  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2841                                          Chain, false))
2842    Invalid = true;
2843
2844  // Mark this as an anonymous struct/union type. Note that we do not
2845  // do this until after we have already checked and injected the
2846  // members of this anonymous struct/union type, because otherwise
2847  // the members could be injected twice: once by DeclContext when it
2848  // builds its lookup table, and once by
2849  // InjectAnonymousStructOrUnionMembers.
2850  Record->setAnonymousStructOrUnion(true);
2851
2852  if (Invalid)
2853    Anon->setInvalidDecl();
2854
2855  return Anon;
2856}
2857
2858/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2859/// Microsoft C anonymous structure.
2860/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2861/// Example:
2862///
2863/// struct A { int a; };
2864/// struct B { struct A; int b; };
2865///
2866/// void foo() {
2867///   B var;
2868///   var.a = 3;
2869/// }
2870///
2871Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2872                                           RecordDecl *Record) {
2873
2874  // If there is no Record, get the record via the typedef.
2875  if (!Record)
2876    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2877
2878  // Mock up a declarator.
2879  Declarator Dc(DS, Declarator::TypeNameContext);
2880  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2881  assert(TInfo && "couldn't build declarator info for anonymous struct");
2882
2883  // Create a declaration for this anonymous struct.
2884  NamedDecl* Anon = FieldDecl::Create(Context,
2885                             cast<RecordDecl>(CurContext),
2886                             DS.getSourceRange().getBegin(),
2887                             DS.getSourceRange().getBegin(),
2888                             /*IdentifierInfo=*/0,
2889                             Context.getTypeDeclType(Record),
2890                             TInfo,
2891                             /*BitWidth=*/0, /*Mutable=*/false,
2892                             /*HasInit=*/false);
2893  Anon->setImplicit();
2894
2895  // Add the anonymous struct object to the current context.
2896  CurContext->addDecl(Anon);
2897
2898  // Inject the members of the anonymous struct into the current
2899  // context and into the identifier resolver chain for name lookup
2900  // purposes.
2901  SmallVector<NamedDecl*, 2> Chain;
2902  Chain.push_back(Anon);
2903
2904  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2905                                          Record->getDefinition(),
2906                                          AS_none, Chain, true))
2907    Anon->setInvalidDecl();
2908
2909  return Anon;
2910}
2911
2912/// GetNameForDeclarator - Determine the full declaration name for the
2913/// given Declarator.
2914DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2915  return GetNameFromUnqualifiedId(D.getName());
2916}
2917
2918/// \brief Retrieves the declaration name from a parsed unqualified-id.
2919DeclarationNameInfo
2920Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2921  DeclarationNameInfo NameInfo;
2922  NameInfo.setLoc(Name.StartLocation);
2923
2924  switch (Name.getKind()) {
2925
2926  case UnqualifiedId::IK_ImplicitSelfParam:
2927  case UnqualifiedId::IK_Identifier:
2928    NameInfo.setName(Name.Identifier);
2929    NameInfo.setLoc(Name.StartLocation);
2930    return NameInfo;
2931
2932  case UnqualifiedId::IK_OperatorFunctionId:
2933    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2934                                           Name.OperatorFunctionId.Operator));
2935    NameInfo.setLoc(Name.StartLocation);
2936    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2937      = Name.OperatorFunctionId.SymbolLocations[0];
2938    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2939      = Name.EndLocation.getRawEncoding();
2940    return NameInfo;
2941
2942  case UnqualifiedId::IK_LiteralOperatorId:
2943    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2944                                                           Name.Identifier));
2945    NameInfo.setLoc(Name.StartLocation);
2946    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2947    return NameInfo;
2948
2949  case UnqualifiedId::IK_ConversionFunctionId: {
2950    TypeSourceInfo *TInfo;
2951    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2952    if (Ty.isNull())
2953      return DeclarationNameInfo();
2954    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2955                                               Context.getCanonicalType(Ty)));
2956    NameInfo.setLoc(Name.StartLocation);
2957    NameInfo.setNamedTypeInfo(TInfo);
2958    return NameInfo;
2959  }
2960
2961  case UnqualifiedId::IK_ConstructorName: {
2962    TypeSourceInfo *TInfo;
2963    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2964    if (Ty.isNull())
2965      return DeclarationNameInfo();
2966    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2967                                              Context.getCanonicalType(Ty)));
2968    NameInfo.setLoc(Name.StartLocation);
2969    NameInfo.setNamedTypeInfo(TInfo);
2970    return NameInfo;
2971  }
2972
2973  case UnqualifiedId::IK_ConstructorTemplateId: {
2974    // In well-formed code, we can only have a constructor
2975    // template-id that refers to the current context, so go there
2976    // to find the actual type being constructed.
2977    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2978    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2979      return DeclarationNameInfo();
2980
2981    // Determine the type of the class being constructed.
2982    QualType CurClassType = Context.getTypeDeclType(CurClass);
2983
2984    // FIXME: Check two things: that the template-id names the same type as
2985    // CurClassType, and that the template-id does not occur when the name
2986    // was qualified.
2987
2988    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2989                                    Context.getCanonicalType(CurClassType)));
2990    NameInfo.setLoc(Name.StartLocation);
2991    // FIXME: should we retrieve TypeSourceInfo?
2992    NameInfo.setNamedTypeInfo(0);
2993    return NameInfo;
2994  }
2995
2996  case UnqualifiedId::IK_DestructorName: {
2997    TypeSourceInfo *TInfo;
2998    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2999    if (Ty.isNull())
3000      return DeclarationNameInfo();
3001    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3002                                              Context.getCanonicalType(Ty)));
3003    NameInfo.setLoc(Name.StartLocation);
3004    NameInfo.setNamedTypeInfo(TInfo);
3005    return NameInfo;
3006  }
3007
3008  case UnqualifiedId::IK_TemplateId: {
3009    TemplateName TName = Name.TemplateId->Template.get();
3010    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3011    return Context.getNameForTemplate(TName, TNameLoc);
3012  }
3013
3014  } // switch (Name.getKind())
3015
3016  llvm_unreachable("Unknown name kind");
3017}
3018
3019static QualType getCoreType(QualType Ty) {
3020  do {
3021    if (Ty->isPointerType() || Ty->isReferenceType())
3022      Ty = Ty->getPointeeType();
3023    else if (Ty->isArrayType())
3024      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3025    else
3026      return Ty.withoutLocalFastQualifiers();
3027  } while (true);
3028}
3029
3030/// hasSimilarParameters - Determine whether the C++ functions Declaration
3031/// and Definition have "nearly" matching parameters. This heuristic is
3032/// used to improve diagnostics in the case where an out-of-line function
3033/// definition doesn't match any declaration within the class or namespace.
3034/// Also sets Params to the list of indices to the parameters that differ
3035/// between the declaration and the definition. If hasSimilarParameters
3036/// returns true and Params is empty, then all of the parameters match.
3037static bool hasSimilarParameters(ASTContext &Context,
3038                                     FunctionDecl *Declaration,
3039                                     FunctionDecl *Definition,
3040                                     llvm::SmallVectorImpl<unsigned> &Params) {
3041  Params.clear();
3042  if (Declaration->param_size() != Definition->param_size())
3043    return false;
3044  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3045    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3046    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3047
3048    // The parameter types are identical
3049    if (Context.hasSameType(DefParamTy, DeclParamTy))
3050      continue;
3051
3052    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3053    QualType DefParamBaseTy = getCoreType(DefParamTy);
3054    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3055    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3056
3057    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3058        (DeclTyName && DeclTyName == DefTyName))
3059      Params.push_back(Idx);
3060    else  // The two parameters aren't even close
3061      return false;
3062  }
3063
3064  return true;
3065}
3066
3067/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3068/// declarator needs to be rebuilt in the current instantiation.
3069/// Any bits of declarator which appear before the name are valid for
3070/// consideration here.  That's specifically the type in the decl spec
3071/// and the base type in any member-pointer chunks.
3072static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3073                                                    DeclarationName Name) {
3074  // The types we specifically need to rebuild are:
3075  //   - typenames, typeofs, and decltypes
3076  //   - types which will become injected class names
3077  // Of course, we also need to rebuild any type referencing such a
3078  // type.  It's safest to just say "dependent", but we call out a
3079  // few cases here.
3080
3081  DeclSpec &DS = D.getMutableDeclSpec();
3082  switch (DS.getTypeSpecType()) {
3083  case DeclSpec::TST_typename:
3084  case DeclSpec::TST_typeofType:
3085  case DeclSpec::TST_decltype:
3086  case DeclSpec::TST_underlyingType:
3087  case DeclSpec::TST_atomic: {
3088    // Grab the type from the parser.
3089    TypeSourceInfo *TSI = 0;
3090    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3091    if (T.isNull() || !T->isDependentType()) break;
3092
3093    // Make sure there's a type source info.  This isn't really much
3094    // of a waste; most dependent types should have type source info
3095    // attached already.
3096    if (!TSI)
3097      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3098
3099    // Rebuild the type in the current instantiation.
3100    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3101    if (!TSI) return true;
3102
3103    // Store the new type back in the decl spec.
3104    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3105    DS.UpdateTypeRep(LocType);
3106    break;
3107  }
3108
3109  case DeclSpec::TST_typeofExpr: {
3110    Expr *E = DS.getRepAsExpr();
3111    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3112    if (Result.isInvalid()) return true;
3113    DS.UpdateExprRep(Result.get());
3114    break;
3115  }
3116
3117  default:
3118    // Nothing to do for these decl specs.
3119    break;
3120  }
3121
3122  // It doesn't matter what order we do this in.
3123  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3124    DeclaratorChunk &Chunk = D.getTypeObject(I);
3125
3126    // The only type information in the declarator which can come
3127    // before the declaration name is the base type of a member
3128    // pointer.
3129    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3130      continue;
3131
3132    // Rebuild the scope specifier in-place.
3133    CXXScopeSpec &SS = Chunk.Mem.Scope();
3134    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3135      return true;
3136  }
3137
3138  return false;
3139}
3140
3141Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3142  D.setFunctionDefinition(false);
3143  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3144}
3145
3146/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3147///   If T is the name of a class, then each of the following shall have a
3148///   name different from T:
3149///     - every static data member of class T;
3150///     - every member function of class T
3151///     - every member of class T that is itself a type;
3152/// \returns true if the declaration name violates these rules.
3153bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3154                                   DeclarationNameInfo NameInfo) {
3155  DeclarationName Name = NameInfo.getName();
3156
3157  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3158    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3159      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3160      return true;
3161    }
3162
3163  return false;
3164}
3165
3166Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3167                             MultiTemplateParamsArg TemplateParamLists) {
3168  // TODO: consider using NameInfo for diagnostic.
3169  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3170  DeclarationName Name = NameInfo.getName();
3171
3172  // All of these full declarators require an identifier.  If it doesn't have
3173  // one, the ParsedFreeStandingDeclSpec action should be used.
3174  if (!Name) {
3175    if (!D.isInvalidType())  // Reject this if we think it is valid.
3176      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3177           diag::err_declarator_need_ident)
3178        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3179    return 0;
3180  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3181    return 0;
3182
3183  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3184  // we find one that is.
3185  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3186         (S->getFlags() & Scope::TemplateParamScope) != 0)
3187    S = S->getParent();
3188
3189  DeclContext *DC = CurContext;
3190  if (D.getCXXScopeSpec().isInvalid())
3191    D.setInvalidType();
3192  else if (D.getCXXScopeSpec().isSet()) {
3193    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3194                                        UPPC_DeclarationQualifier))
3195      return 0;
3196
3197    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3198    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3199    if (!DC) {
3200      // If we could not compute the declaration context, it's because the
3201      // declaration context is dependent but does not refer to a class,
3202      // class template, or class template partial specialization. Complain
3203      // and return early, to avoid the coming semantic disaster.
3204      Diag(D.getIdentifierLoc(),
3205           diag::err_template_qualified_declarator_no_match)
3206        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3207        << D.getCXXScopeSpec().getRange();
3208      return 0;
3209    }
3210    bool IsDependentContext = DC->isDependentContext();
3211
3212    if (!IsDependentContext &&
3213        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3214      return 0;
3215
3216    if (isa<CXXRecordDecl>(DC)) {
3217      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3218        Diag(D.getIdentifierLoc(),
3219             diag::err_member_def_undefined_record)
3220          << Name << DC << D.getCXXScopeSpec().getRange();
3221        D.setInvalidType();
3222      } else if (isa<CXXRecordDecl>(CurContext) &&
3223                 !D.getDeclSpec().isFriendSpecified()) {
3224        // The user provided a superfluous scope specifier inside a class
3225        // definition:
3226        //
3227        // class X {
3228        //   void X::f();
3229        // };
3230        if (CurContext->Equals(DC))
3231          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3232            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3233        else
3234          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3235            << Name << D.getCXXScopeSpec().getRange();
3236
3237        // Pretend that this qualifier was not here.
3238        D.getCXXScopeSpec().clear();
3239      }
3240    }
3241
3242    // Check whether we need to rebuild the type of the given
3243    // declaration in the current instantiation.
3244    if (EnteringContext && IsDependentContext &&
3245        TemplateParamLists.size() != 0) {
3246      ContextRAII SavedContext(*this, DC);
3247      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3248        D.setInvalidType();
3249    }
3250  }
3251
3252  if (DiagnoseClassNameShadow(DC, NameInfo))
3253    // If this is a typedef, we'll end up spewing multiple diagnostics.
3254    // Just return early; it's safer.
3255    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3256      return 0;
3257
3258  NamedDecl *New;
3259
3260  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3261  QualType R = TInfo->getType();
3262
3263  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3264                                      UPPC_DeclarationType))
3265    D.setInvalidType();
3266
3267  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3268                        ForRedeclaration);
3269
3270  // See if this is a redefinition of a variable in the same scope.
3271  if (!D.getCXXScopeSpec().isSet()) {
3272    bool IsLinkageLookup = false;
3273
3274    // If the declaration we're planning to build will be a function
3275    // or object with linkage, then look for another declaration with
3276    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3277    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3278      /* Do nothing*/;
3279    else if (R->isFunctionType()) {
3280      if (CurContext->isFunctionOrMethod() ||
3281          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3282        IsLinkageLookup = true;
3283    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3284      IsLinkageLookup = true;
3285    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3286             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3287      IsLinkageLookup = true;
3288
3289    if (IsLinkageLookup)
3290      Previous.clear(LookupRedeclarationWithLinkage);
3291
3292    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3293  } else { // Something like "int foo::x;"
3294    LookupQualifiedName(Previous, DC);
3295
3296    // Don't consider using declarations as previous declarations for
3297    // out-of-line members.
3298    RemoveUsingDecls(Previous);
3299
3300    // C++ 7.3.1.2p2:
3301    // Members (including explicit specializations of templates) of a named
3302    // namespace can also be defined outside that namespace by explicit
3303    // qualification of the name being defined, provided that the entity being
3304    // defined was already declared in the namespace and the definition appears
3305    // after the point of declaration in a namespace that encloses the
3306    // declarations namespace.
3307    //
3308    // Note that we only check the context at this point. We don't yet
3309    // have enough information to make sure that PrevDecl is actually
3310    // the declaration we want to match. For example, given:
3311    //
3312    //   class X {
3313    //     void f();
3314    //     void f(float);
3315    //   };
3316    //
3317    //   void X::f(int) { } // ill-formed
3318    //
3319    // In this case, PrevDecl will point to the overload set
3320    // containing the two f's declared in X, but neither of them
3321    // matches.
3322
3323    // First check whether we named the global scope.
3324    if (isa<TranslationUnitDecl>(DC)) {
3325      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3326        << Name << D.getCXXScopeSpec().getRange();
3327    } else {
3328      DeclContext *Cur = CurContext;
3329      while (isa<LinkageSpecDecl>(Cur))
3330        Cur = Cur->getParent();
3331      if (!Cur->Encloses(DC)) {
3332        // The qualifying scope doesn't enclose the original declaration.
3333        // Emit diagnostic based on current scope.
3334        SourceLocation L = D.getIdentifierLoc();
3335        SourceRange R = D.getCXXScopeSpec().getRange();
3336        if (isa<FunctionDecl>(Cur))
3337          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3338        else
3339          Diag(L, diag::err_invalid_declarator_scope)
3340            << Name << cast<NamedDecl>(DC) << R;
3341        D.setInvalidType();
3342      }
3343    }
3344  }
3345
3346  if (Previous.isSingleResult() &&
3347      Previous.getFoundDecl()->isTemplateParameter()) {
3348    // Maybe we will complain about the shadowed template parameter.
3349    if (!D.isInvalidType())
3350      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3351                                      Previous.getFoundDecl());
3352
3353    // Just pretend that we didn't see the previous declaration.
3354    Previous.clear();
3355  }
3356
3357  // In C++, the previous declaration we find might be a tag type
3358  // (class or enum). In this case, the new declaration will hide the
3359  // tag type. Note that this does does not apply if we're declaring a
3360  // typedef (C++ [dcl.typedef]p4).
3361  if (Previous.isSingleTagDecl() &&
3362      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3363    Previous.clear();
3364
3365  bool AddToScope = true;
3366  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3367    if (TemplateParamLists.size()) {
3368      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3369      return 0;
3370    }
3371
3372    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3373  } else if (R->isFunctionType()) {
3374    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3375                                  move(TemplateParamLists),
3376                                  AddToScope);
3377  } else {
3378    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3379                                  move(TemplateParamLists));
3380  }
3381
3382  if (New == 0)
3383    return 0;
3384
3385  // If this has an identifier and is not an invalid redeclaration or
3386  // function template specialization, add it to the scope stack.
3387  if (New->getDeclName() && AddToScope &&
3388       !(D.isRedeclaration() && New->isInvalidDecl()))
3389    PushOnScopeChains(New, S);
3390
3391  return New;
3392}
3393
3394/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3395/// types into constant array types in certain situations which would otherwise
3396/// be errors (for GCC compatibility).
3397static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3398                                                    ASTContext &Context,
3399                                                    bool &SizeIsNegative,
3400                                                    llvm::APSInt &Oversized) {
3401  // This method tries to turn a variable array into a constant
3402  // array even when the size isn't an ICE.  This is necessary
3403  // for compatibility with code that depends on gcc's buggy
3404  // constant expression folding, like struct {char x[(int)(char*)2];}
3405  SizeIsNegative = false;
3406  Oversized = 0;
3407
3408  if (T->isDependentType())
3409    return QualType();
3410
3411  QualifierCollector Qs;
3412  const Type *Ty = Qs.strip(T);
3413
3414  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3415    QualType Pointee = PTy->getPointeeType();
3416    QualType FixedType =
3417        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3418                                            Oversized);
3419    if (FixedType.isNull()) return FixedType;
3420    FixedType = Context.getPointerType(FixedType);
3421    return Qs.apply(Context, FixedType);
3422  }
3423  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3424    QualType Inner = PTy->getInnerType();
3425    QualType FixedType =
3426        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3427                                            Oversized);
3428    if (FixedType.isNull()) return FixedType;
3429    FixedType = Context.getParenType(FixedType);
3430    return Qs.apply(Context, FixedType);
3431  }
3432
3433  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3434  if (!VLATy)
3435    return QualType();
3436  // FIXME: We should probably handle this case
3437  if (VLATy->getElementType()->isVariablyModifiedType())
3438    return QualType();
3439
3440  Expr::EvalResult EvalResult;
3441  if (!VLATy->getSizeExpr() ||
3442      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3443      !EvalResult.Val.isInt())
3444    return QualType();
3445
3446  // Check whether the array size is negative.
3447  llvm::APSInt &Res = EvalResult.Val.getInt();
3448  if (Res.isSigned() && Res.isNegative()) {
3449    SizeIsNegative = true;
3450    return QualType();
3451  }
3452
3453  // Check whether the array is too large to be addressed.
3454  unsigned ActiveSizeBits
3455    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3456                                              Res);
3457  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3458    Oversized = Res;
3459    return QualType();
3460  }
3461
3462  return Context.getConstantArrayType(VLATy->getElementType(),
3463                                      Res, ArrayType::Normal, 0);
3464}
3465
3466/// \brief Register the given locally-scoped external C declaration so
3467/// that it can be found later for redeclarations
3468void
3469Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3470                                       const LookupResult &Previous,
3471                                       Scope *S) {
3472  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3473         "Decl is not a locally-scoped decl!");
3474  // Note that we have a locally-scoped external with this name.
3475  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3476
3477  if (!Previous.isSingleResult())
3478    return;
3479
3480  NamedDecl *PrevDecl = Previous.getFoundDecl();
3481
3482  // If there was a previous declaration of this variable, it may be
3483  // in our identifier chain. Update the identifier chain with the new
3484  // declaration.
3485  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3486    // The previous declaration was found on the identifer resolver
3487    // chain, so remove it from its scope.
3488
3489    if (S->isDeclScope(PrevDecl)) {
3490      // Special case for redeclarations in the SAME scope.
3491      // Because this declaration is going to be added to the identifier chain
3492      // later, we should temporarily take it OFF the chain.
3493      IdResolver.RemoveDecl(ND);
3494
3495    } else {
3496      // Find the scope for the original declaration.
3497      while (S && !S->isDeclScope(PrevDecl))
3498        S = S->getParent();
3499    }
3500
3501    if (S)
3502      S->RemoveDecl(PrevDecl);
3503  }
3504}
3505
3506llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3507Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3508  if (ExternalSource) {
3509    // Load locally-scoped external decls from the external source.
3510    SmallVector<NamedDecl *, 4> Decls;
3511    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3512    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3513      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3514        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3515      if (Pos == LocallyScopedExternalDecls.end())
3516        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3517    }
3518  }
3519
3520  return LocallyScopedExternalDecls.find(Name);
3521}
3522
3523/// \brief Diagnose function specifiers on a declaration of an identifier that
3524/// does not identify a function.
3525void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3526  // FIXME: We should probably indicate the identifier in question to avoid
3527  // confusion for constructs like "inline int a(), b;"
3528  if (D.getDeclSpec().isInlineSpecified())
3529    Diag(D.getDeclSpec().getInlineSpecLoc(),
3530         diag::err_inline_non_function);
3531
3532  if (D.getDeclSpec().isVirtualSpecified())
3533    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3534         diag::err_virtual_non_function);
3535
3536  if (D.getDeclSpec().isExplicitSpecified())
3537    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3538         diag::err_explicit_non_function);
3539}
3540
3541NamedDecl*
3542Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3543                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3544  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3545  if (D.getCXXScopeSpec().isSet()) {
3546    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3547      << D.getCXXScopeSpec().getRange();
3548    D.setInvalidType();
3549    // Pretend we didn't see the scope specifier.
3550    DC = CurContext;
3551    Previous.clear();
3552  }
3553
3554  if (getLangOptions().CPlusPlus) {
3555    // Check that there are no default arguments (C++ only).
3556    CheckExtraCXXDefaultArguments(D);
3557  }
3558
3559  DiagnoseFunctionSpecifiers(D);
3560
3561  if (D.getDeclSpec().isThreadSpecified())
3562    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3563  if (D.getDeclSpec().isConstexprSpecified())
3564    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3565      << 1;
3566
3567  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3568    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3569      << D.getName().getSourceRange();
3570    return 0;
3571  }
3572
3573  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3574  if (!NewTD) return 0;
3575
3576  // Handle attributes prior to checking for duplicates in MergeVarDecl
3577  ProcessDeclAttributes(S, NewTD, D);
3578
3579  CheckTypedefForVariablyModifiedType(S, NewTD);
3580
3581  bool Redeclaration = D.isRedeclaration();
3582  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3583  D.setRedeclaration(Redeclaration);
3584  return ND;
3585}
3586
3587void
3588Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3589  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3590  // then it shall have block scope.
3591  // Note that variably modified types must be fixed before merging the decl so
3592  // that redeclarations will match.
3593  QualType T = NewTD->getUnderlyingType();
3594  if (T->isVariablyModifiedType()) {
3595    getCurFunction()->setHasBranchProtectedScope();
3596
3597    if (S->getFnParent() == 0) {
3598      bool SizeIsNegative;
3599      llvm::APSInt Oversized;
3600      QualType FixedTy =
3601          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3602                                              Oversized);
3603      if (!FixedTy.isNull()) {
3604        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3605        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3606      } else {
3607        if (SizeIsNegative)
3608          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3609        else if (T->isVariableArrayType())
3610          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3611        else if (Oversized.getBoolValue())
3612          Diag(NewTD->getLocation(), diag::err_array_too_large)
3613            << Oversized.toString(10);
3614        else
3615          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3616        NewTD->setInvalidDecl();
3617      }
3618    }
3619  }
3620}
3621
3622
3623/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3624/// declares a typedef-name, either using the 'typedef' type specifier or via
3625/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3626NamedDecl*
3627Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3628                           LookupResult &Previous, bool &Redeclaration) {
3629  // Merge the decl with the existing one if appropriate. If the decl is
3630  // in an outer scope, it isn't the same thing.
3631  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3632                       /*ExplicitInstantiationOrSpecialization=*/false);
3633  if (!Previous.empty()) {
3634    Redeclaration = true;
3635    MergeTypedefNameDecl(NewTD, Previous);
3636  }
3637
3638  // If this is the C FILE type, notify the AST context.
3639  if (IdentifierInfo *II = NewTD->getIdentifier())
3640    if (!NewTD->isInvalidDecl() &&
3641        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3642      if (II->isStr("FILE"))
3643        Context.setFILEDecl(NewTD);
3644      else if (II->isStr("jmp_buf"))
3645        Context.setjmp_bufDecl(NewTD);
3646      else if (II->isStr("sigjmp_buf"))
3647        Context.setsigjmp_bufDecl(NewTD);
3648      else if (II->isStr("__builtin_va_list"))
3649        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3650    }
3651
3652  return NewTD;
3653}
3654
3655/// \brief Determines whether the given declaration is an out-of-scope
3656/// previous declaration.
3657///
3658/// This routine should be invoked when name lookup has found a
3659/// previous declaration (PrevDecl) that is not in the scope where a
3660/// new declaration by the same name is being introduced. If the new
3661/// declaration occurs in a local scope, previous declarations with
3662/// linkage may still be considered previous declarations (C99
3663/// 6.2.2p4-5, C++ [basic.link]p6).
3664///
3665/// \param PrevDecl the previous declaration found by name
3666/// lookup
3667///
3668/// \param DC the context in which the new declaration is being
3669/// declared.
3670///
3671/// \returns true if PrevDecl is an out-of-scope previous declaration
3672/// for a new delcaration with the same name.
3673static bool
3674isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3675                                ASTContext &Context) {
3676  if (!PrevDecl)
3677    return false;
3678
3679  if (!PrevDecl->hasLinkage())
3680    return false;
3681
3682  if (Context.getLangOptions().CPlusPlus) {
3683    // C++ [basic.link]p6:
3684    //   If there is a visible declaration of an entity with linkage
3685    //   having the same name and type, ignoring entities declared
3686    //   outside the innermost enclosing namespace scope, the block
3687    //   scope declaration declares that same entity and receives the
3688    //   linkage of the previous declaration.
3689    DeclContext *OuterContext = DC->getRedeclContext();
3690    if (!OuterContext->isFunctionOrMethod())
3691      // This rule only applies to block-scope declarations.
3692      return false;
3693
3694    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3695    if (PrevOuterContext->isRecord())
3696      // We found a member function: ignore it.
3697      return false;
3698
3699    // Find the innermost enclosing namespace for the new and
3700    // previous declarations.
3701    OuterContext = OuterContext->getEnclosingNamespaceContext();
3702    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3703
3704    // The previous declaration is in a different namespace, so it
3705    // isn't the same function.
3706    if (!OuterContext->Equals(PrevOuterContext))
3707      return false;
3708  }
3709
3710  return true;
3711}
3712
3713static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3714  CXXScopeSpec &SS = D.getCXXScopeSpec();
3715  if (!SS.isSet()) return;
3716  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3717}
3718
3719bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3720  QualType type = decl->getType();
3721  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3722  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3723    // Various kinds of declaration aren't allowed to be __autoreleasing.
3724    unsigned kind = -1U;
3725    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3726      if (var->hasAttr<BlocksAttr>())
3727        kind = 0; // __block
3728      else if (!var->hasLocalStorage())
3729        kind = 1; // global
3730    } else if (isa<ObjCIvarDecl>(decl)) {
3731      kind = 3; // ivar
3732    } else if (isa<FieldDecl>(decl)) {
3733      kind = 2; // field
3734    }
3735
3736    if (kind != -1U) {
3737      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3738        << kind;
3739    }
3740  } else if (lifetime == Qualifiers::OCL_None) {
3741    // Try to infer lifetime.
3742    if (!type->isObjCLifetimeType())
3743      return false;
3744
3745    lifetime = type->getObjCARCImplicitLifetime();
3746    type = Context.getLifetimeQualifiedType(type, lifetime);
3747    decl->setType(type);
3748  }
3749
3750  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3751    // Thread-local variables cannot have lifetime.
3752    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3753        var->isThreadSpecified()) {
3754      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3755        << var->getType();
3756      return true;
3757    }
3758  }
3759
3760  return false;
3761}
3762
3763NamedDecl*
3764Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3765                              TypeSourceInfo *TInfo, LookupResult &Previous,
3766                              MultiTemplateParamsArg TemplateParamLists) {
3767  QualType R = TInfo->getType();
3768  DeclarationName Name = GetNameForDeclarator(D).getName();
3769
3770  // Check that there are no default arguments (C++ only).
3771  if (getLangOptions().CPlusPlus)
3772    CheckExtraCXXDefaultArguments(D);
3773
3774  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3775  assert(SCSpec != DeclSpec::SCS_typedef &&
3776         "Parser allowed 'typedef' as storage class VarDecl.");
3777  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3778  if (SCSpec == DeclSpec::SCS_mutable) {
3779    // mutable can only appear on non-static class members, so it's always
3780    // an error here
3781    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3782    D.setInvalidType();
3783    SC = SC_None;
3784  }
3785  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3786  VarDecl::StorageClass SCAsWritten
3787    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3788
3789  IdentifierInfo *II = Name.getAsIdentifierInfo();
3790  if (!II) {
3791    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3792      << Name;
3793    return 0;
3794  }
3795
3796  DiagnoseFunctionSpecifiers(D);
3797
3798  if (!DC->isRecord() && S->getFnParent() == 0) {
3799    // C99 6.9p2: The storage-class specifiers auto and register shall not
3800    // appear in the declaration specifiers in an external declaration.
3801    if (SC == SC_Auto || SC == SC_Register) {
3802
3803      // If this is a register variable with an asm label specified, then this
3804      // is a GNU extension.
3805      if (SC == SC_Register && D.getAsmLabel())
3806        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3807      else
3808        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3809      D.setInvalidType();
3810    }
3811  }
3812
3813  if (getLangOptions().OpenCL) {
3814    // Set up the special work-group-local storage class for variables in the
3815    // OpenCL __local address space.
3816    if (R.getAddressSpace() == LangAS::opencl_local)
3817      SC = SC_OpenCLWorkGroupLocal;
3818  }
3819
3820  bool isExplicitSpecialization = false;
3821  VarDecl *NewVD;
3822  if (!getLangOptions().CPlusPlus) {
3823    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3824                            D.getIdentifierLoc(), II,
3825                            R, TInfo, SC, SCAsWritten);
3826
3827    if (D.isInvalidType())
3828      NewVD->setInvalidDecl();
3829  } else {
3830    if (DC->isRecord() && !CurContext->isRecord()) {
3831      // This is an out-of-line definition of a static data member.
3832      if (SC == SC_Static) {
3833        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3834             diag::err_static_out_of_line)
3835          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3836      } else if (SC == SC_None)
3837        SC = SC_Static;
3838    }
3839    if (SC == SC_Static) {
3840      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3841        if (RD->isLocalClass())
3842          Diag(D.getIdentifierLoc(),
3843               diag::err_static_data_member_not_allowed_in_local_class)
3844            << Name << RD->getDeclName();
3845
3846        // C++ [class.union]p1: If a union contains a static data member,
3847        // the program is ill-formed.
3848        //
3849        // We also disallow static data members in anonymous structs.
3850        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3851          Diag(D.getIdentifierLoc(),
3852               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3853            << Name << RD->isUnion();
3854      }
3855    }
3856
3857    // Match up the template parameter lists with the scope specifier, then
3858    // determine whether we have a template or a template specialization.
3859    isExplicitSpecialization = false;
3860    bool Invalid = false;
3861    if (TemplateParameterList *TemplateParams
3862        = MatchTemplateParametersToScopeSpecifier(
3863                                  D.getDeclSpec().getSourceRange().getBegin(),
3864                                                  D.getIdentifierLoc(),
3865                                                  D.getCXXScopeSpec(),
3866                                                  TemplateParamLists.get(),
3867                                                  TemplateParamLists.size(),
3868                                                  /*never a friend*/ false,
3869                                                  isExplicitSpecialization,
3870                                                  Invalid)) {
3871      if (TemplateParams->size() > 0) {
3872        // There is no such thing as a variable template.
3873        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3874          << II
3875          << SourceRange(TemplateParams->getTemplateLoc(),
3876                         TemplateParams->getRAngleLoc());
3877        return 0;
3878      } else {
3879        // There is an extraneous 'template<>' for this variable. Complain
3880        // about it, but allow the declaration of the variable.
3881        Diag(TemplateParams->getTemplateLoc(),
3882             diag::err_template_variable_noparams)
3883          << II
3884          << SourceRange(TemplateParams->getTemplateLoc(),
3885                         TemplateParams->getRAngleLoc());
3886      }
3887    }
3888
3889    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3890                            D.getIdentifierLoc(), II,
3891                            R, TInfo, SC, SCAsWritten);
3892
3893    // If this decl has an auto type in need of deduction, make a note of the
3894    // Decl so we can diagnose uses of it in its own initializer.
3895    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3896        R->getContainedAutoType())
3897      ParsingInitForAutoVars.insert(NewVD);
3898
3899    if (D.isInvalidType() || Invalid)
3900      NewVD->setInvalidDecl();
3901
3902    SetNestedNameSpecifier(NewVD, D);
3903
3904    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3905      NewVD->setTemplateParameterListsInfo(Context,
3906                                           TemplateParamLists.size(),
3907                                           TemplateParamLists.release());
3908    }
3909
3910    if (D.getDeclSpec().isConstexprSpecified()) {
3911      // FIXME: once we know whether there's an initializer, apply this to
3912      // static data members too.
3913      if (!NewVD->isStaticDataMember() &&
3914          !NewVD->isThisDeclarationADefinition()) {
3915        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3916        // of a variable. Suggest replacing it with 'const' if appropriate.
3917        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3918        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3919        // If the declarator is complex, we need to move the keyword to the
3920        // innermost chunk as we switch it from 'constexpr' to 'const'.
3921        int Kind = DeclaratorChunk::Paren;
3922        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3923          Kind = D.getTypeObject(I).Kind;
3924          if (Kind != DeclaratorChunk::Paren)
3925            break;
3926        }
3927        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3928            Kind == DeclaratorChunk::Reference)
3929          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3930            << FixItHint::CreateRemoval(ConstexprRange);
3931        else if (Kind == DeclaratorChunk::Paren)
3932          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3933            << FixItHint::CreateReplacement(ConstexprRange, "const");
3934        else
3935          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3936            << FixItHint::CreateRemoval(ConstexprRange)
3937            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3938      } else {
3939        NewVD->setConstexpr(true);
3940      }
3941    }
3942  }
3943
3944  // Set the lexical context. If the declarator has a C++ scope specifier, the
3945  // lexical context will be different from the semantic context.
3946  NewVD->setLexicalDeclContext(CurContext);
3947
3948  if (D.getDeclSpec().isThreadSpecified()) {
3949    if (NewVD->hasLocalStorage())
3950      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3951    else if (!Context.getTargetInfo().isTLSSupported())
3952      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3953    else
3954      NewVD->setThreadSpecified(true);
3955  }
3956
3957  if (D.getDeclSpec().isModulePrivateSpecified()) {
3958    if (isExplicitSpecialization)
3959      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3960        << 2
3961        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3962    else if (NewVD->hasLocalStorage())
3963      Diag(NewVD->getLocation(), diag::err_module_private_local)
3964        << 0 << NewVD->getDeclName()
3965        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3966        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3967    else
3968      NewVD->setModulePrivate();
3969  }
3970
3971  // Handle attributes prior to checking for duplicates in MergeVarDecl
3972  ProcessDeclAttributes(S, NewVD, D);
3973
3974  // In auto-retain/release, infer strong retension for variables of
3975  // retainable type.
3976  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3977    NewVD->setInvalidDecl();
3978
3979  // Handle GNU asm-label extension (encoded as an attribute).
3980  if (Expr *E = (Expr*)D.getAsmLabel()) {
3981    // The parser guarantees this is a string.
3982    StringLiteral *SE = cast<StringLiteral>(E);
3983    StringRef Label = SE->getString();
3984    if (S->getFnParent() != 0) {
3985      switch (SC) {
3986      case SC_None:
3987      case SC_Auto:
3988        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3989        break;
3990      case SC_Register:
3991        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3992          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3993        break;
3994      case SC_Static:
3995      case SC_Extern:
3996      case SC_PrivateExtern:
3997      case SC_OpenCLWorkGroupLocal:
3998        break;
3999      }
4000    }
4001
4002    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4003                                                Context, Label));
4004  }
4005
4006  // Diagnose shadowed variables before filtering for scope.
4007  if (!D.getCXXScopeSpec().isSet())
4008    CheckShadow(S, NewVD, Previous);
4009
4010  // Don't consider existing declarations that are in a different
4011  // scope and are out-of-semantic-context declarations (if the new
4012  // declaration has linkage).
4013  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4014                       isExplicitSpecialization);
4015
4016  if (!getLangOptions().CPlusPlus) {
4017    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4018  } else {
4019    // Merge the decl with the existing one if appropriate.
4020    if (!Previous.empty()) {
4021      if (Previous.isSingleResult() &&
4022          isa<FieldDecl>(Previous.getFoundDecl()) &&
4023          D.getCXXScopeSpec().isSet()) {
4024        // The user tried to define a non-static data member
4025        // out-of-line (C++ [dcl.meaning]p1).
4026        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4027          << D.getCXXScopeSpec().getRange();
4028        Previous.clear();
4029        NewVD->setInvalidDecl();
4030      }
4031    } else if (D.getCXXScopeSpec().isSet()) {
4032      // No previous declaration in the qualifying scope.
4033      Diag(D.getIdentifierLoc(), diag::err_no_member)
4034        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4035        << D.getCXXScopeSpec().getRange();
4036      NewVD->setInvalidDecl();
4037    }
4038
4039    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4040
4041    // This is an explicit specialization of a static data member. Check it.
4042    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4043        CheckMemberSpecialization(NewVD, Previous))
4044      NewVD->setInvalidDecl();
4045  }
4046
4047  // attributes declared post-definition are currently ignored
4048  // FIXME: This should be handled in attribute merging, not
4049  // here.
4050  if (Previous.isSingleResult()) {
4051    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4052    if (Def && (Def = Def->getDefinition()) &&
4053        Def != NewVD && D.hasAttributes()) {
4054      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4055      Diag(Def->getLocation(), diag::note_previous_definition);
4056    }
4057  }
4058
4059  // If this is a locally-scoped extern C variable, update the map of
4060  // such variables.
4061  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4062      !NewVD->isInvalidDecl())
4063    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4064
4065  // If there's a #pragma GCC visibility in scope, and this isn't a class
4066  // member, set the visibility of this variable.
4067  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4068    AddPushedVisibilityAttribute(NewVD);
4069
4070  MarkUnusedFileScopedDecl(NewVD);
4071
4072  return NewVD;
4073}
4074
4075/// \brief Diagnose variable or built-in function shadowing.  Implements
4076/// -Wshadow.
4077///
4078/// This method is called whenever a VarDecl is added to a "useful"
4079/// scope.
4080///
4081/// \param S the scope in which the shadowing name is being declared
4082/// \param R the lookup of the name
4083///
4084void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4085  // Return if warning is ignored.
4086  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4087        DiagnosticsEngine::Ignored)
4088    return;
4089
4090  // Don't diagnose declarations at file scope.
4091  if (D->hasGlobalStorage())
4092    return;
4093
4094  DeclContext *NewDC = D->getDeclContext();
4095
4096  // Only diagnose if we're shadowing an unambiguous field or variable.
4097  if (R.getResultKind() != LookupResult::Found)
4098    return;
4099
4100  NamedDecl* ShadowedDecl = R.getFoundDecl();
4101  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4102    return;
4103
4104  // Fields are not shadowed by variables in C++ static methods.
4105  if (isa<FieldDecl>(ShadowedDecl))
4106    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4107      if (MD->isStatic())
4108        return;
4109
4110  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4111    if (shadowedVar->isExternC()) {
4112      // For shadowing external vars, make sure that we point to the global
4113      // declaration, not a locally scoped extern declaration.
4114      for (VarDecl::redecl_iterator
4115             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4116           I != E; ++I)
4117        if (I->isFileVarDecl()) {
4118          ShadowedDecl = *I;
4119          break;
4120        }
4121    }
4122
4123  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4124
4125  // Only warn about certain kinds of shadowing for class members.
4126  if (NewDC && NewDC->isRecord()) {
4127    // In particular, don't warn about shadowing non-class members.
4128    if (!OldDC->isRecord())
4129      return;
4130
4131    // TODO: should we warn about static data members shadowing
4132    // static data members from base classes?
4133
4134    // TODO: don't diagnose for inaccessible shadowed members.
4135    // This is hard to do perfectly because we might friend the
4136    // shadowing context, but that's just a false negative.
4137  }
4138
4139  // Determine what kind of declaration we're shadowing.
4140  unsigned Kind;
4141  if (isa<RecordDecl>(OldDC)) {
4142    if (isa<FieldDecl>(ShadowedDecl))
4143      Kind = 3; // field
4144    else
4145      Kind = 2; // static data member
4146  } else if (OldDC->isFileContext())
4147    Kind = 1; // global
4148  else
4149    Kind = 0; // local
4150
4151  DeclarationName Name = R.getLookupName();
4152
4153  // Emit warning and note.
4154  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4155  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4156}
4157
4158/// \brief Check -Wshadow without the advantage of a previous lookup.
4159void Sema::CheckShadow(Scope *S, VarDecl *D) {
4160  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4161        DiagnosticsEngine::Ignored)
4162    return;
4163
4164  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4165                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4166  LookupName(R, S);
4167  CheckShadow(S, D, R);
4168}
4169
4170/// \brief Perform semantic checking on a newly-created variable
4171/// declaration.
4172///
4173/// This routine performs all of the type-checking required for a
4174/// variable declaration once it has been built. It is used both to
4175/// check variables after they have been parsed and their declarators
4176/// have been translated into a declaration, and to check variables
4177/// that have been instantiated from a template.
4178///
4179/// Sets NewVD->isInvalidDecl() if an error was encountered.
4180///
4181/// Returns true if the variable declaration is a redeclaration.
4182bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4183                                    LookupResult &Previous) {
4184  // If the decl is already known invalid, don't check it.
4185  if (NewVD->isInvalidDecl())
4186    return false;
4187
4188  QualType T = NewVD->getType();
4189
4190  if (T->isObjCObjectType()) {
4191    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4192      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4193    T = Context.getObjCObjectPointerType(T);
4194    NewVD->setType(T);
4195  }
4196
4197  // Emit an error if an address space was applied to decl with local storage.
4198  // This includes arrays of objects with address space qualifiers, but not
4199  // automatic variables that point to other address spaces.
4200  // ISO/IEC TR 18037 S5.1.2
4201  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4202    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4203    NewVD->setInvalidDecl();
4204    return false;
4205  }
4206
4207  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4208      && !NewVD->hasAttr<BlocksAttr>()) {
4209    if (getLangOptions().getGC() != LangOptions::NonGC)
4210      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4211    else
4212      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4213  }
4214
4215  bool isVM = T->isVariablyModifiedType();
4216  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4217      NewVD->hasAttr<BlocksAttr>())
4218    getCurFunction()->setHasBranchProtectedScope();
4219
4220  if ((isVM && NewVD->hasLinkage()) ||
4221      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4222    bool SizeIsNegative;
4223    llvm::APSInt Oversized;
4224    QualType FixedTy =
4225        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4226                                            Oversized);
4227
4228    if (FixedTy.isNull() && T->isVariableArrayType()) {
4229      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4230      // FIXME: This won't give the correct result for
4231      // int a[10][n];
4232      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4233
4234      if (NewVD->isFileVarDecl())
4235        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4236        << SizeRange;
4237      else if (NewVD->getStorageClass() == SC_Static)
4238        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4239        << SizeRange;
4240      else
4241        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4242        << SizeRange;
4243      NewVD->setInvalidDecl();
4244      return false;
4245    }
4246
4247    if (FixedTy.isNull()) {
4248      if (NewVD->isFileVarDecl())
4249        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4250      else
4251        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4252      NewVD->setInvalidDecl();
4253      return false;
4254    }
4255
4256    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4257    NewVD->setType(FixedTy);
4258  }
4259
4260  if (Previous.empty() && NewVD->isExternC()) {
4261    // Since we did not find anything by this name and we're declaring
4262    // an extern "C" variable, look for a non-visible extern "C"
4263    // declaration with the same name.
4264    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4265      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4266    if (Pos != LocallyScopedExternalDecls.end())
4267      Previous.addDecl(Pos->second);
4268  }
4269
4270  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4271    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4272      << T;
4273    NewVD->setInvalidDecl();
4274    return false;
4275  }
4276
4277  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4278    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4279    NewVD->setInvalidDecl();
4280    return false;
4281  }
4282
4283  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4284    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4285    NewVD->setInvalidDecl();
4286    return false;
4287  }
4288
4289  // Function pointers and references cannot have qualified function type, only
4290  // function pointer-to-members can do that.
4291  QualType Pointee;
4292  unsigned PtrOrRef = 0;
4293  if (const PointerType *Ptr = T->getAs<PointerType>())
4294    Pointee = Ptr->getPointeeType();
4295  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4296    Pointee = Ref->getPointeeType();
4297    PtrOrRef = 1;
4298  }
4299  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4300      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4301    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4302        << PtrOrRef;
4303    NewVD->setInvalidDecl();
4304    return false;
4305  }
4306
4307  if (!Previous.empty()) {
4308    MergeVarDecl(NewVD, Previous);
4309    return true;
4310  }
4311  return false;
4312}
4313
4314/// \brief Data used with FindOverriddenMethod
4315struct FindOverriddenMethodData {
4316  Sema *S;
4317  CXXMethodDecl *Method;
4318};
4319
4320/// \brief Member lookup function that determines whether a given C++
4321/// method overrides a method in a base class, to be used with
4322/// CXXRecordDecl::lookupInBases().
4323static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4324                                 CXXBasePath &Path,
4325                                 void *UserData) {
4326  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4327
4328  FindOverriddenMethodData *Data
4329    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4330
4331  DeclarationName Name = Data->Method->getDeclName();
4332
4333  // FIXME: Do we care about other names here too?
4334  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4335    // We really want to find the base class destructor here.
4336    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4337    CanQualType CT = Data->S->Context.getCanonicalType(T);
4338
4339    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4340  }
4341
4342  for (Path.Decls = BaseRecord->lookup(Name);
4343       Path.Decls.first != Path.Decls.second;
4344       ++Path.Decls.first) {
4345    NamedDecl *D = *Path.Decls.first;
4346    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4347      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4348        return true;
4349    }
4350  }
4351
4352  return false;
4353}
4354
4355/// AddOverriddenMethods - See if a method overrides any in the base classes,
4356/// and if so, check that it's a valid override and remember it.
4357bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4358  // Look for virtual methods in base classes that this method might override.
4359  CXXBasePaths Paths;
4360  FindOverriddenMethodData Data;
4361  Data.Method = MD;
4362  Data.S = this;
4363  bool AddedAny = false;
4364  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4365    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4366         E = Paths.found_decls_end(); I != E; ++I) {
4367      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4368        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4369        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4370            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4371            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4372          AddedAny = true;
4373        }
4374      }
4375    }
4376  }
4377
4378  return AddedAny;
4379}
4380
4381namespace {
4382  // Struct for holding all of the extra arguments needed by
4383  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4384  struct ActOnFDArgs {
4385    Scope *S;
4386    Declarator &D;
4387    MultiTemplateParamsArg TemplateParamLists;
4388    bool AddToScope;
4389  };
4390}
4391
4392/// \brief Generate diagnostics for an invalid function redeclaration.
4393///
4394/// This routine handles generating the diagnostic messages for an invalid
4395/// function redeclaration, including finding possible similar declarations
4396/// or performing typo correction if there are no previous declarations with
4397/// the same name.
4398///
4399/// Returns a NamedDecl iff typo correction was performed and substituting in
4400/// the new declaration name does not cause new errors.
4401static NamedDecl* DiagnoseInvalidRedeclaration(
4402    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4403    ActOnFDArgs &ExtraArgs) {
4404  NamedDecl *Result = NULL;
4405  DeclarationName Name = NewFD->getDeclName();
4406  DeclContext *NewDC = NewFD->getDeclContext();
4407  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4408                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4409  llvm::SmallVector<unsigned, 1> MismatchedParams;
4410  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4411  TypoCorrection Correction;
4412  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4413                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4414  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4415                                  : diag::err_member_def_does_not_match;
4416
4417  NewFD->setInvalidDecl();
4418  SemaRef.LookupQualifiedName(Prev, NewDC);
4419  assert(!Prev.isAmbiguous() &&
4420         "Cannot have an ambiguity in previous-declaration lookup");
4421  if (!Prev.empty()) {
4422    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4423         Func != FuncEnd; ++Func) {
4424      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4425      if (FD &&
4426          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4427        // Add 1 to the index so that 0 can mean the mismatch didn't
4428        // involve a parameter
4429        unsigned ParamNum =
4430            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4431        NearMatches.push_back(std::make_pair(FD, ParamNum));
4432      }
4433    }
4434  // If the qualified name lookup yielded nothing, try typo correction
4435  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4436                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4437             Correction.getCorrection() != Name) {
4438    // Trap errors.
4439    Sema::SFINAETrap Trap(SemaRef);
4440
4441    // Set up everything for the call to ActOnFunctionDeclarator
4442    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4443                              ExtraArgs.D.getIdentifierLoc());
4444    Previous.clear();
4445    Previous.setLookupName(Correction.getCorrection());
4446    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4447                                    CDeclEnd = Correction.end();
4448         CDecl != CDeclEnd; ++CDecl) {
4449      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4450      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4451                                     MismatchedParams)) {
4452        Previous.addDecl(FD);
4453      }
4454    }
4455    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4456    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4457    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4458    // eliminate the need for the parameter pack ExtraArgs.
4459    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4460                                             NewFD->getDeclContext(),
4461                                             NewFD->getTypeSourceInfo(),
4462                                             Previous,
4463                                             ExtraArgs.TemplateParamLists,
4464                                             ExtraArgs.AddToScope);
4465    if (Trap.hasErrorOccurred()) {
4466      // Pretend the typo correction never occurred
4467      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4468                                ExtraArgs.D.getIdentifierLoc());
4469      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4470      Previous.clear();
4471      Previous.setLookupName(Name);
4472      Result = NULL;
4473    } else {
4474      for (LookupResult::iterator Func = Previous.begin(),
4475                               FuncEnd = Previous.end();
4476           Func != FuncEnd; ++Func) {
4477        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4478          NearMatches.push_back(std::make_pair(FD, 0));
4479      }
4480    }
4481    if (NearMatches.empty()) {
4482      // Ignore the correction if it didn't yield any close FunctionDecl matches
4483      Correction = TypoCorrection();
4484    } else {
4485      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4486                             : diag::err_member_def_does_not_match_suggest;
4487    }
4488  }
4489
4490  if (Correction)
4491    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4492        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4493        << FixItHint::CreateReplacement(
4494            NewFD->getLocation(),
4495            Correction.getAsString(SemaRef.getLangOptions()));
4496  else
4497    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4498        << Name << NewDC << NewFD->getLocation();
4499
4500  bool NewFDisConst = false;
4501  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4502    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4503
4504  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4505       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4506       NearMatch != NearMatchEnd; ++NearMatch) {
4507    FunctionDecl *FD = NearMatch->first;
4508    bool FDisConst = false;
4509    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4510      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4511
4512    if (unsigned Idx = NearMatch->second) {
4513      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4514      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4515             diag::note_member_def_close_param_match)
4516          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4517    } else if (Correction) {
4518      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4519          << Correction.getQuoted(SemaRef.getLangOptions());
4520    } else if (FDisConst != NewFDisConst) {
4521      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4522          << NewFDisConst << FD->getSourceRange().getEnd();
4523    } else
4524      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4525  }
4526  return Result;
4527}
4528
4529static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4530                                                          Declarator &D) {
4531  switch (D.getDeclSpec().getStorageClassSpec()) {
4532  default: llvm_unreachable("Unknown storage class!");
4533  case DeclSpec::SCS_auto:
4534  case DeclSpec::SCS_register:
4535  case DeclSpec::SCS_mutable:
4536    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4537                 diag::err_typecheck_sclass_func);
4538    D.setInvalidType();
4539    break;
4540  case DeclSpec::SCS_unspecified: break;
4541  case DeclSpec::SCS_extern: return SC_Extern;
4542  case DeclSpec::SCS_static: {
4543    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4544      // C99 6.7.1p5:
4545      //   The declaration of an identifier for a function that has
4546      //   block scope shall have no explicit storage-class specifier
4547      //   other than extern
4548      // See also (C++ [dcl.stc]p4).
4549      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4550                   diag::err_static_block_func);
4551      break;
4552    } else
4553      return SC_Static;
4554  }
4555  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4556  }
4557
4558  // No explicit storage class has already been returned
4559  return SC_None;
4560}
4561
4562static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4563                                           DeclContext *DC, QualType &R,
4564                                           TypeSourceInfo *TInfo,
4565                                           FunctionDecl::StorageClass SC,
4566                                           bool &IsVirtualOkay) {
4567  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4568  DeclarationName Name = NameInfo.getName();
4569
4570  FunctionDecl *NewFD = 0;
4571  bool isInline = D.getDeclSpec().isInlineSpecified();
4572  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4573  FunctionDecl::StorageClass SCAsWritten
4574    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4575
4576  if (!SemaRef.getLangOptions().CPlusPlus) {
4577    // Determine whether the function was written with a
4578    // prototype. This true when:
4579    //   - there is a prototype in the declarator, or
4580    //   - the type R of the function is some kind of typedef or other reference
4581    //     to a type name (which eventually refers to a function type).
4582    bool HasPrototype =
4583      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4584      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4585
4586    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4587                                 D.getSourceRange().getBegin(), NameInfo, R,
4588                                 TInfo, SC, SCAsWritten, isInline,
4589                                 HasPrototype);
4590    if (D.isInvalidType())
4591      NewFD->setInvalidDecl();
4592
4593    // Set the lexical context.
4594    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4595
4596    return NewFD;
4597  }
4598
4599  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4600  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4601
4602  // Check that the return type is not an abstract class type.
4603  // For record types, this is done by the AbstractClassUsageDiagnoser once
4604  // the class has been completely parsed.
4605  if (!DC->isRecord() &&
4606      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4607                                     R->getAs<FunctionType>()->getResultType(),
4608                                     diag::err_abstract_type_in_decl,
4609                                     SemaRef.AbstractReturnType))
4610    D.setInvalidType();
4611
4612  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4613    // This is a C++ constructor declaration.
4614    assert(DC->isRecord() &&
4615           "Constructors can only be declared in a member context");
4616
4617    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4618    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4619                                      D.getSourceRange().getBegin(), NameInfo,
4620                                      R, TInfo, isExplicit, isInline,
4621                                      /*isImplicitlyDeclared=*/false,
4622                                      isConstexpr);
4623
4624  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4625    // This is a C++ destructor declaration.
4626    if (DC->isRecord()) {
4627      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4628      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4629      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4630                                        SemaRef.Context, Record,
4631                                        D.getSourceRange().getBegin(),
4632                                        NameInfo, R, TInfo, isInline,
4633                                        /*isImplicitlyDeclared=*/false);
4634
4635      // If the class is complete, then we now create the implicit exception
4636      // specification. If the class is incomplete or dependent, we can't do
4637      // it yet.
4638      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4639          Record->getDefinition() && !Record->isBeingDefined() &&
4640          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4641        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4642      }
4643
4644      IsVirtualOkay = true;
4645      return NewDD;
4646
4647    } else {
4648      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4649      D.setInvalidType();
4650
4651      // Create a FunctionDecl to satisfy the function definition parsing
4652      // code path.
4653      return FunctionDecl::Create(SemaRef.Context, DC,
4654                                  D.getSourceRange().getBegin(),
4655                                  D.getIdentifierLoc(), Name, R, TInfo,
4656                                  SC, SCAsWritten, isInline,
4657                                  /*hasPrototype=*/true, isConstexpr);
4658    }
4659
4660  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4661    if (!DC->isRecord()) {
4662      SemaRef.Diag(D.getIdentifierLoc(),
4663           diag::err_conv_function_not_member);
4664      return 0;
4665    }
4666
4667    SemaRef.CheckConversionDeclarator(D, R, SC);
4668    IsVirtualOkay = true;
4669    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4670                                     D.getSourceRange().getBegin(), NameInfo,
4671                                     R, TInfo, isInline, isExplicit,
4672                                     isConstexpr, SourceLocation());
4673
4674  } else if (DC->isRecord()) {
4675    // If the name of the function is the same as the name of the record,
4676    // then this must be an invalid constructor that has a return type.
4677    // (The parser checks for a return type and makes the declarator a
4678    // constructor if it has no return type).
4679    if (Name.getAsIdentifierInfo() &&
4680        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4681      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4682        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4683        << SourceRange(D.getIdentifierLoc());
4684      return 0;
4685    }
4686
4687    bool isStatic = SC == SC_Static;
4688
4689    // [class.free]p1:
4690    // Any allocation function for a class T is a static member
4691    // (even if not explicitly declared static).
4692    if (Name.getCXXOverloadedOperator() == OO_New ||
4693        Name.getCXXOverloadedOperator() == OO_Array_New)
4694      isStatic = true;
4695
4696    // [class.free]p6 Any deallocation function for a class X is a static member
4697    // (even if not explicitly declared static).
4698    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4699        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4700      isStatic = true;
4701
4702    IsVirtualOkay = !isStatic;
4703
4704    // This is a C++ method declaration.
4705    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4706                                 D.getSourceRange().getBegin(), NameInfo, R,
4707                                 TInfo, isStatic, SCAsWritten, isInline,
4708                                 isConstexpr, SourceLocation());
4709
4710  } else {
4711    // Determine whether the function was written with a
4712    // prototype. This true when:
4713    //   - we're in C++ (where every function has a prototype),
4714    return FunctionDecl::Create(SemaRef.Context, DC,
4715                                D.getSourceRange().getBegin(),
4716                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4717                                true/*HasPrototype*/, isConstexpr);
4718  }
4719}
4720
4721NamedDecl*
4722Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4723                              TypeSourceInfo *TInfo, LookupResult &Previous,
4724                              MultiTemplateParamsArg TemplateParamLists,
4725                              bool &AddToScope) {
4726  QualType R = TInfo->getType();
4727
4728  assert(R.getTypePtr()->isFunctionType());
4729
4730  // TODO: consider using NameInfo for diagnostic.
4731  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4732  DeclarationName Name = NameInfo.getName();
4733  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4734
4735  if (D.getDeclSpec().isThreadSpecified())
4736    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4737
4738  // Do not allow returning a objc interface by-value.
4739  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4740    Diag(D.getIdentifierLoc(),
4741         diag::err_object_cannot_be_passed_returned_by_value) << 0
4742    << R->getAs<FunctionType>()->getResultType()
4743    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4744
4745    QualType T = R->getAs<FunctionType>()->getResultType();
4746    T = Context.getObjCObjectPointerType(T);
4747    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4748      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4749      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4750                                  FPT->getNumArgs(), EPI);
4751    }
4752    else if (isa<FunctionNoProtoType>(R))
4753      R = Context.getFunctionNoProtoType(T);
4754  }
4755
4756  bool isFriend = false;
4757  FunctionTemplateDecl *FunctionTemplate = 0;
4758  bool isExplicitSpecialization = false;
4759  bool isFunctionTemplateSpecialization = false;
4760  bool isDependentClassScopeExplicitSpecialization = false;
4761  bool isVirtualOkay = false;
4762
4763  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4764                                              isVirtualOkay);
4765  if (!NewFD) return 0;
4766
4767  if (getLangOptions().CPlusPlus) {
4768    bool isInline = D.getDeclSpec().isInlineSpecified();
4769    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4770    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4771    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4772    isFriend = D.getDeclSpec().isFriendSpecified();
4773    if (isFriend && !isInline && D.isFunctionDefinition()) {
4774      // C++ [class.friend]p5
4775      //   A function can be defined in a friend declaration of a
4776      //   class . . . . Such a function is implicitly inline.
4777      NewFD->setImplicitlyInline();
4778    }
4779
4780    SetNestedNameSpecifier(NewFD, D);
4781    isExplicitSpecialization = false;
4782    isFunctionTemplateSpecialization = false;
4783    if (D.isInvalidType())
4784      NewFD->setInvalidDecl();
4785
4786    // Set the lexical context. If the declarator has a C++
4787    // scope specifier, or is the object of a friend declaration, the
4788    // lexical context will be different from the semantic context.
4789    NewFD->setLexicalDeclContext(CurContext);
4790
4791    // Match up the template parameter lists with the scope specifier, then
4792    // determine whether we have a template or a template specialization.
4793    bool Invalid = false;
4794    if (TemplateParameterList *TemplateParams
4795          = MatchTemplateParametersToScopeSpecifier(
4796                                  D.getDeclSpec().getSourceRange().getBegin(),
4797                                  D.getIdentifierLoc(),
4798                                  D.getCXXScopeSpec(),
4799                                  TemplateParamLists.get(),
4800                                  TemplateParamLists.size(),
4801                                  isFriend,
4802                                  isExplicitSpecialization,
4803                                  Invalid)) {
4804      if (TemplateParams->size() > 0) {
4805        // This is a function template
4806
4807        // Check that we can declare a template here.
4808        if (CheckTemplateDeclScope(S, TemplateParams))
4809          return 0;
4810
4811        // A destructor cannot be a template.
4812        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4813          Diag(NewFD->getLocation(), diag::err_destructor_template);
4814          return 0;
4815        }
4816
4817        // If we're adding a template to a dependent context, we may need to
4818        // rebuilding some of the types used within the template parameter list,
4819        // now that we know what the current instantiation is.
4820        if (DC->isDependentContext()) {
4821          ContextRAII SavedContext(*this, DC);
4822          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4823            Invalid = true;
4824        }
4825
4826
4827        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4828                                                        NewFD->getLocation(),
4829                                                        Name, TemplateParams,
4830                                                        NewFD);
4831        FunctionTemplate->setLexicalDeclContext(CurContext);
4832        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4833
4834        // For source fidelity, store the other template param lists.
4835        if (TemplateParamLists.size() > 1) {
4836          NewFD->setTemplateParameterListsInfo(Context,
4837                                               TemplateParamLists.size() - 1,
4838                                               TemplateParamLists.release());
4839        }
4840      } else {
4841        // This is a function template specialization.
4842        isFunctionTemplateSpecialization = true;
4843        // For source fidelity, store all the template param lists.
4844        NewFD->setTemplateParameterListsInfo(Context,
4845                                             TemplateParamLists.size(),
4846                                             TemplateParamLists.release());
4847
4848        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4849        if (isFriend) {
4850          // We want to remove the "template<>", found here.
4851          SourceRange RemoveRange = TemplateParams->getSourceRange();
4852
4853          // If we remove the template<> and the name is not a
4854          // template-id, we're actually silently creating a problem:
4855          // the friend declaration will refer to an untemplated decl,
4856          // and clearly the user wants a template specialization.  So
4857          // we need to insert '<>' after the name.
4858          SourceLocation InsertLoc;
4859          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4860            InsertLoc = D.getName().getSourceRange().getEnd();
4861            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4862          }
4863
4864          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4865            << Name << RemoveRange
4866            << FixItHint::CreateRemoval(RemoveRange)
4867            << FixItHint::CreateInsertion(InsertLoc, "<>");
4868        }
4869      }
4870    }
4871    else {
4872      // All template param lists were matched against the scope specifier:
4873      // this is NOT (an explicit specialization of) a template.
4874      if (TemplateParamLists.size() > 0)
4875        // For source fidelity, store all the template param lists.
4876        NewFD->setTemplateParameterListsInfo(Context,
4877                                             TemplateParamLists.size(),
4878                                             TemplateParamLists.release());
4879    }
4880
4881    if (Invalid) {
4882      NewFD->setInvalidDecl();
4883      if (FunctionTemplate)
4884        FunctionTemplate->setInvalidDecl();
4885    }
4886
4887    // C++ [dcl.fct.spec]p5:
4888    //   The virtual specifier shall only be used in declarations of
4889    //   nonstatic class member functions that appear within a
4890    //   member-specification of a class declaration; see 10.3.
4891    //
4892    if (isVirtual && !NewFD->isInvalidDecl()) {
4893      if (!isVirtualOkay) {
4894        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4895             diag::err_virtual_non_function);
4896      } else if (!CurContext->isRecord()) {
4897        // 'virtual' was specified outside of the class.
4898        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4899             diag::err_virtual_out_of_class)
4900          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4901      } else if (NewFD->getDescribedFunctionTemplate()) {
4902        // C++ [temp.mem]p3:
4903        //  A member function template shall not be virtual.
4904        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4905             diag::err_virtual_member_function_template)
4906          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4907      } else {
4908        // Okay: Add virtual to the method.
4909        NewFD->setVirtualAsWritten(true);
4910      }
4911    }
4912
4913    // C++ [dcl.fct.spec]p3:
4914    //  The inline specifier shall not appear on a block scope function
4915    //  declaration.
4916    if (isInline && !NewFD->isInvalidDecl()) {
4917      if (CurContext->isFunctionOrMethod()) {
4918        // 'inline' is not allowed on block scope function declaration.
4919        Diag(D.getDeclSpec().getInlineSpecLoc(),
4920             diag::err_inline_declaration_block_scope) << Name
4921          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4922      }
4923    }
4924
4925    // C++ [dcl.fct.spec]p6:
4926    //  The explicit specifier shall be used only in the declaration of a
4927    //  constructor or conversion function within its class definition;
4928    //  see 12.3.1 and 12.3.2.
4929    if (isExplicit && !NewFD->isInvalidDecl()) {
4930      if (!CurContext->isRecord()) {
4931        // 'explicit' was specified outside of the class.
4932        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4933             diag::err_explicit_out_of_class)
4934          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4935      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4936                 !isa<CXXConversionDecl>(NewFD)) {
4937        // 'explicit' was specified on a function that wasn't a constructor
4938        // or conversion function.
4939        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4940             diag::err_explicit_non_ctor_or_conv_function)
4941          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4942      }
4943    }
4944
4945    if (isConstexpr) {
4946      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4947      // are implicitly inline.
4948      NewFD->setImplicitlyInline();
4949
4950      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4951      // be either constructors or to return a literal type. Therefore,
4952      // destructors cannot be declared constexpr.
4953      if (isa<CXXDestructorDecl>(NewFD))
4954        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4955    }
4956
4957    // If __module_private__ was specified, mark the function accordingly.
4958    if (D.getDeclSpec().isModulePrivateSpecified()) {
4959      if (isFunctionTemplateSpecialization) {
4960        SourceLocation ModulePrivateLoc
4961          = D.getDeclSpec().getModulePrivateSpecLoc();
4962        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4963          << 0
4964          << FixItHint::CreateRemoval(ModulePrivateLoc);
4965      } else {
4966        NewFD->setModulePrivate();
4967        if (FunctionTemplate)
4968          FunctionTemplate->setModulePrivate();
4969      }
4970    }
4971
4972    if (isFriend) {
4973      // For now, claim that the objects have no previous declaration.
4974      if (FunctionTemplate) {
4975        FunctionTemplate->setObjectOfFriendDecl(false);
4976        FunctionTemplate->setAccess(AS_public);
4977      }
4978      NewFD->setObjectOfFriendDecl(false);
4979      NewFD->setAccess(AS_public);
4980    }
4981
4982    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4983        D.isFunctionDefinition()) {
4984      // A method is implicitly inline if it's defined in its class
4985      // definition.
4986      NewFD->setImplicitlyInline();
4987    }
4988
4989    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4990        !CurContext->isRecord()) {
4991      // C++ [class.static]p1:
4992      //   A data or function member of a class may be declared static
4993      //   in a class definition, in which case it is a static member of
4994      //   the class.
4995
4996      // Complain about the 'static' specifier if it's on an out-of-line
4997      // member function definition.
4998      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4999           diag::err_static_out_of_line)
5000        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5001    }
5002  }
5003
5004  // Filter out previous declarations that don't match the scope.
5005  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5006                       isExplicitSpecialization ||
5007                       isFunctionTemplateSpecialization);
5008
5009  // Handle GNU asm-label extension (encoded as an attribute).
5010  if (Expr *E = (Expr*) D.getAsmLabel()) {
5011    // The parser guarantees this is a string.
5012    StringLiteral *SE = cast<StringLiteral>(E);
5013    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5014                                                SE->getString()));
5015  }
5016
5017  // Copy the parameter declarations from the declarator D to the function
5018  // declaration NewFD, if they are available.  First scavenge them into Params.
5019  SmallVector<ParmVarDecl*, 16> Params;
5020  if (D.isFunctionDeclarator()) {
5021    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5022
5023    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5024    // function that takes no arguments, not a function that takes a
5025    // single void argument.
5026    // We let through "const void" here because Sema::GetTypeForDeclarator
5027    // already checks for that case.
5028    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5029        FTI.ArgInfo[0].Param &&
5030        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5031      // Empty arg list, don't push any params.
5032      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5033
5034      // In C++, the empty parameter-type-list must be spelled "void"; a
5035      // typedef of void is not permitted.
5036      if (getLangOptions().CPlusPlus &&
5037          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5038        bool IsTypeAlias = false;
5039        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5040          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5041        else if (const TemplateSpecializationType *TST =
5042                   Param->getType()->getAs<TemplateSpecializationType>())
5043          IsTypeAlias = TST->isTypeAlias();
5044        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5045          << IsTypeAlias;
5046      }
5047    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5048      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5049        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5050        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5051        Param->setDeclContext(NewFD);
5052        Params.push_back(Param);
5053
5054        if (Param->isInvalidDecl())
5055          NewFD->setInvalidDecl();
5056      }
5057    }
5058
5059  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5060    // When we're declaring a function with a typedef, typeof, etc as in the
5061    // following example, we'll need to synthesize (unnamed)
5062    // parameters for use in the declaration.
5063    //
5064    // @code
5065    // typedef void fn(int);
5066    // fn f;
5067    // @endcode
5068
5069    // Synthesize a parameter for each argument type.
5070    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5071         AE = FT->arg_type_end(); AI != AE; ++AI) {
5072      ParmVarDecl *Param =
5073        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5074      Param->setScopeInfo(0, Params.size());
5075      Params.push_back(Param);
5076    }
5077  } else {
5078    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5079           "Should not need args for typedef of non-prototype fn");
5080  }
5081
5082  // Finally, we know we have the right number of parameters, install them.
5083  NewFD->setParams(Params);
5084
5085  // Process the non-inheritable attributes on this declaration.
5086  ProcessDeclAttributes(S, NewFD, D,
5087                        /*NonInheritable=*/true, /*Inheritable=*/false);
5088
5089  if (!getLangOptions().CPlusPlus) {
5090    // Perform semantic checking on the function declaration.
5091    bool isExplicitSpecialization=false;
5092    if (!NewFD->isInvalidDecl()) {
5093      if (NewFD->getResultType()->isVariablyModifiedType()) {
5094        // Functions returning a variably modified type violate C99 6.7.5.2p2
5095        // because all functions have linkage.
5096        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5097        NewFD->setInvalidDecl();
5098      } else {
5099        if (NewFD->isMain())
5100          CheckMain(NewFD, D.getDeclSpec());
5101        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5102                                                    isExplicitSpecialization));
5103      }
5104    }
5105    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5106            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5107           "previous declaration set still overloaded");
5108  } else {
5109    // If the declarator is a template-id, translate the parser's template
5110    // argument list into our AST format.
5111    bool HasExplicitTemplateArgs = false;
5112    TemplateArgumentListInfo TemplateArgs;
5113    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5114      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5115      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5116      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5117      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5118                                         TemplateId->getTemplateArgs(),
5119                                         TemplateId->NumArgs);
5120      translateTemplateArguments(TemplateArgsPtr,
5121                                 TemplateArgs);
5122      TemplateArgsPtr.release();
5123
5124      HasExplicitTemplateArgs = true;
5125
5126      if (NewFD->isInvalidDecl()) {
5127        HasExplicitTemplateArgs = false;
5128      } else if (FunctionTemplate) {
5129        // Function template with explicit template arguments.
5130        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5131          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5132
5133        HasExplicitTemplateArgs = false;
5134      } else if (!isFunctionTemplateSpecialization &&
5135                 !D.getDeclSpec().isFriendSpecified()) {
5136        // We have encountered something that the user meant to be a
5137        // specialization (because it has explicitly-specified template
5138        // arguments) but that was not introduced with a "template<>" (or had
5139        // too few of them).
5140        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5141          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5142          << FixItHint::CreateInsertion(
5143                                    D.getDeclSpec().getSourceRange().getBegin(),
5144                                        "template<> ");
5145        isFunctionTemplateSpecialization = true;
5146      } else {
5147        // "friend void foo<>(int);" is an implicit specialization decl.
5148        isFunctionTemplateSpecialization = true;
5149      }
5150    } else if (isFriend && isFunctionTemplateSpecialization) {
5151      // This combination is only possible in a recovery case;  the user
5152      // wrote something like:
5153      //   template <> friend void foo(int);
5154      // which we're recovering from as if the user had written:
5155      //   friend void foo<>(int);
5156      // Go ahead and fake up a template id.
5157      HasExplicitTemplateArgs = true;
5158        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5159      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5160    }
5161
5162    // If it's a friend (and only if it's a friend), it's possible
5163    // that either the specialized function type or the specialized
5164    // template is dependent, and therefore matching will fail.  In
5165    // this case, don't check the specialization yet.
5166    bool InstantiationDependent = false;
5167    if (isFunctionTemplateSpecialization && isFriend &&
5168        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5169         TemplateSpecializationType::anyDependentTemplateArguments(
5170            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5171            InstantiationDependent))) {
5172      assert(HasExplicitTemplateArgs &&
5173             "friend function specialization without template args");
5174      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5175                                                       Previous))
5176        NewFD->setInvalidDecl();
5177    } else if (isFunctionTemplateSpecialization) {
5178      if (CurContext->isDependentContext() && CurContext->isRecord()
5179          && !isFriend) {
5180        isDependentClassScopeExplicitSpecialization = true;
5181        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5182          diag::ext_function_specialization_in_class :
5183          diag::err_function_specialization_in_class)
5184          << NewFD->getDeclName();
5185      } else if (CheckFunctionTemplateSpecialization(NewFD,
5186                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5187                                                     Previous))
5188        NewFD->setInvalidDecl();
5189
5190      // C++ [dcl.stc]p1:
5191      //   A storage-class-specifier shall not be specified in an explicit
5192      //   specialization (14.7.3)
5193      if (SC != SC_None) {
5194        if (SC != NewFD->getStorageClass())
5195          Diag(NewFD->getLocation(),
5196               diag::err_explicit_specialization_inconsistent_storage_class)
5197            << SC
5198            << FixItHint::CreateRemoval(
5199                                      D.getDeclSpec().getStorageClassSpecLoc());
5200
5201        else
5202          Diag(NewFD->getLocation(),
5203               diag::ext_explicit_specialization_storage_class)
5204            << FixItHint::CreateRemoval(
5205                                      D.getDeclSpec().getStorageClassSpecLoc());
5206      }
5207
5208    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5209      if (CheckMemberSpecialization(NewFD, Previous))
5210          NewFD->setInvalidDecl();
5211    }
5212
5213    // Perform semantic checking on the function declaration.
5214    if (!isDependentClassScopeExplicitSpecialization) {
5215      if (NewFD->isInvalidDecl()) {
5216        // If this is a class member, mark the class invalid immediately.
5217        // This avoids some consistency errors later.
5218        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5219          methodDecl->getParent()->setInvalidDecl();
5220      } else {
5221        if (NewFD->isMain())
5222          CheckMain(NewFD, D.getDeclSpec());
5223        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5224                                                    isExplicitSpecialization));
5225      }
5226    }
5227
5228    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5229            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5230           "previous declaration set still overloaded");
5231
5232    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5233        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5234      NewFD->setInvalidDecl();
5235
5236    NamedDecl *PrincipalDecl = (FunctionTemplate
5237                                ? cast<NamedDecl>(FunctionTemplate)
5238                                : NewFD);
5239
5240    if (isFriend && D.isRedeclaration()) {
5241      AccessSpecifier Access = AS_public;
5242      if (!NewFD->isInvalidDecl())
5243        Access = NewFD->getPreviousDeclaration()->getAccess();
5244
5245      NewFD->setAccess(Access);
5246      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5247
5248      PrincipalDecl->setObjectOfFriendDecl(true);
5249    }
5250
5251    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5252        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5253      PrincipalDecl->setNonMemberOperator();
5254
5255    // If we have a function template, check the template parameter
5256    // list. This will check and merge default template arguments.
5257    if (FunctionTemplate) {
5258      FunctionTemplateDecl *PrevTemplate =
5259                                     FunctionTemplate->getPreviousDeclaration();
5260      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5261                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5262                            D.getDeclSpec().isFriendSpecified()
5263                              ? (D.isFunctionDefinition()
5264                                   ? TPC_FriendFunctionTemplateDefinition
5265                                   : TPC_FriendFunctionTemplate)
5266                              : (D.getCXXScopeSpec().isSet() &&
5267                                 DC && DC->isRecord() &&
5268                                 DC->isDependentContext())
5269                                  ? TPC_ClassTemplateMember
5270                                  : TPC_FunctionTemplate);
5271    }
5272
5273    if (NewFD->isInvalidDecl()) {
5274      // Ignore all the rest of this.
5275    } else if (!D.isRedeclaration()) {
5276      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5277                                       AddToScope };
5278      // Fake up an access specifier if it's supposed to be a class member.
5279      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5280        NewFD->setAccess(AS_public);
5281
5282      // Qualified decls generally require a previous declaration.
5283      if (D.getCXXScopeSpec().isSet()) {
5284        // ...with the major exception of templated-scope or
5285        // dependent-scope friend declarations.
5286
5287        // TODO: we currently also suppress this check in dependent
5288        // contexts because (1) the parameter depth will be off when
5289        // matching friend templates and (2) we might actually be
5290        // selecting a friend based on a dependent factor.  But there
5291        // are situations where these conditions don't apply and we
5292        // can actually do this check immediately.
5293        if (isFriend &&
5294            (TemplateParamLists.size() ||
5295             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5296             CurContext->isDependentContext())) {
5297          // ignore these
5298        } else {
5299          // The user tried to provide an out-of-line definition for a
5300          // function that is a member of a class or namespace, but there
5301          // was no such member function declared (C++ [class.mfct]p2,
5302          // C++ [namespace.memdef]p2). For example:
5303          //
5304          // class X {
5305          //   void f() const;
5306          // };
5307          //
5308          // void X::f() { } // ill-formed
5309          //
5310          // Complain about this problem, and attempt to suggest close
5311          // matches (e.g., those that differ only in cv-qualifiers and
5312          // whether the parameter types are references).
5313
5314          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5315                                                               NewFD,
5316                                                               ExtraArgs)) {
5317            AddToScope = ExtraArgs.AddToScope;
5318            return Result;
5319          }
5320        }
5321
5322        // Unqualified local friend declarations are required to resolve
5323        // to something.
5324      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5325        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5326                                                             NewFD,
5327                                                             ExtraArgs)) {
5328          AddToScope = ExtraArgs.AddToScope;
5329          return Result;
5330        }
5331      }
5332
5333    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5334               !isFriend && !isFunctionTemplateSpecialization &&
5335               !isExplicitSpecialization) {
5336      // An out-of-line member function declaration must also be a
5337      // definition (C++ [dcl.meaning]p1).
5338      // Note that this is not the case for explicit specializations of
5339      // function templates or member functions of class templates, per
5340      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5341      // extension for compatibility with old SWIG code which likes to
5342      // generate them.
5343      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5344        << D.getCXXScopeSpec().getRange();
5345    }
5346  }
5347
5348
5349  // Handle attributes. We need to have merged decls when handling attributes
5350  // (for example to check for conflicts, etc).
5351  // FIXME: This needs to happen before we merge declarations. Then,
5352  // let attribute merging cope with attribute conflicts.
5353  ProcessDeclAttributes(S, NewFD, D,
5354                        /*NonInheritable=*/false, /*Inheritable=*/true);
5355
5356  // attributes declared post-definition are currently ignored
5357  // FIXME: This should happen during attribute merging
5358  if (D.isRedeclaration() && Previous.isSingleResult()) {
5359    const FunctionDecl *Def;
5360    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5361    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5362      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5363      Diag(Def->getLocation(), diag::note_previous_definition);
5364    }
5365  }
5366
5367  AddKnownFunctionAttributes(NewFD);
5368
5369  if (NewFD->hasAttr<OverloadableAttr>() &&
5370      !NewFD->getType()->getAs<FunctionProtoType>()) {
5371    Diag(NewFD->getLocation(),
5372         diag::err_attribute_overloadable_no_prototype)
5373      << NewFD;
5374
5375    // Turn this into a variadic function with no parameters.
5376    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5377    FunctionProtoType::ExtProtoInfo EPI;
5378    EPI.Variadic = true;
5379    EPI.ExtInfo = FT->getExtInfo();
5380
5381    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5382    NewFD->setType(R);
5383  }
5384
5385  // If there's a #pragma GCC visibility in scope, and this isn't a class
5386  // member, set the visibility of this function.
5387  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5388    AddPushedVisibilityAttribute(NewFD);
5389
5390  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5391  // marking the function.
5392  AddCFAuditedAttribute(NewFD);
5393
5394  // If this is a locally-scoped extern C function, update the
5395  // map of such names.
5396  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5397      && !NewFD->isInvalidDecl())
5398    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5399
5400  // Set this FunctionDecl's range up to the right paren.
5401  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5402
5403  if (getLangOptions().CPlusPlus) {
5404    if (FunctionTemplate) {
5405      if (NewFD->isInvalidDecl())
5406        FunctionTemplate->setInvalidDecl();
5407      return FunctionTemplate;
5408    }
5409  }
5410
5411  MarkUnusedFileScopedDecl(NewFD);
5412
5413  if (getLangOptions().CUDA)
5414    if (IdentifierInfo *II = NewFD->getIdentifier())
5415      if (!NewFD->isInvalidDecl() &&
5416          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5417        if (II->isStr("cudaConfigureCall")) {
5418          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5419            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5420
5421          Context.setcudaConfigureCallDecl(NewFD);
5422        }
5423      }
5424
5425  // Here we have an function template explicit specialization at class scope.
5426  // The actually specialization will be postponed to template instatiation
5427  // time via the ClassScopeFunctionSpecializationDecl node.
5428  if (isDependentClassScopeExplicitSpecialization) {
5429    ClassScopeFunctionSpecializationDecl *NewSpec =
5430                         ClassScopeFunctionSpecializationDecl::Create(
5431                                Context, CurContext,  SourceLocation(),
5432                                cast<CXXMethodDecl>(NewFD));
5433    CurContext->addDecl(NewSpec);
5434    AddToScope = false;
5435  }
5436
5437  return NewFD;
5438}
5439
5440/// \brief Perform semantic checking of a new function declaration.
5441///
5442/// Performs semantic analysis of the new function declaration
5443/// NewFD. This routine performs all semantic checking that does not
5444/// require the actual declarator involved in the declaration, and is
5445/// used both for the declaration of functions as they are parsed
5446/// (called via ActOnDeclarator) and for the declaration of functions
5447/// that have been instantiated via C++ template instantiation (called
5448/// via InstantiateDecl).
5449///
5450/// \param IsExplicitSpecialiation whether this new function declaration is
5451/// an explicit specialization of the previous declaration.
5452///
5453/// This sets NewFD->isInvalidDecl() to true if there was an error.
5454///
5455/// Returns true if the function declaration is a redeclaration.
5456bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5457                                    LookupResult &Previous,
5458                                    bool IsExplicitSpecialization) {
5459  assert(!NewFD->getResultType()->isVariablyModifiedType()
5460         && "Variably modified return types are not handled here");
5461
5462  // Check for a previous declaration of this name.
5463  if (Previous.empty() && NewFD->isExternC()) {
5464    // Since we did not find anything by this name and we're declaring
5465    // an extern "C" function, look for a non-visible extern "C"
5466    // declaration with the same name.
5467    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5468      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5469    if (Pos != LocallyScopedExternalDecls.end())
5470      Previous.addDecl(Pos->second);
5471  }
5472
5473  bool Redeclaration = false;
5474
5475  // Merge or overload the declaration with an existing declaration of
5476  // the same name, if appropriate.
5477  if (!Previous.empty()) {
5478    // Determine whether NewFD is an overload of PrevDecl or
5479    // a declaration that requires merging. If it's an overload,
5480    // there's no more work to do here; we'll just add the new
5481    // function to the scope.
5482
5483    NamedDecl *OldDecl = 0;
5484    if (!AllowOverloadingOfFunction(Previous, Context)) {
5485      Redeclaration = true;
5486      OldDecl = Previous.getFoundDecl();
5487    } else {
5488      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5489                            /*NewIsUsingDecl*/ false)) {
5490      case Ovl_Match:
5491        Redeclaration = true;
5492        break;
5493
5494      case Ovl_NonFunction:
5495        Redeclaration = true;
5496        break;
5497
5498      case Ovl_Overload:
5499        Redeclaration = false;
5500        break;
5501      }
5502
5503      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5504        // If a function name is overloadable in C, then every function
5505        // with that name must be marked "overloadable".
5506        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5507          << Redeclaration << NewFD;
5508        NamedDecl *OverloadedDecl = 0;
5509        if (Redeclaration)
5510          OverloadedDecl = OldDecl;
5511        else if (!Previous.empty())
5512          OverloadedDecl = Previous.getRepresentativeDecl();
5513        if (OverloadedDecl)
5514          Diag(OverloadedDecl->getLocation(),
5515               diag::note_attribute_overloadable_prev_overload);
5516        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5517                                                        Context));
5518      }
5519    }
5520
5521    if (Redeclaration) {
5522      // NewFD and OldDecl represent declarations that need to be
5523      // merged.
5524      if (MergeFunctionDecl(NewFD, OldDecl)) {
5525        NewFD->setInvalidDecl();
5526        return Redeclaration;
5527      }
5528
5529      Previous.clear();
5530      Previous.addDecl(OldDecl);
5531
5532      if (FunctionTemplateDecl *OldTemplateDecl
5533                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5534        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5535        FunctionTemplateDecl *NewTemplateDecl
5536          = NewFD->getDescribedFunctionTemplate();
5537        assert(NewTemplateDecl && "Template/non-template mismatch");
5538        if (CXXMethodDecl *Method
5539              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5540          Method->setAccess(OldTemplateDecl->getAccess());
5541          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5542        }
5543
5544        // If this is an explicit specialization of a member that is a function
5545        // template, mark it as a member specialization.
5546        if (IsExplicitSpecialization &&
5547            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5548          NewTemplateDecl->setMemberSpecialization();
5549          assert(OldTemplateDecl->isMemberSpecialization());
5550        }
5551
5552        if (OldTemplateDecl->isModulePrivate())
5553          NewTemplateDecl->setModulePrivate();
5554
5555      } else {
5556        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5557          NewFD->setAccess(OldDecl->getAccess());
5558        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5559      }
5560    }
5561  }
5562
5563  // Semantic checking for this function declaration (in isolation).
5564  if (getLangOptions().CPlusPlus) {
5565    // C++-specific checks.
5566    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5567      CheckConstructor(Constructor);
5568    } else if (CXXDestructorDecl *Destructor =
5569                dyn_cast<CXXDestructorDecl>(NewFD)) {
5570      CXXRecordDecl *Record = Destructor->getParent();
5571      QualType ClassType = Context.getTypeDeclType(Record);
5572
5573      // FIXME: Shouldn't we be able to perform this check even when the class
5574      // type is dependent? Both gcc and edg can handle that.
5575      if (!ClassType->isDependentType()) {
5576        DeclarationName Name
5577          = Context.DeclarationNames.getCXXDestructorName(
5578                                        Context.getCanonicalType(ClassType));
5579        if (NewFD->getDeclName() != Name) {
5580          Diag(NewFD->getLocation(), diag::err_destructor_name);
5581          NewFD->setInvalidDecl();
5582          return Redeclaration;
5583        }
5584      }
5585    } else if (CXXConversionDecl *Conversion
5586               = dyn_cast<CXXConversionDecl>(NewFD)) {
5587      ActOnConversionDeclarator(Conversion);
5588    }
5589
5590    // Find any virtual functions that this function overrides.
5591    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5592      if (!Method->isFunctionTemplateSpecialization() &&
5593          !Method->getDescribedFunctionTemplate()) {
5594        if (AddOverriddenMethods(Method->getParent(), Method)) {
5595          // If the function was marked as "static", we have a problem.
5596          if (NewFD->getStorageClass() == SC_Static) {
5597            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5598              << NewFD->getDeclName();
5599            for (CXXMethodDecl::method_iterator
5600                      Overridden = Method->begin_overridden_methods(),
5601                   OverriddenEnd = Method->end_overridden_methods();
5602                 Overridden != OverriddenEnd;
5603                 ++Overridden) {
5604              Diag((*Overridden)->getLocation(),
5605                   diag::note_overridden_virtual_function);
5606            }
5607          }
5608        }
5609      }
5610    }
5611
5612    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5613    if (NewFD->isOverloadedOperator() &&
5614        CheckOverloadedOperatorDeclaration(NewFD)) {
5615      NewFD->setInvalidDecl();
5616      return Redeclaration;
5617    }
5618
5619    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5620    if (NewFD->getLiteralIdentifier() &&
5621        CheckLiteralOperatorDeclaration(NewFD)) {
5622      NewFD->setInvalidDecl();
5623      return Redeclaration;
5624    }
5625
5626    // In C++, check default arguments now that we have merged decls. Unless
5627    // the lexical context is the class, because in this case this is done
5628    // during delayed parsing anyway.
5629    if (!CurContext->isRecord())
5630      CheckCXXDefaultArguments(NewFD);
5631
5632    // If this function declares a builtin function, check the type of this
5633    // declaration against the expected type for the builtin.
5634    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5635      ASTContext::GetBuiltinTypeError Error;
5636      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5637      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5638        // The type of this function differs from the type of the builtin,
5639        // so forget about the builtin entirely.
5640        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5641      }
5642    }
5643  }
5644  return Redeclaration;
5645}
5646
5647void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5648  // C++ [basic.start.main]p3:  A program that declares main to be inline
5649  //   or static is ill-formed.
5650  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5651  //   shall not appear in a declaration of main.
5652  // static main is not an error under C99, but we should warn about it.
5653  if (FD->getStorageClass() == SC_Static)
5654    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5655         ? diag::err_static_main : diag::warn_static_main)
5656      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5657  if (FD->isInlineSpecified())
5658    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5659      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5660
5661  QualType T = FD->getType();
5662  assert(T->isFunctionType() && "function decl is not of function type");
5663  const FunctionType* FT = T->getAs<FunctionType>();
5664
5665  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5666    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5667    FD->setInvalidDecl(true);
5668  }
5669
5670  // Treat protoless main() as nullary.
5671  if (isa<FunctionNoProtoType>(FT)) return;
5672
5673  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5674  unsigned nparams = FTP->getNumArgs();
5675  assert(FD->getNumParams() == nparams);
5676
5677  bool HasExtraParameters = (nparams > 3);
5678
5679  // Darwin passes an undocumented fourth argument of type char**.  If
5680  // other platforms start sprouting these, the logic below will start
5681  // getting shifty.
5682  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5683    HasExtraParameters = false;
5684
5685  if (HasExtraParameters) {
5686    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5687    FD->setInvalidDecl(true);
5688    nparams = 3;
5689  }
5690
5691  // FIXME: a lot of the following diagnostics would be improved
5692  // if we had some location information about types.
5693
5694  QualType CharPP =
5695    Context.getPointerType(Context.getPointerType(Context.CharTy));
5696  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5697
5698  for (unsigned i = 0; i < nparams; ++i) {
5699    QualType AT = FTP->getArgType(i);
5700
5701    bool mismatch = true;
5702
5703    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5704      mismatch = false;
5705    else if (Expected[i] == CharPP) {
5706      // As an extension, the following forms are okay:
5707      //   char const **
5708      //   char const * const *
5709      //   char * const *
5710
5711      QualifierCollector qs;
5712      const PointerType* PT;
5713      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5714          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5715          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5716        qs.removeConst();
5717        mismatch = !qs.empty();
5718      }
5719    }
5720
5721    if (mismatch) {
5722      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5723      // TODO: suggest replacing given type with expected type
5724      FD->setInvalidDecl(true);
5725    }
5726  }
5727
5728  if (nparams == 1 && !FD->isInvalidDecl()) {
5729    Diag(FD->getLocation(), diag::warn_main_one_arg);
5730  }
5731
5732  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5733    Diag(FD->getLocation(), diag::err_main_template_decl);
5734    FD->setInvalidDecl();
5735  }
5736}
5737
5738bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5739  // FIXME: Need strict checking.  In C89, we need to check for
5740  // any assignment, increment, decrement, function-calls, or
5741  // commas outside of a sizeof.  In C99, it's the same list,
5742  // except that the aforementioned are allowed in unevaluated
5743  // expressions.  Everything else falls under the
5744  // "may accept other forms of constant expressions" exception.
5745  // (We never end up here for C++, so the constant expression
5746  // rules there don't matter.)
5747  if (Init->isConstantInitializer(Context, false))
5748    return false;
5749  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5750    << Init->getSourceRange();
5751  return true;
5752}
5753
5754namespace {
5755  // Visits an initialization expression to see if OrigDecl is evaluated in
5756  // its own initialization and throws a warning if it does.
5757  class SelfReferenceChecker
5758      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5759    Sema &S;
5760    Decl *OrigDecl;
5761    bool isRecordType;
5762    bool isPODType;
5763
5764  public:
5765    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5766
5767    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5768                                                    S(S), OrigDecl(OrigDecl) {
5769      isPODType = false;
5770      isRecordType = false;
5771      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5772        isPODType = VD->getType().isPODType(S.Context);
5773        isRecordType = VD->getType()->isRecordType();
5774      }
5775    }
5776
5777    void VisitExpr(Expr *E) {
5778      if (isa<ObjCMessageExpr>(*E)) return;
5779      if (isRecordType) {
5780        Expr *expr = E;
5781        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5782          ValueDecl *VD = ME->getMemberDecl();
5783          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5784          expr = ME->getBase();
5785        }
5786        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5787          HandleDeclRefExpr(DRE);
5788          return;
5789        }
5790      }
5791      Inherited::VisitExpr(E);
5792    }
5793
5794    void VisitMemberExpr(MemberExpr *E) {
5795      if (E->getType()->canDecayToPointerType()) return;
5796      if (isa<FieldDecl>(E->getMemberDecl()))
5797        if (DeclRefExpr *DRE
5798              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5799          HandleDeclRefExpr(DRE);
5800          return;
5801        }
5802      Inherited::VisitMemberExpr(E);
5803    }
5804
5805    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5806      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5807          (isRecordType && E->getCastKind() == CK_NoOp)) {
5808        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5809        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5810          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5811        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5812          HandleDeclRefExpr(DRE);
5813          return;
5814        }
5815      }
5816      Inherited::VisitImplicitCastExpr(E);
5817    }
5818
5819    void VisitUnaryOperator(UnaryOperator *E) {
5820      // For POD record types, addresses of its own members are well-defined.
5821      if (isRecordType && isPODType) return;
5822      Inherited::VisitUnaryOperator(E);
5823    }
5824
5825    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5826      Decl* ReferenceDecl = DRE->getDecl();
5827      if (OrigDecl != ReferenceDecl) return;
5828      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5829                          Sema::NotForRedeclaration);
5830      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5831                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5832                              << Result.getLookupName()
5833                              << OrigDecl->getLocation()
5834                              << DRE->getSourceRange());
5835    }
5836  };
5837}
5838
5839/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5840void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5841  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5842}
5843
5844/// AddInitializerToDecl - Adds the initializer Init to the
5845/// declaration dcl. If DirectInit is true, this is C++ direct
5846/// initialization rather than copy initialization.
5847void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5848                                bool DirectInit, bool TypeMayContainAuto) {
5849  // If there is no declaration, there was an error parsing it.  Just ignore
5850  // the initializer.
5851  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5852    return;
5853
5854  // Check for self-references within variable initializers.
5855  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5856    // Variables declared within a function/method body are handled
5857    // by a dataflow analysis.
5858    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5859      CheckSelfReference(RealDecl, Init);
5860  }
5861  else {
5862    CheckSelfReference(RealDecl, Init);
5863  }
5864
5865  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5866    // With declarators parsed the way they are, the parser cannot
5867    // distinguish between a normal initializer and a pure-specifier.
5868    // Thus this grotesque test.
5869    IntegerLiteral *IL;
5870    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5871        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5872      CheckPureMethod(Method, Init->getSourceRange());
5873    else {
5874      Diag(Method->getLocation(), diag::err_member_function_initialization)
5875        << Method->getDeclName() << Init->getSourceRange();
5876      Method->setInvalidDecl();
5877    }
5878    return;
5879  }
5880
5881  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5882  if (!VDecl) {
5883    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5884    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5885    RealDecl->setInvalidDecl();
5886    return;
5887  }
5888
5889  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5890  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5891    TypeSourceInfo *DeducedType = 0;
5892    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5893      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5894        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5895        << Init->getSourceRange();
5896    if (!DeducedType) {
5897      RealDecl->setInvalidDecl();
5898      return;
5899    }
5900    VDecl->setTypeSourceInfo(DeducedType);
5901    VDecl->setType(DeducedType->getType());
5902
5903    // In ARC, infer lifetime.
5904    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5905      VDecl->setInvalidDecl();
5906
5907    // If this is a redeclaration, check that the type we just deduced matches
5908    // the previously declared type.
5909    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5910      MergeVarDeclTypes(VDecl, Old);
5911  }
5912
5913
5914  // A definition must end up with a complete type, which means it must be
5915  // complete with the restriction that an array type might be completed by the
5916  // initializer; note that later code assumes this restriction.
5917  QualType BaseDeclType = VDecl->getType();
5918  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5919    BaseDeclType = Array->getElementType();
5920  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5921                          diag::err_typecheck_decl_incomplete_type)) {
5922    RealDecl->setInvalidDecl();
5923    return;
5924  }
5925
5926  // The variable can not have an abstract class type.
5927  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5928                             diag::err_abstract_type_in_decl,
5929                             AbstractVariableType))
5930    VDecl->setInvalidDecl();
5931
5932  const VarDecl *Def;
5933  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5934    Diag(VDecl->getLocation(), diag::err_redefinition)
5935      << VDecl->getDeclName();
5936    Diag(Def->getLocation(), diag::note_previous_definition);
5937    VDecl->setInvalidDecl();
5938    return;
5939  }
5940
5941  const VarDecl* PrevInit = 0;
5942  if (getLangOptions().CPlusPlus) {
5943    // C++ [class.static.data]p4
5944    //   If a static data member is of const integral or const
5945    //   enumeration type, its declaration in the class definition can
5946    //   specify a constant-initializer which shall be an integral
5947    //   constant expression (5.19). In that case, the member can appear
5948    //   in integral constant expressions. The member shall still be
5949    //   defined in a namespace scope if it is used in the program and the
5950    //   namespace scope definition shall not contain an initializer.
5951    //
5952    // We already performed a redefinition check above, but for static
5953    // data members we also need to check whether there was an in-class
5954    // declaration with an initializer.
5955    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5956      Diag(VDecl->getLocation(), diag::err_redefinition)
5957        << VDecl->getDeclName();
5958      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5959      return;
5960    }
5961
5962    if (VDecl->hasLocalStorage())
5963      getCurFunction()->setHasBranchProtectedScope();
5964
5965    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5966      VDecl->setInvalidDecl();
5967      return;
5968    }
5969  }
5970
5971  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5972  // a kernel function cannot be initialized."
5973  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5974    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5975    VDecl->setInvalidDecl();
5976    return;
5977  }
5978
5979  // Capture the variable that is being initialized and the style of
5980  // initialization.
5981  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5982
5983  // FIXME: Poor source location information.
5984  InitializationKind Kind
5985    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5986                                                   Init->getLocStart(),
5987                                                   Init->getLocEnd())
5988                : InitializationKind::CreateCopy(VDecl->getLocation(),
5989                                                 Init->getLocStart());
5990
5991  // Get the decls type and save a reference for later, since
5992  // CheckInitializerTypes may change it.
5993  QualType DclT = VDecl->getType(), SavT = DclT;
5994  if (VDecl->isLocalVarDecl()) {
5995    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5996      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5997      VDecl->setInvalidDecl();
5998    } else if (!VDecl->isInvalidDecl()) {
5999      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6000      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6001                                                MultiExprArg(*this, &Init, 1),
6002                                                &DclT);
6003      if (Result.isInvalid()) {
6004        VDecl->setInvalidDecl();
6005        return;
6006      }
6007
6008      Init = Result.takeAs<Expr>();
6009
6010      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6011      // Don't check invalid declarations to avoid emitting useless diagnostics.
6012      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6013        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6014          CheckForConstantInitializer(Init, DclT);
6015      }
6016    }
6017  } else if (VDecl->isStaticDataMember() &&
6018             VDecl->getLexicalDeclContext()->isRecord()) {
6019    // This is an in-class initialization for a static data member, e.g.,
6020    //
6021    // struct S {
6022    //   static const int value = 17;
6023    // };
6024
6025    // Try to perform the initialization regardless.
6026    if (!VDecl->isInvalidDecl()) {
6027      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6028      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6029                                          MultiExprArg(*this, &Init, 1),
6030                                          &DclT);
6031      if (Result.isInvalid()) {
6032        VDecl->setInvalidDecl();
6033        return;
6034      }
6035
6036      Init = Result.takeAs<Expr>();
6037    }
6038
6039    // C++ [class.mem]p4:
6040    //   A member-declarator can contain a constant-initializer only
6041    //   if it declares a static member (9.4) of const integral or
6042    //   const enumeration type, see 9.4.2.
6043    //
6044    // C++0x [class.static.data]p3:
6045    //   If a non-volatile const static data member is of integral or
6046    //   enumeration type, its declaration in the class definition can
6047    //   specify a brace-or-equal-initializer in which every initalizer-clause
6048    //   that is an assignment-expression is a constant expression. A static
6049    //   data member of literal type can be declared in the class definition
6050    //   with the constexpr specifier; if so, its declaration shall specify a
6051    //   brace-or-equal-initializer in which every initializer-clause that is
6052    //   an assignment-expression is a constant expression.
6053    QualType T = VDecl->getType();
6054
6055    // Do nothing on dependent types.
6056    if (T->isDependentType()) {
6057
6058    // Allow any 'static constexpr' members, whether or not they are of literal
6059    // type. We separately check that the initializer is a constant expression,
6060    // which implicitly requires the member to be of literal type.
6061    } else if (VDecl->isConstexpr()) {
6062
6063    // Require constness.
6064    } else if (!T.isConstQualified()) {
6065      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6066        << Init->getSourceRange();
6067      VDecl->setInvalidDecl();
6068
6069    // We allow integer constant expressions in all cases.
6070    } else if (T->isIntegralOrEnumerationType()) {
6071      // Check whether the expression is a constant expression.
6072      SourceLocation Loc;
6073      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6074        // In C++0x, a non-constexpr const static data member with an
6075        // in-class initializer cannot be volatile.
6076        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6077      else if (Init->isValueDependent())
6078        ; // Nothing to check.
6079      else if (Init->isIntegerConstantExpr(Context, &Loc))
6080        ; // Ok, it's an ICE!
6081      else if (Init->isEvaluatable(Context)) {
6082        // If we can constant fold the initializer through heroics, accept it,
6083        // but report this as a use of an extension for -pedantic.
6084        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6085          << Init->getSourceRange();
6086      } else {
6087        // Otherwise, this is some crazy unknown case.  Report the issue at the
6088        // location provided by the isIntegerConstantExpr failed check.
6089        Diag(Loc, diag::err_in_class_initializer_non_constant)
6090          << Init->getSourceRange();
6091        VDecl->setInvalidDecl();
6092      }
6093
6094    // We allow floating-point constants as an extension.
6095    } else if (T->isFloatingType()) { // also permits complex, which is ok
6096      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6097        << T << Init->getSourceRange();
6098      if (getLangOptions().CPlusPlus0x)
6099        Diag(VDecl->getLocation(),
6100             diag::note_in_class_initializer_float_type_constexpr)
6101          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6102
6103      if (!Init->isValueDependent() &&
6104          !Init->isConstantInitializer(Context, false)) {
6105        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6106          << Init->getSourceRange();
6107        VDecl->setInvalidDecl();
6108      }
6109
6110    // Suggest adding 'constexpr' in C++0x for literal types.
6111    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6112      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6113        << T << Init->getSourceRange()
6114        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6115      VDecl->setConstexpr(true);
6116
6117    } else {
6118      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6119        << T << Init->getSourceRange();
6120      VDecl->setInvalidDecl();
6121    }
6122  } else if (VDecl->isFileVarDecl()) {
6123    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6124        (!getLangOptions().CPlusPlus ||
6125         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6126      Diag(VDecl->getLocation(), diag::warn_extern_init);
6127    if (!VDecl->isInvalidDecl()) {
6128      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6129      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6130                                                MultiExprArg(*this, &Init, 1),
6131                                                &DclT);
6132      if (Result.isInvalid()) {
6133        VDecl->setInvalidDecl();
6134        return;
6135      }
6136
6137      Init = Result.takeAs<Expr>();
6138    }
6139
6140    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6141    // Don't check invalid declarations to avoid emitting useless diagnostics.
6142    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6143      // C99 6.7.8p4. All file scoped initializers need to be constant.
6144      CheckForConstantInitializer(Init, DclT);
6145    }
6146  }
6147  // If the type changed, it means we had an incomplete type that was
6148  // completed by the initializer. For example:
6149  //   int ary[] = { 1, 3, 5 };
6150  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6151  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6152    VDecl->setType(DclT);
6153    Init->setType(DclT);
6154  }
6155
6156  // Check any implicit conversions within the expression.
6157  CheckImplicitConversions(Init, VDecl->getLocation());
6158
6159  if (!VDecl->isInvalidDecl())
6160    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6161
6162  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6163      !VDecl->getType()->isDependentType() &&
6164      !Init->isTypeDependent() && !Init->isValueDependent() &&
6165      !Init->isConstantInitializer(Context,
6166                                   VDecl->getType()->isReferenceType())) {
6167    // FIXME: Improve this diagnostic to explain why the initializer is not
6168    // a constant expression.
6169    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6170      << VDecl << Init->getSourceRange();
6171  }
6172
6173  Init = MaybeCreateExprWithCleanups(Init);
6174  // Attach the initializer to the decl.
6175  VDecl->setInit(Init);
6176
6177  CheckCompleteVariableDeclaration(VDecl);
6178}
6179
6180/// ActOnInitializerError - Given that there was an error parsing an
6181/// initializer for the given declaration, try to return to some form
6182/// of sanity.
6183void Sema::ActOnInitializerError(Decl *D) {
6184  // Our main concern here is re-establishing invariants like "a
6185  // variable's type is either dependent or complete".
6186  if (!D || D->isInvalidDecl()) return;
6187
6188  VarDecl *VD = dyn_cast<VarDecl>(D);
6189  if (!VD) return;
6190
6191  // Auto types are meaningless if we can't make sense of the initializer.
6192  if (ParsingInitForAutoVars.count(D)) {
6193    D->setInvalidDecl();
6194    return;
6195  }
6196
6197  QualType Ty = VD->getType();
6198  if (Ty->isDependentType()) return;
6199
6200  // Require a complete type.
6201  if (RequireCompleteType(VD->getLocation(),
6202                          Context.getBaseElementType(Ty),
6203                          diag::err_typecheck_decl_incomplete_type)) {
6204    VD->setInvalidDecl();
6205    return;
6206  }
6207
6208  // Require an abstract type.
6209  if (RequireNonAbstractType(VD->getLocation(), Ty,
6210                             diag::err_abstract_type_in_decl,
6211                             AbstractVariableType)) {
6212    VD->setInvalidDecl();
6213    return;
6214  }
6215
6216  // Don't bother complaining about constructors or destructors,
6217  // though.
6218}
6219
6220void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6221                                  bool TypeMayContainAuto) {
6222  // If there is no declaration, there was an error parsing it. Just ignore it.
6223  if (RealDecl == 0)
6224    return;
6225
6226  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6227    QualType Type = Var->getType();
6228
6229    // C++0x [dcl.spec.auto]p3
6230    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6231      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6232        << Var->getDeclName() << Type;
6233      Var->setInvalidDecl();
6234      return;
6235    }
6236
6237    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6238    // have an initializer.
6239    // C++0x [class.static.data]p3: A static data member can be declared with
6240    // the constexpr specifier; if so, its declaration shall specify
6241    // a brace-or-equal-initializer.
6242    //
6243    // A static data member's definition may inherit an initializer from an
6244    // in-class declaration.
6245    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6246      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6247        << Var->getDeclName();
6248      Var->setInvalidDecl();
6249      return;
6250    }
6251
6252    switch (Var->isThisDeclarationADefinition()) {
6253    case VarDecl::Definition:
6254      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6255        break;
6256
6257      // We have an out-of-line definition of a static data member
6258      // that has an in-class initializer, so we type-check this like
6259      // a declaration.
6260      //
6261      // Fall through
6262
6263    case VarDecl::DeclarationOnly:
6264      // It's only a declaration.
6265
6266      // Block scope. C99 6.7p7: If an identifier for an object is
6267      // declared with no linkage (C99 6.2.2p6), the type for the
6268      // object shall be complete.
6269      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6270          !Var->getLinkage() && !Var->isInvalidDecl() &&
6271          RequireCompleteType(Var->getLocation(), Type,
6272                              diag::err_typecheck_decl_incomplete_type))
6273        Var->setInvalidDecl();
6274
6275      // Make sure that the type is not abstract.
6276      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6277          RequireNonAbstractType(Var->getLocation(), Type,
6278                                 diag::err_abstract_type_in_decl,
6279                                 AbstractVariableType))
6280        Var->setInvalidDecl();
6281      return;
6282
6283    case VarDecl::TentativeDefinition:
6284      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6285      // object that has file scope without an initializer, and without a
6286      // storage-class specifier or with the storage-class specifier "static",
6287      // constitutes a tentative definition. Note: A tentative definition with
6288      // external linkage is valid (C99 6.2.2p5).
6289      if (!Var->isInvalidDecl()) {
6290        if (const IncompleteArrayType *ArrayT
6291                                    = Context.getAsIncompleteArrayType(Type)) {
6292          if (RequireCompleteType(Var->getLocation(),
6293                                  ArrayT->getElementType(),
6294                                  diag::err_illegal_decl_array_incomplete_type))
6295            Var->setInvalidDecl();
6296        } else if (Var->getStorageClass() == SC_Static) {
6297          // C99 6.9.2p3: If the declaration of an identifier for an object is
6298          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6299          // declared type shall not be an incomplete type.
6300          // NOTE: code such as the following
6301          //     static struct s;
6302          //     struct s { int a; };
6303          // is accepted by gcc. Hence here we issue a warning instead of
6304          // an error and we do not invalidate the static declaration.
6305          // NOTE: to avoid multiple warnings, only check the first declaration.
6306          if (Var->getPreviousDeclaration() == 0)
6307            RequireCompleteType(Var->getLocation(), Type,
6308                                diag::ext_typecheck_decl_incomplete_type);
6309        }
6310      }
6311
6312      // Record the tentative definition; we're done.
6313      if (!Var->isInvalidDecl())
6314        TentativeDefinitions.push_back(Var);
6315      return;
6316    }
6317
6318    // Provide a specific diagnostic for uninitialized variable
6319    // definitions with incomplete array type.
6320    if (Type->isIncompleteArrayType()) {
6321      Diag(Var->getLocation(),
6322           diag::err_typecheck_incomplete_array_needs_initializer);
6323      Var->setInvalidDecl();
6324      return;
6325    }
6326
6327    // Provide a specific diagnostic for uninitialized variable
6328    // definitions with reference type.
6329    if (Type->isReferenceType()) {
6330      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6331        << Var->getDeclName()
6332        << SourceRange(Var->getLocation(), Var->getLocation());
6333      Var->setInvalidDecl();
6334      return;
6335    }
6336
6337    // Do not attempt to type-check the default initializer for a
6338    // variable with dependent type.
6339    if (Type->isDependentType())
6340      return;
6341
6342    if (Var->isInvalidDecl())
6343      return;
6344
6345    if (RequireCompleteType(Var->getLocation(),
6346                            Context.getBaseElementType(Type),
6347                            diag::err_typecheck_decl_incomplete_type)) {
6348      Var->setInvalidDecl();
6349      return;
6350    }
6351
6352    // The variable can not have an abstract class type.
6353    if (RequireNonAbstractType(Var->getLocation(), Type,
6354                               diag::err_abstract_type_in_decl,
6355                               AbstractVariableType)) {
6356      Var->setInvalidDecl();
6357      return;
6358    }
6359
6360    // Check for jumps past the implicit initializer.  C++0x
6361    // clarifies that this applies to a "variable with automatic
6362    // storage duration", not a "local variable".
6363    // C++0x [stmt.dcl]p3
6364    //   A program that jumps from a point where a variable with automatic
6365    //   storage duration is not in scope to a point where it is in scope is
6366    //   ill-formed unless the variable has scalar type, class type with a
6367    //   trivial default constructor and a trivial destructor, a cv-qualified
6368    //   version of one of these types, or an array of one of the preceding
6369    //   types and is declared without an initializer.
6370    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6371      if (const RecordType *Record
6372            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6373        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6374        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6375            (getLangOptions().CPlusPlus0x &&
6376             (!CXXRecord->hasTrivialDefaultConstructor() ||
6377              !CXXRecord->hasTrivialDestructor())))
6378          getCurFunction()->setHasBranchProtectedScope();
6379      }
6380    }
6381
6382    // C++03 [dcl.init]p9:
6383    //   If no initializer is specified for an object, and the
6384    //   object is of (possibly cv-qualified) non-POD class type (or
6385    //   array thereof), the object shall be default-initialized; if
6386    //   the object is of const-qualified type, the underlying class
6387    //   type shall have a user-declared default
6388    //   constructor. Otherwise, if no initializer is specified for
6389    //   a non- static object, the object and its subobjects, if
6390    //   any, have an indeterminate initial value); if the object
6391    //   or any of its subobjects are of const-qualified type, the
6392    //   program is ill-formed.
6393    // C++0x [dcl.init]p11:
6394    //   If no initializer is specified for an object, the object is
6395    //   default-initialized; [...].
6396    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6397    InitializationKind Kind
6398      = InitializationKind::CreateDefault(Var->getLocation());
6399
6400    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6401    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6402                                      MultiExprArg(*this, 0, 0));
6403    if (Init.isInvalid())
6404      Var->setInvalidDecl();
6405    else if (Init.get())
6406      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6407
6408    CheckCompleteVariableDeclaration(Var);
6409  }
6410}
6411
6412void Sema::ActOnCXXForRangeDecl(Decl *D) {
6413  VarDecl *VD = dyn_cast<VarDecl>(D);
6414  if (!VD) {
6415    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6416    D->setInvalidDecl();
6417    return;
6418  }
6419
6420  VD->setCXXForRangeDecl(true);
6421
6422  // for-range-declaration cannot be given a storage class specifier.
6423  int Error = -1;
6424  switch (VD->getStorageClassAsWritten()) {
6425  case SC_None:
6426    break;
6427  case SC_Extern:
6428    Error = 0;
6429    break;
6430  case SC_Static:
6431    Error = 1;
6432    break;
6433  case SC_PrivateExtern:
6434    Error = 2;
6435    break;
6436  case SC_Auto:
6437    Error = 3;
6438    break;
6439  case SC_Register:
6440    Error = 4;
6441    break;
6442  case SC_OpenCLWorkGroupLocal:
6443    llvm_unreachable("Unexpected storage class");
6444  }
6445  if (VD->isConstexpr())
6446    Error = 5;
6447  if (Error != -1) {
6448    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6449      << VD->getDeclName() << Error;
6450    D->setInvalidDecl();
6451  }
6452}
6453
6454void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6455  if (var->isInvalidDecl()) return;
6456
6457  // In ARC, don't allow jumps past the implicit initialization of a
6458  // local retaining variable.
6459  if (getLangOptions().ObjCAutoRefCount &&
6460      var->hasLocalStorage()) {
6461    switch (var->getType().getObjCLifetime()) {
6462    case Qualifiers::OCL_None:
6463    case Qualifiers::OCL_ExplicitNone:
6464    case Qualifiers::OCL_Autoreleasing:
6465      break;
6466
6467    case Qualifiers::OCL_Weak:
6468    case Qualifiers::OCL_Strong:
6469      getCurFunction()->setHasBranchProtectedScope();
6470      break;
6471    }
6472  }
6473
6474  // All the following checks are C++ only.
6475  if (!getLangOptions().CPlusPlus) return;
6476
6477  QualType baseType = Context.getBaseElementType(var->getType());
6478  if (baseType->isDependentType()) return;
6479
6480  // __block variables might require us to capture a copy-initializer.
6481  if (var->hasAttr<BlocksAttr>()) {
6482    // It's currently invalid to ever have a __block variable with an
6483    // array type; should we diagnose that here?
6484
6485    // Regardless, we don't want to ignore array nesting when
6486    // constructing this copy.
6487    QualType type = var->getType();
6488
6489    if (type->isStructureOrClassType()) {
6490      SourceLocation poi = var->getLocation();
6491      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6492      ExprResult result =
6493        PerformCopyInitialization(
6494                        InitializedEntity::InitializeBlock(poi, type, false),
6495                                  poi, Owned(varRef));
6496      if (!result.isInvalid()) {
6497        result = MaybeCreateExprWithCleanups(result);
6498        Expr *init = result.takeAs<Expr>();
6499        Context.setBlockVarCopyInits(var, init);
6500      }
6501    }
6502  }
6503
6504  // Check for global constructors.
6505  if (!var->getDeclContext()->isDependentContext() &&
6506      var->hasGlobalStorage() &&
6507      !var->isStaticLocal() &&
6508      var->getInit() &&
6509      !var->getInit()->isConstantInitializer(Context,
6510                                             baseType->isReferenceType()))
6511    Diag(var->getLocation(), diag::warn_global_constructor)
6512      << var->getInit()->getSourceRange();
6513
6514  // Require the destructor.
6515  if (const RecordType *recordType = baseType->getAs<RecordType>())
6516    FinalizeVarWithDestructor(var, recordType);
6517}
6518
6519/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6520/// any semantic actions necessary after any initializer has been attached.
6521void
6522Sema::FinalizeDeclaration(Decl *ThisDecl) {
6523  // Note that we are no longer parsing the initializer for this declaration.
6524  ParsingInitForAutoVars.erase(ThisDecl);
6525}
6526
6527Sema::DeclGroupPtrTy
6528Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6529                              Decl **Group, unsigned NumDecls) {
6530  SmallVector<Decl*, 8> Decls;
6531
6532  if (DS.isTypeSpecOwned())
6533    Decls.push_back(DS.getRepAsDecl());
6534
6535  for (unsigned i = 0; i != NumDecls; ++i)
6536    if (Decl *D = Group[i])
6537      Decls.push_back(D);
6538
6539  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6540                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6541}
6542
6543/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6544/// group, performing any necessary semantic checking.
6545Sema::DeclGroupPtrTy
6546Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6547                           bool TypeMayContainAuto) {
6548  // C++0x [dcl.spec.auto]p7:
6549  //   If the type deduced for the template parameter U is not the same in each
6550  //   deduction, the program is ill-formed.
6551  // FIXME: When initializer-list support is added, a distinction is needed
6552  // between the deduced type U and the deduced type which 'auto' stands for.
6553  //   auto a = 0, b = { 1, 2, 3 };
6554  // is legal because the deduced type U is 'int' in both cases.
6555  if (TypeMayContainAuto && NumDecls > 1) {
6556    QualType Deduced;
6557    CanQualType DeducedCanon;
6558    VarDecl *DeducedDecl = 0;
6559    for (unsigned i = 0; i != NumDecls; ++i) {
6560      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6561        AutoType *AT = D->getType()->getContainedAutoType();
6562        // Don't reissue diagnostics when instantiating a template.
6563        if (AT && D->isInvalidDecl())
6564          break;
6565        if (AT && AT->isDeduced()) {
6566          QualType U = AT->getDeducedType();
6567          CanQualType UCanon = Context.getCanonicalType(U);
6568          if (Deduced.isNull()) {
6569            Deduced = U;
6570            DeducedCanon = UCanon;
6571            DeducedDecl = D;
6572          } else if (DeducedCanon != UCanon) {
6573            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6574                 diag::err_auto_different_deductions)
6575              << Deduced << DeducedDecl->getDeclName()
6576              << U << D->getDeclName()
6577              << DeducedDecl->getInit()->getSourceRange()
6578              << D->getInit()->getSourceRange();
6579            D->setInvalidDecl();
6580            break;
6581          }
6582        }
6583      }
6584    }
6585  }
6586
6587  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6588}
6589
6590
6591/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6592/// to introduce parameters into function prototype scope.
6593Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6594  const DeclSpec &DS = D.getDeclSpec();
6595
6596  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6597  VarDecl::StorageClass StorageClass = SC_None;
6598  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6599  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6600    StorageClass = SC_Register;
6601    StorageClassAsWritten = SC_Register;
6602  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6603    Diag(DS.getStorageClassSpecLoc(),
6604         diag::err_invalid_storage_class_in_func_decl);
6605    D.getMutableDeclSpec().ClearStorageClassSpecs();
6606  }
6607
6608  if (D.getDeclSpec().isThreadSpecified())
6609    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6610  if (D.getDeclSpec().isConstexprSpecified())
6611    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6612      << 0;
6613
6614  DiagnoseFunctionSpecifiers(D);
6615
6616  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6617  QualType parmDeclType = TInfo->getType();
6618
6619  if (getLangOptions().CPlusPlus) {
6620    // Check that there are no default arguments inside the type of this
6621    // parameter.
6622    CheckExtraCXXDefaultArguments(D);
6623
6624    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6625    if (D.getCXXScopeSpec().isSet()) {
6626      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6627        << D.getCXXScopeSpec().getRange();
6628      D.getCXXScopeSpec().clear();
6629    }
6630  }
6631
6632  // Ensure we have a valid name
6633  IdentifierInfo *II = 0;
6634  if (D.hasName()) {
6635    II = D.getIdentifier();
6636    if (!II) {
6637      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6638        << GetNameForDeclarator(D).getName().getAsString();
6639      D.setInvalidType(true);
6640    }
6641  }
6642
6643  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6644  if (II) {
6645    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6646                   ForRedeclaration);
6647    LookupName(R, S);
6648    if (R.isSingleResult()) {
6649      NamedDecl *PrevDecl = R.getFoundDecl();
6650      if (PrevDecl->isTemplateParameter()) {
6651        // Maybe we will complain about the shadowed template parameter.
6652        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6653        // Just pretend that we didn't see the previous declaration.
6654        PrevDecl = 0;
6655      } else if (S->isDeclScope(PrevDecl)) {
6656        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6657        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6658
6659        // Recover by removing the name
6660        II = 0;
6661        D.SetIdentifier(0, D.getIdentifierLoc());
6662        D.setInvalidType(true);
6663      }
6664    }
6665  }
6666
6667  // Temporarily put parameter variables in the translation unit, not
6668  // the enclosing context.  This prevents them from accidentally
6669  // looking like class members in C++.
6670  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6671                                    D.getSourceRange().getBegin(),
6672                                    D.getIdentifierLoc(), II,
6673                                    parmDeclType, TInfo,
6674                                    StorageClass, StorageClassAsWritten);
6675
6676  if (D.isInvalidType())
6677    New->setInvalidDecl();
6678
6679  assert(S->isFunctionPrototypeScope());
6680  assert(S->getFunctionPrototypeDepth() >= 1);
6681  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6682                    S->getNextFunctionPrototypeIndex());
6683
6684  // Add the parameter declaration into this scope.
6685  S->AddDecl(New);
6686  if (II)
6687    IdResolver.AddDecl(New);
6688
6689  ProcessDeclAttributes(S, New, D);
6690
6691  if (D.getDeclSpec().isModulePrivateSpecified())
6692    Diag(New->getLocation(), diag::err_module_private_local)
6693      << 1 << New->getDeclName()
6694      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6695      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6696
6697  if (New->hasAttr<BlocksAttr>()) {
6698    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6699  }
6700  return New;
6701}
6702
6703/// \brief Synthesizes a variable for a parameter arising from a
6704/// typedef.
6705ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6706                                              SourceLocation Loc,
6707                                              QualType T) {
6708  /* FIXME: setting StartLoc == Loc.
6709     Would it be worth to modify callers so as to provide proper source
6710     location for the unnamed parameters, embedding the parameter's type? */
6711  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6712                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6713                                           SC_None, SC_None, 0);
6714  Param->setImplicit();
6715  return Param;
6716}
6717
6718void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6719                                    ParmVarDecl * const *ParamEnd) {
6720  // Don't diagnose unused-parameter errors in template instantiations; we
6721  // will already have done so in the template itself.
6722  if (!ActiveTemplateInstantiations.empty())
6723    return;
6724
6725  for (; Param != ParamEnd; ++Param) {
6726    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6727        !(*Param)->hasAttr<UnusedAttr>()) {
6728      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6729        << (*Param)->getDeclName();
6730    }
6731  }
6732}
6733
6734void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6735                                                  ParmVarDecl * const *ParamEnd,
6736                                                  QualType ReturnTy,
6737                                                  NamedDecl *D) {
6738  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6739    return;
6740
6741  // Warn if the return value is pass-by-value and larger than the specified
6742  // threshold.
6743  if (ReturnTy.isPODType(Context)) {
6744    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6745    if (Size > LangOpts.NumLargeByValueCopy)
6746      Diag(D->getLocation(), diag::warn_return_value_size)
6747          << D->getDeclName() << Size;
6748  }
6749
6750  // Warn if any parameter is pass-by-value and larger than the specified
6751  // threshold.
6752  for (; Param != ParamEnd; ++Param) {
6753    QualType T = (*Param)->getType();
6754    if (!T.isPODType(Context))
6755      continue;
6756    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6757    if (Size > LangOpts.NumLargeByValueCopy)
6758      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6759          << (*Param)->getDeclName() << Size;
6760  }
6761}
6762
6763ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6764                                  SourceLocation NameLoc, IdentifierInfo *Name,
6765                                  QualType T, TypeSourceInfo *TSInfo,
6766                                  VarDecl::StorageClass StorageClass,
6767                                  VarDecl::StorageClass StorageClassAsWritten) {
6768  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6769  if (getLangOptions().ObjCAutoRefCount &&
6770      T.getObjCLifetime() == Qualifiers::OCL_None &&
6771      T->isObjCLifetimeType()) {
6772
6773    Qualifiers::ObjCLifetime lifetime;
6774
6775    // Special cases for arrays:
6776    //   - if it's const, use __unsafe_unretained
6777    //   - otherwise, it's an error
6778    if (T->isArrayType()) {
6779      if (!T.isConstQualified()) {
6780        DelayedDiagnostics.add(
6781            sema::DelayedDiagnostic::makeForbiddenType(
6782            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6783      }
6784      lifetime = Qualifiers::OCL_ExplicitNone;
6785    } else {
6786      lifetime = T->getObjCARCImplicitLifetime();
6787    }
6788    T = Context.getLifetimeQualifiedType(T, lifetime);
6789  }
6790
6791  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6792                                         Context.getAdjustedParameterType(T),
6793                                         TSInfo,
6794                                         StorageClass, StorageClassAsWritten,
6795                                         0);
6796
6797  // Parameters can not be abstract class types.
6798  // For record types, this is done by the AbstractClassUsageDiagnoser once
6799  // the class has been completely parsed.
6800  if (!CurContext->isRecord() &&
6801      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6802                             AbstractParamType))
6803    New->setInvalidDecl();
6804
6805  // Parameter declarators cannot be interface types. All ObjC objects are
6806  // passed by reference.
6807  if (T->isObjCObjectType()) {
6808    Diag(NameLoc,
6809         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6810      << FixItHint::CreateInsertion(NameLoc, "*");
6811    T = Context.getObjCObjectPointerType(T);
6812    New->setType(T);
6813  }
6814
6815  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6816  // duration shall not be qualified by an address-space qualifier."
6817  // Since all parameters have automatic store duration, they can not have
6818  // an address space.
6819  if (T.getAddressSpace() != 0) {
6820    Diag(NameLoc, diag::err_arg_with_address_space);
6821    New->setInvalidDecl();
6822  }
6823
6824  return New;
6825}
6826
6827void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6828                                           SourceLocation LocAfterDecls) {
6829  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6830
6831  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6832  // for a K&R function.
6833  if (!FTI.hasPrototype) {
6834    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6835      --i;
6836      if (FTI.ArgInfo[i].Param == 0) {
6837        llvm::SmallString<256> Code;
6838        llvm::raw_svector_ostream(Code) << "  int "
6839                                        << FTI.ArgInfo[i].Ident->getName()
6840                                        << ";\n";
6841        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6842          << FTI.ArgInfo[i].Ident
6843          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6844
6845        // Implicitly declare the argument as type 'int' for lack of a better
6846        // type.
6847        AttributeFactory attrs;
6848        DeclSpec DS(attrs);
6849        const char* PrevSpec; // unused
6850        unsigned DiagID; // unused
6851        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6852                           PrevSpec, DiagID);
6853        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6854        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6855        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6856      }
6857    }
6858  }
6859}
6860
6861Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6862                                         Declarator &D) {
6863  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6864  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6865  Scope *ParentScope = FnBodyScope->getParent();
6866
6867  D.setFunctionDefinition(true);
6868  Decl *DP = HandleDeclarator(ParentScope, D,
6869                              MultiTemplateParamsArg(*this));
6870  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6871}
6872
6873static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6874  // Don't warn about invalid declarations.
6875  if (FD->isInvalidDecl())
6876    return false;
6877
6878  // Or declarations that aren't global.
6879  if (!FD->isGlobal())
6880    return false;
6881
6882  // Don't warn about C++ member functions.
6883  if (isa<CXXMethodDecl>(FD))
6884    return false;
6885
6886  // Don't warn about 'main'.
6887  if (FD->isMain())
6888    return false;
6889
6890  // Don't warn about inline functions.
6891  if (FD->isInlined())
6892    return false;
6893
6894  // Don't warn about function templates.
6895  if (FD->getDescribedFunctionTemplate())
6896    return false;
6897
6898  // Don't warn about function template specializations.
6899  if (FD->isFunctionTemplateSpecialization())
6900    return false;
6901
6902  bool MissingPrototype = true;
6903  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6904       Prev; Prev = Prev->getPreviousDeclaration()) {
6905    // Ignore any declarations that occur in function or method
6906    // scope, because they aren't visible from the header.
6907    if (Prev->getDeclContext()->isFunctionOrMethod())
6908      continue;
6909
6910    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6911    break;
6912  }
6913
6914  return MissingPrototype;
6915}
6916
6917void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6918  // Don't complain if we're in GNU89 mode and the previous definition
6919  // was an extern inline function.
6920  const FunctionDecl *Definition;
6921  if (FD->isDefined(Definition) &&
6922      !canRedefineFunction(Definition, getLangOptions())) {
6923    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6924        Definition->getStorageClass() == SC_Extern)
6925      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6926        << FD->getDeclName() << getLangOptions().CPlusPlus;
6927    else
6928      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6929    Diag(Definition->getLocation(), diag::note_previous_definition);
6930  }
6931}
6932
6933Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6934  // Clear the last template instantiation error context.
6935  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6936
6937  if (!D)
6938    return D;
6939  FunctionDecl *FD = 0;
6940
6941  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6942    FD = FunTmpl->getTemplatedDecl();
6943  else
6944    FD = cast<FunctionDecl>(D);
6945
6946  // Enter a new function scope
6947  PushFunctionScope();
6948
6949  // See if this is a redefinition.
6950  if (!FD->isLateTemplateParsed())
6951    CheckForFunctionRedefinition(FD);
6952
6953  // Builtin functions cannot be defined.
6954  if (unsigned BuiltinID = FD->getBuiltinID()) {
6955    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6956      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6957      FD->setInvalidDecl();
6958    }
6959  }
6960
6961  // The return type of a function definition must be complete
6962  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6963  QualType ResultType = FD->getResultType();
6964  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6965      !FD->isInvalidDecl() &&
6966      RequireCompleteType(FD->getLocation(), ResultType,
6967                          diag::err_func_def_incomplete_result))
6968    FD->setInvalidDecl();
6969
6970  // GNU warning -Wmissing-prototypes:
6971  //   Warn if a global function is defined without a previous
6972  //   prototype declaration. This warning is issued even if the
6973  //   definition itself provides a prototype. The aim is to detect
6974  //   global functions that fail to be declared in header files.
6975  if (ShouldWarnAboutMissingPrototype(FD))
6976    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6977
6978  if (FnBodyScope)
6979    PushDeclContext(FnBodyScope, FD);
6980
6981  // Check the validity of our function parameters
6982  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6983                           /*CheckParameterNames=*/true);
6984
6985  // Introduce our parameters into the function scope
6986  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6987    ParmVarDecl *Param = FD->getParamDecl(p);
6988    Param->setOwningFunction(FD);
6989
6990    // If this has an identifier, add it to the scope stack.
6991    if (Param->getIdentifier() && FnBodyScope) {
6992      CheckShadow(FnBodyScope, Param);
6993
6994      PushOnScopeChains(Param, FnBodyScope);
6995    }
6996  }
6997
6998  // Checking attributes of current function definition
6999  // dllimport attribute.
7000  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7001  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7002    // dllimport attribute cannot be directly applied to definition.
7003    // Microsoft accepts dllimport for functions defined within class scope.
7004    if (!DA->isInherited() &&
7005        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7006      Diag(FD->getLocation(),
7007           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7008        << "dllimport";
7009      FD->setInvalidDecl();
7010      return FD;
7011    }
7012
7013    // Visual C++ appears to not think this is an issue, so only issue
7014    // a warning when Microsoft extensions are disabled.
7015    if (!LangOpts.MicrosoftExt) {
7016      // If a symbol previously declared dllimport is later defined, the
7017      // attribute is ignored in subsequent references, and a warning is
7018      // emitted.
7019      Diag(FD->getLocation(),
7020           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7021        << FD->getName() << "dllimport";
7022    }
7023  }
7024  return FD;
7025}
7026
7027/// \brief Given the set of return statements within a function body,
7028/// compute the variables that are subject to the named return value
7029/// optimization.
7030///
7031/// Each of the variables that is subject to the named return value
7032/// optimization will be marked as NRVO variables in the AST, and any
7033/// return statement that has a marked NRVO variable as its NRVO candidate can
7034/// use the named return value optimization.
7035///
7036/// This function applies a very simplistic algorithm for NRVO: if every return
7037/// statement in the function has the same NRVO candidate, that candidate is
7038/// the NRVO variable.
7039///
7040/// FIXME: Employ a smarter algorithm that accounts for multiple return
7041/// statements and the lifetimes of the NRVO candidates. We should be able to
7042/// find a maximal set of NRVO variables.
7043void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7044  ReturnStmt **Returns = Scope->Returns.data();
7045
7046  const VarDecl *NRVOCandidate = 0;
7047  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7048    if (!Returns[I]->getNRVOCandidate())
7049      return;
7050
7051    if (!NRVOCandidate)
7052      NRVOCandidate = Returns[I]->getNRVOCandidate();
7053    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7054      return;
7055  }
7056
7057  if (NRVOCandidate)
7058    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7059}
7060
7061Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7062  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7063}
7064
7065Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7066                                    bool IsInstantiation) {
7067  FunctionDecl *FD = 0;
7068  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7069  if (FunTmpl)
7070    FD = FunTmpl->getTemplatedDecl();
7071  else
7072    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7073
7074  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7075  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7076
7077  if (FD) {
7078    FD->setBody(Body);
7079    if (FD->isMain()) {
7080      // C and C++ allow for main to automagically return 0.
7081      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7082      FD->setHasImplicitReturnZero(true);
7083      WP.disableCheckFallThrough();
7084    } else if (FD->hasAttr<NakedAttr>()) {
7085      // If the function is marked 'naked', don't complain about missing return
7086      // statements.
7087      WP.disableCheckFallThrough();
7088    }
7089
7090    // MSVC permits the use of pure specifier (=0) on function definition,
7091    // defined at class scope, warn about this non standard construct.
7092    if (getLangOptions().MicrosoftExt && FD->isPure())
7093      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7094
7095    if (!FD->isInvalidDecl()) {
7096      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7097      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7098                                             FD->getResultType(), FD);
7099
7100      // If this is a constructor, we need a vtable.
7101      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7102        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7103
7104      computeNRVO(Body, getCurFunction());
7105    }
7106
7107    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7108  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7109    assert(MD == getCurMethodDecl() && "Method parsing confused");
7110    MD->setBody(Body);
7111    if (Body)
7112      MD->setEndLoc(Body->getLocEnd());
7113    if (!MD->isInvalidDecl()) {
7114      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7115      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7116                                             MD->getResultType(), MD);
7117
7118      if (Body)
7119        computeNRVO(Body, getCurFunction());
7120    }
7121    if (ObjCShouldCallSuperDealloc) {
7122      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7123      ObjCShouldCallSuperDealloc = false;
7124    }
7125    if (ObjCShouldCallSuperFinalize) {
7126      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7127      ObjCShouldCallSuperFinalize = false;
7128    }
7129  } else {
7130    return 0;
7131  }
7132
7133  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7134         "ObjC methods, which should have been handled in the block above.");
7135  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7136         "ObjC methods, which should have been handled in the block above.");
7137
7138  // Verify and clean out per-function state.
7139  if (Body) {
7140    // C++ constructors that have function-try-blocks can't have return
7141    // statements in the handlers of that block. (C++ [except.handle]p14)
7142    // Verify this.
7143    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7144      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7145
7146    // Verify that gotos and switch cases don't jump into scopes illegally.
7147    if (getCurFunction()->NeedsScopeChecking() &&
7148        !dcl->isInvalidDecl() &&
7149        !hasAnyUnrecoverableErrorsInThisFunction())
7150      DiagnoseInvalidJumps(Body);
7151
7152    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7153      if (!Destructor->getParent()->isDependentType())
7154        CheckDestructor(Destructor);
7155
7156      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7157                                             Destructor->getParent());
7158    }
7159
7160    // If any errors have occurred, clear out any temporaries that may have
7161    // been leftover. This ensures that these temporaries won't be picked up for
7162    // deletion in some later function.
7163    if (PP.getDiagnostics().hasErrorOccurred() ||
7164        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7165      ExprTemporaries.clear();
7166      ExprNeedsCleanups = false;
7167    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7168      // Since the body is valid, issue any analysis-based warnings that are
7169      // enabled.
7170      ActivePolicy = &WP;
7171    }
7172
7173    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7174        !CheckConstexprFunctionBody(FD, Body))
7175      FD->setInvalidDecl();
7176
7177    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7178    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7179  }
7180
7181  if (!IsInstantiation)
7182    PopDeclContext();
7183
7184  PopFunctionOrBlockScope(ActivePolicy, dcl);
7185
7186  // If any errors have occurred, clear out any temporaries that may have
7187  // been leftover. This ensures that these temporaries won't be picked up for
7188  // deletion in some later function.
7189  if (getDiagnostics().hasErrorOccurred()) {
7190    ExprTemporaries.clear();
7191    ExprNeedsCleanups = false;
7192  }
7193
7194  return dcl;
7195}
7196
7197
7198/// When we finish delayed parsing of an attribute, we must attach it to the
7199/// relevant Decl.
7200void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7201                                       ParsedAttributes &Attrs) {
7202  ProcessDeclAttributeList(S, D, Attrs.getList());
7203}
7204
7205
7206/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7207/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7208NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7209                                          IdentifierInfo &II, Scope *S) {
7210  // Before we produce a declaration for an implicitly defined
7211  // function, see whether there was a locally-scoped declaration of
7212  // this name as a function or variable. If so, use that
7213  // (non-visible) declaration, and complain about it.
7214  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7215    = findLocallyScopedExternalDecl(&II);
7216  if (Pos != LocallyScopedExternalDecls.end()) {
7217    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7218    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7219    return Pos->second;
7220  }
7221
7222  // Extension in C99.  Legal in C90, but warn about it.
7223  if (II.getName().startswith("__builtin_"))
7224    Diag(Loc, diag::warn_builtin_unknown) << &II;
7225  else if (getLangOptions().C99)
7226    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7227  else
7228    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7229
7230  // Set a Declarator for the implicit definition: int foo();
7231  const char *Dummy;
7232  AttributeFactory attrFactory;
7233  DeclSpec DS(attrFactory);
7234  unsigned DiagID;
7235  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7236  (void)Error; // Silence warning.
7237  assert(!Error && "Error setting up implicit decl!");
7238  Declarator D(DS, Declarator::BlockContext);
7239  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7240                                             0, 0, true, SourceLocation(),
7241                                             SourceLocation(), SourceLocation(),
7242                                             SourceLocation(),
7243                                             EST_None, SourceLocation(),
7244                                             0, 0, 0, 0, Loc, Loc, D),
7245                DS.getAttributes(),
7246                SourceLocation());
7247  D.SetIdentifier(&II, Loc);
7248
7249  // Insert this function into translation-unit scope.
7250
7251  DeclContext *PrevDC = CurContext;
7252  CurContext = Context.getTranslationUnitDecl();
7253
7254  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7255  FD->setImplicit();
7256
7257  CurContext = PrevDC;
7258
7259  AddKnownFunctionAttributes(FD);
7260
7261  return FD;
7262}
7263
7264/// \brief Adds any function attributes that we know a priori based on
7265/// the declaration of this function.
7266///
7267/// These attributes can apply both to implicitly-declared builtins
7268/// (like __builtin___printf_chk) or to library-declared functions
7269/// like NSLog or printf.
7270///
7271/// We need to check for duplicate attributes both here and where user-written
7272/// attributes are applied to declarations.
7273void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7274  if (FD->isInvalidDecl())
7275    return;
7276
7277  // If this is a built-in function, map its builtin attributes to
7278  // actual attributes.
7279  if (unsigned BuiltinID = FD->getBuiltinID()) {
7280    // Handle printf-formatting attributes.
7281    unsigned FormatIdx;
7282    bool HasVAListArg;
7283    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7284      if (!FD->getAttr<FormatAttr>())
7285        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7286                                                "printf", FormatIdx+1,
7287                                               HasVAListArg ? 0 : FormatIdx+2));
7288    }
7289    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7290                                             HasVAListArg)) {
7291     if (!FD->getAttr<FormatAttr>())
7292       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7293                                              "scanf", FormatIdx+1,
7294                                              HasVAListArg ? 0 : FormatIdx+2));
7295    }
7296
7297    // Mark const if we don't care about errno and that is the only
7298    // thing preventing the function from being const. This allows
7299    // IRgen to use LLVM intrinsics for such functions.
7300    if (!getLangOptions().MathErrno &&
7301        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7302      if (!FD->getAttr<ConstAttr>())
7303        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7304    }
7305
7306    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7307        !FD->getAttr<ReturnsTwiceAttr>())
7308      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7309    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7310      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7311    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7312      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7313  }
7314
7315  IdentifierInfo *Name = FD->getIdentifier();
7316  if (!Name)
7317    return;
7318  if ((!getLangOptions().CPlusPlus &&
7319       FD->getDeclContext()->isTranslationUnit()) ||
7320      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7321       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7322       LinkageSpecDecl::lang_c)) {
7323    // Okay: this could be a libc/libm/Objective-C function we know
7324    // about.
7325  } else
7326    return;
7327
7328  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7329    // FIXME: NSLog and NSLogv should be target specific
7330    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7331      // FIXME: We known better than our headers.
7332      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7333    } else
7334      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7335                                             "printf", 1,
7336                                             Name->isStr("NSLogv") ? 0 : 2));
7337  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7338    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7339    // target-specific builtins, perhaps?
7340    if (!FD->getAttr<FormatAttr>())
7341      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7342                                             "printf", 2,
7343                                             Name->isStr("vasprintf") ? 0 : 3));
7344  }
7345}
7346
7347TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7348                                    TypeSourceInfo *TInfo) {
7349  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7350  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7351
7352  if (!TInfo) {
7353    assert(D.isInvalidType() && "no declarator info for valid type");
7354    TInfo = Context.getTrivialTypeSourceInfo(T);
7355  }
7356
7357  // Scope manipulation handled by caller.
7358  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7359                                           D.getSourceRange().getBegin(),
7360                                           D.getIdentifierLoc(),
7361                                           D.getIdentifier(),
7362                                           TInfo);
7363
7364  // Bail out immediately if we have an invalid declaration.
7365  if (D.isInvalidType()) {
7366    NewTD->setInvalidDecl();
7367    return NewTD;
7368  }
7369
7370  if (D.getDeclSpec().isModulePrivateSpecified()) {
7371    if (CurContext->isFunctionOrMethod())
7372      Diag(NewTD->getLocation(), diag::err_module_private_local)
7373        << 2 << NewTD->getDeclName()
7374        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7375        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7376    else
7377      NewTD->setModulePrivate();
7378  }
7379
7380  // C++ [dcl.typedef]p8:
7381  //   If the typedef declaration defines an unnamed class (or
7382  //   enum), the first typedef-name declared by the declaration
7383  //   to be that class type (or enum type) is used to denote the
7384  //   class type (or enum type) for linkage purposes only.
7385  // We need to check whether the type was declared in the declaration.
7386  switch (D.getDeclSpec().getTypeSpecType()) {
7387  case TST_enum:
7388  case TST_struct:
7389  case TST_union:
7390  case TST_class: {
7391    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7392
7393    // Do nothing if the tag is not anonymous or already has an
7394    // associated typedef (from an earlier typedef in this decl group).
7395    if (tagFromDeclSpec->getIdentifier()) break;
7396    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7397
7398    // A well-formed anonymous tag must always be a TUK_Definition.
7399    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7400
7401    // The type must match the tag exactly;  no qualifiers allowed.
7402    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7403      break;
7404
7405    // Otherwise, set this is the anon-decl typedef for the tag.
7406    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7407    break;
7408  }
7409
7410  default:
7411    break;
7412  }
7413
7414  return NewTD;
7415}
7416
7417
7418/// \brief Determine whether a tag with a given kind is acceptable
7419/// as a redeclaration of the given tag declaration.
7420///
7421/// \returns true if the new tag kind is acceptable, false otherwise.
7422bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7423                                        TagTypeKind NewTag, bool isDefinition,
7424                                        SourceLocation NewTagLoc,
7425                                        const IdentifierInfo &Name) {
7426  // C++ [dcl.type.elab]p3:
7427  //   The class-key or enum keyword present in the
7428  //   elaborated-type-specifier shall agree in kind with the
7429  //   declaration to which the name in the elaborated-type-specifier
7430  //   refers. This rule also applies to the form of
7431  //   elaborated-type-specifier that declares a class-name or
7432  //   friend class since it can be construed as referring to the
7433  //   definition of the class. Thus, in any
7434  //   elaborated-type-specifier, the enum keyword shall be used to
7435  //   refer to an enumeration (7.2), the union class-key shall be
7436  //   used to refer to a union (clause 9), and either the class or
7437  //   struct class-key shall be used to refer to a class (clause 9)
7438  //   declared using the class or struct class-key.
7439  TagTypeKind OldTag = Previous->getTagKind();
7440  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7441    if (OldTag == NewTag)
7442      return true;
7443
7444  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7445      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7446    // Warn about the struct/class tag mismatch.
7447    bool isTemplate = false;
7448    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7449      isTemplate = Record->getDescribedClassTemplate();
7450
7451    if (!ActiveTemplateInstantiations.empty()) {
7452      // In a template instantiation, do not offer fix-its for tag mismatches
7453      // since they usually mess up the template instead of fixing the problem.
7454      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7455        << (NewTag == TTK_Class) << isTemplate << &Name;
7456      return true;
7457    }
7458
7459    if (isDefinition) {
7460      // On definitions, check previous tags and issue a fix-it for each
7461      // one that doesn't match the current tag.
7462      if (Previous->getDefinition()) {
7463        // Don't suggest fix-its for redefinitions.
7464        return true;
7465      }
7466
7467      bool previousMismatch = false;
7468      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7469           E(Previous->redecls_end()); I != E; ++I) {
7470        if (I->getTagKind() != NewTag) {
7471          if (!previousMismatch) {
7472            previousMismatch = true;
7473            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7474              << (NewTag == TTK_Class) << isTemplate << &Name;
7475          }
7476          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7477            << (NewTag == TTK_Class)
7478            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7479                                            NewTag == TTK_Class?
7480                                            "class" : "struct");
7481        }
7482      }
7483      return true;
7484    }
7485
7486    // Check for a previous definition.  If current tag and definition
7487    // are same type, do nothing.  If no definition, but disagree with
7488    // with previous tag type, give a warning, but no fix-it.
7489    const TagDecl *Redecl = Previous->getDefinition() ?
7490                            Previous->getDefinition() : Previous;
7491    if (Redecl->getTagKind() == NewTag) {
7492      return true;
7493    }
7494
7495    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7496      << (NewTag == TTK_Class)
7497      << isTemplate << &Name;
7498    Diag(Redecl->getLocation(), diag::note_previous_use);
7499
7500    // If there is a previous defintion, suggest a fix-it.
7501    if (Previous->getDefinition()) {
7502        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7503          << (Redecl->getTagKind() == TTK_Class)
7504          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7505                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7506    }
7507
7508    return true;
7509  }
7510  return false;
7511}
7512
7513/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7514/// former case, Name will be non-null.  In the later case, Name will be null.
7515/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7516/// reference/declaration/definition of a tag.
7517Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7518                     SourceLocation KWLoc, CXXScopeSpec &SS,
7519                     IdentifierInfo *Name, SourceLocation NameLoc,
7520                     AttributeList *Attr, AccessSpecifier AS,
7521                     SourceLocation ModulePrivateLoc,
7522                     MultiTemplateParamsArg TemplateParameterLists,
7523                     bool &OwnedDecl, bool &IsDependent,
7524                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7525                     TypeResult UnderlyingType) {
7526  // If this is not a definition, it must have a name.
7527  assert((Name != 0 || TUK == TUK_Definition) &&
7528         "Nameless record must be a definition!");
7529  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7530
7531  OwnedDecl = false;
7532  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7533
7534  // FIXME: Check explicit specializations more carefully.
7535  bool isExplicitSpecialization = false;
7536  bool Invalid = false;
7537
7538  // We only need to do this matching if we have template parameters
7539  // or a scope specifier, which also conveniently avoids this work
7540  // for non-C++ cases.
7541  if (TemplateParameterLists.size() > 0 ||
7542      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7543    if (TemplateParameterList *TemplateParams
7544          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7545                                                TemplateParameterLists.get(),
7546                                                TemplateParameterLists.size(),
7547                                                    TUK == TUK_Friend,
7548                                                    isExplicitSpecialization,
7549                                                    Invalid)) {
7550      if (TemplateParams->size() > 0) {
7551        // This is a declaration or definition of a class template (which may
7552        // be a member of another template).
7553
7554        if (Invalid)
7555          return 0;
7556
7557        OwnedDecl = false;
7558        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7559                                               SS, Name, NameLoc, Attr,
7560                                               TemplateParams, AS,
7561                                               ModulePrivateLoc,
7562                                           TemplateParameterLists.size() - 1,
7563                 (TemplateParameterList**) TemplateParameterLists.release());
7564        return Result.get();
7565      } else {
7566        // The "template<>" header is extraneous.
7567        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7568          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7569        isExplicitSpecialization = true;
7570      }
7571    }
7572  }
7573
7574  // Figure out the underlying type if this a enum declaration. We need to do
7575  // this early, because it's needed to detect if this is an incompatible
7576  // redeclaration.
7577  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7578
7579  if (Kind == TTK_Enum) {
7580    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7581      // No underlying type explicitly specified, or we failed to parse the
7582      // type, default to int.
7583      EnumUnderlying = Context.IntTy.getTypePtr();
7584    else if (UnderlyingType.get()) {
7585      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7586      // integral type; any cv-qualification is ignored.
7587      TypeSourceInfo *TI = 0;
7588      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7589      EnumUnderlying = TI;
7590
7591      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7592
7593      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7594        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7595          << T;
7596        // Recover by falling back to int.
7597        EnumUnderlying = Context.IntTy.getTypePtr();
7598      }
7599
7600      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7601                                          UPPC_FixedUnderlyingType))
7602        EnumUnderlying = Context.IntTy.getTypePtr();
7603
7604    } else if (getLangOptions().MicrosoftExt)
7605      // Microsoft enums are always of int type.
7606      EnumUnderlying = Context.IntTy.getTypePtr();
7607  }
7608
7609  DeclContext *SearchDC = CurContext;
7610  DeclContext *DC = CurContext;
7611  bool isStdBadAlloc = false;
7612
7613  RedeclarationKind Redecl = ForRedeclaration;
7614  if (TUK == TUK_Friend || TUK == TUK_Reference)
7615    Redecl = NotForRedeclaration;
7616
7617  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7618
7619  if (Name && SS.isNotEmpty()) {
7620    // We have a nested-name tag ('struct foo::bar').
7621
7622    // Check for invalid 'foo::'.
7623    if (SS.isInvalid()) {
7624      Name = 0;
7625      goto CreateNewDecl;
7626    }
7627
7628    // If this is a friend or a reference to a class in a dependent
7629    // context, don't try to make a decl for it.
7630    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7631      DC = computeDeclContext(SS, false);
7632      if (!DC) {
7633        IsDependent = true;
7634        return 0;
7635      }
7636    } else {
7637      DC = computeDeclContext(SS, true);
7638      if (!DC) {
7639        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7640          << SS.getRange();
7641        return 0;
7642      }
7643    }
7644
7645    if (RequireCompleteDeclContext(SS, DC))
7646      return 0;
7647
7648    SearchDC = DC;
7649    // Look-up name inside 'foo::'.
7650    LookupQualifiedName(Previous, DC);
7651
7652    if (Previous.isAmbiguous())
7653      return 0;
7654
7655    if (Previous.empty()) {
7656      // Name lookup did not find anything. However, if the
7657      // nested-name-specifier refers to the current instantiation,
7658      // and that current instantiation has any dependent base
7659      // classes, we might find something at instantiation time: treat
7660      // this as a dependent elaborated-type-specifier.
7661      // But this only makes any sense for reference-like lookups.
7662      if (Previous.wasNotFoundInCurrentInstantiation() &&
7663          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7664        IsDependent = true;
7665        return 0;
7666      }
7667
7668      // A tag 'foo::bar' must already exist.
7669      Diag(NameLoc, diag::err_not_tag_in_scope)
7670        << Kind << Name << DC << SS.getRange();
7671      Name = 0;
7672      Invalid = true;
7673      goto CreateNewDecl;
7674    }
7675  } else if (Name) {
7676    // If this is a named struct, check to see if there was a previous forward
7677    // declaration or definition.
7678    // FIXME: We're looking into outer scopes here, even when we
7679    // shouldn't be. Doing so can result in ambiguities that we
7680    // shouldn't be diagnosing.
7681    LookupName(Previous, S);
7682
7683    if (Previous.isAmbiguous() &&
7684        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7685      LookupResult::Filter F = Previous.makeFilter();
7686      while (F.hasNext()) {
7687        NamedDecl *ND = F.next();
7688        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7689          F.erase();
7690      }
7691      F.done();
7692    }
7693
7694    // Note:  there used to be some attempt at recovery here.
7695    if (Previous.isAmbiguous())
7696      return 0;
7697
7698    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7699      // FIXME: This makes sure that we ignore the contexts associated
7700      // with C structs, unions, and enums when looking for a matching
7701      // tag declaration or definition. See the similar lookup tweak
7702      // in Sema::LookupName; is there a better way to deal with this?
7703      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7704        SearchDC = SearchDC->getParent();
7705    }
7706  } else if (S->isFunctionPrototypeScope()) {
7707    // If this is an enum declaration in function prototype scope, set its
7708    // initial context to the translation unit.
7709    SearchDC = Context.getTranslationUnitDecl();
7710  }
7711
7712  if (Previous.isSingleResult() &&
7713      Previous.getFoundDecl()->isTemplateParameter()) {
7714    // Maybe we will complain about the shadowed template parameter.
7715    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7716    // Just pretend that we didn't see the previous declaration.
7717    Previous.clear();
7718  }
7719
7720  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7721      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7722    // This is a declaration of or a reference to "std::bad_alloc".
7723    isStdBadAlloc = true;
7724
7725    if (Previous.empty() && StdBadAlloc) {
7726      // std::bad_alloc has been implicitly declared (but made invisible to
7727      // name lookup). Fill in this implicit declaration as the previous
7728      // declaration, so that the declarations get chained appropriately.
7729      Previous.addDecl(getStdBadAlloc());
7730    }
7731  }
7732
7733  // If we didn't find a previous declaration, and this is a reference
7734  // (or friend reference), move to the correct scope.  In C++, we
7735  // also need to do a redeclaration lookup there, just in case
7736  // there's a shadow friend decl.
7737  if (Name && Previous.empty() &&
7738      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7739    if (Invalid) goto CreateNewDecl;
7740    assert(SS.isEmpty());
7741
7742    if (TUK == TUK_Reference) {
7743      // C++ [basic.scope.pdecl]p5:
7744      //   -- for an elaborated-type-specifier of the form
7745      //
7746      //          class-key identifier
7747      //
7748      //      if the elaborated-type-specifier is used in the
7749      //      decl-specifier-seq or parameter-declaration-clause of a
7750      //      function defined in namespace scope, the identifier is
7751      //      declared as a class-name in the namespace that contains
7752      //      the declaration; otherwise, except as a friend
7753      //      declaration, the identifier is declared in the smallest
7754      //      non-class, non-function-prototype scope that contains the
7755      //      declaration.
7756      //
7757      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7758      // C structs and unions.
7759      //
7760      // It is an error in C++ to declare (rather than define) an enum
7761      // type, including via an elaborated type specifier.  We'll
7762      // diagnose that later; for now, declare the enum in the same
7763      // scope as we would have picked for any other tag type.
7764      //
7765      // GNU C also supports this behavior as part of its incomplete
7766      // enum types extension, while GNU C++ does not.
7767      //
7768      // Find the context where we'll be declaring the tag.
7769      // FIXME: We would like to maintain the current DeclContext as the
7770      // lexical context,
7771      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7772        SearchDC = SearchDC->getParent();
7773
7774      // Find the scope where we'll be declaring the tag.
7775      while (S->isClassScope() ||
7776             (getLangOptions().CPlusPlus &&
7777              S->isFunctionPrototypeScope()) ||
7778             ((S->getFlags() & Scope::DeclScope) == 0) ||
7779             (S->getEntity() &&
7780              ((DeclContext *)S->getEntity())->isTransparentContext()))
7781        S = S->getParent();
7782    } else {
7783      assert(TUK == TUK_Friend);
7784      // C++ [namespace.memdef]p3:
7785      //   If a friend declaration in a non-local class first declares a
7786      //   class or function, the friend class or function is a member of
7787      //   the innermost enclosing namespace.
7788      SearchDC = SearchDC->getEnclosingNamespaceContext();
7789    }
7790
7791    // In C++, we need to do a redeclaration lookup to properly
7792    // diagnose some problems.
7793    if (getLangOptions().CPlusPlus) {
7794      Previous.setRedeclarationKind(ForRedeclaration);
7795      LookupQualifiedName(Previous, SearchDC);
7796    }
7797  }
7798
7799  if (!Previous.empty()) {
7800    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7801
7802    // It's okay to have a tag decl in the same scope as a typedef
7803    // which hides a tag decl in the same scope.  Finding this
7804    // insanity with a redeclaration lookup can only actually happen
7805    // in C++.
7806    //
7807    // This is also okay for elaborated-type-specifiers, which is
7808    // technically forbidden by the current standard but which is
7809    // okay according to the likely resolution of an open issue;
7810    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7811    if (getLangOptions().CPlusPlus) {
7812      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7813        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7814          TagDecl *Tag = TT->getDecl();
7815          if (Tag->getDeclName() == Name &&
7816              Tag->getDeclContext()->getRedeclContext()
7817                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7818            PrevDecl = Tag;
7819            Previous.clear();
7820            Previous.addDecl(Tag);
7821            Previous.resolveKind();
7822          }
7823        }
7824      }
7825    }
7826
7827    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7828      // If this is a use of a previous tag, or if the tag is already declared
7829      // in the same scope (so that the definition/declaration completes or
7830      // rementions the tag), reuse the decl.
7831      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7832          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7833        // Make sure that this wasn't declared as an enum and now used as a
7834        // struct or something similar.
7835        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7836                                          TUK == TUK_Definition, KWLoc,
7837                                          *Name)) {
7838          bool SafeToContinue
7839            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7840               Kind != TTK_Enum);
7841          if (SafeToContinue)
7842            Diag(KWLoc, diag::err_use_with_wrong_tag)
7843              << Name
7844              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7845                                              PrevTagDecl->getKindName());
7846          else
7847            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7848          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7849
7850          if (SafeToContinue)
7851            Kind = PrevTagDecl->getTagKind();
7852          else {
7853            // Recover by making this an anonymous redefinition.
7854            Name = 0;
7855            Previous.clear();
7856            Invalid = true;
7857          }
7858        }
7859
7860        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7861          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7862
7863          // All conflicts with previous declarations are recovered by
7864          // returning the previous declaration.
7865          if (ScopedEnum != PrevEnum->isScoped()) {
7866            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7867              << PrevEnum->isScoped();
7868            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7869            return PrevTagDecl;
7870          }
7871          else if (EnumUnderlying && PrevEnum->isFixed()) {
7872            QualType T;
7873            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7874                T = TI->getType();
7875            else
7876                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7877
7878            if (!Context.hasSameUnqualifiedType(T,
7879                                                PrevEnum->getIntegerType())) {
7880              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7881                   diag::err_enum_redeclare_type_mismatch)
7882                << T
7883                << PrevEnum->getIntegerType();
7884              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7885              return PrevTagDecl;
7886            }
7887          }
7888          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7889            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7890              << PrevEnum->isFixed();
7891            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7892            return PrevTagDecl;
7893          }
7894        }
7895
7896        if (!Invalid) {
7897          // If this is a use, just return the declaration we found.
7898
7899          // FIXME: In the future, return a variant or some other clue
7900          // for the consumer of this Decl to know it doesn't own it.
7901          // For our current ASTs this shouldn't be a problem, but will
7902          // need to be changed with DeclGroups.
7903          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7904               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7905            return PrevTagDecl;
7906
7907          // Diagnose attempts to redefine a tag.
7908          if (TUK == TUK_Definition) {
7909            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7910              // If we're defining a specialization and the previous definition
7911              // is from an implicit instantiation, don't emit an error
7912              // here; we'll catch this in the general case below.
7913              if (!isExplicitSpecialization ||
7914                  !isa<CXXRecordDecl>(Def) ||
7915                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7916                                               == TSK_ExplicitSpecialization) {
7917                Diag(NameLoc, diag::err_redefinition) << Name;
7918                Diag(Def->getLocation(), diag::note_previous_definition);
7919                // If this is a redefinition, recover by making this
7920                // struct be anonymous, which will make any later
7921                // references get the previous definition.
7922                Name = 0;
7923                Previous.clear();
7924                Invalid = true;
7925              }
7926            } else {
7927              // If the type is currently being defined, complain
7928              // about a nested redefinition.
7929              const TagType *Tag
7930                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7931              if (Tag->isBeingDefined()) {
7932                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7933                Diag(PrevTagDecl->getLocation(),
7934                     diag::note_previous_definition);
7935                Name = 0;
7936                Previous.clear();
7937                Invalid = true;
7938              }
7939            }
7940
7941            // Okay, this is definition of a previously declared or referenced
7942            // tag PrevDecl. We're going to create a new Decl for it.
7943          }
7944        }
7945        // If we get here we have (another) forward declaration or we
7946        // have a definition.  Just create a new decl.
7947
7948      } else {
7949        // If we get here, this is a definition of a new tag type in a nested
7950        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7951        // new decl/type.  We set PrevDecl to NULL so that the entities
7952        // have distinct types.
7953        Previous.clear();
7954      }
7955      // If we get here, we're going to create a new Decl. If PrevDecl
7956      // is non-NULL, it's a definition of the tag declared by
7957      // PrevDecl. If it's NULL, we have a new definition.
7958
7959
7960    // Otherwise, PrevDecl is not a tag, but was found with tag
7961    // lookup.  This is only actually possible in C++, where a few
7962    // things like templates still live in the tag namespace.
7963    } else {
7964      assert(getLangOptions().CPlusPlus);
7965
7966      // Use a better diagnostic if an elaborated-type-specifier
7967      // found the wrong kind of type on the first
7968      // (non-redeclaration) lookup.
7969      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7970          !Previous.isForRedeclaration()) {
7971        unsigned Kind = 0;
7972        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7973        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7974        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7975        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7976        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7977        Invalid = true;
7978
7979      // Otherwise, only diagnose if the declaration is in scope.
7980      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7981                                isExplicitSpecialization)) {
7982        // do nothing
7983
7984      // Diagnose implicit declarations introduced by elaborated types.
7985      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7986        unsigned Kind = 0;
7987        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7988        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7989        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7990        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7991        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7992        Invalid = true;
7993
7994      // Otherwise it's a declaration.  Call out a particularly common
7995      // case here.
7996      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7997        unsigned Kind = 0;
7998        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7999        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8000          << Name << Kind << TND->getUnderlyingType();
8001        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8002        Invalid = true;
8003
8004      // Otherwise, diagnose.
8005      } else {
8006        // The tag name clashes with something else in the target scope,
8007        // issue an error and recover by making this tag be anonymous.
8008        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8009        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8010        Name = 0;
8011        Invalid = true;
8012      }
8013
8014      // The existing declaration isn't relevant to us; we're in a
8015      // new scope, so clear out the previous declaration.
8016      Previous.clear();
8017    }
8018  }
8019
8020CreateNewDecl:
8021
8022  TagDecl *PrevDecl = 0;
8023  if (Previous.isSingleResult())
8024    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8025
8026  // If there is an identifier, use the location of the identifier as the
8027  // location of the decl, otherwise use the location of the struct/union
8028  // keyword.
8029  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8030
8031  // Otherwise, create a new declaration. If there is a previous
8032  // declaration of the same entity, the two will be linked via
8033  // PrevDecl.
8034  TagDecl *New;
8035
8036  bool IsForwardReference = false;
8037  if (Kind == TTK_Enum) {
8038    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8039    // enum X { A, B, C } D;    D should chain to X.
8040    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8041                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8042                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8043    // If this is an undefined enum, warn.
8044    if (TUK != TUK_Definition && !Invalid) {
8045      TagDecl *Def;
8046      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8047        // C++0x: 7.2p2: opaque-enum-declaration.
8048        // Conflicts are diagnosed above. Do nothing.
8049      }
8050      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8051        Diag(Loc, diag::ext_forward_ref_enum_def)
8052          << New;
8053        Diag(Def->getLocation(), diag::note_previous_definition);
8054      } else {
8055        unsigned DiagID = diag::ext_forward_ref_enum;
8056        if (getLangOptions().MicrosoftExt)
8057          DiagID = diag::ext_ms_forward_ref_enum;
8058        else if (getLangOptions().CPlusPlus)
8059          DiagID = diag::err_forward_ref_enum;
8060        Diag(Loc, DiagID);
8061
8062        // If this is a forward-declared reference to an enumeration, make a
8063        // note of it; we won't actually be introducing the declaration into
8064        // the declaration context.
8065        if (TUK == TUK_Reference)
8066          IsForwardReference = true;
8067      }
8068    }
8069
8070    if (EnumUnderlying) {
8071      EnumDecl *ED = cast<EnumDecl>(New);
8072      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8073        ED->setIntegerTypeSourceInfo(TI);
8074      else
8075        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8076      ED->setPromotionType(ED->getIntegerType());
8077    }
8078
8079  } else {
8080    // struct/union/class
8081
8082    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8083    // struct X { int A; } D;    D should chain to X.
8084    if (getLangOptions().CPlusPlus) {
8085      // FIXME: Look for a way to use RecordDecl for simple structs.
8086      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8087                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8088
8089      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8090        StdBadAlloc = cast<CXXRecordDecl>(New);
8091    } else
8092      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8093                               cast_or_null<RecordDecl>(PrevDecl));
8094  }
8095
8096  // Maybe add qualifier info.
8097  if (SS.isNotEmpty()) {
8098    if (SS.isSet()) {
8099      New->setQualifierInfo(SS.getWithLocInContext(Context));
8100      if (TemplateParameterLists.size() > 0) {
8101        New->setTemplateParameterListsInfo(Context,
8102                                           TemplateParameterLists.size(),
8103                    (TemplateParameterList**) TemplateParameterLists.release());
8104      }
8105    }
8106    else
8107      Invalid = true;
8108  }
8109
8110  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8111    // Add alignment attributes if necessary; these attributes are checked when
8112    // the ASTContext lays out the structure.
8113    //
8114    // It is important for implementing the correct semantics that this
8115    // happen here (in act on tag decl). The #pragma pack stack is
8116    // maintained as a result of parser callbacks which can occur at
8117    // many points during the parsing of a struct declaration (because
8118    // the #pragma tokens are effectively skipped over during the
8119    // parsing of the struct).
8120    AddAlignmentAttributesForRecord(RD);
8121
8122    AddMsStructLayoutForRecord(RD);
8123  }
8124
8125  if (PrevDecl && PrevDecl->isModulePrivate())
8126    New->setModulePrivate();
8127  else if (ModulePrivateLoc.isValid()) {
8128    if (isExplicitSpecialization)
8129      Diag(New->getLocation(), diag::err_module_private_specialization)
8130        << 2
8131        << FixItHint::CreateRemoval(ModulePrivateLoc);
8132    else if (PrevDecl && !PrevDecl->isModulePrivate())
8133      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8134    // __module_private__ does not apply to local classes. However, we only
8135    // diagnose this as an error when the declaration specifiers are
8136    // freestanding. Here, we just ignore the __module_private__.
8137    // foobar
8138    else if (!SearchDC->isFunctionOrMethod())
8139      New->setModulePrivate();
8140  }
8141
8142  // If this is a specialization of a member class (of a class template),
8143  // check the specialization.
8144  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8145    Invalid = true;
8146
8147  if (Invalid)
8148    New->setInvalidDecl();
8149
8150  if (Attr)
8151    ProcessDeclAttributeList(S, New, Attr);
8152
8153  // If we're declaring or defining a tag in function prototype scope
8154  // in C, note that this type can only be used within the function.
8155  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8156    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8157
8158  // Set the lexical context. If the tag has a C++ scope specifier, the
8159  // lexical context will be different from the semantic context.
8160  New->setLexicalDeclContext(CurContext);
8161
8162  // Mark this as a friend decl if applicable.
8163  // In Microsoft mode, a friend declaration also acts as a forward
8164  // declaration so we always pass true to setObjectOfFriendDecl to make
8165  // the tag name visible.
8166  if (TUK == TUK_Friend)
8167    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8168                               getLangOptions().MicrosoftExt);
8169
8170  // Set the access specifier.
8171  if (!Invalid && SearchDC->isRecord())
8172    SetMemberAccessSpecifier(New, PrevDecl, AS);
8173
8174  if (TUK == TUK_Definition)
8175    New->startDefinition();
8176
8177  // If this has an identifier, add it to the scope stack.
8178  if (TUK == TUK_Friend) {
8179    // We might be replacing an existing declaration in the lookup tables;
8180    // if so, borrow its access specifier.
8181    if (PrevDecl)
8182      New->setAccess(PrevDecl->getAccess());
8183
8184    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8185    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8186    if (Name) // can be null along some error paths
8187      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8188        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8189  } else if (Name) {
8190    S = getNonFieldDeclScope(S);
8191    PushOnScopeChains(New, S, !IsForwardReference);
8192    if (IsForwardReference)
8193      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8194
8195  } else {
8196    CurContext->addDecl(New);
8197  }
8198
8199  // If this is the C FILE type, notify the AST context.
8200  if (IdentifierInfo *II = New->getIdentifier())
8201    if (!New->isInvalidDecl() &&
8202        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8203        II->isStr("FILE"))
8204      Context.setFILEDecl(New);
8205
8206  OwnedDecl = true;
8207  return New;
8208}
8209
8210void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8211  AdjustDeclIfTemplate(TagD);
8212  TagDecl *Tag = cast<TagDecl>(TagD);
8213
8214  // Enter the tag context.
8215  PushDeclContext(S, Tag);
8216}
8217
8218Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8219  assert(isa<ObjCContainerDecl>(IDecl) &&
8220         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8221  DeclContext *OCD = cast<DeclContext>(IDecl);
8222  assert(getContainingDC(OCD) == CurContext &&
8223      "The next DeclContext should be lexically contained in the current one.");
8224  CurContext = OCD;
8225  return IDecl;
8226}
8227
8228void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8229                                           SourceLocation FinalLoc,
8230                                           SourceLocation LBraceLoc) {
8231  AdjustDeclIfTemplate(TagD);
8232  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8233
8234  FieldCollector->StartClass();
8235
8236  if (!Record->getIdentifier())
8237    return;
8238
8239  if (FinalLoc.isValid())
8240    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8241
8242  // C++ [class]p2:
8243  //   [...] The class-name is also inserted into the scope of the
8244  //   class itself; this is known as the injected-class-name. For
8245  //   purposes of access checking, the injected-class-name is treated
8246  //   as if it were a public member name.
8247  CXXRecordDecl *InjectedClassName
8248    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8249                            Record->getLocStart(), Record->getLocation(),
8250                            Record->getIdentifier(),
8251                            /*PrevDecl=*/0,
8252                            /*DelayTypeCreation=*/true);
8253  Context.getTypeDeclType(InjectedClassName, Record);
8254  InjectedClassName->setImplicit();
8255  InjectedClassName->setAccess(AS_public);
8256  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8257      InjectedClassName->setDescribedClassTemplate(Template);
8258  PushOnScopeChains(InjectedClassName, S);
8259  assert(InjectedClassName->isInjectedClassName() &&
8260         "Broken injected-class-name");
8261}
8262
8263void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8264                                    SourceLocation RBraceLoc) {
8265  AdjustDeclIfTemplate(TagD);
8266  TagDecl *Tag = cast<TagDecl>(TagD);
8267  Tag->setRBraceLoc(RBraceLoc);
8268
8269  if (isa<CXXRecordDecl>(Tag))
8270    FieldCollector->FinishClass();
8271
8272  // Exit this scope of this tag's definition.
8273  PopDeclContext();
8274
8275  // Notify the consumer that we've defined a tag.
8276  Consumer.HandleTagDeclDefinition(Tag);
8277}
8278
8279void Sema::ActOnObjCContainerFinishDefinition() {
8280  // Exit this scope of this interface definition.
8281  PopDeclContext();
8282}
8283
8284void Sema::ActOnObjCTemporaryExitContainerContext() {
8285  OriginalLexicalContext = CurContext;
8286  ActOnObjCContainerFinishDefinition();
8287}
8288
8289void Sema::ActOnObjCReenterContainerContext() {
8290  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8291  OriginalLexicalContext = 0;
8292}
8293
8294void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8295  AdjustDeclIfTemplate(TagD);
8296  TagDecl *Tag = cast<TagDecl>(TagD);
8297  Tag->setInvalidDecl();
8298
8299  // We're undoing ActOnTagStartDefinition here, not
8300  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8301  // the FieldCollector.
8302
8303  PopDeclContext();
8304}
8305
8306// Note that FieldName may be null for anonymous bitfields.
8307bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8308                          QualType FieldTy, const Expr *BitWidth,
8309                          bool *ZeroWidth) {
8310  // Default to true; that shouldn't confuse checks for emptiness
8311  if (ZeroWidth)
8312    *ZeroWidth = true;
8313
8314  // C99 6.7.2.1p4 - verify the field type.
8315  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8316  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8317    // Handle incomplete types with specific error.
8318    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8319      return true;
8320    if (FieldName)
8321      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8322        << FieldName << FieldTy << BitWidth->getSourceRange();
8323    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8324      << FieldTy << BitWidth->getSourceRange();
8325  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8326                                             UPPC_BitFieldWidth))
8327    return true;
8328
8329  // If the bit-width is type- or value-dependent, don't try to check
8330  // it now.
8331  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8332    return false;
8333
8334  llvm::APSInt Value;
8335  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8336    return true;
8337
8338  if (Value != 0 && ZeroWidth)
8339    *ZeroWidth = false;
8340
8341  // Zero-width bitfield is ok for anonymous field.
8342  if (Value == 0 && FieldName)
8343    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8344
8345  if (Value.isSigned() && Value.isNegative()) {
8346    if (FieldName)
8347      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8348               << FieldName << Value.toString(10);
8349    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8350      << Value.toString(10);
8351  }
8352
8353  if (!FieldTy->isDependentType()) {
8354    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8355    if (Value.getZExtValue() > TypeSize) {
8356      if (!getLangOptions().CPlusPlus) {
8357        if (FieldName)
8358          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8359            << FieldName << (unsigned)Value.getZExtValue()
8360            << (unsigned)TypeSize;
8361
8362        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8363          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8364      }
8365
8366      if (FieldName)
8367        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8368          << FieldName << (unsigned)Value.getZExtValue()
8369          << (unsigned)TypeSize;
8370      else
8371        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8372          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8373    }
8374  }
8375
8376  return false;
8377}
8378
8379/// ActOnField - Each field of a C struct/union is passed into this in order
8380/// to create a FieldDecl object for it.
8381Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8382                       Declarator &D, Expr *BitfieldWidth) {
8383  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8384                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8385                               /*HasInit=*/false, AS_public);
8386  return Res;
8387}
8388
8389/// HandleField - Analyze a field of a C struct or a C++ data member.
8390///
8391FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8392                             SourceLocation DeclStart,
8393                             Declarator &D, Expr *BitWidth, bool HasInit,
8394                             AccessSpecifier AS) {
8395  IdentifierInfo *II = D.getIdentifier();
8396  SourceLocation Loc = DeclStart;
8397  if (II) Loc = D.getIdentifierLoc();
8398
8399  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8400  QualType T = TInfo->getType();
8401  if (getLangOptions().CPlusPlus) {
8402    CheckExtraCXXDefaultArguments(D);
8403
8404    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8405                                        UPPC_DataMemberType)) {
8406      D.setInvalidType();
8407      T = Context.IntTy;
8408      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8409    }
8410  }
8411
8412  DiagnoseFunctionSpecifiers(D);
8413
8414  if (D.getDeclSpec().isThreadSpecified())
8415    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8416  if (D.getDeclSpec().isConstexprSpecified())
8417    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8418      << 2;
8419
8420  // Check to see if this name was declared as a member previously
8421  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8422  LookupName(Previous, S);
8423  assert((Previous.empty() || Previous.isOverloadedResult() ||
8424          Previous.isSingleResult())
8425    && "Lookup of member name should be either overloaded, single or null");
8426
8427  // If the name is overloaded then get any declaration else get the single
8428  // result
8429  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8430    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8431
8432  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8433    // Maybe we will complain about the shadowed template parameter.
8434    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8435    // Just pretend that we didn't see the previous declaration.
8436    PrevDecl = 0;
8437  }
8438
8439  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8440    PrevDecl = 0;
8441
8442  bool Mutable
8443    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8444  SourceLocation TSSL = D.getSourceRange().getBegin();
8445  FieldDecl *NewFD
8446    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8447                     TSSL, AS, PrevDecl, &D);
8448
8449  if (NewFD->isInvalidDecl())
8450    Record->setInvalidDecl();
8451
8452  if (D.getDeclSpec().isModulePrivateSpecified())
8453    NewFD->setModulePrivate();
8454
8455  if (NewFD->isInvalidDecl() && PrevDecl) {
8456    // Don't introduce NewFD into scope; there's already something
8457    // with the same name in the same scope.
8458  } else if (II) {
8459    PushOnScopeChains(NewFD, S);
8460  } else
8461    Record->addDecl(NewFD);
8462
8463  return NewFD;
8464}
8465
8466/// \brief Build a new FieldDecl and check its well-formedness.
8467///
8468/// This routine builds a new FieldDecl given the fields name, type,
8469/// record, etc. \p PrevDecl should refer to any previous declaration
8470/// with the same name and in the same scope as the field to be
8471/// created.
8472///
8473/// \returns a new FieldDecl.
8474///
8475/// \todo The Declarator argument is a hack. It will be removed once
8476FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8477                                TypeSourceInfo *TInfo,
8478                                RecordDecl *Record, SourceLocation Loc,
8479                                bool Mutable, Expr *BitWidth, bool HasInit,
8480                                SourceLocation TSSL,
8481                                AccessSpecifier AS, NamedDecl *PrevDecl,
8482                                Declarator *D) {
8483  IdentifierInfo *II = Name.getAsIdentifierInfo();
8484  bool InvalidDecl = false;
8485  if (D) InvalidDecl = D->isInvalidType();
8486
8487  // If we receive a broken type, recover by assuming 'int' and
8488  // marking this declaration as invalid.
8489  if (T.isNull()) {
8490    InvalidDecl = true;
8491    T = Context.IntTy;
8492  }
8493
8494  QualType EltTy = Context.getBaseElementType(T);
8495  if (!EltTy->isDependentType() &&
8496      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8497    // Fields of incomplete type force their record to be invalid.
8498    Record->setInvalidDecl();
8499    InvalidDecl = true;
8500  }
8501
8502  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8503  // than a variably modified type.
8504  if (!InvalidDecl && T->isVariablyModifiedType()) {
8505    bool SizeIsNegative;
8506    llvm::APSInt Oversized;
8507    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8508                                                           SizeIsNegative,
8509                                                           Oversized);
8510    if (!FixedTy.isNull()) {
8511      Diag(Loc, diag::warn_illegal_constant_array_size);
8512      T = FixedTy;
8513    } else {
8514      if (SizeIsNegative)
8515        Diag(Loc, diag::err_typecheck_negative_array_size);
8516      else if (Oversized.getBoolValue())
8517        Diag(Loc, diag::err_array_too_large)
8518          << Oversized.toString(10);
8519      else
8520        Diag(Loc, diag::err_typecheck_field_variable_size);
8521      InvalidDecl = true;
8522    }
8523  }
8524
8525  // Fields can not have abstract class types
8526  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8527                                             diag::err_abstract_type_in_decl,
8528                                             AbstractFieldType))
8529    InvalidDecl = true;
8530
8531  bool ZeroWidth = false;
8532  // If this is declared as a bit-field, check the bit-field.
8533  if (!InvalidDecl && BitWidth &&
8534      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8535    InvalidDecl = true;
8536    BitWidth = 0;
8537    ZeroWidth = false;
8538  }
8539
8540  // Check that 'mutable' is consistent with the type of the declaration.
8541  if (!InvalidDecl && Mutable) {
8542    unsigned DiagID = 0;
8543    if (T->isReferenceType())
8544      DiagID = diag::err_mutable_reference;
8545    else if (T.isConstQualified())
8546      DiagID = diag::err_mutable_const;
8547
8548    if (DiagID) {
8549      SourceLocation ErrLoc = Loc;
8550      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8551        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8552      Diag(ErrLoc, DiagID);
8553      Mutable = false;
8554      InvalidDecl = true;
8555    }
8556  }
8557
8558  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8559                                       BitWidth, Mutable, HasInit);
8560  if (InvalidDecl)
8561    NewFD->setInvalidDecl();
8562
8563  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8564    Diag(Loc, diag::err_duplicate_member) << II;
8565    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8566    NewFD->setInvalidDecl();
8567  }
8568
8569  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8570    if (Record->isUnion()) {
8571      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8572        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8573        if (RDecl->getDefinition()) {
8574          // C++ [class.union]p1: An object of a class with a non-trivial
8575          // constructor, a non-trivial copy constructor, a non-trivial
8576          // destructor, or a non-trivial copy assignment operator
8577          // cannot be a member of a union, nor can an array of such
8578          // objects.
8579          if (CheckNontrivialField(NewFD))
8580            NewFD->setInvalidDecl();
8581        }
8582      }
8583
8584      // C++ [class.union]p1: If a union contains a member of reference type,
8585      // the program is ill-formed.
8586      if (EltTy->isReferenceType()) {
8587        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8588          << NewFD->getDeclName() << EltTy;
8589        NewFD->setInvalidDecl();
8590      }
8591    }
8592  }
8593
8594  // FIXME: We need to pass in the attributes given an AST
8595  // representation, not a parser representation.
8596  if (D)
8597    // FIXME: What to pass instead of TUScope?
8598    ProcessDeclAttributes(TUScope, NewFD, *D);
8599
8600  // In auto-retain/release, infer strong retension for fields of
8601  // retainable type.
8602  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8603    NewFD->setInvalidDecl();
8604
8605  if (T.isObjCGCWeak())
8606    Diag(Loc, diag::warn_attribute_weak_on_field);
8607
8608  NewFD->setAccess(AS);
8609  return NewFD;
8610}
8611
8612bool Sema::CheckNontrivialField(FieldDecl *FD) {
8613  assert(FD);
8614  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8615
8616  if (FD->isInvalidDecl())
8617    return true;
8618
8619  QualType EltTy = Context.getBaseElementType(FD->getType());
8620  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8621    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8622    if (RDecl->getDefinition()) {
8623      // We check for copy constructors before constructors
8624      // because otherwise we'll never get complaints about
8625      // copy constructors.
8626
8627      CXXSpecialMember member = CXXInvalid;
8628      if (!RDecl->hasTrivialCopyConstructor())
8629        member = CXXCopyConstructor;
8630      else if (!RDecl->hasTrivialDefaultConstructor())
8631        member = CXXDefaultConstructor;
8632      else if (!RDecl->hasTrivialCopyAssignment())
8633        member = CXXCopyAssignment;
8634      else if (!RDecl->hasTrivialDestructor())
8635        member = CXXDestructor;
8636
8637      if (member != CXXInvalid) {
8638        if (!getLangOptions().CPlusPlus0x &&
8639            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8640          // Objective-C++ ARC: it is an error to have a non-trivial field of
8641          // a union. However, system headers in Objective-C programs
8642          // occasionally have Objective-C lifetime objects within unions,
8643          // and rather than cause the program to fail, we make those
8644          // members unavailable.
8645          SourceLocation Loc = FD->getLocation();
8646          if (getSourceManager().isInSystemHeader(Loc)) {
8647            if (!FD->hasAttr<UnavailableAttr>())
8648              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8649                                  "this system field has retaining ownership"));
8650            return false;
8651          }
8652        }
8653
8654        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8655               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8656               diag::err_illegal_union_or_anon_struct_member)
8657          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8658        DiagnoseNontrivial(RT, member);
8659        return !getLangOptions().CPlusPlus0x;
8660      }
8661    }
8662  }
8663
8664  return false;
8665}
8666
8667/// DiagnoseNontrivial - Given that a class has a non-trivial
8668/// special member, figure out why.
8669void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8670  QualType QT(T, 0U);
8671  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8672
8673  // Check whether the member was user-declared.
8674  switch (member) {
8675  case CXXInvalid:
8676    break;
8677
8678  case CXXDefaultConstructor:
8679    if (RD->hasUserDeclaredConstructor()) {
8680      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8681      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8682        const FunctionDecl *body = 0;
8683        ci->hasBody(body);
8684        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8685          SourceLocation CtorLoc = ci->getLocation();
8686          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8687          return;
8688        }
8689      }
8690
8691      llvm_unreachable("found no user-declared constructors");
8692    }
8693    break;
8694
8695  case CXXCopyConstructor:
8696    if (RD->hasUserDeclaredCopyConstructor()) {
8697      SourceLocation CtorLoc =
8698        RD->getCopyConstructor(0)->getLocation();
8699      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8700      return;
8701    }
8702    break;
8703
8704  case CXXMoveConstructor:
8705    if (RD->hasUserDeclaredMoveConstructor()) {
8706      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8707      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8708      return;
8709    }
8710    break;
8711
8712  case CXXCopyAssignment:
8713    if (RD->hasUserDeclaredCopyAssignment()) {
8714      // FIXME: this should use the location of the copy
8715      // assignment, not the type.
8716      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8717      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8718      return;
8719    }
8720    break;
8721
8722  case CXXMoveAssignment:
8723    if (RD->hasUserDeclaredMoveAssignment()) {
8724      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8725      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8726      return;
8727    }
8728    break;
8729
8730  case CXXDestructor:
8731    if (RD->hasUserDeclaredDestructor()) {
8732      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8733      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8734      return;
8735    }
8736    break;
8737  }
8738
8739  typedef CXXRecordDecl::base_class_iterator base_iter;
8740
8741  // Virtual bases and members inhibit trivial copying/construction,
8742  // but not trivial destruction.
8743  if (member != CXXDestructor) {
8744    // Check for virtual bases.  vbases includes indirect virtual bases,
8745    // so we just iterate through the direct bases.
8746    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8747      if (bi->isVirtual()) {
8748        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8749        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8750        return;
8751      }
8752
8753    // Check for virtual methods.
8754    typedef CXXRecordDecl::method_iterator meth_iter;
8755    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8756         ++mi) {
8757      if (mi->isVirtual()) {
8758        SourceLocation MLoc = mi->getSourceRange().getBegin();
8759        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8760        return;
8761      }
8762    }
8763  }
8764
8765  bool (CXXRecordDecl::*hasTrivial)() const;
8766  switch (member) {
8767  case CXXDefaultConstructor:
8768    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8769  case CXXCopyConstructor:
8770    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8771  case CXXCopyAssignment:
8772    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8773  case CXXDestructor:
8774    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8775  default:
8776    llvm_unreachable("unexpected special member");
8777  }
8778
8779  // Check for nontrivial bases (and recurse).
8780  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8781    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8782    assert(BaseRT && "Don't know how to handle dependent bases");
8783    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8784    if (!(BaseRecTy->*hasTrivial)()) {
8785      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8786      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8787      DiagnoseNontrivial(BaseRT, member);
8788      return;
8789    }
8790  }
8791
8792  // Check for nontrivial members (and recurse).
8793  typedef RecordDecl::field_iterator field_iter;
8794  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8795       ++fi) {
8796    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8797    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8798      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8799
8800      if (!(EltRD->*hasTrivial)()) {
8801        SourceLocation FLoc = (*fi)->getLocation();
8802        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8803        DiagnoseNontrivial(EltRT, member);
8804        return;
8805      }
8806    }
8807
8808    if (EltTy->isObjCLifetimeType()) {
8809      switch (EltTy.getObjCLifetime()) {
8810      case Qualifiers::OCL_None:
8811      case Qualifiers::OCL_ExplicitNone:
8812        break;
8813
8814      case Qualifiers::OCL_Autoreleasing:
8815      case Qualifiers::OCL_Weak:
8816      case Qualifiers::OCL_Strong:
8817        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8818          << QT << EltTy.getObjCLifetime();
8819        return;
8820      }
8821    }
8822  }
8823
8824  llvm_unreachable("found no explanation for non-trivial member");
8825}
8826
8827/// TranslateIvarVisibility - Translate visibility from a token ID to an
8828///  AST enum value.
8829static ObjCIvarDecl::AccessControl
8830TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8831  switch (ivarVisibility) {
8832  default: llvm_unreachable("Unknown visitibility kind");
8833  case tok::objc_private: return ObjCIvarDecl::Private;
8834  case tok::objc_public: return ObjCIvarDecl::Public;
8835  case tok::objc_protected: return ObjCIvarDecl::Protected;
8836  case tok::objc_package: return ObjCIvarDecl::Package;
8837  }
8838}
8839
8840/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8841/// in order to create an IvarDecl object for it.
8842Decl *Sema::ActOnIvar(Scope *S,
8843                                SourceLocation DeclStart,
8844                                Declarator &D, Expr *BitfieldWidth,
8845                                tok::ObjCKeywordKind Visibility) {
8846
8847  IdentifierInfo *II = D.getIdentifier();
8848  Expr *BitWidth = (Expr*)BitfieldWidth;
8849  SourceLocation Loc = DeclStart;
8850  if (II) Loc = D.getIdentifierLoc();
8851
8852  // FIXME: Unnamed fields can be handled in various different ways, for
8853  // example, unnamed unions inject all members into the struct namespace!
8854
8855  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8856  QualType T = TInfo->getType();
8857
8858  if (BitWidth) {
8859    // 6.7.2.1p3, 6.7.2.1p4
8860    if (VerifyBitField(Loc, II, T, BitWidth)) {
8861      D.setInvalidType();
8862      BitWidth = 0;
8863    }
8864  } else {
8865    // Not a bitfield.
8866
8867    // validate II.
8868
8869  }
8870  if (T->isReferenceType()) {
8871    Diag(Loc, diag::err_ivar_reference_type);
8872    D.setInvalidType();
8873  }
8874  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8875  // than a variably modified type.
8876  else if (T->isVariablyModifiedType()) {
8877    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8878    D.setInvalidType();
8879  }
8880
8881  // Get the visibility (access control) for this ivar.
8882  ObjCIvarDecl::AccessControl ac =
8883    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8884                                        : ObjCIvarDecl::None;
8885  // Must set ivar's DeclContext to its enclosing interface.
8886  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8887  ObjCContainerDecl *EnclosingContext;
8888  if (ObjCImplementationDecl *IMPDecl =
8889      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8890    if (!LangOpts.ObjCNonFragileABI2) {
8891    // Case of ivar declared in an implementation. Context is that of its class.
8892      EnclosingContext = IMPDecl->getClassInterface();
8893      assert(EnclosingContext && "Implementation has no class interface!");
8894    }
8895    else
8896      EnclosingContext = EnclosingDecl;
8897  } else {
8898    if (ObjCCategoryDecl *CDecl =
8899        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8900      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8901        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8902        return 0;
8903      }
8904    }
8905    EnclosingContext = EnclosingDecl;
8906  }
8907
8908  // Construct the decl.
8909  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8910                                             DeclStart, Loc, II, T,
8911                                             TInfo, ac, (Expr *)BitfieldWidth);
8912
8913  if (II) {
8914    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8915                                           ForRedeclaration);
8916    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8917        && !isa<TagDecl>(PrevDecl)) {
8918      Diag(Loc, diag::err_duplicate_member) << II;
8919      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8920      NewID->setInvalidDecl();
8921    }
8922  }
8923
8924  // Process attributes attached to the ivar.
8925  ProcessDeclAttributes(S, NewID, D);
8926
8927  if (D.isInvalidType())
8928    NewID->setInvalidDecl();
8929
8930  // In ARC, infer 'retaining' for ivars of retainable type.
8931  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8932    NewID->setInvalidDecl();
8933
8934  if (D.getDeclSpec().isModulePrivateSpecified())
8935    NewID->setModulePrivate();
8936
8937  if (II) {
8938    // FIXME: When interfaces are DeclContexts, we'll need to add
8939    // these to the interface.
8940    S->AddDecl(NewID);
8941    IdResolver.AddDecl(NewID);
8942  }
8943
8944  return NewID;
8945}
8946
8947/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8948/// class and class extensions. For every class @interface and class
8949/// extension @interface, if the last ivar is a bitfield of any type,
8950/// then add an implicit `char :0` ivar to the end of that interface.
8951void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8952                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8953  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8954    return;
8955
8956  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8957  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8958
8959  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8960    return;
8961  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8962  if (!ID) {
8963    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8964      if (!CD->IsClassExtension())
8965        return;
8966    }
8967    // No need to add this to end of @implementation.
8968    else
8969      return;
8970  }
8971  // All conditions are met. Add a new bitfield to the tail end of ivars.
8972  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8973  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8974
8975  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8976                              DeclLoc, DeclLoc, 0,
8977                              Context.CharTy,
8978                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8979                                                               DeclLoc),
8980                              ObjCIvarDecl::Private, BW,
8981                              true);
8982  AllIvarDecls.push_back(Ivar);
8983}
8984
8985void Sema::ActOnFields(Scope* S,
8986                       SourceLocation RecLoc, Decl *EnclosingDecl,
8987                       llvm::ArrayRef<Decl *> Fields,
8988                       SourceLocation LBrac, SourceLocation RBrac,
8989                       AttributeList *Attr) {
8990  assert(EnclosingDecl && "missing record or interface decl");
8991
8992  // If the decl this is being inserted into is invalid, then it may be a
8993  // redeclaration or some other bogus case.  Don't try to add fields to it.
8994  if (EnclosingDecl->isInvalidDecl())
8995    return;
8996
8997  // Verify that all the fields are okay.
8998  unsigned NumNamedMembers = 0;
8999  SmallVector<FieldDecl*, 32> RecFields;
9000
9001  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9002  bool ARCErrReported = false;
9003  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9004       i != end; ++i) {
9005    FieldDecl *FD = cast<FieldDecl>(*i);
9006
9007    // Get the type for the field.
9008    const Type *FDTy = FD->getType().getTypePtr();
9009
9010    if (!FD->isAnonymousStructOrUnion()) {
9011      // Remember all fields written by the user.
9012      RecFields.push_back(FD);
9013    }
9014
9015    // If the field is already invalid for some reason, don't emit more
9016    // diagnostics about it.
9017    if (FD->isInvalidDecl()) {
9018      EnclosingDecl->setInvalidDecl();
9019      continue;
9020    }
9021
9022    // C99 6.7.2.1p2:
9023    //   A structure or union shall not contain a member with
9024    //   incomplete or function type (hence, a structure shall not
9025    //   contain an instance of itself, but may contain a pointer to
9026    //   an instance of itself), except that the last member of a
9027    //   structure with more than one named member may have incomplete
9028    //   array type; such a structure (and any union containing,
9029    //   possibly recursively, a member that is such a structure)
9030    //   shall not be a member of a structure or an element of an
9031    //   array.
9032    if (FDTy->isFunctionType()) {
9033      // Field declared as a function.
9034      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9035        << FD->getDeclName();
9036      FD->setInvalidDecl();
9037      EnclosingDecl->setInvalidDecl();
9038      continue;
9039    } else if (FDTy->isIncompleteArrayType() && Record &&
9040               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9041                ((getLangOptions().MicrosoftExt ||
9042                  getLangOptions().CPlusPlus) &&
9043                 (i + 1 == Fields.end() || Record->isUnion())))) {
9044      // Flexible array member.
9045      // Microsoft and g++ is more permissive regarding flexible array.
9046      // It will accept flexible array in union and also
9047      // as the sole element of a struct/class.
9048      if (getLangOptions().MicrosoftExt) {
9049        if (Record->isUnion())
9050          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9051            << FD->getDeclName();
9052        else if (Fields.size() == 1)
9053          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9054            << FD->getDeclName() << Record->getTagKind();
9055      } else if (getLangOptions().CPlusPlus) {
9056        if (Record->isUnion())
9057          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9058            << FD->getDeclName();
9059        else if (Fields.size() == 1)
9060          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9061            << FD->getDeclName() << Record->getTagKind();
9062      } else if (NumNamedMembers < 1) {
9063        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9064          << FD->getDeclName();
9065        FD->setInvalidDecl();
9066        EnclosingDecl->setInvalidDecl();
9067        continue;
9068      }
9069      if (!FD->getType()->isDependentType() &&
9070          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9071        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9072          << FD->getDeclName() << FD->getType();
9073        FD->setInvalidDecl();
9074        EnclosingDecl->setInvalidDecl();
9075        continue;
9076      }
9077      // Okay, we have a legal flexible array member at the end of the struct.
9078      if (Record)
9079        Record->setHasFlexibleArrayMember(true);
9080    } else if (!FDTy->isDependentType() &&
9081               RequireCompleteType(FD->getLocation(), FD->getType(),
9082                                   diag::err_field_incomplete)) {
9083      // Incomplete type
9084      FD->setInvalidDecl();
9085      EnclosingDecl->setInvalidDecl();
9086      continue;
9087    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9088      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9089        // If this is a member of a union, then entire union becomes "flexible".
9090        if (Record && Record->isUnion()) {
9091          Record->setHasFlexibleArrayMember(true);
9092        } else {
9093          // If this is a struct/class and this is not the last element, reject
9094          // it.  Note that GCC supports variable sized arrays in the middle of
9095          // structures.
9096          if (i + 1 != Fields.end())
9097            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9098              << FD->getDeclName() << FD->getType();
9099          else {
9100            // We support flexible arrays at the end of structs in
9101            // other structs as an extension.
9102            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9103              << FD->getDeclName();
9104            if (Record)
9105              Record->setHasFlexibleArrayMember(true);
9106          }
9107        }
9108      }
9109      if (Record && FDTTy->getDecl()->hasObjectMember())
9110        Record->setHasObjectMember(true);
9111    } else if (FDTy->isObjCObjectType()) {
9112      /// A field cannot be an Objective-c object
9113      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9114        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9115      QualType T = Context.getObjCObjectPointerType(FD->getType());
9116      FD->setType(T);
9117    }
9118    else if (!getLangOptions().CPlusPlus) {
9119      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9120        // It's an error in ARC if a field has lifetime.
9121        // We don't want to report this in a system header, though,
9122        // so we just make the field unavailable.
9123        // FIXME: that's really not sufficient; we need to make the type
9124        // itself invalid to, say, initialize or copy.
9125        QualType T = FD->getType();
9126        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9127        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9128          SourceLocation loc = FD->getLocation();
9129          if (getSourceManager().isInSystemHeader(loc)) {
9130            if (!FD->hasAttr<UnavailableAttr>()) {
9131              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9132                                "this system field has retaining ownership"));
9133            }
9134          } else {
9135            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9136          }
9137          ARCErrReported = true;
9138        }
9139      }
9140      else if (getLangOptions().ObjC1 &&
9141               getLangOptions().getGC() != LangOptions::NonGC &&
9142               Record && !Record->hasObjectMember()) {
9143        if (FD->getType()->isObjCObjectPointerType() ||
9144            FD->getType().isObjCGCStrong())
9145          Record->setHasObjectMember(true);
9146        else if (Context.getAsArrayType(FD->getType())) {
9147          QualType BaseType = Context.getBaseElementType(FD->getType());
9148          if (BaseType->isRecordType() &&
9149              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9150            Record->setHasObjectMember(true);
9151          else if (BaseType->isObjCObjectPointerType() ||
9152                   BaseType.isObjCGCStrong())
9153                 Record->setHasObjectMember(true);
9154        }
9155      }
9156    }
9157    // Keep track of the number of named members.
9158    if (FD->getIdentifier())
9159      ++NumNamedMembers;
9160  }
9161
9162  // Okay, we successfully defined 'Record'.
9163  if (Record) {
9164    bool Completed = false;
9165    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9166      if (!CXXRecord->isInvalidDecl()) {
9167        // Set access bits correctly on the directly-declared conversions.
9168        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9169        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9170             I != E; ++I)
9171          Convs->setAccess(I, (*I)->getAccess());
9172
9173        if (!CXXRecord->isDependentType()) {
9174          // Objective-C Automatic Reference Counting:
9175          //   If a class has a non-static data member of Objective-C pointer
9176          //   type (or array thereof), it is a non-POD type and its
9177          //   default constructor (if any), copy constructor, copy assignment
9178          //   operator, and destructor are non-trivial.
9179          //
9180          // This rule is also handled by CXXRecordDecl::completeDefinition().
9181          // However, here we check whether this particular class is only
9182          // non-POD because of the presence of an Objective-C pointer member.
9183          // If so, objects of this type cannot be shared between code compiled
9184          // with instant objects and code compiled with manual retain/release.
9185          if (getLangOptions().ObjCAutoRefCount &&
9186              CXXRecord->hasObjectMember() &&
9187              CXXRecord->getLinkage() == ExternalLinkage) {
9188            if (CXXRecord->isPOD()) {
9189              Diag(CXXRecord->getLocation(),
9190                   diag::warn_arc_non_pod_class_with_object_member)
9191               << CXXRecord;
9192            } else {
9193              // FIXME: Fix-Its would be nice here, but finding a good location
9194              // for them is going to be tricky.
9195              if (CXXRecord->hasTrivialCopyConstructor())
9196                Diag(CXXRecord->getLocation(),
9197                     diag::warn_arc_trivial_member_function_with_object_member)
9198                  << CXXRecord << 0;
9199              if (CXXRecord->hasTrivialCopyAssignment())
9200                Diag(CXXRecord->getLocation(),
9201                     diag::warn_arc_trivial_member_function_with_object_member)
9202                << CXXRecord << 1;
9203              if (CXXRecord->hasTrivialDestructor())
9204                Diag(CXXRecord->getLocation(),
9205                     diag::warn_arc_trivial_member_function_with_object_member)
9206                << CXXRecord << 2;
9207            }
9208          }
9209
9210          // Adjust user-defined destructor exception spec.
9211          if (getLangOptions().CPlusPlus0x &&
9212              CXXRecord->hasUserDeclaredDestructor())
9213            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9214
9215          // Add any implicitly-declared members to this class.
9216          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9217
9218          // If we have virtual base classes, we may end up finding multiple
9219          // final overriders for a given virtual function. Check for this
9220          // problem now.
9221          if (CXXRecord->getNumVBases()) {
9222            CXXFinalOverriderMap FinalOverriders;
9223            CXXRecord->getFinalOverriders(FinalOverriders);
9224
9225            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9226                                             MEnd = FinalOverriders.end();
9227                 M != MEnd; ++M) {
9228              for (OverridingMethods::iterator SO = M->second.begin(),
9229                                            SOEnd = M->second.end();
9230                   SO != SOEnd; ++SO) {
9231                assert(SO->second.size() > 0 &&
9232                       "Virtual function without overridding functions?");
9233                if (SO->second.size() == 1)
9234                  continue;
9235
9236                // C++ [class.virtual]p2:
9237                //   In a derived class, if a virtual member function of a base
9238                //   class subobject has more than one final overrider the
9239                //   program is ill-formed.
9240                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9241                  << (NamedDecl *)M->first << Record;
9242                Diag(M->first->getLocation(),
9243                     diag::note_overridden_virtual_function);
9244                for (OverridingMethods::overriding_iterator
9245                          OM = SO->second.begin(),
9246                       OMEnd = SO->second.end();
9247                     OM != OMEnd; ++OM)
9248                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9249                    << (NamedDecl *)M->first << OM->Method->getParent();
9250
9251                Record->setInvalidDecl();
9252              }
9253            }
9254            CXXRecord->completeDefinition(&FinalOverriders);
9255            Completed = true;
9256          }
9257        }
9258      }
9259    }
9260
9261    if (!Completed)
9262      Record->completeDefinition();
9263
9264    // Now that the record is complete, do any delayed exception spec checks
9265    // we were missing.
9266    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9267      const CXXDestructorDecl *Dtor =
9268              DelayedDestructorExceptionSpecChecks.back().first;
9269      if (Dtor->getParent() != Record)
9270        break;
9271
9272      assert(!Dtor->getParent()->isDependentType() &&
9273          "Should not ever add destructors of templates into the list.");
9274      CheckOverridingFunctionExceptionSpec(Dtor,
9275          DelayedDestructorExceptionSpecChecks.back().second);
9276      DelayedDestructorExceptionSpecChecks.pop_back();
9277    }
9278
9279  } else {
9280    ObjCIvarDecl **ClsFields =
9281      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9282    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9283      ID->setLocEnd(RBrac);
9284      // Add ivar's to class's DeclContext.
9285      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9286        ClsFields[i]->setLexicalDeclContext(ID);
9287        ID->addDecl(ClsFields[i]);
9288      }
9289      // Must enforce the rule that ivars in the base classes may not be
9290      // duplicates.
9291      if (ID->getSuperClass())
9292        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9293    } else if (ObjCImplementationDecl *IMPDecl =
9294                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9295      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9296      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9297        // Ivar declared in @implementation never belongs to the implementation.
9298        // Only it is in implementation's lexical context.
9299        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9300      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9301    } else if (ObjCCategoryDecl *CDecl =
9302                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9303      // case of ivars in class extension; all other cases have been
9304      // reported as errors elsewhere.
9305      // FIXME. Class extension does not have a LocEnd field.
9306      // CDecl->setLocEnd(RBrac);
9307      // Add ivar's to class extension's DeclContext.
9308      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9309        ClsFields[i]->setLexicalDeclContext(CDecl);
9310        CDecl->addDecl(ClsFields[i]);
9311      }
9312    }
9313  }
9314
9315  if (Attr)
9316    ProcessDeclAttributeList(S, Record, Attr);
9317
9318  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9319  // set the visibility of this record.
9320  if (Record && !Record->getDeclContext()->isRecord())
9321    AddPushedVisibilityAttribute(Record);
9322}
9323
9324/// \brief Determine whether the given integral value is representable within
9325/// the given type T.
9326static bool isRepresentableIntegerValue(ASTContext &Context,
9327                                        llvm::APSInt &Value,
9328                                        QualType T) {
9329  assert(T->isIntegralType(Context) && "Integral type required!");
9330  unsigned BitWidth = Context.getIntWidth(T);
9331
9332  if (Value.isUnsigned() || Value.isNonNegative()) {
9333    if (T->isSignedIntegerOrEnumerationType())
9334      --BitWidth;
9335    return Value.getActiveBits() <= BitWidth;
9336  }
9337  return Value.getMinSignedBits() <= BitWidth;
9338}
9339
9340// \brief Given an integral type, return the next larger integral type
9341// (or a NULL type of no such type exists).
9342static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9343  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9344  // enum checking below.
9345  assert(T->isIntegralType(Context) && "Integral type required!");
9346  const unsigned NumTypes = 4;
9347  QualType SignedIntegralTypes[NumTypes] = {
9348    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9349  };
9350  QualType UnsignedIntegralTypes[NumTypes] = {
9351    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9352    Context.UnsignedLongLongTy
9353  };
9354
9355  unsigned BitWidth = Context.getTypeSize(T);
9356  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9357                                                        : UnsignedIntegralTypes;
9358  for (unsigned I = 0; I != NumTypes; ++I)
9359    if (Context.getTypeSize(Types[I]) > BitWidth)
9360      return Types[I];
9361
9362  return QualType();
9363}
9364
9365EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9366                                          EnumConstantDecl *LastEnumConst,
9367                                          SourceLocation IdLoc,
9368                                          IdentifierInfo *Id,
9369                                          Expr *Val) {
9370  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9371  llvm::APSInt EnumVal(IntWidth);
9372  QualType EltTy;
9373
9374  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9375    Val = 0;
9376
9377  if (Val) {
9378    if (Enum->isDependentType() || Val->isTypeDependent())
9379      EltTy = Context.DependentTy;
9380    else {
9381      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9382      SourceLocation ExpLoc;
9383      if (!Val->isValueDependent() &&
9384          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9385        Val = 0;
9386      } else {
9387        if (!getLangOptions().CPlusPlus) {
9388          // C99 6.7.2.2p2:
9389          //   The expression that defines the value of an enumeration constant
9390          //   shall be an integer constant expression that has a value
9391          //   representable as an int.
9392
9393          // Complain if the value is not representable in an int.
9394          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9395            Diag(IdLoc, diag::ext_enum_value_not_int)
9396              << EnumVal.toString(10) << Val->getSourceRange()
9397              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9398          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9399            // Force the type of the expression to 'int'.
9400            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9401          }
9402        }
9403
9404        if (Enum->isFixed()) {
9405          EltTy = Enum->getIntegerType();
9406
9407          // C++0x [dcl.enum]p5:
9408          //   ... if the initializing value of an enumerator cannot be
9409          //   represented by the underlying type, the program is ill-formed.
9410          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9411            if (getLangOptions().MicrosoftExt) {
9412              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9413              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9414            } else
9415              Diag(IdLoc, diag::err_enumerator_too_large)
9416                << EltTy;
9417          } else
9418            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9419        }
9420        else {
9421          // C++0x [dcl.enum]p5:
9422          //   If the underlying type is not fixed, the type of each enumerator
9423          //   is the type of its initializing value:
9424          //     - If an initializer is specified for an enumerator, the
9425          //       initializing value has the same type as the expression.
9426          EltTy = Val->getType();
9427        }
9428      }
9429    }
9430  }
9431
9432  if (!Val) {
9433    if (Enum->isDependentType())
9434      EltTy = Context.DependentTy;
9435    else if (!LastEnumConst) {
9436      // C++0x [dcl.enum]p5:
9437      //   If the underlying type is not fixed, the type of each enumerator
9438      //   is the type of its initializing value:
9439      //     - If no initializer is specified for the first enumerator, the
9440      //       initializing value has an unspecified integral type.
9441      //
9442      // GCC uses 'int' for its unspecified integral type, as does
9443      // C99 6.7.2.2p3.
9444      if (Enum->isFixed()) {
9445        EltTy = Enum->getIntegerType();
9446      }
9447      else {
9448        EltTy = Context.IntTy;
9449      }
9450    } else {
9451      // Assign the last value + 1.
9452      EnumVal = LastEnumConst->getInitVal();
9453      ++EnumVal;
9454      EltTy = LastEnumConst->getType();
9455
9456      // Check for overflow on increment.
9457      if (EnumVal < LastEnumConst->getInitVal()) {
9458        // C++0x [dcl.enum]p5:
9459        //   If the underlying type is not fixed, the type of each enumerator
9460        //   is the type of its initializing value:
9461        //
9462        //     - Otherwise the type of the initializing value is the same as
9463        //       the type of the initializing value of the preceding enumerator
9464        //       unless the incremented value is not representable in that type,
9465        //       in which case the type is an unspecified integral type
9466        //       sufficient to contain the incremented value. If no such type
9467        //       exists, the program is ill-formed.
9468        QualType T = getNextLargerIntegralType(Context, EltTy);
9469        if (T.isNull() || Enum->isFixed()) {
9470          // There is no integral type larger enough to represent this
9471          // value. Complain, then allow the value to wrap around.
9472          EnumVal = LastEnumConst->getInitVal();
9473          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9474          ++EnumVal;
9475          if (Enum->isFixed())
9476            // When the underlying type is fixed, this is ill-formed.
9477            Diag(IdLoc, diag::err_enumerator_wrapped)
9478              << EnumVal.toString(10)
9479              << EltTy;
9480          else
9481            Diag(IdLoc, diag::warn_enumerator_too_large)
9482              << EnumVal.toString(10);
9483        } else {
9484          EltTy = T;
9485        }
9486
9487        // Retrieve the last enumerator's value, extent that type to the
9488        // type that is supposed to be large enough to represent the incremented
9489        // value, then increment.
9490        EnumVal = LastEnumConst->getInitVal();
9491        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9492        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9493        ++EnumVal;
9494
9495        // If we're not in C++, diagnose the overflow of enumerator values,
9496        // which in C99 means that the enumerator value is not representable in
9497        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9498        // permits enumerator values that are representable in some larger
9499        // integral type.
9500        if (!getLangOptions().CPlusPlus && !T.isNull())
9501          Diag(IdLoc, diag::warn_enum_value_overflow);
9502      } else if (!getLangOptions().CPlusPlus &&
9503                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9504        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9505        Diag(IdLoc, diag::ext_enum_value_not_int)
9506          << EnumVal.toString(10) << 1;
9507      }
9508    }
9509  }
9510
9511  if (!EltTy->isDependentType()) {
9512    // Make the enumerator value match the signedness and size of the
9513    // enumerator's type.
9514    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9515    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9516  }
9517
9518  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9519                                  Val, EnumVal);
9520}
9521
9522
9523Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9524                              SourceLocation IdLoc, IdentifierInfo *Id,
9525                              AttributeList *Attr,
9526                              SourceLocation EqualLoc, Expr *val) {
9527  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9528  EnumConstantDecl *LastEnumConst =
9529    cast_or_null<EnumConstantDecl>(lastEnumConst);
9530  Expr *Val = static_cast<Expr*>(val);
9531
9532  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9533  // we find one that is.
9534  S = getNonFieldDeclScope(S);
9535
9536  // Verify that there isn't already something declared with this name in this
9537  // scope.
9538  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9539                                         ForRedeclaration);
9540  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9541    // Maybe we will complain about the shadowed template parameter.
9542    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9543    // Just pretend that we didn't see the previous declaration.
9544    PrevDecl = 0;
9545  }
9546
9547  if (PrevDecl) {
9548    // When in C++, we may get a TagDecl with the same name; in this case the
9549    // enum constant will 'hide' the tag.
9550    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9551           "Received TagDecl when not in C++!");
9552    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9553      if (isa<EnumConstantDecl>(PrevDecl))
9554        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9555      else
9556        Diag(IdLoc, diag::err_redefinition) << Id;
9557      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9558      return 0;
9559    }
9560  }
9561
9562  // C++ [class.mem]p13:
9563  //   If T is the name of a class, then each of the following shall have a
9564  //   name different from T:
9565  //     - every enumerator of every member of class T that is an enumerated
9566  //       type
9567  if (CXXRecordDecl *Record
9568                      = dyn_cast<CXXRecordDecl>(
9569                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9570    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9571      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9572
9573  EnumConstantDecl *New =
9574    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9575
9576  if (New) {
9577    // Process attributes.
9578    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9579
9580    // Register this decl in the current scope stack.
9581    New->setAccess(TheEnumDecl->getAccess());
9582    PushOnScopeChains(New, S);
9583  }
9584
9585  return New;
9586}
9587
9588void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9589                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9590                         Decl **Elements, unsigned NumElements,
9591                         Scope *S, AttributeList *Attr) {
9592  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9593  QualType EnumType = Context.getTypeDeclType(Enum);
9594
9595  if (Attr)
9596    ProcessDeclAttributeList(S, Enum, Attr);
9597
9598  if (Enum->isDependentType()) {
9599    for (unsigned i = 0; i != NumElements; ++i) {
9600      EnumConstantDecl *ECD =
9601        cast_or_null<EnumConstantDecl>(Elements[i]);
9602      if (!ECD) continue;
9603
9604      ECD->setType(EnumType);
9605    }
9606
9607    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9608    return;
9609  }
9610
9611  // TODO: If the result value doesn't fit in an int, it must be a long or long
9612  // long value.  ISO C does not support this, but GCC does as an extension,
9613  // emit a warning.
9614  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9615  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9616  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9617
9618  // Verify that all the values are okay, compute the size of the values, and
9619  // reverse the list.
9620  unsigned NumNegativeBits = 0;
9621  unsigned NumPositiveBits = 0;
9622
9623  // Keep track of whether all elements have type int.
9624  bool AllElementsInt = true;
9625
9626  for (unsigned i = 0; i != NumElements; ++i) {
9627    EnumConstantDecl *ECD =
9628      cast_or_null<EnumConstantDecl>(Elements[i]);
9629    if (!ECD) continue;  // Already issued a diagnostic.
9630
9631    const llvm::APSInt &InitVal = ECD->getInitVal();
9632
9633    // Keep track of the size of positive and negative values.
9634    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9635      NumPositiveBits = std::max(NumPositiveBits,
9636                                 (unsigned)InitVal.getActiveBits());
9637    else
9638      NumNegativeBits = std::max(NumNegativeBits,
9639                                 (unsigned)InitVal.getMinSignedBits());
9640
9641    // Keep track of whether every enum element has type int (very commmon).
9642    if (AllElementsInt)
9643      AllElementsInt = ECD->getType() == Context.IntTy;
9644  }
9645
9646  // Figure out the type that should be used for this enum.
9647  QualType BestType;
9648  unsigned BestWidth;
9649
9650  // C++0x N3000 [conv.prom]p3:
9651  //   An rvalue of an unscoped enumeration type whose underlying
9652  //   type is not fixed can be converted to an rvalue of the first
9653  //   of the following types that can represent all the values of
9654  //   the enumeration: int, unsigned int, long int, unsigned long
9655  //   int, long long int, or unsigned long long int.
9656  // C99 6.4.4.3p2:
9657  //   An identifier declared as an enumeration constant has type int.
9658  // The C99 rule is modified by a gcc extension
9659  QualType BestPromotionType;
9660
9661  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9662  // -fshort-enums is the equivalent to specifying the packed attribute on all
9663  // enum definitions.
9664  if (LangOpts.ShortEnums)
9665    Packed = true;
9666
9667  if (Enum->isFixed()) {
9668    BestType = BestPromotionType = Enum->getIntegerType();
9669    // We don't need to set BestWidth, because BestType is going to be the type
9670    // of the enumerators, but we do anyway because otherwise some compilers
9671    // warn that it might be used uninitialized.
9672    BestWidth = CharWidth;
9673  }
9674  else if (NumNegativeBits) {
9675    // If there is a negative value, figure out the smallest integer type (of
9676    // int/long/longlong) that fits.
9677    // If it's packed, check also if it fits a char or a short.
9678    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9679      BestType = Context.SignedCharTy;
9680      BestWidth = CharWidth;
9681    } else if (Packed && NumNegativeBits <= ShortWidth &&
9682               NumPositiveBits < ShortWidth) {
9683      BestType = Context.ShortTy;
9684      BestWidth = ShortWidth;
9685    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9686      BestType = Context.IntTy;
9687      BestWidth = IntWidth;
9688    } else {
9689      BestWidth = Context.getTargetInfo().getLongWidth();
9690
9691      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9692        BestType = Context.LongTy;
9693      } else {
9694        BestWidth = Context.getTargetInfo().getLongLongWidth();
9695
9696        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9697          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9698        BestType = Context.LongLongTy;
9699      }
9700    }
9701    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9702  } else {
9703    // If there is no negative value, figure out the smallest type that fits
9704    // all of the enumerator values.
9705    // If it's packed, check also if it fits a char or a short.
9706    if (Packed && NumPositiveBits <= CharWidth) {
9707      BestType = Context.UnsignedCharTy;
9708      BestPromotionType = Context.IntTy;
9709      BestWidth = CharWidth;
9710    } else if (Packed && NumPositiveBits <= ShortWidth) {
9711      BestType = Context.UnsignedShortTy;
9712      BestPromotionType = Context.IntTy;
9713      BestWidth = ShortWidth;
9714    } else if (NumPositiveBits <= IntWidth) {
9715      BestType = Context.UnsignedIntTy;
9716      BestWidth = IntWidth;
9717      BestPromotionType
9718        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9719                           ? Context.UnsignedIntTy : Context.IntTy;
9720    } else if (NumPositiveBits <=
9721               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9722      BestType = Context.UnsignedLongTy;
9723      BestPromotionType
9724        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9725                           ? Context.UnsignedLongTy : Context.LongTy;
9726    } else {
9727      BestWidth = Context.getTargetInfo().getLongLongWidth();
9728      assert(NumPositiveBits <= BestWidth &&
9729             "How could an initializer get larger than ULL?");
9730      BestType = Context.UnsignedLongLongTy;
9731      BestPromotionType
9732        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9733                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9734    }
9735  }
9736
9737  // Loop over all of the enumerator constants, changing their types to match
9738  // the type of the enum if needed.
9739  for (unsigned i = 0; i != NumElements; ++i) {
9740    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9741    if (!ECD) continue;  // Already issued a diagnostic.
9742
9743    // Standard C says the enumerators have int type, but we allow, as an
9744    // extension, the enumerators to be larger than int size.  If each
9745    // enumerator value fits in an int, type it as an int, otherwise type it the
9746    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9747    // that X has type 'int', not 'unsigned'.
9748
9749    // Determine whether the value fits into an int.
9750    llvm::APSInt InitVal = ECD->getInitVal();
9751
9752    // If it fits into an integer type, force it.  Otherwise force it to match
9753    // the enum decl type.
9754    QualType NewTy;
9755    unsigned NewWidth;
9756    bool NewSign;
9757    if (!getLangOptions().CPlusPlus &&
9758        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9759      NewTy = Context.IntTy;
9760      NewWidth = IntWidth;
9761      NewSign = true;
9762    } else if (ECD->getType() == BestType) {
9763      // Already the right type!
9764      if (getLangOptions().CPlusPlus)
9765        // C++ [dcl.enum]p4: Following the closing brace of an
9766        // enum-specifier, each enumerator has the type of its
9767        // enumeration.
9768        ECD->setType(EnumType);
9769      continue;
9770    } else {
9771      NewTy = BestType;
9772      NewWidth = BestWidth;
9773      NewSign = BestType->isSignedIntegerOrEnumerationType();
9774    }
9775
9776    // Adjust the APSInt value.
9777    InitVal = InitVal.extOrTrunc(NewWidth);
9778    InitVal.setIsSigned(NewSign);
9779    ECD->setInitVal(InitVal);
9780
9781    // Adjust the Expr initializer and type.
9782    if (ECD->getInitExpr() &&
9783        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9784      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9785                                                CK_IntegralCast,
9786                                                ECD->getInitExpr(),
9787                                                /*base paths*/ 0,
9788                                                VK_RValue));
9789    if (getLangOptions().CPlusPlus)
9790      // C++ [dcl.enum]p4: Following the closing brace of an
9791      // enum-specifier, each enumerator has the type of its
9792      // enumeration.
9793      ECD->setType(EnumType);
9794    else
9795      ECD->setType(NewTy);
9796  }
9797
9798  Enum->completeDefinition(BestType, BestPromotionType,
9799                           NumPositiveBits, NumNegativeBits);
9800}
9801
9802Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9803                                  SourceLocation StartLoc,
9804                                  SourceLocation EndLoc) {
9805  StringLiteral *AsmString = cast<StringLiteral>(expr);
9806
9807  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9808                                                   AsmString, StartLoc,
9809                                                   EndLoc);
9810  CurContext->addDecl(New);
9811  return New;
9812}
9813
9814DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9815                                   IdentifierInfo &ModuleName,
9816                                   SourceLocation ModuleNameLoc) {
9817  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9818                                                     ModuleName, ModuleNameLoc);
9819  if (!Module)
9820    return true;
9821
9822  // FIXME: Actually create a declaration to describe the module import.
9823  (void)Module;
9824  return DeclResult((Decl *)0);
9825}
9826
9827void
9828Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9829                                         SourceLocation ModulePrivateKeyword) {
9830  assert(!Old->isModulePrivate() && "Old is module-private!");
9831
9832  Diag(New->getLocation(), diag::err_module_private_follows_public)
9833    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9834  Diag(Old->getLocation(), diag::note_previous_declaration)
9835    << Old->getDeclName();
9836
9837  // Drop the __module_private__ from the new declaration, since it's invalid.
9838  New->setModulePrivate(false);
9839}
9840
9841void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9842                             SourceLocation PragmaLoc,
9843                             SourceLocation NameLoc) {
9844  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9845
9846  if (PrevDecl) {
9847    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9848  } else {
9849    (void)WeakUndeclaredIdentifiers.insert(
9850      std::pair<IdentifierInfo*,WeakInfo>
9851        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9852  }
9853}
9854
9855void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9856                                IdentifierInfo* AliasName,
9857                                SourceLocation PragmaLoc,
9858                                SourceLocation NameLoc,
9859                                SourceLocation AliasNameLoc) {
9860  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9861                                    LookupOrdinaryName);
9862  WeakInfo W = WeakInfo(Name, NameLoc);
9863
9864  if (PrevDecl) {
9865    if (!PrevDecl->hasAttr<AliasAttr>())
9866      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9867        DeclApplyPragmaWeak(TUScope, ND, W);
9868  } else {
9869    (void)WeakUndeclaredIdentifiers.insert(
9870      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9871  }
9872}
9873
9874Decl *Sema::getObjCDeclContext() const {
9875  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9876}
9877
9878AvailabilityResult Sema::getCurContextAvailability() const {
9879  const Decl *D = cast<Decl>(getCurLexicalContext());
9880  // A category implicitly has the availability of the interface.
9881  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9882    D = CatD->getClassInterface();
9883
9884  return D->getAvailability();
9885}
9886