SemaDecl.cpp revision cfa88f893915ceb8ae4ce2f17c46c24a4d67502f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->getLinkage() == ExternalLinkage)
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = (decl->getLinkage() == ExternalLinkage);
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825bool Sema::mergeDeclAttribute(NamedDecl *D, InheritableAttr *Attr) {
1826  InheritableAttr *NewAttr = NULL;
1827  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1828    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1829                                    AA->getIntroduced(), AA->getDeprecated(),
1830                                    AA->getObsoleted(), AA->getUnavailable(),
1831                                    AA->getMessage());
1832  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1833    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1834  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1835    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1836  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1837    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1838  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1839    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1840                              FA->getFormatIdx(), FA->getFirstArg());
1841  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1842    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1843  else if (!DeclHasAttr(D, Attr))
1844    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1845
1846  if (NewAttr) {
1847    NewAttr->setInherited(true);
1848    D->addAttr(NewAttr);
1849    return true;
1850  }
1851
1852  return false;
1853}
1854
1855static const Decl *getDefinition(const Decl *D) {
1856  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1857    return TD->getDefinition();
1858  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1859    return VD->getDefinition();
1860  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1861    const FunctionDecl* Def;
1862    if (FD->hasBody(Def))
1863      return Def;
1864  }
1865  return NULL;
1866}
1867
1868static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1869  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1870       I != E; ++I) {
1871    Attr *Attribute = *I;
1872    if (Attribute->getKind() == Kind)
1873      return true;
1874  }
1875  return false;
1876}
1877
1878/// checkNewAttributesAfterDef - If we already have a definition, check that
1879/// there are no new attributes in this declaration.
1880static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1881  if (!New->hasAttrs())
1882    return;
1883
1884  const Decl *Def = getDefinition(Old);
1885  if (!Def || Def == New)
1886    return;
1887
1888  AttrVec &NewAttributes = New->getAttrs();
1889  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1890    const Attr *NewAttribute = NewAttributes[I];
1891    if (hasAttribute(Def, NewAttribute->getKind())) {
1892      ++I;
1893      continue; // regular attr merging will take care of validating this.
1894    }
1895    S.Diag(NewAttribute->getLocation(),
1896           diag::warn_attribute_precede_definition);
1897    S.Diag(Def->getLocation(), diag::note_previous_definition);
1898    NewAttributes.erase(NewAttributes.begin() + I);
1899    --E;
1900  }
1901}
1902
1903/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1904void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
1905                               bool MergeDeprecation) {
1906  // attributes declared post-definition are currently ignored
1907  checkNewAttributesAfterDef(*this, New, Old);
1908
1909  if (!Old->hasAttrs())
1910    return;
1911
1912  bool foundAny = New->hasAttrs();
1913
1914  // Ensure that any moving of objects within the allocated map is done before
1915  // we process them.
1916  if (!foundAny) New->setAttrs(AttrVec());
1917
1918  for (specific_attr_iterator<InheritableAttr>
1919         i = Old->specific_attr_begin<InheritableAttr>(),
1920         e = Old->specific_attr_end<InheritableAttr>();
1921       i != e; ++i) {
1922    // Ignore deprecated/unavailable/availability attributes if requested.
1923    if (!MergeDeprecation &&
1924        (isa<DeprecatedAttr>(*i) ||
1925         isa<UnavailableAttr>(*i) ||
1926         isa<AvailabilityAttr>(*i)))
1927      continue;
1928
1929    if (mergeDeclAttribute(New, *i))
1930      foundAny = true;
1931  }
1932
1933  if (!foundAny) New->dropAttrs();
1934}
1935
1936/// mergeParamDeclAttributes - Copy attributes from the old parameter
1937/// to the new one.
1938static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1939                                     const ParmVarDecl *oldDecl,
1940                                     ASTContext &C) {
1941  if (!oldDecl->hasAttrs())
1942    return;
1943
1944  bool foundAny = newDecl->hasAttrs();
1945
1946  // Ensure that any moving of objects within the allocated map is
1947  // done before we process them.
1948  if (!foundAny) newDecl->setAttrs(AttrVec());
1949
1950  for (specific_attr_iterator<InheritableParamAttr>
1951       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1952       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1953    if (!DeclHasAttr(newDecl, *i)) {
1954      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1955      newAttr->setInherited(true);
1956      newDecl->addAttr(newAttr);
1957      foundAny = true;
1958    }
1959  }
1960
1961  if (!foundAny) newDecl->dropAttrs();
1962}
1963
1964namespace {
1965
1966/// Used in MergeFunctionDecl to keep track of function parameters in
1967/// C.
1968struct GNUCompatibleParamWarning {
1969  ParmVarDecl *OldParm;
1970  ParmVarDecl *NewParm;
1971  QualType PromotedType;
1972};
1973
1974}
1975
1976/// getSpecialMember - get the special member enum for a method.
1977Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1978  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1979    if (Ctor->isDefaultConstructor())
1980      return Sema::CXXDefaultConstructor;
1981
1982    if (Ctor->isCopyConstructor())
1983      return Sema::CXXCopyConstructor;
1984
1985    if (Ctor->isMoveConstructor())
1986      return Sema::CXXMoveConstructor;
1987  } else if (isa<CXXDestructorDecl>(MD)) {
1988    return Sema::CXXDestructor;
1989  } else if (MD->isCopyAssignmentOperator()) {
1990    return Sema::CXXCopyAssignment;
1991  } else if (MD->isMoveAssignmentOperator()) {
1992    return Sema::CXXMoveAssignment;
1993  }
1994
1995  return Sema::CXXInvalid;
1996}
1997
1998/// canRedefineFunction - checks if a function can be redefined. Currently,
1999/// only extern inline functions can be redefined, and even then only in
2000/// GNU89 mode.
2001static bool canRedefineFunction(const FunctionDecl *FD,
2002                                const LangOptions& LangOpts) {
2003  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2004          !LangOpts.CPlusPlus &&
2005          FD->isInlineSpecified() &&
2006          FD->getStorageClass() == SC_Extern);
2007}
2008
2009/// Is the given calling convention the ABI default for the given
2010/// declaration?
2011static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2012  CallingConv ABIDefaultCC;
2013  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2014    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2015  } else {
2016    // Free C function or a static method.
2017    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2018  }
2019  return ABIDefaultCC == CC;
2020}
2021
2022/// MergeFunctionDecl - We just parsed a function 'New' from
2023/// declarator D which has the same name and scope as a previous
2024/// declaration 'Old'.  Figure out how to resolve this situation,
2025/// merging decls or emitting diagnostics as appropriate.
2026///
2027/// In C++, New and Old must be declarations that are not
2028/// overloaded. Use IsOverload to determine whether New and Old are
2029/// overloaded, and to select the Old declaration that New should be
2030/// merged with.
2031///
2032/// Returns true if there was an error, false otherwise.
2033bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2034  // Verify the old decl was also a function.
2035  FunctionDecl *Old = 0;
2036  if (FunctionTemplateDecl *OldFunctionTemplate
2037        = dyn_cast<FunctionTemplateDecl>(OldD))
2038    Old = OldFunctionTemplate->getTemplatedDecl();
2039  else
2040    Old = dyn_cast<FunctionDecl>(OldD);
2041  if (!Old) {
2042    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2043      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2044      Diag(Shadow->getTargetDecl()->getLocation(),
2045           diag::note_using_decl_target);
2046      Diag(Shadow->getUsingDecl()->getLocation(),
2047           diag::note_using_decl) << 0;
2048      return true;
2049    }
2050
2051    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2052      << New->getDeclName();
2053    Diag(OldD->getLocation(), diag::note_previous_definition);
2054    return true;
2055  }
2056
2057  // Determine whether the previous declaration was a definition,
2058  // implicit declaration, or a declaration.
2059  diag::kind PrevDiag;
2060  if (Old->isThisDeclarationADefinition())
2061    PrevDiag = diag::note_previous_definition;
2062  else if (Old->isImplicit())
2063    PrevDiag = diag::note_previous_implicit_declaration;
2064  else
2065    PrevDiag = diag::note_previous_declaration;
2066
2067  QualType OldQType = Context.getCanonicalType(Old->getType());
2068  QualType NewQType = Context.getCanonicalType(New->getType());
2069
2070  // Don't complain about this if we're in GNU89 mode and the old function
2071  // is an extern inline function.
2072  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2073      New->getStorageClass() == SC_Static &&
2074      Old->getStorageClass() != SC_Static &&
2075      !canRedefineFunction(Old, getLangOpts())) {
2076    if (getLangOpts().MicrosoftExt) {
2077      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2078      Diag(Old->getLocation(), PrevDiag);
2079    } else {
2080      Diag(New->getLocation(), diag::err_static_non_static) << New;
2081      Diag(Old->getLocation(), PrevDiag);
2082      return true;
2083    }
2084  }
2085
2086  // If a function is first declared with a calling convention, but is
2087  // later declared or defined without one, the second decl assumes the
2088  // calling convention of the first.
2089  //
2090  // It's OK if a function is first declared without a calling convention,
2091  // but is later declared or defined with the default calling convention.
2092  //
2093  // For the new decl, we have to look at the NON-canonical type to tell the
2094  // difference between a function that really doesn't have a calling
2095  // convention and one that is declared cdecl. That's because in
2096  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2097  // because it is the default calling convention.
2098  //
2099  // Note also that we DO NOT return at this point, because we still have
2100  // other tests to run.
2101  const FunctionType *OldType = cast<FunctionType>(OldQType);
2102  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2103  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2104  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2105  bool RequiresAdjustment = false;
2106  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2107    // Fast path: nothing to do.
2108
2109  // Inherit the CC from the previous declaration if it was specified
2110  // there but not here.
2111  } else if (NewTypeInfo.getCC() == CC_Default) {
2112    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2113    RequiresAdjustment = true;
2114
2115  // Don't complain about mismatches when the default CC is
2116  // effectively the same as the explict one.
2117  } else if (OldTypeInfo.getCC() == CC_Default &&
2118             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2119    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2120    RequiresAdjustment = true;
2121
2122  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2123                                     NewTypeInfo.getCC())) {
2124    // Calling conventions really aren't compatible, so complain.
2125    Diag(New->getLocation(), diag::err_cconv_change)
2126      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2127      << (OldTypeInfo.getCC() == CC_Default)
2128      << (OldTypeInfo.getCC() == CC_Default ? "" :
2129          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2130    Diag(Old->getLocation(), diag::note_previous_declaration);
2131    return true;
2132  }
2133
2134  // FIXME: diagnose the other way around?
2135  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2136    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2137    RequiresAdjustment = true;
2138  }
2139
2140  // Merge regparm attribute.
2141  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2142      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2143    if (NewTypeInfo.getHasRegParm()) {
2144      Diag(New->getLocation(), diag::err_regparm_mismatch)
2145        << NewType->getRegParmType()
2146        << OldType->getRegParmType();
2147      Diag(Old->getLocation(), diag::note_previous_declaration);
2148      return true;
2149    }
2150
2151    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2152    RequiresAdjustment = true;
2153  }
2154
2155  // Merge ns_returns_retained attribute.
2156  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2157    if (NewTypeInfo.getProducesResult()) {
2158      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2159      Diag(Old->getLocation(), diag::note_previous_declaration);
2160      return true;
2161    }
2162
2163    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2164    RequiresAdjustment = true;
2165  }
2166
2167  if (RequiresAdjustment) {
2168    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2169    New->setType(QualType(NewType, 0));
2170    NewQType = Context.getCanonicalType(New->getType());
2171  }
2172
2173  if (getLangOpts().CPlusPlus) {
2174    // (C++98 13.1p2):
2175    //   Certain function declarations cannot be overloaded:
2176    //     -- Function declarations that differ only in the return type
2177    //        cannot be overloaded.
2178    QualType OldReturnType = OldType->getResultType();
2179    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2180    QualType ResQT;
2181    if (OldReturnType != NewReturnType) {
2182      if (NewReturnType->isObjCObjectPointerType()
2183          && OldReturnType->isObjCObjectPointerType())
2184        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2185      if (ResQT.isNull()) {
2186        if (New->isCXXClassMember() && New->isOutOfLine())
2187          Diag(New->getLocation(),
2188               diag::err_member_def_does_not_match_ret_type) << New;
2189        else
2190          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2191        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2192        return true;
2193      }
2194      else
2195        NewQType = ResQT;
2196    }
2197
2198    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2199    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2200    if (OldMethod && NewMethod) {
2201      // Preserve triviality.
2202      NewMethod->setTrivial(OldMethod->isTrivial());
2203
2204      // MSVC allows explicit template specialization at class scope:
2205      // 2 CXMethodDecls referring to the same function will be injected.
2206      // We don't want a redeclartion error.
2207      bool IsClassScopeExplicitSpecialization =
2208                              OldMethod->isFunctionTemplateSpecialization() &&
2209                              NewMethod->isFunctionTemplateSpecialization();
2210      bool isFriend = NewMethod->getFriendObjectKind();
2211
2212      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2213          !IsClassScopeExplicitSpecialization) {
2214        //    -- Member function declarations with the same name and the
2215        //       same parameter types cannot be overloaded if any of them
2216        //       is a static member function declaration.
2217        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2218          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2219          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2220          return true;
2221        }
2222
2223        // C++ [class.mem]p1:
2224        //   [...] A member shall not be declared twice in the
2225        //   member-specification, except that a nested class or member
2226        //   class template can be declared and then later defined.
2227        if (ActiveTemplateInstantiations.empty()) {
2228          unsigned NewDiag;
2229          if (isa<CXXConstructorDecl>(OldMethod))
2230            NewDiag = diag::err_constructor_redeclared;
2231          else if (isa<CXXDestructorDecl>(NewMethod))
2232            NewDiag = diag::err_destructor_redeclared;
2233          else if (isa<CXXConversionDecl>(NewMethod))
2234            NewDiag = diag::err_conv_function_redeclared;
2235          else
2236            NewDiag = diag::err_member_redeclared;
2237
2238          Diag(New->getLocation(), NewDiag);
2239        } else {
2240          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2241            << New << New->getType();
2242        }
2243        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2244
2245      // Complain if this is an explicit declaration of a special
2246      // member that was initially declared implicitly.
2247      //
2248      // As an exception, it's okay to befriend such methods in order
2249      // to permit the implicit constructor/destructor/operator calls.
2250      } else if (OldMethod->isImplicit()) {
2251        if (isFriend) {
2252          NewMethod->setImplicit();
2253        } else {
2254          Diag(NewMethod->getLocation(),
2255               diag::err_definition_of_implicitly_declared_member)
2256            << New << getSpecialMember(OldMethod);
2257          return true;
2258        }
2259      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2260        Diag(NewMethod->getLocation(),
2261             diag::err_definition_of_explicitly_defaulted_member)
2262          << getSpecialMember(OldMethod);
2263        return true;
2264      }
2265    }
2266
2267    // (C++98 8.3.5p3):
2268    //   All declarations for a function shall agree exactly in both the
2269    //   return type and the parameter-type-list.
2270    // We also want to respect all the extended bits except noreturn.
2271
2272    // noreturn should now match unless the old type info didn't have it.
2273    QualType OldQTypeForComparison = OldQType;
2274    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2275      assert(OldQType == QualType(OldType, 0));
2276      const FunctionType *OldTypeForComparison
2277        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2278      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2279      assert(OldQTypeForComparison.isCanonical());
2280    }
2281
2282    if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2283      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2284      Diag(Old->getLocation(), PrevDiag);
2285      return true;
2286    }
2287
2288    if (OldQTypeForComparison == NewQType)
2289      return MergeCompatibleFunctionDecls(New, Old, S);
2290
2291    // Fall through for conflicting redeclarations and redefinitions.
2292  }
2293
2294  // C: Function types need to be compatible, not identical. This handles
2295  // duplicate function decls like "void f(int); void f(enum X);" properly.
2296  if (!getLangOpts().CPlusPlus &&
2297      Context.typesAreCompatible(OldQType, NewQType)) {
2298    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2299    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2300    const FunctionProtoType *OldProto = 0;
2301    if (isa<FunctionNoProtoType>(NewFuncType) &&
2302        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2303      // The old declaration provided a function prototype, but the
2304      // new declaration does not. Merge in the prototype.
2305      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2306      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2307                                                 OldProto->arg_type_end());
2308      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2309                                         ParamTypes.data(), ParamTypes.size(),
2310                                         OldProto->getExtProtoInfo());
2311      New->setType(NewQType);
2312      New->setHasInheritedPrototype();
2313
2314      // Synthesize a parameter for each argument type.
2315      SmallVector<ParmVarDecl*, 16> Params;
2316      for (FunctionProtoType::arg_type_iterator
2317             ParamType = OldProto->arg_type_begin(),
2318             ParamEnd = OldProto->arg_type_end();
2319           ParamType != ParamEnd; ++ParamType) {
2320        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2321                                                 SourceLocation(),
2322                                                 SourceLocation(), 0,
2323                                                 *ParamType, /*TInfo=*/0,
2324                                                 SC_None, SC_None,
2325                                                 0);
2326        Param->setScopeInfo(0, Params.size());
2327        Param->setImplicit();
2328        Params.push_back(Param);
2329      }
2330
2331      New->setParams(Params);
2332    }
2333
2334    return MergeCompatibleFunctionDecls(New, Old, S);
2335  }
2336
2337  // GNU C permits a K&R definition to follow a prototype declaration
2338  // if the declared types of the parameters in the K&R definition
2339  // match the types in the prototype declaration, even when the
2340  // promoted types of the parameters from the K&R definition differ
2341  // from the types in the prototype. GCC then keeps the types from
2342  // the prototype.
2343  //
2344  // If a variadic prototype is followed by a non-variadic K&R definition,
2345  // the K&R definition becomes variadic.  This is sort of an edge case, but
2346  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2347  // C99 6.9.1p8.
2348  if (!getLangOpts().CPlusPlus &&
2349      Old->hasPrototype() && !New->hasPrototype() &&
2350      New->getType()->getAs<FunctionProtoType>() &&
2351      Old->getNumParams() == New->getNumParams()) {
2352    SmallVector<QualType, 16> ArgTypes;
2353    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2354    const FunctionProtoType *OldProto
2355      = Old->getType()->getAs<FunctionProtoType>();
2356    const FunctionProtoType *NewProto
2357      = New->getType()->getAs<FunctionProtoType>();
2358
2359    // Determine whether this is the GNU C extension.
2360    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2361                                               NewProto->getResultType());
2362    bool LooseCompatible = !MergedReturn.isNull();
2363    for (unsigned Idx = 0, End = Old->getNumParams();
2364         LooseCompatible && Idx != End; ++Idx) {
2365      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2366      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2367      if (Context.typesAreCompatible(OldParm->getType(),
2368                                     NewProto->getArgType(Idx))) {
2369        ArgTypes.push_back(NewParm->getType());
2370      } else if (Context.typesAreCompatible(OldParm->getType(),
2371                                            NewParm->getType(),
2372                                            /*CompareUnqualified=*/true)) {
2373        GNUCompatibleParamWarning Warn
2374          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2375        Warnings.push_back(Warn);
2376        ArgTypes.push_back(NewParm->getType());
2377      } else
2378        LooseCompatible = false;
2379    }
2380
2381    if (LooseCompatible) {
2382      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2383        Diag(Warnings[Warn].NewParm->getLocation(),
2384             diag::ext_param_promoted_not_compatible_with_prototype)
2385          << Warnings[Warn].PromotedType
2386          << Warnings[Warn].OldParm->getType();
2387        if (Warnings[Warn].OldParm->getLocation().isValid())
2388          Diag(Warnings[Warn].OldParm->getLocation(),
2389               diag::note_previous_declaration);
2390      }
2391
2392      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2393                                           ArgTypes.size(),
2394                                           OldProto->getExtProtoInfo()));
2395      return MergeCompatibleFunctionDecls(New, Old, S);
2396    }
2397
2398    // Fall through to diagnose conflicting types.
2399  }
2400
2401  // A function that has already been declared has been redeclared or defined
2402  // with a different type- show appropriate diagnostic
2403  if (unsigned BuiltinID = Old->getBuiltinID()) {
2404    // The user has declared a builtin function with an incompatible
2405    // signature.
2406    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2407      // The function the user is redeclaring is a library-defined
2408      // function like 'malloc' or 'printf'. Warn about the
2409      // redeclaration, then pretend that we don't know about this
2410      // library built-in.
2411      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2412      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2413        << Old << Old->getType();
2414      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2415      Old->setInvalidDecl();
2416      return false;
2417    }
2418
2419    PrevDiag = diag::note_previous_builtin_declaration;
2420  }
2421
2422  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2423  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2424  return true;
2425}
2426
2427/// \brief Completes the merge of two function declarations that are
2428/// known to be compatible.
2429///
2430/// This routine handles the merging of attributes and other
2431/// properties of function declarations form the old declaration to
2432/// the new declaration, once we know that New is in fact a
2433/// redeclaration of Old.
2434///
2435/// \returns false
2436bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2437                                        Scope *S) {
2438  // Merge the attributes
2439  mergeDeclAttributes(New, Old);
2440
2441  // Merge the storage class.
2442  if (Old->getStorageClass() != SC_Extern &&
2443      Old->getStorageClass() != SC_None)
2444    New->setStorageClass(Old->getStorageClass());
2445
2446  // Merge "pure" flag.
2447  if (Old->isPure())
2448    New->setPure();
2449
2450  // Merge "used" flag.
2451  if (Old->isUsed(false))
2452    New->setUsed();
2453
2454  // Merge attributes from the parameters.  These can mismatch with K&R
2455  // declarations.
2456  if (New->getNumParams() == Old->getNumParams())
2457    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2458      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2459                               Context);
2460
2461  if (getLangOpts().CPlusPlus)
2462    return MergeCXXFunctionDecl(New, Old, S);
2463
2464  // Merge the function types so the we get the composite types for the return
2465  // and argument types.
2466  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2467  if (!Merged.isNull())
2468    New->setType(Merged);
2469
2470  return false;
2471}
2472
2473
2474void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2475                                ObjCMethodDecl *oldMethod) {
2476
2477  // Merge the attributes, including deprecated/unavailable
2478  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2479
2480  // Merge attributes from the parameters.
2481  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2482                                       oe = oldMethod->param_end();
2483  for (ObjCMethodDecl::param_iterator
2484         ni = newMethod->param_begin(), ne = newMethod->param_end();
2485       ni != ne && oi != oe; ++ni, ++oi)
2486    mergeParamDeclAttributes(*ni, *oi, Context);
2487
2488  CheckObjCMethodOverride(newMethod, oldMethod, true);
2489}
2490
2491/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2492/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2493/// emitting diagnostics as appropriate.
2494///
2495/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2496/// to here in AddInitializerToDecl. We can't check them before the initializer
2497/// is attached.
2498void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2499  if (New->isInvalidDecl() || Old->isInvalidDecl())
2500    return;
2501
2502  QualType MergedT;
2503  if (getLangOpts().CPlusPlus) {
2504    AutoType *AT = New->getType()->getContainedAutoType();
2505    if (AT && !AT->isDeduced()) {
2506      // We don't know what the new type is until the initializer is attached.
2507      return;
2508    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2509      // These could still be something that needs exception specs checked.
2510      return MergeVarDeclExceptionSpecs(New, Old);
2511    }
2512    // C++ [basic.link]p10:
2513    //   [...] the types specified by all declarations referring to a given
2514    //   object or function shall be identical, except that declarations for an
2515    //   array object can specify array types that differ by the presence or
2516    //   absence of a major array bound (8.3.4).
2517    else if (Old->getType()->isIncompleteArrayType() &&
2518             New->getType()->isArrayType()) {
2519      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2520      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2521      if (Context.hasSameType(OldArray->getElementType(),
2522                              NewArray->getElementType()))
2523        MergedT = New->getType();
2524    } else if (Old->getType()->isArrayType() &&
2525             New->getType()->isIncompleteArrayType()) {
2526      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2527      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2528      if (Context.hasSameType(OldArray->getElementType(),
2529                              NewArray->getElementType()))
2530        MergedT = Old->getType();
2531    } else if (New->getType()->isObjCObjectPointerType()
2532               && Old->getType()->isObjCObjectPointerType()) {
2533        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2534                                                        Old->getType());
2535    }
2536  } else {
2537    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2538  }
2539  if (MergedT.isNull()) {
2540    Diag(New->getLocation(), diag::err_redefinition_different_type)
2541      << New->getDeclName() << New->getType() << Old->getType();
2542    Diag(Old->getLocation(), diag::note_previous_definition);
2543    return New->setInvalidDecl();
2544  }
2545  New->setType(MergedT);
2546}
2547
2548/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2549/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2550/// situation, merging decls or emitting diagnostics as appropriate.
2551///
2552/// Tentative definition rules (C99 6.9.2p2) are checked by
2553/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2554/// definitions here, since the initializer hasn't been attached.
2555///
2556void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2557  // If the new decl is already invalid, don't do any other checking.
2558  if (New->isInvalidDecl())
2559    return;
2560
2561  // Verify the old decl was also a variable.
2562  VarDecl *Old = 0;
2563  if (!Previous.isSingleResult() ||
2564      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2565    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2566      << New->getDeclName();
2567    Diag(Previous.getRepresentativeDecl()->getLocation(),
2568         diag::note_previous_definition);
2569    return New->setInvalidDecl();
2570  }
2571
2572  // C++ [class.mem]p1:
2573  //   A member shall not be declared twice in the member-specification [...]
2574  //
2575  // Here, we need only consider static data members.
2576  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2577    Diag(New->getLocation(), diag::err_duplicate_member)
2578      << New->getIdentifier();
2579    Diag(Old->getLocation(), diag::note_previous_declaration);
2580    New->setInvalidDecl();
2581  }
2582
2583  mergeDeclAttributes(New, Old);
2584  // Warn if an already-declared variable is made a weak_import in a subsequent
2585  // declaration
2586  if (New->getAttr<WeakImportAttr>() &&
2587      Old->getStorageClass() == SC_None &&
2588      !Old->getAttr<WeakImportAttr>()) {
2589    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2590    Diag(Old->getLocation(), diag::note_previous_definition);
2591    // Remove weak_import attribute on new declaration.
2592    New->dropAttr<WeakImportAttr>();
2593  }
2594
2595  // Merge the types.
2596  MergeVarDeclTypes(New, Old);
2597  if (New->isInvalidDecl())
2598    return;
2599
2600  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2601  if (New->getStorageClass() == SC_Static &&
2602      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2603    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2604    Diag(Old->getLocation(), diag::note_previous_definition);
2605    return New->setInvalidDecl();
2606  }
2607  // C99 6.2.2p4:
2608  //   For an identifier declared with the storage-class specifier
2609  //   extern in a scope in which a prior declaration of that
2610  //   identifier is visible,23) if the prior declaration specifies
2611  //   internal or external linkage, the linkage of the identifier at
2612  //   the later declaration is the same as the linkage specified at
2613  //   the prior declaration. If no prior declaration is visible, or
2614  //   if the prior declaration specifies no linkage, then the
2615  //   identifier has external linkage.
2616  if (New->hasExternalStorage() && Old->hasLinkage())
2617    /* Okay */;
2618  else if (New->getStorageClass() != SC_Static &&
2619           Old->getStorageClass() == SC_Static) {
2620    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2621    Diag(Old->getLocation(), diag::note_previous_definition);
2622    return New->setInvalidDecl();
2623  }
2624
2625  // Check if extern is followed by non-extern and vice-versa.
2626  if (New->hasExternalStorage() &&
2627      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2628    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2629    Diag(Old->getLocation(), diag::note_previous_definition);
2630    return New->setInvalidDecl();
2631  }
2632  if (Old->hasExternalStorage() &&
2633      !New->hasLinkage() && New->isLocalVarDecl()) {
2634    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2635    Diag(Old->getLocation(), diag::note_previous_definition);
2636    return New->setInvalidDecl();
2637  }
2638
2639  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2640
2641  // FIXME: The test for external storage here seems wrong? We still
2642  // need to check for mismatches.
2643  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2644      // Don't complain about out-of-line definitions of static members.
2645      !(Old->getLexicalDeclContext()->isRecord() &&
2646        !New->getLexicalDeclContext()->isRecord())) {
2647    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2648    Diag(Old->getLocation(), diag::note_previous_definition);
2649    return New->setInvalidDecl();
2650  }
2651
2652  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2653    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2654    Diag(Old->getLocation(), diag::note_previous_definition);
2655  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2656    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2657    Diag(Old->getLocation(), diag::note_previous_definition);
2658  }
2659
2660  // C++ doesn't have tentative definitions, so go right ahead and check here.
2661  const VarDecl *Def;
2662  if (getLangOpts().CPlusPlus &&
2663      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2664      (Def = Old->getDefinition())) {
2665    Diag(New->getLocation(), diag::err_redefinition)
2666      << New->getDeclName();
2667    Diag(Def->getLocation(), diag::note_previous_definition);
2668    New->setInvalidDecl();
2669    return;
2670  }
2671
2672  if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2673    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2674    Diag(Old->getLocation(), diag::note_previous_definition);
2675    New->setInvalidDecl();
2676    return;
2677  }
2678
2679  // c99 6.2.2 P4.
2680  // For an identifier declared with the storage-class specifier extern in a
2681  // scope in which a prior declaration of that identifier is visible, if
2682  // the prior declaration specifies internal or external linkage, the linkage
2683  // of the identifier at the later declaration is the same as the linkage
2684  // specified at the prior declaration.
2685  // FIXME. revisit this code.
2686  if (New->hasExternalStorage() &&
2687      Old->getLinkage() == InternalLinkage)
2688    New->setStorageClass(Old->getStorageClass());
2689
2690  // Merge "used" flag.
2691  if (Old->isUsed(false))
2692    New->setUsed();
2693
2694  // Keep a chain of previous declarations.
2695  New->setPreviousDeclaration(Old);
2696
2697  // Inherit access appropriately.
2698  New->setAccess(Old->getAccess());
2699}
2700
2701/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2702/// no declarator (e.g. "struct foo;") is parsed.
2703Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2704                                       DeclSpec &DS) {
2705  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2706}
2707
2708/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2709/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2710/// parameters to cope with template friend declarations.
2711Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2712                                       DeclSpec &DS,
2713                                       MultiTemplateParamsArg TemplateParams) {
2714  Decl *TagD = 0;
2715  TagDecl *Tag = 0;
2716  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2717      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2718      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2719      DS.getTypeSpecType() == DeclSpec::TST_union ||
2720      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2721    TagD = DS.getRepAsDecl();
2722
2723    if (!TagD) // We probably had an error
2724      return 0;
2725
2726    // Note that the above type specs guarantee that the
2727    // type rep is a Decl, whereas in many of the others
2728    // it's a Type.
2729    if (isa<TagDecl>(TagD))
2730      Tag = cast<TagDecl>(TagD);
2731    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2732      Tag = CTD->getTemplatedDecl();
2733  }
2734
2735  if (Tag) {
2736    getASTContext().addUnnamedTag(Tag);
2737    Tag->setFreeStanding();
2738    if (Tag->isInvalidDecl())
2739      return Tag;
2740  }
2741
2742  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2743    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2744    // or incomplete types shall not be restrict-qualified."
2745    if (TypeQuals & DeclSpec::TQ_restrict)
2746      Diag(DS.getRestrictSpecLoc(),
2747           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2748           << DS.getSourceRange();
2749  }
2750
2751  if (DS.isConstexprSpecified()) {
2752    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2753    // and definitions of functions and variables.
2754    if (Tag)
2755      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2756        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2757            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2758            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2759            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2760    else
2761      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2762    // Don't emit warnings after this error.
2763    return TagD;
2764  }
2765
2766  if (DS.isFriendSpecified()) {
2767    // If we're dealing with a decl but not a TagDecl, assume that
2768    // whatever routines created it handled the friendship aspect.
2769    if (TagD && !Tag)
2770      return 0;
2771    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2772  }
2773
2774  // Track whether we warned about the fact that there aren't any
2775  // declarators.
2776  bool emittedWarning = false;
2777
2778  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2779    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2780        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2781      if (getLangOpts().CPlusPlus ||
2782          Record->getDeclContext()->isRecord())
2783        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2784
2785      Diag(DS.getLocStart(), diag::ext_no_declarators)
2786        << DS.getSourceRange();
2787      emittedWarning = true;
2788    }
2789  }
2790
2791  // Check for Microsoft C extension: anonymous struct.
2792  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2793      CurContext->isRecord() &&
2794      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2795    // Handle 2 kinds of anonymous struct:
2796    //   struct STRUCT;
2797    // and
2798    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2799    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2800    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2801        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2802         DS.getRepAsType().get()->isStructureType())) {
2803      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2804        << DS.getSourceRange();
2805      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2806    }
2807  }
2808
2809  if (getLangOpts().CPlusPlus &&
2810      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2811    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2812      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2813          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2814        Diag(Enum->getLocation(), diag::ext_no_declarators)
2815          << DS.getSourceRange();
2816        emittedWarning = true;
2817      }
2818
2819  // Skip all the checks below if we have a type error.
2820  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2821
2822  if (!DS.isMissingDeclaratorOk()) {
2823    // Warn about typedefs of enums without names, since this is an
2824    // extension in both Microsoft and GNU.
2825    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2826        Tag && isa<EnumDecl>(Tag)) {
2827      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2828        << DS.getSourceRange();
2829      return Tag;
2830    }
2831
2832    Diag(DS.getLocStart(), diag::ext_no_declarators)
2833      << DS.getSourceRange();
2834    emittedWarning = true;
2835  }
2836
2837  // We're going to complain about a bunch of spurious specifiers;
2838  // only do this if we're declaring a tag, because otherwise we
2839  // should be getting diag::ext_no_declarators.
2840  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2841    return TagD;
2842
2843  // Note that a linkage-specification sets a storage class, but
2844  // 'extern "C" struct foo;' is actually valid and not theoretically
2845  // useless.
2846  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2847    if (!DS.isExternInLinkageSpec())
2848      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2849        << DeclSpec::getSpecifierName(scs);
2850
2851  if (DS.isThreadSpecified())
2852    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2853  if (DS.getTypeQualifiers()) {
2854    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2855      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2856    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2857      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2858    // Restrict is covered above.
2859  }
2860  if (DS.isInlineSpecified())
2861    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2862  if (DS.isVirtualSpecified())
2863    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2864  if (DS.isExplicitSpecified())
2865    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2866
2867  if (DS.isModulePrivateSpecified() &&
2868      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2869    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2870      << Tag->getTagKind()
2871      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2872
2873  // Warn about ignored type attributes, for example:
2874  // __attribute__((aligned)) struct A;
2875  // Attributes should be placed after tag to apply to type declaration.
2876  if (!DS.getAttributes().empty()) {
2877    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2878    if (TypeSpecType == DeclSpec::TST_class ||
2879        TypeSpecType == DeclSpec::TST_struct ||
2880        TypeSpecType == DeclSpec::TST_interface ||
2881        TypeSpecType == DeclSpec::TST_union ||
2882        TypeSpecType == DeclSpec::TST_enum) {
2883      AttributeList* attrs = DS.getAttributes().getList();
2884      while (attrs) {
2885        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2886        << attrs->getName()
2887        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2888            TypeSpecType == DeclSpec::TST_struct ? 1 :
2889            TypeSpecType == DeclSpec::TST_union ? 2 :
2890            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2891        attrs = attrs->getNext();
2892      }
2893    }
2894  }
2895
2896  ActOnDocumentableDecl(TagD);
2897
2898  return TagD;
2899}
2900
2901/// We are trying to inject an anonymous member into the given scope;
2902/// check if there's an existing declaration that can't be overloaded.
2903///
2904/// \return true if this is a forbidden redeclaration
2905static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2906                                         Scope *S,
2907                                         DeclContext *Owner,
2908                                         DeclarationName Name,
2909                                         SourceLocation NameLoc,
2910                                         unsigned diagnostic) {
2911  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2912                 Sema::ForRedeclaration);
2913  if (!SemaRef.LookupName(R, S)) return false;
2914
2915  if (R.getAsSingle<TagDecl>())
2916    return false;
2917
2918  // Pick a representative declaration.
2919  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2920  assert(PrevDecl && "Expected a non-null Decl");
2921
2922  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2923    return false;
2924
2925  SemaRef.Diag(NameLoc, diagnostic) << Name;
2926  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2927
2928  return true;
2929}
2930
2931/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2932/// anonymous struct or union AnonRecord into the owning context Owner
2933/// and scope S. This routine will be invoked just after we realize
2934/// that an unnamed union or struct is actually an anonymous union or
2935/// struct, e.g.,
2936///
2937/// @code
2938/// union {
2939///   int i;
2940///   float f;
2941/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2942///    // f into the surrounding scope.x
2943/// @endcode
2944///
2945/// This routine is recursive, injecting the names of nested anonymous
2946/// structs/unions into the owning context and scope as well.
2947static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2948                                                DeclContext *Owner,
2949                                                RecordDecl *AnonRecord,
2950                                                AccessSpecifier AS,
2951                              SmallVector<NamedDecl*, 2> &Chaining,
2952                                                      bool MSAnonStruct) {
2953  unsigned diagKind
2954    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2955                            : diag::err_anonymous_struct_member_redecl;
2956
2957  bool Invalid = false;
2958
2959  // Look every FieldDecl and IndirectFieldDecl with a name.
2960  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2961                               DEnd = AnonRecord->decls_end();
2962       D != DEnd; ++D) {
2963    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2964        cast<NamedDecl>(*D)->getDeclName()) {
2965      ValueDecl *VD = cast<ValueDecl>(*D);
2966      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2967                                       VD->getLocation(), diagKind)) {
2968        // C++ [class.union]p2:
2969        //   The names of the members of an anonymous union shall be
2970        //   distinct from the names of any other entity in the
2971        //   scope in which the anonymous union is declared.
2972        Invalid = true;
2973      } else {
2974        // C++ [class.union]p2:
2975        //   For the purpose of name lookup, after the anonymous union
2976        //   definition, the members of the anonymous union are
2977        //   considered to have been defined in the scope in which the
2978        //   anonymous union is declared.
2979        unsigned OldChainingSize = Chaining.size();
2980        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2981          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2982               PE = IF->chain_end(); PI != PE; ++PI)
2983            Chaining.push_back(*PI);
2984        else
2985          Chaining.push_back(VD);
2986
2987        assert(Chaining.size() >= 2);
2988        NamedDecl **NamedChain =
2989          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2990        for (unsigned i = 0; i < Chaining.size(); i++)
2991          NamedChain[i] = Chaining[i];
2992
2993        IndirectFieldDecl* IndirectField =
2994          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2995                                    VD->getIdentifier(), VD->getType(),
2996                                    NamedChain, Chaining.size());
2997
2998        IndirectField->setAccess(AS);
2999        IndirectField->setImplicit();
3000        SemaRef.PushOnScopeChains(IndirectField, S);
3001
3002        // That includes picking up the appropriate access specifier.
3003        if (AS != AS_none) IndirectField->setAccess(AS);
3004
3005        Chaining.resize(OldChainingSize);
3006      }
3007    }
3008  }
3009
3010  return Invalid;
3011}
3012
3013/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3014/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3015/// illegal input values are mapped to SC_None.
3016static StorageClass
3017StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3018  switch (StorageClassSpec) {
3019  case DeclSpec::SCS_unspecified:    return SC_None;
3020  case DeclSpec::SCS_extern:         return SC_Extern;
3021  case DeclSpec::SCS_static:         return SC_Static;
3022  case DeclSpec::SCS_auto:           return SC_Auto;
3023  case DeclSpec::SCS_register:       return SC_Register;
3024  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3025    // Illegal SCSs map to None: error reporting is up to the caller.
3026  case DeclSpec::SCS_mutable:        // Fall through.
3027  case DeclSpec::SCS_typedef:        return SC_None;
3028  }
3029  llvm_unreachable("unknown storage class specifier");
3030}
3031
3032/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3033/// a StorageClass. Any error reporting is up to the caller:
3034/// illegal input values are mapped to SC_None.
3035static StorageClass
3036StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3037  switch (StorageClassSpec) {
3038  case DeclSpec::SCS_unspecified:    return SC_None;
3039  case DeclSpec::SCS_extern:         return SC_Extern;
3040  case DeclSpec::SCS_static:         return SC_Static;
3041  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3042    // Illegal SCSs map to None: error reporting is up to the caller.
3043  case DeclSpec::SCS_auto:           // Fall through.
3044  case DeclSpec::SCS_mutable:        // Fall through.
3045  case DeclSpec::SCS_register:       // Fall through.
3046  case DeclSpec::SCS_typedef:        return SC_None;
3047  }
3048  llvm_unreachable("unknown storage class specifier");
3049}
3050
3051/// BuildAnonymousStructOrUnion - Handle the declaration of an
3052/// anonymous structure or union. Anonymous unions are a C++ feature
3053/// (C++ [class.union]) and a C11 feature; anonymous structures
3054/// are a C11 feature and GNU C++ extension.
3055Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3056                                             AccessSpecifier AS,
3057                                             RecordDecl *Record) {
3058  DeclContext *Owner = Record->getDeclContext();
3059
3060  // Diagnose whether this anonymous struct/union is an extension.
3061  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3062    Diag(Record->getLocation(), diag::ext_anonymous_union);
3063  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3064    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3065  else if (!Record->isUnion() && !getLangOpts().C11)
3066    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3067
3068  // C and C++ require different kinds of checks for anonymous
3069  // structs/unions.
3070  bool Invalid = false;
3071  if (getLangOpts().CPlusPlus) {
3072    const char* PrevSpec = 0;
3073    unsigned DiagID;
3074    if (Record->isUnion()) {
3075      // C++ [class.union]p6:
3076      //   Anonymous unions declared in a named namespace or in the
3077      //   global namespace shall be declared static.
3078      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3079          (isa<TranslationUnitDecl>(Owner) ||
3080           (isa<NamespaceDecl>(Owner) &&
3081            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3082        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3083          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3084
3085        // Recover by adding 'static'.
3086        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3087                               PrevSpec, DiagID);
3088      }
3089      // C++ [class.union]p6:
3090      //   A storage class is not allowed in a declaration of an
3091      //   anonymous union in a class scope.
3092      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3093               isa<RecordDecl>(Owner)) {
3094        Diag(DS.getStorageClassSpecLoc(),
3095             diag::err_anonymous_union_with_storage_spec)
3096          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3097
3098        // Recover by removing the storage specifier.
3099        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3100                               SourceLocation(),
3101                               PrevSpec, DiagID);
3102      }
3103    }
3104
3105    // Ignore const/volatile/restrict qualifiers.
3106    if (DS.getTypeQualifiers()) {
3107      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3108        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3109          << Record->isUnion() << 0
3110          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3111      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3112        Diag(DS.getVolatileSpecLoc(),
3113             diag::ext_anonymous_struct_union_qualified)
3114          << Record->isUnion() << 1
3115          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3116      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3117        Diag(DS.getRestrictSpecLoc(),
3118             diag::ext_anonymous_struct_union_qualified)
3119          << Record->isUnion() << 2
3120          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3121
3122      DS.ClearTypeQualifiers();
3123    }
3124
3125    // C++ [class.union]p2:
3126    //   The member-specification of an anonymous union shall only
3127    //   define non-static data members. [Note: nested types and
3128    //   functions cannot be declared within an anonymous union. ]
3129    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3130                                 MemEnd = Record->decls_end();
3131         Mem != MemEnd; ++Mem) {
3132      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3133        // C++ [class.union]p3:
3134        //   An anonymous union shall not have private or protected
3135        //   members (clause 11).
3136        assert(FD->getAccess() != AS_none);
3137        if (FD->getAccess() != AS_public) {
3138          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3139            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3140          Invalid = true;
3141        }
3142
3143        // C++ [class.union]p1
3144        //   An object of a class with a non-trivial constructor, a non-trivial
3145        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3146        //   assignment operator cannot be a member of a union, nor can an
3147        //   array of such objects.
3148        if (CheckNontrivialField(FD))
3149          Invalid = true;
3150      } else if ((*Mem)->isImplicit()) {
3151        // Any implicit members are fine.
3152      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3153        // This is a type that showed up in an
3154        // elaborated-type-specifier inside the anonymous struct or
3155        // union, but which actually declares a type outside of the
3156        // anonymous struct or union. It's okay.
3157      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3158        if (!MemRecord->isAnonymousStructOrUnion() &&
3159            MemRecord->getDeclName()) {
3160          // Visual C++ allows type definition in anonymous struct or union.
3161          if (getLangOpts().MicrosoftExt)
3162            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3163              << (int)Record->isUnion();
3164          else {
3165            // This is a nested type declaration.
3166            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3167              << (int)Record->isUnion();
3168            Invalid = true;
3169          }
3170        }
3171      } else if (isa<AccessSpecDecl>(*Mem)) {
3172        // Any access specifier is fine.
3173      } else {
3174        // We have something that isn't a non-static data
3175        // member. Complain about it.
3176        unsigned DK = diag::err_anonymous_record_bad_member;
3177        if (isa<TypeDecl>(*Mem))
3178          DK = diag::err_anonymous_record_with_type;
3179        else if (isa<FunctionDecl>(*Mem))
3180          DK = diag::err_anonymous_record_with_function;
3181        else if (isa<VarDecl>(*Mem))
3182          DK = diag::err_anonymous_record_with_static;
3183
3184        // Visual C++ allows type definition in anonymous struct or union.
3185        if (getLangOpts().MicrosoftExt &&
3186            DK == diag::err_anonymous_record_with_type)
3187          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3188            << (int)Record->isUnion();
3189        else {
3190          Diag((*Mem)->getLocation(), DK)
3191              << (int)Record->isUnion();
3192          Invalid = true;
3193        }
3194      }
3195    }
3196  }
3197
3198  if (!Record->isUnion() && !Owner->isRecord()) {
3199    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3200      << (int)getLangOpts().CPlusPlus;
3201    Invalid = true;
3202  }
3203
3204  // Mock up a declarator.
3205  Declarator Dc(DS, Declarator::MemberContext);
3206  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3207  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3208
3209  // Create a declaration for this anonymous struct/union.
3210  NamedDecl *Anon = 0;
3211  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3212    Anon = FieldDecl::Create(Context, OwningClass,
3213                             DS.getLocStart(),
3214                             Record->getLocation(),
3215                             /*IdentifierInfo=*/0,
3216                             Context.getTypeDeclType(Record),
3217                             TInfo,
3218                             /*BitWidth=*/0, /*Mutable=*/false,
3219                             /*InitStyle=*/ICIS_NoInit);
3220    Anon->setAccess(AS);
3221    if (getLangOpts().CPlusPlus)
3222      FieldCollector->Add(cast<FieldDecl>(Anon));
3223  } else {
3224    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3225    assert(SCSpec != DeclSpec::SCS_typedef &&
3226           "Parser allowed 'typedef' as storage class VarDecl.");
3227    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3228    if (SCSpec == DeclSpec::SCS_mutable) {
3229      // mutable can only appear on non-static class members, so it's always
3230      // an error here
3231      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3232      Invalid = true;
3233      SC = SC_None;
3234    }
3235    SCSpec = DS.getStorageClassSpecAsWritten();
3236    VarDecl::StorageClass SCAsWritten
3237      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3238
3239    Anon = VarDecl::Create(Context, Owner,
3240                           DS.getLocStart(),
3241                           Record->getLocation(), /*IdentifierInfo=*/0,
3242                           Context.getTypeDeclType(Record),
3243                           TInfo, SC, SCAsWritten);
3244
3245    // Default-initialize the implicit variable. This initialization will be
3246    // trivial in almost all cases, except if a union member has an in-class
3247    // initializer:
3248    //   union { int n = 0; };
3249    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3250  }
3251  Anon->setImplicit();
3252
3253  // Add the anonymous struct/union object to the current
3254  // context. We'll be referencing this object when we refer to one of
3255  // its members.
3256  Owner->addDecl(Anon);
3257
3258  // Inject the members of the anonymous struct/union into the owning
3259  // context and into the identifier resolver chain for name lookup
3260  // purposes.
3261  SmallVector<NamedDecl*, 2> Chain;
3262  Chain.push_back(Anon);
3263
3264  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3265                                          Chain, false))
3266    Invalid = true;
3267
3268  // Mark this as an anonymous struct/union type. Note that we do not
3269  // do this until after we have already checked and injected the
3270  // members of this anonymous struct/union type, because otherwise
3271  // the members could be injected twice: once by DeclContext when it
3272  // builds its lookup table, and once by
3273  // InjectAnonymousStructOrUnionMembers.
3274  Record->setAnonymousStructOrUnion(true);
3275
3276  if (Invalid)
3277    Anon->setInvalidDecl();
3278
3279  return Anon;
3280}
3281
3282/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3283/// Microsoft C anonymous structure.
3284/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3285/// Example:
3286///
3287/// struct A { int a; };
3288/// struct B { struct A; int b; };
3289///
3290/// void foo() {
3291///   B var;
3292///   var.a = 3;
3293/// }
3294///
3295Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3296                                           RecordDecl *Record) {
3297
3298  // If there is no Record, get the record via the typedef.
3299  if (!Record)
3300    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3301
3302  // Mock up a declarator.
3303  Declarator Dc(DS, Declarator::TypeNameContext);
3304  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3305  assert(TInfo && "couldn't build declarator info for anonymous struct");
3306
3307  // Create a declaration for this anonymous struct.
3308  NamedDecl* Anon = FieldDecl::Create(Context,
3309                             cast<RecordDecl>(CurContext),
3310                             DS.getLocStart(),
3311                             DS.getLocStart(),
3312                             /*IdentifierInfo=*/0,
3313                             Context.getTypeDeclType(Record),
3314                             TInfo,
3315                             /*BitWidth=*/0, /*Mutable=*/false,
3316                             /*InitStyle=*/ICIS_NoInit);
3317  Anon->setImplicit();
3318
3319  // Add the anonymous struct object to the current context.
3320  CurContext->addDecl(Anon);
3321
3322  // Inject the members of the anonymous struct into the current
3323  // context and into the identifier resolver chain for name lookup
3324  // purposes.
3325  SmallVector<NamedDecl*, 2> Chain;
3326  Chain.push_back(Anon);
3327
3328  RecordDecl *RecordDef = Record->getDefinition();
3329  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3330                                                        RecordDef, AS_none,
3331                                                        Chain, true))
3332    Anon->setInvalidDecl();
3333
3334  return Anon;
3335}
3336
3337/// GetNameForDeclarator - Determine the full declaration name for the
3338/// given Declarator.
3339DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3340  return GetNameFromUnqualifiedId(D.getName());
3341}
3342
3343/// \brief Retrieves the declaration name from a parsed unqualified-id.
3344DeclarationNameInfo
3345Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3346  DeclarationNameInfo NameInfo;
3347  NameInfo.setLoc(Name.StartLocation);
3348
3349  switch (Name.getKind()) {
3350
3351  case UnqualifiedId::IK_ImplicitSelfParam:
3352  case UnqualifiedId::IK_Identifier:
3353    NameInfo.setName(Name.Identifier);
3354    NameInfo.setLoc(Name.StartLocation);
3355    return NameInfo;
3356
3357  case UnqualifiedId::IK_OperatorFunctionId:
3358    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3359                                           Name.OperatorFunctionId.Operator));
3360    NameInfo.setLoc(Name.StartLocation);
3361    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3362      = Name.OperatorFunctionId.SymbolLocations[0];
3363    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3364      = Name.EndLocation.getRawEncoding();
3365    return NameInfo;
3366
3367  case UnqualifiedId::IK_LiteralOperatorId:
3368    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3369                                                           Name.Identifier));
3370    NameInfo.setLoc(Name.StartLocation);
3371    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3372    return NameInfo;
3373
3374  case UnqualifiedId::IK_ConversionFunctionId: {
3375    TypeSourceInfo *TInfo;
3376    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3377    if (Ty.isNull())
3378      return DeclarationNameInfo();
3379    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3380                                               Context.getCanonicalType(Ty)));
3381    NameInfo.setLoc(Name.StartLocation);
3382    NameInfo.setNamedTypeInfo(TInfo);
3383    return NameInfo;
3384  }
3385
3386  case UnqualifiedId::IK_ConstructorName: {
3387    TypeSourceInfo *TInfo;
3388    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3389    if (Ty.isNull())
3390      return DeclarationNameInfo();
3391    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3392                                              Context.getCanonicalType(Ty)));
3393    NameInfo.setLoc(Name.StartLocation);
3394    NameInfo.setNamedTypeInfo(TInfo);
3395    return NameInfo;
3396  }
3397
3398  case UnqualifiedId::IK_ConstructorTemplateId: {
3399    // In well-formed code, we can only have a constructor
3400    // template-id that refers to the current context, so go there
3401    // to find the actual type being constructed.
3402    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3403    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3404      return DeclarationNameInfo();
3405
3406    // Determine the type of the class being constructed.
3407    QualType CurClassType = Context.getTypeDeclType(CurClass);
3408
3409    // FIXME: Check two things: that the template-id names the same type as
3410    // CurClassType, and that the template-id does not occur when the name
3411    // was qualified.
3412
3413    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3414                                    Context.getCanonicalType(CurClassType)));
3415    NameInfo.setLoc(Name.StartLocation);
3416    // FIXME: should we retrieve TypeSourceInfo?
3417    NameInfo.setNamedTypeInfo(0);
3418    return NameInfo;
3419  }
3420
3421  case UnqualifiedId::IK_DestructorName: {
3422    TypeSourceInfo *TInfo;
3423    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3424    if (Ty.isNull())
3425      return DeclarationNameInfo();
3426    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3427                                              Context.getCanonicalType(Ty)));
3428    NameInfo.setLoc(Name.StartLocation);
3429    NameInfo.setNamedTypeInfo(TInfo);
3430    return NameInfo;
3431  }
3432
3433  case UnqualifiedId::IK_TemplateId: {
3434    TemplateName TName = Name.TemplateId->Template.get();
3435    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3436    return Context.getNameForTemplate(TName, TNameLoc);
3437  }
3438
3439  } // switch (Name.getKind())
3440
3441  llvm_unreachable("Unknown name kind");
3442}
3443
3444static QualType getCoreType(QualType Ty) {
3445  do {
3446    if (Ty->isPointerType() || Ty->isReferenceType())
3447      Ty = Ty->getPointeeType();
3448    else if (Ty->isArrayType())
3449      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3450    else
3451      return Ty.withoutLocalFastQualifiers();
3452  } while (true);
3453}
3454
3455/// hasSimilarParameters - Determine whether the C++ functions Declaration
3456/// and Definition have "nearly" matching parameters. This heuristic is
3457/// used to improve diagnostics in the case where an out-of-line function
3458/// definition doesn't match any declaration within the class or namespace.
3459/// Also sets Params to the list of indices to the parameters that differ
3460/// between the declaration and the definition. If hasSimilarParameters
3461/// returns true and Params is empty, then all of the parameters match.
3462static bool hasSimilarParameters(ASTContext &Context,
3463                                     FunctionDecl *Declaration,
3464                                     FunctionDecl *Definition,
3465                                     SmallVectorImpl<unsigned> &Params) {
3466  Params.clear();
3467  if (Declaration->param_size() != Definition->param_size())
3468    return false;
3469  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3470    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3471    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3472
3473    // The parameter types are identical
3474    if (Context.hasSameType(DefParamTy, DeclParamTy))
3475      continue;
3476
3477    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3478    QualType DefParamBaseTy = getCoreType(DefParamTy);
3479    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3480    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3481
3482    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3483        (DeclTyName && DeclTyName == DefTyName))
3484      Params.push_back(Idx);
3485    else  // The two parameters aren't even close
3486      return false;
3487  }
3488
3489  return true;
3490}
3491
3492/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3493/// declarator needs to be rebuilt in the current instantiation.
3494/// Any bits of declarator which appear before the name are valid for
3495/// consideration here.  That's specifically the type in the decl spec
3496/// and the base type in any member-pointer chunks.
3497static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3498                                                    DeclarationName Name) {
3499  // The types we specifically need to rebuild are:
3500  //   - typenames, typeofs, and decltypes
3501  //   - types which will become injected class names
3502  // Of course, we also need to rebuild any type referencing such a
3503  // type.  It's safest to just say "dependent", but we call out a
3504  // few cases here.
3505
3506  DeclSpec &DS = D.getMutableDeclSpec();
3507  switch (DS.getTypeSpecType()) {
3508  case DeclSpec::TST_typename:
3509  case DeclSpec::TST_typeofType:
3510  case DeclSpec::TST_underlyingType:
3511  case DeclSpec::TST_atomic: {
3512    // Grab the type from the parser.
3513    TypeSourceInfo *TSI = 0;
3514    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3515    if (T.isNull() || !T->isDependentType()) break;
3516
3517    // Make sure there's a type source info.  This isn't really much
3518    // of a waste; most dependent types should have type source info
3519    // attached already.
3520    if (!TSI)
3521      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3522
3523    // Rebuild the type in the current instantiation.
3524    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3525    if (!TSI) return true;
3526
3527    // Store the new type back in the decl spec.
3528    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3529    DS.UpdateTypeRep(LocType);
3530    break;
3531  }
3532
3533  case DeclSpec::TST_decltype:
3534  case DeclSpec::TST_typeofExpr: {
3535    Expr *E = DS.getRepAsExpr();
3536    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3537    if (Result.isInvalid()) return true;
3538    DS.UpdateExprRep(Result.get());
3539    break;
3540  }
3541
3542  default:
3543    // Nothing to do for these decl specs.
3544    break;
3545  }
3546
3547  // It doesn't matter what order we do this in.
3548  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3549    DeclaratorChunk &Chunk = D.getTypeObject(I);
3550
3551    // The only type information in the declarator which can come
3552    // before the declaration name is the base type of a member
3553    // pointer.
3554    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3555      continue;
3556
3557    // Rebuild the scope specifier in-place.
3558    CXXScopeSpec &SS = Chunk.Mem.Scope();
3559    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3560      return true;
3561  }
3562
3563  return false;
3564}
3565
3566Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3567  D.setFunctionDefinitionKind(FDK_Declaration);
3568  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3569
3570  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3571      Dcl && Dcl->getDeclContext()->isFileContext())
3572    Dcl->setTopLevelDeclInObjCContainer();
3573
3574  return Dcl;
3575}
3576
3577/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3578///   If T is the name of a class, then each of the following shall have a
3579///   name different from T:
3580///     - every static data member of class T;
3581///     - every member function of class T
3582///     - every member of class T that is itself a type;
3583/// \returns true if the declaration name violates these rules.
3584bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3585                                   DeclarationNameInfo NameInfo) {
3586  DeclarationName Name = NameInfo.getName();
3587
3588  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3589    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3590      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3591      return true;
3592    }
3593
3594  return false;
3595}
3596
3597/// \brief Diagnose a declaration whose declarator-id has the given
3598/// nested-name-specifier.
3599///
3600/// \param SS The nested-name-specifier of the declarator-id.
3601///
3602/// \param DC The declaration context to which the nested-name-specifier
3603/// resolves.
3604///
3605/// \param Name The name of the entity being declared.
3606///
3607/// \param Loc The location of the name of the entity being declared.
3608///
3609/// \returns true if we cannot safely recover from this error, false otherwise.
3610bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3611                                        DeclarationName Name,
3612                                      SourceLocation Loc) {
3613  DeclContext *Cur = CurContext;
3614  while (isa<LinkageSpecDecl>(Cur))
3615    Cur = Cur->getParent();
3616
3617  // C++ [dcl.meaning]p1:
3618  //   A declarator-id shall not be qualified except for the definition
3619  //   of a member function (9.3) or static data member (9.4) outside of
3620  //   its class, the definition or explicit instantiation of a function
3621  //   or variable member of a namespace outside of its namespace, or the
3622  //   definition of an explicit specialization outside of its namespace,
3623  //   or the declaration of a friend function that is a member of
3624  //   another class or namespace (11.3). [...]
3625
3626  // The user provided a superfluous scope specifier that refers back to the
3627  // class or namespaces in which the entity is already declared.
3628  //
3629  // class X {
3630  //   void X::f();
3631  // };
3632  if (Cur->Equals(DC)) {
3633    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3634                                   : diag::err_member_extra_qualification)
3635      << Name << FixItHint::CreateRemoval(SS.getRange());
3636    SS.clear();
3637    return false;
3638  }
3639
3640  // Check whether the qualifying scope encloses the scope of the original
3641  // declaration.
3642  if (!Cur->Encloses(DC)) {
3643    if (Cur->isRecord())
3644      Diag(Loc, diag::err_member_qualification)
3645        << Name << SS.getRange();
3646    else if (isa<TranslationUnitDecl>(DC))
3647      Diag(Loc, diag::err_invalid_declarator_global_scope)
3648        << Name << SS.getRange();
3649    else if (isa<FunctionDecl>(Cur))
3650      Diag(Loc, diag::err_invalid_declarator_in_function)
3651        << Name << SS.getRange();
3652    else
3653      Diag(Loc, diag::err_invalid_declarator_scope)
3654      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3655
3656    return true;
3657  }
3658
3659  if (Cur->isRecord()) {
3660    // Cannot qualify members within a class.
3661    Diag(Loc, diag::err_member_qualification)
3662      << Name << SS.getRange();
3663    SS.clear();
3664
3665    // C++ constructors and destructors with incorrect scopes can break
3666    // our AST invariants by having the wrong underlying types. If
3667    // that's the case, then drop this declaration entirely.
3668    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3669         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3670        !Context.hasSameType(Name.getCXXNameType(),
3671                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3672      return true;
3673
3674    return false;
3675  }
3676
3677  // C++11 [dcl.meaning]p1:
3678  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3679  //   not begin with a decltype-specifer"
3680  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3681  while (SpecLoc.getPrefix())
3682    SpecLoc = SpecLoc.getPrefix();
3683  if (dyn_cast_or_null<DecltypeType>(
3684        SpecLoc.getNestedNameSpecifier()->getAsType()))
3685    Diag(Loc, diag::err_decltype_in_declarator)
3686      << SpecLoc.getTypeLoc().getSourceRange();
3687
3688  return false;
3689}
3690
3691NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3692                                  MultiTemplateParamsArg TemplateParamLists) {
3693  // TODO: consider using NameInfo for diagnostic.
3694  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3695  DeclarationName Name = NameInfo.getName();
3696
3697  // All of these full declarators require an identifier.  If it doesn't have
3698  // one, the ParsedFreeStandingDeclSpec action should be used.
3699  if (!Name) {
3700    if (!D.isInvalidType())  // Reject this if we think it is valid.
3701      Diag(D.getDeclSpec().getLocStart(),
3702           diag::err_declarator_need_ident)
3703        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3704    return 0;
3705  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3706    return 0;
3707
3708  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3709  // we find one that is.
3710  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3711         (S->getFlags() & Scope::TemplateParamScope) != 0)
3712    S = S->getParent();
3713
3714  DeclContext *DC = CurContext;
3715  if (D.getCXXScopeSpec().isInvalid())
3716    D.setInvalidType();
3717  else if (D.getCXXScopeSpec().isSet()) {
3718    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3719                                        UPPC_DeclarationQualifier))
3720      return 0;
3721
3722    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3723    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3724    if (!DC) {
3725      // If we could not compute the declaration context, it's because the
3726      // declaration context is dependent but does not refer to a class,
3727      // class template, or class template partial specialization. Complain
3728      // and return early, to avoid the coming semantic disaster.
3729      Diag(D.getIdentifierLoc(),
3730           diag::err_template_qualified_declarator_no_match)
3731        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3732        << D.getCXXScopeSpec().getRange();
3733      return 0;
3734    }
3735    bool IsDependentContext = DC->isDependentContext();
3736
3737    if (!IsDependentContext &&
3738        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3739      return 0;
3740
3741    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3742      Diag(D.getIdentifierLoc(),
3743           diag::err_member_def_undefined_record)
3744        << Name << DC << D.getCXXScopeSpec().getRange();
3745      D.setInvalidType();
3746    } else if (!D.getDeclSpec().isFriendSpecified()) {
3747      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3748                                      Name, D.getIdentifierLoc())) {
3749        if (DC->isRecord())
3750          return 0;
3751
3752        D.setInvalidType();
3753      }
3754    }
3755
3756    // Check whether we need to rebuild the type of the given
3757    // declaration in the current instantiation.
3758    if (EnteringContext && IsDependentContext &&
3759        TemplateParamLists.size() != 0) {
3760      ContextRAII SavedContext(*this, DC);
3761      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3762        D.setInvalidType();
3763    }
3764  }
3765
3766  if (DiagnoseClassNameShadow(DC, NameInfo))
3767    // If this is a typedef, we'll end up spewing multiple diagnostics.
3768    // Just return early; it's safer.
3769    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3770      return 0;
3771
3772  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3773  QualType R = TInfo->getType();
3774
3775  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3776                                      UPPC_DeclarationType))
3777    D.setInvalidType();
3778
3779  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3780                        ForRedeclaration);
3781
3782  // See if this is a redefinition of a variable in the same scope.
3783  if (!D.getCXXScopeSpec().isSet()) {
3784    bool IsLinkageLookup = false;
3785
3786    // If the declaration we're planning to build will be a function
3787    // or object with linkage, then look for another declaration with
3788    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3789    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3790      /* Do nothing*/;
3791    else if (R->isFunctionType()) {
3792      if (CurContext->isFunctionOrMethod() ||
3793          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3794        IsLinkageLookup = true;
3795    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3796      IsLinkageLookup = true;
3797    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3798             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3799      IsLinkageLookup = true;
3800
3801    if (IsLinkageLookup)
3802      Previous.clear(LookupRedeclarationWithLinkage);
3803
3804    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3805  } else { // Something like "int foo::x;"
3806    LookupQualifiedName(Previous, DC);
3807
3808    // C++ [dcl.meaning]p1:
3809    //   When the declarator-id is qualified, the declaration shall refer to a
3810    //  previously declared member of the class or namespace to which the
3811    //  qualifier refers (or, in the case of a namespace, of an element of the
3812    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3813    //  thereof; [...]
3814    //
3815    // Note that we already checked the context above, and that we do not have
3816    // enough information to make sure that Previous contains the declaration
3817    // we want to match. For example, given:
3818    //
3819    //   class X {
3820    //     void f();
3821    //     void f(float);
3822    //   };
3823    //
3824    //   void X::f(int) { } // ill-formed
3825    //
3826    // In this case, Previous will point to the overload set
3827    // containing the two f's declared in X, but neither of them
3828    // matches.
3829
3830    // C++ [dcl.meaning]p1:
3831    //   [...] the member shall not merely have been introduced by a
3832    //   using-declaration in the scope of the class or namespace nominated by
3833    //   the nested-name-specifier of the declarator-id.
3834    RemoveUsingDecls(Previous);
3835  }
3836
3837  if (Previous.isSingleResult() &&
3838      Previous.getFoundDecl()->isTemplateParameter()) {
3839    // Maybe we will complain about the shadowed template parameter.
3840    if (!D.isInvalidType())
3841      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3842                                      Previous.getFoundDecl());
3843
3844    // Just pretend that we didn't see the previous declaration.
3845    Previous.clear();
3846  }
3847
3848  // In C++, the previous declaration we find might be a tag type
3849  // (class or enum). In this case, the new declaration will hide the
3850  // tag type. Note that this does does not apply if we're declaring a
3851  // typedef (C++ [dcl.typedef]p4).
3852  if (Previous.isSingleTagDecl() &&
3853      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3854    Previous.clear();
3855
3856  NamedDecl *New;
3857
3858  bool AddToScope = true;
3859  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3860    if (TemplateParamLists.size()) {
3861      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3862      return 0;
3863    }
3864
3865    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3866  } else if (R->isFunctionType()) {
3867    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3868                                  TemplateParamLists,
3869                                  AddToScope);
3870  } else {
3871    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3872                                  TemplateParamLists);
3873  }
3874
3875  if (New == 0)
3876    return 0;
3877
3878  // If this has an identifier and is not an invalid redeclaration or
3879  // function template specialization, add it to the scope stack.
3880  if (New->getDeclName() && AddToScope &&
3881       !(D.isRedeclaration() && New->isInvalidDecl()))
3882    PushOnScopeChains(New, S);
3883
3884  return New;
3885}
3886
3887/// Helper method to turn variable array types into constant array
3888/// types in certain situations which would otherwise be errors (for
3889/// GCC compatibility).
3890static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3891                                                    ASTContext &Context,
3892                                                    bool &SizeIsNegative,
3893                                                    llvm::APSInt &Oversized) {
3894  // This method tries to turn a variable array into a constant
3895  // array even when the size isn't an ICE.  This is necessary
3896  // for compatibility with code that depends on gcc's buggy
3897  // constant expression folding, like struct {char x[(int)(char*)2];}
3898  SizeIsNegative = false;
3899  Oversized = 0;
3900
3901  if (T->isDependentType())
3902    return QualType();
3903
3904  QualifierCollector Qs;
3905  const Type *Ty = Qs.strip(T);
3906
3907  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3908    QualType Pointee = PTy->getPointeeType();
3909    QualType FixedType =
3910        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3911                                            Oversized);
3912    if (FixedType.isNull()) return FixedType;
3913    FixedType = Context.getPointerType(FixedType);
3914    return Qs.apply(Context, FixedType);
3915  }
3916  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3917    QualType Inner = PTy->getInnerType();
3918    QualType FixedType =
3919        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3920                                            Oversized);
3921    if (FixedType.isNull()) return FixedType;
3922    FixedType = Context.getParenType(FixedType);
3923    return Qs.apply(Context, FixedType);
3924  }
3925
3926  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3927  if (!VLATy)
3928    return QualType();
3929  // FIXME: We should probably handle this case
3930  if (VLATy->getElementType()->isVariablyModifiedType())
3931    return QualType();
3932
3933  llvm::APSInt Res;
3934  if (!VLATy->getSizeExpr() ||
3935      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3936    return QualType();
3937
3938  // Check whether the array size is negative.
3939  if (Res.isSigned() && Res.isNegative()) {
3940    SizeIsNegative = true;
3941    return QualType();
3942  }
3943
3944  // Check whether the array is too large to be addressed.
3945  unsigned ActiveSizeBits
3946    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3947                                              Res);
3948  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3949    Oversized = Res;
3950    return QualType();
3951  }
3952
3953  return Context.getConstantArrayType(VLATy->getElementType(),
3954                                      Res, ArrayType::Normal, 0);
3955}
3956
3957static void
3958FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
3959  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
3960    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
3961    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
3962                                      DstPTL->getPointeeLoc());
3963    DstPTL->setStarLoc(SrcPTL->getStarLoc());
3964    return;
3965  }
3966  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
3967    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
3968    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
3969                                      DstPTL->getInnerLoc());
3970    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
3971    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
3972    return;
3973  }
3974  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
3975  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
3976  TypeLoc SrcElemTL = SrcATL->getElementLoc();
3977  TypeLoc DstElemTL = DstATL->getElementLoc();
3978  DstElemTL.initializeFullCopy(SrcElemTL);
3979  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
3980  DstATL->setSizeExpr(SrcATL->getSizeExpr());
3981  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
3982}
3983
3984/// Helper method to turn variable array types into constant array
3985/// types in certain situations which would otherwise be errors (for
3986/// GCC compatibility).
3987static TypeSourceInfo*
3988TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
3989                                              ASTContext &Context,
3990                                              bool &SizeIsNegative,
3991                                              llvm::APSInt &Oversized) {
3992  QualType FixedTy
3993    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
3994                                          SizeIsNegative, Oversized);
3995  if (FixedTy.isNull())
3996    return 0;
3997  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
3998  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
3999                                    FixedTInfo->getTypeLoc());
4000  return FixedTInfo;
4001}
4002
4003/// \brief Register the given locally-scoped extern "C" declaration so
4004/// that it can be found later for redeclarations
4005void
4006Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4007                                       const LookupResult &Previous,
4008                                       Scope *S) {
4009  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4010         "Decl is not a locally-scoped decl!");
4011  // Note that we have a locally-scoped external with this name.
4012  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4013
4014  if (!Previous.isSingleResult())
4015    return;
4016
4017  NamedDecl *PrevDecl = Previous.getFoundDecl();
4018
4019  // If there was a previous declaration of this entity, it may be in
4020  // our identifier chain. Update the identifier chain with the new
4021  // declaration.
4022  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4023    // The previous declaration was found on the identifer resolver
4024    // chain, so remove it from its scope.
4025
4026    if (S->isDeclScope(PrevDecl)) {
4027      // Special case for redeclarations in the SAME scope.
4028      // Because this declaration is going to be added to the identifier chain
4029      // later, we should temporarily take it OFF the chain.
4030      IdResolver.RemoveDecl(ND);
4031
4032    } else {
4033      // Find the scope for the original declaration.
4034      while (S && !S->isDeclScope(PrevDecl))
4035        S = S->getParent();
4036    }
4037
4038    if (S)
4039      S->RemoveDecl(PrevDecl);
4040  }
4041}
4042
4043llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4044Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4045  if (ExternalSource) {
4046    // Load locally-scoped external decls from the external source.
4047    SmallVector<NamedDecl *, 4> Decls;
4048    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4049    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4050      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4051        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4052      if (Pos == LocallyScopedExternCDecls.end())
4053        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4054    }
4055  }
4056
4057  return LocallyScopedExternCDecls.find(Name);
4058}
4059
4060/// \brief Diagnose function specifiers on a declaration of an identifier that
4061/// does not identify a function.
4062void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4063  // FIXME: We should probably indicate the identifier in question to avoid
4064  // confusion for constructs like "inline int a(), b;"
4065  if (D.getDeclSpec().isInlineSpecified())
4066    Diag(D.getDeclSpec().getInlineSpecLoc(),
4067         diag::err_inline_non_function);
4068
4069  if (D.getDeclSpec().isVirtualSpecified())
4070    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4071         diag::err_virtual_non_function);
4072
4073  if (D.getDeclSpec().isExplicitSpecified())
4074    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4075         diag::err_explicit_non_function);
4076}
4077
4078NamedDecl*
4079Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4080                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4081  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4082  if (D.getCXXScopeSpec().isSet()) {
4083    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4084      << D.getCXXScopeSpec().getRange();
4085    D.setInvalidType();
4086    // Pretend we didn't see the scope specifier.
4087    DC = CurContext;
4088    Previous.clear();
4089  }
4090
4091  if (getLangOpts().CPlusPlus) {
4092    // Check that there are no default arguments (C++ only).
4093    CheckExtraCXXDefaultArguments(D);
4094  }
4095
4096  DiagnoseFunctionSpecifiers(D);
4097
4098  if (D.getDeclSpec().isThreadSpecified())
4099    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4100  if (D.getDeclSpec().isConstexprSpecified())
4101    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4102      << 1;
4103
4104  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4105    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4106      << D.getName().getSourceRange();
4107    return 0;
4108  }
4109
4110  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4111  if (!NewTD) return 0;
4112
4113  // Handle attributes prior to checking for duplicates in MergeVarDecl
4114  ProcessDeclAttributes(S, NewTD, D);
4115
4116  CheckTypedefForVariablyModifiedType(S, NewTD);
4117
4118  bool Redeclaration = D.isRedeclaration();
4119  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4120  D.setRedeclaration(Redeclaration);
4121  return ND;
4122}
4123
4124void
4125Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4126  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4127  // then it shall have block scope.
4128  // Note that variably modified types must be fixed before merging the decl so
4129  // that redeclarations will match.
4130  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4131  QualType T = TInfo->getType();
4132  if (T->isVariablyModifiedType()) {
4133    getCurFunction()->setHasBranchProtectedScope();
4134
4135    if (S->getFnParent() == 0) {
4136      bool SizeIsNegative;
4137      llvm::APSInt Oversized;
4138      TypeSourceInfo *FixedTInfo =
4139        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4140                                                      SizeIsNegative,
4141                                                      Oversized);
4142      if (FixedTInfo) {
4143        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4144        NewTD->setTypeSourceInfo(FixedTInfo);
4145      } else {
4146        if (SizeIsNegative)
4147          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4148        else if (T->isVariableArrayType())
4149          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4150        else if (Oversized.getBoolValue())
4151          Diag(NewTD->getLocation(), diag::err_array_too_large)
4152            << Oversized.toString(10);
4153        else
4154          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4155        NewTD->setInvalidDecl();
4156      }
4157    }
4158  }
4159}
4160
4161
4162/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4163/// declares a typedef-name, either using the 'typedef' type specifier or via
4164/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4165NamedDecl*
4166Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4167                           LookupResult &Previous, bool &Redeclaration) {
4168  // Merge the decl with the existing one if appropriate. If the decl is
4169  // in an outer scope, it isn't the same thing.
4170  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4171                       /*ExplicitInstantiationOrSpecialization=*/false);
4172  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4173  if (!Previous.empty()) {
4174    Redeclaration = true;
4175    MergeTypedefNameDecl(NewTD, Previous);
4176  }
4177
4178  // If this is the C FILE type, notify the AST context.
4179  if (IdentifierInfo *II = NewTD->getIdentifier())
4180    if (!NewTD->isInvalidDecl() &&
4181        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4182      if (II->isStr("FILE"))
4183        Context.setFILEDecl(NewTD);
4184      else if (II->isStr("jmp_buf"))
4185        Context.setjmp_bufDecl(NewTD);
4186      else if (II->isStr("sigjmp_buf"))
4187        Context.setsigjmp_bufDecl(NewTD);
4188      else if (II->isStr("ucontext_t"))
4189        Context.setucontext_tDecl(NewTD);
4190    }
4191
4192  return NewTD;
4193}
4194
4195/// \brief Determines whether the given declaration is an out-of-scope
4196/// previous declaration.
4197///
4198/// This routine should be invoked when name lookup has found a
4199/// previous declaration (PrevDecl) that is not in the scope where a
4200/// new declaration by the same name is being introduced. If the new
4201/// declaration occurs in a local scope, previous declarations with
4202/// linkage may still be considered previous declarations (C99
4203/// 6.2.2p4-5, C++ [basic.link]p6).
4204///
4205/// \param PrevDecl the previous declaration found by name
4206/// lookup
4207///
4208/// \param DC the context in which the new declaration is being
4209/// declared.
4210///
4211/// \returns true if PrevDecl is an out-of-scope previous declaration
4212/// for a new delcaration with the same name.
4213static bool
4214isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4215                                ASTContext &Context) {
4216  if (!PrevDecl)
4217    return false;
4218
4219  if (!PrevDecl->hasLinkage())
4220    return false;
4221
4222  if (Context.getLangOpts().CPlusPlus) {
4223    // C++ [basic.link]p6:
4224    //   If there is a visible declaration of an entity with linkage
4225    //   having the same name and type, ignoring entities declared
4226    //   outside the innermost enclosing namespace scope, the block
4227    //   scope declaration declares that same entity and receives the
4228    //   linkage of the previous declaration.
4229    DeclContext *OuterContext = DC->getRedeclContext();
4230    if (!OuterContext->isFunctionOrMethod())
4231      // This rule only applies to block-scope declarations.
4232      return false;
4233
4234    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4235    if (PrevOuterContext->isRecord())
4236      // We found a member function: ignore it.
4237      return false;
4238
4239    // Find the innermost enclosing namespace for the new and
4240    // previous declarations.
4241    OuterContext = OuterContext->getEnclosingNamespaceContext();
4242    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4243
4244    // The previous declaration is in a different namespace, so it
4245    // isn't the same function.
4246    if (!OuterContext->Equals(PrevOuterContext))
4247      return false;
4248  }
4249
4250  return true;
4251}
4252
4253static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4254  CXXScopeSpec &SS = D.getCXXScopeSpec();
4255  if (!SS.isSet()) return;
4256  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4257}
4258
4259bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4260  QualType type = decl->getType();
4261  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4262  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4263    // Various kinds of declaration aren't allowed to be __autoreleasing.
4264    unsigned kind = -1U;
4265    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4266      if (var->hasAttr<BlocksAttr>())
4267        kind = 0; // __block
4268      else if (!var->hasLocalStorage())
4269        kind = 1; // global
4270    } else if (isa<ObjCIvarDecl>(decl)) {
4271      kind = 3; // ivar
4272    } else if (isa<FieldDecl>(decl)) {
4273      kind = 2; // field
4274    }
4275
4276    if (kind != -1U) {
4277      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4278        << kind;
4279    }
4280  } else if (lifetime == Qualifiers::OCL_None) {
4281    // Try to infer lifetime.
4282    if (!type->isObjCLifetimeType())
4283      return false;
4284
4285    lifetime = type->getObjCARCImplicitLifetime();
4286    type = Context.getLifetimeQualifiedType(type, lifetime);
4287    decl->setType(type);
4288  }
4289
4290  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4291    // Thread-local variables cannot have lifetime.
4292    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4293        var->isThreadSpecified()) {
4294      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4295        << var->getType();
4296      return true;
4297    }
4298  }
4299
4300  return false;
4301}
4302
4303NamedDecl*
4304Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4305                              TypeSourceInfo *TInfo, LookupResult &Previous,
4306                              MultiTemplateParamsArg TemplateParamLists) {
4307  QualType R = TInfo->getType();
4308  DeclarationName Name = GetNameForDeclarator(D).getName();
4309
4310  // Check that there are no default arguments (C++ only).
4311  if (getLangOpts().CPlusPlus)
4312    CheckExtraCXXDefaultArguments(D);
4313
4314  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4315  assert(SCSpec != DeclSpec::SCS_typedef &&
4316         "Parser allowed 'typedef' as storage class VarDecl.");
4317  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4318  if (SCSpec == DeclSpec::SCS_mutable) {
4319    // mutable can only appear on non-static class members, so it's always
4320    // an error here
4321    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4322    D.setInvalidType();
4323    SC = SC_None;
4324  }
4325  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4326  VarDecl::StorageClass SCAsWritten
4327    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4328
4329  IdentifierInfo *II = Name.getAsIdentifierInfo();
4330  if (!II) {
4331    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4332      << Name;
4333    return 0;
4334  }
4335
4336  DiagnoseFunctionSpecifiers(D);
4337
4338  if (!DC->isRecord() && S->getFnParent() == 0) {
4339    // C99 6.9p2: The storage-class specifiers auto and register shall not
4340    // appear in the declaration specifiers in an external declaration.
4341    if (SC == SC_Auto || SC == SC_Register) {
4342
4343      // If this is a register variable with an asm label specified, then this
4344      // is a GNU extension.
4345      if (SC == SC_Register && D.getAsmLabel())
4346        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4347      else
4348        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4349      D.setInvalidType();
4350    }
4351  }
4352
4353  if (getLangOpts().OpenCL) {
4354    // Set up the special work-group-local storage class for variables in the
4355    // OpenCL __local address space.
4356    if (R.getAddressSpace() == LangAS::opencl_local) {
4357      SC = SC_OpenCLWorkGroupLocal;
4358      SCAsWritten = SC_OpenCLWorkGroupLocal;
4359    }
4360  }
4361
4362  bool isExplicitSpecialization = false;
4363  VarDecl *NewVD;
4364  if (!getLangOpts().CPlusPlus) {
4365    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4366                            D.getIdentifierLoc(), II,
4367                            R, TInfo, SC, SCAsWritten);
4368
4369    if (D.isInvalidType())
4370      NewVD->setInvalidDecl();
4371  } else {
4372    if (DC->isRecord() && !CurContext->isRecord()) {
4373      // This is an out-of-line definition of a static data member.
4374      if (SC == SC_Static) {
4375        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4376             diag::err_static_out_of_line)
4377          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4378      } else if (SC == SC_None)
4379        SC = SC_Static;
4380    }
4381    if (SC == SC_Static && CurContext->isRecord()) {
4382      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4383        if (RD->isLocalClass())
4384          Diag(D.getIdentifierLoc(),
4385               diag::err_static_data_member_not_allowed_in_local_class)
4386            << Name << RD->getDeclName();
4387
4388        // C++98 [class.union]p1: If a union contains a static data member,
4389        // the program is ill-formed. C++11 drops this restriction.
4390        if (RD->isUnion())
4391          Diag(D.getIdentifierLoc(),
4392               getLangOpts().CPlusPlus11
4393                 ? diag::warn_cxx98_compat_static_data_member_in_union
4394                 : diag::ext_static_data_member_in_union) << Name;
4395        // We conservatively disallow static data members in anonymous structs.
4396        else if (!RD->getDeclName())
4397          Diag(D.getIdentifierLoc(),
4398               diag::err_static_data_member_not_allowed_in_anon_struct)
4399            << Name << RD->isUnion();
4400      }
4401    }
4402
4403    // Match up the template parameter lists with the scope specifier, then
4404    // determine whether we have a template or a template specialization.
4405    isExplicitSpecialization = false;
4406    bool Invalid = false;
4407    if (TemplateParameterList *TemplateParams
4408        = MatchTemplateParametersToScopeSpecifier(
4409                                  D.getDeclSpec().getLocStart(),
4410                                                  D.getIdentifierLoc(),
4411                                                  D.getCXXScopeSpec(),
4412                                                  TemplateParamLists.data(),
4413                                                  TemplateParamLists.size(),
4414                                                  /*never a friend*/ false,
4415                                                  isExplicitSpecialization,
4416                                                  Invalid)) {
4417      if (TemplateParams->size() > 0) {
4418        // There is no such thing as a variable template.
4419        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4420          << II
4421          << SourceRange(TemplateParams->getTemplateLoc(),
4422                         TemplateParams->getRAngleLoc());
4423        return 0;
4424      } else {
4425        // There is an extraneous 'template<>' for this variable. Complain
4426        // about it, but allow the declaration of the variable.
4427        Diag(TemplateParams->getTemplateLoc(),
4428             diag::err_template_variable_noparams)
4429          << II
4430          << SourceRange(TemplateParams->getTemplateLoc(),
4431                         TemplateParams->getRAngleLoc());
4432      }
4433    }
4434
4435    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4436                            D.getIdentifierLoc(), II,
4437                            R, TInfo, SC, SCAsWritten);
4438
4439    // If this decl has an auto type in need of deduction, make a note of the
4440    // Decl so we can diagnose uses of it in its own initializer.
4441    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4442        R->getContainedAutoType())
4443      ParsingInitForAutoVars.insert(NewVD);
4444
4445    if (D.isInvalidType() || Invalid)
4446      NewVD->setInvalidDecl();
4447
4448    SetNestedNameSpecifier(NewVD, D);
4449
4450    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4451      NewVD->setTemplateParameterListsInfo(Context,
4452                                           TemplateParamLists.size(),
4453                                           TemplateParamLists.data());
4454    }
4455
4456    if (D.getDeclSpec().isConstexprSpecified())
4457      NewVD->setConstexpr(true);
4458  }
4459
4460  // Set the lexical context. If the declarator has a C++ scope specifier, the
4461  // lexical context will be different from the semantic context.
4462  NewVD->setLexicalDeclContext(CurContext);
4463
4464  if (D.getDeclSpec().isThreadSpecified()) {
4465    if (NewVD->hasLocalStorage())
4466      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4467    else if (!Context.getTargetInfo().isTLSSupported())
4468      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4469    else
4470      NewVD->setThreadSpecified(true);
4471  }
4472
4473  if (D.getDeclSpec().isModulePrivateSpecified()) {
4474    if (isExplicitSpecialization)
4475      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4476        << 2
4477        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4478    else if (NewVD->hasLocalStorage())
4479      Diag(NewVD->getLocation(), diag::err_module_private_local)
4480        << 0 << NewVD->getDeclName()
4481        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4482        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4483    else
4484      NewVD->setModulePrivate();
4485  }
4486
4487  // Handle attributes prior to checking for duplicates in MergeVarDecl
4488  ProcessDeclAttributes(S, NewVD, D);
4489
4490  if (getLangOpts().CUDA) {
4491    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4492    // storage [duration]."
4493    if (SC == SC_None && S->getFnParent() != 0 &&
4494        (NewVD->hasAttr<CUDASharedAttr>() ||
4495         NewVD->hasAttr<CUDAConstantAttr>())) {
4496      NewVD->setStorageClass(SC_Static);
4497      NewVD->setStorageClassAsWritten(SC_Static);
4498    }
4499  }
4500
4501  // In auto-retain/release, infer strong retension for variables of
4502  // retainable type.
4503  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4504    NewVD->setInvalidDecl();
4505
4506  // Handle GNU asm-label extension (encoded as an attribute).
4507  if (Expr *E = (Expr*)D.getAsmLabel()) {
4508    // The parser guarantees this is a string.
4509    StringLiteral *SE = cast<StringLiteral>(E);
4510    StringRef Label = SE->getString();
4511    if (S->getFnParent() != 0) {
4512      switch (SC) {
4513      case SC_None:
4514      case SC_Auto:
4515        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4516        break;
4517      case SC_Register:
4518        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4519          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4520        break;
4521      case SC_Static:
4522      case SC_Extern:
4523      case SC_PrivateExtern:
4524      case SC_OpenCLWorkGroupLocal:
4525        break;
4526      }
4527    }
4528
4529    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4530                                                Context, Label));
4531  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4532    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4533      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4534    if (I != ExtnameUndeclaredIdentifiers.end()) {
4535      NewVD->addAttr(I->second);
4536      ExtnameUndeclaredIdentifiers.erase(I);
4537    }
4538  }
4539
4540  // Diagnose shadowed variables before filtering for scope.
4541  if (!D.getCXXScopeSpec().isSet())
4542    CheckShadow(S, NewVD, Previous);
4543
4544  // Don't consider existing declarations that are in a different
4545  // scope and are out-of-semantic-context declarations (if the new
4546  // declaration has linkage).
4547  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4548                       isExplicitSpecialization);
4549
4550  if (!getLangOpts().CPlusPlus) {
4551    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4552  } else {
4553    // Merge the decl with the existing one if appropriate.
4554    if (!Previous.empty()) {
4555      if (Previous.isSingleResult() &&
4556          isa<FieldDecl>(Previous.getFoundDecl()) &&
4557          D.getCXXScopeSpec().isSet()) {
4558        // The user tried to define a non-static data member
4559        // out-of-line (C++ [dcl.meaning]p1).
4560        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4561          << D.getCXXScopeSpec().getRange();
4562        Previous.clear();
4563        NewVD->setInvalidDecl();
4564      }
4565    } else if (D.getCXXScopeSpec().isSet()) {
4566      // No previous declaration in the qualifying scope.
4567      Diag(D.getIdentifierLoc(), diag::err_no_member)
4568        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4569        << D.getCXXScopeSpec().getRange();
4570      NewVD->setInvalidDecl();
4571    }
4572
4573    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4574
4575    // This is an explicit specialization of a static data member. Check it.
4576    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4577        CheckMemberSpecialization(NewVD, Previous))
4578      NewVD->setInvalidDecl();
4579  }
4580
4581  // If this is a locally-scoped extern C variable, update the map of
4582  // such variables.
4583  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4584      !NewVD->isInvalidDecl())
4585    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4586
4587  // If there's a #pragma GCC visibility in scope, and this isn't a class
4588  // member, set the visibility of this variable.
4589  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4590    AddPushedVisibilityAttribute(NewVD);
4591
4592  return NewVD;
4593}
4594
4595/// \brief Diagnose variable or built-in function shadowing.  Implements
4596/// -Wshadow.
4597///
4598/// This method is called whenever a VarDecl is added to a "useful"
4599/// scope.
4600///
4601/// \param S the scope in which the shadowing name is being declared
4602/// \param R the lookup of the name
4603///
4604void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4605  // Return if warning is ignored.
4606  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4607        DiagnosticsEngine::Ignored)
4608    return;
4609
4610  // Don't diagnose declarations at file scope.
4611  if (D->hasGlobalStorage())
4612    return;
4613
4614  DeclContext *NewDC = D->getDeclContext();
4615
4616  // Only diagnose if we're shadowing an unambiguous field or variable.
4617  if (R.getResultKind() != LookupResult::Found)
4618    return;
4619
4620  NamedDecl* ShadowedDecl = R.getFoundDecl();
4621  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4622    return;
4623
4624  // Fields are not shadowed by variables in C++ static methods.
4625  if (isa<FieldDecl>(ShadowedDecl))
4626    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4627      if (MD->isStatic())
4628        return;
4629
4630  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4631    if (shadowedVar->isExternC()) {
4632      // For shadowing external vars, make sure that we point to the global
4633      // declaration, not a locally scoped extern declaration.
4634      for (VarDecl::redecl_iterator
4635             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4636           I != E; ++I)
4637        if (I->isFileVarDecl()) {
4638          ShadowedDecl = *I;
4639          break;
4640        }
4641    }
4642
4643  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4644
4645  // Only warn about certain kinds of shadowing for class members.
4646  if (NewDC && NewDC->isRecord()) {
4647    // In particular, don't warn about shadowing non-class members.
4648    if (!OldDC->isRecord())
4649      return;
4650
4651    // TODO: should we warn about static data members shadowing
4652    // static data members from base classes?
4653
4654    // TODO: don't diagnose for inaccessible shadowed members.
4655    // This is hard to do perfectly because we might friend the
4656    // shadowing context, but that's just a false negative.
4657  }
4658
4659  // Determine what kind of declaration we're shadowing.
4660  unsigned Kind;
4661  if (isa<RecordDecl>(OldDC)) {
4662    if (isa<FieldDecl>(ShadowedDecl))
4663      Kind = 3; // field
4664    else
4665      Kind = 2; // static data member
4666  } else if (OldDC->isFileContext())
4667    Kind = 1; // global
4668  else
4669    Kind = 0; // local
4670
4671  DeclarationName Name = R.getLookupName();
4672
4673  // Emit warning and note.
4674  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4675  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4676}
4677
4678/// \brief Check -Wshadow without the advantage of a previous lookup.
4679void Sema::CheckShadow(Scope *S, VarDecl *D) {
4680  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4681        DiagnosticsEngine::Ignored)
4682    return;
4683
4684  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4685                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4686  LookupName(R, S);
4687  CheckShadow(S, D, R);
4688}
4689
4690template<typename T>
4691static bool mayConflictWithNonVisibleExternC(const T *ND) {
4692  VarDecl::StorageClass SC = ND->getStorageClass();
4693  if (ND->hasCLanguageLinkage() && (SC == SC_Extern || SC == SC_PrivateExtern))
4694    return true;
4695  return ND->getDeclContext()->isTranslationUnit();
4696}
4697
4698/// \brief Perform semantic checking on a newly-created variable
4699/// declaration.
4700///
4701/// This routine performs all of the type-checking required for a
4702/// variable declaration once it has been built. It is used both to
4703/// check variables after they have been parsed and their declarators
4704/// have been translated into a declaration, and to check variables
4705/// that have been instantiated from a template.
4706///
4707/// Sets NewVD->isInvalidDecl() if an error was encountered.
4708///
4709/// Returns true if the variable declaration is a redeclaration.
4710bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4711                                    LookupResult &Previous) {
4712  // If the decl is already known invalid, don't check it.
4713  if (NewVD->isInvalidDecl())
4714    return false;
4715
4716  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4717  QualType T = TInfo->getType();
4718
4719  if (T->isObjCObjectType()) {
4720    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4721      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4722    T = Context.getObjCObjectPointerType(T);
4723    NewVD->setType(T);
4724  }
4725
4726  // Emit an error if an address space was applied to decl with local storage.
4727  // This includes arrays of objects with address space qualifiers, but not
4728  // automatic variables that point to other address spaces.
4729  // ISO/IEC TR 18037 S5.1.2
4730  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4731    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4732    NewVD->setInvalidDecl();
4733    return false;
4734  }
4735
4736  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4737  // scope.
4738  if ((getLangOpts().OpenCLVersion >= 120)
4739      && NewVD->isStaticLocal()) {
4740    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4741    NewVD->setInvalidDecl();
4742    return false;
4743  }
4744
4745  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4746      && !NewVD->hasAttr<BlocksAttr>()) {
4747    if (getLangOpts().getGC() != LangOptions::NonGC)
4748      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4749    else {
4750      assert(!getLangOpts().ObjCAutoRefCount);
4751      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4752    }
4753  }
4754
4755  bool isVM = T->isVariablyModifiedType();
4756  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4757      NewVD->hasAttr<BlocksAttr>())
4758    getCurFunction()->setHasBranchProtectedScope();
4759
4760  if ((isVM && NewVD->hasLinkage()) ||
4761      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4762    bool SizeIsNegative;
4763    llvm::APSInt Oversized;
4764    TypeSourceInfo *FixedTInfo =
4765      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4766                                                    SizeIsNegative, Oversized);
4767    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4768      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4769      // FIXME: This won't give the correct result for
4770      // int a[10][n];
4771      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4772
4773      if (NewVD->isFileVarDecl())
4774        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4775        << SizeRange;
4776      else if (NewVD->getStorageClass() == SC_Static)
4777        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4778        << SizeRange;
4779      else
4780        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4781        << SizeRange;
4782      NewVD->setInvalidDecl();
4783      return false;
4784    }
4785
4786    if (FixedTInfo == 0) {
4787      if (NewVD->isFileVarDecl())
4788        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4789      else
4790        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4791      NewVD->setInvalidDecl();
4792      return false;
4793    }
4794
4795    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4796    NewVD->setType(FixedTInfo->getType());
4797    NewVD->setTypeSourceInfo(FixedTInfo);
4798  }
4799
4800  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
4801    // Since we did not find anything by this name, look for a non-visible
4802    // extern "C" declaration with the same name.
4803    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4804      = findLocallyScopedExternCDecl(NewVD->getDeclName());
4805    if (Pos != LocallyScopedExternCDecls.end())
4806      Previous.addDecl(Pos->second);
4807  }
4808
4809  // Filter out any non-conflicting previous declarations.
4810  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
4811
4812  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4813    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4814      << T;
4815    NewVD->setInvalidDecl();
4816    return false;
4817  }
4818
4819  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4820    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4821    NewVD->setInvalidDecl();
4822    return false;
4823  }
4824
4825  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4826    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4827    NewVD->setInvalidDecl();
4828    return false;
4829  }
4830
4831  if (NewVD->isConstexpr() && !T->isDependentType() &&
4832      RequireLiteralType(NewVD->getLocation(), T,
4833                         diag::err_constexpr_var_non_literal)) {
4834    NewVD->setInvalidDecl();
4835    return false;
4836  }
4837
4838  if (!Previous.empty()) {
4839    MergeVarDecl(NewVD, Previous);
4840    return true;
4841  }
4842  return false;
4843}
4844
4845/// \brief Data used with FindOverriddenMethod
4846struct FindOverriddenMethodData {
4847  Sema *S;
4848  CXXMethodDecl *Method;
4849};
4850
4851/// \brief Member lookup function that determines whether a given C++
4852/// method overrides a method in a base class, to be used with
4853/// CXXRecordDecl::lookupInBases().
4854static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4855                                 CXXBasePath &Path,
4856                                 void *UserData) {
4857  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4858
4859  FindOverriddenMethodData *Data
4860    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4861
4862  DeclarationName Name = Data->Method->getDeclName();
4863
4864  // FIXME: Do we care about other names here too?
4865  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4866    // We really want to find the base class destructor here.
4867    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4868    CanQualType CT = Data->S->Context.getCanonicalType(T);
4869
4870    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4871  }
4872
4873  for (Path.Decls = BaseRecord->lookup(Name);
4874       !Path.Decls.empty();
4875       Path.Decls = Path.Decls.slice(1)) {
4876    NamedDecl *D = Path.Decls.front();
4877    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4878      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4879        return true;
4880    }
4881  }
4882
4883  return false;
4884}
4885
4886namespace {
4887  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
4888}
4889/// \brief Report an error regarding overriding, along with any relevant
4890/// overriden methods.
4891///
4892/// \param DiagID the primary error to report.
4893/// \param MD the overriding method.
4894/// \param OEK which overrides to include as notes.
4895static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
4896                            OverrideErrorKind OEK = OEK_All) {
4897  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
4898  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4899                                      E = MD->end_overridden_methods();
4900       I != E; ++I) {
4901    // This check (& the OEK parameter) could be replaced by a predicate, but
4902    // without lambdas that would be overkill. This is still nicer than writing
4903    // out the diag loop 3 times.
4904    if ((OEK == OEK_All) ||
4905        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
4906        (OEK == OEK_Deleted && (*I)->isDeleted()))
4907      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
4908  }
4909}
4910
4911/// AddOverriddenMethods - See if a method overrides any in the base classes,
4912/// and if so, check that it's a valid override and remember it.
4913bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4914  // Look for virtual methods in base classes that this method might override.
4915  CXXBasePaths Paths;
4916  FindOverriddenMethodData Data;
4917  Data.Method = MD;
4918  Data.S = this;
4919  bool hasDeletedOverridenMethods = false;
4920  bool hasNonDeletedOverridenMethods = false;
4921  bool AddedAny = false;
4922  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4923    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4924         E = Paths.found_decls_end(); I != E; ++I) {
4925      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4926        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4927        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4928            !CheckOverridingFunctionAttributes(MD, OldMD) &&
4929            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4930            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4931          hasDeletedOverridenMethods |= OldMD->isDeleted();
4932          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
4933          AddedAny = true;
4934        }
4935      }
4936    }
4937  }
4938
4939  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
4940    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
4941  }
4942  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
4943    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
4944  }
4945
4946  return AddedAny;
4947}
4948
4949namespace {
4950  // Struct for holding all of the extra arguments needed by
4951  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4952  struct ActOnFDArgs {
4953    Scope *S;
4954    Declarator &D;
4955    MultiTemplateParamsArg TemplateParamLists;
4956    bool AddToScope;
4957  };
4958}
4959
4960namespace {
4961
4962// Callback to only accept typo corrections that have a non-zero edit distance.
4963// Also only accept corrections that have the same parent decl.
4964class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4965 public:
4966  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4967                            CXXRecordDecl *Parent)
4968      : Context(Context), OriginalFD(TypoFD),
4969        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4970
4971  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4972    if (candidate.getEditDistance() == 0)
4973      return false;
4974
4975    SmallVector<unsigned, 1> MismatchedParams;
4976    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4977                                          CDeclEnd = candidate.end();
4978         CDecl != CDeclEnd; ++CDecl) {
4979      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4980
4981      if (FD && !FD->hasBody() &&
4982          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4983        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4984          CXXRecordDecl *Parent = MD->getParent();
4985          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4986            return true;
4987        } else if (!ExpectedParent) {
4988          return true;
4989        }
4990      }
4991    }
4992
4993    return false;
4994  }
4995
4996 private:
4997  ASTContext &Context;
4998  FunctionDecl *OriginalFD;
4999  CXXRecordDecl *ExpectedParent;
5000};
5001
5002}
5003
5004/// \brief Generate diagnostics for an invalid function redeclaration.
5005///
5006/// This routine handles generating the diagnostic messages for an invalid
5007/// function redeclaration, including finding possible similar declarations
5008/// or performing typo correction if there are no previous declarations with
5009/// the same name.
5010///
5011/// Returns a NamedDecl iff typo correction was performed and substituting in
5012/// the new declaration name does not cause new errors.
5013static NamedDecl* DiagnoseInvalidRedeclaration(
5014    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5015    ActOnFDArgs &ExtraArgs) {
5016  NamedDecl *Result = NULL;
5017  DeclarationName Name = NewFD->getDeclName();
5018  DeclContext *NewDC = NewFD->getDeclContext();
5019  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5020                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5021  SmallVector<unsigned, 1> MismatchedParams;
5022  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5023  TypoCorrection Correction;
5024  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5025                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5026  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5027                                  : diag::err_member_def_does_not_match;
5028
5029  NewFD->setInvalidDecl();
5030  SemaRef.LookupQualifiedName(Prev, NewDC);
5031  assert(!Prev.isAmbiguous() &&
5032         "Cannot have an ambiguity in previous-declaration lookup");
5033  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5034  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5035                                      MD ? MD->getParent() : 0);
5036  if (!Prev.empty()) {
5037    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5038         Func != FuncEnd; ++Func) {
5039      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5040      if (FD &&
5041          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5042        // Add 1 to the index so that 0 can mean the mismatch didn't
5043        // involve a parameter
5044        unsigned ParamNum =
5045            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5046        NearMatches.push_back(std::make_pair(FD, ParamNum));
5047      }
5048    }
5049  // If the qualified name lookup yielded nothing, try typo correction
5050  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5051                                         Prev.getLookupKind(), 0, 0,
5052                                         Validator, NewDC))) {
5053    // Trap errors.
5054    Sema::SFINAETrap Trap(SemaRef);
5055
5056    // Set up everything for the call to ActOnFunctionDeclarator
5057    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5058                              ExtraArgs.D.getIdentifierLoc());
5059    Previous.clear();
5060    Previous.setLookupName(Correction.getCorrection());
5061    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5062                                    CDeclEnd = Correction.end();
5063         CDecl != CDeclEnd; ++CDecl) {
5064      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5065      if (FD && !FD->hasBody() &&
5066          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5067        Previous.addDecl(FD);
5068      }
5069    }
5070    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5071    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5072    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5073    // eliminate the need for the parameter pack ExtraArgs.
5074    Result = SemaRef.ActOnFunctionDeclarator(
5075        ExtraArgs.S, ExtraArgs.D,
5076        Correction.getCorrectionDecl()->getDeclContext(),
5077        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5078        ExtraArgs.AddToScope);
5079    if (Trap.hasErrorOccurred()) {
5080      // Pretend the typo correction never occurred
5081      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5082                                ExtraArgs.D.getIdentifierLoc());
5083      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5084      Previous.clear();
5085      Previous.setLookupName(Name);
5086      Result = NULL;
5087    } else {
5088      for (LookupResult::iterator Func = Previous.begin(),
5089                               FuncEnd = Previous.end();
5090           Func != FuncEnd; ++Func) {
5091        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5092          NearMatches.push_back(std::make_pair(FD, 0));
5093      }
5094    }
5095    if (NearMatches.empty()) {
5096      // Ignore the correction if it didn't yield any close FunctionDecl matches
5097      Correction = TypoCorrection();
5098    } else {
5099      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5100                             : diag::err_member_def_does_not_match_suggest;
5101    }
5102  }
5103
5104  if (Correction) {
5105    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5106    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5107    // turn causes the correction to fully qualify the name. If we fix
5108    // CorrectTypo to minimally qualify then this change should be good.
5109    SourceRange FixItLoc(NewFD->getLocation());
5110    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5111    if (Correction.getCorrectionSpecifier() && SS.isValid())
5112      FixItLoc.setBegin(SS.getBeginLoc());
5113    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5114        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5115        << FixItHint::CreateReplacement(
5116            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5117  } else {
5118    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5119        << Name << NewDC << NewFD->getLocation();
5120  }
5121
5122  bool NewFDisConst = false;
5123  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5124    NewFDisConst = NewMD->isConst();
5125
5126  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5127       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5128       NearMatch != NearMatchEnd; ++NearMatch) {
5129    FunctionDecl *FD = NearMatch->first;
5130    bool FDisConst = false;
5131    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5132      FDisConst = MD->isConst();
5133
5134    if (unsigned Idx = NearMatch->second) {
5135      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5136      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5137      if (Loc.isInvalid()) Loc = FD->getLocation();
5138      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5139          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5140    } else if (Correction) {
5141      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5142          << Correction.getQuoted(SemaRef.getLangOpts());
5143    } else if (FDisConst != NewFDisConst) {
5144      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5145          << NewFDisConst << FD->getSourceRange().getEnd();
5146    } else
5147      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5148  }
5149  return Result;
5150}
5151
5152static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5153                                                          Declarator &D) {
5154  switch (D.getDeclSpec().getStorageClassSpec()) {
5155  default: llvm_unreachable("Unknown storage class!");
5156  case DeclSpec::SCS_auto:
5157  case DeclSpec::SCS_register:
5158  case DeclSpec::SCS_mutable:
5159    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5160                 diag::err_typecheck_sclass_func);
5161    D.setInvalidType();
5162    break;
5163  case DeclSpec::SCS_unspecified: break;
5164  case DeclSpec::SCS_extern: return SC_Extern;
5165  case DeclSpec::SCS_static: {
5166    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5167      // C99 6.7.1p5:
5168      //   The declaration of an identifier for a function that has
5169      //   block scope shall have no explicit storage-class specifier
5170      //   other than extern
5171      // See also (C++ [dcl.stc]p4).
5172      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5173                   diag::err_static_block_func);
5174      break;
5175    } else
5176      return SC_Static;
5177  }
5178  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5179  }
5180
5181  // No explicit storage class has already been returned
5182  return SC_None;
5183}
5184
5185static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5186                                           DeclContext *DC, QualType &R,
5187                                           TypeSourceInfo *TInfo,
5188                                           FunctionDecl::StorageClass SC,
5189                                           bool &IsVirtualOkay) {
5190  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5191  DeclarationName Name = NameInfo.getName();
5192
5193  FunctionDecl *NewFD = 0;
5194  bool isInline = D.getDeclSpec().isInlineSpecified();
5195  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5196  FunctionDecl::StorageClass SCAsWritten
5197    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5198
5199  if (!SemaRef.getLangOpts().CPlusPlus) {
5200    // Determine whether the function was written with a
5201    // prototype. This true when:
5202    //   - there is a prototype in the declarator, or
5203    //   - the type R of the function is some kind of typedef or other reference
5204    //     to a type name (which eventually refers to a function type).
5205    bool HasPrototype =
5206      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5207      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5208
5209    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5210                                 D.getLocStart(), NameInfo, R,
5211                                 TInfo, SC, SCAsWritten, isInline,
5212                                 HasPrototype);
5213    if (D.isInvalidType())
5214      NewFD->setInvalidDecl();
5215
5216    // Set the lexical context.
5217    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5218
5219    return NewFD;
5220  }
5221
5222  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5223  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5224
5225  // Check that the return type is not an abstract class type.
5226  // For record types, this is done by the AbstractClassUsageDiagnoser once
5227  // the class has been completely parsed.
5228  if (!DC->isRecord() &&
5229      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5230                                     R->getAs<FunctionType>()->getResultType(),
5231                                     diag::err_abstract_type_in_decl,
5232                                     SemaRef.AbstractReturnType))
5233    D.setInvalidType();
5234
5235  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5236    // This is a C++ constructor declaration.
5237    assert(DC->isRecord() &&
5238           "Constructors can only be declared in a member context");
5239
5240    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5241    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5242                                      D.getLocStart(), NameInfo,
5243                                      R, TInfo, isExplicit, isInline,
5244                                      /*isImplicitlyDeclared=*/false,
5245                                      isConstexpr);
5246
5247  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5248    // This is a C++ destructor declaration.
5249    if (DC->isRecord()) {
5250      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5251      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5252      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5253                                        SemaRef.Context, Record,
5254                                        D.getLocStart(),
5255                                        NameInfo, R, TInfo, isInline,
5256                                        /*isImplicitlyDeclared=*/false);
5257
5258      // If the class is complete, then we now create the implicit exception
5259      // specification. If the class is incomplete or dependent, we can't do
5260      // it yet.
5261      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5262          Record->getDefinition() && !Record->isBeingDefined() &&
5263          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5264        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5265      }
5266
5267      IsVirtualOkay = true;
5268      return NewDD;
5269
5270    } else {
5271      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5272      D.setInvalidType();
5273
5274      // Create a FunctionDecl to satisfy the function definition parsing
5275      // code path.
5276      return FunctionDecl::Create(SemaRef.Context, DC,
5277                                  D.getLocStart(),
5278                                  D.getIdentifierLoc(), Name, R, TInfo,
5279                                  SC, SCAsWritten, isInline,
5280                                  /*hasPrototype=*/true, isConstexpr);
5281    }
5282
5283  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5284    if (!DC->isRecord()) {
5285      SemaRef.Diag(D.getIdentifierLoc(),
5286           diag::err_conv_function_not_member);
5287      return 0;
5288    }
5289
5290    SemaRef.CheckConversionDeclarator(D, R, SC);
5291    IsVirtualOkay = true;
5292    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5293                                     D.getLocStart(), NameInfo,
5294                                     R, TInfo, isInline, isExplicit,
5295                                     isConstexpr, SourceLocation());
5296
5297  } else if (DC->isRecord()) {
5298    // If the name of the function is the same as the name of the record,
5299    // then this must be an invalid constructor that has a return type.
5300    // (The parser checks for a return type and makes the declarator a
5301    // constructor if it has no return type).
5302    if (Name.getAsIdentifierInfo() &&
5303        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5304      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5305        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5306        << SourceRange(D.getIdentifierLoc());
5307      return 0;
5308    }
5309
5310    bool isStatic = SC == SC_Static;
5311
5312    // [class.free]p1:
5313    // Any allocation function for a class T is a static member
5314    // (even if not explicitly declared static).
5315    if (Name.getCXXOverloadedOperator() == OO_New ||
5316        Name.getCXXOverloadedOperator() == OO_Array_New)
5317      isStatic = true;
5318
5319    // [class.free]p6 Any deallocation function for a class X is a static member
5320    // (even if not explicitly declared static).
5321    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5322        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5323      isStatic = true;
5324
5325    IsVirtualOkay = !isStatic;
5326
5327    // This is a C++ method declaration.
5328    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5329                                 D.getLocStart(), NameInfo, R,
5330                                 TInfo, isStatic, SCAsWritten, isInline,
5331                                 isConstexpr, SourceLocation());
5332
5333  } else {
5334    // Determine whether the function was written with a
5335    // prototype. This true when:
5336    //   - we're in C++ (where every function has a prototype),
5337    return FunctionDecl::Create(SemaRef.Context, DC,
5338                                D.getLocStart(),
5339                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5340                                true/*HasPrototype*/, isConstexpr);
5341  }
5342}
5343
5344void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5345  // In C++, the empty parameter-type-list must be spelled "void"; a
5346  // typedef of void is not permitted.
5347  if (getLangOpts().CPlusPlus &&
5348      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5349    bool IsTypeAlias = false;
5350    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5351      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5352    else if (const TemplateSpecializationType *TST =
5353               Param->getType()->getAs<TemplateSpecializationType>())
5354      IsTypeAlias = TST->isTypeAlias();
5355    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5356      << IsTypeAlias;
5357  }
5358}
5359
5360NamedDecl*
5361Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5362                              TypeSourceInfo *TInfo, LookupResult &Previous,
5363                              MultiTemplateParamsArg TemplateParamLists,
5364                              bool &AddToScope) {
5365  QualType R = TInfo->getType();
5366
5367  assert(R.getTypePtr()->isFunctionType());
5368
5369  // TODO: consider using NameInfo for diagnostic.
5370  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5371  DeclarationName Name = NameInfo.getName();
5372  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5373
5374  if (D.getDeclSpec().isThreadSpecified())
5375    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5376
5377  // Do not allow returning a objc interface by-value.
5378  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5379    Diag(D.getIdentifierLoc(),
5380         diag::err_object_cannot_be_passed_returned_by_value) << 0
5381    << R->getAs<FunctionType>()->getResultType()
5382    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5383
5384    QualType T = R->getAs<FunctionType>()->getResultType();
5385    T = Context.getObjCObjectPointerType(T);
5386    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5387      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5388      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5389                                  FPT->getNumArgs(), EPI);
5390    }
5391    else if (isa<FunctionNoProtoType>(R))
5392      R = Context.getFunctionNoProtoType(T);
5393  }
5394
5395  bool isFriend = false;
5396  FunctionTemplateDecl *FunctionTemplate = 0;
5397  bool isExplicitSpecialization = false;
5398  bool isFunctionTemplateSpecialization = false;
5399
5400  bool isDependentClassScopeExplicitSpecialization = false;
5401  bool HasExplicitTemplateArgs = false;
5402  TemplateArgumentListInfo TemplateArgs;
5403
5404  bool isVirtualOkay = false;
5405
5406  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5407                                              isVirtualOkay);
5408  if (!NewFD) return 0;
5409
5410  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5411    NewFD->setTopLevelDeclInObjCContainer();
5412
5413  if (getLangOpts().CPlusPlus) {
5414    bool isInline = D.getDeclSpec().isInlineSpecified();
5415    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5416    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5417    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5418    isFriend = D.getDeclSpec().isFriendSpecified();
5419    if (isFriend && !isInline && D.isFunctionDefinition()) {
5420      // C++ [class.friend]p5
5421      //   A function can be defined in a friend declaration of a
5422      //   class . . . . Such a function is implicitly inline.
5423      NewFD->setImplicitlyInline();
5424    }
5425
5426    // If this is a method defined in an __interface, and is not a constructor
5427    // or an overloaded operator, then set the pure flag (isVirtual will already
5428    // return true).
5429    if (const CXXRecordDecl *Parent =
5430          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5431      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5432        NewFD->setPure(true);
5433    }
5434
5435    SetNestedNameSpecifier(NewFD, D);
5436    isExplicitSpecialization = false;
5437    isFunctionTemplateSpecialization = false;
5438    if (D.isInvalidType())
5439      NewFD->setInvalidDecl();
5440
5441    // Set the lexical context. If the declarator has a C++
5442    // scope specifier, or is the object of a friend declaration, the
5443    // lexical context will be different from the semantic context.
5444    NewFD->setLexicalDeclContext(CurContext);
5445
5446    // Match up the template parameter lists with the scope specifier, then
5447    // determine whether we have a template or a template specialization.
5448    bool Invalid = false;
5449    if (TemplateParameterList *TemplateParams
5450          = MatchTemplateParametersToScopeSpecifier(
5451                                  D.getDeclSpec().getLocStart(),
5452                                  D.getIdentifierLoc(),
5453                                  D.getCXXScopeSpec(),
5454                                  TemplateParamLists.data(),
5455                                  TemplateParamLists.size(),
5456                                  isFriend,
5457                                  isExplicitSpecialization,
5458                                  Invalid)) {
5459      if (TemplateParams->size() > 0) {
5460        // This is a function template
5461
5462        // Check that we can declare a template here.
5463        if (CheckTemplateDeclScope(S, TemplateParams))
5464          return 0;
5465
5466        // A destructor cannot be a template.
5467        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5468          Diag(NewFD->getLocation(), diag::err_destructor_template);
5469          return 0;
5470        }
5471
5472        // If we're adding a template to a dependent context, we may need to
5473        // rebuilding some of the types used within the template parameter list,
5474        // now that we know what the current instantiation is.
5475        if (DC->isDependentContext()) {
5476          ContextRAII SavedContext(*this, DC);
5477          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5478            Invalid = true;
5479        }
5480
5481
5482        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5483                                                        NewFD->getLocation(),
5484                                                        Name, TemplateParams,
5485                                                        NewFD);
5486        FunctionTemplate->setLexicalDeclContext(CurContext);
5487        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5488
5489        // For source fidelity, store the other template param lists.
5490        if (TemplateParamLists.size() > 1) {
5491          NewFD->setTemplateParameterListsInfo(Context,
5492                                               TemplateParamLists.size() - 1,
5493                                               TemplateParamLists.data());
5494        }
5495      } else {
5496        // This is a function template specialization.
5497        isFunctionTemplateSpecialization = true;
5498        // For source fidelity, store all the template param lists.
5499        NewFD->setTemplateParameterListsInfo(Context,
5500                                             TemplateParamLists.size(),
5501                                             TemplateParamLists.data());
5502
5503        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5504        if (isFriend) {
5505          // We want to remove the "template<>", found here.
5506          SourceRange RemoveRange = TemplateParams->getSourceRange();
5507
5508          // If we remove the template<> and the name is not a
5509          // template-id, we're actually silently creating a problem:
5510          // the friend declaration will refer to an untemplated decl,
5511          // and clearly the user wants a template specialization.  So
5512          // we need to insert '<>' after the name.
5513          SourceLocation InsertLoc;
5514          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5515            InsertLoc = D.getName().getSourceRange().getEnd();
5516            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5517          }
5518
5519          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5520            << Name << RemoveRange
5521            << FixItHint::CreateRemoval(RemoveRange)
5522            << FixItHint::CreateInsertion(InsertLoc, "<>");
5523        }
5524      }
5525    }
5526    else {
5527      // All template param lists were matched against the scope specifier:
5528      // this is NOT (an explicit specialization of) a template.
5529      if (TemplateParamLists.size() > 0)
5530        // For source fidelity, store all the template param lists.
5531        NewFD->setTemplateParameterListsInfo(Context,
5532                                             TemplateParamLists.size(),
5533                                             TemplateParamLists.data());
5534    }
5535
5536    if (Invalid) {
5537      NewFD->setInvalidDecl();
5538      if (FunctionTemplate)
5539        FunctionTemplate->setInvalidDecl();
5540    }
5541
5542    // C++ [dcl.fct.spec]p5:
5543    //   The virtual specifier shall only be used in declarations of
5544    //   nonstatic class member functions that appear within a
5545    //   member-specification of a class declaration; see 10.3.
5546    //
5547    if (isVirtual && !NewFD->isInvalidDecl()) {
5548      if (!isVirtualOkay) {
5549        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5550             diag::err_virtual_non_function);
5551      } else if (!CurContext->isRecord()) {
5552        // 'virtual' was specified outside of the class.
5553        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5554             diag::err_virtual_out_of_class)
5555          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5556      } else if (NewFD->getDescribedFunctionTemplate()) {
5557        // C++ [temp.mem]p3:
5558        //  A member function template shall not be virtual.
5559        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5560             diag::err_virtual_member_function_template)
5561          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5562      } else {
5563        // Okay: Add virtual to the method.
5564        NewFD->setVirtualAsWritten(true);
5565      }
5566    }
5567
5568    // C++ [dcl.fct.spec]p3:
5569    //  The inline specifier shall not appear on a block scope function
5570    //  declaration.
5571    if (isInline && !NewFD->isInvalidDecl()) {
5572      if (CurContext->isFunctionOrMethod()) {
5573        // 'inline' is not allowed on block scope function declaration.
5574        Diag(D.getDeclSpec().getInlineSpecLoc(),
5575             diag::err_inline_declaration_block_scope) << Name
5576          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5577      }
5578    }
5579
5580    // C++ [dcl.fct.spec]p6:
5581    //  The explicit specifier shall be used only in the declaration of a
5582    //  constructor or conversion function within its class definition;
5583    //  see 12.3.1 and 12.3.2.
5584    if (isExplicit && !NewFD->isInvalidDecl()) {
5585      if (!CurContext->isRecord()) {
5586        // 'explicit' was specified outside of the class.
5587        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5588             diag::err_explicit_out_of_class)
5589          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5590      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5591                 !isa<CXXConversionDecl>(NewFD)) {
5592        // 'explicit' was specified on a function that wasn't a constructor
5593        // or conversion function.
5594        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5595             diag::err_explicit_non_ctor_or_conv_function)
5596          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5597      }
5598    }
5599
5600    if (isConstexpr) {
5601      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5602      // are implicitly inline.
5603      NewFD->setImplicitlyInline();
5604
5605      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5606      // be either constructors or to return a literal type. Therefore,
5607      // destructors cannot be declared constexpr.
5608      if (isa<CXXDestructorDecl>(NewFD))
5609        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5610    }
5611
5612    // If __module_private__ was specified, mark the function accordingly.
5613    if (D.getDeclSpec().isModulePrivateSpecified()) {
5614      if (isFunctionTemplateSpecialization) {
5615        SourceLocation ModulePrivateLoc
5616          = D.getDeclSpec().getModulePrivateSpecLoc();
5617        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5618          << 0
5619          << FixItHint::CreateRemoval(ModulePrivateLoc);
5620      } else {
5621        NewFD->setModulePrivate();
5622        if (FunctionTemplate)
5623          FunctionTemplate->setModulePrivate();
5624      }
5625    }
5626
5627    if (isFriend) {
5628      // For now, claim that the objects have no previous declaration.
5629      if (FunctionTemplate) {
5630        FunctionTemplate->setObjectOfFriendDecl(false);
5631        FunctionTemplate->setAccess(AS_public);
5632      }
5633      NewFD->setObjectOfFriendDecl(false);
5634      NewFD->setAccess(AS_public);
5635    }
5636
5637    // If a function is defined as defaulted or deleted, mark it as such now.
5638    switch (D.getFunctionDefinitionKind()) {
5639      case FDK_Declaration:
5640      case FDK_Definition:
5641        break;
5642
5643      case FDK_Defaulted:
5644        NewFD->setDefaulted();
5645        break;
5646
5647      case FDK_Deleted:
5648        NewFD->setDeletedAsWritten();
5649        break;
5650    }
5651
5652    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5653        D.isFunctionDefinition()) {
5654      // C++ [class.mfct]p2:
5655      //   A member function may be defined (8.4) in its class definition, in
5656      //   which case it is an inline member function (7.1.2)
5657      NewFD->setImplicitlyInline();
5658    }
5659
5660    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5661        !CurContext->isRecord()) {
5662      // C++ [class.static]p1:
5663      //   A data or function member of a class may be declared static
5664      //   in a class definition, in which case it is a static member of
5665      //   the class.
5666
5667      // Complain about the 'static' specifier if it's on an out-of-line
5668      // member function definition.
5669      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5670           diag::err_static_out_of_line)
5671        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5672    }
5673
5674    // C++11 [except.spec]p15:
5675    //   A deallocation function with no exception-specification is treated
5676    //   as if it were specified with noexcept(true).
5677    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5678    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5679         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5680        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5681      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5682      EPI.ExceptionSpecType = EST_BasicNoexcept;
5683      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5684                                             FPT->arg_type_begin(),
5685                                             FPT->getNumArgs(), EPI));
5686    }
5687  }
5688
5689  // Filter out previous declarations that don't match the scope.
5690  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5691                       isExplicitSpecialization ||
5692                       isFunctionTemplateSpecialization);
5693
5694  // Handle GNU asm-label extension (encoded as an attribute).
5695  if (Expr *E = (Expr*) D.getAsmLabel()) {
5696    // The parser guarantees this is a string.
5697    StringLiteral *SE = cast<StringLiteral>(E);
5698    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5699                                                SE->getString()));
5700  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5701    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5702      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5703    if (I != ExtnameUndeclaredIdentifiers.end()) {
5704      NewFD->addAttr(I->second);
5705      ExtnameUndeclaredIdentifiers.erase(I);
5706    }
5707  }
5708
5709  // Copy the parameter declarations from the declarator D to the function
5710  // declaration NewFD, if they are available.  First scavenge them into Params.
5711  SmallVector<ParmVarDecl*, 16> Params;
5712  if (D.isFunctionDeclarator()) {
5713    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5714
5715    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5716    // function that takes no arguments, not a function that takes a
5717    // single void argument.
5718    // We let through "const void" here because Sema::GetTypeForDeclarator
5719    // already checks for that case.
5720    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5721        FTI.ArgInfo[0].Param &&
5722        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5723      // Empty arg list, don't push any params.
5724      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5725    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5726      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5727        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5728        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5729        Param->setDeclContext(NewFD);
5730        Params.push_back(Param);
5731
5732        if (Param->isInvalidDecl())
5733          NewFD->setInvalidDecl();
5734      }
5735    }
5736
5737  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5738    // When we're declaring a function with a typedef, typeof, etc as in the
5739    // following example, we'll need to synthesize (unnamed)
5740    // parameters for use in the declaration.
5741    //
5742    // @code
5743    // typedef void fn(int);
5744    // fn f;
5745    // @endcode
5746
5747    // Synthesize a parameter for each argument type.
5748    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5749         AE = FT->arg_type_end(); AI != AE; ++AI) {
5750      ParmVarDecl *Param =
5751        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5752      Param->setScopeInfo(0, Params.size());
5753      Params.push_back(Param);
5754    }
5755  } else {
5756    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5757           "Should not need args for typedef of non-prototype fn");
5758  }
5759
5760  // Finally, we know we have the right number of parameters, install them.
5761  NewFD->setParams(Params);
5762
5763  // Find all anonymous symbols defined during the declaration of this function
5764  // and add to NewFD. This lets us track decls such 'enum Y' in:
5765  //
5766  //   void f(enum Y {AA} x) {}
5767  //
5768  // which would otherwise incorrectly end up in the translation unit scope.
5769  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5770  DeclsInPrototypeScope.clear();
5771
5772  // Process the non-inheritable attributes on this declaration.
5773  ProcessDeclAttributes(S, NewFD, D,
5774                        /*NonInheritable=*/true, /*Inheritable=*/false);
5775
5776  // Functions returning a variably modified type violate C99 6.7.5.2p2
5777  // because all functions have linkage.
5778  if (!NewFD->isInvalidDecl() &&
5779      NewFD->getResultType()->isVariablyModifiedType()) {
5780    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5781    NewFD->setInvalidDecl();
5782  }
5783
5784  // Handle attributes.
5785  ProcessDeclAttributes(S, NewFD, D,
5786                        /*NonInheritable=*/false, /*Inheritable=*/true);
5787
5788  QualType RetType = NewFD->getResultType();
5789  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5790      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5791  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5792      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5793    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5794    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5795      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5796                                                        Context));
5797    }
5798  }
5799
5800  if (!getLangOpts().CPlusPlus) {
5801    // Perform semantic checking on the function declaration.
5802    bool isExplicitSpecialization=false;
5803    if (!NewFD->isInvalidDecl()) {
5804      if (NewFD->isMain())
5805        CheckMain(NewFD, D.getDeclSpec());
5806      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5807                                                  isExplicitSpecialization));
5808    }
5809    // Make graceful recovery from an invalid redeclaration.
5810    else if (!Previous.empty())
5811           D.setRedeclaration(true);
5812    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5813            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5814           "previous declaration set still overloaded");
5815  } else {
5816    // If the declarator is a template-id, translate the parser's template
5817    // argument list into our AST format.
5818    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5819      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5820      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5821      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5822      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5823                                         TemplateId->NumArgs);
5824      translateTemplateArguments(TemplateArgsPtr,
5825                                 TemplateArgs);
5826
5827      HasExplicitTemplateArgs = true;
5828
5829      if (NewFD->isInvalidDecl()) {
5830        HasExplicitTemplateArgs = false;
5831      } else if (FunctionTemplate) {
5832        // Function template with explicit template arguments.
5833        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5834          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5835
5836        HasExplicitTemplateArgs = false;
5837      } else if (!isFunctionTemplateSpecialization &&
5838                 !D.getDeclSpec().isFriendSpecified()) {
5839        // We have encountered something that the user meant to be a
5840        // specialization (because it has explicitly-specified template
5841        // arguments) but that was not introduced with a "template<>" (or had
5842        // too few of them).
5843        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5844          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5845          << FixItHint::CreateInsertion(
5846                                    D.getDeclSpec().getLocStart(),
5847                                        "template<> ");
5848        isFunctionTemplateSpecialization = true;
5849      } else {
5850        // "friend void foo<>(int);" is an implicit specialization decl.
5851        isFunctionTemplateSpecialization = true;
5852      }
5853    } else if (isFriend && isFunctionTemplateSpecialization) {
5854      // This combination is only possible in a recovery case;  the user
5855      // wrote something like:
5856      //   template <> friend void foo(int);
5857      // which we're recovering from as if the user had written:
5858      //   friend void foo<>(int);
5859      // Go ahead and fake up a template id.
5860      HasExplicitTemplateArgs = true;
5861        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5862      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5863    }
5864
5865    // If it's a friend (and only if it's a friend), it's possible
5866    // that either the specialized function type or the specialized
5867    // template is dependent, and therefore matching will fail.  In
5868    // this case, don't check the specialization yet.
5869    bool InstantiationDependent = false;
5870    if (isFunctionTemplateSpecialization && isFriend &&
5871        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5872         TemplateSpecializationType::anyDependentTemplateArguments(
5873            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5874            InstantiationDependent))) {
5875      assert(HasExplicitTemplateArgs &&
5876             "friend function specialization without template args");
5877      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5878                                                       Previous))
5879        NewFD->setInvalidDecl();
5880    } else if (isFunctionTemplateSpecialization) {
5881      if (CurContext->isDependentContext() && CurContext->isRecord()
5882          && !isFriend) {
5883        isDependentClassScopeExplicitSpecialization = true;
5884        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5885          diag::ext_function_specialization_in_class :
5886          diag::err_function_specialization_in_class)
5887          << NewFD->getDeclName();
5888      } else if (CheckFunctionTemplateSpecialization(NewFD,
5889                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5890                                                     Previous))
5891        NewFD->setInvalidDecl();
5892
5893      // C++ [dcl.stc]p1:
5894      //   A storage-class-specifier shall not be specified in an explicit
5895      //   specialization (14.7.3)
5896      if (SC != SC_None) {
5897        if (SC != NewFD->getStorageClass())
5898          Diag(NewFD->getLocation(),
5899               diag::err_explicit_specialization_inconsistent_storage_class)
5900            << SC
5901            << FixItHint::CreateRemoval(
5902                                      D.getDeclSpec().getStorageClassSpecLoc());
5903
5904        else
5905          Diag(NewFD->getLocation(),
5906               diag::ext_explicit_specialization_storage_class)
5907            << FixItHint::CreateRemoval(
5908                                      D.getDeclSpec().getStorageClassSpecLoc());
5909      }
5910
5911    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5912      if (CheckMemberSpecialization(NewFD, Previous))
5913          NewFD->setInvalidDecl();
5914    }
5915
5916    // Perform semantic checking on the function declaration.
5917    if (!isDependentClassScopeExplicitSpecialization) {
5918      if (NewFD->isInvalidDecl()) {
5919        // If this is a class member, mark the class invalid immediately.
5920        // This avoids some consistency errors later.
5921        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5922          methodDecl->getParent()->setInvalidDecl();
5923      } else {
5924        if (NewFD->isMain())
5925          CheckMain(NewFD, D.getDeclSpec());
5926        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5927                                                    isExplicitSpecialization));
5928      }
5929    }
5930
5931    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5932            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5933           "previous declaration set still overloaded");
5934
5935    NamedDecl *PrincipalDecl = (FunctionTemplate
5936                                ? cast<NamedDecl>(FunctionTemplate)
5937                                : NewFD);
5938
5939    if (isFriend && D.isRedeclaration()) {
5940      AccessSpecifier Access = AS_public;
5941      if (!NewFD->isInvalidDecl())
5942        Access = NewFD->getPreviousDecl()->getAccess();
5943
5944      NewFD->setAccess(Access);
5945      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5946
5947      PrincipalDecl->setObjectOfFriendDecl(true);
5948    }
5949
5950    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5951        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5952      PrincipalDecl->setNonMemberOperator();
5953
5954    // If we have a function template, check the template parameter
5955    // list. This will check and merge default template arguments.
5956    if (FunctionTemplate) {
5957      FunctionTemplateDecl *PrevTemplate =
5958                                     FunctionTemplate->getPreviousDecl();
5959      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5960                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5961                            D.getDeclSpec().isFriendSpecified()
5962                              ? (D.isFunctionDefinition()
5963                                   ? TPC_FriendFunctionTemplateDefinition
5964                                   : TPC_FriendFunctionTemplate)
5965                              : (D.getCXXScopeSpec().isSet() &&
5966                                 DC && DC->isRecord() &&
5967                                 DC->isDependentContext())
5968                                  ? TPC_ClassTemplateMember
5969                                  : TPC_FunctionTemplate);
5970    }
5971
5972    if (NewFD->isInvalidDecl()) {
5973      // Ignore all the rest of this.
5974    } else if (!D.isRedeclaration()) {
5975      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5976                                       AddToScope };
5977      // Fake up an access specifier if it's supposed to be a class member.
5978      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5979        NewFD->setAccess(AS_public);
5980
5981      // Qualified decls generally require a previous declaration.
5982      if (D.getCXXScopeSpec().isSet()) {
5983        // ...with the major exception of templated-scope or
5984        // dependent-scope friend declarations.
5985
5986        // TODO: we currently also suppress this check in dependent
5987        // contexts because (1) the parameter depth will be off when
5988        // matching friend templates and (2) we might actually be
5989        // selecting a friend based on a dependent factor.  But there
5990        // are situations where these conditions don't apply and we
5991        // can actually do this check immediately.
5992        if (isFriend &&
5993            (TemplateParamLists.size() ||
5994             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5995             CurContext->isDependentContext())) {
5996          // ignore these
5997        } else {
5998          // The user tried to provide an out-of-line definition for a
5999          // function that is a member of a class or namespace, but there
6000          // was no such member function declared (C++ [class.mfct]p2,
6001          // C++ [namespace.memdef]p2). For example:
6002          //
6003          // class X {
6004          //   void f() const;
6005          // };
6006          //
6007          // void X::f() { } // ill-formed
6008          //
6009          // Complain about this problem, and attempt to suggest close
6010          // matches (e.g., those that differ only in cv-qualifiers and
6011          // whether the parameter types are references).
6012
6013          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6014                                                               NewFD,
6015                                                               ExtraArgs)) {
6016            AddToScope = ExtraArgs.AddToScope;
6017            return Result;
6018          }
6019        }
6020
6021        // Unqualified local friend declarations are required to resolve
6022        // to something.
6023      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6024        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6025                                                             NewFD,
6026                                                             ExtraArgs)) {
6027          AddToScope = ExtraArgs.AddToScope;
6028          return Result;
6029        }
6030      }
6031
6032    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6033               !isFriend && !isFunctionTemplateSpecialization &&
6034               !isExplicitSpecialization) {
6035      // An out-of-line member function declaration must also be a
6036      // definition (C++ [dcl.meaning]p1).
6037      // Note that this is not the case for explicit specializations of
6038      // function templates or member functions of class templates, per
6039      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6040      // extension for compatibility with old SWIG code which likes to
6041      // generate them.
6042      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6043        << D.getCXXScopeSpec().getRange();
6044    }
6045  }
6046
6047  AddKnownFunctionAttributes(NewFD);
6048
6049  if (NewFD->hasAttr<OverloadableAttr>() &&
6050      !NewFD->getType()->getAs<FunctionProtoType>()) {
6051    Diag(NewFD->getLocation(),
6052         diag::err_attribute_overloadable_no_prototype)
6053      << NewFD;
6054
6055    // Turn this into a variadic function with no parameters.
6056    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6057    FunctionProtoType::ExtProtoInfo EPI;
6058    EPI.Variadic = true;
6059    EPI.ExtInfo = FT->getExtInfo();
6060
6061    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
6062    NewFD->setType(R);
6063  }
6064
6065  // If there's a #pragma GCC visibility in scope, and this isn't a class
6066  // member, set the visibility of this function.
6067  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
6068    AddPushedVisibilityAttribute(NewFD);
6069
6070  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6071  // marking the function.
6072  AddCFAuditedAttribute(NewFD);
6073
6074  // If this is a locally-scoped extern C function, update the
6075  // map of such names.
6076  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6077      && !NewFD->isInvalidDecl())
6078    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6079
6080  // Set this FunctionDecl's range up to the right paren.
6081  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6082
6083  if (getLangOpts().CPlusPlus) {
6084    if (FunctionTemplate) {
6085      if (NewFD->isInvalidDecl())
6086        FunctionTemplate->setInvalidDecl();
6087      return FunctionTemplate;
6088    }
6089  }
6090
6091  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6092  if ((getLangOpts().OpenCLVersion >= 120)
6093      && NewFD->hasAttr<OpenCLKernelAttr>()
6094      && (SC == SC_Static)) {
6095    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6096    D.setInvalidType();
6097  }
6098
6099  MarkUnusedFileScopedDecl(NewFD);
6100
6101  if (getLangOpts().CUDA)
6102    if (IdentifierInfo *II = NewFD->getIdentifier())
6103      if (!NewFD->isInvalidDecl() &&
6104          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6105        if (II->isStr("cudaConfigureCall")) {
6106          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6107            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6108
6109          Context.setcudaConfigureCallDecl(NewFD);
6110        }
6111      }
6112
6113  // Here we have an function template explicit specialization at class scope.
6114  // The actually specialization will be postponed to template instatiation
6115  // time via the ClassScopeFunctionSpecializationDecl node.
6116  if (isDependentClassScopeExplicitSpecialization) {
6117    ClassScopeFunctionSpecializationDecl *NewSpec =
6118                         ClassScopeFunctionSpecializationDecl::Create(
6119                                Context, CurContext, SourceLocation(),
6120                                cast<CXXMethodDecl>(NewFD),
6121                                HasExplicitTemplateArgs, TemplateArgs);
6122    CurContext->addDecl(NewSpec);
6123    AddToScope = false;
6124  }
6125
6126  return NewFD;
6127}
6128
6129/// \brief Perform semantic checking of a new function declaration.
6130///
6131/// Performs semantic analysis of the new function declaration
6132/// NewFD. This routine performs all semantic checking that does not
6133/// require the actual declarator involved in the declaration, and is
6134/// used both for the declaration of functions as they are parsed
6135/// (called via ActOnDeclarator) and for the declaration of functions
6136/// that have been instantiated via C++ template instantiation (called
6137/// via InstantiateDecl).
6138///
6139/// \param IsExplicitSpecialization whether this new function declaration is
6140/// an explicit specialization of the previous declaration.
6141///
6142/// This sets NewFD->isInvalidDecl() to true if there was an error.
6143///
6144/// \returns true if the function declaration is a redeclaration.
6145bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6146                                    LookupResult &Previous,
6147                                    bool IsExplicitSpecialization) {
6148  assert(!NewFD->getResultType()->isVariablyModifiedType()
6149         && "Variably modified return types are not handled here");
6150
6151  // Check for a previous declaration of this name.
6152  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6153    // Since we did not find anything by this name, look for a non-visible
6154    // extern "C" declaration with the same name.
6155    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6156      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6157    if (Pos != LocallyScopedExternCDecls.end())
6158      Previous.addDecl(Pos->second);
6159  }
6160
6161  // Filter out any non-conflicting previous declarations.
6162  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6163
6164  bool Redeclaration = false;
6165
6166  // Merge or overload the declaration with an existing declaration of
6167  // the same name, if appropriate.
6168  if (!Previous.empty()) {
6169    // Determine whether NewFD is an overload of PrevDecl or
6170    // a declaration that requires merging. If it's an overload,
6171    // there's no more work to do here; we'll just add the new
6172    // function to the scope.
6173
6174    NamedDecl *OldDecl = 0;
6175    if (!AllowOverloadingOfFunction(Previous, Context)) {
6176      Redeclaration = true;
6177      OldDecl = Previous.getFoundDecl();
6178    } else {
6179      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6180                            /*NewIsUsingDecl*/ false)) {
6181      case Ovl_Match:
6182        Redeclaration = true;
6183        break;
6184
6185      case Ovl_NonFunction:
6186        Redeclaration = true;
6187        break;
6188
6189      case Ovl_Overload:
6190        Redeclaration = false;
6191        break;
6192      }
6193
6194      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6195        // If a function name is overloadable in C, then every function
6196        // with that name must be marked "overloadable".
6197        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6198          << Redeclaration << NewFD;
6199        NamedDecl *OverloadedDecl = 0;
6200        if (Redeclaration)
6201          OverloadedDecl = OldDecl;
6202        else if (!Previous.empty())
6203          OverloadedDecl = Previous.getRepresentativeDecl();
6204        if (OverloadedDecl)
6205          Diag(OverloadedDecl->getLocation(),
6206               diag::note_attribute_overloadable_prev_overload);
6207        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6208                                                        Context));
6209      }
6210    }
6211
6212    if (Redeclaration) {
6213      // NewFD and OldDecl represent declarations that need to be
6214      // merged.
6215      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6216        NewFD->setInvalidDecl();
6217        return Redeclaration;
6218      }
6219
6220      Previous.clear();
6221      Previous.addDecl(OldDecl);
6222
6223      if (FunctionTemplateDecl *OldTemplateDecl
6224                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6225        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6226        FunctionTemplateDecl *NewTemplateDecl
6227          = NewFD->getDescribedFunctionTemplate();
6228        assert(NewTemplateDecl && "Template/non-template mismatch");
6229        if (CXXMethodDecl *Method
6230              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6231          Method->setAccess(OldTemplateDecl->getAccess());
6232          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6233        }
6234
6235        // If this is an explicit specialization of a member that is a function
6236        // template, mark it as a member specialization.
6237        if (IsExplicitSpecialization &&
6238            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6239          NewTemplateDecl->setMemberSpecialization();
6240          assert(OldTemplateDecl->isMemberSpecialization());
6241        }
6242
6243      } else {
6244        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6245          NewFD->setAccess(OldDecl->getAccess());
6246        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6247      }
6248    }
6249  }
6250
6251  // Semantic checking for this function declaration (in isolation).
6252  if (getLangOpts().CPlusPlus) {
6253    // C++-specific checks.
6254    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6255      CheckConstructor(Constructor);
6256    } else if (CXXDestructorDecl *Destructor =
6257                dyn_cast<CXXDestructorDecl>(NewFD)) {
6258      CXXRecordDecl *Record = Destructor->getParent();
6259      QualType ClassType = Context.getTypeDeclType(Record);
6260
6261      // FIXME: Shouldn't we be able to perform this check even when the class
6262      // type is dependent? Both gcc and edg can handle that.
6263      if (!ClassType->isDependentType()) {
6264        DeclarationName Name
6265          = Context.DeclarationNames.getCXXDestructorName(
6266                                        Context.getCanonicalType(ClassType));
6267        if (NewFD->getDeclName() != Name) {
6268          Diag(NewFD->getLocation(), diag::err_destructor_name);
6269          NewFD->setInvalidDecl();
6270          return Redeclaration;
6271        }
6272      }
6273    } else if (CXXConversionDecl *Conversion
6274               = dyn_cast<CXXConversionDecl>(NewFD)) {
6275      ActOnConversionDeclarator(Conversion);
6276    }
6277
6278    // Find any virtual functions that this function overrides.
6279    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6280      if (!Method->isFunctionTemplateSpecialization() &&
6281          !Method->getDescribedFunctionTemplate() &&
6282          Method->isCanonicalDecl()) {
6283        if (AddOverriddenMethods(Method->getParent(), Method)) {
6284          // If the function was marked as "static", we have a problem.
6285          if (NewFD->getStorageClass() == SC_Static) {
6286            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6287          }
6288        }
6289      }
6290
6291      if (Method->isStatic())
6292        checkThisInStaticMemberFunctionType(Method);
6293    }
6294
6295    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6296    if (NewFD->isOverloadedOperator() &&
6297        CheckOverloadedOperatorDeclaration(NewFD)) {
6298      NewFD->setInvalidDecl();
6299      return Redeclaration;
6300    }
6301
6302    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6303    if (NewFD->getLiteralIdentifier() &&
6304        CheckLiteralOperatorDeclaration(NewFD)) {
6305      NewFD->setInvalidDecl();
6306      return Redeclaration;
6307    }
6308
6309    // In C++, check default arguments now that we have merged decls. Unless
6310    // the lexical context is the class, because in this case this is done
6311    // during delayed parsing anyway.
6312    if (!CurContext->isRecord())
6313      CheckCXXDefaultArguments(NewFD);
6314
6315    // If this function declares a builtin function, check the type of this
6316    // declaration against the expected type for the builtin.
6317    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6318      ASTContext::GetBuiltinTypeError Error;
6319      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6320      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6321      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6322        // The type of this function differs from the type of the builtin,
6323        // so forget about the builtin entirely.
6324        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6325      }
6326    }
6327
6328    // If this function is declared as being extern "C", then check to see if
6329    // the function returns a UDT (class, struct, or union type) that is not C
6330    // compatible, and if it does, warn the user.
6331    if (NewFD->hasCLanguageLinkage()) {
6332      QualType R = NewFD->getResultType();
6333      if (R->isIncompleteType() && !R->isVoidType())
6334        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6335            << NewFD << R;
6336      else if (!R.isPODType(Context) && !R->isVoidType() &&
6337               !R->isObjCObjectPointerType())
6338        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6339    }
6340  }
6341  return Redeclaration;
6342}
6343
6344void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6345  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6346  //   static or constexpr is ill-formed.
6347  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6348  //   shall not appear in a declaration of main.
6349  // static main is not an error under C99, but we should warn about it.
6350  if (FD->getStorageClass() == SC_Static)
6351    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6352         ? diag::err_static_main : diag::warn_static_main)
6353      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6354  if (FD->isInlineSpecified())
6355    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6356      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6357  if (FD->isConstexpr()) {
6358    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6359      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6360    FD->setConstexpr(false);
6361  }
6362
6363  QualType T = FD->getType();
6364  assert(T->isFunctionType() && "function decl is not of function type");
6365  const FunctionType* FT = T->castAs<FunctionType>();
6366
6367  // All the standards say that main() should should return 'int'.
6368  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6369    // In C and C++, main magically returns 0 if you fall off the end;
6370    // set the flag which tells us that.
6371    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6372    FD->setHasImplicitReturnZero(true);
6373
6374  // In C with GNU extensions we allow main() to have non-integer return
6375  // type, but we should warn about the extension, and we disable the
6376  // implicit-return-zero rule.
6377  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6378    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6379
6380  // Otherwise, this is just a flat-out error.
6381  } else {
6382    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6383    FD->setInvalidDecl(true);
6384  }
6385
6386  // Treat protoless main() as nullary.
6387  if (isa<FunctionNoProtoType>(FT)) return;
6388
6389  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6390  unsigned nparams = FTP->getNumArgs();
6391  assert(FD->getNumParams() == nparams);
6392
6393  bool HasExtraParameters = (nparams > 3);
6394
6395  // Darwin passes an undocumented fourth argument of type char**.  If
6396  // other platforms start sprouting these, the logic below will start
6397  // getting shifty.
6398  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6399    HasExtraParameters = false;
6400
6401  if (HasExtraParameters) {
6402    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6403    FD->setInvalidDecl(true);
6404    nparams = 3;
6405  }
6406
6407  // FIXME: a lot of the following diagnostics would be improved
6408  // if we had some location information about types.
6409
6410  QualType CharPP =
6411    Context.getPointerType(Context.getPointerType(Context.CharTy));
6412  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6413
6414  for (unsigned i = 0; i < nparams; ++i) {
6415    QualType AT = FTP->getArgType(i);
6416
6417    bool mismatch = true;
6418
6419    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6420      mismatch = false;
6421    else if (Expected[i] == CharPP) {
6422      // As an extension, the following forms are okay:
6423      //   char const **
6424      //   char const * const *
6425      //   char * const *
6426
6427      QualifierCollector qs;
6428      const PointerType* PT;
6429      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6430          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6431          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6432        qs.removeConst();
6433        mismatch = !qs.empty();
6434      }
6435    }
6436
6437    if (mismatch) {
6438      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6439      // TODO: suggest replacing given type with expected type
6440      FD->setInvalidDecl(true);
6441    }
6442  }
6443
6444  if (nparams == 1 && !FD->isInvalidDecl()) {
6445    Diag(FD->getLocation(), diag::warn_main_one_arg);
6446  }
6447
6448  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6449    Diag(FD->getLocation(), diag::err_main_template_decl);
6450    FD->setInvalidDecl();
6451  }
6452}
6453
6454bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6455  // FIXME: Need strict checking.  In C89, we need to check for
6456  // any assignment, increment, decrement, function-calls, or
6457  // commas outside of a sizeof.  In C99, it's the same list,
6458  // except that the aforementioned are allowed in unevaluated
6459  // expressions.  Everything else falls under the
6460  // "may accept other forms of constant expressions" exception.
6461  // (We never end up here for C++, so the constant expression
6462  // rules there don't matter.)
6463  if (Init->isConstantInitializer(Context, false))
6464    return false;
6465  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6466    << Init->getSourceRange();
6467  return true;
6468}
6469
6470namespace {
6471  // Visits an initialization expression to see if OrigDecl is evaluated in
6472  // its own initialization and throws a warning if it does.
6473  class SelfReferenceChecker
6474      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6475    Sema &S;
6476    Decl *OrigDecl;
6477    bool isRecordType;
6478    bool isPODType;
6479    bool isReferenceType;
6480
6481  public:
6482    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6483
6484    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6485                                                    S(S), OrigDecl(OrigDecl) {
6486      isPODType = false;
6487      isRecordType = false;
6488      isReferenceType = false;
6489      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6490        isPODType = VD->getType().isPODType(S.Context);
6491        isRecordType = VD->getType()->isRecordType();
6492        isReferenceType = VD->getType()->isReferenceType();
6493      }
6494    }
6495
6496    // For most expressions, the cast is directly above the DeclRefExpr.
6497    // For conditional operators, the cast can be outside the conditional
6498    // operator if both expressions are DeclRefExpr's.
6499    void HandleValue(Expr *E) {
6500      if (isReferenceType)
6501        return;
6502      E = E->IgnoreParenImpCasts();
6503      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6504        HandleDeclRefExpr(DRE);
6505        return;
6506      }
6507
6508      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6509        HandleValue(CO->getTrueExpr());
6510        HandleValue(CO->getFalseExpr());
6511        return;
6512      }
6513
6514      if (isa<MemberExpr>(E)) {
6515        Expr *Base = E->IgnoreParenImpCasts();
6516        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6517          // Check for static member variables and don't warn on them.
6518          if (!isa<FieldDecl>(ME->getMemberDecl()))
6519            return;
6520          Base = ME->getBase()->IgnoreParenImpCasts();
6521        }
6522        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6523          HandleDeclRefExpr(DRE);
6524        return;
6525      }
6526    }
6527
6528    // Reference types are handled here since all uses of references are
6529    // bad, not just r-value uses.
6530    void VisitDeclRefExpr(DeclRefExpr *E) {
6531      if (isReferenceType)
6532        HandleDeclRefExpr(E);
6533    }
6534
6535    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6536      if (E->getCastKind() == CK_LValueToRValue ||
6537          (isRecordType && E->getCastKind() == CK_NoOp))
6538        HandleValue(E->getSubExpr());
6539
6540      Inherited::VisitImplicitCastExpr(E);
6541    }
6542
6543    void VisitMemberExpr(MemberExpr *E) {
6544      // Don't warn on arrays since they can be treated as pointers.
6545      if (E->getType()->canDecayToPointerType()) return;
6546
6547      // Warn when a non-static method call is followed by non-static member
6548      // field accesses, which is followed by a DeclRefExpr.
6549      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6550      bool Warn = (MD && !MD->isStatic());
6551      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6552      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6553        if (!isa<FieldDecl>(ME->getMemberDecl()))
6554          Warn = false;
6555        Base = ME->getBase()->IgnoreParenImpCasts();
6556      }
6557
6558      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6559        if (Warn)
6560          HandleDeclRefExpr(DRE);
6561        return;
6562      }
6563
6564      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6565      // Visit that expression.
6566      Visit(Base);
6567    }
6568
6569    void VisitUnaryOperator(UnaryOperator *E) {
6570      // For POD record types, addresses of its own members are well-defined.
6571      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6572          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6573        if (!isPODType)
6574          HandleValue(E->getSubExpr());
6575        return;
6576      }
6577      Inherited::VisitUnaryOperator(E);
6578    }
6579
6580    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6581
6582    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6583      Decl* ReferenceDecl = DRE->getDecl();
6584      if (OrigDecl != ReferenceDecl) return;
6585      unsigned diag = isReferenceType
6586          ? diag::warn_uninit_self_reference_in_reference_init
6587          : diag::warn_uninit_self_reference_in_init;
6588      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6589                            S.PDiag(diag)
6590                              << DRE->getNameInfo().getName()
6591                              << OrigDecl->getLocation()
6592                              << DRE->getSourceRange());
6593    }
6594  };
6595
6596  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6597  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6598                                 bool DirectInit) {
6599    // Parameters arguments are occassionially constructed with itself,
6600    // for instance, in recursive functions.  Skip them.
6601    if (isa<ParmVarDecl>(OrigDecl))
6602      return;
6603
6604    E = E->IgnoreParens();
6605
6606    // Skip checking T a = a where T is not a record or reference type.
6607    // Doing so is a way to silence uninitialized warnings.
6608    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6609      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6610        if (ICE->getCastKind() == CK_LValueToRValue)
6611          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6612            if (DRE->getDecl() == OrigDecl)
6613              return;
6614
6615    SelfReferenceChecker(S, OrigDecl).Visit(E);
6616  }
6617}
6618
6619/// AddInitializerToDecl - Adds the initializer Init to the
6620/// declaration dcl. If DirectInit is true, this is C++ direct
6621/// initialization rather than copy initialization.
6622void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6623                                bool DirectInit, bool TypeMayContainAuto) {
6624  // If there is no declaration, there was an error parsing it.  Just ignore
6625  // the initializer.
6626  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6627    return;
6628
6629  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6630    // With declarators parsed the way they are, the parser cannot
6631    // distinguish between a normal initializer and a pure-specifier.
6632    // Thus this grotesque test.
6633    IntegerLiteral *IL;
6634    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6635        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6636      CheckPureMethod(Method, Init->getSourceRange());
6637    else {
6638      Diag(Method->getLocation(), diag::err_member_function_initialization)
6639        << Method->getDeclName() << Init->getSourceRange();
6640      Method->setInvalidDecl();
6641    }
6642    return;
6643  }
6644
6645  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6646  if (!VDecl) {
6647    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6648    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6649    RealDecl->setInvalidDecl();
6650    return;
6651  }
6652
6653  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6654
6655  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6656  AutoType *Auto = 0;
6657  if (TypeMayContainAuto &&
6658      (Auto = VDecl->getType()->getContainedAutoType()) &&
6659      !Auto->isDeduced()) {
6660    Expr *DeduceInit = Init;
6661    // Initializer could be a C++ direct-initializer. Deduction only works if it
6662    // contains exactly one expression.
6663    if (CXXDirectInit) {
6664      if (CXXDirectInit->getNumExprs() == 0) {
6665        // It isn't possible to write this directly, but it is possible to
6666        // end up in this situation with "auto x(some_pack...);"
6667        Diag(CXXDirectInit->getLocStart(),
6668             diag::err_auto_var_init_no_expression)
6669          << VDecl->getDeclName() << VDecl->getType()
6670          << VDecl->getSourceRange();
6671        RealDecl->setInvalidDecl();
6672        return;
6673      } else if (CXXDirectInit->getNumExprs() > 1) {
6674        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6675             diag::err_auto_var_init_multiple_expressions)
6676          << VDecl->getDeclName() << VDecl->getType()
6677          << VDecl->getSourceRange();
6678        RealDecl->setInvalidDecl();
6679        return;
6680      } else {
6681        DeduceInit = CXXDirectInit->getExpr(0);
6682      }
6683    }
6684    TypeSourceInfo *DeducedType = 0;
6685    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6686            DAR_Failed)
6687      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6688    if (!DeducedType) {
6689      RealDecl->setInvalidDecl();
6690      return;
6691    }
6692    VDecl->setTypeSourceInfo(DeducedType);
6693    VDecl->setType(DeducedType->getType());
6694    VDecl->ClearLinkageCache();
6695
6696    // In ARC, infer lifetime.
6697    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6698      VDecl->setInvalidDecl();
6699
6700    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6701    // 'id' instead of a specific object type prevents most of our usual checks.
6702    // We only want to warn outside of template instantiations, though:
6703    // inside a template, the 'id' could have come from a parameter.
6704    if (ActiveTemplateInstantiations.empty() &&
6705        DeducedType->getType()->isObjCIdType()) {
6706      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6707      Diag(Loc, diag::warn_auto_var_is_id)
6708        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6709    }
6710
6711    // If this is a redeclaration, check that the type we just deduced matches
6712    // the previously declared type.
6713    if (VarDecl *Old = VDecl->getPreviousDecl())
6714      MergeVarDeclTypes(VDecl, Old);
6715  }
6716
6717  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6718    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6719    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6720    VDecl->setInvalidDecl();
6721    return;
6722  }
6723
6724  if (!VDecl->getType()->isDependentType()) {
6725    // A definition must end up with a complete type, which means it must be
6726    // complete with the restriction that an array type might be completed by
6727    // the initializer; note that later code assumes this restriction.
6728    QualType BaseDeclType = VDecl->getType();
6729    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6730      BaseDeclType = Array->getElementType();
6731    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6732                            diag::err_typecheck_decl_incomplete_type)) {
6733      RealDecl->setInvalidDecl();
6734      return;
6735    }
6736
6737    // The variable can not have an abstract class type.
6738    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6739                               diag::err_abstract_type_in_decl,
6740                               AbstractVariableType))
6741      VDecl->setInvalidDecl();
6742  }
6743
6744  const VarDecl *Def;
6745  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6746    Diag(VDecl->getLocation(), diag::err_redefinition)
6747      << VDecl->getDeclName();
6748    Diag(Def->getLocation(), diag::note_previous_definition);
6749    VDecl->setInvalidDecl();
6750    return;
6751  }
6752
6753  const VarDecl* PrevInit = 0;
6754  if (getLangOpts().CPlusPlus) {
6755    // C++ [class.static.data]p4
6756    //   If a static data member is of const integral or const
6757    //   enumeration type, its declaration in the class definition can
6758    //   specify a constant-initializer which shall be an integral
6759    //   constant expression (5.19). In that case, the member can appear
6760    //   in integral constant expressions. The member shall still be
6761    //   defined in a namespace scope if it is used in the program and the
6762    //   namespace scope definition shall not contain an initializer.
6763    //
6764    // We already performed a redefinition check above, but for static
6765    // data members we also need to check whether there was an in-class
6766    // declaration with an initializer.
6767    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6768      Diag(VDecl->getLocation(), diag::err_redefinition)
6769        << VDecl->getDeclName();
6770      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6771      return;
6772    }
6773
6774    if (VDecl->hasLocalStorage())
6775      getCurFunction()->setHasBranchProtectedScope();
6776
6777    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6778      VDecl->setInvalidDecl();
6779      return;
6780    }
6781  }
6782
6783  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6784  // a kernel function cannot be initialized."
6785  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6786    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6787    VDecl->setInvalidDecl();
6788    return;
6789  }
6790
6791  // Get the decls type and save a reference for later, since
6792  // CheckInitializerTypes may change it.
6793  QualType DclT = VDecl->getType(), SavT = DclT;
6794
6795  // Top-level message sends default to 'id' when we're in a debugger
6796  // and we are assigning it to a variable of 'id' type.
6797  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6798    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6799      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6800      if (Result.isInvalid()) {
6801        VDecl->setInvalidDecl();
6802        return;
6803      }
6804      Init = Result.take();
6805    }
6806
6807  // Perform the initialization.
6808  if (!VDecl->isInvalidDecl()) {
6809    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6810    InitializationKind Kind
6811      = DirectInit ?
6812          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6813                                                           Init->getLocStart(),
6814                                                           Init->getLocEnd())
6815                        : InitializationKind::CreateDirectList(
6816                                                          VDecl->getLocation())
6817                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6818                                                    Init->getLocStart());
6819
6820    Expr **Args = &Init;
6821    unsigned NumArgs = 1;
6822    if (CXXDirectInit) {
6823      Args = CXXDirectInit->getExprs();
6824      NumArgs = CXXDirectInit->getNumExprs();
6825    }
6826    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6827    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6828                                        MultiExprArg(Args, NumArgs), &DclT);
6829    if (Result.isInvalid()) {
6830      VDecl->setInvalidDecl();
6831      return;
6832    }
6833
6834    Init = Result.takeAs<Expr>();
6835  }
6836
6837  // Check for self-references within variable initializers.
6838  // Variables declared within a function/method body (except for references)
6839  // are handled by a dataflow analysis.
6840  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
6841      VDecl->getType()->isReferenceType()) {
6842    CheckSelfReference(*this, RealDecl, Init, DirectInit);
6843  }
6844
6845  // If the type changed, it means we had an incomplete type that was
6846  // completed by the initializer. For example:
6847  //   int ary[] = { 1, 3, 5 };
6848  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6849  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6850    VDecl->setType(DclT);
6851
6852  // Check any implicit conversions within the expression.
6853  CheckImplicitConversions(Init, VDecl->getLocation());
6854
6855  if (!VDecl->isInvalidDecl()) {
6856    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6857
6858    if (VDecl->hasAttr<BlocksAttr>())
6859      checkRetainCycles(VDecl, Init);
6860
6861    // It is safe to assign a weak reference into a strong variable.
6862    // Although this code can still have problems:
6863    //   id x = self.weakProp;
6864    //   id y = self.weakProp;
6865    // we do not warn to warn spuriously when 'x' and 'y' are on separate
6866    // paths through the function. This should be revisited if
6867    // -Wrepeated-use-of-weak is made flow-sensitive.
6868    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
6869      DiagnosticsEngine::Level Level =
6870        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
6871                                 Init->getLocStart());
6872      if (Level != DiagnosticsEngine::Ignored)
6873        getCurFunction()->markSafeWeakUse(Init);
6874    }
6875  }
6876
6877  Init = MaybeCreateExprWithCleanups(Init);
6878  // Attach the initializer to the decl.
6879  VDecl->setInit(Init);
6880
6881  if (VDecl->isLocalVarDecl()) {
6882    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6883    // static storage duration shall be constant expressions or string literals.
6884    // C++ does not have this restriction.
6885    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6886        VDecl->getStorageClass() == SC_Static)
6887      CheckForConstantInitializer(Init, DclT);
6888  } else if (VDecl->isStaticDataMember() &&
6889             VDecl->getLexicalDeclContext()->isRecord()) {
6890    // This is an in-class initialization for a static data member, e.g.,
6891    //
6892    // struct S {
6893    //   static const int value = 17;
6894    // };
6895
6896    // C++ [class.mem]p4:
6897    //   A member-declarator can contain a constant-initializer only
6898    //   if it declares a static member (9.4) of const integral or
6899    //   const enumeration type, see 9.4.2.
6900    //
6901    // C++11 [class.static.data]p3:
6902    //   If a non-volatile const static data member is of integral or
6903    //   enumeration type, its declaration in the class definition can
6904    //   specify a brace-or-equal-initializer in which every initalizer-clause
6905    //   that is an assignment-expression is a constant expression. A static
6906    //   data member of literal type can be declared in the class definition
6907    //   with the constexpr specifier; if so, its declaration shall specify a
6908    //   brace-or-equal-initializer in which every initializer-clause that is
6909    //   an assignment-expression is a constant expression.
6910
6911    // Do nothing on dependent types.
6912    if (DclT->isDependentType()) {
6913
6914    // Allow any 'static constexpr' members, whether or not they are of literal
6915    // type. We separately check that every constexpr variable is of literal
6916    // type.
6917    } else if (VDecl->isConstexpr()) {
6918
6919    // Require constness.
6920    } else if (!DclT.isConstQualified()) {
6921      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6922        << Init->getSourceRange();
6923      VDecl->setInvalidDecl();
6924
6925    // We allow integer constant expressions in all cases.
6926    } else if (DclT->isIntegralOrEnumerationType()) {
6927      // Check whether the expression is a constant expression.
6928      SourceLocation Loc;
6929      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
6930        // In C++11, a non-constexpr const static data member with an
6931        // in-class initializer cannot be volatile.
6932        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6933      else if (Init->isValueDependent())
6934        ; // Nothing to check.
6935      else if (Init->isIntegerConstantExpr(Context, &Loc))
6936        ; // Ok, it's an ICE!
6937      else if (Init->isEvaluatable(Context)) {
6938        // If we can constant fold the initializer through heroics, accept it,
6939        // but report this as a use of an extension for -pedantic.
6940        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6941          << Init->getSourceRange();
6942      } else {
6943        // Otherwise, this is some crazy unknown case.  Report the issue at the
6944        // location provided by the isIntegerConstantExpr failed check.
6945        Diag(Loc, diag::err_in_class_initializer_non_constant)
6946          << Init->getSourceRange();
6947        VDecl->setInvalidDecl();
6948      }
6949
6950    // We allow foldable floating-point constants as an extension.
6951    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6952      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6953        << DclT << Init->getSourceRange();
6954      if (getLangOpts().CPlusPlus11)
6955        Diag(VDecl->getLocation(),
6956             diag::note_in_class_initializer_float_type_constexpr)
6957          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6958
6959      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6960        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6961          << Init->getSourceRange();
6962        VDecl->setInvalidDecl();
6963      }
6964
6965    // Suggest adding 'constexpr' in C++11 for literal types.
6966    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
6967      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6968        << DclT << Init->getSourceRange()
6969        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6970      VDecl->setConstexpr(true);
6971
6972    } else {
6973      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6974        << DclT << Init->getSourceRange();
6975      VDecl->setInvalidDecl();
6976    }
6977  } else if (VDecl->isFileVarDecl()) {
6978    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6979        (!getLangOpts().CPlusPlus ||
6980         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6981      Diag(VDecl->getLocation(), diag::warn_extern_init);
6982
6983    // C99 6.7.8p4. All file scoped initializers need to be constant.
6984    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6985      CheckForConstantInitializer(Init, DclT);
6986  }
6987
6988  // We will represent direct-initialization similarly to copy-initialization:
6989  //    int x(1);  -as-> int x = 1;
6990  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6991  //
6992  // Clients that want to distinguish between the two forms, can check for
6993  // direct initializer using VarDecl::getInitStyle().
6994  // A major benefit is that clients that don't particularly care about which
6995  // exactly form was it (like the CodeGen) can handle both cases without
6996  // special case code.
6997
6998  // C++ 8.5p11:
6999  // The form of initialization (using parentheses or '=') is generally
7000  // insignificant, but does matter when the entity being initialized has a
7001  // class type.
7002  if (CXXDirectInit) {
7003    assert(DirectInit && "Call-style initializer must be direct init.");
7004    VDecl->setInitStyle(VarDecl::CallInit);
7005  } else if (DirectInit) {
7006    // This must be list-initialization. No other way is direct-initialization.
7007    VDecl->setInitStyle(VarDecl::ListInit);
7008  }
7009
7010  CheckCompleteVariableDeclaration(VDecl);
7011}
7012
7013/// ActOnInitializerError - Given that there was an error parsing an
7014/// initializer for the given declaration, try to return to some form
7015/// of sanity.
7016void Sema::ActOnInitializerError(Decl *D) {
7017  // Our main concern here is re-establishing invariants like "a
7018  // variable's type is either dependent or complete".
7019  if (!D || D->isInvalidDecl()) return;
7020
7021  VarDecl *VD = dyn_cast<VarDecl>(D);
7022  if (!VD) return;
7023
7024  // Auto types are meaningless if we can't make sense of the initializer.
7025  if (ParsingInitForAutoVars.count(D)) {
7026    D->setInvalidDecl();
7027    return;
7028  }
7029
7030  QualType Ty = VD->getType();
7031  if (Ty->isDependentType()) return;
7032
7033  // Require a complete type.
7034  if (RequireCompleteType(VD->getLocation(),
7035                          Context.getBaseElementType(Ty),
7036                          diag::err_typecheck_decl_incomplete_type)) {
7037    VD->setInvalidDecl();
7038    return;
7039  }
7040
7041  // Require an abstract type.
7042  if (RequireNonAbstractType(VD->getLocation(), Ty,
7043                             diag::err_abstract_type_in_decl,
7044                             AbstractVariableType)) {
7045    VD->setInvalidDecl();
7046    return;
7047  }
7048
7049  // Don't bother complaining about constructors or destructors,
7050  // though.
7051}
7052
7053void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7054                                  bool TypeMayContainAuto) {
7055  // If there is no declaration, there was an error parsing it. Just ignore it.
7056  if (RealDecl == 0)
7057    return;
7058
7059  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7060    QualType Type = Var->getType();
7061
7062    // C++11 [dcl.spec.auto]p3
7063    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7064      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7065        << Var->getDeclName() << Type;
7066      Var->setInvalidDecl();
7067      return;
7068    }
7069
7070    // C++11 [class.static.data]p3: A static data member can be declared with
7071    // the constexpr specifier; if so, its declaration shall specify
7072    // a brace-or-equal-initializer.
7073    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7074    // the definition of a variable [...] or the declaration of a static data
7075    // member.
7076    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7077      if (Var->isStaticDataMember())
7078        Diag(Var->getLocation(),
7079             diag::err_constexpr_static_mem_var_requires_init)
7080          << Var->getDeclName();
7081      else
7082        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7083      Var->setInvalidDecl();
7084      return;
7085    }
7086
7087    switch (Var->isThisDeclarationADefinition()) {
7088    case VarDecl::Definition:
7089      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7090        break;
7091
7092      // We have an out-of-line definition of a static data member
7093      // that has an in-class initializer, so we type-check this like
7094      // a declaration.
7095      //
7096      // Fall through
7097
7098    case VarDecl::DeclarationOnly:
7099      // It's only a declaration.
7100
7101      // Block scope. C99 6.7p7: If an identifier for an object is
7102      // declared with no linkage (C99 6.2.2p6), the type for the
7103      // object shall be complete.
7104      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7105          !Var->getLinkage() && !Var->isInvalidDecl() &&
7106          RequireCompleteType(Var->getLocation(), Type,
7107                              diag::err_typecheck_decl_incomplete_type))
7108        Var->setInvalidDecl();
7109
7110      // Make sure that the type is not abstract.
7111      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7112          RequireNonAbstractType(Var->getLocation(), Type,
7113                                 diag::err_abstract_type_in_decl,
7114                                 AbstractVariableType))
7115        Var->setInvalidDecl();
7116      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7117          Var->getStorageClass() == SC_PrivateExtern) {
7118        Diag(Var->getLocation(), diag::warn_private_extern);
7119        Diag(Var->getLocation(), diag::note_private_extern);
7120      }
7121
7122      return;
7123
7124    case VarDecl::TentativeDefinition:
7125      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7126      // object that has file scope without an initializer, and without a
7127      // storage-class specifier or with the storage-class specifier "static",
7128      // constitutes a tentative definition. Note: A tentative definition with
7129      // external linkage is valid (C99 6.2.2p5).
7130      if (!Var->isInvalidDecl()) {
7131        if (const IncompleteArrayType *ArrayT
7132                                    = Context.getAsIncompleteArrayType(Type)) {
7133          if (RequireCompleteType(Var->getLocation(),
7134                                  ArrayT->getElementType(),
7135                                  diag::err_illegal_decl_array_incomplete_type))
7136            Var->setInvalidDecl();
7137        } else if (Var->getStorageClass() == SC_Static) {
7138          // C99 6.9.2p3: If the declaration of an identifier for an object is
7139          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7140          // declared type shall not be an incomplete type.
7141          // NOTE: code such as the following
7142          //     static struct s;
7143          //     struct s { int a; };
7144          // is accepted by gcc. Hence here we issue a warning instead of
7145          // an error and we do not invalidate the static declaration.
7146          // NOTE: to avoid multiple warnings, only check the first declaration.
7147          if (Var->getPreviousDecl() == 0)
7148            RequireCompleteType(Var->getLocation(), Type,
7149                                diag::ext_typecheck_decl_incomplete_type);
7150        }
7151      }
7152
7153      // Record the tentative definition; we're done.
7154      if (!Var->isInvalidDecl())
7155        TentativeDefinitions.push_back(Var);
7156      return;
7157    }
7158
7159    // Provide a specific diagnostic for uninitialized variable
7160    // definitions with incomplete array type.
7161    if (Type->isIncompleteArrayType()) {
7162      Diag(Var->getLocation(),
7163           diag::err_typecheck_incomplete_array_needs_initializer);
7164      Var->setInvalidDecl();
7165      return;
7166    }
7167
7168    // Provide a specific diagnostic for uninitialized variable
7169    // definitions with reference type.
7170    if (Type->isReferenceType()) {
7171      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7172        << Var->getDeclName()
7173        << SourceRange(Var->getLocation(), Var->getLocation());
7174      Var->setInvalidDecl();
7175      return;
7176    }
7177
7178    // Do not attempt to type-check the default initializer for a
7179    // variable with dependent type.
7180    if (Type->isDependentType())
7181      return;
7182
7183    if (Var->isInvalidDecl())
7184      return;
7185
7186    if (RequireCompleteType(Var->getLocation(),
7187                            Context.getBaseElementType(Type),
7188                            diag::err_typecheck_decl_incomplete_type)) {
7189      Var->setInvalidDecl();
7190      return;
7191    }
7192
7193    // The variable can not have an abstract class type.
7194    if (RequireNonAbstractType(Var->getLocation(), Type,
7195                               diag::err_abstract_type_in_decl,
7196                               AbstractVariableType)) {
7197      Var->setInvalidDecl();
7198      return;
7199    }
7200
7201    // Check for jumps past the implicit initializer.  C++0x
7202    // clarifies that this applies to a "variable with automatic
7203    // storage duration", not a "local variable".
7204    // C++11 [stmt.dcl]p3
7205    //   A program that jumps from a point where a variable with automatic
7206    //   storage duration is not in scope to a point where it is in scope is
7207    //   ill-formed unless the variable has scalar type, class type with a
7208    //   trivial default constructor and a trivial destructor, a cv-qualified
7209    //   version of one of these types, or an array of one of the preceding
7210    //   types and is declared without an initializer.
7211    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7212      if (const RecordType *Record
7213            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7214        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7215        // Mark the function for further checking even if the looser rules of
7216        // C++11 do not require such checks, so that we can diagnose
7217        // incompatibilities with C++98.
7218        if (!CXXRecord->isPOD())
7219          getCurFunction()->setHasBranchProtectedScope();
7220      }
7221    }
7222
7223    // C++03 [dcl.init]p9:
7224    //   If no initializer is specified for an object, and the
7225    //   object is of (possibly cv-qualified) non-POD class type (or
7226    //   array thereof), the object shall be default-initialized; if
7227    //   the object is of const-qualified type, the underlying class
7228    //   type shall have a user-declared default
7229    //   constructor. Otherwise, if no initializer is specified for
7230    //   a non- static object, the object and its subobjects, if
7231    //   any, have an indeterminate initial value); if the object
7232    //   or any of its subobjects are of const-qualified type, the
7233    //   program is ill-formed.
7234    // C++0x [dcl.init]p11:
7235    //   If no initializer is specified for an object, the object is
7236    //   default-initialized; [...].
7237    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7238    InitializationKind Kind
7239      = InitializationKind::CreateDefault(Var->getLocation());
7240
7241    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7242    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7243    if (Init.isInvalid())
7244      Var->setInvalidDecl();
7245    else if (Init.get()) {
7246      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7247      // This is important for template substitution.
7248      Var->setInitStyle(VarDecl::CallInit);
7249    }
7250
7251    CheckCompleteVariableDeclaration(Var);
7252  }
7253}
7254
7255void Sema::ActOnCXXForRangeDecl(Decl *D) {
7256  VarDecl *VD = dyn_cast<VarDecl>(D);
7257  if (!VD) {
7258    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7259    D->setInvalidDecl();
7260    return;
7261  }
7262
7263  VD->setCXXForRangeDecl(true);
7264
7265  // for-range-declaration cannot be given a storage class specifier.
7266  int Error = -1;
7267  switch (VD->getStorageClassAsWritten()) {
7268  case SC_None:
7269    break;
7270  case SC_Extern:
7271    Error = 0;
7272    break;
7273  case SC_Static:
7274    Error = 1;
7275    break;
7276  case SC_PrivateExtern:
7277    Error = 2;
7278    break;
7279  case SC_Auto:
7280    Error = 3;
7281    break;
7282  case SC_Register:
7283    Error = 4;
7284    break;
7285  case SC_OpenCLWorkGroupLocal:
7286    llvm_unreachable("Unexpected storage class");
7287  }
7288  if (VD->isConstexpr())
7289    Error = 5;
7290  if (Error != -1) {
7291    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7292      << VD->getDeclName() << Error;
7293    D->setInvalidDecl();
7294  }
7295}
7296
7297void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7298  if (var->isInvalidDecl()) return;
7299
7300  // In ARC, don't allow jumps past the implicit initialization of a
7301  // local retaining variable.
7302  if (getLangOpts().ObjCAutoRefCount &&
7303      var->hasLocalStorage()) {
7304    switch (var->getType().getObjCLifetime()) {
7305    case Qualifiers::OCL_None:
7306    case Qualifiers::OCL_ExplicitNone:
7307    case Qualifiers::OCL_Autoreleasing:
7308      break;
7309
7310    case Qualifiers::OCL_Weak:
7311    case Qualifiers::OCL_Strong:
7312      getCurFunction()->setHasBranchProtectedScope();
7313      break;
7314    }
7315  }
7316
7317  if (var->isThisDeclarationADefinition() &&
7318      var->getLinkage() == ExternalLinkage &&
7319      getDiagnostics().getDiagnosticLevel(
7320                       diag::warn_missing_variable_declarations,
7321                       var->getLocation())) {
7322    // Find a previous declaration that's not a definition.
7323    VarDecl *prev = var->getPreviousDecl();
7324    while (prev && prev->isThisDeclarationADefinition())
7325      prev = prev->getPreviousDecl();
7326
7327    if (!prev)
7328      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7329  }
7330
7331  // All the following checks are C++ only.
7332  if (!getLangOpts().CPlusPlus) return;
7333
7334  QualType type = var->getType();
7335  if (type->isDependentType()) return;
7336
7337  // __block variables might require us to capture a copy-initializer.
7338  if (var->hasAttr<BlocksAttr>()) {
7339    // It's currently invalid to ever have a __block variable with an
7340    // array type; should we diagnose that here?
7341
7342    // Regardless, we don't want to ignore array nesting when
7343    // constructing this copy.
7344    if (type->isStructureOrClassType()) {
7345      SourceLocation poi = var->getLocation();
7346      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7347      ExprResult result =
7348        PerformCopyInitialization(
7349                        InitializedEntity::InitializeBlock(poi, type, false),
7350                                  poi, Owned(varRef));
7351      if (!result.isInvalid()) {
7352        result = MaybeCreateExprWithCleanups(result);
7353        Expr *init = result.takeAs<Expr>();
7354        Context.setBlockVarCopyInits(var, init);
7355      }
7356    }
7357  }
7358
7359  Expr *Init = var->getInit();
7360  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7361  QualType baseType = Context.getBaseElementType(type);
7362
7363  if (!var->getDeclContext()->isDependentContext() &&
7364      Init && !Init->isValueDependent()) {
7365    if (IsGlobal && !var->isConstexpr() &&
7366        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7367                                            var->getLocation())
7368          != DiagnosticsEngine::Ignored &&
7369        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7370      Diag(var->getLocation(), diag::warn_global_constructor)
7371        << Init->getSourceRange();
7372
7373    if (var->isConstexpr()) {
7374      SmallVector<PartialDiagnosticAt, 8> Notes;
7375      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7376        SourceLocation DiagLoc = var->getLocation();
7377        // If the note doesn't add any useful information other than a source
7378        // location, fold it into the primary diagnostic.
7379        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7380              diag::note_invalid_subexpr_in_const_expr) {
7381          DiagLoc = Notes[0].first;
7382          Notes.clear();
7383        }
7384        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7385          << var << Init->getSourceRange();
7386        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7387          Diag(Notes[I].first, Notes[I].second);
7388      }
7389    } else if (var->isUsableInConstantExpressions(Context)) {
7390      // Check whether the initializer of a const variable of integral or
7391      // enumeration type is an ICE now, since we can't tell whether it was
7392      // initialized by a constant expression if we check later.
7393      var->checkInitIsICE();
7394    }
7395  }
7396
7397  // Require the destructor.
7398  if (const RecordType *recordType = baseType->getAs<RecordType>())
7399    FinalizeVarWithDestructor(var, recordType);
7400}
7401
7402/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7403/// any semantic actions necessary after any initializer has been attached.
7404void
7405Sema::FinalizeDeclaration(Decl *ThisDecl) {
7406  // Note that we are no longer parsing the initializer for this declaration.
7407  ParsingInitForAutoVars.erase(ThisDecl);
7408
7409  const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7410  if (!VD)
7411    return;
7412
7413  if (VD->isFileVarDecl())
7414    MarkUnusedFileScopedDecl(VD);
7415
7416  // Now we have parsed the initializer and can update the table of magic
7417  // tag values.
7418  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7419      !VD->getType()->isIntegralOrEnumerationType())
7420    return;
7421
7422  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7423         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7424         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7425       I != E; ++I) {
7426    const Expr *MagicValueExpr = VD->getInit();
7427    if (!MagicValueExpr) {
7428      continue;
7429    }
7430    llvm::APSInt MagicValueInt;
7431    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7432      Diag(I->getRange().getBegin(),
7433           diag::err_type_tag_for_datatype_not_ice)
7434        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7435      continue;
7436    }
7437    if (MagicValueInt.getActiveBits() > 64) {
7438      Diag(I->getRange().getBegin(),
7439           diag::err_type_tag_for_datatype_too_large)
7440        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7441      continue;
7442    }
7443    uint64_t MagicValue = MagicValueInt.getZExtValue();
7444    RegisterTypeTagForDatatype(I->getArgumentKind(),
7445                               MagicValue,
7446                               I->getMatchingCType(),
7447                               I->getLayoutCompatible(),
7448                               I->getMustBeNull());
7449  }
7450}
7451
7452Sema::DeclGroupPtrTy
7453Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7454                              Decl **Group, unsigned NumDecls) {
7455  SmallVector<Decl*, 8> Decls;
7456
7457  if (DS.isTypeSpecOwned())
7458    Decls.push_back(DS.getRepAsDecl());
7459
7460  for (unsigned i = 0; i != NumDecls; ++i)
7461    if (Decl *D = Group[i])
7462      Decls.push_back(D);
7463
7464  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7465    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7466      getASTContext().addUnnamedTag(Tag);
7467
7468  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7469                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7470}
7471
7472/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7473/// group, performing any necessary semantic checking.
7474Sema::DeclGroupPtrTy
7475Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7476                           bool TypeMayContainAuto) {
7477  // C++0x [dcl.spec.auto]p7:
7478  //   If the type deduced for the template parameter U is not the same in each
7479  //   deduction, the program is ill-formed.
7480  // FIXME: When initializer-list support is added, a distinction is needed
7481  // between the deduced type U and the deduced type which 'auto' stands for.
7482  //   auto a = 0, b = { 1, 2, 3 };
7483  // is legal because the deduced type U is 'int' in both cases.
7484  if (TypeMayContainAuto && NumDecls > 1) {
7485    QualType Deduced;
7486    CanQualType DeducedCanon;
7487    VarDecl *DeducedDecl = 0;
7488    for (unsigned i = 0; i != NumDecls; ++i) {
7489      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7490        AutoType *AT = D->getType()->getContainedAutoType();
7491        // Don't reissue diagnostics when instantiating a template.
7492        if (AT && D->isInvalidDecl())
7493          break;
7494        if (AT && AT->isDeduced()) {
7495          QualType U = AT->getDeducedType();
7496          CanQualType UCanon = Context.getCanonicalType(U);
7497          if (Deduced.isNull()) {
7498            Deduced = U;
7499            DeducedCanon = UCanon;
7500            DeducedDecl = D;
7501          } else if (DeducedCanon != UCanon) {
7502            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7503                 diag::err_auto_different_deductions)
7504              << Deduced << DeducedDecl->getDeclName()
7505              << U << D->getDeclName()
7506              << DeducedDecl->getInit()->getSourceRange()
7507              << D->getInit()->getSourceRange();
7508            D->setInvalidDecl();
7509            break;
7510          }
7511        }
7512      }
7513    }
7514  }
7515
7516  ActOnDocumentableDecls(Group, NumDecls);
7517
7518  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7519}
7520
7521void Sema::ActOnDocumentableDecl(Decl *D) {
7522  ActOnDocumentableDecls(&D, 1);
7523}
7524
7525void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7526  // Don't parse the comment if Doxygen diagnostics are ignored.
7527  if (NumDecls == 0 || !Group[0])
7528   return;
7529
7530  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7531                               Group[0]->getLocation())
7532        == DiagnosticsEngine::Ignored)
7533    return;
7534
7535  if (NumDecls >= 2) {
7536    // This is a decl group.  Normally it will contain only declarations
7537    // procuded from declarator list.  But in case we have any definitions or
7538    // additional declaration references:
7539    //   'typedef struct S {} S;'
7540    //   'typedef struct S *S;'
7541    //   'struct S *pS;'
7542    // FinalizeDeclaratorGroup adds these as separate declarations.
7543    Decl *MaybeTagDecl = Group[0];
7544    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7545      Group++;
7546      NumDecls--;
7547    }
7548  }
7549
7550  // See if there are any new comments that are not attached to a decl.
7551  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7552  if (!Comments.empty() &&
7553      !Comments.back()->isAttached()) {
7554    // There is at least one comment that not attached to a decl.
7555    // Maybe it should be attached to one of these decls?
7556    //
7557    // Note that this way we pick up not only comments that precede the
7558    // declaration, but also comments that *follow* the declaration -- thanks to
7559    // the lookahead in the lexer: we've consumed the semicolon and looked
7560    // ahead through comments.
7561    for (unsigned i = 0; i != NumDecls; ++i)
7562      Context.getCommentForDecl(Group[i], &PP);
7563  }
7564}
7565
7566/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7567/// to introduce parameters into function prototype scope.
7568Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7569  const DeclSpec &DS = D.getDeclSpec();
7570
7571  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7572  // C++03 [dcl.stc]p2 also permits 'auto'.
7573  VarDecl::StorageClass StorageClass = SC_None;
7574  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7575  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7576    StorageClass = SC_Register;
7577    StorageClassAsWritten = SC_Register;
7578  } else if (getLangOpts().CPlusPlus &&
7579             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7580    StorageClass = SC_Auto;
7581    StorageClassAsWritten = SC_Auto;
7582  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7583    Diag(DS.getStorageClassSpecLoc(),
7584         diag::err_invalid_storage_class_in_func_decl);
7585    D.getMutableDeclSpec().ClearStorageClassSpecs();
7586  }
7587
7588  if (D.getDeclSpec().isThreadSpecified())
7589    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7590  if (D.getDeclSpec().isConstexprSpecified())
7591    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7592      << 0;
7593
7594  DiagnoseFunctionSpecifiers(D);
7595
7596  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7597  QualType parmDeclType = TInfo->getType();
7598
7599  if (getLangOpts().CPlusPlus) {
7600    // Check that there are no default arguments inside the type of this
7601    // parameter.
7602    CheckExtraCXXDefaultArguments(D);
7603
7604    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7605    if (D.getCXXScopeSpec().isSet()) {
7606      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7607        << D.getCXXScopeSpec().getRange();
7608      D.getCXXScopeSpec().clear();
7609    }
7610  }
7611
7612  // Ensure we have a valid name
7613  IdentifierInfo *II = 0;
7614  if (D.hasName()) {
7615    II = D.getIdentifier();
7616    if (!II) {
7617      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7618        << GetNameForDeclarator(D).getName().getAsString();
7619      D.setInvalidType(true);
7620    }
7621  }
7622
7623  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7624  if (II) {
7625    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7626                   ForRedeclaration);
7627    LookupName(R, S);
7628    if (R.isSingleResult()) {
7629      NamedDecl *PrevDecl = R.getFoundDecl();
7630      if (PrevDecl->isTemplateParameter()) {
7631        // Maybe we will complain about the shadowed template parameter.
7632        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7633        // Just pretend that we didn't see the previous declaration.
7634        PrevDecl = 0;
7635      } else if (S->isDeclScope(PrevDecl)) {
7636        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7637        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7638
7639        // Recover by removing the name
7640        II = 0;
7641        D.SetIdentifier(0, D.getIdentifierLoc());
7642        D.setInvalidType(true);
7643      }
7644    }
7645  }
7646
7647  // Temporarily put parameter variables in the translation unit, not
7648  // the enclosing context.  This prevents them from accidentally
7649  // looking like class members in C++.
7650  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7651                                    D.getLocStart(),
7652                                    D.getIdentifierLoc(), II,
7653                                    parmDeclType, TInfo,
7654                                    StorageClass, StorageClassAsWritten);
7655
7656  if (D.isInvalidType())
7657    New->setInvalidDecl();
7658
7659  assert(S->isFunctionPrototypeScope());
7660  assert(S->getFunctionPrototypeDepth() >= 1);
7661  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7662                    S->getNextFunctionPrototypeIndex());
7663
7664  // Add the parameter declaration into this scope.
7665  S->AddDecl(New);
7666  if (II)
7667    IdResolver.AddDecl(New);
7668
7669  ProcessDeclAttributes(S, New, D);
7670
7671  if (D.getDeclSpec().isModulePrivateSpecified())
7672    Diag(New->getLocation(), diag::err_module_private_local)
7673      << 1 << New->getDeclName()
7674      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7675      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7676
7677  if (New->hasAttr<BlocksAttr>()) {
7678    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7679  }
7680  return New;
7681}
7682
7683/// \brief Synthesizes a variable for a parameter arising from a
7684/// typedef.
7685ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7686                                              SourceLocation Loc,
7687                                              QualType T) {
7688  /* FIXME: setting StartLoc == Loc.
7689     Would it be worth to modify callers so as to provide proper source
7690     location for the unnamed parameters, embedding the parameter's type? */
7691  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7692                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7693                                           SC_None, SC_None, 0);
7694  Param->setImplicit();
7695  return Param;
7696}
7697
7698void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7699                                    ParmVarDecl * const *ParamEnd) {
7700  // Don't diagnose unused-parameter errors in template instantiations; we
7701  // will already have done so in the template itself.
7702  if (!ActiveTemplateInstantiations.empty())
7703    return;
7704
7705  for (; Param != ParamEnd; ++Param) {
7706    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7707        !(*Param)->hasAttr<UnusedAttr>()) {
7708      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7709        << (*Param)->getDeclName();
7710    }
7711  }
7712}
7713
7714void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7715                                                  ParmVarDecl * const *ParamEnd,
7716                                                  QualType ReturnTy,
7717                                                  NamedDecl *D) {
7718  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7719    return;
7720
7721  // Warn if the return value is pass-by-value and larger than the specified
7722  // threshold.
7723  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7724    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7725    if (Size > LangOpts.NumLargeByValueCopy)
7726      Diag(D->getLocation(), diag::warn_return_value_size)
7727          << D->getDeclName() << Size;
7728  }
7729
7730  // Warn if any parameter is pass-by-value and larger than the specified
7731  // threshold.
7732  for (; Param != ParamEnd; ++Param) {
7733    QualType T = (*Param)->getType();
7734    if (T->isDependentType() || !T.isPODType(Context))
7735      continue;
7736    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7737    if (Size > LangOpts.NumLargeByValueCopy)
7738      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7739          << (*Param)->getDeclName() << Size;
7740  }
7741}
7742
7743ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7744                                  SourceLocation NameLoc, IdentifierInfo *Name,
7745                                  QualType T, TypeSourceInfo *TSInfo,
7746                                  VarDecl::StorageClass StorageClass,
7747                                  VarDecl::StorageClass StorageClassAsWritten) {
7748  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7749  if (getLangOpts().ObjCAutoRefCount &&
7750      T.getObjCLifetime() == Qualifiers::OCL_None &&
7751      T->isObjCLifetimeType()) {
7752
7753    Qualifiers::ObjCLifetime lifetime;
7754
7755    // Special cases for arrays:
7756    //   - if it's const, use __unsafe_unretained
7757    //   - otherwise, it's an error
7758    if (T->isArrayType()) {
7759      if (!T.isConstQualified()) {
7760        DelayedDiagnostics.add(
7761            sema::DelayedDiagnostic::makeForbiddenType(
7762            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7763      }
7764      lifetime = Qualifiers::OCL_ExplicitNone;
7765    } else {
7766      lifetime = T->getObjCARCImplicitLifetime();
7767    }
7768    T = Context.getLifetimeQualifiedType(T, lifetime);
7769  }
7770
7771  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7772                                         Context.getAdjustedParameterType(T),
7773                                         TSInfo,
7774                                         StorageClass, StorageClassAsWritten,
7775                                         0);
7776
7777  // Parameters can not be abstract class types.
7778  // For record types, this is done by the AbstractClassUsageDiagnoser once
7779  // the class has been completely parsed.
7780  if (!CurContext->isRecord() &&
7781      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7782                             AbstractParamType))
7783    New->setInvalidDecl();
7784
7785  // Parameter declarators cannot be interface types. All ObjC objects are
7786  // passed by reference.
7787  if (T->isObjCObjectType()) {
7788    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7789    Diag(NameLoc,
7790         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7791      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7792    T = Context.getObjCObjectPointerType(T);
7793    New->setType(T);
7794  }
7795
7796  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7797  // duration shall not be qualified by an address-space qualifier."
7798  // Since all parameters have automatic store duration, they can not have
7799  // an address space.
7800  if (T.getAddressSpace() != 0) {
7801    Diag(NameLoc, diag::err_arg_with_address_space);
7802    New->setInvalidDecl();
7803  }
7804
7805  return New;
7806}
7807
7808void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7809                                           SourceLocation LocAfterDecls) {
7810  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7811
7812  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7813  // for a K&R function.
7814  if (!FTI.hasPrototype) {
7815    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7816      --i;
7817      if (FTI.ArgInfo[i].Param == 0) {
7818        SmallString<256> Code;
7819        llvm::raw_svector_ostream(Code) << "  int "
7820                                        << FTI.ArgInfo[i].Ident->getName()
7821                                        << ";\n";
7822        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7823          << FTI.ArgInfo[i].Ident
7824          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7825
7826        // Implicitly declare the argument as type 'int' for lack of a better
7827        // type.
7828        AttributeFactory attrs;
7829        DeclSpec DS(attrs);
7830        const char* PrevSpec; // unused
7831        unsigned DiagID; // unused
7832        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7833                           PrevSpec, DiagID);
7834        // Use the identifier location for the type source range.
7835        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
7836        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
7837        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7838        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7839        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7840      }
7841    }
7842  }
7843}
7844
7845Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7846  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7847  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7848  Scope *ParentScope = FnBodyScope->getParent();
7849
7850  D.setFunctionDefinitionKind(FDK_Definition);
7851  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7852  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7853}
7854
7855static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
7856                             const FunctionDecl*& PossibleZeroParamPrototype) {
7857  // Don't warn about invalid declarations.
7858  if (FD->isInvalidDecl())
7859    return false;
7860
7861  // Or declarations that aren't global.
7862  if (!FD->isGlobal())
7863    return false;
7864
7865  // Don't warn about C++ member functions.
7866  if (isa<CXXMethodDecl>(FD))
7867    return false;
7868
7869  // Don't warn about 'main'.
7870  if (FD->isMain())
7871    return false;
7872
7873  // Don't warn about inline functions.
7874  if (FD->isInlined())
7875    return false;
7876
7877  // Don't warn about function templates.
7878  if (FD->getDescribedFunctionTemplate())
7879    return false;
7880
7881  // Don't warn about function template specializations.
7882  if (FD->isFunctionTemplateSpecialization())
7883    return false;
7884
7885  // Don't warn for OpenCL kernels.
7886  if (FD->hasAttr<OpenCLKernelAttr>())
7887    return false;
7888
7889  bool MissingPrototype = true;
7890  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7891       Prev; Prev = Prev->getPreviousDecl()) {
7892    // Ignore any declarations that occur in function or method
7893    // scope, because they aren't visible from the header.
7894    if (Prev->getDeclContext()->isFunctionOrMethod())
7895      continue;
7896
7897    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7898    if (FD->getNumParams() == 0)
7899      PossibleZeroParamPrototype = Prev;
7900    break;
7901  }
7902
7903  return MissingPrototype;
7904}
7905
7906void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7907  // Don't complain if we're in GNU89 mode and the previous definition
7908  // was an extern inline function.
7909  const FunctionDecl *Definition;
7910  if (FD->isDefined(Definition) &&
7911      !canRedefineFunction(Definition, getLangOpts())) {
7912    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7913        Definition->getStorageClass() == SC_Extern)
7914      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7915        << FD->getDeclName() << getLangOpts().CPlusPlus;
7916    else
7917      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7918    Diag(Definition->getLocation(), diag::note_previous_definition);
7919    FD->setInvalidDecl();
7920  }
7921}
7922
7923Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7924  // Clear the last template instantiation error context.
7925  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7926
7927  if (!D)
7928    return D;
7929  FunctionDecl *FD = 0;
7930
7931  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7932    FD = FunTmpl->getTemplatedDecl();
7933  else
7934    FD = cast<FunctionDecl>(D);
7935
7936  // Enter a new function scope
7937  PushFunctionScope();
7938
7939  // See if this is a redefinition.
7940  if (!FD->isLateTemplateParsed())
7941    CheckForFunctionRedefinition(FD);
7942
7943  // Builtin functions cannot be defined.
7944  if (unsigned BuiltinID = FD->getBuiltinID()) {
7945    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7946      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7947      FD->setInvalidDecl();
7948    }
7949  }
7950
7951  // The return type of a function definition must be complete
7952  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7953  QualType ResultType = FD->getResultType();
7954  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7955      !FD->isInvalidDecl() &&
7956      RequireCompleteType(FD->getLocation(), ResultType,
7957                          diag::err_func_def_incomplete_result))
7958    FD->setInvalidDecl();
7959
7960  // GNU warning -Wmissing-prototypes:
7961  //   Warn if a global function is defined without a previous
7962  //   prototype declaration. This warning is issued even if the
7963  //   definition itself provides a prototype. The aim is to detect
7964  //   global functions that fail to be declared in header files.
7965  const FunctionDecl *PossibleZeroParamPrototype = 0;
7966  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
7967    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7968
7969    if (PossibleZeroParamPrototype) {
7970      // We found a declaration that is not a prototype,
7971      // but that could be a zero-parameter prototype
7972      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
7973      TypeLoc TL = TI->getTypeLoc();
7974      if (FunctionNoProtoTypeLoc* FTL = dyn_cast<FunctionNoProtoTypeLoc>(&TL))
7975        Diag(PossibleZeroParamPrototype->getLocation(),
7976             diag::note_declaration_not_a_prototype)
7977          << PossibleZeroParamPrototype
7978          << FixItHint::CreateInsertion(FTL->getRParenLoc(), "void");
7979    }
7980  }
7981
7982  if (FnBodyScope)
7983    PushDeclContext(FnBodyScope, FD);
7984
7985  // Check the validity of our function parameters
7986  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7987                           /*CheckParameterNames=*/true);
7988
7989  // Introduce our parameters into the function scope
7990  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7991    ParmVarDecl *Param = FD->getParamDecl(p);
7992    Param->setOwningFunction(FD);
7993
7994    // If this has an identifier, add it to the scope stack.
7995    if (Param->getIdentifier() && FnBodyScope) {
7996      CheckShadow(FnBodyScope, Param);
7997
7998      PushOnScopeChains(Param, FnBodyScope);
7999    }
8000  }
8001
8002  // If we had any tags defined in the function prototype,
8003  // introduce them into the function scope.
8004  if (FnBodyScope) {
8005    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8006           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8007      NamedDecl *D = *I;
8008
8009      // Some of these decls (like enums) may have been pinned to the translation unit
8010      // for lack of a real context earlier. If so, remove from the translation unit
8011      // and reattach to the current context.
8012      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8013        // Is the decl actually in the context?
8014        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8015               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8016          if (*DI == D) {
8017            Context.getTranslationUnitDecl()->removeDecl(D);
8018            break;
8019          }
8020        }
8021        // Either way, reassign the lexical decl context to our FunctionDecl.
8022        D->setLexicalDeclContext(CurContext);
8023      }
8024
8025      // If the decl has a non-null name, make accessible in the current scope.
8026      if (!D->getName().empty())
8027        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8028
8029      // Similarly, dive into enums and fish their constants out, making them
8030      // accessible in this scope.
8031      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8032        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8033               EE = ED->enumerator_end(); EI != EE; ++EI)
8034          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8035      }
8036    }
8037  }
8038
8039  // Ensure that the function's exception specification is instantiated.
8040  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8041    ResolveExceptionSpec(D->getLocation(), FPT);
8042
8043  // Checking attributes of current function definition
8044  // dllimport attribute.
8045  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8046  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8047    // dllimport attribute cannot be directly applied to definition.
8048    // Microsoft accepts dllimport for functions defined within class scope.
8049    if (!DA->isInherited() &&
8050        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8051      Diag(FD->getLocation(),
8052           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8053        << "dllimport";
8054      FD->setInvalidDecl();
8055      return D;
8056    }
8057
8058    // Visual C++ appears to not think this is an issue, so only issue
8059    // a warning when Microsoft extensions are disabled.
8060    if (!LangOpts.MicrosoftExt) {
8061      // If a symbol previously declared dllimport is later defined, the
8062      // attribute is ignored in subsequent references, and a warning is
8063      // emitted.
8064      Diag(FD->getLocation(),
8065           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8066        << FD->getName() << "dllimport";
8067    }
8068  }
8069  // We want to attach documentation to original Decl (which might be
8070  // a function template).
8071  ActOnDocumentableDecl(D);
8072  return D;
8073}
8074
8075/// \brief Given the set of return statements within a function body,
8076/// compute the variables that are subject to the named return value
8077/// optimization.
8078///
8079/// Each of the variables that is subject to the named return value
8080/// optimization will be marked as NRVO variables in the AST, and any
8081/// return statement that has a marked NRVO variable as its NRVO candidate can
8082/// use the named return value optimization.
8083///
8084/// This function applies a very simplistic algorithm for NRVO: if every return
8085/// statement in the function has the same NRVO candidate, that candidate is
8086/// the NRVO variable.
8087///
8088/// FIXME: Employ a smarter algorithm that accounts for multiple return
8089/// statements and the lifetimes of the NRVO candidates. We should be able to
8090/// find a maximal set of NRVO variables.
8091void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8092  ReturnStmt **Returns = Scope->Returns.data();
8093
8094  const VarDecl *NRVOCandidate = 0;
8095  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8096    if (!Returns[I]->getNRVOCandidate())
8097      return;
8098
8099    if (!NRVOCandidate)
8100      NRVOCandidate = Returns[I]->getNRVOCandidate();
8101    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8102      return;
8103  }
8104
8105  if (NRVOCandidate)
8106    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8107}
8108
8109bool Sema::canSkipFunctionBody(Decl *D) {
8110  if (!Consumer.shouldSkipFunctionBody(D))
8111    return false;
8112
8113  if (isa<ObjCMethodDecl>(D))
8114    return true;
8115
8116  FunctionDecl *FD = 0;
8117  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8118    FD = FTD->getTemplatedDecl();
8119  else
8120    FD = cast<FunctionDecl>(D);
8121
8122  // We cannot skip the body of a function (or function template) which is
8123  // constexpr, since we may need to evaluate its body in order to parse the
8124  // rest of the file.
8125  return !FD->isConstexpr();
8126}
8127
8128Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8129  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
8130    FD->setHasSkippedBody();
8131  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
8132    MD->setHasSkippedBody();
8133  return ActOnFinishFunctionBody(Decl, 0);
8134}
8135
8136Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8137  return ActOnFinishFunctionBody(D, BodyArg, false);
8138}
8139
8140Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8141                                    bool IsInstantiation) {
8142  FunctionDecl *FD = 0;
8143  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8144  if (FunTmpl)
8145    FD = FunTmpl->getTemplatedDecl();
8146  else
8147    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8148
8149  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8150  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8151
8152  if (FD) {
8153    FD->setBody(Body);
8154
8155    // If the function implicitly returns zero (like 'main') or is naked,
8156    // don't complain about missing return statements.
8157    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8158      WP.disableCheckFallThrough();
8159
8160    // MSVC permits the use of pure specifier (=0) on function definition,
8161    // defined at class scope, warn about this non standard construct.
8162    if (getLangOpts().MicrosoftExt && FD->isPure())
8163      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8164
8165    if (!FD->isInvalidDecl()) {
8166      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8167      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8168                                             FD->getResultType(), FD);
8169
8170      // If this is a constructor, we need a vtable.
8171      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8172        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8173
8174      // Try to apply the named return value optimization. We have to check
8175      // if we can do this here because lambdas keep return statements around
8176      // to deduce an implicit return type.
8177      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8178          !FD->isDependentContext())
8179        computeNRVO(Body, getCurFunction());
8180    }
8181
8182    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8183           "Function parsing confused");
8184  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8185    assert(MD == getCurMethodDecl() && "Method parsing confused");
8186    MD->setBody(Body);
8187    if (!MD->isInvalidDecl()) {
8188      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8189      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8190                                             MD->getResultType(), MD);
8191
8192      if (Body)
8193        computeNRVO(Body, getCurFunction());
8194    }
8195    if (getCurFunction()->ObjCShouldCallSuper) {
8196      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8197        << MD->getSelector().getAsString();
8198      getCurFunction()->ObjCShouldCallSuper = false;
8199    }
8200  } else {
8201    return 0;
8202  }
8203
8204  assert(!getCurFunction()->ObjCShouldCallSuper &&
8205         "This should only be set for ObjC methods, which should have been "
8206         "handled in the block above.");
8207
8208  // Verify and clean out per-function state.
8209  if (Body) {
8210    // C++ constructors that have function-try-blocks can't have return
8211    // statements in the handlers of that block. (C++ [except.handle]p14)
8212    // Verify this.
8213    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8214      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8215
8216    // Verify that gotos and switch cases don't jump into scopes illegally.
8217    if (getCurFunction()->NeedsScopeChecking() &&
8218        !dcl->isInvalidDecl() &&
8219        !hasAnyUnrecoverableErrorsInThisFunction() &&
8220        !PP.isCodeCompletionEnabled())
8221      DiagnoseInvalidJumps(Body);
8222
8223    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8224      if (!Destructor->getParent()->isDependentType())
8225        CheckDestructor(Destructor);
8226
8227      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8228                                             Destructor->getParent());
8229    }
8230
8231    // If any errors have occurred, clear out any temporaries that may have
8232    // been leftover. This ensures that these temporaries won't be picked up for
8233    // deletion in some later function.
8234    if (PP.getDiagnostics().hasErrorOccurred() ||
8235        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8236      DiscardCleanupsInEvaluationContext();
8237    }
8238    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8239        !isa<FunctionTemplateDecl>(dcl)) {
8240      // Since the body is valid, issue any analysis-based warnings that are
8241      // enabled.
8242      ActivePolicy = &WP;
8243    }
8244
8245    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8246        (!CheckConstexprFunctionDecl(FD) ||
8247         !CheckConstexprFunctionBody(FD, Body)))
8248      FD->setInvalidDecl();
8249
8250    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8251    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8252    assert(MaybeODRUseExprs.empty() &&
8253           "Leftover expressions for odr-use checking");
8254  }
8255
8256  if (!IsInstantiation)
8257    PopDeclContext();
8258
8259  PopFunctionScopeInfo(ActivePolicy, dcl);
8260
8261  // If any errors have occurred, clear out any temporaries that may have
8262  // been leftover. This ensures that these temporaries won't be picked up for
8263  // deletion in some later function.
8264  if (getDiagnostics().hasErrorOccurred()) {
8265    DiscardCleanupsInEvaluationContext();
8266  }
8267
8268  return dcl;
8269}
8270
8271
8272/// When we finish delayed parsing of an attribute, we must attach it to the
8273/// relevant Decl.
8274void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8275                                       ParsedAttributes &Attrs) {
8276  // Always attach attributes to the underlying decl.
8277  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8278    D = TD->getTemplatedDecl();
8279  ProcessDeclAttributeList(S, D, Attrs.getList());
8280
8281  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8282    if (Method->isStatic())
8283      checkThisInStaticMemberFunctionAttributes(Method);
8284}
8285
8286
8287/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8288/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8289NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8290                                          IdentifierInfo &II, Scope *S) {
8291  // Before we produce a declaration for an implicitly defined
8292  // function, see whether there was a locally-scoped declaration of
8293  // this name as a function or variable. If so, use that
8294  // (non-visible) declaration, and complain about it.
8295  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8296    = findLocallyScopedExternCDecl(&II);
8297  if (Pos != LocallyScopedExternCDecls.end()) {
8298    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8299    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8300    return Pos->second;
8301  }
8302
8303  // Extension in C99.  Legal in C90, but warn about it.
8304  unsigned diag_id;
8305  if (II.getName().startswith("__builtin_"))
8306    diag_id = diag::warn_builtin_unknown;
8307  else if (getLangOpts().C99)
8308    diag_id = diag::ext_implicit_function_decl;
8309  else
8310    diag_id = diag::warn_implicit_function_decl;
8311  Diag(Loc, diag_id) << &II;
8312
8313  // Because typo correction is expensive, only do it if the implicit
8314  // function declaration is going to be treated as an error.
8315  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8316    TypoCorrection Corrected;
8317    DeclFilterCCC<FunctionDecl> Validator;
8318    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8319                                      LookupOrdinaryName, S, 0, Validator))) {
8320      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8321      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8322      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8323
8324      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8325          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8326
8327      if (Func->getLocation().isValid()
8328          && !II.getName().startswith("__builtin_"))
8329        Diag(Func->getLocation(), diag::note_previous_decl)
8330            << CorrectedQuotedStr;
8331    }
8332  }
8333
8334  // Set a Declarator for the implicit definition: int foo();
8335  const char *Dummy;
8336  AttributeFactory attrFactory;
8337  DeclSpec DS(attrFactory);
8338  unsigned DiagID;
8339  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8340  (void)Error; // Silence warning.
8341  assert(!Error && "Error setting up implicit decl!");
8342  SourceLocation NoLoc;
8343  Declarator D(DS, Declarator::BlockContext);
8344  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8345                                             /*IsAmbiguous=*/false,
8346                                             /*RParenLoc=*/NoLoc,
8347                                             /*ArgInfo=*/0,
8348                                             /*NumArgs=*/0,
8349                                             /*EllipsisLoc=*/NoLoc,
8350                                             /*RParenLoc=*/NoLoc,
8351                                             /*TypeQuals=*/0,
8352                                             /*RefQualifierIsLvalueRef=*/true,
8353                                             /*RefQualifierLoc=*/NoLoc,
8354                                             /*ConstQualifierLoc=*/NoLoc,
8355                                             /*VolatileQualifierLoc=*/NoLoc,
8356                                             /*MutableLoc=*/NoLoc,
8357                                             EST_None,
8358                                             /*ESpecLoc=*/NoLoc,
8359                                             /*Exceptions=*/0,
8360                                             /*ExceptionRanges=*/0,
8361                                             /*NumExceptions=*/0,
8362                                             /*NoexceptExpr=*/0,
8363                                             Loc, Loc, D),
8364                DS.getAttributes(),
8365                SourceLocation());
8366  D.SetIdentifier(&II, Loc);
8367
8368  // Insert this function into translation-unit scope.
8369
8370  DeclContext *PrevDC = CurContext;
8371  CurContext = Context.getTranslationUnitDecl();
8372
8373  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8374  FD->setImplicit();
8375
8376  CurContext = PrevDC;
8377
8378  AddKnownFunctionAttributes(FD);
8379
8380  return FD;
8381}
8382
8383/// \brief Adds any function attributes that we know a priori based on
8384/// the declaration of this function.
8385///
8386/// These attributes can apply both to implicitly-declared builtins
8387/// (like __builtin___printf_chk) or to library-declared functions
8388/// like NSLog or printf.
8389///
8390/// We need to check for duplicate attributes both here and where user-written
8391/// attributes are applied to declarations.
8392void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8393  if (FD->isInvalidDecl())
8394    return;
8395
8396  // If this is a built-in function, map its builtin attributes to
8397  // actual attributes.
8398  if (unsigned BuiltinID = FD->getBuiltinID()) {
8399    // Handle printf-formatting attributes.
8400    unsigned FormatIdx;
8401    bool HasVAListArg;
8402    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8403      if (!FD->getAttr<FormatAttr>()) {
8404        const char *fmt = "printf";
8405        unsigned int NumParams = FD->getNumParams();
8406        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8407            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8408          fmt = "NSString";
8409        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8410                                               fmt, FormatIdx+1,
8411                                               HasVAListArg ? 0 : FormatIdx+2));
8412      }
8413    }
8414    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8415                                             HasVAListArg)) {
8416     if (!FD->getAttr<FormatAttr>())
8417       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8418                                              "scanf", FormatIdx+1,
8419                                              HasVAListArg ? 0 : FormatIdx+2));
8420    }
8421
8422    // Mark const if we don't care about errno and that is the only
8423    // thing preventing the function from being const. This allows
8424    // IRgen to use LLVM intrinsics for such functions.
8425    if (!getLangOpts().MathErrno &&
8426        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8427      if (!FD->getAttr<ConstAttr>())
8428        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8429    }
8430
8431    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8432        !FD->getAttr<ReturnsTwiceAttr>())
8433      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8434    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8435      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8436    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8437      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8438  }
8439
8440  IdentifierInfo *Name = FD->getIdentifier();
8441  if (!Name)
8442    return;
8443  if ((!getLangOpts().CPlusPlus &&
8444       FD->getDeclContext()->isTranslationUnit()) ||
8445      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8446       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8447       LinkageSpecDecl::lang_c)) {
8448    // Okay: this could be a libc/libm/Objective-C function we know
8449    // about.
8450  } else
8451    return;
8452
8453  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8454    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8455    // target-specific builtins, perhaps?
8456    if (!FD->getAttr<FormatAttr>())
8457      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8458                                             "printf", 2,
8459                                             Name->isStr("vasprintf") ? 0 : 3));
8460  }
8461
8462  if (Name->isStr("__CFStringMakeConstantString")) {
8463    // We already have a __builtin___CFStringMakeConstantString,
8464    // but builds that use -fno-constant-cfstrings don't go through that.
8465    if (!FD->getAttr<FormatArgAttr>())
8466      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8467  }
8468}
8469
8470TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8471                                    TypeSourceInfo *TInfo) {
8472  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8473  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8474
8475  if (!TInfo) {
8476    assert(D.isInvalidType() && "no declarator info for valid type");
8477    TInfo = Context.getTrivialTypeSourceInfo(T);
8478  }
8479
8480  // Scope manipulation handled by caller.
8481  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8482                                           D.getLocStart(),
8483                                           D.getIdentifierLoc(),
8484                                           D.getIdentifier(),
8485                                           TInfo);
8486
8487  // Bail out immediately if we have an invalid declaration.
8488  if (D.isInvalidType()) {
8489    NewTD->setInvalidDecl();
8490    return NewTD;
8491  }
8492
8493  if (D.getDeclSpec().isModulePrivateSpecified()) {
8494    if (CurContext->isFunctionOrMethod())
8495      Diag(NewTD->getLocation(), diag::err_module_private_local)
8496        << 2 << NewTD->getDeclName()
8497        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8498        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8499    else
8500      NewTD->setModulePrivate();
8501  }
8502
8503  // C++ [dcl.typedef]p8:
8504  //   If the typedef declaration defines an unnamed class (or
8505  //   enum), the first typedef-name declared by the declaration
8506  //   to be that class type (or enum type) is used to denote the
8507  //   class type (or enum type) for linkage purposes only.
8508  // We need to check whether the type was declared in the declaration.
8509  switch (D.getDeclSpec().getTypeSpecType()) {
8510  case TST_enum:
8511  case TST_struct:
8512  case TST_interface:
8513  case TST_union:
8514  case TST_class: {
8515    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8516
8517    // Do nothing if the tag is not anonymous or already has an
8518    // associated typedef (from an earlier typedef in this decl group).
8519    if (tagFromDeclSpec->getIdentifier()) break;
8520    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8521
8522    // A well-formed anonymous tag must always be a TUK_Definition.
8523    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8524
8525    // The type must match the tag exactly;  no qualifiers allowed.
8526    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8527      break;
8528
8529    // Otherwise, set this is the anon-decl typedef for the tag.
8530    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8531    break;
8532  }
8533
8534  default:
8535    break;
8536  }
8537
8538  return NewTD;
8539}
8540
8541
8542/// \brief Check that this is a valid underlying type for an enum declaration.
8543bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8544  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8545  QualType T = TI->getType();
8546
8547  if (T->isDependentType())
8548    return false;
8549
8550  if (const BuiltinType *BT = T->getAs<BuiltinType>())
8551    if (BT->isInteger())
8552      return false;
8553
8554  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8555  return true;
8556}
8557
8558/// Check whether this is a valid redeclaration of a previous enumeration.
8559/// \return true if the redeclaration was invalid.
8560bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8561                                  QualType EnumUnderlyingTy,
8562                                  const EnumDecl *Prev) {
8563  bool IsFixed = !EnumUnderlyingTy.isNull();
8564
8565  if (IsScoped != Prev->isScoped()) {
8566    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8567      << Prev->isScoped();
8568    Diag(Prev->getLocation(), diag::note_previous_use);
8569    return true;
8570  }
8571
8572  if (IsFixed && Prev->isFixed()) {
8573    if (!EnumUnderlyingTy->isDependentType() &&
8574        !Prev->getIntegerType()->isDependentType() &&
8575        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8576                                        Prev->getIntegerType())) {
8577      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8578        << EnumUnderlyingTy << Prev->getIntegerType();
8579      Diag(Prev->getLocation(), diag::note_previous_use);
8580      return true;
8581    }
8582  } else if (IsFixed != Prev->isFixed()) {
8583    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8584      << Prev->isFixed();
8585    Diag(Prev->getLocation(), diag::note_previous_use);
8586    return true;
8587  }
8588
8589  return false;
8590}
8591
8592/// \brief Get diagnostic %select index for tag kind for
8593/// redeclaration diagnostic message.
8594/// WARNING: Indexes apply to particular diagnostics only!
8595///
8596/// \returns diagnostic %select index.
8597static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8598  switch (Tag) {
8599  case TTK_Struct: return 0;
8600  case TTK_Interface: return 1;
8601  case TTK_Class:  return 2;
8602  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8603  }
8604}
8605
8606/// \brief Determine if tag kind is a class-key compatible with
8607/// class for redeclaration (class, struct, or __interface).
8608///
8609/// \returns true iff the tag kind is compatible.
8610static bool isClassCompatTagKind(TagTypeKind Tag)
8611{
8612  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8613}
8614
8615/// \brief Determine whether a tag with a given kind is acceptable
8616/// as a redeclaration of the given tag declaration.
8617///
8618/// \returns true if the new tag kind is acceptable, false otherwise.
8619bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8620                                        TagTypeKind NewTag, bool isDefinition,
8621                                        SourceLocation NewTagLoc,
8622                                        const IdentifierInfo &Name) {
8623  // C++ [dcl.type.elab]p3:
8624  //   The class-key or enum keyword present in the
8625  //   elaborated-type-specifier shall agree in kind with the
8626  //   declaration to which the name in the elaborated-type-specifier
8627  //   refers. This rule also applies to the form of
8628  //   elaborated-type-specifier that declares a class-name or
8629  //   friend class since it can be construed as referring to the
8630  //   definition of the class. Thus, in any
8631  //   elaborated-type-specifier, the enum keyword shall be used to
8632  //   refer to an enumeration (7.2), the union class-key shall be
8633  //   used to refer to a union (clause 9), and either the class or
8634  //   struct class-key shall be used to refer to a class (clause 9)
8635  //   declared using the class or struct class-key.
8636  TagTypeKind OldTag = Previous->getTagKind();
8637  if (!isDefinition || !isClassCompatTagKind(NewTag))
8638    if (OldTag == NewTag)
8639      return true;
8640
8641  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8642    // Warn about the struct/class tag mismatch.
8643    bool isTemplate = false;
8644    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8645      isTemplate = Record->getDescribedClassTemplate();
8646
8647    if (!ActiveTemplateInstantiations.empty()) {
8648      // In a template instantiation, do not offer fix-its for tag mismatches
8649      // since they usually mess up the template instead of fixing the problem.
8650      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8651        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8652        << getRedeclDiagFromTagKind(OldTag);
8653      return true;
8654    }
8655
8656    if (isDefinition) {
8657      // On definitions, check previous tags and issue a fix-it for each
8658      // one that doesn't match the current tag.
8659      if (Previous->getDefinition()) {
8660        // Don't suggest fix-its for redefinitions.
8661        return true;
8662      }
8663
8664      bool previousMismatch = false;
8665      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8666           E(Previous->redecls_end()); I != E; ++I) {
8667        if (I->getTagKind() != NewTag) {
8668          if (!previousMismatch) {
8669            previousMismatch = true;
8670            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8671              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8672              << getRedeclDiagFromTagKind(I->getTagKind());
8673          }
8674          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8675            << getRedeclDiagFromTagKind(NewTag)
8676            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8677                 TypeWithKeyword::getTagTypeKindName(NewTag));
8678        }
8679      }
8680      return true;
8681    }
8682
8683    // Check for a previous definition.  If current tag and definition
8684    // are same type, do nothing.  If no definition, but disagree with
8685    // with previous tag type, give a warning, but no fix-it.
8686    const TagDecl *Redecl = Previous->getDefinition() ?
8687                            Previous->getDefinition() : Previous;
8688    if (Redecl->getTagKind() == NewTag) {
8689      return true;
8690    }
8691
8692    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8693      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8694      << getRedeclDiagFromTagKind(OldTag);
8695    Diag(Redecl->getLocation(), diag::note_previous_use);
8696
8697    // If there is a previous defintion, suggest a fix-it.
8698    if (Previous->getDefinition()) {
8699        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8700          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8701          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8702               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8703    }
8704
8705    return true;
8706  }
8707  return false;
8708}
8709
8710/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8711/// former case, Name will be non-null.  In the later case, Name will be null.
8712/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8713/// reference/declaration/definition of a tag.
8714Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8715                     SourceLocation KWLoc, CXXScopeSpec &SS,
8716                     IdentifierInfo *Name, SourceLocation NameLoc,
8717                     AttributeList *Attr, AccessSpecifier AS,
8718                     SourceLocation ModulePrivateLoc,
8719                     MultiTemplateParamsArg TemplateParameterLists,
8720                     bool &OwnedDecl, bool &IsDependent,
8721                     SourceLocation ScopedEnumKWLoc,
8722                     bool ScopedEnumUsesClassTag,
8723                     TypeResult UnderlyingType) {
8724  // If this is not a definition, it must have a name.
8725  IdentifierInfo *OrigName = Name;
8726  assert((Name != 0 || TUK == TUK_Definition) &&
8727         "Nameless record must be a definition!");
8728  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8729
8730  OwnedDecl = false;
8731  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8732  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8733
8734  // FIXME: Check explicit specializations more carefully.
8735  bool isExplicitSpecialization = false;
8736  bool Invalid = false;
8737
8738  // We only need to do this matching if we have template parameters
8739  // or a scope specifier, which also conveniently avoids this work
8740  // for non-C++ cases.
8741  if (TemplateParameterLists.size() > 0 ||
8742      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8743    if (TemplateParameterList *TemplateParams
8744          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8745                                                TemplateParameterLists.data(),
8746                                                TemplateParameterLists.size(),
8747                                                    TUK == TUK_Friend,
8748                                                    isExplicitSpecialization,
8749                                                    Invalid)) {
8750      if (TemplateParams->size() > 0) {
8751        // This is a declaration or definition of a class template (which may
8752        // be a member of another template).
8753
8754        if (Invalid)
8755          return 0;
8756
8757        OwnedDecl = false;
8758        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8759                                               SS, Name, NameLoc, Attr,
8760                                               TemplateParams, AS,
8761                                               ModulePrivateLoc,
8762                                               TemplateParameterLists.size()-1,
8763                                               TemplateParameterLists.data());
8764        return Result.get();
8765      } else {
8766        // The "template<>" header is extraneous.
8767        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8768          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8769        isExplicitSpecialization = true;
8770      }
8771    }
8772  }
8773
8774  // Figure out the underlying type if this a enum declaration. We need to do
8775  // this early, because it's needed to detect if this is an incompatible
8776  // redeclaration.
8777  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8778
8779  if (Kind == TTK_Enum) {
8780    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8781      // No underlying type explicitly specified, or we failed to parse the
8782      // type, default to int.
8783      EnumUnderlying = Context.IntTy.getTypePtr();
8784    else if (UnderlyingType.get()) {
8785      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8786      // integral type; any cv-qualification is ignored.
8787      TypeSourceInfo *TI = 0;
8788      GetTypeFromParser(UnderlyingType.get(), &TI);
8789      EnumUnderlying = TI;
8790
8791      if (CheckEnumUnderlyingType(TI))
8792        // Recover by falling back to int.
8793        EnumUnderlying = Context.IntTy.getTypePtr();
8794
8795      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8796                                          UPPC_FixedUnderlyingType))
8797        EnumUnderlying = Context.IntTy.getTypePtr();
8798
8799    } else if (getLangOpts().MicrosoftMode)
8800      // Microsoft enums are always of int type.
8801      EnumUnderlying = Context.IntTy.getTypePtr();
8802  }
8803
8804  DeclContext *SearchDC = CurContext;
8805  DeclContext *DC = CurContext;
8806  bool isStdBadAlloc = false;
8807
8808  RedeclarationKind Redecl = ForRedeclaration;
8809  if (TUK == TUK_Friend || TUK == TUK_Reference)
8810    Redecl = NotForRedeclaration;
8811
8812  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8813
8814  if (Name && SS.isNotEmpty()) {
8815    // We have a nested-name tag ('struct foo::bar').
8816
8817    // Check for invalid 'foo::'.
8818    if (SS.isInvalid()) {
8819      Name = 0;
8820      goto CreateNewDecl;
8821    }
8822
8823    // If this is a friend or a reference to a class in a dependent
8824    // context, don't try to make a decl for it.
8825    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8826      DC = computeDeclContext(SS, false);
8827      if (!DC) {
8828        IsDependent = true;
8829        return 0;
8830      }
8831    } else {
8832      DC = computeDeclContext(SS, true);
8833      if (!DC) {
8834        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8835          << SS.getRange();
8836        return 0;
8837      }
8838    }
8839
8840    if (RequireCompleteDeclContext(SS, DC))
8841      return 0;
8842
8843    SearchDC = DC;
8844    // Look-up name inside 'foo::'.
8845    LookupQualifiedName(Previous, DC);
8846
8847    if (Previous.isAmbiguous())
8848      return 0;
8849
8850    if (Previous.empty()) {
8851      // Name lookup did not find anything. However, if the
8852      // nested-name-specifier refers to the current instantiation,
8853      // and that current instantiation has any dependent base
8854      // classes, we might find something at instantiation time: treat
8855      // this as a dependent elaborated-type-specifier.
8856      // But this only makes any sense for reference-like lookups.
8857      if (Previous.wasNotFoundInCurrentInstantiation() &&
8858          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8859        IsDependent = true;
8860        return 0;
8861      }
8862
8863      // A tag 'foo::bar' must already exist.
8864      Diag(NameLoc, diag::err_not_tag_in_scope)
8865        << Kind << Name << DC << SS.getRange();
8866      Name = 0;
8867      Invalid = true;
8868      goto CreateNewDecl;
8869    }
8870  } else if (Name) {
8871    // If this is a named struct, check to see if there was a previous forward
8872    // declaration or definition.
8873    // FIXME: We're looking into outer scopes here, even when we
8874    // shouldn't be. Doing so can result in ambiguities that we
8875    // shouldn't be diagnosing.
8876    LookupName(Previous, S);
8877
8878    if (Previous.isAmbiguous() &&
8879        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8880      LookupResult::Filter F = Previous.makeFilter();
8881      while (F.hasNext()) {
8882        NamedDecl *ND = F.next();
8883        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8884          F.erase();
8885      }
8886      F.done();
8887    }
8888
8889    // Note:  there used to be some attempt at recovery here.
8890    if (Previous.isAmbiguous())
8891      return 0;
8892
8893    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8894      // FIXME: This makes sure that we ignore the contexts associated
8895      // with C structs, unions, and enums when looking for a matching
8896      // tag declaration or definition. See the similar lookup tweak
8897      // in Sema::LookupName; is there a better way to deal with this?
8898      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8899        SearchDC = SearchDC->getParent();
8900    }
8901  } else if (S->isFunctionPrototypeScope()) {
8902    // If this is an enum declaration in function prototype scope, set its
8903    // initial context to the translation unit.
8904    // FIXME: [citation needed]
8905    SearchDC = Context.getTranslationUnitDecl();
8906  }
8907
8908  if (Previous.isSingleResult() &&
8909      Previous.getFoundDecl()->isTemplateParameter()) {
8910    // Maybe we will complain about the shadowed template parameter.
8911    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8912    // Just pretend that we didn't see the previous declaration.
8913    Previous.clear();
8914  }
8915
8916  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8917      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8918    // This is a declaration of or a reference to "std::bad_alloc".
8919    isStdBadAlloc = true;
8920
8921    if (Previous.empty() && StdBadAlloc) {
8922      // std::bad_alloc has been implicitly declared (but made invisible to
8923      // name lookup). Fill in this implicit declaration as the previous
8924      // declaration, so that the declarations get chained appropriately.
8925      Previous.addDecl(getStdBadAlloc());
8926    }
8927  }
8928
8929  // If we didn't find a previous declaration, and this is a reference
8930  // (or friend reference), move to the correct scope.  In C++, we
8931  // also need to do a redeclaration lookup there, just in case
8932  // there's a shadow friend decl.
8933  if (Name && Previous.empty() &&
8934      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8935    if (Invalid) goto CreateNewDecl;
8936    assert(SS.isEmpty());
8937
8938    if (TUK == TUK_Reference) {
8939      // C++ [basic.scope.pdecl]p5:
8940      //   -- for an elaborated-type-specifier of the form
8941      //
8942      //          class-key identifier
8943      //
8944      //      if the elaborated-type-specifier is used in the
8945      //      decl-specifier-seq or parameter-declaration-clause of a
8946      //      function defined in namespace scope, the identifier is
8947      //      declared as a class-name in the namespace that contains
8948      //      the declaration; otherwise, except as a friend
8949      //      declaration, the identifier is declared in the smallest
8950      //      non-class, non-function-prototype scope that contains the
8951      //      declaration.
8952      //
8953      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8954      // C structs and unions.
8955      //
8956      // It is an error in C++ to declare (rather than define) an enum
8957      // type, including via an elaborated type specifier.  We'll
8958      // diagnose that later; for now, declare the enum in the same
8959      // scope as we would have picked for any other tag type.
8960      //
8961      // GNU C also supports this behavior as part of its incomplete
8962      // enum types extension, while GNU C++ does not.
8963      //
8964      // Find the context where we'll be declaring the tag.
8965      // FIXME: We would like to maintain the current DeclContext as the
8966      // lexical context,
8967      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8968        SearchDC = SearchDC->getParent();
8969
8970      // Find the scope where we'll be declaring the tag.
8971      while (S->isClassScope() ||
8972             (getLangOpts().CPlusPlus &&
8973              S->isFunctionPrototypeScope()) ||
8974             ((S->getFlags() & Scope::DeclScope) == 0) ||
8975             (S->getEntity() &&
8976              ((DeclContext *)S->getEntity())->isTransparentContext()))
8977        S = S->getParent();
8978    } else {
8979      assert(TUK == TUK_Friend);
8980      // C++ [namespace.memdef]p3:
8981      //   If a friend declaration in a non-local class first declares a
8982      //   class or function, the friend class or function is a member of
8983      //   the innermost enclosing namespace.
8984      SearchDC = SearchDC->getEnclosingNamespaceContext();
8985    }
8986
8987    // In C++, we need to do a redeclaration lookup to properly
8988    // diagnose some problems.
8989    if (getLangOpts().CPlusPlus) {
8990      Previous.setRedeclarationKind(ForRedeclaration);
8991      LookupQualifiedName(Previous, SearchDC);
8992    }
8993  }
8994
8995  if (!Previous.empty()) {
8996    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8997
8998    // It's okay to have a tag decl in the same scope as a typedef
8999    // which hides a tag decl in the same scope.  Finding this
9000    // insanity with a redeclaration lookup can only actually happen
9001    // in C++.
9002    //
9003    // This is also okay for elaborated-type-specifiers, which is
9004    // technically forbidden by the current standard but which is
9005    // okay according to the likely resolution of an open issue;
9006    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9007    if (getLangOpts().CPlusPlus) {
9008      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9009        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9010          TagDecl *Tag = TT->getDecl();
9011          if (Tag->getDeclName() == Name &&
9012              Tag->getDeclContext()->getRedeclContext()
9013                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9014            PrevDecl = Tag;
9015            Previous.clear();
9016            Previous.addDecl(Tag);
9017            Previous.resolveKind();
9018          }
9019        }
9020      }
9021    }
9022
9023    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9024      // If this is a use of a previous tag, or if the tag is already declared
9025      // in the same scope (so that the definition/declaration completes or
9026      // rementions the tag), reuse the decl.
9027      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9028          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9029        // Make sure that this wasn't declared as an enum and now used as a
9030        // struct or something similar.
9031        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9032                                          TUK == TUK_Definition, KWLoc,
9033                                          *Name)) {
9034          bool SafeToContinue
9035            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9036               Kind != TTK_Enum);
9037          if (SafeToContinue)
9038            Diag(KWLoc, diag::err_use_with_wrong_tag)
9039              << Name
9040              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9041                                              PrevTagDecl->getKindName());
9042          else
9043            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9044          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9045
9046          if (SafeToContinue)
9047            Kind = PrevTagDecl->getTagKind();
9048          else {
9049            // Recover by making this an anonymous redefinition.
9050            Name = 0;
9051            Previous.clear();
9052            Invalid = true;
9053          }
9054        }
9055
9056        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9057          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9058
9059          // If this is an elaborated-type-specifier for a scoped enumeration,
9060          // the 'class' keyword is not necessary and not permitted.
9061          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9062            if (ScopedEnum)
9063              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9064                << PrevEnum->isScoped()
9065                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9066            return PrevTagDecl;
9067          }
9068
9069          QualType EnumUnderlyingTy;
9070          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9071            EnumUnderlyingTy = TI->getType();
9072          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9073            EnumUnderlyingTy = QualType(T, 0);
9074
9075          // All conflicts with previous declarations are recovered by
9076          // returning the previous declaration, unless this is a definition,
9077          // in which case we want the caller to bail out.
9078          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9079                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9080            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9081        }
9082
9083        if (!Invalid) {
9084          // If this is a use, just return the declaration we found.
9085
9086          // FIXME: In the future, return a variant or some other clue
9087          // for the consumer of this Decl to know it doesn't own it.
9088          // For our current ASTs this shouldn't be a problem, but will
9089          // need to be changed with DeclGroups.
9090          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9091               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9092            return PrevTagDecl;
9093
9094          // Diagnose attempts to redefine a tag.
9095          if (TUK == TUK_Definition) {
9096            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9097              // If we're defining a specialization and the previous definition
9098              // is from an implicit instantiation, don't emit an error
9099              // here; we'll catch this in the general case below.
9100              bool IsExplicitSpecializationAfterInstantiation = false;
9101              if (isExplicitSpecialization) {
9102                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9103                  IsExplicitSpecializationAfterInstantiation =
9104                    RD->getTemplateSpecializationKind() !=
9105                    TSK_ExplicitSpecialization;
9106                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9107                  IsExplicitSpecializationAfterInstantiation =
9108                    ED->getTemplateSpecializationKind() !=
9109                    TSK_ExplicitSpecialization;
9110              }
9111
9112              if (!IsExplicitSpecializationAfterInstantiation) {
9113                // A redeclaration in function prototype scope in C isn't
9114                // visible elsewhere, so merely issue a warning.
9115                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9116                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9117                else
9118                  Diag(NameLoc, diag::err_redefinition) << Name;
9119                Diag(Def->getLocation(), diag::note_previous_definition);
9120                // If this is a redefinition, recover by making this
9121                // struct be anonymous, which will make any later
9122                // references get the previous definition.
9123                Name = 0;
9124                Previous.clear();
9125                Invalid = true;
9126              }
9127            } else {
9128              // If the type is currently being defined, complain
9129              // about a nested redefinition.
9130              const TagType *Tag
9131                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9132              if (Tag->isBeingDefined()) {
9133                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9134                Diag(PrevTagDecl->getLocation(),
9135                     diag::note_previous_definition);
9136                Name = 0;
9137                Previous.clear();
9138                Invalid = true;
9139              }
9140            }
9141
9142            // Okay, this is definition of a previously declared or referenced
9143            // tag PrevDecl. We're going to create a new Decl for it.
9144          }
9145        }
9146        // If we get here we have (another) forward declaration or we
9147        // have a definition.  Just create a new decl.
9148
9149      } else {
9150        // If we get here, this is a definition of a new tag type in a nested
9151        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9152        // new decl/type.  We set PrevDecl to NULL so that the entities
9153        // have distinct types.
9154        Previous.clear();
9155      }
9156      // If we get here, we're going to create a new Decl. If PrevDecl
9157      // is non-NULL, it's a definition of the tag declared by
9158      // PrevDecl. If it's NULL, we have a new definition.
9159
9160
9161    // Otherwise, PrevDecl is not a tag, but was found with tag
9162    // lookup.  This is only actually possible in C++, where a few
9163    // things like templates still live in the tag namespace.
9164    } else {
9165      // Use a better diagnostic if an elaborated-type-specifier
9166      // found the wrong kind of type on the first
9167      // (non-redeclaration) lookup.
9168      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9169          !Previous.isForRedeclaration()) {
9170        unsigned Kind = 0;
9171        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9172        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9173        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9174        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9175        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9176        Invalid = true;
9177
9178      // Otherwise, only diagnose if the declaration is in scope.
9179      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9180                                isExplicitSpecialization)) {
9181        // do nothing
9182
9183      // Diagnose implicit declarations introduced by elaborated types.
9184      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9185        unsigned Kind = 0;
9186        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9187        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9188        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9189        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9190        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9191        Invalid = true;
9192
9193      // Otherwise it's a declaration.  Call out a particularly common
9194      // case here.
9195      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9196        unsigned Kind = 0;
9197        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9198        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9199          << Name << Kind << TND->getUnderlyingType();
9200        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9201        Invalid = true;
9202
9203      // Otherwise, diagnose.
9204      } else {
9205        // The tag name clashes with something else in the target scope,
9206        // issue an error and recover by making this tag be anonymous.
9207        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9208        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9209        Name = 0;
9210        Invalid = true;
9211      }
9212
9213      // The existing declaration isn't relevant to us; we're in a
9214      // new scope, so clear out the previous declaration.
9215      Previous.clear();
9216    }
9217  }
9218
9219CreateNewDecl:
9220
9221  TagDecl *PrevDecl = 0;
9222  if (Previous.isSingleResult())
9223    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9224
9225  // If there is an identifier, use the location of the identifier as the
9226  // location of the decl, otherwise use the location of the struct/union
9227  // keyword.
9228  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9229
9230  // Otherwise, create a new declaration. If there is a previous
9231  // declaration of the same entity, the two will be linked via
9232  // PrevDecl.
9233  TagDecl *New;
9234
9235  bool IsForwardReference = false;
9236  if (Kind == TTK_Enum) {
9237    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9238    // enum X { A, B, C } D;    D should chain to X.
9239    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9240                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9241                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9242    // If this is an undefined enum, warn.
9243    if (TUK != TUK_Definition && !Invalid) {
9244      TagDecl *Def;
9245      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9246        // C++0x: 7.2p2: opaque-enum-declaration.
9247        // Conflicts are diagnosed above. Do nothing.
9248      }
9249      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9250        Diag(Loc, diag::ext_forward_ref_enum_def)
9251          << New;
9252        Diag(Def->getLocation(), diag::note_previous_definition);
9253      } else {
9254        unsigned DiagID = diag::ext_forward_ref_enum;
9255        if (getLangOpts().MicrosoftMode)
9256          DiagID = diag::ext_ms_forward_ref_enum;
9257        else if (getLangOpts().CPlusPlus)
9258          DiagID = diag::err_forward_ref_enum;
9259        Diag(Loc, DiagID);
9260
9261        // If this is a forward-declared reference to an enumeration, make a
9262        // note of it; we won't actually be introducing the declaration into
9263        // the declaration context.
9264        if (TUK == TUK_Reference)
9265          IsForwardReference = true;
9266      }
9267    }
9268
9269    if (EnumUnderlying) {
9270      EnumDecl *ED = cast<EnumDecl>(New);
9271      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9272        ED->setIntegerTypeSourceInfo(TI);
9273      else
9274        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9275      ED->setPromotionType(ED->getIntegerType());
9276    }
9277
9278  } else {
9279    // struct/union/class
9280
9281    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9282    // struct X { int A; } D;    D should chain to X.
9283    if (getLangOpts().CPlusPlus) {
9284      // FIXME: Look for a way to use RecordDecl for simple structs.
9285      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9286                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9287
9288      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9289        StdBadAlloc = cast<CXXRecordDecl>(New);
9290    } else
9291      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9292                               cast_or_null<RecordDecl>(PrevDecl));
9293  }
9294
9295  // Maybe add qualifier info.
9296  if (SS.isNotEmpty()) {
9297    if (SS.isSet()) {
9298      // If this is either a declaration or a definition, check the
9299      // nested-name-specifier against the current context. We don't do this
9300      // for explicit specializations, because they have similar checking
9301      // (with more specific diagnostics) in the call to
9302      // CheckMemberSpecialization, below.
9303      if (!isExplicitSpecialization &&
9304          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9305          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9306        Invalid = true;
9307
9308      New->setQualifierInfo(SS.getWithLocInContext(Context));
9309      if (TemplateParameterLists.size() > 0) {
9310        New->setTemplateParameterListsInfo(Context,
9311                                           TemplateParameterLists.size(),
9312                                           TemplateParameterLists.data());
9313      }
9314    }
9315    else
9316      Invalid = true;
9317  }
9318
9319  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9320    // Add alignment attributes if necessary; these attributes are checked when
9321    // the ASTContext lays out the structure.
9322    //
9323    // It is important for implementing the correct semantics that this
9324    // happen here (in act on tag decl). The #pragma pack stack is
9325    // maintained as a result of parser callbacks which can occur at
9326    // many points during the parsing of a struct declaration (because
9327    // the #pragma tokens are effectively skipped over during the
9328    // parsing of the struct).
9329    if (TUK == TUK_Definition) {
9330      AddAlignmentAttributesForRecord(RD);
9331      AddMsStructLayoutForRecord(RD);
9332    }
9333  }
9334
9335  if (ModulePrivateLoc.isValid()) {
9336    if (isExplicitSpecialization)
9337      Diag(New->getLocation(), diag::err_module_private_specialization)
9338        << 2
9339        << FixItHint::CreateRemoval(ModulePrivateLoc);
9340    // __module_private__ does not apply to local classes. However, we only
9341    // diagnose this as an error when the declaration specifiers are
9342    // freestanding. Here, we just ignore the __module_private__.
9343    else if (!SearchDC->isFunctionOrMethod())
9344      New->setModulePrivate();
9345  }
9346
9347  // If this is a specialization of a member class (of a class template),
9348  // check the specialization.
9349  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9350    Invalid = true;
9351
9352  if (Invalid)
9353    New->setInvalidDecl();
9354
9355  if (Attr)
9356    ProcessDeclAttributeList(S, New, Attr);
9357
9358  // If we're declaring or defining a tag in function prototype scope
9359  // in C, note that this type can only be used within the function.
9360  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9361    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9362
9363  // Set the lexical context. If the tag has a C++ scope specifier, the
9364  // lexical context will be different from the semantic context.
9365  New->setLexicalDeclContext(CurContext);
9366
9367  // Mark this as a friend decl if applicable.
9368  // In Microsoft mode, a friend declaration also acts as a forward
9369  // declaration so we always pass true to setObjectOfFriendDecl to make
9370  // the tag name visible.
9371  if (TUK == TUK_Friend)
9372    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9373                               getLangOpts().MicrosoftExt);
9374
9375  // Set the access specifier.
9376  if (!Invalid && SearchDC->isRecord())
9377    SetMemberAccessSpecifier(New, PrevDecl, AS);
9378
9379  if (TUK == TUK_Definition)
9380    New->startDefinition();
9381
9382  // If this has an identifier, add it to the scope stack.
9383  if (TUK == TUK_Friend) {
9384    // We might be replacing an existing declaration in the lookup tables;
9385    // if so, borrow its access specifier.
9386    if (PrevDecl)
9387      New->setAccess(PrevDecl->getAccess());
9388
9389    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9390    DC->makeDeclVisibleInContext(New);
9391    if (Name) // can be null along some error paths
9392      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9393        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9394  } else if (Name) {
9395    S = getNonFieldDeclScope(S);
9396    PushOnScopeChains(New, S, !IsForwardReference);
9397    if (IsForwardReference)
9398      SearchDC->makeDeclVisibleInContext(New);
9399
9400  } else {
9401    CurContext->addDecl(New);
9402  }
9403
9404  // If this is the C FILE type, notify the AST context.
9405  if (IdentifierInfo *II = New->getIdentifier())
9406    if (!New->isInvalidDecl() &&
9407        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9408        II->isStr("FILE"))
9409      Context.setFILEDecl(New);
9410
9411  // If we were in function prototype scope (and not in C++ mode), add this
9412  // tag to the list of decls to inject into the function definition scope.
9413  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9414      InFunctionDeclarator && Name)
9415    DeclsInPrototypeScope.push_back(New);
9416
9417  if (PrevDecl)
9418    mergeDeclAttributes(New, PrevDecl);
9419
9420  // If there's a #pragma GCC visibility in scope, set the visibility of this
9421  // record.
9422  AddPushedVisibilityAttribute(New);
9423
9424  OwnedDecl = true;
9425  // In C++, don't return an invalid declaration. We can't recover well from
9426  // the cases where we make the type anonymous.
9427  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9428}
9429
9430void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9431  AdjustDeclIfTemplate(TagD);
9432  TagDecl *Tag = cast<TagDecl>(TagD);
9433
9434  // Enter the tag context.
9435  PushDeclContext(S, Tag);
9436
9437  ActOnDocumentableDecl(TagD);
9438
9439  // If there's a #pragma GCC visibility in scope, set the visibility of this
9440  // record.
9441  AddPushedVisibilityAttribute(Tag);
9442}
9443
9444Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9445  assert(isa<ObjCContainerDecl>(IDecl) &&
9446         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9447  DeclContext *OCD = cast<DeclContext>(IDecl);
9448  assert(getContainingDC(OCD) == CurContext &&
9449      "The next DeclContext should be lexically contained in the current one.");
9450  CurContext = OCD;
9451  return IDecl;
9452}
9453
9454void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9455                                           SourceLocation FinalLoc,
9456                                           SourceLocation LBraceLoc) {
9457  AdjustDeclIfTemplate(TagD);
9458  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9459
9460  FieldCollector->StartClass();
9461
9462  if (!Record->getIdentifier())
9463    return;
9464
9465  if (FinalLoc.isValid())
9466    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9467
9468  // C++ [class]p2:
9469  //   [...] The class-name is also inserted into the scope of the
9470  //   class itself; this is known as the injected-class-name. For
9471  //   purposes of access checking, the injected-class-name is treated
9472  //   as if it were a public member name.
9473  CXXRecordDecl *InjectedClassName
9474    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9475                            Record->getLocStart(), Record->getLocation(),
9476                            Record->getIdentifier(),
9477                            /*PrevDecl=*/0,
9478                            /*DelayTypeCreation=*/true);
9479  Context.getTypeDeclType(InjectedClassName, Record);
9480  InjectedClassName->setImplicit();
9481  InjectedClassName->setAccess(AS_public);
9482  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9483      InjectedClassName->setDescribedClassTemplate(Template);
9484  PushOnScopeChains(InjectedClassName, S);
9485  assert(InjectedClassName->isInjectedClassName() &&
9486         "Broken injected-class-name");
9487}
9488
9489void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9490                                    SourceLocation RBraceLoc) {
9491  AdjustDeclIfTemplate(TagD);
9492  TagDecl *Tag = cast<TagDecl>(TagD);
9493  Tag->setRBraceLoc(RBraceLoc);
9494
9495  // Make sure we "complete" the definition even it is invalid.
9496  if (Tag->isBeingDefined()) {
9497    assert(Tag->isInvalidDecl() && "We should already have completed it");
9498    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9499      RD->completeDefinition();
9500  }
9501
9502  if (isa<CXXRecordDecl>(Tag))
9503    FieldCollector->FinishClass();
9504
9505  // Exit this scope of this tag's definition.
9506  PopDeclContext();
9507
9508  // Notify the consumer that we've defined a tag.
9509  Consumer.HandleTagDeclDefinition(Tag);
9510}
9511
9512void Sema::ActOnObjCContainerFinishDefinition() {
9513  // Exit this scope of this interface definition.
9514  PopDeclContext();
9515}
9516
9517void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9518  assert(DC == CurContext && "Mismatch of container contexts");
9519  OriginalLexicalContext = DC;
9520  ActOnObjCContainerFinishDefinition();
9521}
9522
9523void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9524  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9525  OriginalLexicalContext = 0;
9526}
9527
9528void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9529  AdjustDeclIfTemplate(TagD);
9530  TagDecl *Tag = cast<TagDecl>(TagD);
9531  Tag->setInvalidDecl();
9532
9533  // Make sure we "complete" the definition even it is invalid.
9534  if (Tag->isBeingDefined()) {
9535    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9536      RD->completeDefinition();
9537  }
9538
9539  // We're undoing ActOnTagStartDefinition here, not
9540  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9541  // the FieldCollector.
9542
9543  PopDeclContext();
9544}
9545
9546// Note that FieldName may be null for anonymous bitfields.
9547ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9548                                IdentifierInfo *FieldName,
9549                                QualType FieldTy, Expr *BitWidth,
9550                                bool *ZeroWidth) {
9551  // Default to true; that shouldn't confuse checks for emptiness
9552  if (ZeroWidth)
9553    *ZeroWidth = true;
9554
9555  // C99 6.7.2.1p4 - verify the field type.
9556  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9557  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9558    // Handle incomplete types with specific error.
9559    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9560      return ExprError();
9561    if (FieldName)
9562      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9563        << FieldName << FieldTy << BitWidth->getSourceRange();
9564    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9565      << FieldTy << BitWidth->getSourceRange();
9566  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9567                                             UPPC_BitFieldWidth))
9568    return ExprError();
9569
9570  // If the bit-width is type- or value-dependent, don't try to check
9571  // it now.
9572  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9573    return Owned(BitWidth);
9574
9575  llvm::APSInt Value;
9576  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9577  if (ICE.isInvalid())
9578    return ICE;
9579  BitWidth = ICE.take();
9580
9581  if (Value != 0 && ZeroWidth)
9582    *ZeroWidth = false;
9583
9584  // Zero-width bitfield is ok for anonymous field.
9585  if (Value == 0 && FieldName)
9586    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9587
9588  if (Value.isSigned() && Value.isNegative()) {
9589    if (FieldName)
9590      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9591               << FieldName << Value.toString(10);
9592    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9593      << Value.toString(10);
9594  }
9595
9596  if (!FieldTy->isDependentType()) {
9597    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9598    if (Value.getZExtValue() > TypeSize) {
9599      if (!getLangOpts().CPlusPlus) {
9600        if (FieldName)
9601          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9602            << FieldName << (unsigned)Value.getZExtValue()
9603            << (unsigned)TypeSize;
9604
9605        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9606          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9607      }
9608
9609      if (FieldName)
9610        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9611          << FieldName << (unsigned)Value.getZExtValue()
9612          << (unsigned)TypeSize;
9613      else
9614        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9615          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9616    }
9617  }
9618
9619  return Owned(BitWidth);
9620}
9621
9622/// ActOnField - Each field of a C struct/union is passed into this in order
9623/// to create a FieldDecl object for it.
9624Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9625                       Declarator &D, Expr *BitfieldWidth) {
9626  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9627                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9628                               /*InitStyle=*/ICIS_NoInit, AS_public);
9629  return Res;
9630}
9631
9632/// HandleField - Analyze a field of a C struct or a C++ data member.
9633///
9634FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9635                             SourceLocation DeclStart,
9636                             Declarator &D, Expr *BitWidth,
9637                             InClassInitStyle InitStyle,
9638                             AccessSpecifier AS) {
9639  IdentifierInfo *II = D.getIdentifier();
9640  SourceLocation Loc = DeclStart;
9641  if (II) Loc = D.getIdentifierLoc();
9642
9643  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9644  QualType T = TInfo->getType();
9645  if (getLangOpts().CPlusPlus) {
9646    CheckExtraCXXDefaultArguments(D);
9647
9648    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9649                                        UPPC_DataMemberType)) {
9650      D.setInvalidType();
9651      T = Context.IntTy;
9652      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9653    }
9654  }
9655
9656  DiagnoseFunctionSpecifiers(D);
9657
9658  if (D.getDeclSpec().isThreadSpecified())
9659    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9660  if (D.getDeclSpec().isConstexprSpecified())
9661    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9662      << 2;
9663
9664  // Check to see if this name was declared as a member previously
9665  NamedDecl *PrevDecl = 0;
9666  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9667  LookupName(Previous, S);
9668  switch (Previous.getResultKind()) {
9669    case LookupResult::Found:
9670    case LookupResult::FoundUnresolvedValue:
9671      PrevDecl = Previous.getAsSingle<NamedDecl>();
9672      break;
9673
9674    case LookupResult::FoundOverloaded:
9675      PrevDecl = Previous.getRepresentativeDecl();
9676      break;
9677
9678    case LookupResult::NotFound:
9679    case LookupResult::NotFoundInCurrentInstantiation:
9680    case LookupResult::Ambiguous:
9681      break;
9682  }
9683  Previous.suppressDiagnostics();
9684
9685  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9686    // Maybe we will complain about the shadowed template parameter.
9687    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9688    // Just pretend that we didn't see the previous declaration.
9689    PrevDecl = 0;
9690  }
9691
9692  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9693    PrevDecl = 0;
9694
9695  bool Mutable
9696    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9697  SourceLocation TSSL = D.getLocStart();
9698  FieldDecl *NewFD
9699    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9700                     TSSL, AS, PrevDecl, &D);
9701
9702  if (NewFD->isInvalidDecl())
9703    Record->setInvalidDecl();
9704
9705  if (D.getDeclSpec().isModulePrivateSpecified())
9706    NewFD->setModulePrivate();
9707
9708  if (NewFD->isInvalidDecl() && PrevDecl) {
9709    // Don't introduce NewFD into scope; there's already something
9710    // with the same name in the same scope.
9711  } else if (II) {
9712    PushOnScopeChains(NewFD, S);
9713  } else
9714    Record->addDecl(NewFD);
9715
9716  return NewFD;
9717}
9718
9719/// \brief Build a new FieldDecl and check its well-formedness.
9720///
9721/// This routine builds a new FieldDecl given the fields name, type,
9722/// record, etc. \p PrevDecl should refer to any previous declaration
9723/// with the same name and in the same scope as the field to be
9724/// created.
9725///
9726/// \returns a new FieldDecl.
9727///
9728/// \todo The Declarator argument is a hack. It will be removed once
9729FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9730                                TypeSourceInfo *TInfo,
9731                                RecordDecl *Record, SourceLocation Loc,
9732                                bool Mutable, Expr *BitWidth,
9733                                InClassInitStyle InitStyle,
9734                                SourceLocation TSSL,
9735                                AccessSpecifier AS, NamedDecl *PrevDecl,
9736                                Declarator *D) {
9737  IdentifierInfo *II = Name.getAsIdentifierInfo();
9738  bool InvalidDecl = false;
9739  if (D) InvalidDecl = D->isInvalidType();
9740
9741  // If we receive a broken type, recover by assuming 'int' and
9742  // marking this declaration as invalid.
9743  if (T.isNull()) {
9744    InvalidDecl = true;
9745    T = Context.IntTy;
9746  }
9747
9748  QualType EltTy = Context.getBaseElementType(T);
9749  if (!EltTy->isDependentType()) {
9750    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9751      // Fields of incomplete type force their record to be invalid.
9752      Record->setInvalidDecl();
9753      InvalidDecl = true;
9754    } else {
9755      NamedDecl *Def;
9756      EltTy->isIncompleteType(&Def);
9757      if (Def && Def->isInvalidDecl()) {
9758        Record->setInvalidDecl();
9759        InvalidDecl = true;
9760      }
9761    }
9762  }
9763
9764  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9765  // than a variably modified type.
9766  if (!InvalidDecl && T->isVariablyModifiedType()) {
9767    bool SizeIsNegative;
9768    llvm::APSInt Oversized;
9769
9770    TypeSourceInfo *FixedTInfo =
9771      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
9772                                                    SizeIsNegative,
9773                                                    Oversized);
9774    if (FixedTInfo) {
9775      Diag(Loc, diag::warn_illegal_constant_array_size);
9776      TInfo = FixedTInfo;
9777      T = FixedTInfo->getType();
9778    } else {
9779      if (SizeIsNegative)
9780        Diag(Loc, diag::err_typecheck_negative_array_size);
9781      else if (Oversized.getBoolValue())
9782        Diag(Loc, diag::err_array_too_large)
9783          << Oversized.toString(10);
9784      else
9785        Diag(Loc, diag::err_typecheck_field_variable_size);
9786      InvalidDecl = true;
9787    }
9788  }
9789
9790  // Fields can not have abstract class types
9791  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9792                                             diag::err_abstract_type_in_decl,
9793                                             AbstractFieldType))
9794    InvalidDecl = true;
9795
9796  bool ZeroWidth = false;
9797  // If this is declared as a bit-field, check the bit-field.
9798  if (!InvalidDecl && BitWidth) {
9799    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9800    if (!BitWidth) {
9801      InvalidDecl = true;
9802      BitWidth = 0;
9803      ZeroWidth = false;
9804    }
9805  }
9806
9807  // Check that 'mutable' is consistent with the type of the declaration.
9808  if (!InvalidDecl && Mutable) {
9809    unsigned DiagID = 0;
9810    if (T->isReferenceType())
9811      DiagID = diag::err_mutable_reference;
9812    else if (T.isConstQualified())
9813      DiagID = diag::err_mutable_const;
9814
9815    if (DiagID) {
9816      SourceLocation ErrLoc = Loc;
9817      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9818        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9819      Diag(ErrLoc, DiagID);
9820      Mutable = false;
9821      InvalidDecl = true;
9822    }
9823  }
9824
9825  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9826                                       BitWidth, Mutable, InitStyle);
9827  if (InvalidDecl)
9828    NewFD->setInvalidDecl();
9829
9830  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9831    Diag(Loc, diag::err_duplicate_member) << II;
9832    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9833    NewFD->setInvalidDecl();
9834  }
9835
9836  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9837    if (Record->isUnion()) {
9838      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9839        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9840        if (RDecl->getDefinition()) {
9841          // C++ [class.union]p1: An object of a class with a non-trivial
9842          // constructor, a non-trivial copy constructor, a non-trivial
9843          // destructor, or a non-trivial copy assignment operator
9844          // cannot be a member of a union, nor can an array of such
9845          // objects.
9846          if (CheckNontrivialField(NewFD))
9847            NewFD->setInvalidDecl();
9848        }
9849      }
9850
9851      // C++ [class.union]p1: If a union contains a member of reference type,
9852      // the program is ill-formed.
9853      if (EltTy->isReferenceType()) {
9854        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9855          << NewFD->getDeclName() << EltTy;
9856        NewFD->setInvalidDecl();
9857      }
9858    }
9859  }
9860
9861  // FIXME: We need to pass in the attributes given an AST
9862  // representation, not a parser representation.
9863  if (D)
9864    // FIXME: What to pass instead of TUScope?
9865    ProcessDeclAttributes(TUScope, NewFD, *D);
9866
9867  // In auto-retain/release, infer strong retension for fields of
9868  // retainable type.
9869  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9870    NewFD->setInvalidDecl();
9871
9872  if (T.isObjCGCWeak())
9873    Diag(Loc, diag::warn_attribute_weak_on_field);
9874
9875  NewFD->setAccess(AS);
9876  return NewFD;
9877}
9878
9879bool Sema::CheckNontrivialField(FieldDecl *FD) {
9880  assert(FD);
9881  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9882
9883  if (FD->isInvalidDecl())
9884    return true;
9885
9886  QualType EltTy = Context.getBaseElementType(FD->getType());
9887  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9888    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
9889    if (RDecl->getDefinition()) {
9890      // We check for copy constructors before constructors
9891      // because otherwise we'll never get complaints about
9892      // copy constructors.
9893
9894      CXXSpecialMember member = CXXInvalid;
9895      // We're required to check for any non-trivial constructors. Since the
9896      // implicit default constructor is suppressed if there are any
9897      // user-declared constructors, we just need to check that there is a
9898      // trivial default constructor and a trivial copy constructor. (We don't
9899      // worry about move constructors here, since this is a C++98 check.)
9900      if (RDecl->hasNonTrivialCopyConstructor())
9901        member = CXXCopyConstructor;
9902      else if (!RDecl->hasTrivialDefaultConstructor())
9903        member = CXXDefaultConstructor;
9904      else if (RDecl->hasNonTrivialCopyAssignment())
9905        member = CXXCopyAssignment;
9906      else if (RDecl->hasNonTrivialDestructor())
9907        member = CXXDestructor;
9908
9909      if (member != CXXInvalid) {
9910        if (!getLangOpts().CPlusPlus11 &&
9911            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9912          // Objective-C++ ARC: it is an error to have a non-trivial field of
9913          // a union. However, system headers in Objective-C programs
9914          // occasionally have Objective-C lifetime objects within unions,
9915          // and rather than cause the program to fail, we make those
9916          // members unavailable.
9917          SourceLocation Loc = FD->getLocation();
9918          if (getSourceManager().isInSystemHeader(Loc)) {
9919            if (!FD->hasAttr<UnavailableAttr>())
9920              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9921                                  "this system field has retaining ownership"));
9922            return false;
9923          }
9924        }
9925
9926        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
9927               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9928               diag::err_illegal_union_or_anon_struct_member)
9929          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9930        DiagnoseNontrivial(RDecl, member);
9931        return !getLangOpts().CPlusPlus11;
9932      }
9933    }
9934  }
9935
9936  return false;
9937}
9938
9939/// TranslateIvarVisibility - Translate visibility from a token ID to an
9940///  AST enum value.
9941static ObjCIvarDecl::AccessControl
9942TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9943  switch (ivarVisibility) {
9944  default: llvm_unreachable("Unknown visitibility kind");
9945  case tok::objc_private: return ObjCIvarDecl::Private;
9946  case tok::objc_public: return ObjCIvarDecl::Public;
9947  case tok::objc_protected: return ObjCIvarDecl::Protected;
9948  case tok::objc_package: return ObjCIvarDecl::Package;
9949  }
9950}
9951
9952/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9953/// in order to create an IvarDecl object for it.
9954Decl *Sema::ActOnIvar(Scope *S,
9955                                SourceLocation DeclStart,
9956                                Declarator &D, Expr *BitfieldWidth,
9957                                tok::ObjCKeywordKind Visibility) {
9958
9959  IdentifierInfo *II = D.getIdentifier();
9960  Expr *BitWidth = (Expr*)BitfieldWidth;
9961  SourceLocation Loc = DeclStart;
9962  if (II) Loc = D.getIdentifierLoc();
9963
9964  // FIXME: Unnamed fields can be handled in various different ways, for
9965  // example, unnamed unions inject all members into the struct namespace!
9966
9967  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9968  QualType T = TInfo->getType();
9969
9970  if (BitWidth) {
9971    // 6.7.2.1p3, 6.7.2.1p4
9972    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9973    if (!BitWidth)
9974      D.setInvalidType();
9975  } else {
9976    // Not a bitfield.
9977
9978    // validate II.
9979
9980  }
9981  if (T->isReferenceType()) {
9982    Diag(Loc, diag::err_ivar_reference_type);
9983    D.setInvalidType();
9984  }
9985  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9986  // than a variably modified type.
9987  else if (T->isVariablyModifiedType()) {
9988    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9989    D.setInvalidType();
9990  }
9991
9992  // Get the visibility (access control) for this ivar.
9993  ObjCIvarDecl::AccessControl ac =
9994    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9995                                        : ObjCIvarDecl::None;
9996  // Must set ivar's DeclContext to its enclosing interface.
9997  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9998  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9999    return 0;
10000  ObjCContainerDecl *EnclosingContext;
10001  if (ObjCImplementationDecl *IMPDecl =
10002      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10003    if (LangOpts.ObjCRuntime.isFragile()) {
10004    // Case of ivar declared in an implementation. Context is that of its class.
10005      EnclosingContext = IMPDecl->getClassInterface();
10006      assert(EnclosingContext && "Implementation has no class interface!");
10007    }
10008    else
10009      EnclosingContext = EnclosingDecl;
10010  } else {
10011    if (ObjCCategoryDecl *CDecl =
10012        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10013      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10014        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10015        return 0;
10016      }
10017    }
10018    EnclosingContext = EnclosingDecl;
10019  }
10020
10021  // Construct the decl.
10022  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10023                                             DeclStart, Loc, II, T,
10024                                             TInfo, ac, (Expr *)BitfieldWidth);
10025
10026  if (II) {
10027    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10028                                           ForRedeclaration);
10029    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10030        && !isa<TagDecl>(PrevDecl)) {
10031      Diag(Loc, diag::err_duplicate_member) << II;
10032      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10033      NewID->setInvalidDecl();
10034    }
10035  }
10036
10037  // Process attributes attached to the ivar.
10038  ProcessDeclAttributes(S, NewID, D);
10039
10040  if (D.isInvalidType())
10041    NewID->setInvalidDecl();
10042
10043  // In ARC, infer 'retaining' for ivars of retainable type.
10044  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10045    NewID->setInvalidDecl();
10046
10047  if (D.getDeclSpec().isModulePrivateSpecified())
10048    NewID->setModulePrivate();
10049
10050  if (II) {
10051    // FIXME: When interfaces are DeclContexts, we'll need to add
10052    // these to the interface.
10053    S->AddDecl(NewID);
10054    IdResolver.AddDecl(NewID);
10055  }
10056
10057  if (LangOpts.ObjCRuntime.isNonFragile() &&
10058      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10059    Diag(Loc, diag::warn_ivars_in_interface);
10060
10061  return NewID;
10062}
10063
10064/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10065/// class and class extensions. For every class @interface and class
10066/// extension @interface, if the last ivar is a bitfield of any type,
10067/// then add an implicit `char :0` ivar to the end of that interface.
10068void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10069                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10070  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10071    return;
10072
10073  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10074  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10075
10076  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10077    return;
10078  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10079  if (!ID) {
10080    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10081      if (!CD->IsClassExtension())
10082        return;
10083    }
10084    // No need to add this to end of @implementation.
10085    else
10086      return;
10087  }
10088  // All conditions are met. Add a new bitfield to the tail end of ivars.
10089  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10090  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10091
10092  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10093                              DeclLoc, DeclLoc, 0,
10094                              Context.CharTy,
10095                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10096                                                               DeclLoc),
10097                              ObjCIvarDecl::Private, BW,
10098                              true);
10099  AllIvarDecls.push_back(Ivar);
10100}
10101
10102void Sema::ActOnFields(Scope* S,
10103                       SourceLocation RecLoc, Decl *EnclosingDecl,
10104                       llvm::ArrayRef<Decl *> Fields,
10105                       SourceLocation LBrac, SourceLocation RBrac,
10106                       AttributeList *Attr) {
10107  assert(EnclosingDecl && "missing record or interface decl");
10108
10109  // If this is an Objective-C @implementation or category and we have
10110  // new fields here we should reset the layout of the interface since
10111  // it will now change.
10112  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10113    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10114    switch (DC->getKind()) {
10115    default: break;
10116    case Decl::ObjCCategory:
10117      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10118      break;
10119    case Decl::ObjCImplementation:
10120      Context.
10121        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10122      break;
10123    }
10124  }
10125
10126  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10127
10128  // Start counting up the number of named members; make sure to include
10129  // members of anonymous structs and unions in the total.
10130  unsigned NumNamedMembers = 0;
10131  if (Record) {
10132    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10133                                   e = Record->decls_end(); i != e; i++) {
10134      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10135        if (IFD->getDeclName())
10136          ++NumNamedMembers;
10137    }
10138  }
10139
10140  // Verify that all the fields are okay.
10141  SmallVector<FieldDecl*, 32> RecFields;
10142
10143  bool ARCErrReported = false;
10144  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10145       i != end; ++i) {
10146    FieldDecl *FD = cast<FieldDecl>(*i);
10147
10148    // Get the type for the field.
10149    const Type *FDTy = FD->getType().getTypePtr();
10150
10151    if (!FD->isAnonymousStructOrUnion()) {
10152      // Remember all fields written by the user.
10153      RecFields.push_back(FD);
10154    }
10155
10156    // If the field is already invalid for some reason, don't emit more
10157    // diagnostics about it.
10158    if (FD->isInvalidDecl()) {
10159      EnclosingDecl->setInvalidDecl();
10160      continue;
10161    }
10162
10163    // C99 6.7.2.1p2:
10164    //   A structure or union shall not contain a member with
10165    //   incomplete or function type (hence, a structure shall not
10166    //   contain an instance of itself, but may contain a pointer to
10167    //   an instance of itself), except that the last member of a
10168    //   structure with more than one named member may have incomplete
10169    //   array type; such a structure (and any union containing,
10170    //   possibly recursively, a member that is such a structure)
10171    //   shall not be a member of a structure or an element of an
10172    //   array.
10173    if (FDTy->isFunctionType()) {
10174      // Field declared as a function.
10175      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10176        << FD->getDeclName();
10177      FD->setInvalidDecl();
10178      EnclosingDecl->setInvalidDecl();
10179      continue;
10180    } else if (FDTy->isIncompleteArrayType() && Record &&
10181               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10182                ((getLangOpts().MicrosoftExt ||
10183                  getLangOpts().CPlusPlus) &&
10184                 (i + 1 == Fields.end() || Record->isUnion())))) {
10185      // Flexible array member.
10186      // Microsoft and g++ is more permissive regarding flexible array.
10187      // It will accept flexible array in union and also
10188      // as the sole element of a struct/class.
10189      if (getLangOpts().MicrosoftExt) {
10190        if (Record->isUnion())
10191          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10192            << FD->getDeclName();
10193        else if (Fields.size() == 1)
10194          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10195            << FD->getDeclName() << Record->getTagKind();
10196      } else if (getLangOpts().CPlusPlus) {
10197        if (Record->isUnion())
10198          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10199            << FD->getDeclName();
10200        else if (Fields.size() == 1)
10201          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10202            << FD->getDeclName() << Record->getTagKind();
10203      } else if (!getLangOpts().C99) {
10204      if (Record->isUnion())
10205        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10206          << FD->getDeclName();
10207      else
10208        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10209          << FD->getDeclName() << Record->getTagKind();
10210      } else if (NumNamedMembers < 1) {
10211        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10212          << FD->getDeclName();
10213        FD->setInvalidDecl();
10214        EnclosingDecl->setInvalidDecl();
10215        continue;
10216      }
10217      if (!FD->getType()->isDependentType() &&
10218          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10219        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10220          << FD->getDeclName() << FD->getType();
10221        FD->setInvalidDecl();
10222        EnclosingDecl->setInvalidDecl();
10223        continue;
10224      }
10225      // Okay, we have a legal flexible array member at the end of the struct.
10226      if (Record)
10227        Record->setHasFlexibleArrayMember(true);
10228    } else if (!FDTy->isDependentType() &&
10229               RequireCompleteType(FD->getLocation(), FD->getType(),
10230                                   diag::err_field_incomplete)) {
10231      // Incomplete type
10232      FD->setInvalidDecl();
10233      EnclosingDecl->setInvalidDecl();
10234      continue;
10235    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10236      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10237        // If this is a member of a union, then entire union becomes "flexible".
10238        if (Record && Record->isUnion()) {
10239          Record->setHasFlexibleArrayMember(true);
10240        } else {
10241          // If this is a struct/class and this is not the last element, reject
10242          // it.  Note that GCC supports variable sized arrays in the middle of
10243          // structures.
10244          if (i + 1 != Fields.end())
10245            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10246              << FD->getDeclName() << FD->getType();
10247          else {
10248            // We support flexible arrays at the end of structs in
10249            // other structs as an extension.
10250            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10251              << FD->getDeclName();
10252            if (Record)
10253              Record->setHasFlexibleArrayMember(true);
10254          }
10255        }
10256      }
10257      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10258          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10259                                 diag::err_abstract_type_in_decl,
10260                                 AbstractIvarType)) {
10261        // Ivars can not have abstract class types
10262        FD->setInvalidDecl();
10263      }
10264      if (Record && FDTTy->getDecl()->hasObjectMember())
10265        Record->setHasObjectMember(true);
10266    } else if (FDTy->isObjCObjectType()) {
10267      /// A field cannot be an Objective-c object
10268      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10269        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10270      QualType T = Context.getObjCObjectPointerType(FD->getType());
10271      FD->setType(T);
10272    } else if (!getLangOpts().CPlusPlus) {
10273      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10274        // It's an error in ARC if a field has lifetime.
10275        // We don't want to report this in a system header, though,
10276        // so we just make the field unavailable.
10277        // FIXME: that's really not sufficient; we need to make the type
10278        // itself invalid to, say, initialize or copy.
10279        QualType T = FD->getType();
10280        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10281        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10282          SourceLocation loc = FD->getLocation();
10283          if (getSourceManager().isInSystemHeader(loc)) {
10284            if (!FD->hasAttr<UnavailableAttr>()) {
10285              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10286                                "this system field has retaining ownership"));
10287            }
10288          } else {
10289            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10290              << T->isBlockPointerType();
10291          }
10292          ARCErrReported = true;
10293        }
10294      }
10295      else if (getLangOpts().ObjC1 &&
10296               getLangOpts().getGC() != LangOptions::NonGC &&
10297               Record && !Record->hasObjectMember()) {
10298        if (FD->getType()->isObjCObjectPointerType() ||
10299            FD->getType().isObjCGCStrong())
10300          Record->setHasObjectMember(true);
10301        else if (Context.getAsArrayType(FD->getType())) {
10302          QualType BaseType = Context.getBaseElementType(FD->getType());
10303          if (BaseType->isRecordType() &&
10304              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10305            Record->setHasObjectMember(true);
10306          else if (BaseType->isObjCObjectPointerType() ||
10307                   BaseType.isObjCGCStrong())
10308                 Record->setHasObjectMember(true);
10309        }
10310      }
10311    }
10312    // Keep track of the number of named members.
10313    if (FD->getIdentifier())
10314      ++NumNamedMembers;
10315  }
10316
10317  // Okay, we successfully defined 'Record'.
10318  if (Record) {
10319    bool Completed = false;
10320    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10321      if (!CXXRecord->isInvalidDecl()) {
10322        // Set access bits correctly on the directly-declared conversions.
10323        for (CXXRecordDecl::conversion_iterator
10324               I = CXXRecord->conversion_begin(),
10325               E = CXXRecord->conversion_end(); I != E; ++I)
10326          I.setAccess((*I)->getAccess());
10327
10328        if (!CXXRecord->isDependentType()) {
10329          // Adjust user-defined destructor exception spec.
10330          if (getLangOpts().CPlusPlus11 &&
10331              CXXRecord->hasUserDeclaredDestructor())
10332            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10333
10334          // Add any implicitly-declared members to this class.
10335          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10336
10337          // If we have virtual base classes, we may end up finding multiple
10338          // final overriders for a given virtual function. Check for this
10339          // problem now.
10340          if (CXXRecord->getNumVBases()) {
10341            CXXFinalOverriderMap FinalOverriders;
10342            CXXRecord->getFinalOverriders(FinalOverriders);
10343
10344            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10345                                             MEnd = FinalOverriders.end();
10346                 M != MEnd; ++M) {
10347              for (OverridingMethods::iterator SO = M->second.begin(),
10348                                            SOEnd = M->second.end();
10349                   SO != SOEnd; ++SO) {
10350                assert(SO->second.size() > 0 &&
10351                       "Virtual function without overridding functions?");
10352                if (SO->second.size() == 1)
10353                  continue;
10354
10355                // C++ [class.virtual]p2:
10356                //   In a derived class, if a virtual member function of a base
10357                //   class subobject has more than one final overrider the
10358                //   program is ill-formed.
10359                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10360                  << (const NamedDecl *)M->first << Record;
10361                Diag(M->first->getLocation(),
10362                     diag::note_overridden_virtual_function);
10363                for (OverridingMethods::overriding_iterator
10364                          OM = SO->second.begin(),
10365                       OMEnd = SO->second.end();
10366                     OM != OMEnd; ++OM)
10367                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10368                    << (const NamedDecl *)M->first << OM->Method->getParent();
10369
10370                Record->setInvalidDecl();
10371              }
10372            }
10373            CXXRecord->completeDefinition(&FinalOverriders);
10374            Completed = true;
10375          }
10376        }
10377      }
10378    }
10379
10380    if (!Completed)
10381      Record->completeDefinition();
10382
10383  } else {
10384    ObjCIvarDecl **ClsFields =
10385      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10386    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10387      ID->setEndOfDefinitionLoc(RBrac);
10388      // Add ivar's to class's DeclContext.
10389      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10390        ClsFields[i]->setLexicalDeclContext(ID);
10391        ID->addDecl(ClsFields[i]);
10392      }
10393      // Must enforce the rule that ivars in the base classes may not be
10394      // duplicates.
10395      if (ID->getSuperClass())
10396        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10397    } else if (ObjCImplementationDecl *IMPDecl =
10398                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10399      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10400      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10401        // Ivar declared in @implementation never belongs to the implementation.
10402        // Only it is in implementation's lexical context.
10403        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10404      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10405      IMPDecl->setIvarLBraceLoc(LBrac);
10406      IMPDecl->setIvarRBraceLoc(RBrac);
10407    } else if (ObjCCategoryDecl *CDecl =
10408                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10409      // case of ivars in class extension; all other cases have been
10410      // reported as errors elsewhere.
10411      // FIXME. Class extension does not have a LocEnd field.
10412      // CDecl->setLocEnd(RBrac);
10413      // Add ivar's to class extension's DeclContext.
10414      // Diagnose redeclaration of private ivars.
10415      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10416      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10417        if (IDecl) {
10418          if (const ObjCIvarDecl *ClsIvar =
10419              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10420            Diag(ClsFields[i]->getLocation(),
10421                 diag::err_duplicate_ivar_declaration);
10422            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10423            continue;
10424          }
10425          for (const ObjCCategoryDecl *ClsExtDecl =
10426                IDecl->getFirstClassExtension();
10427               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10428            if (const ObjCIvarDecl *ClsExtIvar =
10429                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10430              Diag(ClsFields[i]->getLocation(),
10431                   diag::err_duplicate_ivar_declaration);
10432              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10433              continue;
10434            }
10435          }
10436        }
10437        ClsFields[i]->setLexicalDeclContext(CDecl);
10438        CDecl->addDecl(ClsFields[i]);
10439      }
10440      CDecl->setIvarLBraceLoc(LBrac);
10441      CDecl->setIvarRBraceLoc(RBrac);
10442    }
10443  }
10444
10445  if (Attr)
10446    ProcessDeclAttributeList(S, Record, Attr);
10447}
10448
10449/// \brief Determine whether the given integral value is representable within
10450/// the given type T.
10451static bool isRepresentableIntegerValue(ASTContext &Context,
10452                                        llvm::APSInt &Value,
10453                                        QualType T) {
10454  assert(T->isIntegralType(Context) && "Integral type required!");
10455  unsigned BitWidth = Context.getIntWidth(T);
10456
10457  if (Value.isUnsigned() || Value.isNonNegative()) {
10458    if (T->isSignedIntegerOrEnumerationType())
10459      --BitWidth;
10460    return Value.getActiveBits() <= BitWidth;
10461  }
10462  return Value.getMinSignedBits() <= BitWidth;
10463}
10464
10465// \brief Given an integral type, return the next larger integral type
10466// (or a NULL type of no such type exists).
10467static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10468  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10469  // enum checking below.
10470  assert(T->isIntegralType(Context) && "Integral type required!");
10471  const unsigned NumTypes = 4;
10472  QualType SignedIntegralTypes[NumTypes] = {
10473    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10474  };
10475  QualType UnsignedIntegralTypes[NumTypes] = {
10476    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10477    Context.UnsignedLongLongTy
10478  };
10479
10480  unsigned BitWidth = Context.getTypeSize(T);
10481  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10482                                                        : UnsignedIntegralTypes;
10483  for (unsigned I = 0; I != NumTypes; ++I)
10484    if (Context.getTypeSize(Types[I]) > BitWidth)
10485      return Types[I];
10486
10487  return QualType();
10488}
10489
10490EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10491                                          EnumConstantDecl *LastEnumConst,
10492                                          SourceLocation IdLoc,
10493                                          IdentifierInfo *Id,
10494                                          Expr *Val) {
10495  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10496  llvm::APSInt EnumVal(IntWidth);
10497  QualType EltTy;
10498
10499  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10500    Val = 0;
10501
10502  if (Val)
10503    Val = DefaultLvalueConversion(Val).take();
10504
10505  if (Val) {
10506    if (Enum->isDependentType() || Val->isTypeDependent())
10507      EltTy = Context.DependentTy;
10508    else {
10509      SourceLocation ExpLoc;
10510      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
10511          !getLangOpts().MicrosoftMode) {
10512        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10513        // constant-expression in the enumerator-definition shall be a converted
10514        // constant expression of the underlying type.
10515        EltTy = Enum->getIntegerType();
10516        ExprResult Converted =
10517          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10518                                           CCEK_Enumerator);
10519        if (Converted.isInvalid())
10520          Val = 0;
10521        else
10522          Val = Converted.take();
10523      } else if (!Val->isValueDependent() &&
10524                 !(Val = VerifyIntegerConstantExpression(Val,
10525                                                         &EnumVal).take())) {
10526        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10527      } else {
10528        if (Enum->isFixed()) {
10529          EltTy = Enum->getIntegerType();
10530
10531          // In Obj-C and Microsoft mode, require the enumeration value to be
10532          // representable in the underlying type of the enumeration. In C++11,
10533          // we perform a non-narrowing conversion as part of converted constant
10534          // expression checking.
10535          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10536            if (getLangOpts().MicrosoftMode) {
10537              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10538              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10539            } else
10540              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10541          } else
10542            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10543        } else if (getLangOpts().CPlusPlus) {
10544          // C++11 [dcl.enum]p5:
10545          //   If the underlying type is not fixed, the type of each enumerator
10546          //   is the type of its initializing value:
10547          //     - If an initializer is specified for an enumerator, the
10548          //       initializing value has the same type as the expression.
10549          EltTy = Val->getType();
10550        } else {
10551          // C99 6.7.2.2p2:
10552          //   The expression that defines the value of an enumeration constant
10553          //   shall be an integer constant expression that has a value
10554          //   representable as an int.
10555
10556          // Complain if the value is not representable in an int.
10557          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10558            Diag(IdLoc, diag::ext_enum_value_not_int)
10559              << EnumVal.toString(10) << Val->getSourceRange()
10560              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10561          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10562            // Force the type of the expression to 'int'.
10563            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10564          }
10565          EltTy = Val->getType();
10566        }
10567      }
10568    }
10569  }
10570
10571  if (!Val) {
10572    if (Enum->isDependentType())
10573      EltTy = Context.DependentTy;
10574    else if (!LastEnumConst) {
10575      // C++0x [dcl.enum]p5:
10576      //   If the underlying type is not fixed, the type of each enumerator
10577      //   is the type of its initializing value:
10578      //     - If no initializer is specified for the first enumerator, the
10579      //       initializing value has an unspecified integral type.
10580      //
10581      // GCC uses 'int' for its unspecified integral type, as does
10582      // C99 6.7.2.2p3.
10583      if (Enum->isFixed()) {
10584        EltTy = Enum->getIntegerType();
10585      }
10586      else {
10587        EltTy = Context.IntTy;
10588      }
10589    } else {
10590      // Assign the last value + 1.
10591      EnumVal = LastEnumConst->getInitVal();
10592      ++EnumVal;
10593      EltTy = LastEnumConst->getType();
10594
10595      // Check for overflow on increment.
10596      if (EnumVal < LastEnumConst->getInitVal()) {
10597        // C++0x [dcl.enum]p5:
10598        //   If the underlying type is not fixed, the type of each enumerator
10599        //   is the type of its initializing value:
10600        //
10601        //     - Otherwise the type of the initializing value is the same as
10602        //       the type of the initializing value of the preceding enumerator
10603        //       unless the incremented value is not representable in that type,
10604        //       in which case the type is an unspecified integral type
10605        //       sufficient to contain the incremented value. If no such type
10606        //       exists, the program is ill-formed.
10607        QualType T = getNextLargerIntegralType(Context, EltTy);
10608        if (T.isNull() || Enum->isFixed()) {
10609          // There is no integral type larger enough to represent this
10610          // value. Complain, then allow the value to wrap around.
10611          EnumVal = LastEnumConst->getInitVal();
10612          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10613          ++EnumVal;
10614          if (Enum->isFixed())
10615            // When the underlying type is fixed, this is ill-formed.
10616            Diag(IdLoc, diag::err_enumerator_wrapped)
10617              << EnumVal.toString(10)
10618              << EltTy;
10619          else
10620            Diag(IdLoc, diag::warn_enumerator_too_large)
10621              << EnumVal.toString(10);
10622        } else {
10623          EltTy = T;
10624        }
10625
10626        // Retrieve the last enumerator's value, extent that type to the
10627        // type that is supposed to be large enough to represent the incremented
10628        // value, then increment.
10629        EnumVal = LastEnumConst->getInitVal();
10630        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10631        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10632        ++EnumVal;
10633
10634        // If we're not in C++, diagnose the overflow of enumerator values,
10635        // which in C99 means that the enumerator value is not representable in
10636        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10637        // permits enumerator values that are representable in some larger
10638        // integral type.
10639        if (!getLangOpts().CPlusPlus && !T.isNull())
10640          Diag(IdLoc, diag::warn_enum_value_overflow);
10641      } else if (!getLangOpts().CPlusPlus &&
10642                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10643        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10644        Diag(IdLoc, diag::ext_enum_value_not_int)
10645          << EnumVal.toString(10) << 1;
10646      }
10647    }
10648  }
10649
10650  if (!EltTy->isDependentType()) {
10651    // Make the enumerator value match the signedness and size of the
10652    // enumerator's type.
10653    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10654    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10655  }
10656
10657  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10658                                  Val, EnumVal);
10659}
10660
10661
10662Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10663                              SourceLocation IdLoc, IdentifierInfo *Id,
10664                              AttributeList *Attr,
10665                              SourceLocation EqualLoc, Expr *Val) {
10666  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10667  EnumConstantDecl *LastEnumConst =
10668    cast_or_null<EnumConstantDecl>(lastEnumConst);
10669
10670  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10671  // we find one that is.
10672  S = getNonFieldDeclScope(S);
10673
10674  // Verify that there isn't already something declared with this name in this
10675  // scope.
10676  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10677                                         ForRedeclaration);
10678  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10679    // Maybe we will complain about the shadowed template parameter.
10680    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10681    // Just pretend that we didn't see the previous declaration.
10682    PrevDecl = 0;
10683  }
10684
10685  if (PrevDecl) {
10686    // When in C++, we may get a TagDecl with the same name; in this case the
10687    // enum constant will 'hide' the tag.
10688    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10689           "Received TagDecl when not in C++!");
10690    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10691      if (isa<EnumConstantDecl>(PrevDecl))
10692        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10693      else
10694        Diag(IdLoc, diag::err_redefinition) << Id;
10695      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10696      return 0;
10697    }
10698  }
10699
10700  // C++ [class.mem]p15:
10701  // If T is the name of a class, then each of the following shall have a name
10702  // different from T:
10703  // - every enumerator of every member of class T that is an unscoped
10704  // enumerated type
10705  if (CXXRecordDecl *Record
10706                      = dyn_cast<CXXRecordDecl>(
10707                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10708    if (!TheEnumDecl->isScoped() &&
10709        Record->getIdentifier() && Record->getIdentifier() == Id)
10710      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10711
10712  EnumConstantDecl *New =
10713    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10714
10715  if (New) {
10716    // Process attributes.
10717    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10718
10719    // Register this decl in the current scope stack.
10720    New->setAccess(TheEnumDecl->getAccess());
10721    PushOnScopeChains(New, S);
10722  }
10723
10724  ActOnDocumentableDecl(New);
10725
10726  return New;
10727}
10728
10729// Returns true when the enum initial expression does not trigger the
10730// duplicate enum warning.  A few common cases are exempted as follows:
10731// Element2 = Element1
10732// Element2 = Element1 + 1
10733// Element2 = Element1 - 1
10734// Where Element2 and Element1 are from the same enum.
10735static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10736  Expr *InitExpr = ECD->getInitExpr();
10737  if (!InitExpr)
10738    return true;
10739  InitExpr = InitExpr->IgnoreImpCasts();
10740
10741  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10742    if (!BO->isAdditiveOp())
10743      return true;
10744    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10745    if (!IL)
10746      return true;
10747    if (IL->getValue() != 1)
10748      return true;
10749
10750    InitExpr = BO->getLHS();
10751  }
10752
10753  // This checks if the elements are from the same enum.
10754  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10755  if (!DRE)
10756    return true;
10757
10758  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10759  if (!EnumConstant)
10760    return true;
10761
10762  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10763      Enum)
10764    return true;
10765
10766  return false;
10767}
10768
10769struct DupKey {
10770  int64_t val;
10771  bool isTombstoneOrEmptyKey;
10772  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10773    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10774};
10775
10776static DupKey GetDupKey(const llvm::APSInt& Val) {
10777  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10778                false);
10779}
10780
10781struct DenseMapInfoDupKey {
10782  static DupKey getEmptyKey() { return DupKey(0, true); }
10783  static DupKey getTombstoneKey() { return DupKey(1, true); }
10784  static unsigned getHashValue(const DupKey Key) {
10785    return (unsigned)(Key.val * 37);
10786  }
10787  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10788    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10789           LHS.val == RHS.val;
10790  }
10791};
10792
10793// Emits a warning when an element is implicitly set a value that
10794// a previous element has already been set to.
10795static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10796                                        unsigned NumElements, EnumDecl *Enum,
10797                                        QualType EnumType) {
10798  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10799                                 Enum->getLocation()) ==
10800      DiagnosticsEngine::Ignored)
10801    return;
10802  // Avoid anonymous enums
10803  if (!Enum->getIdentifier())
10804    return;
10805
10806  // Only check for small enums.
10807  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10808    return;
10809
10810  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
10811  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
10812
10813  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10814  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10815          ValueToVectorMap;
10816
10817  DuplicatesVector DupVector;
10818  ValueToVectorMap EnumMap;
10819
10820  // Populate the EnumMap with all values represented by enum constants without
10821  // an initialier.
10822  for (unsigned i = 0; i < NumElements; ++i) {
10823    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10824
10825    // Null EnumConstantDecl means a previous diagnostic has been emitted for
10826    // this constant.  Skip this enum since it may be ill-formed.
10827    if (!ECD) {
10828      return;
10829    }
10830
10831    if (ECD->getInitExpr())
10832      continue;
10833
10834    DupKey Key = GetDupKey(ECD->getInitVal());
10835    DeclOrVector &Entry = EnumMap[Key];
10836
10837    // First time encountering this value.
10838    if (Entry.isNull())
10839      Entry = ECD;
10840  }
10841
10842  // Create vectors for any values that has duplicates.
10843  for (unsigned i = 0; i < NumElements; ++i) {
10844    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10845    if (!ValidDuplicateEnum(ECD, Enum))
10846      continue;
10847
10848    DupKey Key = GetDupKey(ECD->getInitVal());
10849
10850    DeclOrVector& Entry = EnumMap[Key];
10851    if (Entry.isNull())
10852      continue;
10853
10854    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10855      // Ensure constants are different.
10856      if (D == ECD)
10857        continue;
10858
10859      // Create new vector and push values onto it.
10860      ECDVector *Vec = new ECDVector();
10861      Vec->push_back(D);
10862      Vec->push_back(ECD);
10863
10864      // Update entry to point to the duplicates vector.
10865      Entry = Vec;
10866
10867      // Store the vector somewhere we can consult later for quick emission of
10868      // diagnostics.
10869      DupVector.push_back(Vec);
10870      continue;
10871    }
10872
10873    ECDVector *Vec = Entry.get<ECDVector*>();
10874    // Make sure constants are not added more than once.
10875    if (*Vec->begin() == ECD)
10876      continue;
10877
10878    Vec->push_back(ECD);
10879  }
10880
10881  // Emit diagnostics.
10882  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10883                                  DupVectorEnd = DupVector.end();
10884       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10885    ECDVector *Vec = *DupVectorIter;
10886    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10887
10888    // Emit warning for one enum constant.
10889    ECDVector::iterator I = Vec->begin();
10890    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10891      << (*I)->getName() << (*I)->getInitVal().toString(10)
10892      << (*I)->getSourceRange();
10893    ++I;
10894
10895    // Emit one note for each of the remaining enum constants with
10896    // the same value.
10897    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10898      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10899        << (*I)->getName() << (*I)->getInitVal().toString(10)
10900        << (*I)->getSourceRange();
10901    delete Vec;
10902  }
10903}
10904
10905void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10906                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10907                         Decl **Elements, unsigned NumElements,
10908                         Scope *S, AttributeList *Attr) {
10909  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10910  QualType EnumType = Context.getTypeDeclType(Enum);
10911
10912  if (Attr)
10913    ProcessDeclAttributeList(S, Enum, Attr);
10914
10915  if (Enum->isDependentType()) {
10916    for (unsigned i = 0; i != NumElements; ++i) {
10917      EnumConstantDecl *ECD =
10918        cast_or_null<EnumConstantDecl>(Elements[i]);
10919      if (!ECD) continue;
10920
10921      ECD->setType(EnumType);
10922    }
10923
10924    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10925    return;
10926  }
10927
10928  // TODO: If the result value doesn't fit in an int, it must be a long or long
10929  // long value.  ISO C does not support this, but GCC does as an extension,
10930  // emit a warning.
10931  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10932  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10933  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10934
10935  // Verify that all the values are okay, compute the size of the values, and
10936  // reverse the list.
10937  unsigned NumNegativeBits = 0;
10938  unsigned NumPositiveBits = 0;
10939
10940  // Keep track of whether all elements have type int.
10941  bool AllElementsInt = true;
10942
10943  for (unsigned i = 0; i != NumElements; ++i) {
10944    EnumConstantDecl *ECD =
10945      cast_or_null<EnumConstantDecl>(Elements[i]);
10946    if (!ECD) continue;  // Already issued a diagnostic.
10947
10948    const llvm::APSInt &InitVal = ECD->getInitVal();
10949
10950    // Keep track of the size of positive and negative values.
10951    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10952      NumPositiveBits = std::max(NumPositiveBits,
10953                                 (unsigned)InitVal.getActiveBits());
10954    else
10955      NumNegativeBits = std::max(NumNegativeBits,
10956                                 (unsigned)InitVal.getMinSignedBits());
10957
10958    // Keep track of whether every enum element has type int (very commmon).
10959    if (AllElementsInt)
10960      AllElementsInt = ECD->getType() == Context.IntTy;
10961  }
10962
10963  // Figure out the type that should be used for this enum.
10964  QualType BestType;
10965  unsigned BestWidth;
10966
10967  // C++0x N3000 [conv.prom]p3:
10968  //   An rvalue of an unscoped enumeration type whose underlying
10969  //   type is not fixed can be converted to an rvalue of the first
10970  //   of the following types that can represent all the values of
10971  //   the enumeration: int, unsigned int, long int, unsigned long
10972  //   int, long long int, or unsigned long long int.
10973  // C99 6.4.4.3p2:
10974  //   An identifier declared as an enumeration constant has type int.
10975  // The C99 rule is modified by a gcc extension
10976  QualType BestPromotionType;
10977
10978  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10979  // -fshort-enums is the equivalent to specifying the packed attribute on all
10980  // enum definitions.
10981  if (LangOpts.ShortEnums)
10982    Packed = true;
10983
10984  if (Enum->isFixed()) {
10985    BestType = Enum->getIntegerType();
10986    if (BestType->isPromotableIntegerType())
10987      BestPromotionType = Context.getPromotedIntegerType(BestType);
10988    else
10989      BestPromotionType = BestType;
10990    // We don't need to set BestWidth, because BestType is going to be the type
10991    // of the enumerators, but we do anyway because otherwise some compilers
10992    // warn that it might be used uninitialized.
10993    BestWidth = CharWidth;
10994  }
10995  else if (NumNegativeBits) {
10996    // If there is a negative value, figure out the smallest integer type (of
10997    // int/long/longlong) that fits.
10998    // If it's packed, check also if it fits a char or a short.
10999    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11000      BestType = Context.SignedCharTy;
11001      BestWidth = CharWidth;
11002    } else if (Packed && NumNegativeBits <= ShortWidth &&
11003               NumPositiveBits < ShortWidth) {
11004      BestType = Context.ShortTy;
11005      BestWidth = ShortWidth;
11006    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11007      BestType = Context.IntTy;
11008      BestWidth = IntWidth;
11009    } else {
11010      BestWidth = Context.getTargetInfo().getLongWidth();
11011
11012      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11013        BestType = Context.LongTy;
11014      } else {
11015        BestWidth = Context.getTargetInfo().getLongLongWidth();
11016
11017        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11018          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11019        BestType = Context.LongLongTy;
11020      }
11021    }
11022    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11023  } else {
11024    // If there is no negative value, figure out the smallest type that fits
11025    // all of the enumerator values.
11026    // If it's packed, check also if it fits a char or a short.
11027    if (Packed && NumPositiveBits <= CharWidth) {
11028      BestType = Context.UnsignedCharTy;
11029      BestPromotionType = Context.IntTy;
11030      BestWidth = CharWidth;
11031    } else if (Packed && NumPositiveBits <= ShortWidth) {
11032      BestType = Context.UnsignedShortTy;
11033      BestPromotionType = Context.IntTy;
11034      BestWidth = ShortWidth;
11035    } else if (NumPositiveBits <= IntWidth) {
11036      BestType = Context.UnsignedIntTy;
11037      BestWidth = IntWidth;
11038      BestPromotionType
11039        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11040                           ? Context.UnsignedIntTy : Context.IntTy;
11041    } else if (NumPositiveBits <=
11042               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11043      BestType = Context.UnsignedLongTy;
11044      BestPromotionType
11045        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11046                           ? Context.UnsignedLongTy : Context.LongTy;
11047    } else {
11048      BestWidth = Context.getTargetInfo().getLongLongWidth();
11049      assert(NumPositiveBits <= BestWidth &&
11050             "How could an initializer get larger than ULL?");
11051      BestType = Context.UnsignedLongLongTy;
11052      BestPromotionType
11053        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11054                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11055    }
11056  }
11057
11058  // Loop over all of the enumerator constants, changing their types to match
11059  // the type of the enum if needed.
11060  for (unsigned i = 0; i != NumElements; ++i) {
11061    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11062    if (!ECD) continue;  // Already issued a diagnostic.
11063
11064    // Standard C says the enumerators have int type, but we allow, as an
11065    // extension, the enumerators to be larger than int size.  If each
11066    // enumerator value fits in an int, type it as an int, otherwise type it the
11067    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11068    // that X has type 'int', not 'unsigned'.
11069
11070    // Determine whether the value fits into an int.
11071    llvm::APSInt InitVal = ECD->getInitVal();
11072
11073    // If it fits into an integer type, force it.  Otherwise force it to match
11074    // the enum decl type.
11075    QualType NewTy;
11076    unsigned NewWidth;
11077    bool NewSign;
11078    if (!getLangOpts().CPlusPlus &&
11079        !Enum->isFixed() &&
11080        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11081      NewTy = Context.IntTy;
11082      NewWidth = IntWidth;
11083      NewSign = true;
11084    } else if (ECD->getType() == BestType) {
11085      // Already the right type!
11086      if (getLangOpts().CPlusPlus)
11087        // C++ [dcl.enum]p4: Following the closing brace of an
11088        // enum-specifier, each enumerator has the type of its
11089        // enumeration.
11090        ECD->setType(EnumType);
11091      continue;
11092    } else {
11093      NewTy = BestType;
11094      NewWidth = BestWidth;
11095      NewSign = BestType->isSignedIntegerOrEnumerationType();
11096    }
11097
11098    // Adjust the APSInt value.
11099    InitVal = InitVal.extOrTrunc(NewWidth);
11100    InitVal.setIsSigned(NewSign);
11101    ECD->setInitVal(InitVal);
11102
11103    // Adjust the Expr initializer and type.
11104    if (ECD->getInitExpr() &&
11105        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11106      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11107                                                CK_IntegralCast,
11108                                                ECD->getInitExpr(),
11109                                                /*base paths*/ 0,
11110                                                VK_RValue));
11111    if (getLangOpts().CPlusPlus)
11112      // C++ [dcl.enum]p4: Following the closing brace of an
11113      // enum-specifier, each enumerator has the type of its
11114      // enumeration.
11115      ECD->setType(EnumType);
11116    else
11117      ECD->setType(NewTy);
11118  }
11119
11120  Enum->completeDefinition(BestType, BestPromotionType,
11121                           NumPositiveBits, NumNegativeBits);
11122
11123  // If we're declaring a function, ensure this decl isn't forgotten about -
11124  // it needs to go into the function scope.
11125  if (InFunctionDeclarator)
11126    DeclsInPrototypeScope.push_back(Enum);
11127
11128  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11129}
11130
11131Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11132                                  SourceLocation StartLoc,
11133                                  SourceLocation EndLoc) {
11134  StringLiteral *AsmString = cast<StringLiteral>(expr);
11135
11136  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11137                                                   AsmString, StartLoc,
11138                                                   EndLoc);
11139  CurContext->addDecl(New);
11140  return New;
11141}
11142
11143DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11144                                   SourceLocation ImportLoc,
11145                                   ModuleIdPath Path) {
11146  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11147                                                Module::AllVisible,
11148                                                /*IsIncludeDirective=*/false);
11149  if (!Mod)
11150    return true;
11151
11152  SmallVector<SourceLocation, 2> IdentifierLocs;
11153  Module *ModCheck = Mod;
11154  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11155    // If we've run out of module parents, just drop the remaining identifiers.
11156    // We need the length to be consistent.
11157    if (!ModCheck)
11158      break;
11159    ModCheck = ModCheck->Parent;
11160
11161    IdentifierLocs.push_back(Path[I].second);
11162  }
11163
11164  ImportDecl *Import = ImportDecl::Create(Context,
11165                                          Context.getTranslationUnitDecl(),
11166                                          AtLoc.isValid()? AtLoc : ImportLoc,
11167                                          Mod, IdentifierLocs);
11168  Context.getTranslationUnitDecl()->addDecl(Import);
11169  return Import;
11170}
11171
11172void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11173  // Create the implicit import declaration.
11174  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11175  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11176                                                   Loc, Mod, Loc);
11177  TU->addDecl(ImportD);
11178  Consumer.HandleImplicitImportDecl(ImportD);
11179
11180  // Make the module visible.
11181  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible);
11182}
11183
11184void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11185                                      IdentifierInfo* AliasName,
11186                                      SourceLocation PragmaLoc,
11187                                      SourceLocation NameLoc,
11188                                      SourceLocation AliasNameLoc) {
11189  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11190                                    LookupOrdinaryName);
11191  AsmLabelAttr *Attr =
11192     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11193
11194  if (PrevDecl)
11195    PrevDecl->addAttr(Attr);
11196  else
11197    (void)ExtnameUndeclaredIdentifiers.insert(
11198      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11199}
11200
11201void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11202                             SourceLocation PragmaLoc,
11203                             SourceLocation NameLoc) {
11204  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11205
11206  if (PrevDecl) {
11207    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11208  } else {
11209    (void)WeakUndeclaredIdentifiers.insert(
11210      std::pair<IdentifierInfo*,WeakInfo>
11211        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11212  }
11213}
11214
11215void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11216                                IdentifierInfo* AliasName,
11217                                SourceLocation PragmaLoc,
11218                                SourceLocation NameLoc,
11219                                SourceLocation AliasNameLoc) {
11220  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11221                                    LookupOrdinaryName);
11222  WeakInfo W = WeakInfo(Name, NameLoc);
11223
11224  if (PrevDecl) {
11225    if (!PrevDecl->hasAttr<AliasAttr>())
11226      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11227        DeclApplyPragmaWeak(TUScope, ND, W);
11228  } else {
11229    (void)WeakUndeclaredIdentifiers.insert(
11230      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11231  }
11232}
11233
11234Decl *Sema::getObjCDeclContext() const {
11235  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11236}
11237
11238AvailabilityResult Sema::getCurContextAvailability() const {
11239  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11240  return D->getAvailability();
11241}
11242