SemaDecl.cpp revision d311f376c364e5a6c88b63b1d5c53f560ea5e650
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // If this typename is deprecated, emit a warning.
68      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // If this typename is deprecated, emit a warning.
75      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  if (Decl *D = dyn_cast<Decl>(DC))
109    return D->getLexicalDeclContext();
110
111  return DC->getLexicalParent();
112}
113
114void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
115  assert(getContainingDC(DC) == CurContext &&
116      "The next DeclContext should be lexically contained in the current one.");
117  CurContext = DC;
118  S->setEntity(DC);
119}
120
121void Sema::PopDeclContext() {
122  assert(CurContext && "DeclContext imbalance!");
123
124  CurContext = getContainingDC(CurContext);
125}
126
127/// \brief Determine whether we allow overloading of the function
128/// PrevDecl with another declaration.
129///
130/// This routine determines whether overloading is possible, not
131/// whether some new function is actually an overload. It will return
132/// true in C++ (where we can always provide overloads) or, as an
133/// extension, in C when the previous function is already an
134/// overloaded function declaration or has the "overloadable"
135/// attribute.
136static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
137  if (Context.getLangOptions().CPlusPlus)
138    return true;
139
140  if (isa<OverloadedFunctionDecl>(PrevDecl))
141    return true;
142
143  return PrevDecl->getAttr<OverloadableAttr>() != 0;
144}
145
146/// Add this decl to the scope shadowed decl chains.
147void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
148  // Move up the scope chain until we find the nearest enclosing
149  // non-transparent context. The declaration will be introduced into this
150  // scope.
151  while (S->getEntity() &&
152         ((DeclContext *)S->getEntity())->isTransparentContext())
153    S = S->getParent();
154
155  S->AddDecl(D);
156
157  // Add scoped declarations into their context, so that they can be
158  // found later. Declarations without a context won't be inserted
159  // into any context.
160  CurContext->addDecl(D);
161
162  // C++ [basic.scope]p4:
163  //   -- exactly one declaration shall declare a class name or
164  //   enumeration name that is not a typedef name and the other
165  //   declarations shall all refer to the same object or
166  //   enumerator, or all refer to functions and function templates;
167  //   in this case the class name or enumeration name is hidden.
168  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
169    // We are pushing the name of a tag (enum or class).
170    if (CurContext->getLookupContext()
171          == TD->getDeclContext()->getLookupContext()) {
172      // We're pushing the tag into the current context, which might
173      // require some reshuffling in the identifier resolver.
174      IdentifierResolver::iterator
175        I = IdResolver.begin(TD->getDeclName()),
176        IEnd = IdResolver.end();
177      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
178        NamedDecl *PrevDecl = *I;
179        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
180             PrevDecl = *I, ++I) {
181          if (TD->declarationReplaces(*I)) {
182            // This is a redeclaration. Remove it from the chain and
183            // break out, so that we'll add in the shadowed
184            // declaration.
185            S->RemoveDecl(*I);
186            if (PrevDecl == *I) {
187              IdResolver.RemoveDecl(*I);
188              IdResolver.AddDecl(TD);
189              return;
190            } else {
191              IdResolver.RemoveDecl(*I);
192              break;
193            }
194          }
195        }
196
197        // There is already a declaration with the same name in the same
198        // scope, which is not a tag declaration. It must be found
199        // before we find the new declaration, so insert the new
200        // declaration at the end of the chain.
201        IdResolver.AddShadowedDecl(TD, PrevDecl);
202
203        return;
204      }
205    }
206  } else if (isa<FunctionDecl>(D) &&
207             AllowOverloadingOfFunction(D, Context)) {
208    // We are pushing the name of a function, which might be an
209    // overloaded name.
210    FunctionDecl *FD = cast<FunctionDecl>(D);
211    IdentifierResolver::iterator Redecl
212      = std::find_if(IdResolver.begin(FD->getDeclName()),
213                     IdResolver.end(),
214                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
215                                  FD));
216    if (Redecl != IdResolver.end()) {
217      // There is already a declaration of a function on our
218      // IdResolver chain. Replace it with this declaration.
219      S->RemoveDecl(*Redecl);
220      IdResolver.RemoveDecl(*Redecl);
221    }
222  }
223
224  IdResolver.AddDecl(D);
225}
226
227void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
228  if (S->decl_empty()) return;
229  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
230	 "Scope shouldn't contain decls!");
231
232  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
233       I != E; ++I) {
234    Decl *TmpD = static_cast<Decl*>(*I);
235    assert(TmpD && "This decl didn't get pushed??");
236
237    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
238    NamedDecl *D = cast<NamedDecl>(TmpD);
239
240    if (!D->getDeclName()) continue;
241
242    // Remove this name from our lexical scope.
243    IdResolver.RemoveDecl(D);
244  }
245}
246
247/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
248/// return 0 if one not found.
249ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
250  // The third "scope" argument is 0 since we aren't enabling lazy built-in
251  // creation from this context.
252  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
253
254  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
255}
256
257/// getNonFieldDeclScope - Retrieves the innermost scope, starting
258/// from S, where a non-field would be declared. This routine copes
259/// with the difference between C and C++ scoping rules in structs and
260/// unions. For example, the following code is well-formed in C but
261/// ill-formed in C++:
262/// @code
263/// struct S6 {
264///   enum { BAR } e;
265/// };
266///
267/// void test_S6() {
268///   struct S6 a;
269///   a.e = BAR;
270/// }
271/// @endcode
272/// For the declaration of BAR, this routine will return a different
273/// scope. The scope S will be the scope of the unnamed enumeration
274/// within S6. In C++, this routine will return the scope associated
275/// with S6, because the enumeration's scope is a transparent
276/// context but structures can contain non-field names. In C, this
277/// routine will return the translation unit scope, since the
278/// enumeration's scope is a transparent context and structures cannot
279/// contain non-field names.
280Scope *Sema::getNonFieldDeclScope(Scope *S) {
281  while (((S->getFlags() & Scope::DeclScope) == 0) ||
282         (S->getEntity() &&
283          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
284         (S->isClassScope() && !getLangOptions().CPlusPlus))
285    S = S->getParent();
286  return S;
287}
288
289void Sema::InitBuiltinVaListType() {
290  if (!Context.getBuiltinVaListType().isNull())
291    return;
292
293  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
294  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
295  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
296  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
297}
298
299/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
300/// file scope.  lazily create a decl for it. ForRedeclaration is true
301/// if we're creating this built-in in anticipation of redeclaring the
302/// built-in.
303NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
304                                     Scope *S, bool ForRedeclaration,
305                                     SourceLocation Loc) {
306  Builtin::ID BID = (Builtin::ID)bid;
307
308  if (Context.BuiltinInfo.hasVAListUse(BID))
309    InitBuiltinVaListType();
310
311  Builtin::Context::GetBuiltinTypeError Error;
312  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
313  switch (Error) {
314  case Builtin::Context::GE_None:
315    // Okay
316    break;
317
318  case Builtin::Context::GE_Missing_FILE:
319    if (ForRedeclaration)
320      Diag(Loc, diag::err_implicit_decl_requires_stdio)
321        << Context.BuiltinInfo.GetName(BID);
322    return 0;
323  }
324
325  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
326    Diag(Loc, diag::ext_implicit_lib_function_decl)
327      << Context.BuiltinInfo.GetName(BID)
328      << R;
329    if (Context.BuiltinInfo.getHeaderName(BID) &&
330        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
331          != diag::MAP_IGNORE)
332      Diag(Loc, diag::note_please_include_header)
333        << Context.BuiltinInfo.getHeaderName(BID)
334        << Context.BuiltinInfo.GetName(BID);
335  }
336
337  FunctionDecl *New = FunctionDecl::Create(Context,
338                                           Context.getTranslationUnitDecl(),
339                                           Loc, II, R,
340                                           FunctionDecl::Extern, false);
341  New->setImplicit();
342
343  // Create Decl objects for each parameter, adding them to the
344  // FunctionDecl.
345  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
346    llvm::SmallVector<ParmVarDecl*, 16> Params;
347    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
348      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
349                                           FT->getArgType(i), VarDecl::None, 0));
350    New->setParams(Context, &Params[0], Params.size());
351  }
352
353  AddKnownFunctionAttributes(New);
354
355  // TUScope is the translation-unit scope to insert this function into.
356  // FIXME: This is hideous. We need to teach PushOnScopeChains to
357  // relate Scopes to DeclContexts, and probably eliminate CurContext
358  // entirely, but we're not there yet.
359  DeclContext *SavedContext = CurContext;
360  CurContext = Context.getTranslationUnitDecl();
361  PushOnScopeChains(New, TUScope);
362  CurContext = SavedContext;
363  return New;
364}
365
366/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
367/// everything from the standard library is defined.
368NamespaceDecl *Sema::GetStdNamespace() {
369  if (!StdNamespace) {
370    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
371    DeclContext *Global = Context.getTranslationUnitDecl();
372    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
373    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
374  }
375  return StdNamespace;
376}
377
378/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
379/// same name and scope as a previous declaration 'Old'.  Figure out
380/// how to resolve this situation, merging decls or emitting
381/// diagnostics as appropriate. Returns true if there was an error,
382/// false otherwise.
383///
384bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
385  bool objc_types = false;
386  // Allow multiple definitions for ObjC built-in typedefs.
387  // FIXME: Verify the underlying types are equivalent!
388  if (getLangOptions().ObjC1) {
389    const IdentifierInfo *TypeID = New->getIdentifier();
390    switch (TypeID->getLength()) {
391    default: break;
392    case 2:
393      if (!TypeID->isStr("id"))
394        break;
395      Context.setObjCIdType(New);
396      objc_types = true;
397      break;
398    case 5:
399      if (!TypeID->isStr("Class"))
400        break;
401      Context.setObjCClassType(New);
402      objc_types = true;
403      return false;
404    case 3:
405      if (!TypeID->isStr("SEL"))
406        break;
407      Context.setObjCSelType(New);
408      objc_types = true;
409      return false;
410    case 8:
411      if (!TypeID->isStr("Protocol"))
412        break;
413      Context.setObjCProtoType(New->getUnderlyingType());
414      objc_types = true;
415      return false;
416    }
417    // Fall through - the typedef name was not a builtin type.
418  }
419  // Verify the old decl was also a type.
420  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
421  if (!Old) {
422    Diag(New->getLocation(), diag::err_redefinition_different_kind)
423      << New->getDeclName();
424    if (!objc_types)
425      Diag(OldD->getLocation(), diag::note_previous_definition);
426    return true;
427  }
428
429  // Determine the "old" type we'll use for checking and diagnostics.
430  QualType OldType;
431  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
432    OldType = OldTypedef->getUnderlyingType();
433  else
434    OldType = Context.getTypeDeclType(Old);
435
436  // If the typedef types are not identical, reject them in all languages and
437  // with any extensions enabled.
438
439  if (OldType != New->getUnderlyingType() &&
440      Context.getCanonicalType(OldType) !=
441      Context.getCanonicalType(New->getUnderlyingType())) {
442    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
443      << New->getUnderlyingType() << OldType;
444    if (!objc_types)
445      Diag(Old->getLocation(), diag::note_previous_definition);
446    return true;
447  }
448  if (objc_types) return false;
449  if (getLangOptions().Microsoft) return false;
450
451  // C++ [dcl.typedef]p2:
452  //   In a given non-class scope, a typedef specifier can be used to
453  //   redefine the name of any type declared in that scope to refer
454  //   to the type to which it already refers.
455  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
456    return false;
457
458  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
459  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
460  // *either* declaration is in a system header. The code below implements
461  // this adhoc compatibility rule. FIXME: The following code will not
462  // work properly when compiling ".i" files (containing preprocessed output).
463  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
464    SourceManager &SrcMgr = Context.getSourceManager();
465    if (SrcMgr.isInSystemHeader(Old->getLocation()))
466      return false;
467    if (SrcMgr.isInSystemHeader(New->getLocation()))
468      return false;
469  }
470
471  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
472  Diag(Old->getLocation(), diag::note_previous_definition);
473  return true;
474}
475
476/// DeclhasAttr - returns true if decl Declaration already has the target
477/// attribute.
478static bool DeclHasAttr(const Decl *decl, const Attr *target) {
479  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
480    if (attr->getKind() == target->getKind())
481      return true;
482
483  return false;
484}
485
486/// MergeAttributes - append attributes from the Old decl to the New one.
487static void MergeAttributes(Decl *New, Decl *Old) {
488  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
489
490  while (attr) {
491    tmp = attr;
492    attr = attr->getNext();
493
494    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
495      tmp->setInherited(true);
496      New->addAttr(tmp);
497    } else {
498      tmp->setNext(0);
499      delete(tmp);
500    }
501  }
502
503  Old->invalidateAttrs();
504}
505
506/// MergeFunctionDecl - We just parsed a function 'New' from
507/// declarator D which has the same name and scope as a previous
508/// declaration 'Old'.  Figure out how to resolve this situation,
509/// merging decls or emitting diagnostics as appropriate.
510///
511/// In C++, New and Old must be declarations that are not
512/// overloaded. Use IsOverload to determine whether New and Old are
513/// overloaded, and to select the Old declaration that New should be
514/// merged with.
515///
516/// Returns true if there was an error, false otherwise.
517bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
518  assert(!isa<OverloadedFunctionDecl>(OldD) &&
519         "Cannot merge with an overloaded function declaration");
520
521  // Verify the old decl was also a function.
522  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
523  if (!Old) {
524    Diag(New->getLocation(), diag::err_redefinition_different_kind)
525      << New->getDeclName();
526    Diag(OldD->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529
530  // Determine whether the previous declaration was a definition,
531  // implicit declaration, or a declaration.
532  diag::kind PrevDiag;
533  if (Old->isThisDeclarationADefinition())
534    PrevDiag = diag::note_previous_definition;
535  else if (Old->isImplicit())
536    PrevDiag = diag::note_previous_implicit_declaration;
537  else
538    PrevDiag = diag::note_previous_declaration;
539
540  QualType OldQType = Context.getCanonicalType(Old->getType());
541  QualType NewQType = Context.getCanonicalType(New->getType());
542
543  if (getLangOptions().CPlusPlus) {
544    // (C++98 13.1p2):
545    //   Certain function declarations cannot be overloaded:
546    //     -- Function declarations that differ only in the return type
547    //        cannot be overloaded.
548    QualType OldReturnType
549      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
550    QualType NewReturnType
551      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
552    if (OldReturnType != NewReturnType) {
553      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
554      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
555      return true;
556    }
557
558    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
559    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
560    if (OldMethod && NewMethod) {
561      //    -- Member function declarations with the same name and the
562      //       same parameter types cannot be overloaded if any of them
563      //       is a static member function declaration.
564      if (OldMethod->isStatic() || NewMethod->isStatic()) {
565        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
566        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
567        return true;
568      }
569
570      // C++ [class.mem]p1:
571      //   [...] A member shall not be declared twice in the
572      //   member-specification, except that a nested class or member
573      //   class template can be declared and then later defined.
574      if (OldMethod->getLexicalDeclContext() ==
575            NewMethod->getLexicalDeclContext()) {
576        unsigned NewDiag;
577        if (isa<CXXConstructorDecl>(OldMethod))
578          NewDiag = diag::err_constructor_redeclared;
579        else if (isa<CXXDestructorDecl>(NewMethod))
580          NewDiag = diag::err_destructor_redeclared;
581        else if (isa<CXXConversionDecl>(NewMethod))
582          NewDiag = diag::err_conv_function_redeclared;
583        else
584          NewDiag = diag::err_member_redeclared;
585
586        Diag(New->getLocation(), NewDiag);
587        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
588      }
589    }
590
591    // (C++98 8.3.5p3):
592    //   All declarations for a function shall agree exactly in both the
593    //   return type and the parameter-type-list.
594    if (OldQType == NewQType) {
595      // We have a redeclaration.
596      MergeAttributes(New, Old);
597      return MergeCXXFunctionDecl(New, Old);
598    }
599
600    // Fall through for conflicting redeclarations and redefinitions.
601  }
602
603  // C: Function types need to be compatible, not identical. This handles
604  // duplicate function decls like "void f(int); void f(enum X);" properly.
605  if (!getLangOptions().CPlusPlus &&
606      Context.typesAreCompatible(OldQType, NewQType)) {
607    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
608    const FunctionTypeProto *OldProto = 0;
609    if (isa<FunctionTypeNoProto>(NewFuncType) &&
610        (OldProto = OldQType->getAsFunctionTypeProto())) {
611      // The old declaration provided a function prototype, but the
612      // new declaration does not. Merge in the prototype.
613      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
614                                                 OldProto->arg_type_end());
615      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
616                                         &ParamTypes[0], ParamTypes.size(),
617                                         OldProto->isVariadic(),
618                                         OldProto->getTypeQuals());
619      New->setType(NewQType);
620      New->setInheritedPrototype();
621
622      // Synthesize a parameter for each argument type.
623      llvm::SmallVector<ParmVarDecl*, 16> Params;
624      for (FunctionTypeProto::arg_type_iterator
625             ParamType = OldProto->arg_type_begin(),
626             ParamEnd = OldProto->arg_type_end();
627           ParamType != ParamEnd; ++ParamType) {
628        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
629                                                 SourceLocation(), 0,
630                                                 *ParamType, VarDecl::None,
631                                                 0);
632        Param->setImplicit();
633        Params.push_back(Param);
634      }
635
636      New->setParams(Context, &Params[0], Params.size());
637
638    }
639
640    MergeAttributes(New, Old);
641
642    return false;
643  }
644
645  // A function that has already been declared has been redeclared or defined
646  // with a different type- show appropriate diagnostic
647  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
648    // The user has declared a builtin function with an incompatible
649    // signature.
650    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
651      // The function the user is redeclaring is a library-defined
652      // function like 'malloc' or 'printf'. Warn about the
653      // redeclaration, then ignore it.
654      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
655      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
656        << Old << Old->getType();
657      return false;
658    }
659
660    PrevDiag = diag::note_previous_builtin_declaration;
661  }
662
663  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
664  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
665  return true;
666}
667
668/// Predicate for C "tentative" external object definitions (C99 6.9.2).
669static bool isTentativeDefinition(VarDecl *VD) {
670  if (VD->isFileVarDecl())
671    return (!VD->getInit() &&
672            (VD->getStorageClass() == VarDecl::None ||
673             VD->getStorageClass() == VarDecl::Static));
674  return false;
675}
676
677/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
678/// when dealing with C "tentative" external object definitions (C99 6.9.2).
679void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
680  bool VDIsTentative = isTentativeDefinition(VD);
681  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
682
683  // FIXME: I don't think this will actually see all of the
684  // redefinitions. Can't we check this property on-the-fly?
685  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
686                                    E = IdResolver.end();
687       I != E; ++I) {
688    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
689      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
690
691      // Handle the following case:
692      //   int a[10];
693      //   int a[];   - the code below makes sure we set the correct type.
694      //   int a[11]; - this is an error, size isn't 10.
695      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
696          OldDecl->getType()->isConstantArrayType())
697        VD->setType(OldDecl->getType());
698
699      // Check for "tentative" definitions. We can't accomplish this in
700      // MergeVarDecl since the initializer hasn't been attached.
701      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
702        continue;
703
704      // Handle __private_extern__ just like extern.
705      if (OldDecl->getStorageClass() != VarDecl::Extern &&
706          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
707          VD->getStorageClass() != VarDecl::Extern &&
708          VD->getStorageClass() != VarDecl::PrivateExtern) {
709        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
710        Diag(OldDecl->getLocation(), diag::note_previous_definition);
711        // One redefinition error is enough.
712        break;
713      }
714    }
715  }
716}
717
718/// MergeVarDecl - We just parsed a variable 'New' which has the same name
719/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
720/// situation, merging decls or emitting diagnostics as appropriate.
721///
722/// Tentative definition rules (C99 6.9.2p2) are checked by
723/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
724/// definitions here, since the initializer hasn't been attached.
725///
726bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
727  // Verify the old decl was also a variable.
728  VarDecl *Old = dyn_cast<VarDecl>(OldD);
729  if (!Old) {
730    Diag(New->getLocation(), diag::err_redefinition_different_kind)
731      << New->getDeclName();
732    Diag(OldD->getLocation(), diag::note_previous_definition);
733    return true;
734  }
735
736  MergeAttributes(New, Old);
737
738  // Merge the types
739  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
740  if (MergedT.isNull()) {
741    Diag(New->getLocation(), diag::err_redefinition_different_type)
742      << New->getDeclName();
743    Diag(Old->getLocation(), diag::note_previous_definition);
744    return true;
745  }
746  New->setType(MergedT);
747  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
748  if (New->getStorageClass() == VarDecl::Static &&
749      (Old->getStorageClass() == VarDecl::None ||
750       Old->getStorageClass() == VarDecl::Extern)) {
751    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
752    Diag(Old->getLocation(), diag::note_previous_definition);
753    return true;
754  }
755  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
756  if (New->getStorageClass() != VarDecl::Static &&
757      Old->getStorageClass() == VarDecl::Static) {
758    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
759    Diag(Old->getLocation(), diag::note_previous_definition);
760    return true;
761  }
762  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
763  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
764    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
765    Diag(Old->getLocation(), diag::note_previous_definition);
766    return true;
767  }
768  return false;
769}
770
771/// CheckParmsForFunctionDef - Check that the parameters of the given
772/// function are appropriate for the definition of a function. This
773/// takes care of any checks that cannot be performed on the
774/// declaration itself, e.g., that the types of each of the function
775/// parameters are complete.
776bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
777  bool HasInvalidParm = false;
778  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
779    ParmVarDecl *Param = FD->getParamDecl(p);
780
781    // C99 6.7.5.3p4: the parameters in a parameter type list in a
782    // function declarator that is part of a function definition of
783    // that function shall not have incomplete type.
784    if (!Param->isInvalidDecl() &&
785        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
786                               diag::err_typecheck_decl_incomplete_type)) {
787      Param->setInvalidDecl();
788      HasInvalidParm = true;
789    }
790
791    // C99 6.9.1p5: If the declarator includes a parameter type list, the
792    // declaration of each parameter shall include an identifier.
793    if (Param->getIdentifier() == 0 &&
794        !Param->isImplicit() &&
795        !getLangOptions().CPlusPlus)
796      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
797  }
798
799  return HasInvalidParm;
800}
801
802/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
803/// no declarator (e.g. "struct foo;") is parsed.
804Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
805  TagDecl *Tag = 0;
806  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
807      DS.getTypeSpecType() == DeclSpec::TST_struct ||
808      DS.getTypeSpecType() == DeclSpec::TST_union ||
809      DS.getTypeSpecType() == DeclSpec::TST_enum)
810    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
811
812  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
813    if (!Record->getDeclName() && Record->isDefinition() &&
814        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
815      return BuildAnonymousStructOrUnion(S, DS, Record);
816
817    // Microsoft allows unnamed struct/union fields. Don't complain
818    // about them.
819    // FIXME: Should we support Microsoft's extensions in this area?
820    if (Record->getDeclName() && getLangOptions().Microsoft)
821      return Tag;
822  }
823
824  if (!DS.isMissingDeclaratorOk() &&
825      DS.getTypeSpecType() != DeclSpec::TST_error) {
826    // Warn about typedefs of enums without names, since this is an
827    // extension in both Microsoft an GNU.
828    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
829        Tag && isa<EnumDecl>(Tag)) {
830      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
831        << DS.getSourceRange();
832      return Tag;
833    }
834
835    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
836      << DS.getSourceRange();
837    return 0;
838  }
839
840  return Tag;
841}
842
843/// InjectAnonymousStructOrUnionMembers - Inject the members of the
844/// anonymous struct or union AnonRecord into the owning context Owner
845/// and scope S. This routine will be invoked just after we realize
846/// that an unnamed union or struct is actually an anonymous union or
847/// struct, e.g.,
848///
849/// @code
850/// union {
851///   int i;
852///   float f;
853/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
854///    // f into the surrounding scope.x
855/// @endcode
856///
857/// This routine is recursive, injecting the names of nested anonymous
858/// structs/unions into the owning context and scope as well.
859bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
860                                               RecordDecl *AnonRecord) {
861  bool Invalid = false;
862  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
863                               FEnd = AnonRecord->field_end();
864       F != FEnd; ++F) {
865    if ((*F)->getDeclName()) {
866      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
867                                                LookupOrdinaryName, true);
868      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
869        // C++ [class.union]p2:
870        //   The names of the members of an anonymous union shall be
871        //   distinct from the names of any other entity in the
872        //   scope in which the anonymous union is declared.
873        unsigned diagKind
874          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
875                                 : diag::err_anonymous_struct_member_redecl;
876        Diag((*F)->getLocation(), diagKind)
877          << (*F)->getDeclName();
878        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
879        Invalid = true;
880      } else {
881        // C++ [class.union]p2:
882        //   For the purpose of name lookup, after the anonymous union
883        //   definition, the members of the anonymous union are
884        //   considered to have been defined in the scope in which the
885        //   anonymous union is declared.
886        Owner->makeDeclVisibleInContext(*F);
887        S->AddDecl(*F);
888        IdResolver.AddDecl(*F);
889      }
890    } else if (const RecordType *InnerRecordType
891                 = (*F)->getType()->getAsRecordType()) {
892      RecordDecl *InnerRecord = InnerRecordType->getDecl();
893      if (InnerRecord->isAnonymousStructOrUnion())
894        Invalid = Invalid ||
895          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
896    }
897  }
898
899  return Invalid;
900}
901
902/// ActOnAnonymousStructOrUnion - Handle the declaration of an
903/// anonymous structure or union. Anonymous unions are a C++ feature
904/// (C++ [class.union]) and a GNU C extension; anonymous structures
905/// are a GNU C and GNU C++ extension.
906Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
907                                                RecordDecl *Record) {
908  DeclContext *Owner = Record->getDeclContext();
909
910  // Diagnose whether this anonymous struct/union is an extension.
911  if (Record->isUnion() && !getLangOptions().CPlusPlus)
912    Diag(Record->getLocation(), diag::ext_anonymous_union);
913  else if (!Record->isUnion())
914    Diag(Record->getLocation(), diag::ext_anonymous_struct);
915
916  // C and C++ require different kinds of checks for anonymous
917  // structs/unions.
918  bool Invalid = false;
919  if (getLangOptions().CPlusPlus) {
920    const char* PrevSpec = 0;
921    // C++ [class.union]p3:
922    //   Anonymous unions declared in a named namespace or in the
923    //   global namespace shall be declared static.
924    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
925        (isa<TranslationUnitDecl>(Owner) ||
926         (isa<NamespaceDecl>(Owner) &&
927          cast<NamespaceDecl>(Owner)->getDeclName()))) {
928      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
929      Invalid = true;
930
931      // Recover by adding 'static'.
932      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
933    }
934    // C++ [class.union]p3:
935    //   A storage class is not allowed in a declaration of an
936    //   anonymous union in a class scope.
937    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
938             isa<RecordDecl>(Owner)) {
939      Diag(DS.getStorageClassSpecLoc(),
940           diag::err_anonymous_union_with_storage_spec);
941      Invalid = true;
942
943      // Recover by removing the storage specifier.
944      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
945                             PrevSpec);
946    }
947
948    // C++ [class.union]p2:
949    //   The member-specification of an anonymous union shall only
950    //   define non-static data members. [Note: nested types and
951    //   functions cannot be declared within an anonymous union. ]
952    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
953                                 MemEnd = Record->decls_end();
954         Mem != MemEnd; ++Mem) {
955      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
956        // C++ [class.union]p3:
957        //   An anonymous union shall not have private or protected
958        //   members (clause 11).
959        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
960          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
961            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
962          Invalid = true;
963        }
964      } else if ((*Mem)->isImplicit()) {
965        // Any implicit members are fine.
966      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
967        // This is a type that showed up in an
968        // elaborated-type-specifier inside the anonymous struct or
969        // union, but which actually declares a type outside of the
970        // anonymous struct or union. It's okay.
971      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
972        if (!MemRecord->isAnonymousStructOrUnion() &&
973            MemRecord->getDeclName()) {
974          // This is a nested type declaration.
975          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
976            << (int)Record->isUnion();
977          Invalid = true;
978        }
979      } else {
980        // We have something that isn't a non-static data
981        // member. Complain about it.
982        unsigned DK = diag::err_anonymous_record_bad_member;
983        if (isa<TypeDecl>(*Mem))
984          DK = diag::err_anonymous_record_with_type;
985        else if (isa<FunctionDecl>(*Mem))
986          DK = diag::err_anonymous_record_with_function;
987        else if (isa<VarDecl>(*Mem))
988          DK = diag::err_anonymous_record_with_static;
989        Diag((*Mem)->getLocation(), DK)
990            << (int)Record->isUnion();
991          Invalid = true;
992      }
993    }
994  } else {
995    // FIXME: Check GNU C semantics
996    if (Record->isUnion() && !Owner->isRecord()) {
997      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
998        << (int)getLangOptions().CPlusPlus;
999      Invalid = true;
1000    }
1001  }
1002
1003  if (!Record->isUnion() && !Owner->isRecord()) {
1004    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1005      << (int)getLangOptions().CPlusPlus;
1006    Invalid = true;
1007  }
1008
1009  // Create a declaration for this anonymous struct/union.
1010  NamedDecl *Anon = 0;
1011  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1012    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1013                             /*IdentifierInfo=*/0,
1014                             Context.getTypeDeclType(Record),
1015                             /*BitWidth=*/0, /*Mutable=*/false);
1016    Anon->setAccess(AS_public);
1017    if (getLangOptions().CPlusPlus)
1018      FieldCollector->Add(cast<FieldDecl>(Anon));
1019  } else {
1020    VarDecl::StorageClass SC;
1021    switch (DS.getStorageClassSpec()) {
1022    default: assert(0 && "Unknown storage class!");
1023    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1024    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1025    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1026    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1027    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1028    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1029    case DeclSpec::SCS_mutable:
1030      // mutable can only appear on non-static class members, so it's always
1031      // an error here
1032      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1033      Invalid = true;
1034      SC = VarDecl::None;
1035      break;
1036    }
1037
1038    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1039                           /*IdentifierInfo=*/0,
1040                           Context.getTypeDeclType(Record),
1041                           SC, DS.getSourceRange().getBegin());
1042  }
1043  Anon->setImplicit();
1044
1045  // Add the anonymous struct/union object to the current
1046  // context. We'll be referencing this object when we refer to one of
1047  // its members.
1048  Owner->addDecl(Anon);
1049
1050  // Inject the members of the anonymous struct/union into the owning
1051  // context and into the identifier resolver chain for name lookup
1052  // purposes.
1053  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1054    Invalid = true;
1055
1056  // Mark this as an anonymous struct/union type. Note that we do not
1057  // do this until after we have already checked and injected the
1058  // members of this anonymous struct/union type, because otherwise
1059  // the members could be injected twice: once by DeclContext when it
1060  // builds its lookup table, and once by
1061  // InjectAnonymousStructOrUnionMembers.
1062  Record->setAnonymousStructOrUnion(true);
1063
1064  if (Invalid)
1065    Anon->setInvalidDecl();
1066
1067  return Anon;
1068}
1069
1070bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1071                                  bool DirectInit) {
1072  // Get the type before calling CheckSingleAssignmentConstraints(), since
1073  // it can promote the expression.
1074  QualType InitType = Init->getType();
1075
1076  if (getLangOptions().CPlusPlus) {
1077    // FIXME: I dislike this error message. A lot.
1078    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1079      return Diag(Init->getSourceRange().getBegin(),
1080                  diag::err_typecheck_convert_incompatible)
1081        << DeclType << Init->getType() << "initializing"
1082        << Init->getSourceRange();
1083
1084    return false;
1085  }
1086
1087  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1088  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1089                                  InitType, Init, "initializing");
1090}
1091
1092bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1093  const ArrayType *AT = Context.getAsArrayType(DeclT);
1094
1095  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1096    // C99 6.7.8p14. We have an array of character type with unknown size
1097    // being initialized to a string literal.
1098    llvm::APSInt ConstVal(32);
1099    ConstVal = strLiteral->getByteLength() + 1;
1100    // Return a new array type (C99 6.7.8p22).
1101    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1102                                         ArrayType::Normal, 0);
1103  } else {
1104    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1105    // C99 6.7.8p14. We have an array of character type with known size.
1106    // FIXME: Avoid truncation for 64-bit length strings.
1107    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1108      Diag(strLiteral->getSourceRange().getBegin(),
1109           diag::warn_initializer_string_for_char_array_too_long)
1110        << strLiteral->getSourceRange();
1111  }
1112  // Set type from "char *" to "constant array of char".
1113  strLiteral->setType(DeclT);
1114  // For now, we always return false (meaning success).
1115  return false;
1116}
1117
1118StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1119  const ArrayType *AT = Context.getAsArrayType(DeclType);
1120  if (AT && AT->getElementType()->isCharType()) {
1121    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1122  }
1123  return 0;
1124}
1125
1126bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1127                                 SourceLocation InitLoc,
1128                                 DeclarationName InitEntity,
1129                                 bool DirectInit) {
1130  if (DeclType->isDependentType() || Init->isTypeDependent())
1131    return false;
1132
1133  // C++ [dcl.init.ref]p1:
1134  //   A variable declared to be a T&, that is "reference to type T"
1135  //   (8.3.2), shall be initialized by an object, or function, of
1136  //   type T or by an object that can be converted into a T.
1137  if (DeclType->isReferenceType())
1138    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1139
1140  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1141  // of unknown size ("[]") or an object type that is not a variable array type.
1142  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1143    return Diag(InitLoc,  diag::err_variable_object_no_init)
1144      << VAT->getSizeExpr()->getSourceRange();
1145
1146  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1147  if (!InitList) {
1148    // FIXME: Handle wide strings
1149    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1150      return CheckStringLiteralInit(strLiteral, DeclType);
1151
1152    // C++ [dcl.init]p14:
1153    //   -- If the destination type is a (possibly cv-qualified) class
1154    //      type:
1155    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1156      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1157      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1158
1159      //   -- If the initialization is direct-initialization, or if it is
1160      //      copy-initialization where the cv-unqualified version of the
1161      //      source type is the same class as, or a derived class of, the
1162      //      class of the destination, constructors are considered.
1163      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1164          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1165        CXXConstructorDecl *Constructor
1166          = PerformInitializationByConstructor(DeclType, &Init, 1,
1167                                               InitLoc, Init->getSourceRange(),
1168                                               InitEntity,
1169                                               DirectInit? IK_Direct : IK_Copy);
1170        return Constructor == 0;
1171      }
1172
1173      //   -- Otherwise (i.e., for the remaining copy-initialization
1174      //      cases), user-defined conversion sequences that can
1175      //      convert from the source type to the destination type or
1176      //      (when a conversion function is used) to a derived class
1177      //      thereof are enumerated as described in 13.3.1.4, and the
1178      //      best one is chosen through overload resolution
1179      //      (13.3). If the conversion cannot be done or is
1180      //      ambiguous, the initialization is ill-formed. The
1181      //      function selected is called with the initializer
1182      //      expression as its argument; if the function is a
1183      //      constructor, the call initializes a temporary of the
1184      //      destination type.
1185      // FIXME: We're pretending to do copy elision here; return to
1186      // this when we have ASTs for such things.
1187      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1188        return false;
1189
1190      if (InitEntity)
1191        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1192          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1193          << Init->getType() << Init->getSourceRange();
1194      else
1195        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1196          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1197          << Init->getType() << Init->getSourceRange();
1198    }
1199
1200    // C99 6.7.8p16.
1201    if (DeclType->isArrayType())
1202      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1203        << Init->getSourceRange();
1204
1205    return CheckSingleInitializer(Init, DeclType, DirectInit);
1206  }
1207
1208  bool hadError = CheckInitList(InitList, DeclType);
1209  Init = InitList;
1210  return hadError;
1211}
1212
1213/// GetNameForDeclarator - Determine the full declaration name for the
1214/// given Declarator.
1215DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1216  switch (D.getKind()) {
1217  case Declarator::DK_Abstract:
1218    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1219    return DeclarationName();
1220
1221  case Declarator::DK_Normal:
1222    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1223    return DeclarationName(D.getIdentifier());
1224
1225  case Declarator::DK_Constructor: {
1226    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1227    Ty = Context.getCanonicalType(Ty);
1228    return Context.DeclarationNames.getCXXConstructorName(Ty);
1229  }
1230
1231  case Declarator::DK_Destructor: {
1232    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1233    Ty = Context.getCanonicalType(Ty);
1234    return Context.DeclarationNames.getCXXDestructorName(Ty);
1235  }
1236
1237  case Declarator::DK_Conversion: {
1238    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1239    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1240    Ty = Context.getCanonicalType(Ty);
1241    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1242  }
1243
1244  case Declarator::DK_Operator:
1245    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1246    return Context.DeclarationNames.getCXXOperatorName(
1247                                                D.getOverloadedOperator());
1248  }
1249
1250  assert(false && "Unknown name kind");
1251  return DeclarationName();
1252}
1253
1254/// isNearlyMatchingFunction - Determine whether the C++ functions
1255/// Declaration and Definition are "nearly" matching. This heuristic
1256/// is used to improve diagnostics in the case where an out-of-line
1257/// function definition doesn't match any declaration within
1258/// the class or namespace.
1259static bool isNearlyMatchingFunction(ASTContext &Context,
1260                                     FunctionDecl *Declaration,
1261                                     FunctionDecl *Definition) {
1262  if (Declaration->param_size() != Definition->param_size())
1263    return false;
1264  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1265    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1266    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1267
1268    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1269    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1270    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1271      return false;
1272  }
1273
1274  return true;
1275}
1276
1277Sema::DeclTy *
1278Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1279                      bool IsFunctionDefinition) {
1280  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1281  DeclarationName Name = GetNameForDeclarator(D);
1282
1283  // All of these full declarators require an identifier.  If it doesn't have
1284  // one, the ParsedFreeStandingDeclSpec action should be used.
1285  if (!Name) {
1286    if (!D.getInvalidType())  // Reject this if we think it is valid.
1287      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1288           diag::err_declarator_need_ident)
1289        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1290    return 0;
1291  }
1292
1293  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1294  // we find one that is.
1295  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1296         (S->getFlags() & Scope::TemplateParamScope) != 0)
1297    S = S->getParent();
1298
1299  DeclContext *DC;
1300  NamedDecl *PrevDecl;
1301  NamedDecl *New;
1302  bool InvalidDecl = false;
1303
1304  // See if this is a redefinition of a variable in the same scope.
1305  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1306    DC = CurContext;
1307    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true,
1308                          D.getDeclSpec().getStorageClassSpec() !=
1309                            DeclSpec::SCS_static,
1310                          D.getIdentifierLoc());
1311  } else { // Something like "int foo::x;"
1312    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1313    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1314
1315    // C++ 7.3.1.2p2:
1316    // Members (including explicit specializations of templates) of a named
1317    // namespace can also be defined outside that namespace by explicit
1318    // qualification of the name being defined, provided that the entity being
1319    // defined was already declared in the namespace and the definition appears
1320    // after the point of declaration in a namespace that encloses the
1321    // declarations namespace.
1322    //
1323    // Note that we only check the context at this point. We don't yet
1324    // have enough information to make sure that PrevDecl is actually
1325    // the declaration we want to match. For example, given:
1326    //
1327    //   class X {
1328    //     void f();
1329    //     void f(float);
1330    //   };
1331    //
1332    //   void X::f(int) { } // ill-formed
1333    //
1334    // In this case, PrevDecl will point to the overload set
1335    // containing the two f's declared in X, but neither of them
1336    // matches.
1337
1338    // First check whether we named the global scope.
1339    if (isa<TranslationUnitDecl>(DC)) {
1340      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1341        << Name << D.getCXXScopeSpec().getRange();
1342    } else if (!CurContext->Encloses(DC)) {
1343      // The qualifying scope doesn't enclose the original declaration.
1344      // Emit diagnostic based on current scope.
1345      SourceLocation L = D.getIdentifierLoc();
1346      SourceRange R = D.getCXXScopeSpec().getRange();
1347      if (isa<FunctionDecl>(CurContext))
1348        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1349      else
1350        Diag(L, diag::err_invalid_declarator_scope)
1351          << Name << cast<NamedDecl>(DC) << R;
1352      InvalidDecl = true;
1353    }
1354  }
1355
1356  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1357    // Maybe we will complain about the shadowed template parameter.
1358    InvalidDecl = InvalidDecl
1359      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1360    // Just pretend that we didn't see the previous declaration.
1361    PrevDecl = 0;
1362  }
1363
1364  // In C++, the previous declaration we find might be a tag type
1365  // (class or enum). In this case, the new declaration will hide the
1366  // tag type. Note that this does does not apply if we're declaring a
1367  // typedef (C++ [dcl.typedef]p4).
1368  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1369      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1370    PrevDecl = 0;
1371
1372  QualType R = GetTypeForDeclarator(D, S);
1373  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1374
1375  bool Redeclaration = false;
1376  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1377    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1378                                 InvalidDecl, Redeclaration);
1379  } else if (R.getTypePtr()->isFunctionType()) {
1380    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1381                                  IsFunctionDefinition, InvalidDecl,
1382                                  Redeclaration);
1383  } else {
1384    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1385                                  InvalidDecl, Redeclaration);
1386  }
1387
1388  if (New == 0)
1389    return 0;
1390
1391  // Set the lexical context. If the declarator has a C++ scope specifier, the
1392  // lexical context will be different from the semantic context.
1393  New->setLexicalDeclContext(CurContext);
1394
1395  // If this has an identifier and is not an invalid redeclaration,
1396  // add it to the scope stack.
1397  if (Name && !(Redeclaration && InvalidDecl))
1398    PushOnScopeChains(New, S);
1399  // If any semantic error occurred, mark the decl as invalid.
1400  if (D.getInvalidType() || InvalidDecl)
1401    New->setInvalidDecl();
1402
1403  return New;
1404}
1405
1406NamedDecl*
1407Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1408                             QualType R, Decl* LastDeclarator,
1409                             Decl* PrevDecl, bool& InvalidDecl,
1410                             bool &Redeclaration) {
1411  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1412  if (D.getCXXScopeSpec().isSet()) {
1413    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1414      << D.getCXXScopeSpec().getRange();
1415    InvalidDecl = true;
1416    // Pretend we didn't see the scope specifier.
1417    DC = 0;
1418  }
1419
1420  // Check that there are no default arguments (C++ only).
1421  if (getLangOptions().CPlusPlus)
1422    CheckExtraCXXDefaultArguments(D);
1423
1424  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1425  if (!NewTD) return 0;
1426
1427  // Handle attributes prior to checking for duplicates in MergeVarDecl
1428  ProcessDeclAttributes(NewTD, D);
1429  // Merge the decl with the existing one if appropriate. If the decl is
1430  // in an outer scope, it isn't the same thing.
1431  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1432    Redeclaration = true;
1433    if (MergeTypeDefDecl(NewTD, PrevDecl))
1434      InvalidDecl = true;
1435  }
1436
1437  if (S->getFnParent() == 0) {
1438    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1439    // then it shall have block scope.
1440    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1441      if (NewTD->getUnderlyingType()->isVariableArrayType())
1442        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1443      else
1444        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1445
1446      InvalidDecl = true;
1447    }
1448  }
1449  return NewTD;
1450}
1451
1452NamedDecl*
1453Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1454                              QualType R, Decl* LastDeclarator,
1455                              Decl* PrevDecl, bool& InvalidDecl,
1456                              bool &Redeclaration) {
1457  DeclarationName Name = GetNameForDeclarator(D);
1458
1459  // Check that there are no default arguments (C++ only).
1460  if (getLangOptions().CPlusPlus)
1461    CheckExtraCXXDefaultArguments(D);
1462
1463  if (R.getTypePtr()->isObjCInterfaceType()) {
1464    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1465      << D.getIdentifier();
1466    InvalidDecl = true;
1467  }
1468
1469  VarDecl *NewVD;
1470  VarDecl::StorageClass SC;
1471  switch (D.getDeclSpec().getStorageClassSpec()) {
1472  default: assert(0 && "Unknown storage class!");
1473  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1474  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1475  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1476  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1477  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1478  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1479  case DeclSpec::SCS_mutable:
1480    // mutable can only appear on non-static class members, so it's always
1481    // an error here
1482    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1483    InvalidDecl = true;
1484    SC = VarDecl::None;
1485    break;
1486  }
1487
1488  IdentifierInfo *II = Name.getAsIdentifierInfo();
1489  if (!II) {
1490    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1491      << Name.getAsString();
1492    return 0;
1493  }
1494
1495  if (DC->isRecord()) {
1496    // This is a static data member for a C++ class.
1497    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1498                                    D.getIdentifierLoc(), II,
1499                                    R);
1500  } else {
1501    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1502    if (S->getFnParent() == 0) {
1503      // C99 6.9p2: The storage-class specifiers auto and register shall not
1504      // appear in the declaration specifiers in an external declaration.
1505      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1506        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1507        InvalidDecl = true;
1508      }
1509    }
1510    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1511                            II, R, SC,
1512                            // FIXME: Move to DeclGroup...
1513                            D.getDeclSpec().getSourceRange().getBegin());
1514    NewVD->setThreadSpecified(ThreadSpecified);
1515  }
1516  NewVD->setNextDeclarator(LastDeclarator);
1517
1518  // Handle attributes prior to checking for duplicates in MergeVarDecl
1519  ProcessDeclAttributes(NewVD, D);
1520
1521  // Handle GNU asm-label extension (encoded as an attribute).
1522  if (Expr *E = (Expr*) D.getAsmLabel()) {
1523    // The parser guarantees this is a string.
1524    StringLiteral *SE = cast<StringLiteral>(E);
1525    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1526                                                SE->getByteLength())));
1527  }
1528
1529  // Emit an error if an address space was applied to decl with local storage.
1530  // This includes arrays of objects with address space qualifiers, but not
1531  // automatic variables that point to other address spaces.
1532  // ISO/IEC TR 18037 S5.1.2
1533  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1534    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1535    InvalidDecl = true;
1536  }
1537  // Merge the decl with the existing one if appropriate. If the decl is
1538  // in an outer scope, it isn't the same thing.
1539  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1540    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1541      // The user tried to define a non-static data member
1542      // out-of-line (C++ [dcl.meaning]p1).
1543      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1544        << D.getCXXScopeSpec().getRange();
1545      NewVD->Destroy(Context);
1546      return 0;
1547    }
1548
1549    Redeclaration = true;
1550    if (MergeVarDecl(NewVD, PrevDecl))
1551      InvalidDecl = true;
1552
1553    if (D.getCXXScopeSpec().isSet()) {
1554      // No previous declaration in the qualifying scope.
1555      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1556        << Name << D.getCXXScopeSpec().getRange();
1557      InvalidDecl = true;
1558    }
1559  }
1560  return NewVD;
1561}
1562
1563NamedDecl*
1564Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1565                              QualType R, Decl *LastDeclarator,
1566                              Decl* PrevDecl, bool IsFunctionDefinition,
1567                              bool& InvalidDecl, bool &Redeclaration) {
1568  assert(R.getTypePtr()->isFunctionType());
1569
1570  DeclarationName Name = GetNameForDeclarator(D);
1571  FunctionDecl::StorageClass SC = FunctionDecl::None;
1572  switch (D.getDeclSpec().getStorageClassSpec()) {
1573  default: assert(0 && "Unknown storage class!");
1574  case DeclSpec::SCS_auto:
1575  case DeclSpec::SCS_register:
1576  case DeclSpec::SCS_mutable:
1577    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1578    InvalidDecl = true;
1579    break;
1580  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1581  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1582  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1583  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1584  }
1585
1586  bool isInline = D.getDeclSpec().isInlineSpecified();
1587  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1588  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1589
1590  FunctionDecl *NewFD;
1591  if (D.getKind() == Declarator::DK_Constructor) {
1592    // This is a C++ constructor declaration.
1593    assert(DC->isRecord() &&
1594           "Constructors can only be declared in a member context");
1595
1596    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1597
1598    // Create the new declaration
1599    NewFD = CXXConstructorDecl::Create(Context,
1600                                       cast<CXXRecordDecl>(DC),
1601                                       D.getIdentifierLoc(), Name, R,
1602                                       isExplicit, isInline,
1603                                       /*isImplicitlyDeclared=*/false);
1604
1605    if (InvalidDecl)
1606      NewFD->setInvalidDecl();
1607  } else if (D.getKind() == Declarator::DK_Destructor) {
1608    // This is a C++ destructor declaration.
1609    if (DC->isRecord()) {
1610      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1611
1612      NewFD = CXXDestructorDecl::Create(Context,
1613                                        cast<CXXRecordDecl>(DC),
1614                                        D.getIdentifierLoc(), Name, R,
1615                                        isInline,
1616                                        /*isImplicitlyDeclared=*/false);
1617
1618      if (InvalidDecl)
1619        NewFD->setInvalidDecl();
1620    } else {
1621      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1622
1623      // Create a FunctionDecl to satisfy the function definition parsing
1624      // code path.
1625      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1626                                   Name, R, SC, isInline,
1627                                   // FIXME: Move to DeclGroup...
1628                                   D.getDeclSpec().getSourceRange().getBegin());
1629      InvalidDecl = true;
1630      NewFD->setInvalidDecl();
1631    }
1632  } else if (D.getKind() == Declarator::DK_Conversion) {
1633    if (!DC->isRecord()) {
1634      Diag(D.getIdentifierLoc(),
1635           diag::err_conv_function_not_member);
1636      return 0;
1637    } else {
1638      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1639
1640      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1641                                        D.getIdentifierLoc(), Name, R,
1642                                        isInline, isExplicit);
1643
1644      if (InvalidDecl)
1645        NewFD->setInvalidDecl();
1646    }
1647  } else if (DC->isRecord()) {
1648    // This is a C++ method declaration.
1649    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1650                                  D.getIdentifierLoc(), Name, R,
1651                                  (SC == FunctionDecl::Static), isInline);
1652  } else {
1653    NewFD = FunctionDecl::Create(Context, DC,
1654                                 D.getIdentifierLoc(),
1655                                 Name, R, SC, isInline,
1656                                 // FIXME: Move to DeclGroup...
1657                                 D.getDeclSpec().getSourceRange().getBegin());
1658  }
1659  NewFD->setNextDeclarator(LastDeclarator);
1660
1661  // Set the lexical context. If the declarator has a C++
1662  // scope specifier, the lexical context will be different
1663  // from the semantic context.
1664  NewFD->setLexicalDeclContext(CurContext);
1665
1666  // Handle GNU asm-label extension (encoded as an attribute).
1667  if (Expr *E = (Expr*) D.getAsmLabel()) {
1668    // The parser guarantees this is a string.
1669    StringLiteral *SE = cast<StringLiteral>(E);
1670    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1671                                                SE->getByteLength())));
1672  }
1673
1674  // Copy the parameter declarations from the declarator D to
1675  // the function declaration NewFD, if they are available.
1676  if (D.getNumTypeObjects() > 0) {
1677    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1678
1679    // Create Decl objects for each parameter, adding them to the
1680    // FunctionDecl.
1681    llvm::SmallVector<ParmVarDecl*, 16> Params;
1682
1683    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1684    // function that takes no arguments, not a function that takes a
1685    // single void argument.
1686    // We let through "const void" here because Sema::GetTypeForDeclarator
1687    // already checks for that case.
1688    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1689        FTI.ArgInfo[0].Param &&
1690        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1691      // empty arg list, don't push any params.
1692      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1693
1694      // In C++, the empty parameter-type-list must be spelled "void"; a
1695      // typedef of void is not permitted.
1696      if (getLangOptions().CPlusPlus &&
1697          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1698        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1699      }
1700    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1701      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1702        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1703    }
1704
1705    NewFD->setParams(Context, &Params[0], Params.size());
1706  } else if (R->getAsTypedefType()) {
1707    // When we're declaring a function with a typedef, as in the
1708    // following example, we'll need to synthesize (unnamed)
1709    // parameters for use in the declaration.
1710    //
1711    // @code
1712    // typedef void fn(int);
1713    // fn f;
1714    // @endcode
1715    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1716    if (!FT) {
1717      // This is a typedef of a function with no prototype, so we
1718      // don't need to do anything.
1719    } else if ((FT->getNumArgs() == 0) ||
1720               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1721                FT->getArgType(0)->isVoidType())) {
1722      // This is a zero-argument function. We don't need to do anything.
1723    } else {
1724      // Synthesize a parameter for each argument type.
1725      llvm::SmallVector<ParmVarDecl*, 16> Params;
1726      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1727           ArgType != FT->arg_type_end(); ++ArgType) {
1728        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1729                                                 SourceLocation(), 0,
1730                                                 *ArgType, VarDecl::None,
1731                                                 0);
1732        Param->setImplicit();
1733        Params.push_back(Param);
1734      }
1735
1736      NewFD->setParams(Context, &Params[0], Params.size());
1737    }
1738  }
1739
1740  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1741    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1742  else if (isa<CXXDestructorDecl>(NewFD)) {
1743    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1744    Record->setUserDeclaredDestructor(true);
1745    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1746    // user-defined destructor.
1747    Record->setPOD(false);
1748  } else if (CXXConversionDecl *Conversion =
1749             dyn_cast<CXXConversionDecl>(NewFD))
1750    ActOnConversionDeclarator(Conversion);
1751
1752  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1753  if (NewFD->isOverloadedOperator() &&
1754      CheckOverloadedOperatorDeclaration(NewFD))
1755    NewFD->setInvalidDecl();
1756
1757  // Merge the decl with the existing one if appropriate. Since C functions
1758  // are in a flat namespace, make sure we consider decls in outer scopes.
1759  bool OverloadableAttrRequired = false;
1760  if (PrevDecl &&
1761      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1762    // Determine whether NewFD is an overload of PrevDecl or
1763    // a declaration that requires merging. If it's an overload,
1764    // there's no more work to do here; we'll just add the new
1765    // function to the scope.
1766    OverloadedFunctionDecl::function_iterator MatchedDecl;
1767
1768    if (!getLangOptions().CPlusPlus &&
1769        AllowOverloadingOfFunction(PrevDecl, Context))
1770      OverloadableAttrRequired = true;
1771
1772    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1773        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1774      Redeclaration = true;
1775      Decl *OldDecl = PrevDecl;
1776
1777      // If PrevDecl was an overloaded function, extract the
1778      // FunctionDecl that matched.
1779      if (isa<OverloadedFunctionDecl>(PrevDecl))
1780        OldDecl = *MatchedDecl;
1781
1782      // NewFD and PrevDecl represent declarations that need to be
1783      // merged.
1784      if (MergeFunctionDecl(NewFD, OldDecl))
1785        InvalidDecl = true;
1786
1787      if (!InvalidDecl) {
1788        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1789
1790        // An out-of-line member function declaration must also be a
1791        // definition (C++ [dcl.meaning]p1).
1792        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1793            !InvalidDecl) {
1794          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1795            << D.getCXXScopeSpec().getRange();
1796          NewFD->setInvalidDecl();
1797        }
1798      }
1799    }
1800  }
1801
1802  if (D.getCXXScopeSpec().isSet() &&
1803      (!PrevDecl || !Redeclaration)) {
1804    // The user tried to provide an out-of-line definition for a
1805    // function that is a member of a class or namespace, but there
1806    // was no such member function declared (C++ [class.mfct]p2,
1807    // C++ [namespace.memdef]p2). For example:
1808    //
1809    // class X {
1810    //   void f() const;
1811    // };
1812    //
1813    // void X::f() { } // ill-formed
1814    //
1815    // Complain about this problem, and attempt to suggest close
1816    // matches (e.g., those that differ only in cv-qualifiers and
1817    // whether the parameter types are references).
1818    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1819      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1820    InvalidDecl = true;
1821
1822    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1823                                            true);
1824    assert(!Prev.isAmbiguous() &&
1825           "Cannot have an ambiguity in previous-declaration lookup");
1826    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1827         Func != FuncEnd; ++Func) {
1828      if (isa<FunctionDecl>(*Func) &&
1829          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1830        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1831    }
1832
1833    PrevDecl = 0;
1834  }
1835
1836  // Handle attributes. We need to have merged decls when handling attributes
1837  // (for example to check for conflicts, etc).
1838  ProcessDeclAttributes(NewFD, D);
1839  AddKnownFunctionAttributes(NewFD);
1840
1841  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1842    // If a function name is overloadable in C, then every function
1843    // with that name must be marked "overloadable".
1844    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1845      << Redeclaration << NewFD;
1846    if (PrevDecl)
1847      Diag(PrevDecl->getLocation(),
1848           diag::note_attribute_overloadable_prev_overload);
1849    NewFD->addAttr(new OverloadableAttr);
1850  }
1851
1852  if (getLangOptions().CPlusPlus) {
1853    // In C++, check default arguments now that we have merged decls. Unless
1854    // the lexical context is the class, because in this case this is done
1855    // during delayed parsing anyway.
1856    if (!CurContext->isRecord())
1857      CheckCXXDefaultArguments(NewFD);
1858
1859    // An out-of-line member function declaration must also be a
1860    // definition (C++ [dcl.meaning]p1).
1861    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1862      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1863        << D.getCXXScopeSpec().getRange();
1864      InvalidDecl = true;
1865    }
1866  }
1867  return NewFD;
1868}
1869
1870void Sema::InitializerElementNotConstant(const Expr *Init) {
1871  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1872    << Init->getSourceRange();
1873}
1874
1875bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1876  switch (Init->getStmtClass()) {
1877  default:
1878    InitializerElementNotConstant(Init);
1879    return true;
1880  case Expr::ParenExprClass: {
1881    const ParenExpr* PE = cast<ParenExpr>(Init);
1882    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1883  }
1884  case Expr::CompoundLiteralExprClass:
1885    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1886  case Expr::DeclRefExprClass:
1887  case Expr::QualifiedDeclRefExprClass: {
1888    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1889    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1890      if (VD->hasGlobalStorage())
1891        return false;
1892      InitializerElementNotConstant(Init);
1893      return true;
1894    }
1895    if (isa<FunctionDecl>(D))
1896      return false;
1897    InitializerElementNotConstant(Init);
1898    return true;
1899  }
1900  case Expr::MemberExprClass: {
1901    const MemberExpr *M = cast<MemberExpr>(Init);
1902    if (M->isArrow())
1903      return CheckAddressConstantExpression(M->getBase());
1904    return CheckAddressConstantExpressionLValue(M->getBase());
1905  }
1906  case Expr::ArraySubscriptExprClass: {
1907    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1908    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1909    return CheckAddressConstantExpression(ASE->getBase()) ||
1910           CheckArithmeticConstantExpression(ASE->getIdx());
1911  }
1912  case Expr::StringLiteralClass:
1913  case Expr::PredefinedExprClass:
1914    return false;
1915  case Expr::UnaryOperatorClass: {
1916    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1917
1918    // C99 6.6p9
1919    if (Exp->getOpcode() == UnaryOperator::Deref)
1920      return CheckAddressConstantExpression(Exp->getSubExpr());
1921
1922    InitializerElementNotConstant(Init);
1923    return true;
1924  }
1925  }
1926}
1927
1928bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1929  switch (Init->getStmtClass()) {
1930  default:
1931    InitializerElementNotConstant(Init);
1932    return true;
1933  case Expr::ParenExprClass:
1934    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1935  case Expr::StringLiteralClass:
1936  case Expr::ObjCStringLiteralClass:
1937    return false;
1938  case Expr::CallExprClass:
1939  case Expr::CXXOperatorCallExprClass:
1940    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1941    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1942           Builtin::BI__builtin___CFStringMakeConstantString)
1943      return false;
1944
1945    InitializerElementNotConstant(Init);
1946    return true;
1947
1948  case Expr::UnaryOperatorClass: {
1949    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1950
1951    // C99 6.6p9
1952    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1953      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1954
1955    if (Exp->getOpcode() == UnaryOperator::Extension)
1956      return CheckAddressConstantExpression(Exp->getSubExpr());
1957
1958    InitializerElementNotConstant(Init);
1959    return true;
1960  }
1961  case Expr::BinaryOperatorClass: {
1962    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1963    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1964
1965    Expr *PExp = Exp->getLHS();
1966    Expr *IExp = Exp->getRHS();
1967    if (IExp->getType()->isPointerType())
1968      std::swap(PExp, IExp);
1969
1970    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1971    return CheckAddressConstantExpression(PExp) ||
1972           CheckArithmeticConstantExpression(IExp);
1973  }
1974  case Expr::ImplicitCastExprClass:
1975  case Expr::CStyleCastExprClass: {
1976    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1977    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1978      // Check for implicit promotion
1979      if (SubExpr->getType()->isFunctionType() ||
1980          SubExpr->getType()->isArrayType())
1981        return CheckAddressConstantExpressionLValue(SubExpr);
1982    }
1983
1984    // Check for pointer->pointer cast
1985    if (SubExpr->getType()->isPointerType())
1986      return CheckAddressConstantExpression(SubExpr);
1987
1988    if (SubExpr->getType()->isIntegralType()) {
1989      // Check for the special-case of a pointer->int->pointer cast;
1990      // this isn't standard, but some code requires it. See
1991      // PR2720 for an example.
1992      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1993        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1994          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1995          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1996          if (IntWidth >= PointerWidth) {
1997            return CheckAddressConstantExpression(SubCast->getSubExpr());
1998          }
1999        }
2000      }
2001    }
2002    if (SubExpr->getType()->isArithmeticType()) {
2003      return CheckArithmeticConstantExpression(SubExpr);
2004    }
2005
2006    InitializerElementNotConstant(Init);
2007    return true;
2008  }
2009  case Expr::ConditionalOperatorClass: {
2010    // FIXME: Should we pedwarn here?
2011    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2012    if (!Exp->getCond()->getType()->isArithmeticType()) {
2013      InitializerElementNotConstant(Init);
2014      return true;
2015    }
2016    if (CheckArithmeticConstantExpression(Exp->getCond()))
2017      return true;
2018    if (Exp->getLHS() &&
2019        CheckAddressConstantExpression(Exp->getLHS()))
2020      return true;
2021    return CheckAddressConstantExpression(Exp->getRHS());
2022  }
2023  case Expr::AddrLabelExprClass:
2024    return false;
2025  }
2026}
2027
2028static const Expr* FindExpressionBaseAddress(const Expr* E);
2029
2030static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2031  switch (E->getStmtClass()) {
2032  default:
2033    return E;
2034  case Expr::ParenExprClass: {
2035    const ParenExpr* PE = cast<ParenExpr>(E);
2036    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2037  }
2038  case Expr::MemberExprClass: {
2039    const MemberExpr *M = cast<MemberExpr>(E);
2040    if (M->isArrow())
2041      return FindExpressionBaseAddress(M->getBase());
2042    return FindExpressionBaseAddressLValue(M->getBase());
2043  }
2044  case Expr::ArraySubscriptExprClass: {
2045    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2046    return FindExpressionBaseAddress(ASE->getBase());
2047  }
2048  case Expr::UnaryOperatorClass: {
2049    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2050
2051    if (Exp->getOpcode() == UnaryOperator::Deref)
2052      return FindExpressionBaseAddress(Exp->getSubExpr());
2053
2054    return E;
2055  }
2056  }
2057}
2058
2059static const Expr* FindExpressionBaseAddress(const Expr* E) {
2060  switch (E->getStmtClass()) {
2061  default:
2062    return E;
2063  case Expr::ParenExprClass: {
2064    const ParenExpr* PE = cast<ParenExpr>(E);
2065    return FindExpressionBaseAddress(PE->getSubExpr());
2066  }
2067  case Expr::UnaryOperatorClass: {
2068    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2069
2070    // C99 6.6p9
2071    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2072      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2073
2074    if (Exp->getOpcode() == UnaryOperator::Extension)
2075      return FindExpressionBaseAddress(Exp->getSubExpr());
2076
2077    return E;
2078  }
2079  case Expr::BinaryOperatorClass: {
2080    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2081
2082    Expr *PExp = Exp->getLHS();
2083    Expr *IExp = Exp->getRHS();
2084    if (IExp->getType()->isPointerType())
2085      std::swap(PExp, IExp);
2086
2087    return FindExpressionBaseAddress(PExp);
2088  }
2089  case Expr::ImplicitCastExprClass: {
2090    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2091
2092    // Check for implicit promotion
2093    if (SubExpr->getType()->isFunctionType() ||
2094        SubExpr->getType()->isArrayType())
2095      return FindExpressionBaseAddressLValue(SubExpr);
2096
2097    // Check for pointer->pointer cast
2098    if (SubExpr->getType()->isPointerType())
2099      return FindExpressionBaseAddress(SubExpr);
2100
2101    // We assume that we have an arithmetic expression here;
2102    // if we don't, we'll figure it out later
2103    return 0;
2104  }
2105  case Expr::CStyleCastExprClass: {
2106    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2107
2108    // Check for pointer->pointer cast
2109    if (SubExpr->getType()->isPointerType())
2110      return FindExpressionBaseAddress(SubExpr);
2111
2112    // We assume that we have an arithmetic expression here;
2113    // if we don't, we'll figure it out later
2114    return 0;
2115  }
2116  }
2117}
2118
2119bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2120  switch (Init->getStmtClass()) {
2121  default:
2122    InitializerElementNotConstant(Init);
2123    return true;
2124  case Expr::ParenExprClass: {
2125    const ParenExpr* PE = cast<ParenExpr>(Init);
2126    return CheckArithmeticConstantExpression(PE->getSubExpr());
2127  }
2128  case Expr::FloatingLiteralClass:
2129  case Expr::IntegerLiteralClass:
2130  case Expr::CharacterLiteralClass:
2131  case Expr::ImaginaryLiteralClass:
2132  case Expr::TypesCompatibleExprClass:
2133  case Expr::CXXBoolLiteralExprClass:
2134    return false;
2135  case Expr::CallExprClass:
2136  case Expr::CXXOperatorCallExprClass: {
2137    const CallExpr *CE = cast<CallExpr>(Init);
2138
2139    // Allow any constant foldable calls to builtins.
2140    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2141      return false;
2142
2143    InitializerElementNotConstant(Init);
2144    return true;
2145  }
2146  case Expr::DeclRefExprClass:
2147  case Expr::QualifiedDeclRefExprClass: {
2148    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2149    if (isa<EnumConstantDecl>(D))
2150      return false;
2151    InitializerElementNotConstant(Init);
2152    return true;
2153  }
2154  case Expr::CompoundLiteralExprClass:
2155    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2156    // but vectors are allowed to be magic.
2157    if (Init->getType()->isVectorType())
2158      return false;
2159    InitializerElementNotConstant(Init);
2160    return true;
2161  case Expr::UnaryOperatorClass: {
2162    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2163
2164    switch (Exp->getOpcode()) {
2165    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2166    // See C99 6.6p3.
2167    default:
2168      InitializerElementNotConstant(Init);
2169      return true;
2170    case UnaryOperator::OffsetOf:
2171      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2172        return false;
2173      InitializerElementNotConstant(Init);
2174      return true;
2175    case UnaryOperator::Extension:
2176    case UnaryOperator::LNot:
2177    case UnaryOperator::Plus:
2178    case UnaryOperator::Minus:
2179    case UnaryOperator::Not:
2180      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2181    }
2182  }
2183  case Expr::SizeOfAlignOfExprClass: {
2184    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2185    // Special check for void types, which are allowed as an extension
2186    if (Exp->getTypeOfArgument()->isVoidType())
2187      return false;
2188    // alignof always evaluates to a constant.
2189    // FIXME: is sizeof(int[3.0]) a constant expression?
2190    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2191      InitializerElementNotConstant(Init);
2192      return true;
2193    }
2194    return false;
2195  }
2196  case Expr::BinaryOperatorClass: {
2197    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2198
2199    if (Exp->getLHS()->getType()->isArithmeticType() &&
2200        Exp->getRHS()->getType()->isArithmeticType()) {
2201      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2202             CheckArithmeticConstantExpression(Exp->getRHS());
2203    }
2204
2205    if (Exp->getLHS()->getType()->isPointerType() &&
2206        Exp->getRHS()->getType()->isPointerType()) {
2207      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2208      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2209
2210      // Only allow a null (constant integer) base; we could
2211      // allow some additional cases if necessary, but this
2212      // is sufficient to cover offsetof-like constructs.
2213      if (!LHSBase && !RHSBase) {
2214        return CheckAddressConstantExpression(Exp->getLHS()) ||
2215               CheckAddressConstantExpression(Exp->getRHS());
2216      }
2217    }
2218
2219    InitializerElementNotConstant(Init);
2220    return true;
2221  }
2222  case Expr::ImplicitCastExprClass:
2223  case Expr::CStyleCastExprClass: {
2224    const CastExpr *CE = cast<CastExpr>(Init);
2225    const Expr *SubExpr = CE->getSubExpr();
2226
2227    if (SubExpr->getType()->isArithmeticType())
2228      return CheckArithmeticConstantExpression(SubExpr);
2229
2230    if (SubExpr->getType()->isPointerType()) {
2231      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2232      if (Base) {
2233        // the cast is only valid if done to a wide enough type
2234        if (Context.getTypeSize(CE->getType()) >=
2235            Context.getTypeSize(SubExpr->getType()))
2236          return false;
2237      } else {
2238        // If the pointer has a null base, this is an offsetof-like construct
2239        return CheckAddressConstantExpression(SubExpr);
2240      }
2241    }
2242
2243    InitializerElementNotConstant(Init);
2244    return true;
2245  }
2246  case Expr::ConditionalOperatorClass: {
2247    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2248
2249    // If GNU extensions are disabled, we require all operands to be arithmetic
2250    // constant expressions.
2251    if (getLangOptions().NoExtensions) {
2252      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2253          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2254             CheckArithmeticConstantExpression(Exp->getRHS());
2255    }
2256
2257    // Otherwise, we have to emulate some of the behavior of fold here.
2258    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2259    // because it can constant fold things away.  To retain compatibility with
2260    // GCC code, we see if we can fold the condition to a constant (which we
2261    // should always be able to do in theory).  If so, we only require the
2262    // specified arm of the conditional to be a constant.  This is a horrible
2263    // hack, but is require by real world code that uses __builtin_constant_p.
2264    Expr::EvalResult EvalResult;
2265    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2266        EvalResult.HasSideEffects) {
2267      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2268      // won't be able to either.  Use it to emit the diagnostic though.
2269      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2270      assert(Res && "Evaluate couldn't evaluate this constant?");
2271      return Res;
2272    }
2273
2274    // Verify that the side following the condition is also a constant.
2275    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2276    if (EvalResult.Val.getInt() == 0)
2277      std::swap(TrueSide, FalseSide);
2278
2279    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2280      return true;
2281
2282    // Okay, the evaluated side evaluates to a constant, so we accept this.
2283    // Check to see if the other side is obviously not a constant.  If so,
2284    // emit a warning that this is a GNU extension.
2285    if (FalseSide && !FalseSide->isEvaluatable(Context))
2286      Diag(Init->getExprLoc(),
2287           diag::ext_typecheck_expression_not_constant_but_accepted)
2288        << FalseSide->getSourceRange();
2289    return false;
2290  }
2291  }
2292}
2293
2294bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2295  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2296    Init = DIE->getInit();
2297
2298  Init = Init->IgnoreParens();
2299
2300  if (Init->isEvaluatable(Context))
2301    return false;
2302
2303  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2304  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2305    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2306
2307  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2308    return CheckForConstantInitializer(e->getInitializer(), DclT);
2309
2310  if (isa<ImplicitValueInitExpr>(Init)) {
2311    // FIXME: In C++, check for non-POD types.
2312    return false;
2313  }
2314
2315  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2316    unsigned numInits = Exp->getNumInits();
2317    for (unsigned i = 0; i < numInits; i++) {
2318      // FIXME: Need to get the type of the declaration for C++,
2319      // because it could be a reference?
2320
2321      if (CheckForConstantInitializer(Exp->getInit(i),
2322                                      Exp->getInit(i)->getType()))
2323        return true;
2324    }
2325    return false;
2326  }
2327
2328  // FIXME: We can probably remove some of this code below, now that
2329  // Expr::Evaluate is doing the heavy lifting for scalars.
2330
2331  if (Init->isNullPointerConstant(Context))
2332    return false;
2333  if (Init->getType()->isArithmeticType()) {
2334    QualType InitTy = Context.getCanonicalType(Init->getType())
2335                             .getUnqualifiedType();
2336    if (InitTy == Context.BoolTy) {
2337      // Special handling for pointers implicitly cast to bool;
2338      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2339      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2340        Expr* SubE = ICE->getSubExpr();
2341        if (SubE->getType()->isPointerType() ||
2342            SubE->getType()->isArrayType() ||
2343            SubE->getType()->isFunctionType()) {
2344          return CheckAddressConstantExpression(Init);
2345        }
2346      }
2347    } else if (InitTy->isIntegralType()) {
2348      Expr* SubE = 0;
2349      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2350        SubE = CE->getSubExpr();
2351      // Special check for pointer cast to int; we allow as an extension
2352      // an address constant cast to an integer if the integer
2353      // is of an appropriate width (this sort of code is apparently used
2354      // in some places).
2355      // FIXME: Add pedwarn?
2356      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2357      if (SubE && (SubE->getType()->isPointerType() ||
2358                   SubE->getType()->isArrayType() ||
2359                   SubE->getType()->isFunctionType())) {
2360        unsigned IntWidth = Context.getTypeSize(Init->getType());
2361        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2362        if (IntWidth >= PointerWidth)
2363          return CheckAddressConstantExpression(Init);
2364      }
2365    }
2366
2367    return CheckArithmeticConstantExpression(Init);
2368  }
2369
2370  if (Init->getType()->isPointerType())
2371    return CheckAddressConstantExpression(Init);
2372
2373  // An array type at the top level that isn't an init-list must
2374  // be a string literal
2375  if (Init->getType()->isArrayType())
2376    return false;
2377
2378  if (Init->getType()->isFunctionType())
2379    return false;
2380
2381  // Allow block exprs at top level.
2382  if (Init->getType()->isBlockPointerType())
2383    return false;
2384
2385  // GCC cast to union extension
2386  // note: the validity of the cast expr is checked by CheckCastTypes()
2387  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2388    QualType T = C->getType();
2389    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2390  }
2391
2392  InitializerElementNotConstant(Init);
2393  return true;
2394}
2395
2396void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2397  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2398}
2399
2400/// AddInitializerToDecl - Adds the initializer Init to the
2401/// declaration dcl. If DirectInit is true, this is C++ direct
2402/// initialization rather than copy initialization.
2403void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2404  Decl *RealDecl = static_cast<Decl *>(dcl);
2405  Expr *Init = static_cast<Expr *>(init.release());
2406  assert(Init && "missing initializer");
2407
2408  // If there is no declaration, there was an error parsing it.  Just ignore
2409  // the initializer.
2410  if (RealDecl == 0) {
2411    Init->Destroy(Context);
2412    return;
2413  }
2414
2415  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2416  if (!VDecl) {
2417    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2418    RealDecl->setInvalidDecl();
2419    return;
2420  }
2421  // Get the decls type and save a reference for later, since
2422  // CheckInitializerTypes may change it.
2423  QualType DclT = VDecl->getType(), SavT = DclT;
2424  if (VDecl->isBlockVarDecl()) {
2425    VarDecl::StorageClass SC = VDecl->getStorageClass();
2426    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2427      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2428      VDecl->setInvalidDecl();
2429    } else if (!VDecl->isInvalidDecl()) {
2430      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2431                                VDecl->getDeclName(), DirectInit))
2432        VDecl->setInvalidDecl();
2433
2434      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2435      if (!getLangOptions().CPlusPlus) {
2436        if (SC == VarDecl::Static) // C99 6.7.8p4.
2437          CheckForConstantInitializer(Init, DclT);
2438      }
2439    }
2440  } else if (VDecl->isFileVarDecl()) {
2441    if (VDecl->getStorageClass() == VarDecl::Extern)
2442      Diag(VDecl->getLocation(), diag::warn_extern_init);
2443    if (!VDecl->isInvalidDecl())
2444      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2445                                VDecl->getDeclName(), DirectInit))
2446        VDecl->setInvalidDecl();
2447
2448    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2449    if (!getLangOptions().CPlusPlus) {
2450      // C99 6.7.8p4. All file scoped initializers need to be constant.
2451      CheckForConstantInitializer(Init, DclT);
2452    }
2453  }
2454  // If the type changed, it means we had an incomplete type that was
2455  // completed by the initializer. For example:
2456  //   int ary[] = { 1, 3, 5 };
2457  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2458  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2459    VDecl->setType(DclT);
2460    Init->setType(DclT);
2461  }
2462
2463  // Attach the initializer to the decl.
2464  VDecl->setInit(Init);
2465  return;
2466}
2467
2468void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2469  Decl *RealDecl = static_cast<Decl *>(dcl);
2470
2471  // If there is no declaration, there was an error parsing it. Just ignore it.
2472  if (RealDecl == 0)
2473    return;
2474
2475  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2476    QualType Type = Var->getType();
2477    // C++ [dcl.init.ref]p3:
2478    //   The initializer can be omitted for a reference only in a
2479    //   parameter declaration (8.3.5), in the declaration of a
2480    //   function return type, in the declaration of a class member
2481    //   within its class declaration (9.2), and where the extern
2482    //   specifier is explicitly used.
2483    if (Type->isReferenceType() &&
2484        Var->getStorageClass() != VarDecl::Extern &&
2485        Var->getStorageClass() != VarDecl::PrivateExtern) {
2486      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2487        << Var->getDeclName()
2488        << SourceRange(Var->getLocation(), Var->getLocation());
2489      Var->setInvalidDecl();
2490      return;
2491    }
2492
2493    // C++ [dcl.init]p9:
2494    //
2495    //   If no initializer is specified for an object, and the object
2496    //   is of (possibly cv-qualified) non-POD class type (or array
2497    //   thereof), the object shall be default-initialized; if the
2498    //   object is of const-qualified type, the underlying class type
2499    //   shall have a user-declared default constructor.
2500    if (getLangOptions().CPlusPlus) {
2501      QualType InitType = Type;
2502      if (const ArrayType *Array = Context.getAsArrayType(Type))
2503        InitType = Array->getElementType();
2504      if (Var->getStorageClass() != VarDecl::Extern &&
2505          Var->getStorageClass() != VarDecl::PrivateExtern &&
2506          InitType->isRecordType()) {
2507        const CXXConstructorDecl *Constructor
2508          = PerformInitializationByConstructor(InitType, 0, 0,
2509                                               Var->getLocation(),
2510                                               SourceRange(Var->getLocation(),
2511                                                           Var->getLocation()),
2512                                               Var->getDeclName(),
2513                                               IK_Default);
2514        if (!Constructor)
2515          Var->setInvalidDecl();
2516      }
2517    }
2518
2519#if 0
2520    // FIXME: Temporarily disabled because we are not properly parsing
2521    // linkage specifications on declarations, e.g.,
2522    //
2523    //   extern "C" const CGPoint CGPointerZero;
2524    //
2525    // C++ [dcl.init]p9:
2526    //
2527    //     If no initializer is specified for an object, and the
2528    //     object is of (possibly cv-qualified) non-POD class type (or
2529    //     array thereof), the object shall be default-initialized; if
2530    //     the object is of const-qualified type, the underlying class
2531    //     type shall have a user-declared default
2532    //     constructor. Otherwise, if no initializer is specified for
2533    //     an object, the object and its subobjects, if any, have an
2534    //     indeterminate initial value; if the object or any of its
2535    //     subobjects are of const-qualified type, the program is
2536    //     ill-formed.
2537    //
2538    // This isn't technically an error in C, so we don't diagnose it.
2539    //
2540    // FIXME: Actually perform the POD/user-defined default
2541    // constructor check.
2542    if (getLangOptions().CPlusPlus &&
2543        Context.getCanonicalType(Type).isConstQualified() &&
2544        Var->getStorageClass() != VarDecl::Extern)
2545      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2546        << Var->getName()
2547        << SourceRange(Var->getLocation(), Var->getLocation());
2548#endif
2549  }
2550}
2551
2552/// The declarators are chained together backwards, reverse the list.
2553Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2554  // Often we have single declarators, handle them quickly.
2555  Decl *Group = static_cast<Decl*>(group);
2556  if (Group == 0)
2557    return 0;
2558
2559  Decl *NewGroup = 0;
2560  if (Group->getNextDeclarator() == 0)
2561    NewGroup = Group;
2562  else { // reverse the list.
2563    while (Group) {
2564      Decl *Next = Group->getNextDeclarator();
2565      Group->setNextDeclarator(NewGroup);
2566      NewGroup = Group;
2567      Group = Next;
2568    }
2569  }
2570  // Perform semantic analysis that depends on having fully processed both
2571  // the declarator and initializer.
2572  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2573    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2574    if (!IDecl)
2575      continue;
2576    QualType T = IDecl->getType();
2577
2578    if (T->isVariableArrayType()) {
2579      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2580
2581      // FIXME: This won't give the correct result for
2582      // int a[10][n];
2583      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2584      if (IDecl->isFileVarDecl()) {
2585        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2586          SizeRange;
2587
2588        IDecl->setInvalidDecl();
2589      } else {
2590        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2591        // static storage duration, it shall not have a variable length array.
2592        if (IDecl->getStorageClass() == VarDecl::Static) {
2593          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2594            << SizeRange;
2595          IDecl->setInvalidDecl();
2596        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2597          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2598            << SizeRange;
2599          IDecl->setInvalidDecl();
2600        }
2601      }
2602    } else if (T->isVariablyModifiedType()) {
2603      if (IDecl->isFileVarDecl()) {
2604        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2605        IDecl->setInvalidDecl();
2606      } else {
2607        if (IDecl->getStorageClass() == VarDecl::Extern) {
2608          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2609          IDecl->setInvalidDecl();
2610        }
2611      }
2612    }
2613
2614    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2615    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2616    if (IDecl->isBlockVarDecl() &&
2617        IDecl->getStorageClass() != VarDecl::Extern) {
2618      if (!IDecl->isInvalidDecl() &&
2619          DiagnoseIncompleteType(IDecl->getLocation(), T,
2620                                 diag::err_typecheck_decl_incomplete_type))
2621        IDecl->setInvalidDecl();
2622    }
2623    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2624    // object that has file scope without an initializer, and without a
2625    // storage-class specifier or with the storage-class specifier "static",
2626    // constitutes a tentative definition. Note: A tentative definition with
2627    // external linkage is valid (C99 6.2.2p5).
2628    if (isTentativeDefinition(IDecl)) {
2629      if (T->isIncompleteArrayType()) {
2630        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2631        // array to be completed. Don't issue a diagnostic.
2632      } else if (!IDecl->isInvalidDecl() &&
2633                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2634                                        diag::err_typecheck_decl_incomplete_type))
2635        // C99 6.9.2p3: If the declaration of an identifier for an object is
2636        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2637        // declared type shall not be an incomplete type.
2638        IDecl->setInvalidDecl();
2639    }
2640    if (IDecl->isFileVarDecl())
2641      CheckForFileScopedRedefinitions(S, IDecl);
2642  }
2643  return NewGroup;
2644}
2645
2646/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2647/// to introduce parameters into function prototype scope.
2648Sema::DeclTy *
2649Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2650  const DeclSpec &DS = D.getDeclSpec();
2651
2652  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2653  VarDecl::StorageClass StorageClass = VarDecl::None;
2654  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2655    StorageClass = VarDecl::Register;
2656  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2657    Diag(DS.getStorageClassSpecLoc(),
2658         diag::err_invalid_storage_class_in_func_decl);
2659    D.getMutableDeclSpec().ClearStorageClassSpecs();
2660  }
2661  if (DS.isThreadSpecified()) {
2662    Diag(DS.getThreadSpecLoc(),
2663         diag::err_invalid_storage_class_in_func_decl);
2664    D.getMutableDeclSpec().ClearStorageClassSpecs();
2665  }
2666
2667  // Check that there are no default arguments inside the type of this
2668  // parameter (C++ only).
2669  if (getLangOptions().CPlusPlus)
2670    CheckExtraCXXDefaultArguments(D);
2671
2672  // In this context, we *do not* check D.getInvalidType(). If the declarator
2673  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2674  // though it will not reflect the user specified type.
2675  QualType parmDeclType = GetTypeForDeclarator(D, S);
2676
2677  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2678
2679  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2680  // Can this happen for params?  We already checked that they don't conflict
2681  // among each other.  Here they can only shadow globals, which is ok.
2682  IdentifierInfo *II = D.getIdentifier();
2683  if (II) {
2684    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2685      if (PrevDecl->isTemplateParameter()) {
2686        // Maybe we will complain about the shadowed template parameter.
2687        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2688        // Just pretend that we didn't see the previous declaration.
2689        PrevDecl = 0;
2690      } else if (S->isDeclScope(PrevDecl)) {
2691        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2692
2693        // Recover by removing the name
2694        II = 0;
2695        D.SetIdentifier(0, D.getIdentifierLoc());
2696      }
2697    }
2698  }
2699
2700  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2701  // Doing the promotion here has a win and a loss. The win is the type for
2702  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2703  // code generator). The loss is the orginal type isn't preserved. For example:
2704  //
2705  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2706  //    int blockvardecl[5];
2707  //    sizeof(parmvardecl);  // size == 4
2708  //    sizeof(blockvardecl); // size == 20
2709  // }
2710  //
2711  // For expressions, all implicit conversions are captured using the
2712  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2713  //
2714  // FIXME: If a source translation tool needs to see the original type, then
2715  // we need to consider storing both types (in ParmVarDecl)...
2716  //
2717  if (parmDeclType->isArrayType()) {
2718    // int x[restrict 4] ->  int *restrict
2719    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2720  } else if (parmDeclType->isFunctionType())
2721    parmDeclType = Context.getPointerType(parmDeclType);
2722
2723  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2724                                         D.getIdentifierLoc(), II,
2725                                         parmDeclType, StorageClass,
2726                                         0);
2727
2728  if (D.getInvalidType())
2729    New->setInvalidDecl();
2730
2731  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2732  if (D.getCXXScopeSpec().isSet()) {
2733    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2734      << D.getCXXScopeSpec().getRange();
2735    New->setInvalidDecl();
2736  }
2737
2738  // Add the parameter declaration into this scope.
2739  S->AddDecl(New);
2740  if (II)
2741    IdResolver.AddDecl(New);
2742
2743  ProcessDeclAttributes(New, D);
2744  return New;
2745
2746}
2747
2748void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2749  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2750         "Not a function declarator!");
2751  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2752
2753  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2754  // for a K&R function.
2755  if (!FTI.hasPrototype) {
2756    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2757      if (FTI.ArgInfo[i].Param == 0) {
2758        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2759          << FTI.ArgInfo[i].Ident;
2760        // Implicitly declare the argument as type 'int' for lack of a better
2761        // type.
2762        DeclSpec DS;
2763        const char* PrevSpec; // unused
2764        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2765                           PrevSpec);
2766        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2767        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2768        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2769      }
2770    }
2771  }
2772}
2773
2774Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2775  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2776  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2777         "Not a function declarator!");
2778  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2779
2780  if (FTI.hasPrototype) {
2781    // FIXME: Diagnose arguments without names in C.
2782  }
2783
2784  Scope *ParentScope = FnBodyScope->getParent();
2785
2786  return ActOnStartOfFunctionDef(FnBodyScope,
2787                                 ActOnDeclarator(ParentScope, D, 0,
2788                                                 /*IsFunctionDefinition=*/true));
2789}
2790
2791Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2792  Decl *decl = static_cast<Decl*>(D);
2793  FunctionDecl *FD = cast<FunctionDecl>(decl);
2794
2795  // See if this is a redefinition.
2796  const FunctionDecl *Definition;
2797  if (FD->getBody(Definition)) {
2798    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2799    Diag(Definition->getLocation(), diag::note_previous_definition);
2800  }
2801
2802  // Builtin functions cannot be defined.
2803  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2804    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2805      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2806      FD->setInvalidDecl();
2807    }
2808  }
2809
2810  PushDeclContext(FnBodyScope, FD);
2811
2812  // Check the validity of our function parameters
2813  CheckParmsForFunctionDef(FD);
2814
2815  // Introduce our parameters into the function scope
2816  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2817    ParmVarDecl *Param = FD->getParamDecl(p);
2818    Param->setOwningFunction(FD);
2819
2820    // If this has an identifier, add it to the scope stack.
2821    if (Param->getIdentifier())
2822      PushOnScopeChains(Param, FnBodyScope);
2823  }
2824
2825  // Checking attributes of current function definition
2826  // dllimport attribute.
2827  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2828    // dllimport attribute cannot be applied to definition.
2829    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2830      Diag(FD->getLocation(),
2831           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2832        << "dllimport";
2833      FD->setInvalidDecl();
2834      return FD;
2835    } else {
2836      // If a symbol previously declared dllimport is later defined, the
2837      // attribute is ignored in subsequent references, and a warning is
2838      // emitted.
2839      Diag(FD->getLocation(),
2840           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2841        << FD->getNameAsCString() << "dllimport";
2842    }
2843  }
2844  return FD;
2845}
2846
2847Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2848  Decl *dcl = static_cast<Decl *>(D);
2849  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2850  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2851    FD->setBody(Body);
2852    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2853  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2854    assert(MD == getCurMethodDecl() && "Method parsing confused");
2855    MD->setBody((Stmt*)Body);
2856  } else {
2857    Body->Destroy(Context);
2858    return 0;
2859  }
2860  PopDeclContext();
2861  // Verify and clean out per-function state.
2862
2863  // Check goto/label use.
2864  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2865       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2866    // Verify that we have no forward references left.  If so, there was a goto
2867    // or address of a label taken, but no definition of it.  Label fwd
2868    // definitions are indicated with a null substmt.
2869    if (I->second->getSubStmt() == 0) {
2870      LabelStmt *L = I->second;
2871      // Emit error.
2872      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2873
2874      // At this point, we have gotos that use the bogus label.  Stitch it into
2875      // the function body so that they aren't leaked and that the AST is well
2876      // formed.
2877      if (Body) {
2878#if 0
2879        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2880        // and the AST is malformed anyway.  We should just blow away 'L'.
2881        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2882        cast<CompoundStmt>(Body)->push_back(L);
2883#else
2884        L->Destroy(Context);
2885#endif
2886      } else {
2887        // The whole function wasn't parsed correctly, just delete this.
2888        L->Destroy(Context);
2889      }
2890    }
2891  }
2892  LabelMap.clear();
2893
2894  return D;
2895}
2896
2897/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2898/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2899NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2900                                          IdentifierInfo &II, Scope *S) {
2901  // Extension in C99.  Legal in C90, but warn about it.
2902  if (getLangOptions().C99)
2903    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2904  else
2905    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2906
2907  // FIXME: handle stuff like:
2908  // void foo() { extern float X(); }
2909  // void bar() { X(); }  <-- implicit decl for X in another scope.
2910
2911  // Set a Declarator for the implicit definition: int foo();
2912  const char *Dummy;
2913  DeclSpec DS;
2914  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2915  Error = Error; // Silence warning.
2916  assert(!Error && "Error setting up implicit decl!");
2917  Declarator D(DS, Declarator::BlockContext);
2918  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2919                SourceLocation());
2920  D.SetIdentifier(&II, Loc);
2921
2922  // Insert this function into translation-unit scope.
2923
2924  DeclContext *PrevDC = CurContext;
2925  CurContext = Context.getTranslationUnitDecl();
2926
2927  FunctionDecl *FD =
2928    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2929  FD->setImplicit();
2930
2931  CurContext = PrevDC;
2932
2933  AddKnownFunctionAttributes(FD);
2934
2935  return FD;
2936}
2937
2938/// \brief Adds any function attributes that we know a priori based on
2939/// the declaration of this function.
2940///
2941/// These attributes can apply both to implicitly-declared builtins
2942/// (like __builtin___printf_chk) or to library-declared functions
2943/// like NSLog or printf.
2944void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2945  if (FD->isInvalidDecl())
2946    return;
2947
2948  // If this is a built-in function, map its builtin attributes to
2949  // actual attributes.
2950  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2951    // Handle printf-formatting attributes.
2952    unsigned FormatIdx;
2953    bool HasVAListArg;
2954    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2955      if (!FD->getAttr<FormatAttr>())
2956        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2957    }
2958
2959    // Mark const if we don't care about errno and that is the only
2960    // thing preventing the function from being const. This allows
2961    // IRgen to use LLVM intrinsics for such functions.
2962    if (!getLangOptions().MathErrno &&
2963        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2964      if (!FD->getAttr<ConstAttr>())
2965        FD->addAttr(new ConstAttr());
2966    }
2967  }
2968
2969  IdentifierInfo *Name = FD->getIdentifier();
2970  if (!Name)
2971    return;
2972  if ((!getLangOptions().CPlusPlus &&
2973       FD->getDeclContext()->isTranslationUnit()) ||
2974      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2975       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2976       LinkageSpecDecl::lang_c)) {
2977    // Okay: this could be a libc/libm/Objective-C function we know
2978    // about.
2979  } else
2980    return;
2981
2982  unsigned KnownID;
2983  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2984    if (KnownFunctionIDs[KnownID] == Name)
2985      break;
2986
2987  switch (KnownID) {
2988  case id_NSLog:
2989  case id_NSLogv:
2990    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2991      // FIXME: We known better than our headers.
2992      const_cast<FormatAttr *>(Format)->setType("printf");
2993    } else
2994      FD->addAttr(new FormatAttr("printf", 1, 2));
2995    break;
2996
2997  case id_asprintf:
2998  case id_vasprintf:
2999    if (!FD->getAttr<FormatAttr>())
3000      FD->addAttr(new FormatAttr("printf", 2, 3));
3001    break;
3002
3003  default:
3004    // Unknown function or known function without any attributes to
3005    // add. Do nothing.
3006    break;
3007  }
3008}
3009
3010TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3011                                    Decl *LastDeclarator) {
3012  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3013  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3014
3015  // Scope manipulation handled by caller.
3016  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3017                                           D.getIdentifierLoc(),
3018                                           D.getIdentifier(),
3019                                           T);
3020  NewTD->setNextDeclarator(LastDeclarator);
3021  if (D.getInvalidType())
3022    NewTD->setInvalidDecl();
3023  return NewTD;
3024}
3025
3026/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3027/// former case, Name will be non-null.  In the later case, Name will be null.
3028/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3029/// reference/declaration/definition of a tag.
3030Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3031                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3032                             IdentifierInfo *Name, SourceLocation NameLoc,
3033                             AttributeList *Attr) {
3034  // If this is not a definition, it must have a name.
3035  assert((Name != 0 || TK == TK_Definition) &&
3036         "Nameless record must be a definition!");
3037
3038  TagDecl::TagKind Kind;
3039  switch (TagSpec) {
3040  default: assert(0 && "Unknown tag type!");
3041  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3042  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3043  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3044  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3045  }
3046
3047  DeclContext *SearchDC = CurContext;
3048  DeclContext *DC = CurContext;
3049  NamedDecl *PrevDecl = 0;
3050
3051  bool Invalid = false;
3052
3053  if (Name && SS.isNotEmpty()) {
3054    // We have a nested-name tag ('struct foo::bar').
3055
3056    // Check for invalid 'foo::'.
3057    if (SS.isInvalid()) {
3058      Name = 0;
3059      goto CreateNewDecl;
3060    }
3061
3062    DC = static_cast<DeclContext*>(SS.getScopeRep());
3063    SearchDC = DC;
3064    // Look-up name inside 'foo::'.
3065    PrevDecl = dyn_cast_or_null<TagDecl>(
3066                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3067
3068    // A tag 'foo::bar' must already exist.
3069    if (PrevDecl == 0) {
3070      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3071      Name = 0;
3072      goto CreateNewDecl;
3073    }
3074  } else if (Name) {
3075    // If this is a named struct, check to see if there was a previous forward
3076    // declaration or definition.
3077    // FIXME: We're looking into outer scopes here, even when we
3078    // shouldn't be. Doing so can result in ambiguities that we
3079    // shouldn't be diagnosing.
3080    LookupResult R = LookupName(S, Name, LookupTagName,
3081                                /*RedeclarationOnly=*/(TK != TK_Reference));
3082    if (R.isAmbiguous()) {
3083      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3084      // FIXME: This is not best way to recover from case like:
3085      //
3086      // struct S s;
3087      //
3088      // causes needless err_ovl_no_viable_function_in_init latter.
3089      Name = 0;
3090      PrevDecl = 0;
3091      Invalid = true;
3092    }
3093    else
3094      PrevDecl = R;
3095
3096    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3097      // FIXME: This makes sure that we ignore the contexts associated
3098      // with C structs, unions, and enums when looking for a matching
3099      // tag declaration or definition. See the similar lookup tweak
3100      // in Sema::LookupName; is there a better way to deal with this?
3101      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3102        SearchDC = SearchDC->getParent();
3103    }
3104  }
3105
3106  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3107    // Maybe we will complain about the shadowed template parameter.
3108    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3109    // Just pretend that we didn't see the previous declaration.
3110    PrevDecl = 0;
3111  }
3112
3113  if (PrevDecl) {
3114    // If the previous declaration was deprecated, emit a warning.
3115    DiagnoseUseOfDeprecatedDecl(PrevDecl, NameLoc);
3116
3117    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3118      // If this is a use of a previous tag, or if the tag is already declared
3119      // in the same scope (so that the definition/declaration completes or
3120      // rementions the tag), reuse the decl.
3121      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3122        // Make sure that this wasn't declared as an enum and now used as a
3123        // struct or something similar.
3124        if (PrevTagDecl->getTagKind() != Kind) {
3125          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3126          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3127          // Recover by making this an anonymous redefinition.
3128          Name = 0;
3129          PrevDecl = 0;
3130          Invalid = true;
3131        } else {
3132          // If this is a use, just return the declaration we found.
3133
3134          // FIXME: In the future, return a variant or some other clue
3135          // for the consumer of this Decl to know it doesn't own it.
3136          // For our current ASTs this shouldn't be a problem, but will
3137          // need to be changed with DeclGroups.
3138          if (TK == TK_Reference)
3139            return PrevDecl;
3140
3141          // Diagnose attempts to redefine a tag.
3142          if (TK == TK_Definition) {
3143            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3144              Diag(NameLoc, diag::err_redefinition) << Name;
3145              Diag(Def->getLocation(), diag::note_previous_definition);
3146              // If this is a redefinition, recover by making this
3147              // struct be anonymous, which will make any later
3148              // references get the previous definition.
3149              Name = 0;
3150              PrevDecl = 0;
3151              Invalid = true;
3152            } else {
3153              // If the type is currently being defined, complain
3154              // about a nested redefinition.
3155              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3156              if (Tag->isBeingDefined()) {
3157                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3158                Diag(PrevTagDecl->getLocation(),
3159                     diag::note_previous_definition);
3160                Name = 0;
3161                PrevDecl = 0;
3162                Invalid = true;
3163              }
3164            }
3165
3166            // Okay, this is definition of a previously declared or referenced
3167            // tag PrevDecl. We're going to create a new Decl for it.
3168          }
3169        }
3170        // If we get here we have (another) forward declaration or we
3171        // have a definition.  Just create a new decl.
3172      } else {
3173        // If we get here, this is a definition of a new tag type in a nested
3174        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3175        // new decl/type.  We set PrevDecl to NULL so that the entities
3176        // have distinct types.
3177        PrevDecl = 0;
3178      }
3179      // If we get here, we're going to create a new Decl. If PrevDecl
3180      // is non-NULL, it's a definition of the tag declared by
3181      // PrevDecl. If it's NULL, we have a new definition.
3182    } else {
3183      // PrevDecl is a namespace, template, or anything else
3184      // that lives in the IDNS_Tag identifier namespace.
3185      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3186        // The tag name clashes with a namespace name, issue an error and
3187        // recover by making this tag be anonymous.
3188        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3189        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3190        Name = 0;
3191        PrevDecl = 0;
3192        Invalid = true;
3193      } else {
3194        // The existing declaration isn't relevant to us; we're in a
3195        // new scope, so clear out the previous declaration.
3196        PrevDecl = 0;
3197      }
3198    }
3199  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3200             (Kind != TagDecl::TK_enum))  {
3201    // C++ [basic.scope.pdecl]p5:
3202    //   -- for an elaborated-type-specifier of the form
3203    //
3204    //          class-key identifier
3205    //
3206    //      if the elaborated-type-specifier is used in the
3207    //      decl-specifier-seq or parameter-declaration-clause of a
3208    //      function defined in namespace scope, the identifier is
3209    //      declared as a class-name in the namespace that contains
3210    //      the declaration; otherwise, except as a friend
3211    //      declaration, the identifier is declared in the smallest
3212    //      non-class, non-function-prototype scope that contains the
3213    //      declaration.
3214    //
3215    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3216    // C structs and unions.
3217
3218    // Find the context where we'll be declaring the tag.
3219    // FIXME: We would like to maintain the current DeclContext as the
3220    // lexical context,
3221    while (SearchDC->isRecord())
3222      SearchDC = SearchDC->getParent();
3223
3224    // Find the scope where we'll be declaring the tag.
3225    while (S->isClassScope() ||
3226           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3227           ((S->getFlags() & Scope::DeclScope) == 0) ||
3228           (S->getEntity() &&
3229            ((DeclContext *)S->getEntity())->isTransparentContext()))
3230      S = S->getParent();
3231  }
3232
3233CreateNewDecl:
3234
3235  // If there is an identifier, use the location of the identifier as the
3236  // location of the decl, otherwise use the location of the struct/union
3237  // keyword.
3238  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3239
3240  // Otherwise, create a new declaration. If there is a previous
3241  // declaration of the same entity, the two will be linked via
3242  // PrevDecl.
3243  TagDecl *New;
3244
3245  if (Kind == TagDecl::TK_enum) {
3246    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3247    // enum X { A, B, C } D;    D should chain to X.
3248    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3249                           cast_or_null<EnumDecl>(PrevDecl));
3250    // If this is an undefined enum, warn.
3251    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3252  } else {
3253    // struct/union/class
3254
3255    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3256    // struct X { int A; } D;    D should chain to X.
3257    if (getLangOptions().CPlusPlus)
3258      // FIXME: Look for a way to use RecordDecl for simple structs.
3259      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3260                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3261    else
3262      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3263                               cast_or_null<RecordDecl>(PrevDecl));
3264  }
3265
3266  if (Kind != TagDecl::TK_enum) {
3267    // Handle #pragma pack: if the #pragma pack stack has non-default
3268    // alignment, make up a packed attribute for this decl. These
3269    // attributes are checked when the ASTContext lays out the
3270    // structure.
3271    //
3272    // It is important for implementing the correct semantics that this
3273    // happen here (in act on tag decl). The #pragma pack stack is
3274    // maintained as a result of parser callbacks which can occur at
3275    // many points during the parsing of a struct declaration (because
3276    // the #pragma tokens are effectively skipped over during the
3277    // parsing of the struct).
3278    if (unsigned Alignment = getPragmaPackAlignment())
3279      New->addAttr(new PackedAttr(Alignment * 8));
3280  }
3281
3282  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3283    // C++ [dcl.typedef]p3:
3284    //   [...] Similarly, in a given scope, a class or enumeration
3285    //   shall not be declared with the same name as a typedef-name
3286    //   that is declared in that scope and refers to a type other
3287    //   than the class or enumeration itself.
3288    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3289    TypedefDecl *PrevTypedef = 0;
3290    if (Lookup.getKind() == LookupResult::Found)
3291      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3292
3293    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3294        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3295          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3296      Diag(Loc, diag::err_tag_definition_of_typedef)
3297        << Context.getTypeDeclType(New)
3298        << PrevTypedef->getUnderlyingType();
3299      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3300      Invalid = true;
3301    }
3302  }
3303
3304  if (Invalid)
3305    New->setInvalidDecl();
3306
3307  if (Attr)
3308    ProcessDeclAttributeList(New, Attr);
3309
3310  // If we're declaring or defining a tag in function prototype scope
3311  // in C, note that this type can only be used within the function.
3312  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3313    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3314
3315  // Set the lexical context. If the tag has a C++ scope specifier, the
3316  // lexical context will be different from the semantic context.
3317  New->setLexicalDeclContext(CurContext);
3318
3319  if (TK == TK_Definition)
3320    New->startDefinition();
3321
3322  // If this has an identifier, add it to the scope stack.
3323  if (Name) {
3324    S = getNonFieldDeclScope(S);
3325    PushOnScopeChains(New, S);
3326  } else {
3327    CurContext->addDecl(New);
3328  }
3329
3330  return New;
3331}
3332
3333void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3334  AdjustDeclIfTemplate(TagD);
3335  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3336
3337  // Enter the tag context.
3338  PushDeclContext(S, Tag);
3339
3340  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3341    FieldCollector->StartClass();
3342
3343    if (Record->getIdentifier()) {
3344      // C++ [class]p2:
3345      //   [...] The class-name is also inserted into the scope of the
3346      //   class itself; this is known as the injected-class-name. For
3347      //   purposes of access checking, the injected-class-name is treated
3348      //   as if it were a public member name.
3349      RecordDecl *InjectedClassName
3350        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3351                                CurContext, Record->getLocation(),
3352                                Record->getIdentifier(), Record);
3353      InjectedClassName->setImplicit();
3354      PushOnScopeChains(InjectedClassName, S);
3355    }
3356  }
3357}
3358
3359void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3360  AdjustDeclIfTemplate(TagD);
3361  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3362
3363  if (isa<CXXRecordDecl>(Tag))
3364    FieldCollector->FinishClass();
3365
3366  // Exit this scope of this tag's definition.
3367  PopDeclContext();
3368
3369  // Notify the consumer that we've defined a tag.
3370  Consumer.HandleTagDeclDefinition(Tag);
3371}
3372
3373/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3374/// types into constant array types in certain situations which would otherwise
3375/// be errors (for GCC compatibility).
3376static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3377                                                    ASTContext &Context) {
3378  // This method tries to turn a variable array into a constant
3379  // array even when the size isn't an ICE.  This is necessary
3380  // for compatibility with code that depends on gcc's buggy
3381  // constant expression folding, like struct {char x[(int)(char*)2];}
3382  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3383  if (!VLATy) return QualType();
3384
3385  Expr::EvalResult EvalResult;
3386  if (!VLATy->getSizeExpr() ||
3387      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3388    return QualType();
3389
3390  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3391  llvm::APSInt &Res = EvalResult.Val.getInt();
3392  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3393    return Context.getConstantArrayType(VLATy->getElementType(),
3394                                        Res, ArrayType::Normal, 0);
3395  return QualType();
3396}
3397
3398bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3399                          QualType FieldTy, const Expr *BitWidth) {
3400  // FIXME: 6.7.2.1p4 - verify the field type.
3401
3402  llvm::APSInt Value;
3403  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3404    return true;
3405
3406  // Zero-width bitfield is ok for anonymous field.
3407  if (Value == 0 && FieldName)
3408    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3409
3410  if (Value.isNegative())
3411    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3412
3413  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3414  // FIXME: We won't need the 0 size once we check that the field type is valid.
3415  if (TypeSize && Value.getZExtValue() > TypeSize)
3416    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3417       << FieldName << (unsigned)TypeSize;
3418
3419  return false;
3420}
3421
3422/// ActOnField - Each field of a struct/union/class is passed into this in order
3423/// to create a FieldDecl object for it.
3424Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3425                               SourceLocation DeclStart,
3426                               Declarator &D, ExprTy *BitfieldWidth) {
3427  IdentifierInfo *II = D.getIdentifier();
3428  Expr *BitWidth = (Expr*)BitfieldWidth;
3429  SourceLocation Loc = DeclStart;
3430  RecordDecl *Record = (RecordDecl *)TagD;
3431  if (II) Loc = D.getIdentifierLoc();
3432
3433  // FIXME: Unnamed fields can be handled in various different ways, for
3434  // example, unnamed unions inject all members into the struct namespace!
3435
3436  QualType T = GetTypeForDeclarator(D, S);
3437  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3438  bool InvalidDecl = false;
3439
3440  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3441  // than a variably modified type.
3442  if (T->isVariablyModifiedType()) {
3443    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3444    if (!FixedTy.isNull()) {
3445      Diag(Loc, diag::warn_illegal_constant_array_size);
3446      T = FixedTy;
3447    } else {
3448      Diag(Loc, diag::err_typecheck_field_variable_size);
3449      T = Context.IntTy;
3450      InvalidDecl = true;
3451    }
3452  }
3453
3454  if (BitWidth) {
3455    if (VerifyBitField(Loc, II, T, BitWidth))
3456      InvalidDecl = true;
3457  } else {
3458    // Not a bitfield.
3459
3460    // validate II.
3461
3462  }
3463
3464  // FIXME: Chain fielddecls together.
3465  FieldDecl *NewFD;
3466
3467  NewFD = FieldDecl::Create(Context, Record,
3468                            Loc, II, T, BitWidth,
3469                            D.getDeclSpec().getStorageClassSpec() ==
3470                              DeclSpec::SCS_mutable);
3471
3472  if (II) {
3473    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3474    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3475        && !isa<TagDecl>(PrevDecl)) {
3476      Diag(Loc, diag::err_duplicate_member) << II;
3477      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3478      NewFD->setInvalidDecl();
3479      Record->setInvalidDecl();
3480    }
3481  }
3482
3483  if (getLangOptions().CPlusPlus) {
3484    CheckExtraCXXDefaultArguments(D);
3485    if (!T->isPODType())
3486      cast<CXXRecordDecl>(Record)->setPOD(false);
3487  }
3488
3489  ProcessDeclAttributes(NewFD, D);
3490
3491  if (D.getInvalidType() || InvalidDecl)
3492    NewFD->setInvalidDecl();
3493
3494  if (II) {
3495    PushOnScopeChains(NewFD, S);
3496  } else
3497    Record->addDecl(NewFD);
3498
3499  return NewFD;
3500}
3501
3502/// TranslateIvarVisibility - Translate visibility from a token ID to an
3503///  AST enum value.
3504static ObjCIvarDecl::AccessControl
3505TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3506  switch (ivarVisibility) {
3507  default: assert(0 && "Unknown visitibility kind");
3508  case tok::objc_private: return ObjCIvarDecl::Private;
3509  case tok::objc_public: return ObjCIvarDecl::Public;
3510  case tok::objc_protected: return ObjCIvarDecl::Protected;
3511  case tok::objc_package: return ObjCIvarDecl::Package;
3512  }
3513}
3514
3515/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3516/// in order to create an IvarDecl object for it.
3517Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3518                              SourceLocation DeclStart,
3519                              Declarator &D, ExprTy *BitfieldWidth,
3520                              tok::ObjCKeywordKind Visibility) {
3521
3522  IdentifierInfo *II = D.getIdentifier();
3523  Expr *BitWidth = (Expr*)BitfieldWidth;
3524  SourceLocation Loc = DeclStart;
3525  if (II) Loc = D.getIdentifierLoc();
3526
3527  // FIXME: Unnamed fields can be handled in various different ways, for
3528  // example, unnamed unions inject all members into the struct namespace!
3529
3530  QualType T = GetTypeForDeclarator(D, S);
3531  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3532  bool InvalidDecl = false;
3533
3534  if (BitWidth) {
3535    // TODO: Validate.
3536    //printf("WARNING: BITFIELDS IGNORED!\n");
3537
3538    // 6.7.2.1p3
3539    // 6.7.2.1p4
3540
3541  } else {
3542    // Not a bitfield.
3543
3544    // validate II.
3545
3546  }
3547
3548  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3549  // than a variably modified type.
3550  if (T->isVariablyModifiedType()) {
3551    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3552    InvalidDecl = true;
3553  }
3554
3555  // Get the visibility (access control) for this ivar.
3556  ObjCIvarDecl::AccessControl ac =
3557    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3558                                        : ObjCIvarDecl::None;
3559
3560  // Construct the decl.
3561  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3562                                             (Expr *)BitfieldWidth);
3563
3564  if (II) {
3565    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3566    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3567        && !isa<TagDecl>(PrevDecl)) {
3568      Diag(Loc, diag::err_duplicate_member) << II;
3569      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3570      NewID->setInvalidDecl();
3571    }
3572  }
3573
3574  // Process attributes attached to the ivar.
3575  ProcessDeclAttributes(NewID, D);
3576
3577  if (D.getInvalidType() || InvalidDecl)
3578    NewID->setInvalidDecl();
3579
3580  if (II) {
3581    // FIXME: When interfaces are DeclContexts, we'll need to add
3582    // these to the interface.
3583    S->AddDecl(NewID);
3584    IdResolver.AddDecl(NewID);
3585  }
3586
3587  return NewID;
3588}
3589
3590void Sema::ActOnFields(Scope* S,
3591                       SourceLocation RecLoc, DeclTy *RecDecl,
3592                       DeclTy **Fields, unsigned NumFields,
3593                       SourceLocation LBrac, SourceLocation RBrac,
3594                       AttributeList *Attr) {
3595  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3596  assert(EnclosingDecl && "missing record or interface decl");
3597  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3598
3599  // Verify that all the fields are okay.
3600  unsigned NumNamedMembers = 0;
3601  llvm::SmallVector<FieldDecl*, 32> RecFields;
3602
3603  for (unsigned i = 0; i != NumFields; ++i) {
3604    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3605    assert(FD && "missing field decl");
3606
3607    // Get the type for the field.
3608    Type *FDTy = FD->getType().getTypePtr();
3609
3610    if (!FD->isAnonymousStructOrUnion()) {
3611      // Remember all fields written by the user.
3612      RecFields.push_back(FD);
3613    }
3614
3615    // C99 6.7.2.1p2 - A field may not be a function type.
3616    if (FDTy->isFunctionType()) {
3617      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3618        << FD->getDeclName();
3619      FD->setInvalidDecl();
3620      EnclosingDecl->setInvalidDecl();
3621      continue;
3622    }
3623    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3624    if (FDTy->isIncompleteType()) {
3625      if (!Record) {  // Incomplete ivar type is always an error.
3626        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3627                               diag::err_field_incomplete);
3628        FD->setInvalidDecl();
3629        EnclosingDecl->setInvalidDecl();
3630        continue;
3631      }
3632      if (i != NumFields-1 ||                   // ... that the last member ...
3633          !Record->isStruct() ||  // ... of a structure ...
3634          !FDTy->isArrayType()) {         //... may have incomplete array type.
3635        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3636                               diag::err_field_incomplete);
3637        FD->setInvalidDecl();
3638        EnclosingDecl->setInvalidDecl();
3639        continue;
3640      }
3641      if (NumNamedMembers < 1) {  //... must have more than named member ...
3642        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3643          << FD->getDeclName();
3644        FD->setInvalidDecl();
3645        EnclosingDecl->setInvalidDecl();
3646        continue;
3647      }
3648      // Okay, we have a legal flexible array member at the end of the struct.
3649      if (Record)
3650        Record->setHasFlexibleArrayMember(true);
3651    }
3652    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3653    /// field of another structure or the element of an array.
3654    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3655      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3656        // If this is a member of a union, then entire union becomes "flexible".
3657        if (Record && Record->isUnion()) {
3658          Record->setHasFlexibleArrayMember(true);
3659        } else {
3660          // If this is a struct/class and this is not the last element, reject
3661          // it.  Note that GCC supports variable sized arrays in the middle of
3662          // structures.
3663          if (i != NumFields-1) {
3664            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3665              << FD->getDeclName();
3666            FD->setInvalidDecl();
3667            EnclosingDecl->setInvalidDecl();
3668            continue;
3669          }
3670          // We support flexible arrays at the end of structs in other structs
3671          // as an extension.
3672          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3673            << FD->getDeclName();
3674          if (Record)
3675            Record->setHasFlexibleArrayMember(true);
3676        }
3677      }
3678    }
3679    /// A field cannot be an Objective-c object
3680    if (FDTy->isObjCInterfaceType()) {
3681      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3682        << FD->getDeclName();
3683      FD->setInvalidDecl();
3684      EnclosingDecl->setInvalidDecl();
3685      continue;
3686    }
3687    // Keep track of the number of named members.
3688    if (FD->getIdentifier())
3689      ++NumNamedMembers;
3690  }
3691
3692  // Okay, we successfully defined 'Record'.
3693  if (Record) {
3694    Record->completeDefinition(Context);
3695  } else {
3696    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3697    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3698      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3699      // Must enforce the rule that ivars in the base classes may not be
3700      // duplicates.
3701      if (ID->getSuperClass()) {
3702        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3703             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3704          ObjCIvarDecl* Ivar = (*IVI);
3705          IdentifierInfo *II = Ivar->getIdentifier();
3706          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3707          if (prevIvar) {
3708            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3709            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3710          }
3711        }
3712      }
3713    }
3714    else if (ObjCImplementationDecl *IMPDecl =
3715               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3716      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3717      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3718      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3719    }
3720  }
3721
3722  if (Attr)
3723    ProcessDeclAttributeList(Record, Attr);
3724}
3725
3726Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3727                                      DeclTy *lastEnumConst,
3728                                      SourceLocation IdLoc, IdentifierInfo *Id,
3729                                      SourceLocation EqualLoc, ExprTy *val) {
3730  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3731  EnumConstantDecl *LastEnumConst =
3732    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3733  Expr *Val = static_cast<Expr*>(val);
3734
3735  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3736  // we find one that is.
3737  S = getNonFieldDeclScope(S);
3738
3739  // Verify that there isn't already something declared with this name in this
3740  // scope.
3741  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3742  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3743    // Maybe we will complain about the shadowed template parameter.
3744    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3745    // Just pretend that we didn't see the previous declaration.
3746    PrevDecl = 0;
3747  }
3748
3749  if (PrevDecl) {
3750    // When in C++, we may get a TagDecl with the same name; in this case the
3751    // enum constant will 'hide' the tag.
3752    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3753           "Received TagDecl when not in C++!");
3754    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3755      if (isa<EnumConstantDecl>(PrevDecl))
3756        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3757      else
3758        Diag(IdLoc, diag::err_redefinition) << Id;
3759      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3760      Val->Destroy(Context);
3761      return 0;
3762    }
3763  }
3764
3765  llvm::APSInt EnumVal(32);
3766  QualType EltTy;
3767  if (Val) {
3768    // Make sure to promote the operand type to int.
3769    UsualUnaryConversions(Val);
3770
3771    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3772    SourceLocation ExpLoc;
3773    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3774      Val->Destroy(Context);
3775      Val = 0;  // Just forget about it.
3776    } else {
3777      EltTy = Val->getType();
3778    }
3779  }
3780
3781  if (!Val) {
3782    if (LastEnumConst) {
3783      // Assign the last value + 1.
3784      EnumVal = LastEnumConst->getInitVal();
3785      ++EnumVal;
3786
3787      // Check for overflow on increment.
3788      if (EnumVal < LastEnumConst->getInitVal())
3789        Diag(IdLoc, diag::warn_enum_value_overflow);
3790
3791      EltTy = LastEnumConst->getType();
3792    } else {
3793      // First value, set to zero.
3794      EltTy = Context.IntTy;
3795      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3796    }
3797  }
3798
3799  EnumConstantDecl *New =
3800    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3801                             Val, EnumVal);
3802
3803  // Register this decl in the current scope stack.
3804  PushOnScopeChains(New, S);
3805
3806  return New;
3807}
3808
3809// FIXME: For consistency with ActOnFields(), we should have the parser
3810// pass in the source location for the left/right braces.
3811void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3812                         DeclTy **Elements, unsigned NumElements) {
3813  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3814  QualType EnumType = Context.getTypeDeclType(Enum);
3815
3816  // TODO: If the result value doesn't fit in an int, it must be a long or long
3817  // long value.  ISO C does not support this, but GCC does as an extension,
3818  // emit a warning.
3819  unsigned IntWidth = Context.Target.getIntWidth();
3820
3821  // Verify that all the values are okay, compute the size of the values, and
3822  // reverse the list.
3823  unsigned NumNegativeBits = 0;
3824  unsigned NumPositiveBits = 0;
3825
3826  // Keep track of whether all elements have type int.
3827  bool AllElementsInt = true;
3828
3829  for (unsigned i = 0; i != NumElements; ++i) {
3830    EnumConstantDecl *ECD =
3831      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3832    if (!ECD) continue;  // Already issued a diagnostic.
3833
3834    // If the enum value doesn't fit in an int, emit an extension warning.
3835    const llvm::APSInt &InitVal = ECD->getInitVal();
3836    assert(InitVal.getBitWidth() >= IntWidth &&
3837           "Should have promoted value to int");
3838    if (InitVal.getBitWidth() > IntWidth) {
3839      llvm::APSInt V(InitVal);
3840      V.trunc(IntWidth);
3841      V.extend(InitVal.getBitWidth());
3842      if (V != InitVal)
3843        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3844          << InitVal.toString(10);
3845    }
3846
3847    // Keep track of the size of positive and negative values.
3848    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3849      NumPositiveBits = std::max(NumPositiveBits,
3850                                 (unsigned)InitVal.getActiveBits());
3851    else
3852      NumNegativeBits = std::max(NumNegativeBits,
3853                                 (unsigned)InitVal.getMinSignedBits());
3854
3855    // Keep track of whether every enum element has type int (very commmon).
3856    if (AllElementsInt)
3857      AllElementsInt = ECD->getType() == Context.IntTy;
3858  }
3859
3860  // Figure out the type that should be used for this enum.
3861  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3862  QualType BestType;
3863  unsigned BestWidth;
3864
3865  if (NumNegativeBits) {
3866    // If there is a negative value, figure out the smallest integer type (of
3867    // int/long/longlong) that fits.
3868    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3869      BestType = Context.IntTy;
3870      BestWidth = IntWidth;
3871    } else {
3872      BestWidth = Context.Target.getLongWidth();
3873
3874      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3875        BestType = Context.LongTy;
3876      else {
3877        BestWidth = Context.Target.getLongLongWidth();
3878
3879        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3880          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3881        BestType = Context.LongLongTy;
3882      }
3883    }
3884  } else {
3885    // If there is no negative value, figure out which of uint, ulong, ulonglong
3886    // fits.
3887    if (NumPositiveBits <= IntWidth) {
3888      BestType = Context.UnsignedIntTy;
3889      BestWidth = IntWidth;
3890    } else if (NumPositiveBits <=
3891               (BestWidth = Context.Target.getLongWidth())) {
3892      BestType = Context.UnsignedLongTy;
3893    } else {
3894      BestWidth = Context.Target.getLongLongWidth();
3895      assert(NumPositiveBits <= BestWidth &&
3896             "How could an initializer get larger than ULL?");
3897      BestType = Context.UnsignedLongLongTy;
3898    }
3899  }
3900
3901  // Loop over all of the enumerator constants, changing their types to match
3902  // the type of the enum if needed.
3903  for (unsigned i = 0; i != NumElements; ++i) {
3904    EnumConstantDecl *ECD =
3905      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3906    if (!ECD) continue;  // Already issued a diagnostic.
3907
3908    // Standard C says the enumerators have int type, but we allow, as an
3909    // extension, the enumerators to be larger than int size.  If each
3910    // enumerator value fits in an int, type it as an int, otherwise type it the
3911    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3912    // that X has type 'int', not 'unsigned'.
3913    if (ECD->getType() == Context.IntTy) {
3914      // Make sure the init value is signed.
3915      llvm::APSInt IV = ECD->getInitVal();
3916      IV.setIsSigned(true);
3917      ECD->setInitVal(IV);
3918
3919      if (getLangOptions().CPlusPlus)
3920        // C++ [dcl.enum]p4: Following the closing brace of an
3921        // enum-specifier, each enumerator has the type of its
3922        // enumeration.
3923        ECD->setType(EnumType);
3924      continue;  // Already int type.
3925    }
3926
3927    // Determine whether the value fits into an int.
3928    llvm::APSInt InitVal = ECD->getInitVal();
3929    bool FitsInInt;
3930    if (InitVal.isUnsigned() || !InitVal.isNegative())
3931      FitsInInt = InitVal.getActiveBits() < IntWidth;
3932    else
3933      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3934
3935    // If it fits into an integer type, force it.  Otherwise force it to match
3936    // the enum decl type.
3937    QualType NewTy;
3938    unsigned NewWidth;
3939    bool NewSign;
3940    if (FitsInInt) {
3941      NewTy = Context.IntTy;
3942      NewWidth = IntWidth;
3943      NewSign = true;
3944    } else if (ECD->getType() == BestType) {
3945      // Already the right type!
3946      if (getLangOptions().CPlusPlus)
3947        // C++ [dcl.enum]p4: Following the closing brace of an
3948        // enum-specifier, each enumerator has the type of its
3949        // enumeration.
3950        ECD->setType(EnumType);
3951      continue;
3952    } else {
3953      NewTy = BestType;
3954      NewWidth = BestWidth;
3955      NewSign = BestType->isSignedIntegerType();
3956    }
3957
3958    // Adjust the APSInt value.
3959    InitVal.extOrTrunc(NewWidth);
3960    InitVal.setIsSigned(NewSign);
3961    ECD->setInitVal(InitVal);
3962
3963    // Adjust the Expr initializer and type.
3964    if (ECD->getInitExpr())
3965      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3966                                                      /*isLvalue=*/false));
3967    if (getLangOptions().CPlusPlus)
3968      // C++ [dcl.enum]p4: Following the closing brace of an
3969      // enum-specifier, each enumerator has the type of its
3970      // enumeration.
3971      ECD->setType(EnumType);
3972    else
3973      ECD->setType(NewTy);
3974  }
3975
3976  Enum->completeDefinition(Context, BestType);
3977}
3978
3979Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3980                                          ExprArg expr) {
3981  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3982
3983  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3984}
3985
3986