SemaDecl.cpp revision d553d4cb957f23bb129d3174108a1ee6d54a1e4a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false,
338                                           /*hasPrototype=*/true);
339  New->setImplicit();
340
341  // Create Decl objects for each parameter, adding them to the
342  // FunctionDecl.
343  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
344    llvm::SmallVector<ParmVarDecl*, 16> Params;
345    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
346      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
347                                           FT->getArgType(i), VarDecl::None, 0));
348    New->setParams(Context, &Params[0], Params.size());
349  }
350
351  AddKnownFunctionAttributes(New);
352
353  // TUScope is the translation-unit scope to insert this function into.
354  // FIXME: This is hideous. We need to teach PushOnScopeChains to
355  // relate Scopes to DeclContexts, and probably eliminate CurContext
356  // entirely, but we're not there yet.
357  DeclContext *SavedContext = CurContext;
358  CurContext = Context.getTranslationUnitDecl();
359  PushOnScopeChains(New, TUScope);
360  CurContext = SavedContext;
361  return New;
362}
363
364/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
365/// everything from the standard library is defined.
366NamespaceDecl *Sema::GetStdNamespace() {
367  if (!StdNamespace) {
368    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
369    DeclContext *Global = Context.getTranslationUnitDecl();
370    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
371    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
372  }
373  return StdNamespace;
374}
375
376/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
377/// same name and scope as a previous declaration 'Old'.  Figure out
378/// how to resolve this situation, merging decls or emitting
379/// diagnostics as appropriate. Returns true if there was an error,
380/// false otherwise.
381///
382bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
383  bool objc_types = false;
384  // Allow multiple definitions for ObjC built-in typedefs.
385  // FIXME: Verify the underlying types are equivalent!
386  if (getLangOptions().ObjC1) {
387    const IdentifierInfo *TypeID = New->getIdentifier();
388    switch (TypeID->getLength()) {
389    default: break;
390    case 2:
391      if (!TypeID->isStr("id"))
392        break;
393      Context.setObjCIdType(New);
394      objc_types = true;
395      break;
396    case 5:
397      if (!TypeID->isStr("Class"))
398        break;
399      Context.setObjCClassType(New);
400      objc_types = true;
401      return false;
402    case 3:
403      if (!TypeID->isStr("SEL"))
404        break;
405      Context.setObjCSelType(New);
406      objc_types = true;
407      return false;
408    case 8:
409      if (!TypeID->isStr("Protocol"))
410        break;
411      Context.setObjCProtoType(New->getUnderlyingType());
412      objc_types = true;
413      return false;
414    }
415    // Fall through - the typedef name was not a builtin type.
416  }
417  // Verify the old decl was also a type.
418  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
419  if (!Old) {
420    Diag(New->getLocation(), diag::err_redefinition_different_kind)
421      << New->getDeclName();
422    if (!objc_types)
423      Diag(OldD->getLocation(), diag::note_previous_definition);
424    return true;
425  }
426
427  // Determine the "old" type we'll use for checking and diagnostics.
428  QualType OldType;
429  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
430    OldType = OldTypedef->getUnderlyingType();
431  else
432    OldType = Context.getTypeDeclType(Old);
433
434  // If the typedef types are not identical, reject them in all languages and
435  // with any extensions enabled.
436
437  if (OldType != New->getUnderlyingType() &&
438      Context.getCanonicalType(OldType) !=
439      Context.getCanonicalType(New->getUnderlyingType())) {
440    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
441      << New->getUnderlyingType() << OldType;
442    if (!objc_types)
443      Diag(Old->getLocation(), diag::note_previous_definition);
444    return true;
445  }
446  if (objc_types) return false;
447  if (getLangOptions().Microsoft) return false;
448
449  // C++ [dcl.typedef]p2:
450  //   In a given non-class scope, a typedef specifier can be used to
451  //   redefine the name of any type declared in that scope to refer
452  //   to the type to which it already refers.
453  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
454    return false;
455
456  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
457  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
458  // *either* declaration is in a system header. The code below implements
459  // this adhoc compatibility rule. FIXME: The following code will not
460  // work properly when compiling ".i" files (containing preprocessed output).
461  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
462    SourceManager &SrcMgr = Context.getSourceManager();
463    if (SrcMgr.isInSystemHeader(Old->getLocation()))
464      return false;
465    if (SrcMgr.isInSystemHeader(New->getLocation()))
466      return false;
467  }
468
469  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
470  Diag(Old->getLocation(), diag::note_previous_definition);
471  return true;
472}
473
474/// DeclhasAttr - returns true if decl Declaration already has the target
475/// attribute.
476static bool DeclHasAttr(const Decl *decl, const Attr *target) {
477  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
478    if (attr->getKind() == target->getKind())
479      return true;
480
481  return false;
482}
483
484/// MergeAttributes - append attributes from the Old decl to the New one.
485static void MergeAttributes(Decl *New, Decl *Old) {
486  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
487
488  while (attr) {
489    tmp = attr;
490    attr = attr->getNext();
491
492    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
493      tmp->setInherited(true);
494      New->addAttr(tmp);
495    } else {
496      tmp->setNext(0);
497      delete(tmp);
498    }
499  }
500
501  Old->invalidateAttrs();
502}
503
504/// MergeFunctionDecl - We just parsed a function 'New' from
505/// declarator D which has the same name and scope as a previous
506/// declaration 'Old'.  Figure out how to resolve this situation,
507/// merging decls or emitting diagnostics as appropriate.
508///
509/// In C++, New and Old must be declarations that are not
510/// overloaded. Use IsOverload to determine whether New and Old are
511/// overloaded, and to select the Old declaration that New should be
512/// merged with.
513///
514/// Returns true if there was an error, false otherwise.
515bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
516  assert(!isa<OverloadedFunctionDecl>(OldD) &&
517         "Cannot merge with an overloaded function declaration");
518
519  // Verify the old decl was also a function.
520  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
521  if (!Old) {
522    Diag(New->getLocation(), diag::err_redefinition_different_kind)
523      << New->getDeclName();
524    Diag(OldD->getLocation(), diag::note_previous_definition);
525    return true;
526  }
527
528  // Determine whether the previous declaration was a definition,
529  // implicit declaration, or a declaration.
530  diag::kind PrevDiag;
531  if (Old->isThisDeclarationADefinition())
532    PrevDiag = diag::note_previous_definition;
533  else if (Old->isImplicit())
534    PrevDiag = diag::note_previous_implicit_declaration;
535  else
536    PrevDiag = diag::note_previous_declaration;
537
538  QualType OldQType = Context.getCanonicalType(Old->getType());
539  QualType NewQType = Context.getCanonicalType(New->getType());
540
541  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
542      New->getStorageClass() == FunctionDecl::Static &&
543      Old->getStorageClass() != FunctionDecl::Static) {
544    Diag(New->getLocation(), diag::err_static_non_static)
545      << New;
546    Diag(Old->getLocation(), PrevDiag);
547    return true;
548  }
549
550  if (getLangOptions().CPlusPlus) {
551    // (C++98 13.1p2):
552    //   Certain function declarations cannot be overloaded:
553    //     -- Function declarations that differ only in the return type
554    //        cannot be overloaded.
555    QualType OldReturnType
556      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
557    QualType NewReturnType
558      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
559    if (OldReturnType != NewReturnType) {
560      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
561      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
562      return true;
563    }
564
565    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
566    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
567    if (OldMethod && NewMethod) {
568      //    -- Member function declarations with the same name and the
569      //       same parameter types cannot be overloaded if any of them
570      //       is a static member function declaration.
571      if (OldMethod->isStatic() || NewMethod->isStatic()) {
572        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
573        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
574        return true;
575      }
576
577      // C++ [class.mem]p1:
578      //   [...] A member shall not be declared twice in the
579      //   member-specification, except that a nested class or member
580      //   class template can be declared and then later defined.
581      if (OldMethod->getLexicalDeclContext() ==
582            NewMethod->getLexicalDeclContext()) {
583        unsigned NewDiag;
584        if (isa<CXXConstructorDecl>(OldMethod))
585          NewDiag = diag::err_constructor_redeclared;
586        else if (isa<CXXDestructorDecl>(NewMethod))
587          NewDiag = diag::err_destructor_redeclared;
588        else if (isa<CXXConversionDecl>(NewMethod))
589          NewDiag = diag::err_conv_function_redeclared;
590        else
591          NewDiag = diag::err_member_redeclared;
592
593        Diag(New->getLocation(), NewDiag);
594        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
595      }
596    }
597
598    // (C++98 8.3.5p3):
599    //   All declarations for a function shall agree exactly in both the
600    //   return type and the parameter-type-list.
601    if (OldQType == NewQType)
602      return MergeCompatibleFunctionDecls(New, Old);
603
604    // Fall through for conflicting redeclarations and redefinitions.
605  }
606
607  // C: Function types need to be compatible, not identical. This handles
608  // duplicate function decls like "void f(int); void f(enum X);" properly.
609  if (!getLangOptions().CPlusPlus &&
610      Context.typesAreCompatible(OldQType, NewQType)) {
611    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
612    const FunctionTypeProto *OldProto = 0;
613    if (isa<FunctionTypeNoProto>(NewFuncType) &&
614        (OldProto = OldQType->getAsFunctionTypeProto())) {
615      // The old declaration provided a function prototype, but the
616      // new declaration does not. Merge in the prototype.
617      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
618                                                 OldProto->arg_type_end());
619      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
620                                         &ParamTypes[0], ParamTypes.size(),
621                                         OldProto->isVariadic(),
622                                         OldProto->getTypeQuals());
623      New->setType(NewQType);
624      New->setInheritedPrototype();
625
626      // Synthesize a parameter for each argument type.
627      llvm::SmallVector<ParmVarDecl*, 16> Params;
628      for (FunctionTypeProto::arg_type_iterator
629             ParamType = OldProto->arg_type_begin(),
630             ParamEnd = OldProto->arg_type_end();
631           ParamType != ParamEnd; ++ParamType) {
632        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
633                                                 SourceLocation(), 0,
634                                                 *ParamType, VarDecl::None,
635                                                 0);
636        Param->setImplicit();
637        Params.push_back(Param);
638      }
639
640      New->setParams(Context, &Params[0], Params.size());
641
642    }
643
644    return MergeCompatibleFunctionDecls(New, Old);
645  }
646
647  // A function that has already been declared has been redeclared or defined
648  // with a different type- show appropriate diagnostic
649  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
650    // The user has declared a builtin function with an incompatible
651    // signature.
652    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
653      // The function the user is redeclaring is a library-defined
654      // function like 'malloc' or 'printf'. Warn about the
655      // redeclaration, then ignore it.
656      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
657      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
658        << Old << Old->getType();
659      return true;
660    }
661
662    PrevDiag = diag::note_previous_builtin_declaration;
663  }
664
665  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
666  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
667  return true;
668}
669
670/// \brief Completes the merge of two function declarations that are
671/// known to be compatible.
672///
673/// This routine handles the merging of attributes and other
674/// properties of function declarations form the old declaration to
675/// the new declaration, once we know that New is in fact a
676/// redeclaration of Old.
677///
678/// \returns false
679bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
680  // Merge the attributes
681  MergeAttributes(New, Old);
682
683  // Merge the storage class.
684  New->setStorageClass(Old->getStorageClass());
685
686  // FIXME: need to implement inline semantics
687
688  // Merge "pure" flag.
689  if (Old->isPure())
690    New->setPure();
691
692  // Merge the "deleted" flag.
693  if (Old->isDeleted())
694    New->setDeleted();
695
696  if (getLangOptions().CPlusPlus)
697    return MergeCXXFunctionDecl(New, Old);
698
699  return false;
700}
701
702/// Predicate for C "tentative" external object definitions (C99 6.9.2).
703static bool isTentativeDefinition(VarDecl *VD) {
704  if (VD->isFileVarDecl())
705    return (!VD->getInit() &&
706            (VD->getStorageClass() == VarDecl::None ||
707             VD->getStorageClass() == VarDecl::Static));
708  return false;
709}
710
711/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
712/// when dealing with C "tentative" external object definitions (C99 6.9.2).
713void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
714  bool VDIsTentative = isTentativeDefinition(VD);
715  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
716
717  // FIXME: I don't think this will actually see all of the
718  // redefinitions. Can't we check this property on-the-fly?
719  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
720                                    E = IdResolver.end();
721       I != E; ++I) {
722    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
723      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
724
725      // Handle the following case:
726      //   int a[10];
727      //   int a[];   - the code below makes sure we set the correct type.
728      //   int a[11]; - this is an error, size isn't 10.
729      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
730          OldDecl->getType()->isConstantArrayType())
731        VD->setType(OldDecl->getType());
732
733      // Check for "tentative" definitions. We can't accomplish this in
734      // MergeVarDecl since the initializer hasn't been attached.
735      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
736        continue;
737
738      // Handle __private_extern__ just like extern.
739      if (OldDecl->getStorageClass() != VarDecl::Extern &&
740          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
741          VD->getStorageClass() != VarDecl::Extern &&
742          VD->getStorageClass() != VarDecl::PrivateExtern) {
743        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
744        Diag(OldDecl->getLocation(), diag::note_previous_definition);
745        // One redefinition error is enough.
746        break;
747      }
748    }
749  }
750}
751
752/// MergeVarDecl - We just parsed a variable 'New' which has the same name
753/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
754/// situation, merging decls or emitting diagnostics as appropriate.
755///
756/// Tentative definition rules (C99 6.9.2p2) are checked by
757/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
758/// definitions here, since the initializer hasn't been attached.
759///
760bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
761  // Verify the old decl was also a variable.
762  VarDecl *Old = dyn_cast<VarDecl>(OldD);
763  if (!Old) {
764    Diag(New->getLocation(), diag::err_redefinition_different_kind)
765      << New->getDeclName();
766    Diag(OldD->getLocation(), diag::note_previous_definition);
767    return true;
768  }
769
770  MergeAttributes(New, Old);
771
772  // Merge the types
773  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
774  if (MergedT.isNull()) {
775    Diag(New->getLocation(), diag::err_redefinition_different_type)
776      << New->getDeclName();
777    Diag(Old->getLocation(), diag::note_previous_definition);
778    return true;
779  }
780  New->setType(MergedT);
781  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
782  if (New->getStorageClass() == VarDecl::Static &&
783      (Old->getStorageClass() == VarDecl::None ||
784       Old->getStorageClass() == VarDecl::Extern)) {
785    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
786    Diag(Old->getLocation(), diag::note_previous_definition);
787    return true;
788  }
789  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
790  if (New->getStorageClass() != VarDecl::Static &&
791      Old->getStorageClass() == VarDecl::Static) {
792    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
793    Diag(Old->getLocation(), diag::note_previous_definition);
794    return true;
795  }
796  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
797  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
798    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
799    Diag(Old->getLocation(), diag::note_previous_definition);
800    return true;
801  }
802  return false;
803}
804
805/// CheckParmsForFunctionDef - Check that the parameters of the given
806/// function are appropriate for the definition of a function. This
807/// takes care of any checks that cannot be performed on the
808/// declaration itself, e.g., that the types of each of the function
809/// parameters are complete.
810bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
811  bool HasInvalidParm = false;
812  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
813    ParmVarDecl *Param = FD->getParamDecl(p);
814
815    // C99 6.7.5.3p4: the parameters in a parameter type list in a
816    // function declarator that is part of a function definition of
817    // that function shall not have incomplete type.
818    if (!Param->isInvalidDecl() &&
819        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
820                               diag::err_typecheck_decl_incomplete_type)) {
821      Param->setInvalidDecl();
822      HasInvalidParm = true;
823    }
824
825    // C99 6.9.1p5: If the declarator includes a parameter type list, the
826    // declaration of each parameter shall include an identifier.
827    if (Param->getIdentifier() == 0 &&
828        !Param->isImplicit() &&
829        !getLangOptions().CPlusPlus)
830      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
831  }
832
833  return HasInvalidParm;
834}
835
836/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
837/// no declarator (e.g. "struct foo;") is parsed.
838Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
839  TagDecl *Tag = 0;
840  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
841      DS.getTypeSpecType() == DeclSpec::TST_struct ||
842      DS.getTypeSpecType() == DeclSpec::TST_union ||
843      DS.getTypeSpecType() == DeclSpec::TST_enum)
844    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
845
846  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
847    if (!Record->getDeclName() && Record->isDefinition() &&
848        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
849      return BuildAnonymousStructOrUnion(S, DS, Record);
850
851    // Microsoft allows unnamed struct/union fields. Don't complain
852    // about them.
853    // FIXME: Should we support Microsoft's extensions in this area?
854    if (Record->getDeclName() && getLangOptions().Microsoft)
855      return Tag;
856  }
857
858  if (!DS.isMissingDeclaratorOk() &&
859      DS.getTypeSpecType() != DeclSpec::TST_error) {
860    // Warn about typedefs of enums without names, since this is an
861    // extension in both Microsoft an GNU.
862    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
863        Tag && isa<EnumDecl>(Tag)) {
864      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
865        << DS.getSourceRange();
866      return Tag;
867    }
868
869    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
870      << DS.getSourceRange();
871    return 0;
872  }
873
874  return Tag;
875}
876
877/// InjectAnonymousStructOrUnionMembers - Inject the members of the
878/// anonymous struct or union AnonRecord into the owning context Owner
879/// and scope S. This routine will be invoked just after we realize
880/// that an unnamed union or struct is actually an anonymous union or
881/// struct, e.g.,
882///
883/// @code
884/// union {
885///   int i;
886///   float f;
887/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
888///    // f into the surrounding scope.x
889/// @endcode
890///
891/// This routine is recursive, injecting the names of nested anonymous
892/// structs/unions into the owning context and scope as well.
893bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
894                                               RecordDecl *AnonRecord) {
895  bool Invalid = false;
896  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
897                               FEnd = AnonRecord->field_end();
898       F != FEnd; ++F) {
899    if ((*F)->getDeclName()) {
900      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
901                                                LookupOrdinaryName, true);
902      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
903        // C++ [class.union]p2:
904        //   The names of the members of an anonymous union shall be
905        //   distinct from the names of any other entity in the
906        //   scope in which the anonymous union is declared.
907        unsigned diagKind
908          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
909                                 : diag::err_anonymous_struct_member_redecl;
910        Diag((*F)->getLocation(), diagKind)
911          << (*F)->getDeclName();
912        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
913        Invalid = true;
914      } else {
915        // C++ [class.union]p2:
916        //   For the purpose of name lookup, after the anonymous union
917        //   definition, the members of the anonymous union are
918        //   considered to have been defined in the scope in which the
919        //   anonymous union is declared.
920        Owner->makeDeclVisibleInContext(*F);
921        S->AddDecl(*F);
922        IdResolver.AddDecl(*F);
923      }
924    } else if (const RecordType *InnerRecordType
925                 = (*F)->getType()->getAsRecordType()) {
926      RecordDecl *InnerRecord = InnerRecordType->getDecl();
927      if (InnerRecord->isAnonymousStructOrUnion())
928        Invalid = Invalid ||
929          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
930    }
931  }
932
933  return Invalid;
934}
935
936/// ActOnAnonymousStructOrUnion - Handle the declaration of an
937/// anonymous structure or union. Anonymous unions are a C++ feature
938/// (C++ [class.union]) and a GNU C extension; anonymous structures
939/// are a GNU C and GNU C++ extension.
940Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
941                                                RecordDecl *Record) {
942  DeclContext *Owner = Record->getDeclContext();
943
944  // Diagnose whether this anonymous struct/union is an extension.
945  if (Record->isUnion() && !getLangOptions().CPlusPlus)
946    Diag(Record->getLocation(), diag::ext_anonymous_union);
947  else if (!Record->isUnion())
948    Diag(Record->getLocation(), diag::ext_anonymous_struct);
949
950  // C and C++ require different kinds of checks for anonymous
951  // structs/unions.
952  bool Invalid = false;
953  if (getLangOptions().CPlusPlus) {
954    const char* PrevSpec = 0;
955    // C++ [class.union]p3:
956    //   Anonymous unions declared in a named namespace or in the
957    //   global namespace shall be declared static.
958    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
959        (isa<TranslationUnitDecl>(Owner) ||
960         (isa<NamespaceDecl>(Owner) &&
961          cast<NamespaceDecl>(Owner)->getDeclName()))) {
962      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
963      Invalid = true;
964
965      // Recover by adding 'static'.
966      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
967    }
968    // C++ [class.union]p3:
969    //   A storage class is not allowed in a declaration of an
970    //   anonymous union in a class scope.
971    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
972             isa<RecordDecl>(Owner)) {
973      Diag(DS.getStorageClassSpecLoc(),
974           diag::err_anonymous_union_with_storage_spec);
975      Invalid = true;
976
977      // Recover by removing the storage specifier.
978      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
979                             PrevSpec);
980    }
981
982    // C++ [class.union]p2:
983    //   The member-specification of an anonymous union shall only
984    //   define non-static data members. [Note: nested types and
985    //   functions cannot be declared within an anonymous union. ]
986    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
987                                 MemEnd = Record->decls_end();
988         Mem != MemEnd; ++Mem) {
989      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
990        // C++ [class.union]p3:
991        //   An anonymous union shall not have private or protected
992        //   members (clause 11).
993        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
994          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
995            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
996          Invalid = true;
997        }
998      } else if ((*Mem)->isImplicit()) {
999        // Any implicit members are fine.
1000      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1001        // This is a type that showed up in an
1002        // elaborated-type-specifier inside the anonymous struct or
1003        // union, but which actually declares a type outside of the
1004        // anonymous struct or union. It's okay.
1005      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1006        if (!MemRecord->isAnonymousStructOrUnion() &&
1007            MemRecord->getDeclName()) {
1008          // This is a nested type declaration.
1009          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1010            << (int)Record->isUnion();
1011          Invalid = true;
1012        }
1013      } else {
1014        // We have something that isn't a non-static data
1015        // member. Complain about it.
1016        unsigned DK = diag::err_anonymous_record_bad_member;
1017        if (isa<TypeDecl>(*Mem))
1018          DK = diag::err_anonymous_record_with_type;
1019        else if (isa<FunctionDecl>(*Mem))
1020          DK = diag::err_anonymous_record_with_function;
1021        else if (isa<VarDecl>(*Mem))
1022          DK = diag::err_anonymous_record_with_static;
1023        Diag((*Mem)->getLocation(), DK)
1024            << (int)Record->isUnion();
1025          Invalid = true;
1026      }
1027    }
1028  } else {
1029    // FIXME: Check GNU C semantics
1030    if (Record->isUnion() && !Owner->isRecord()) {
1031      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1032        << (int)getLangOptions().CPlusPlus;
1033      Invalid = true;
1034    }
1035  }
1036
1037  if (!Record->isUnion() && !Owner->isRecord()) {
1038    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1039      << (int)getLangOptions().CPlusPlus;
1040    Invalid = true;
1041  }
1042
1043  // Create a declaration for this anonymous struct/union.
1044  NamedDecl *Anon = 0;
1045  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1046    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1047                             /*IdentifierInfo=*/0,
1048                             Context.getTypeDeclType(Record),
1049                             /*BitWidth=*/0, /*Mutable=*/false);
1050    Anon->setAccess(AS_public);
1051    if (getLangOptions().CPlusPlus)
1052      FieldCollector->Add(cast<FieldDecl>(Anon));
1053  } else {
1054    VarDecl::StorageClass SC;
1055    switch (DS.getStorageClassSpec()) {
1056    default: assert(0 && "Unknown storage class!");
1057    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1058    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1059    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1060    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1061    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1062    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1063    case DeclSpec::SCS_mutable:
1064      // mutable can only appear on non-static class members, so it's always
1065      // an error here
1066      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1067      Invalid = true;
1068      SC = VarDecl::None;
1069      break;
1070    }
1071
1072    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1073                           /*IdentifierInfo=*/0,
1074                           Context.getTypeDeclType(Record),
1075                           SC, DS.getSourceRange().getBegin());
1076  }
1077  Anon->setImplicit();
1078
1079  // Add the anonymous struct/union object to the current
1080  // context. We'll be referencing this object when we refer to one of
1081  // its members.
1082  Owner->addDecl(Anon);
1083
1084  // Inject the members of the anonymous struct/union into the owning
1085  // context and into the identifier resolver chain for name lookup
1086  // purposes.
1087  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1088    Invalid = true;
1089
1090  // Mark this as an anonymous struct/union type. Note that we do not
1091  // do this until after we have already checked and injected the
1092  // members of this anonymous struct/union type, because otherwise
1093  // the members could be injected twice: once by DeclContext when it
1094  // builds its lookup table, and once by
1095  // InjectAnonymousStructOrUnionMembers.
1096  Record->setAnonymousStructOrUnion(true);
1097
1098  if (Invalid)
1099    Anon->setInvalidDecl();
1100
1101  return Anon;
1102}
1103
1104
1105/// GetNameForDeclarator - Determine the full declaration name for the
1106/// given Declarator.
1107DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1108  switch (D.getKind()) {
1109  case Declarator::DK_Abstract:
1110    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1111    return DeclarationName();
1112
1113  case Declarator::DK_Normal:
1114    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1115    return DeclarationName(D.getIdentifier());
1116
1117  case Declarator::DK_Constructor: {
1118    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1119    Ty = Context.getCanonicalType(Ty);
1120    return Context.DeclarationNames.getCXXConstructorName(Ty);
1121  }
1122
1123  case Declarator::DK_Destructor: {
1124    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1125    Ty = Context.getCanonicalType(Ty);
1126    return Context.DeclarationNames.getCXXDestructorName(Ty);
1127  }
1128
1129  case Declarator::DK_Conversion: {
1130    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1131    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1132    Ty = Context.getCanonicalType(Ty);
1133    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1134  }
1135
1136  case Declarator::DK_Operator:
1137    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1138    return Context.DeclarationNames.getCXXOperatorName(
1139                                                D.getOverloadedOperator());
1140  }
1141
1142  assert(false && "Unknown name kind");
1143  return DeclarationName();
1144}
1145
1146/// isNearlyMatchingFunction - Determine whether the C++ functions
1147/// Declaration and Definition are "nearly" matching. This heuristic
1148/// is used to improve diagnostics in the case where an out-of-line
1149/// function definition doesn't match any declaration within
1150/// the class or namespace.
1151static bool isNearlyMatchingFunction(ASTContext &Context,
1152                                     FunctionDecl *Declaration,
1153                                     FunctionDecl *Definition) {
1154  if (Declaration->param_size() != Definition->param_size())
1155    return false;
1156  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1157    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1158    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1159
1160    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1161    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1162    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1163      return false;
1164  }
1165
1166  return true;
1167}
1168
1169Sema::DeclTy *
1170Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1171                      bool IsFunctionDefinition) {
1172  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1173  DeclarationName Name = GetNameForDeclarator(D);
1174
1175  // All of these full declarators require an identifier.  If it doesn't have
1176  // one, the ParsedFreeStandingDeclSpec action should be used.
1177  if (!Name) {
1178    if (!D.getInvalidType())  // Reject this if we think it is valid.
1179      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1180           diag::err_declarator_need_ident)
1181        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1182    return 0;
1183  }
1184
1185  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1186  // we find one that is.
1187  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1188         (S->getFlags() & Scope::TemplateParamScope) != 0)
1189    S = S->getParent();
1190
1191  DeclContext *DC;
1192  NamedDecl *PrevDecl;
1193  NamedDecl *New;
1194  bool InvalidDecl = false;
1195
1196  QualType R = GetTypeForDeclarator(D, S);
1197  if (R.isNull()) {
1198    InvalidDecl = true;
1199    R = Context.IntTy;
1200  }
1201
1202  // See if this is a redefinition of a variable in the same scope.
1203  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1204    LookupNameKind NameKind = LookupOrdinaryName;
1205
1206    // If the declaration we're planning to build will be a function
1207    // or object with linkage, then look for another declaration with
1208    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1209    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1210      /* Do nothing*/;
1211    else if (R->isFunctionType()) {
1212      if (CurContext->isFunctionOrMethod())
1213        NameKind = LookupRedeclarationWithLinkage;
1214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1215      NameKind = LookupRedeclarationWithLinkage;
1216
1217    DC = CurContext;
1218    PrevDecl = LookupName(S, Name, NameKind, true,
1219                          D.getDeclSpec().getStorageClassSpec() !=
1220                            DeclSpec::SCS_static,
1221                          D.getIdentifierLoc());
1222  } else { // Something like "int foo::x;"
1223    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1224    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1225
1226    // C++ 7.3.1.2p2:
1227    // Members (including explicit specializations of templates) of a named
1228    // namespace can also be defined outside that namespace by explicit
1229    // qualification of the name being defined, provided that the entity being
1230    // defined was already declared in the namespace and the definition appears
1231    // after the point of declaration in a namespace that encloses the
1232    // declarations namespace.
1233    //
1234    // Note that we only check the context at this point. We don't yet
1235    // have enough information to make sure that PrevDecl is actually
1236    // the declaration we want to match. For example, given:
1237    //
1238    //   class X {
1239    //     void f();
1240    //     void f(float);
1241    //   };
1242    //
1243    //   void X::f(int) { } // ill-formed
1244    //
1245    // In this case, PrevDecl will point to the overload set
1246    // containing the two f's declared in X, but neither of them
1247    // matches.
1248
1249    // First check whether we named the global scope.
1250    if (isa<TranslationUnitDecl>(DC)) {
1251      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1252        << Name << D.getCXXScopeSpec().getRange();
1253    } else if (!CurContext->Encloses(DC)) {
1254      // The qualifying scope doesn't enclose the original declaration.
1255      // Emit diagnostic based on current scope.
1256      SourceLocation L = D.getIdentifierLoc();
1257      SourceRange R = D.getCXXScopeSpec().getRange();
1258      if (isa<FunctionDecl>(CurContext))
1259        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1260      else
1261        Diag(L, diag::err_invalid_declarator_scope)
1262          << Name << cast<NamedDecl>(DC) << R;
1263      InvalidDecl = true;
1264    }
1265  }
1266
1267  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1268    // Maybe we will complain about the shadowed template parameter.
1269    InvalidDecl = InvalidDecl
1270      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1271    // Just pretend that we didn't see the previous declaration.
1272    PrevDecl = 0;
1273  }
1274
1275  // In C++, the previous declaration we find might be a tag type
1276  // (class or enum). In this case, the new declaration will hide the
1277  // tag type. Note that this does does not apply if we're declaring a
1278  // typedef (C++ [dcl.typedef]p4).
1279  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1280      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1281    PrevDecl = 0;
1282
1283  bool Redeclaration = false;
1284  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1285    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1286                                 InvalidDecl, Redeclaration);
1287  } else if (R->isFunctionType()) {
1288    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1289                                  IsFunctionDefinition, InvalidDecl,
1290                                  Redeclaration);
1291  } else {
1292    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1293                                  InvalidDecl, Redeclaration);
1294  }
1295
1296  if (New == 0)
1297    return 0;
1298
1299  // Set the lexical context. If the declarator has a C++ scope specifier, the
1300  // lexical context will be different from the semantic context.
1301  New->setLexicalDeclContext(CurContext);
1302
1303  // If this has an identifier and is not an invalid redeclaration,
1304  // add it to the scope stack.
1305  if (Name && !(Redeclaration && InvalidDecl))
1306    PushOnScopeChains(New, S);
1307  // If any semantic error occurred, mark the decl as invalid.
1308  if (D.getInvalidType() || InvalidDecl)
1309    New->setInvalidDecl();
1310
1311  return New;
1312}
1313
1314/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1315/// types into constant array types in certain situations which would otherwise
1316/// be errors (for GCC compatibility).
1317static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1318                                                    ASTContext &Context,
1319                                                    bool &SizeIsNegative) {
1320  // This method tries to turn a variable array into a constant
1321  // array even when the size isn't an ICE.  This is necessary
1322  // for compatibility with code that depends on gcc's buggy
1323  // constant expression folding, like struct {char x[(int)(char*)2];}
1324  SizeIsNegative = false;
1325
1326  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1327    QualType Pointee = PTy->getPointeeType();
1328    QualType FixedType =
1329        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1330    if (FixedType.isNull()) return FixedType;
1331    FixedType = Context.getPointerType(FixedType);
1332    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1333    return FixedType;
1334  }
1335
1336  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1337  if (!VLATy)
1338    return QualType();
1339  // FIXME: We should probably handle this case
1340  if (VLATy->getElementType()->isVariablyModifiedType())
1341    return QualType();
1342
1343  Expr::EvalResult EvalResult;
1344  if (!VLATy->getSizeExpr() ||
1345      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1346      !EvalResult.Val.isInt())
1347    return QualType();
1348
1349  llvm::APSInt &Res = EvalResult.Val.getInt();
1350  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1351    return Context.getConstantArrayType(VLATy->getElementType(),
1352                                        Res, ArrayType::Normal, 0);
1353
1354  SizeIsNegative = true;
1355  return QualType();
1356}
1357
1358NamedDecl*
1359Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1360                             QualType R, Decl* LastDeclarator,
1361                             Decl* PrevDecl, bool& InvalidDecl,
1362                             bool &Redeclaration) {
1363  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1364  if (D.getCXXScopeSpec().isSet()) {
1365    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1366      << D.getCXXScopeSpec().getRange();
1367    InvalidDecl = true;
1368    // Pretend we didn't see the scope specifier.
1369    DC = 0;
1370  }
1371
1372  // Check that there are no default arguments (C++ only).
1373  if (getLangOptions().CPlusPlus)
1374    CheckExtraCXXDefaultArguments(D);
1375
1376  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1377  if (!NewTD) return 0;
1378
1379  // Handle attributes prior to checking for duplicates in MergeVarDecl
1380  ProcessDeclAttributes(NewTD, D);
1381  // Merge the decl with the existing one if appropriate. If the decl is
1382  // in an outer scope, it isn't the same thing.
1383  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1384    Redeclaration = true;
1385    if (MergeTypeDefDecl(NewTD, PrevDecl))
1386      InvalidDecl = true;
1387  }
1388
1389  if (S->getFnParent() == 0) {
1390    QualType T = NewTD->getUnderlyingType();
1391    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1392    // then it shall have block scope.
1393    if (T->isVariablyModifiedType()) {
1394      bool SizeIsNegative;
1395      QualType FixedTy =
1396          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1397      if (!FixedTy.isNull()) {
1398        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1399        NewTD->setUnderlyingType(FixedTy);
1400      } else {
1401        if (SizeIsNegative)
1402          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1403        else if (T->isVariableArrayType())
1404          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1405        else
1406          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1407        InvalidDecl = true;
1408      }
1409    }
1410  }
1411  return NewTD;
1412}
1413
1414/// \brief Determines whether the given declaration is an out-of-scope
1415/// previous declaration.
1416///
1417/// This routine should be invoked when name lookup has found a
1418/// previous declaration (PrevDecl) that is not in the scope where a
1419/// new declaration by the same name is being introduced. If the new
1420/// declaration occurs in a local scope, previous declarations with
1421/// linkage may still be considered previous declarations (C99
1422/// 6.2.2p4-5, C++ [basic.link]p6).
1423///
1424/// \param PrevDecl the previous declaration found by name
1425/// lookup
1426///
1427/// \param DC the context in which the new declaration is being
1428/// declared.
1429///
1430/// \returns true if PrevDecl is an out-of-scope previous declaration
1431/// for a new delcaration with the same name.
1432static bool
1433isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1434                                ASTContext &Context) {
1435  if (!PrevDecl)
1436    return 0;
1437
1438  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1439  // case we need to check each of the overloaded functions.
1440  if (!PrevDecl->hasLinkage())
1441    return false;
1442
1443  if (Context.getLangOptions().CPlusPlus) {
1444    // C++ [basic.link]p6:
1445    //   If there is a visible declaration of an entity with linkage
1446    //   having the same name and type, ignoring entities declared
1447    //   outside the innermost enclosing namespace scope, the block
1448    //   scope declaration declares that same entity and receives the
1449    //   linkage of the previous declaration.
1450    DeclContext *OuterContext = DC->getLookupContext();
1451    if (!OuterContext->isFunctionOrMethod())
1452      // This rule only applies to block-scope declarations.
1453      return false;
1454    else {
1455      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1456      if (PrevOuterContext->isRecord())
1457        // We found a member function: ignore it.
1458        return false;
1459      else {
1460        // Find the innermost enclosing namespace for the new and
1461        // previous declarations.
1462        while (!OuterContext->isFileContext())
1463          OuterContext = OuterContext->getParent();
1464        while (!PrevOuterContext->isFileContext())
1465          PrevOuterContext = PrevOuterContext->getParent();
1466
1467        // The previous declaration is in a different namespace, so it
1468        // isn't the same function.
1469        if (OuterContext->getPrimaryContext() !=
1470            PrevOuterContext->getPrimaryContext())
1471          return false;
1472      }
1473    }
1474  }
1475
1476  return true;
1477}
1478
1479/// \brief Inject a locally-scoped declaration with external linkage
1480/// into the appropriate namespace scope.
1481///
1482/// Given a declaration of an entity with linkage that occurs within a
1483/// local scope, this routine inject that declaration into top-level
1484/// scope so that it will be visible for later uses and declarations
1485/// of the same entity.
1486void Sema::InjectLocallyScopedExternalDeclaration(ValueDecl *VD) {
1487  // FIXME: We don't do this in C++ because, although we would like
1488  // to get the extra checking that this operation implies,
1489  // the declaration itself is not visible according to C++'s rules.
1490  assert(!getLangOptions().CPlusPlus &&
1491         "Can't inject locally-scoped declarations in C++");
1492  IdentifierResolver::iterator I = IdResolver.begin(VD->getDeclName()),
1493                            IEnd = IdResolver.end();
1494  NamedDecl *PrevDecl = 0;
1495  while (I != IEnd && !isa<TranslationUnitDecl>((*I)->getDeclContext())) {
1496    PrevDecl = *I;
1497    ++I;
1498  }
1499
1500  if (I == IEnd) {
1501    // No name with this identifier has been declared at translation
1502    // unit scope. Add this name into the appropriate scope.
1503    if (PrevDecl)
1504      IdResolver.AddShadowedDecl(VD, PrevDecl);
1505    else
1506      IdResolver.AddDecl(VD);
1507    TUScope->AddDecl(VD);
1508    return;
1509  }
1510
1511  if (isa<TagDecl>(*I)) {
1512    // The first thing we found was a tag declaration, so insert
1513    // this function so that it will be found before the tag
1514    // declaration.
1515    if (PrevDecl)
1516      IdResolver.AddShadowedDecl(VD, PrevDecl);
1517    else
1518      IdResolver.AddDecl(VD);
1519    TUScope->AddDecl(VD);
1520    return;
1521  }
1522
1523  if (VD->declarationReplaces(*I)) {
1524    // We found a previous declaration of the same entity. Replace
1525    // that declaration with this one.
1526    TUScope->RemoveDecl(*I);
1527    TUScope->AddDecl(VD);
1528    IdResolver.RemoveDecl(*I);
1529    if (PrevDecl)
1530      IdResolver.AddShadowedDecl(VD, PrevDecl);
1531    else
1532      IdResolver.AddDecl(VD);
1533  }
1534}
1535
1536NamedDecl*
1537Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1538                              QualType R, Decl* LastDeclarator,
1539                              NamedDecl* PrevDecl, bool& InvalidDecl,
1540                              bool &Redeclaration) {
1541  DeclarationName Name = GetNameForDeclarator(D);
1542
1543  // Check that there are no default arguments (C++ only).
1544  if (getLangOptions().CPlusPlus)
1545    CheckExtraCXXDefaultArguments(D);
1546
1547  if (R.getTypePtr()->isObjCInterfaceType()) {
1548    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1549    InvalidDecl = true;
1550  }
1551
1552  VarDecl *NewVD;
1553  VarDecl::StorageClass SC;
1554  switch (D.getDeclSpec().getStorageClassSpec()) {
1555  default: assert(0 && "Unknown storage class!");
1556  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1557  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1558  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1559  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1560  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1561  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1562  case DeclSpec::SCS_mutable:
1563    // mutable can only appear on non-static class members, so it's always
1564    // an error here
1565    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1566    InvalidDecl = true;
1567    SC = VarDecl::None;
1568    break;
1569  }
1570
1571  IdentifierInfo *II = Name.getAsIdentifierInfo();
1572  if (!II) {
1573    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1574      << Name.getAsString();
1575    return 0;
1576  }
1577
1578  if (DC->isRecord()) {
1579    // This is a static data member for a C++ class.
1580    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1581                                    D.getIdentifierLoc(), II,
1582                                    R);
1583  } else {
1584    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1585    if (S->getFnParent() == 0) {
1586      // C99 6.9p2: The storage-class specifiers auto and register shall not
1587      // appear in the declaration specifiers in an external declaration.
1588      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1589        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1590        InvalidDecl = true;
1591      }
1592    }
1593    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1594                            II, R, SC,
1595                            // FIXME: Move to DeclGroup...
1596                            D.getDeclSpec().getSourceRange().getBegin());
1597    NewVD->setThreadSpecified(ThreadSpecified);
1598  }
1599  NewVD->setNextDeclarator(LastDeclarator);
1600
1601  // Handle attributes prior to checking for duplicates in MergeVarDecl
1602  ProcessDeclAttributes(NewVD, D);
1603
1604  // Handle GNU asm-label extension (encoded as an attribute).
1605  if (Expr *E = (Expr*) D.getAsmLabel()) {
1606    // The parser guarantees this is a string.
1607    StringLiteral *SE = cast<StringLiteral>(E);
1608    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1609                                                SE->getByteLength())));
1610  }
1611
1612  // Emit an error if an address space was applied to decl with local storage.
1613  // This includes arrays of objects with address space qualifiers, but not
1614  // automatic variables that point to other address spaces.
1615  // ISO/IEC TR 18037 S5.1.2
1616  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1617    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1618    InvalidDecl = true;
1619  }
1620
1621  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1622    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1623  }
1624
1625  // If name lookup finds a previous declaration that is not in the
1626  // same scope as the new declaration, this may still be an
1627  // acceptable redeclaration.
1628  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1629      !(NewVD->hasLinkage() &&
1630        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1631    PrevDecl = 0;
1632
1633  // Merge the decl with the existing one if appropriate.
1634  if (PrevDecl) {
1635    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1636      // The user tried to define a non-static data member
1637      // out-of-line (C++ [dcl.meaning]p1).
1638      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1639        << D.getCXXScopeSpec().getRange();
1640      NewVD->Destroy(Context);
1641      return 0;
1642    }
1643
1644    Redeclaration = true;
1645    if (MergeVarDecl(NewVD, PrevDecl))
1646      InvalidDecl = true;
1647
1648    if (D.getCXXScopeSpec().isSet()) {
1649      // No previous declaration in the qualifying scope.
1650      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1651        << Name << D.getCXXScopeSpec().getRange();
1652      InvalidDecl = true;
1653    }
1654  }
1655
1656  // If this is a locally-scoped extern variable in C, inject a
1657  // declaration into translation unit scope so that all external
1658  // declarations are visible.
1659  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod() &&
1660      NewVD->hasLinkage())
1661    InjectLocallyScopedExternalDeclaration(NewVD);
1662
1663  return NewVD;
1664}
1665
1666NamedDecl*
1667Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1668                              QualType R, Decl *LastDeclarator,
1669                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1670                              bool& InvalidDecl, bool &Redeclaration) {
1671  assert(R.getTypePtr()->isFunctionType());
1672
1673  DeclarationName Name = GetNameForDeclarator(D);
1674  FunctionDecl::StorageClass SC = FunctionDecl::None;
1675  switch (D.getDeclSpec().getStorageClassSpec()) {
1676  default: assert(0 && "Unknown storage class!");
1677  case DeclSpec::SCS_auto:
1678  case DeclSpec::SCS_register:
1679  case DeclSpec::SCS_mutable:
1680    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1681         diag::err_typecheck_sclass_func);
1682    InvalidDecl = true;
1683    break;
1684  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1685  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1686  case DeclSpec::SCS_static: {
1687    if (DC->getLookupContext()->isFunctionOrMethod()) {
1688      // C99 6.7.1p5:
1689      //   The declaration of an identifier for a function that has
1690      //   block scope shall have no explicit storage-class specifier
1691      //   other than extern
1692      // See also (C++ [dcl.stc]p4).
1693      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1694           diag::err_static_block_func);
1695      SC = FunctionDecl::None;
1696    } else
1697      SC = FunctionDecl::Static;
1698    break;
1699  }
1700  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1701  }
1702
1703  bool isInline = D.getDeclSpec().isInlineSpecified();
1704  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1705  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1706
1707  FunctionDecl *NewFD;
1708  if (D.getKind() == Declarator::DK_Constructor) {
1709    // This is a C++ constructor declaration.
1710    assert(DC->isRecord() &&
1711           "Constructors can only be declared in a member context");
1712
1713    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1714
1715    // Create the new declaration
1716    NewFD = CXXConstructorDecl::Create(Context,
1717                                       cast<CXXRecordDecl>(DC),
1718                                       D.getIdentifierLoc(), Name, R,
1719                                       isExplicit, isInline,
1720                                       /*isImplicitlyDeclared=*/false);
1721
1722    if (InvalidDecl)
1723      NewFD->setInvalidDecl();
1724  } else if (D.getKind() == Declarator::DK_Destructor) {
1725    // This is a C++ destructor declaration.
1726    if (DC->isRecord()) {
1727      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1728
1729      NewFD = CXXDestructorDecl::Create(Context,
1730                                        cast<CXXRecordDecl>(DC),
1731                                        D.getIdentifierLoc(), Name, R,
1732                                        isInline,
1733                                        /*isImplicitlyDeclared=*/false);
1734
1735      if (InvalidDecl)
1736        NewFD->setInvalidDecl();
1737    } else {
1738      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1739
1740      // Create a FunctionDecl to satisfy the function definition parsing
1741      // code path.
1742      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1743                                   Name, R, SC, isInline,
1744                                   /*hasPrototype=*/true,
1745                                   // FIXME: Move to DeclGroup...
1746                                   D.getDeclSpec().getSourceRange().getBegin());
1747      InvalidDecl = true;
1748      NewFD->setInvalidDecl();
1749    }
1750  } else if (D.getKind() == Declarator::DK_Conversion) {
1751    if (!DC->isRecord()) {
1752      Diag(D.getIdentifierLoc(),
1753           diag::err_conv_function_not_member);
1754      return 0;
1755    } else {
1756      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1757
1758      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1759                                        D.getIdentifierLoc(), Name, R,
1760                                        isInline, isExplicit);
1761
1762      if (InvalidDecl)
1763        NewFD->setInvalidDecl();
1764    }
1765  } else if (DC->isRecord()) {
1766    // This is a C++ method declaration.
1767    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1768                                  D.getIdentifierLoc(), Name, R,
1769                                  (SC == FunctionDecl::Static), isInline);
1770  } else {
1771    NewFD = FunctionDecl::Create(Context, DC,
1772                                 D.getIdentifierLoc(),
1773                                 Name, R, SC, isInline,
1774                                 /*hasPrototype=*/
1775                                   (getLangOptions().CPlusPlus ||
1776                                    (D.getNumTypeObjects() &&
1777                                     D.getTypeObject(0).Fun.hasPrototype)),
1778                                 // FIXME: Move to DeclGroup...
1779                                 D.getDeclSpec().getSourceRange().getBegin());
1780  }
1781  NewFD->setNextDeclarator(LastDeclarator);
1782
1783  // Set the lexical context. If the declarator has a C++
1784  // scope specifier, the lexical context will be different
1785  // from the semantic context.
1786  NewFD->setLexicalDeclContext(CurContext);
1787
1788  // Handle GNU asm-label extension (encoded as an attribute).
1789  if (Expr *E = (Expr*) D.getAsmLabel()) {
1790    // The parser guarantees this is a string.
1791    StringLiteral *SE = cast<StringLiteral>(E);
1792    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1793                                                SE->getByteLength())));
1794  }
1795
1796  // Copy the parameter declarations from the declarator D to
1797  // the function declaration NewFD, if they are available.
1798  if (D.getNumTypeObjects() > 0) {
1799    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1800
1801    // Create Decl objects for each parameter, adding them to the
1802    // FunctionDecl.
1803    llvm::SmallVector<ParmVarDecl*, 16> Params;
1804
1805    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1806    // function that takes no arguments, not a function that takes a
1807    // single void argument.
1808    // We let through "const void" here because Sema::GetTypeForDeclarator
1809    // already checks for that case.
1810    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1811        FTI.ArgInfo[0].Param &&
1812        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1813      // empty arg list, don't push any params.
1814      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1815
1816      // In C++, the empty parameter-type-list must be spelled "void"; a
1817      // typedef of void is not permitted.
1818      if (getLangOptions().CPlusPlus &&
1819          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1820        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1821      }
1822    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1823      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1824        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1825    }
1826
1827    NewFD->setParams(Context, &Params[0], Params.size());
1828  } else if (R->getAsTypedefType()) {
1829    // When we're declaring a function with a typedef, as in the
1830    // following example, we'll need to synthesize (unnamed)
1831    // parameters for use in the declaration.
1832    //
1833    // @code
1834    // typedef void fn(int);
1835    // fn f;
1836    // @endcode
1837    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1838    if (!FT) {
1839      // This is a typedef of a function with no prototype, so we
1840      // don't need to do anything.
1841    } else if ((FT->getNumArgs() == 0) ||
1842               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1843                FT->getArgType(0)->isVoidType())) {
1844      // This is a zero-argument function. We don't need to do anything.
1845    } else {
1846      // Synthesize a parameter for each argument type.
1847      llvm::SmallVector<ParmVarDecl*, 16> Params;
1848      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1849           ArgType != FT->arg_type_end(); ++ArgType) {
1850        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1851                                                 SourceLocation(), 0,
1852                                                 *ArgType, VarDecl::None,
1853                                                 0);
1854        Param->setImplicit();
1855        Params.push_back(Param);
1856      }
1857
1858      NewFD->setParams(Context, &Params[0], Params.size());
1859    }
1860  }
1861
1862  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1863    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1864  else if (isa<CXXDestructorDecl>(NewFD)) {
1865    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1866    Record->setUserDeclaredDestructor(true);
1867    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1868    // user-defined destructor.
1869    Record->setPOD(false);
1870  } else if (CXXConversionDecl *Conversion =
1871             dyn_cast<CXXConversionDecl>(NewFD))
1872    ActOnConversionDeclarator(Conversion);
1873
1874  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1875  if (NewFD->isOverloadedOperator() &&
1876      CheckOverloadedOperatorDeclaration(NewFD))
1877    NewFD->setInvalidDecl();
1878
1879  // If name lookup finds a previous declaration that is not in the
1880  // same scope as the new declaration, this may still be an
1881  // acceptable redeclaration.
1882  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1883      !(NewFD->hasLinkage() &&
1884        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1885    PrevDecl = 0;
1886
1887  // Merge or overload the declaration with an existing declaration of
1888  // the same name, if appropriate.
1889  bool OverloadableAttrRequired = false;
1890  if (PrevDecl) {
1891    // Determine whether NewFD is an overload of PrevDecl or
1892    // a declaration that requires merging. If it's an overload,
1893    // there's no more work to do here; we'll just add the new
1894    // function to the scope.
1895    OverloadedFunctionDecl::function_iterator MatchedDecl;
1896
1897    if (!getLangOptions().CPlusPlus &&
1898        AllowOverloadingOfFunction(PrevDecl, Context)) {
1899      OverloadableAttrRequired = true;
1900
1901      // Functions marked "overloadable" must have a prototype (that
1902      // we can't get through declaration merging).
1903      if (!R->getAsFunctionTypeProto()) {
1904        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1905          << NewFD;
1906        InvalidDecl = true;
1907        Redeclaration = true;
1908
1909        // Turn this into a variadic function with no parameters.
1910        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1911                                    0, 0, true, 0);
1912        NewFD->setType(R);
1913      }
1914    }
1915
1916    if (PrevDecl &&
1917        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1918         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1919      Redeclaration = true;
1920      Decl *OldDecl = PrevDecl;
1921
1922      // If PrevDecl was an overloaded function, extract the
1923      // FunctionDecl that matched.
1924      if (isa<OverloadedFunctionDecl>(PrevDecl))
1925        OldDecl = *MatchedDecl;
1926
1927      // NewFD and PrevDecl represent declarations that need to be
1928      // merged.
1929      if (MergeFunctionDecl(NewFD, OldDecl))
1930        InvalidDecl = true;
1931
1932      if (!InvalidDecl) {
1933        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1934
1935        // An out-of-line member function declaration must also be a
1936        // definition (C++ [dcl.meaning]p1).
1937        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1938            !InvalidDecl) {
1939          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1940            << D.getCXXScopeSpec().getRange();
1941          NewFD->setInvalidDecl();
1942        }
1943      }
1944    }
1945  }
1946
1947  if (D.getCXXScopeSpec().isSet() &&
1948      (!PrevDecl || !Redeclaration)) {
1949    // The user tried to provide an out-of-line definition for a
1950    // function that is a member of a class or namespace, but there
1951    // was no such member function declared (C++ [class.mfct]p2,
1952    // C++ [namespace.memdef]p2). For example:
1953    //
1954    // class X {
1955    //   void f() const;
1956    // };
1957    //
1958    // void X::f() { } // ill-formed
1959    //
1960    // Complain about this problem, and attempt to suggest close
1961    // matches (e.g., those that differ only in cv-qualifiers and
1962    // whether the parameter types are references).
1963    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1964      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1965    InvalidDecl = true;
1966
1967    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1968                                            true);
1969    assert(!Prev.isAmbiguous() &&
1970           "Cannot have an ambiguity in previous-declaration lookup");
1971    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1972         Func != FuncEnd; ++Func) {
1973      if (isa<FunctionDecl>(*Func) &&
1974          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1975        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1976    }
1977
1978    PrevDecl = 0;
1979  }
1980
1981  // Handle attributes. We need to have merged decls when handling attributes
1982  // (for example to check for conflicts, etc).
1983  ProcessDeclAttributes(NewFD, D);
1984  AddKnownFunctionAttributes(NewFD);
1985
1986  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1987    // If a function name is overloadable in C, then every function
1988    // with that name must be marked "overloadable".
1989    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1990      << Redeclaration << NewFD;
1991    if (PrevDecl)
1992      Diag(PrevDecl->getLocation(),
1993           diag::note_attribute_overloadable_prev_overload);
1994    NewFD->addAttr(new OverloadableAttr);
1995  }
1996
1997  if (getLangOptions().CPlusPlus) {
1998    // In C++, check default arguments now that we have merged decls. Unless
1999    // the lexical context is the class, because in this case this is done
2000    // during delayed parsing anyway.
2001    if (!CurContext->isRecord())
2002      CheckCXXDefaultArguments(NewFD);
2003
2004    // An out-of-line member function declaration must also be a
2005    // definition (C++ [dcl.meaning]p1).
2006    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2007      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2008        << D.getCXXScopeSpec().getRange();
2009      InvalidDecl = true;
2010    }
2011  }
2012
2013  // If this is a locally-scoped function in C, inject a declaration
2014  // into translation unit scope so that all external declarations are
2015  // visible.
2016  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod())
2017    InjectLocallyScopedExternalDeclaration(NewFD);
2018
2019  return NewFD;
2020}
2021
2022void Sema::InitializerElementNotConstant(const Expr *Init) {
2023  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2024    << Init->getSourceRange();
2025}
2026
2027bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
2028  switch (Init->getStmtClass()) {
2029  default:
2030    InitializerElementNotConstant(Init);
2031    return true;
2032  case Expr::ParenExprClass: {
2033    const ParenExpr* PE = cast<ParenExpr>(Init);
2034    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
2035  }
2036  case Expr::CompoundLiteralExprClass:
2037    return cast<CompoundLiteralExpr>(Init)->isFileScope();
2038  case Expr::DeclRefExprClass:
2039  case Expr::QualifiedDeclRefExprClass: {
2040    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2041    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2042      if (VD->hasGlobalStorage())
2043        return false;
2044      InitializerElementNotConstant(Init);
2045      return true;
2046    }
2047    if (isa<FunctionDecl>(D))
2048      return false;
2049    InitializerElementNotConstant(Init);
2050    return true;
2051  }
2052  case Expr::MemberExprClass: {
2053    const MemberExpr *M = cast<MemberExpr>(Init);
2054    if (M->isArrow())
2055      return CheckAddressConstantExpression(M->getBase());
2056    return CheckAddressConstantExpressionLValue(M->getBase());
2057  }
2058  case Expr::ArraySubscriptExprClass: {
2059    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
2060    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
2061    return CheckAddressConstantExpression(ASE->getBase()) ||
2062           CheckArithmeticConstantExpression(ASE->getIdx());
2063  }
2064  case Expr::StringLiteralClass:
2065  case Expr::ObjCEncodeExprClass:
2066  case Expr::PredefinedExprClass:
2067    return false;
2068  case Expr::UnaryOperatorClass: {
2069    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2070
2071    // C99 6.6p9
2072    if (Exp->getOpcode() == UnaryOperator::Deref)
2073      return CheckAddressConstantExpression(Exp->getSubExpr());
2074
2075    InitializerElementNotConstant(Init);
2076    return true;
2077  }
2078  }
2079}
2080
2081bool Sema::CheckAddressConstantExpression(const Expr* Init) {
2082  switch (Init->getStmtClass()) {
2083  default:
2084    InitializerElementNotConstant(Init);
2085    return true;
2086  case Expr::ParenExprClass:
2087    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
2088  case Expr::StringLiteralClass:
2089  case Expr::ObjCEncodeExprClass:
2090  case Expr::ObjCStringLiteralClass:
2091    return false;
2092  case Expr::CallExprClass:
2093  case Expr::CXXOperatorCallExprClass:
2094    // __builtin___CFStringMakeConstantString is a valid constant l-value.
2095    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
2096           Builtin::BI__builtin___CFStringMakeConstantString)
2097      return false;
2098
2099    InitializerElementNotConstant(Init);
2100    return true;
2101
2102  case Expr::UnaryOperatorClass: {
2103    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2104
2105    // C99 6.6p9
2106    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2107      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
2108
2109    if (Exp->getOpcode() == UnaryOperator::Extension)
2110      return CheckAddressConstantExpression(Exp->getSubExpr());
2111
2112    InitializerElementNotConstant(Init);
2113    return true;
2114  }
2115  case Expr::BinaryOperatorClass: {
2116    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
2117    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2118
2119    Expr *PExp = Exp->getLHS();
2120    Expr *IExp = Exp->getRHS();
2121    if (IExp->getType()->isPointerType())
2122      std::swap(PExp, IExp);
2123
2124    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
2125    return CheckAddressConstantExpression(PExp) ||
2126           CheckArithmeticConstantExpression(IExp);
2127  }
2128  case Expr::ImplicitCastExprClass:
2129  case Expr::CStyleCastExprClass: {
2130    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
2131    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
2132      // Check for implicit promotion
2133      if (SubExpr->getType()->isFunctionType() ||
2134          SubExpr->getType()->isArrayType())
2135        return CheckAddressConstantExpressionLValue(SubExpr);
2136    }
2137
2138    // Check for pointer->pointer cast
2139    if (SubExpr->getType()->isPointerType())
2140      return CheckAddressConstantExpression(SubExpr);
2141
2142    if (SubExpr->getType()->isIntegralType()) {
2143      // Check for the special-case of a pointer->int->pointer cast;
2144      // this isn't standard, but some code requires it. See
2145      // PR2720 for an example.
2146      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
2147        if (SubCast->getSubExpr()->getType()->isPointerType()) {
2148          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
2149          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2150          if (IntWidth >= PointerWidth) {
2151            return CheckAddressConstantExpression(SubCast->getSubExpr());
2152          }
2153        }
2154      }
2155    }
2156    if (SubExpr->getType()->isArithmeticType()) {
2157      return CheckArithmeticConstantExpression(SubExpr);
2158    }
2159
2160    InitializerElementNotConstant(Init);
2161    return true;
2162  }
2163  case Expr::ConditionalOperatorClass: {
2164    // FIXME: Should we pedwarn here?
2165    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2166    if (!Exp->getCond()->getType()->isArithmeticType()) {
2167      InitializerElementNotConstant(Init);
2168      return true;
2169    }
2170    if (CheckArithmeticConstantExpression(Exp->getCond()))
2171      return true;
2172    if (Exp->getLHS() &&
2173        CheckAddressConstantExpression(Exp->getLHS()))
2174      return true;
2175    return CheckAddressConstantExpression(Exp->getRHS());
2176  }
2177  case Expr::AddrLabelExprClass:
2178    return false;
2179  }
2180}
2181
2182static const Expr* FindExpressionBaseAddress(const Expr* E);
2183
2184static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2185  switch (E->getStmtClass()) {
2186  default:
2187    return E;
2188  case Expr::ParenExprClass: {
2189    const ParenExpr* PE = cast<ParenExpr>(E);
2190    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2191  }
2192  case Expr::MemberExprClass: {
2193    const MemberExpr *M = cast<MemberExpr>(E);
2194    if (M->isArrow())
2195      return FindExpressionBaseAddress(M->getBase());
2196    return FindExpressionBaseAddressLValue(M->getBase());
2197  }
2198  case Expr::ArraySubscriptExprClass: {
2199    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2200    return FindExpressionBaseAddress(ASE->getBase());
2201  }
2202  case Expr::UnaryOperatorClass: {
2203    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2204
2205    if (Exp->getOpcode() == UnaryOperator::Deref)
2206      return FindExpressionBaseAddress(Exp->getSubExpr());
2207
2208    return E;
2209  }
2210  }
2211}
2212
2213static const Expr* FindExpressionBaseAddress(const Expr* E) {
2214  switch (E->getStmtClass()) {
2215  default:
2216    return E;
2217  case Expr::ParenExprClass: {
2218    const ParenExpr* PE = cast<ParenExpr>(E);
2219    return FindExpressionBaseAddress(PE->getSubExpr());
2220  }
2221  case Expr::UnaryOperatorClass: {
2222    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2223
2224    // C99 6.6p9
2225    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2226      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2227
2228    if (Exp->getOpcode() == UnaryOperator::Extension)
2229      return FindExpressionBaseAddress(Exp->getSubExpr());
2230
2231    return E;
2232  }
2233  case Expr::BinaryOperatorClass: {
2234    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2235
2236    Expr *PExp = Exp->getLHS();
2237    Expr *IExp = Exp->getRHS();
2238    if (IExp->getType()->isPointerType())
2239      std::swap(PExp, IExp);
2240
2241    return FindExpressionBaseAddress(PExp);
2242  }
2243  case Expr::ImplicitCastExprClass: {
2244    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2245
2246    // Check for implicit promotion
2247    if (SubExpr->getType()->isFunctionType() ||
2248        SubExpr->getType()->isArrayType())
2249      return FindExpressionBaseAddressLValue(SubExpr);
2250
2251    // Check for pointer->pointer cast
2252    if (SubExpr->getType()->isPointerType())
2253      return FindExpressionBaseAddress(SubExpr);
2254
2255    // We assume that we have an arithmetic expression here;
2256    // if we don't, we'll figure it out later
2257    return 0;
2258  }
2259  case Expr::CStyleCastExprClass: {
2260    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2261
2262    // Check for pointer->pointer cast
2263    if (SubExpr->getType()->isPointerType())
2264      return FindExpressionBaseAddress(SubExpr);
2265
2266    // We assume that we have an arithmetic expression here;
2267    // if we don't, we'll figure it out later
2268    return 0;
2269  }
2270  }
2271}
2272
2273bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2274  switch (Init->getStmtClass()) {
2275  default:
2276    InitializerElementNotConstant(Init);
2277    return true;
2278  case Expr::ParenExprClass: {
2279    const ParenExpr* PE = cast<ParenExpr>(Init);
2280    return CheckArithmeticConstantExpression(PE->getSubExpr());
2281  }
2282  case Expr::FloatingLiteralClass:
2283  case Expr::IntegerLiteralClass:
2284  case Expr::CharacterLiteralClass:
2285  case Expr::ImaginaryLiteralClass:
2286  case Expr::TypesCompatibleExprClass:
2287  case Expr::CXXBoolLiteralExprClass:
2288    return false;
2289  case Expr::CallExprClass:
2290  case Expr::CXXOperatorCallExprClass: {
2291    const CallExpr *CE = cast<CallExpr>(Init);
2292
2293    // Allow any constant foldable calls to builtins.
2294    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2295      return false;
2296
2297    InitializerElementNotConstant(Init);
2298    return true;
2299  }
2300  case Expr::DeclRefExprClass:
2301  case Expr::QualifiedDeclRefExprClass: {
2302    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2303    if (isa<EnumConstantDecl>(D))
2304      return false;
2305    InitializerElementNotConstant(Init);
2306    return true;
2307  }
2308  case Expr::CompoundLiteralExprClass:
2309    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2310    // but vectors are allowed to be magic.
2311    if (Init->getType()->isVectorType())
2312      return false;
2313    InitializerElementNotConstant(Init);
2314    return true;
2315  case Expr::UnaryOperatorClass: {
2316    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2317
2318    switch (Exp->getOpcode()) {
2319    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2320    // See C99 6.6p3.
2321    default:
2322      InitializerElementNotConstant(Init);
2323      return true;
2324    case UnaryOperator::OffsetOf:
2325      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2326        return false;
2327      InitializerElementNotConstant(Init);
2328      return true;
2329    case UnaryOperator::Extension:
2330    case UnaryOperator::LNot:
2331    case UnaryOperator::Plus:
2332    case UnaryOperator::Minus:
2333    case UnaryOperator::Not:
2334      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2335    }
2336  }
2337  case Expr::SizeOfAlignOfExprClass: {
2338    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2339    // Special check for void types, which are allowed as an extension
2340    if (Exp->getTypeOfArgument()->isVoidType())
2341      return false;
2342    // alignof always evaluates to a constant.
2343    // FIXME: is sizeof(int[3.0]) a constant expression?
2344    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2345      InitializerElementNotConstant(Init);
2346      return true;
2347    }
2348    return false;
2349  }
2350  case Expr::BinaryOperatorClass: {
2351    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2352
2353    if (Exp->getLHS()->getType()->isArithmeticType() &&
2354        Exp->getRHS()->getType()->isArithmeticType()) {
2355      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2356             CheckArithmeticConstantExpression(Exp->getRHS());
2357    }
2358
2359    if (Exp->getLHS()->getType()->isPointerType() &&
2360        Exp->getRHS()->getType()->isPointerType()) {
2361      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2362      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2363
2364      // Only allow a null (constant integer) base; we could
2365      // allow some additional cases if necessary, but this
2366      // is sufficient to cover offsetof-like constructs.
2367      if (!LHSBase && !RHSBase) {
2368        return CheckAddressConstantExpression(Exp->getLHS()) ||
2369               CheckAddressConstantExpression(Exp->getRHS());
2370      }
2371    }
2372
2373    InitializerElementNotConstant(Init);
2374    return true;
2375  }
2376  case Expr::ImplicitCastExprClass:
2377  case Expr::CStyleCastExprClass: {
2378    const CastExpr *CE = cast<CastExpr>(Init);
2379    const Expr *SubExpr = CE->getSubExpr();
2380
2381    if (SubExpr->getType()->isArithmeticType())
2382      return CheckArithmeticConstantExpression(SubExpr);
2383
2384    if (SubExpr->getType()->isPointerType()) {
2385      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2386      if (Base) {
2387        // the cast is only valid if done to a wide enough type
2388        if (Context.getTypeSize(CE->getType()) >=
2389            Context.getTypeSize(SubExpr->getType()))
2390          return false;
2391      } else {
2392        // If the pointer has a null base, this is an offsetof-like construct
2393        return CheckAddressConstantExpression(SubExpr);
2394      }
2395    }
2396
2397    InitializerElementNotConstant(Init);
2398    return true;
2399  }
2400  case Expr::ConditionalOperatorClass: {
2401    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2402
2403    // If GNU extensions are disabled, we require all operands to be arithmetic
2404    // constant expressions.
2405    if (getLangOptions().NoExtensions) {
2406      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2407          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2408             CheckArithmeticConstantExpression(Exp->getRHS());
2409    }
2410
2411    // Otherwise, we have to emulate some of the behavior of fold here.
2412    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2413    // because it can constant fold things away.  To retain compatibility with
2414    // GCC code, we see if we can fold the condition to a constant (which we
2415    // should always be able to do in theory).  If so, we only require the
2416    // specified arm of the conditional to be a constant.  This is a horrible
2417    // hack, but is require by real world code that uses __builtin_constant_p.
2418    Expr::EvalResult EvalResult;
2419    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2420        EvalResult.HasSideEffects) {
2421      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2422      // won't be able to either.  Use it to emit the diagnostic though.
2423      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2424      assert(Res && "Evaluate couldn't evaluate this constant?");
2425      return Res;
2426    }
2427
2428    // Verify that the side following the condition is also a constant.
2429    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2430    if (EvalResult.Val.getInt() == 0)
2431      std::swap(TrueSide, FalseSide);
2432
2433    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2434      return true;
2435
2436    // Okay, the evaluated side evaluates to a constant, so we accept this.
2437    // Check to see if the other side is obviously not a constant.  If so,
2438    // emit a warning that this is a GNU extension.
2439    if (FalseSide && !FalseSide->isEvaluatable(Context))
2440      Diag(Init->getExprLoc(),
2441           diag::ext_typecheck_expression_not_constant_but_accepted)
2442        << FalseSide->getSourceRange();
2443    return false;
2444  }
2445  }
2446}
2447
2448bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2449  if (Init->isConstantInitializer(Context))
2450    return false;
2451  InitializerElementNotConstant(Init);
2452  return true;
2453
2454  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2455    Init = DIE->getInit();
2456
2457  Init = Init->IgnoreParens();
2458
2459  if (Init->isEvaluatable(Context))
2460    return false;
2461
2462  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2463  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2464    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2465
2466  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2467    return CheckForConstantInitializer(e->getInitializer(), DclT);
2468
2469  if (isa<ImplicitValueInitExpr>(Init)) {
2470    // FIXME: In C++, check for non-POD types.
2471    return false;
2472  }
2473
2474  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2475    unsigned numInits = Exp->getNumInits();
2476    for (unsigned i = 0; i < numInits; i++) {
2477      // FIXME: Need to get the type of the declaration for C++,
2478      // because it could be a reference?
2479
2480      if (CheckForConstantInitializer(Exp->getInit(i),
2481                                      Exp->getInit(i)->getType()))
2482        return true;
2483    }
2484    return false;
2485  }
2486
2487  // FIXME: We can probably remove some of this code below, now that
2488  // Expr::Evaluate is doing the heavy lifting for scalars.
2489
2490  if (Init->isNullPointerConstant(Context))
2491    return false;
2492  if (Init->getType()->isArithmeticType()) {
2493    QualType InitTy = Context.getCanonicalType(Init->getType())
2494                             .getUnqualifiedType();
2495    if (InitTy == Context.BoolTy) {
2496      // Special handling for pointers implicitly cast to bool;
2497      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2498      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2499        Expr* SubE = ICE->getSubExpr();
2500        if (SubE->getType()->isPointerType() ||
2501            SubE->getType()->isArrayType() ||
2502            SubE->getType()->isFunctionType()) {
2503          return CheckAddressConstantExpression(Init);
2504        }
2505      }
2506    } else if (InitTy->isIntegralType()) {
2507      Expr* SubE = 0;
2508      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2509        SubE = CE->getSubExpr();
2510      // Special check for pointer cast to int; we allow as an extension
2511      // an address constant cast to an integer if the integer
2512      // is of an appropriate width (this sort of code is apparently used
2513      // in some places).
2514      // FIXME: Add pedwarn?
2515      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2516      if (SubE && (SubE->getType()->isPointerType() ||
2517                   SubE->getType()->isArrayType() ||
2518                   SubE->getType()->isFunctionType())) {
2519        unsigned IntWidth = Context.getTypeSize(Init->getType());
2520        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2521        if (IntWidth >= PointerWidth)
2522          return CheckAddressConstantExpression(Init);
2523      }
2524    }
2525
2526    return CheckArithmeticConstantExpression(Init);
2527  }
2528
2529  if (Init->getType()->isPointerType())
2530    return CheckAddressConstantExpression(Init);
2531
2532  // An array type at the top level that isn't an init-list must
2533  // be a string literal
2534  if (Init->getType()->isArrayType())
2535    return false;
2536
2537  if (Init->getType()->isFunctionType())
2538    return false;
2539
2540  // Allow block exprs at top level.
2541  if (Init->getType()->isBlockPointerType())
2542    return false;
2543
2544  // GCC cast to union extension
2545  // note: the validity of the cast expr is checked by CheckCastTypes()
2546  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2547    QualType T = C->getType();
2548    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2549  }
2550
2551  InitializerElementNotConstant(Init);
2552  return true;
2553}
2554
2555void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2556  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2557}
2558
2559/// AddInitializerToDecl - Adds the initializer Init to the
2560/// declaration dcl. If DirectInit is true, this is C++ direct
2561/// initialization rather than copy initialization.
2562void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2563  Decl *RealDecl = static_cast<Decl *>(dcl);
2564  Expr *Init = static_cast<Expr *>(init.release());
2565  assert(Init && "missing initializer");
2566
2567  // If there is no declaration, there was an error parsing it.  Just ignore
2568  // the initializer.
2569  if (RealDecl == 0) {
2570    Init->Destroy(Context);
2571    return;
2572  }
2573
2574  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2575  if (!VDecl) {
2576    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2577    RealDecl->setInvalidDecl();
2578    return;
2579  }
2580  // Get the decls type and save a reference for later, since
2581  // CheckInitializerTypes may change it.
2582  QualType DclT = VDecl->getType(), SavT = DclT;
2583  if (VDecl->isBlockVarDecl()) {
2584    VarDecl::StorageClass SC = VDecl->getStorageClass();
2585    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2586      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2587      VDecl->setInvalidDecl();
2588    } else if (!VDecl->isInvalidDecl()) {
2589      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2590                                VDecl->getDeclName(), DirectInit))
2591        VDecl->setInvalidDecl();
2592
2593      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2594      // Don't check invalid declarations to avoid emitting useless diagnostics.
2595      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2596        if (SC == VarDecl::Static) // C99 6.7.8p4.
2597          CheckForConstantInitializer(Init, DclT);
2598      }
2599    }
2600  } else if (VDecl->isFileVarDecl()) {
2601    if (VDecl->getStorageClass() == VarDecl::Extern)
2602      Diag(VDecl->getLocation(), diag::warn_extern_init);
2603    if (!VDecl->isInvalidDecl())
2604      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2605                                VDecl->getDeclName(), DirectInit))
2606        VDecl->setInvalidDecl();
2607
2608    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2609    // Don't check invalid declarations to avoid emitting useless diagnostics.
2610    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2611      // C99 6.7.8p4. All file scoped initializers need to be constant.
2612      CheckForConstantInitializer(Init, DclT);
2613    }
2614  }
2615  // If the type changed, it means we had an incomplete type that was
2616  // completed by the initializer. For example:
2617  //   int ary[] = { 1, 3, 5 };
2618  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2619  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2620    VDecl->setType(DclT);
2621    Init->setType(DclT);
2622  }
2623
2624  // Attach the initializer to the decl.
2625  VDecl->setInit(Init);
2626  return;
2627}
2628
2629void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2630  Decl *RealDecl = static_cast<Decl *>(dcl);
2631
2632  // If there is no declaration, there was an error parsing it. Just ignore it.
2633  if (RealDecl == 0)
2634    return;
2635
2636  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2637    QualType Type = Var->getType();
2638    // C++ [dcl.init.ref]p3:
2639    //   The initializer can be omitted for a reference only in a
2640    //   parameter declaration (8.3.5), in the declaration of a
2641    //   function return type, in the declaration of a class member
2642    //   within its class declaration (9.2), and where the extern
2643    //   specifier is explicitly used.
2644    if (Type->isReferenceType() &&
2645        Var->getStorageClass() != VarDecl::Extern &&
2646        Var->getStorageClass() != VarDecl::PrivateExtern) {
2647      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2648        << Var->getDeclName()
2649        << SourceRange(Var->getLocation(), Var->getLocation());
2650      Var->setInvalidDecl();
2651      return;
2652    }
2653
2654    // C++ [dcl.init]p9:
2655    //
2656    //   If no initializer is specified for an object, and the object
2657    //   is of (possibly cv-qualified) non-POD class type (or array
2658    //   thereof), the object shall be default-initialized; if the
2659    //   object is of const-qualified type, the underlying class type
2660    //   shall have a user-declared default constructor.
2661    if (getLangOptions().CPlusPlus) {
2662      QualType InitType = Type;
2663      if (const ArrayType *Array = Context.getAsArrayType(Type))
2664        InitType = Array->getElementType();
2665      if (Var->getStorageClass() != VarDecl::Extern &&
2666          Var->getStorageClass() != VarDecl::PrivateExtern &&
2667          InitType->isRecordType()) {
2668        const CXXConstructorDecl *Constructor
2669          = PerformInitializationByConstructor(InitType, 0, 0,
2670                                               Var->getLocation(),
2671                                               SourceRange(Var->getLocation(),
2672                                                           Var->getLocation()),
2673                                               Var->getDeclName(),
2674                                               IK_Default);
2675        if (!Constructor)
2676          Var->setInvalidDecl();
2677      }
2678    }
2679
2680#if 0
2681    // FIXME: Temporarily disabled because we are not properly parsing
2682    // linkage specifications on declarations, e.g.,
2683    //
2684    //   extern "C" const CGPoint CGPointerZero;
2685    //
2686    // C++ [dcl.init]p9:
2687    //
2688    //     If no initializer is specified for an object, and the
2689    //     object is of (possibly cv-qualified) non-POD class type (or
2690    //     array thereof), the object shall be default-initialized; if
2691    //     the object is of const-qualified type, the underlying class
2692    //     type shall have a user-declared default
2693    //     constructor. Otherwise, if no initializer is specified for
2694    //     an object, the object and its subobjects, if any, have an
2695    //     indeterminate initial value; if the object or any of its
2696    //     subobjects are of const-qualified type, the program is
2697    //     ill-formed.
2698    //
2699    // This isn't technically an error in C, so we don't diagnose it.
2700    //
2701    // FIXME: Actually perform the POD/user-defined default
2702    // constructor check.
2703    if (getLangOptions().CPlusPlus &&
2704        Context.getCanonicalType(Type).isConstQualified() &&
2705        Var->getStorageClass() != VarDecl::Extern)
2706      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2707        << Var->getName()
2708        << SourceRange(Var->getLocation(), Var->getLocation());
2709#endif
2710  }
2711}
2712
2713/// The declarators are chained together backwards, reverse the list.
2714Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2715  // Often we have single declarators, handle them quickly.
2716  Decl *Group = static_cast<Decl*>(group);
2717  if (Group == 0)
2718    return 0;
2719
2720  Decl *NewGroup = 0;
2721  if (Group->getNextDeclarator() == 0)
2722    NewGroup = Group;
2723  else { // reverse the list.
2724    while (Group) {
2725      Decl *Next = Group->getNextDeclarator();
2726      Group->setNextDeclarator(NewGroup);
2727      NewGroup = Group;
2728      Group = Next;
2729    }
2730  }
2731  // Perform semantic analysis that depends on having fully processed both
2732  // the declarator and initializer.
2733  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2734    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2735    if (!IDecl)
2736      continue;
2737    QualType T = IDecl->getType();
2738
2739    bool isIllegalVLA = T->isVariableArrayType() && IDecl->hasGlobalStorage();
2740    bool isIllegalVM = T->isVariablyModifiedType() && IDecl->hasLinkage();
2741    if (isIllegalVLA || isIllegalVM) {
2742      bool SizeIsNegative;
2743      QualType FixedTy =
2744          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2745      if (!FixedTy.isNull()) {
2746        Diag(IDecl->getLocation(), diag::warn_illegal_constant_array_size);
2747        IDecl->setType(FixedTy);
2748      } else if (T->isVariableArrayType()) {
2749        IDecl->setInvalidDecl();
2750
2751        const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2752        // FIXME: This won't give the correct result for
2753        // int a[10][n];
2754        SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2755
2756        if (IDecl->isFileVarDecl())
2757          Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope)
2758            << SizeRange;
2759        else if (IDecl->getStorageClass() == VarDecl::Static)
2760          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2761            << SizeRange;
2762        else
2763          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2764              << SizeRange;
2765      } else {
2766        IDecl->setInvalidDecl();
2767
2768        if (IDecl->isFileVarDecl())
2769          Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2770        else
2771          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2772      }
2773    }
2774
2775    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2776    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2777    if (IDecl->isBlockVarDecl() &&
2778        IDecl->getStorageClass() != VarDecl::Extern) {
2779      if (!IDecl->isInvalidDecl() &&
2780          DiagnoseIncompleteType(IDecl->getLocation(), T,
2781                                 diag::err_typecheck_decl_incomplete_type))
2782        IDecl->setInvalidDecl();
2783    }
2784    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2785    // object that has file scope without an initializer, and without a
2786    // storage-class specifier or with the storage-class specifier "static",
2787    // constitutes a tentative definition. Note: A tentative definition with
2788    // external linkage is valid (C99 6.2.2p5).
2789    if (isTentativeDefinition(IDecl)) {
2790      if (T->isIncompleteArrayType()) {
2791        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2792        // array to be completed. Don't issue a diagnostic.
2793      } else if (!IDecl->isInvalidDecl() &&
2794                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2795                                        diag::err_typecheck_decl_incomplete_type))
2796        // C99 6.9.2p3: If the declaration of an identifier for an object is
2797        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2798        // declared type shall not be an incomplete type.
2799        IDecl->setInvalidDecl();
2800    }
2801    if (IDecl->isFileVarDecl())
2802      CheckForFileScopedRedefinitions(S, IDecl);
2803  }
2804  return NewGroup;
2805}
2806
2807/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2808/// to introduce parameters into function prototype scope.
2809Sema::DeclTy *
2810Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2811  const DeclSpec &DS = D.getDeclSpec();
2812
2813  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2814  VarDecl::StorageClass StorageClass = VarDecl::None;
2815  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2816    StorageClass = VarDecl::Register;
2817  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2818    Diag(DS.getStorageClassSpecLoc(),
2819         diag::err_invalid_storage_class_in_func_decl);
2820    D.getMutableDeclSpec().ClearStorageClassSpecs();
2821  }
2822  if (DS.isThreadSpecified()) {
2823    Diag(DS.getThreadSpecLoc(),
2824         diag::err_invalid_storage_class_in_func_decl);
2825    D.getMutableDeclSpec().ClearStorageClassSpecs();
2826  }
2827
2828  // Check that there are no default arguments inside the type of this
2829  // parameter (C++ only).
2830  if (getLangOptions().CPlusPlus)
2831    CheckExtraCXXDefaultArguments(D);
2832
2833  // In this context, we *do not* check D.getInvalidType(). If the declarator
2834  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2835  // though it will not reflect the user specified type.
2836  QualType parmDeclType = GetTypeForDeclarator(D, S);
2837
2838  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2839
2840  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2841  // Can this happen for params?  We already checked that they don't conflict
2842  // among each other.  Here they can only shadow globals, which is ok.
2843  IdentifierInfo *II = D.getIdentifier();
2844  if (II) {
2845    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2846      if (PrevDecl->isTemplateParameter()) {
2847        // Maybe we will complain about the shadowed template parameter.
2848        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2849        // Just pretend that we didn't see the previous declaration.
2850        PrevDecl = 0;
2851      } else if (S->isDeclScope(PrevDecl)) {
2852        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2853
2854        // Recover by removing the name
2855        II = 0;
2856        D.SetIdentifier(0, D.getIdentifierLoc());
2857      }
2858    }
2859  }
2860
2861  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2862  // Doing the promotion here has a win and a loss. The win is the type for
2863  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2864  // code generator). The loss is the orginal type isn't preserved. For example:
2865  //
2866  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2867  //    int blockvardecl[5];
2868  //    sizeof(parmvardecl);  // size == 4
2869  //    sizeof(blockvardecl); // size == 20
2870  // }
2871  //
2872  // For expressions, all implicit conversions are captured using the
2873  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2874  //
2875  // FIXME: If a source translation tool needs to see the original type, then
2876  // we need to consider storing both types (in ParmVarDecl)...
2877  //
2878  if (parmDeclType->isArrayType()) {
2879    // int x[restrict 4] ->  int *restrict
2880    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2881  } else if (parmDeclType->isFunctionType())
2882    parmDeclType = Context.getPointerType(parmDeclType);
2883
2884  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2885                                         D.getIdentifierLoc(), II,
2886                                         parmDeclType, StorageClass,
2887                                         0);
2888
2889  if (D.getInvalidType())
2890    New->setInvalidDecl();
2891
2892  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2893  if (D.getCXXScopeSpec().isSet()) {
2894    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2895      << D.getCXXScopeSpec().getRange();
2896    New->setInvalidDecl();
2897  }
2898  // Parameter declarators cannot be interface types. All ObjC objects are
2899  // passed by reference.
2900  if (parmDeclType->isObjCInterfaceType()) {
2901    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2902         << "passed";
2903    New->setInvalidDecl();
2904  }
2905
2906  // Add the parameter declaration into this scope.
2907  S->AddDecl(New);
2908  if (II)
2909    IdResolver.AddDecl(New);
2910
2911  ProcessDeclAttributes(New, D);
2912  return New;
2913
2914}
2915
2916void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2917  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2918         "Not a function declarator!");
2919  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2920
2921  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2922  // for a K&R function.
2923  if (!FTI.hasPrototype) {
2924    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2925      if (FTI.ArgInfo[i].Param == 0) {
2926        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2927          << FTI.ArgInfo[i].Ident;
2928        // Implicitly declare the argument as type 'int' for lack of a better
2929        // type.
2930        DeclSpec DS;
2931        const char* PrevSpec; // unused
2932        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2933                           PrevSpec);
2934        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2935        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2936        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2937      }
2938    }
2939  }
2940}
2941
2942Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2943  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2944  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2945         "Not a function declarator!");
2946  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2947
2948  if (FTI.hasPrototype) {
2949    // FIXME: Diagnose arguments without names in C.
2950  }
2951
2952  Scope *ParentScope = FnBodyScope->getParent();
2953
2954  return ActOnStartOfFunctionDef(FnBodyScope,
2955                                 ActOnDeclarator(ParentScope, D, 0,
2956                                                 /*IsFunctionDefinition=*/true));
2957}
2958
2959Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2960  Decl *decl = static_cast<Decl*>(D);
2961  FunctionDecl *FD = cast<FunctionDecl>(decl);
2962
2963  // See if this is a redefinition.
2964  const FunctionDecl *Definition;
2965  if (FD->getBody(Definition)) {
2966    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2967    Diag(Definition->getLocation(), diag::note_previous_definition);
2968  }
2969
2970  // Builtin functions cannot be defined.
2971  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2972    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2973      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2974      FD->setInvalidDecl();
2975    }
2976  }
2977
2978  PushDeclContext(FnBodyScope, FD);
2979
2980  // Check the validity of our function parameters
2981  CheckParmsForFunctionDef(FD);
2982
2983  // Introduce our parameters into the function scope
2984  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2985    ParmVarDecl *Param = FD->getParamDecl(p);
2986    Param->setOwningFunction(FD);
2987
2988    // If this has an identifier, add it to the scope stack.
2989    if (Param->getIdentifier())
2990      PushOnScopeChains(Param, FnBodyScope);
2991  }
2992
2993  // Checking attributes of current function definition
2994  // dllimport attribute.
2995  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2996    // dllimport attribute cannot be applied to definition.
2997    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2998      Diag(FD->getLocation(),
2999           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3000        << "dllimport";
3001      FD->setInvalidDecl();
3002      return FD;
3003    } else {
3004      // If a symbol previously declared dllimport is later defined, the
3005      // attribute is ignored in subsequent references, and a warning is
3006      // emitted.
3007      Diag(FD->getLocation(),
3008           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3009        << FD->getNameAsCString() << "dllimport";
3010    }
3011  }
3012  return FD;
3013}
3014
3015Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
3016  Decl *dcl = static_cast<Decl *>(D);
3017  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
3018  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3019    FD->setBody(Body);
3020    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3021  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3022    assert(MD == getCurMethodDecl() && "Method parsing confused");
3023    MD->setBody((Stmt*)Body);
3024  } else {
3025    Body->Destroy(Context);
3026    return 0;
3027  }
3028  PopDeclContext();
3029  // Verify and clean out per-function state.
3030
3031  // Check goto/label use.
3032  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3033       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
3034    // Verify that we have no forward references left.  If so, there was a goto
3035    // or address of a label taken, but no definition of it.  Label fwd
3036    // definitions are indicated with a null substmt.
3037    if (I->second->getSubStmt() == 0) {
3038      LabelStmt *L = I->second;
3039      // Emit error.
3040      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3041
3042      // At this point, we have gotos that use the bogus label.  Stitch it into
3043      // the function body so that they aren't leaked and that the AST is well
3044      // formed.
3045      if (Body) {
3046#if 0
3047        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
3048        // and the AST is malformed anyway.  We should just blow away 'L'.
3049        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3050        cast<CompoundStmt>(Body)->push_back(L);
3051#else
3052        L->Destroy(Context);
3053#endif
3054      } else {
3055        // The whole function wasn't parsed correctly, just delete this.
3056        L->Destroy(Context);
3057      }
3058    }
3059  }
3060  LabelMap.clear();
3061
3062  return D;
3063}
3064
3065/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3066/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3067NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3068                                          IdentifierInfo &II, Scope *S) {
3069  // Extension in C99.  Legal in C90, but warn about it.
3070  if (getLangOptions().C99)
3071    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3072  else
3073    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3074
3075  // FIXME: handle stuff like:
3076  // void foo() { extern float X(); }
3077  // void bar() { X(); }  <-- implicit decl for X in another scope.
3078
3079  // Set a Declarator for the implicit definition: int foo();
3080  const char *Dummy;
3081  DeclSpec DS;
3082  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3083  Error = Error; // Silence warning.
3084  assert(!Error && "Error setting up implicit decl!");
3085  Declarator D(DS, Declarator::BlockContext);
3086  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3087                                             0, 0, 0, Loc, D),
3088                SourceLocation());
3089  D.SetIdentifier(&II, Loc);
3090
3091  // Insert this function into translation-unit scope.
3092
3093  DeclContext *PrevDC = CurContext;
3094  CurContext = Context.getTranslationUnitDecl();
3095
3096  FunctionDecl *FD =
3097    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
3098  FD->setImplicit();
3099
3100  CurContext = PrevDC;
3101
3102  AddKnownFunctionAttributes(FD);
3103
3104  return FD;
3105}
3106
3107/// \brief Adds any function attributes that we know a priori based on
3108/// the declaration of this function.
3109///
3110/// These attributes can apply both to implicitly-declared builtins
3111/// (like __builtin___printf_chk) or to library-declared functions
3112/// like NSLog or printf.
3113void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3114  if (FD->isInvalidDecl())
3115    return;
3116
3117  // If this is a built-in function, map its builtin attributes to
3118  // actual attributes.
3119  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3120    // Handle printf-formatting attributes.
3121    unsigned FormatIdx;
3122    bool HasVAListArg;
3123    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3124      if (!FD->getAttr<FormatAttr>())
3125        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
3126    }
3127
3128    // Mark const if we don't care about errno and that is the only
3129    // thing preventing the function from being const. This allows
3130    // IRgen to use LLVM intrinsics for such functions.
3131    if (!getLangOptions().MathErrno &&
3132        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3133      if (!FD->getAttr<ConstAttr>())
3134        FD->addAttr(new ConstAttr());
3135    }
3136  }
3137
3138  IdentifierInfo *Name = FD->getIdentifier();
3139  if (!Name)
3140    return;
3141  if ((!getLangOptions().CPlusPlus &&
3142       FD->getDeclContext()->isTranslationUnit()) ||
3143      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3144       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3145       LinkageSpecDecl::lang_c)) {
3146    // Okay: this could be a libc/libm/Objective-C function we know
3147    // about.
3148  } else
3149    return;
3150
3151  unsigned KnownID;
3152  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3153    if (KnownFunctionIDs[KnownID] == Name)
3154      break;
3155
3156  switch (KnownID) {
3157  case id_NSLog:
3158  case id_NSLogv:
3159    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3160      // FIXME: We known better than our headers.
3161      const_cast<FormatAttr *>(Format)->setType("printf");
3162    } else
3163      FD->addAttr(new FormatAttr("printf", 1, 2));
3164    break;
3165
3166  case id_asprintf:
3167  case id_vasprintf:
3168    if (!FD->getAttr<FormatAttr>())
3169      FD->addAttr(new FormatAttr("printf", 2, 3));
3170    break;
3171
3172  default:
3173    // Unknown function or known function without any attributes to
3174    // add. Do nothing.
3175    break;
3176  }
3177}
3178
3179TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3180                                    Decl *LastDeclarator) {
3181  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3182  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3183
3184  // Scope manipulation handled by caller.
3185  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3186                                           D.getIdentifierLoc(),
3187                                           D.getIdentifier(),
3188                                           T);
3189  NewTD->setNextDeclarator(LastDeclarator);
3190  if (D.getInvalidType())
3191    NewTD->setInvalidDecl();
3192  return NewTD;
3193}
3194
3195/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3196/// former case, Name will be non-null.  In the later case, Name will be null.
3197/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3198/// reference/declaration/definition of a tag.
3199Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3200                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3201                             IdentifierInfo *Name, SourceLocation NameLoc,
3202                             AttributeList *Attr) {
3203  // If this is not a definition, it must have a name.
3204  assert((Name != 0 || TK == TK_Definition) &&
3205         "Nameless record must be a definition!");
3206
3207  TagDecl::TagKind Kind;
3208  switch (TagSpec) {
3209  default: assert(0 && "Unknown tag type!");
3210  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3211  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3212  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3213  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3214  }
3215
3216  DeclContext *SearchDC = CurContext;
3217  DeclContext *DC = CurContext;
3218  NamedDecl *PrevDecl = 0;
3219
3220  bool Invalid = false;
3221
3222  if (Name && SS.isNotEmpty()) {
3223    // We have a nested-name tag ('struct foo::bar').
3224
3225    // Check for invalid 'foo::'.
3226    if (SS.isInvalid()) {
3227      Name = 0;
3228      goto CreateNewDecl;
3229    }
3230
3231    DC = static_cast<DeclContext*>(SS.getScopeRep());
3232    SearchDC = DC;
3233    // Look-up name inside 'foo::'.
3234    PrevDecl = dyn_cast_or_null<TagDecl>(
3235                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3236
3237    // A tag 'foo::bar' must already exist.
3238    if (PrevDecl == 0) {
3239      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3240      Name = 0;
3241      goto CreateNewDecl;
3242    }
3243  } else if (Name) {
3244    // If this is a named struct, check to see if there was a previous forward
3245    // declaration or definition.
3246    // FIXME: We're looking into outer scopes here, even when we
3247    // shouldn't be. Doing so can result in ambiguities that we
3248    // shouldn't be diagnosing.
3249    LookupResult R = LookupName(S, Name, LookupTagName,
3250                                /*RedeclarationOnly=*/(TK != TK_Reference));
3251    if (R.isAmbiguous()) {
3252      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3253      // FIXME: This is not best way to recover from case like:
3254      //
3255      // struct S s;
3256      //
3257      // causes needless err_ovl_no_viable_function_in_init latter.
3258      Name = 0;
3259      PrevDecl = 0;
3260      Invalid = true;
3261    }
3262    else
3263      PrevDecl = R;
3264
3265    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3266      // FIXME: This makes sure that we ignore the contexts associated
3267      // with C structs, unions, and enums when looking for a matching
3268      // tag declaration or definition. See the similar lookup tweak
3269      // in Sema::LookupName; is there a better way to deal with this?
3270      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3271        SearchDC = SearchDC->getParent();
3272    }
3273  }
3274
3275  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3276    // Maybe we will complain about the shadowed template parameter.
3277    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3278    // Just pretend that we didn't see the previous declaration.
3279    PrevDecl = 0;
3280  }
3281
3282  if (PrevDecl) {
3283    // Check whether the previous declaration is usable.
3284    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3285
3286    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3287      // If this is a use of a previous tag, or if the tag is already declared
3288      // in the same scope (so that the definition/declaration completes or
3289      // rementions the tag), reuse the decl.
3290      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3291        // Make sure that this wasn't declared as an enum and now used as a
3292        // struct or something similar.
3293        if (PrevTagDecl->getTagKind() != Kind) {
3294          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3295          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3296          // Recover by making this an anonymous redefinition.
3297          Name = 0;
3298          PrevDecl = 0;
3299          Invalid = true;
3300        } else {
3301          // If this is a use, just return the declaration we found.
3302
3303          // FIXME: In the future, return a variant or some other clue
3304          // for the consumer of this Decl to know it doesn't own it.
3305          // For our current ASTs this shouldn't be a problem, but will
3306          // need to be changed with DeclGroups.
3307          if (TK == TK_Reference)
3308            return PrevDecl;
3309
3310          // Diagnose attempts to redefine a tag.
3311          if (TK == TK_Definition) {
3312            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3313              Diag(NameLoc, diag::err_redefinition) << Name;
3314              Diag(Def->getLocation(), diag::note_previous_definition);
3315              // If this is a redefinition, recover by making this
3316              // struct be anonymous, which will make any later
3317              // references get the previous definition.
3318              Name = 0;
3319              PrevDecl = 0;
3320              Invalid = true;
3321            } else {
3322              // If the type is currently being defined, complain
3323              // about a nested redefinition.
3324              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3325              if (Tag->isBeingDefined()) {
3326                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3327                Diag(PrevTagDecl->getLocation(),
3328                     diag::note_previous_definition);
3329                Name = 0;
3330                PrevDecl = 0;
3331                Invalid = true;
3332              }
3333            }
3334
3335            // Okay, this is definition of a previously declared or referenced
3336            // tag PrevDecl. We're going to create a new Decl for it.
3337          }
3338        }
3339        // If we get here we have (another) forward declaration or we
3340        // have a definition.  Just create a new decl.
3341      } else {
3342        // If we get here, this is a definition of a new tag type in a nested
3343        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3344        // new decl/type.  We set PrevDecl to NULL so that the entities
3345        // have distinct types.
3346        PrevDecl = 0;
3347      }
3348      // If we get here, we're going to create a new Decl. If PrevDecl
3349      // is non-NULL, it's a definition of the tag declared by
3350      // PrevDecl. If it's NULL, we have a new definition.
3351    } else {
3352      // PrevDecl is a namespace, template, or anything else
3353      // that lives in the IDNS_Tag identifier namespace.
3354      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3355        // The tag name clashes with a namespace name, issue an error and
3356        // recover by making this tag be anonymous.
3357        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3358        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3359        Name = 0;
3360        PrevDecl = 0;
3361        Invalid = true;
3362      } else {
3363        // The existing declaration isn't relevant to us; we're in a
3364        // new scope, so clear out the previous declaration.
3365        PrevDecl = 0;
3366      }
3367    }
3368  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3369             (Kind != TagDecl::TK_enum))  {
3370    // C++ [basic.scope.pdecl]p5:
3371    //   -- for an elaborated-type-specifier of the form
3372    //
3373    //          class-key identifier
3374    //
3375    //      if the elaborated-type-specifier is used in the
3376    //      decl-specifier-seq or parameter-declaration-clause of a
3377    //      function defined in namespace scope, the identifier is
3378    //      declared as a class-name in the namespace that contains
3379    //      the declaration; otherwise, except as a friend
3380    //      declaration, the identifier is declared in the smallest
3381    //      non-class, non-function-prototype scope that contains the
3382    //      declaration.
3383    //
3384    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3385    // C structs and unions.
3386
3387    // Find the context where we'll be declaring the tag.
3388    // FIXME: We would like to maintain the current DeclContext as the
3389    // lexical context,
3390    while (SearchDC->isRecord())
3391      SearchDC = SearchDC->getParent();
3392
3393    // Find the scope where we'll be declaring the tag.
3394    while (S->isClassScope() ||
3395           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3396           ((S->getFlags() & Scope::DeclScope) == 0) ||
3397           (S->getEntity() &&
3398            ((DeclContext *)S->getEntity())->isTransparentContext()))
3399      S = S->getParent();
3400  }
3401
3402CreateNewDecl:
3403
3404  // If there is an identifier, use the location of the identifier as the
3405  // location of the decl, otherwise use the location of the struct/union
3406  // keyword.
3407  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3408
3409  // Otherwise, create a new declaration. If there is a previous
3410  // declaration of the same entity, the two will be linked via
3411  // PrevDecl.
3412  TagDecl *New;
3413
3414  if (Kind == TagDecl::TK_enum) {
3415    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3416    // enum X { A, B, C } D;    D should chain to X.
3417    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3418                           cast_or_null<EnumDecl>(PrevDecl));
3419    // If this is an undefined enum, warn.
3420    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3421  } else {
3422    // struct/union/class
3423
3424    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3425    // struct X { int A; } D;    D should chain to X.
3426    if (getLangOptions().CPlusPlus)
3427      // FIXME: Look for a way to use RecordDecl for simple structs.
3428      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3429                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3430    else
3431      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3432                               cast_or_null<RecordDecl>(PrevDecl));
3433  }
3434
3435  if (Kind != TagDecl::TK_enum) {
3436    // Handle #pragma pack: if the #pragma pack stack has non-default
3437    // alignment, make up a packed attribute for this decl. These
3438    // attributes are checked when the ASTContext lays out the
3439    // structure.
3440    //
3441    // It is important for implementing the correct semantics that this
3442    // happen here (in act on tag decl). The #pragma pack stack is
3443    // maintained as a result of parser callbacks which can occur at
3444    // many points during the parsing of a struct declaration (because
3445    // the #pragma tokens are effectively skipped over during the
3446    // parsing of the struct).
3447    if (unsigned Alignment = getPragmaPackAlignment())
3448      New->addAttr(new PackedAttr(Alignment * 8));
3449  }
3450
3451  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3452    // C++ [dcl.typedef]p3:
3453    //   [...] Similarly, in a given scope, a class or enumeration
3454    //   shall not be declared with the same name as a typedef-name
3455    //   that is declared in that scope and refers to a type other
3456    //   than the class or enumeration itself.
3457    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3458    TypedefDecl *PrevTypedef = 0;
3459    if (Lookup.getKind() == LookupResult::Found)
3460      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3461
3462    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3463        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3464          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3465      Diag(Loc, diag::err_tag_definition_of_typedef)
3466        << Context.getTypeDeclType(New)
3467        << PrevTypedef->getUnderlyingType();
3468      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3469      Invalid = true;
3470    }
3471  }
3472
3473  if (Invalid)
3474    New->setInvalidDecl();
3475
3476  if (Attr)
3477    ProcessDeclAttributeList(New, Attr);
3478
3479  // If we're declaring or defining a tag in function prototype scope
3480  // in C, note that this type can only be used within the function.
3481  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3482    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3483
3484  // Set the lexical context. If the tag has a C++ scope specifier, the
3485  // lexical context will be different from the semantic context.
3486  New->setLexicalDeclContext(CurContext);
3487
3488  if (TK == TK_Definition)
3489    New->startDefinition();
3490
3491  // If this has an identifier, add it to the scope stack.
3492  if (Name) {
3493    S = getNonFieldDeclScope(S);
3494    PushOnScopeChains(New, S);
3495  } else {
3496    CurContext->addDecl(New);
3497  }
3498
3499  return New;
3500}
3501
3502void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3503  AdjustDeclIfTemplate(TagD);
3504  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3505
3506  // Enter the tag context.
3507  PushDeclContext(S, Tag);
3508
3509  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3510    FieldCollector->StartClass();
3511
3512    if (Record->getIdentifier()) {
3513      // C++ [class]p2:
3514      //   [...] The class-name is also inserted into the scope of the
3515      //   class itself; this is known as the injected-class-name. For
3516      //   purposes of access checking, the injected-class-name is treated
3517      //   as if it were a public member name.
3518      RecordDecl *InjectedClassName
3519        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3520                                CurContext, Record->getLocation(),
3521                                Record->getIdentifier(), Record);
3522      InjectedClassName->setImplicit();
3523      PushOnScopeChains(InjectedClassName, S);
3524    }
3525  }
3526}
3527
3528void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3529  AdjustDeclIfTemplate(TagD);
3530  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3531
3532  if (isa<CXXRecordDecl>(Tag))
3533    FieldCollector->FinishClass();
3534
3535  // Exit this scope of this tag's definition.
3536  PopDeclContext();
3537
3538  // Notify the consumer that we've defined a tag.
3539  Consumer.HandleTagDeclDefinition(Tag);
3540}
3541
3542bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3543                          QualType FieldTy, const Expr *BitWidth) {
3544  // FIXME: 6.7.2.1p4 - verify the field type.
3545
3546  llvm::APSInt Value;
3547  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3548    return true;
3549
3550  // Zero-width bitfield is ok for anonymous field.
3551  if (Value == 0 && FieldName)
3552    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3553
3554  if (Value.isNegative())
3555    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3556
3557  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3558  // FIXME: We won't need the 0 size once we check that the field type is valid.
3559  if (TypeSize && Value.getZExtValue() > TypeSize)
3560    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3561       << FieldName << (unsigned)TypeSize;
3562
3563  return false;
3564}
3565
3566/// ActOnField - Each field of a struct/union/class is passed into this in order
3567/// to create a FieldDecl object for it.
3568Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3569                               SourceLocation DeclStart,
3570                               Declarator &D, ExprTy *BitfieldWidth) {
3571  IdentifierInfo *II = D.getIdentifier();
3572  Expr *BitWidth = (Expr*)BitfieldWidth;
3573  SourceLocation Loc = DeclStart;
3574  RecordDecl *Record = (RecordDecl *)TagD;
3575  if (II) Loc = D.getIdentifierLoc();
3576
3577  // FIXME: Unnamed fields can be handled in various different ways, for
3578  // example, unnamed unions inject all members into the struct namespace!
3579
3580  QualType T = GetTypeForDeclarator(D, S);
3581  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3582  bool InvalidDecl = false;
3583
3584  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3585  // than a variably modified type.
3586  if (T->isVariablyModifiedType()) {
3587    bool SizeIsNegative;
3588    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3589                                                           SizeIsNegative);
3590    if (!FixedTy.isNull()) {
3591      Diag(Loc, diag::warn_illegal_constant_array_size);
3592      T = FixedTy;
3593    } else {
3594      if (SizeIsNegative)
3595        Diag(Loc, diag::err_typecheck_negative_array_size);
3596      else
3597        Diag(Loc, diag::err_typecheck_field_variable_size);
3598      T = Context.IntTy;
3599      InvalidDecl = true;
3600    }
3601  }
3602
3603  if (BitWidth) {
3604    if (VerifyBitField(Loc, II, T, BitWidth))
3605      InvalidDecl = true;
3606  } else {
3607    // Not a bitfield.
3608
3609    // validate II.
3610
3611  }
3612
3613  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3614                                       Loc, II, T, BitWidth,
3615                                       D.getDeclSpec().getStorageClassSpec() ==
3616                                       DeclSpec::SCS_mutable);
3617
3618  if (II) {
3619    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3620    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3621        && !isa<TagDecl>(PrevDecl)) {
3622      Diag(Loc, diag::err_duplicate_member) << II;
3623      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3624      NewFD->setInvalidDecl();
3625      Record->setInvalidDecl();
3626    }
3627  }
3628
3629  if (getLangOptions().CPlusPlus) {
3630    CheckExtraCXXDefaultArguments(D);
3631    if (!T->isPODType())
3632      cast<CXXRecordDecl>(Record)->setPOD(false);
3633  }
3634
3635  ProcessDeclAttributes(NewFD, D);
3636  if (T.isObjCGCWeak())
3637    Diag(Loc, diag::warn_attribute_weak_on_field);
3638
3639  if (D.getInvalidType() || InvalidDecl)
3640    NewFD->setInvalidDecl();
3641
3642  if (II) {
3643    PushOnScopeChains(NewFD, S);
3644  } else
3645    Record->addDecl(NewFD);
3646
3647  return NewFD;
3648}
3649
3650/// TranslateIvarVisibility - Translate visibility from a token ID to an
3651///  AST enum value.
3652static ObjCIvarDecl::AccessControl
3653TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3654  switch (ivarVisibility) {
3655  default: assert(0 && "Unknown visitibility kind");
3656  case tok::objc_private: return ObjCIvarDecl::Private;
3657  case tok::objc_public: return ObjCIvarDecl::Public;
3658  case tok::objc_protected: return ObjCIvarDecl::Protected;
3659  case tok::objc_package: return ObjCIvarDecl::Package;
3660  }
3661}
3662
3663/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3664/// in order to create an IvarDecl object for it.
3665Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3666                              SourceLocation DeclStart,
3667                              Declarator &D, ExprTy *BitfieldWidth,
3668                              tok::ObjCKeywordKind Visibility) {
3669
3670  IdentifierInfo *II = D.getIdentifier();
3671  Expr *BitWidth = (Expr*)BitfieldWidth;
3672  SourceLocation Loc = DeclStart;
3673  if (II) Loc = D.getIdentifierLoc();
3674
3675  // FIXME: Unnamed fields can be handled in various different ways, for
3676  // example, unnamed unions inject all members into the struct namespace!
3677
3678  QualType T = GetTypeForDeclarator(D, S);
3679  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3680  bool InvalidDecl = false;
3681
3682  if (BitWidth) {
3683    // 6.7.2.1p3, 6.7.2.1p4
3684    if (VerifyBitField(Loc, II, T, BitWidth))
3685      InvalidDecl = true;
3686  } else {
3687    // Not a bitfield.
3688
3689    // validate II.
3690
3691  }
3692
3693  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3694  // than a variably modified type.
3695  if (T->isVariablyModifiedType()) {
3696    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3697    InvalidDecl = true;
3698  }
3699
3700  // Get the visibility (access control) for this ivar.
3701  ObjCIvarDecl::AccessControl ac =
3702    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3703                                        : ObjCIvarDecl::None;
3704
3705  // Construct the decl.
3706  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3707                                             (Expr *)BitfieldWidth);
3708
3709  if (II) {
3710    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3711    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3712        && !isa<TagDecl>(PrevDecl)) {
3713      Diag(Loc, diag::err_duplicate_member) << II;
3714      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3715      NewID->setInvalidDecl();
3716    }
3717  }
3718
3719  // Process attributes attached to the ivar.
3720  ProcessDeclAttributes(NewID, D);
3721
3722  if (D.getInvalidType() || InvalidDecl)
3723    NewID->setInvalidDecl();
3724
3725  if (II) {
3726    // FIXME: When interfaces are DeclContexts, we'll need to add
3727    // these to the interface.
3728    S->AddDecl(NewID);
3729    IdResolver.AddDecl(NewID);
3730  }
3731
3732  return NewID;
3733}
3734
3735void Sema::ActOnFields(Scope* S,
3736                       SourceLocation RecLoc, DeclTy *RecDecl,
3737                       DeclTy **Fields, unsigned NumFields,
3738                       SourceLocation LBrac, SourceLocation RBrac,
3739                       AttributeList *Attr) {
3740  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3741  assert(EnclosingDecl && "missing record or interface decl");
3742
3743  // If the decl this is being inserted into is invalid, then it may be a
3744  // redeclaration or some other bogus case.  Don't try to add fields to it.
3745  if (EnclosingDecl->isInvalidDecl()) {
3746    // FIXME: Deallocate fields?
3747    return;
3748  }
3749
3750
3751  // Verify that all the fields are okay.
3752  unsigned NumNamedMembers = 0;
3753  llvm::SmallVector<FieldDecl*, 32> RecFields;
3754
3755  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3756  for (unsigned i = 0; i != NumFields; ++i) {
3757    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3758    assert(FD && "missing field decl");
3759
3760    // Get the type for the field.
3761    Type *FDTy = FD->getType().getTypePtr();
3762
3763    if (!FD->isAnonymousStructOrUnion()) {
3764      // Remember all fields written by the user.
3765      RecFields.push_back(FD);
3766    }
3767
3768    // C99 6.7.2.1p2 - A field may not be a function type.
3769    if (FDTy->isFunctionType()) {
3770      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3771        << FD->getDeclName();
3772      FD->setInvalidDecl();
3773      EnclosingDecl->setInvalidDecl();
3774      continue;
3775    }
3776    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3777    if (FDTy->isIncompleteType()) {
3778      if (!Record) {  // Incomplete ivar type is always an error.
3779        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3780                               diag::err_field_incomplete);
3781        FD->setInvalidDecl();
3782        EnclosingDecl->setInvalidDecl();
3783        continue;
3784      }
3785      if (i != NumFields-1 ||                   // ... that the last member ...
3786          !Record->isStruct() ||  // ... of a structure ...
3787          !FDTy->isArrayType()) {         //... may have incomplete array type.
3788        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3789                               diag::err_field_incomplete);
3790        FD->setInvalidDecl();
3791        EnclosingDecl->setInvalidDecl();
3792        continue;
3793      }
3794      if (NumNamedMembers < 1) {  //... must have more than named member ...
3795        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3796          << FD->getDeclName();
3797        FD->setInvalidDecl();
3798        EnclosingDecl->setInvalidDecl();
3799        continue;
3800      }
3801      // Okay, we have a legal flexible array member at the end of the struct.
3802      if (Record)
3803        Record->setHasFlexibleArrayMember(true);
3804    }
3805    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3806    /// field of another structure or the element of an array.
3807    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3808      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3809        // If this is a member of a union, then entire union becomes "flexible".
3810        if (Record && Record->isUnion()) {
3811          Record->setHasFlexibleArrayMember(true);
3812        } else {
3813          // If this is a struct/class and this is not the last element, reject
3814          // it.  Note that GCC supports variable sized arrays in the middle of
3815          // structures.
3816          if (i != NumFields-1) {
3817            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3818              << FD->getDeclName();
3819            FD->setInvalidDecl();
3820            EnclosingDecl->setInvalidDecl();
3821            continue;
3822          }
3823          // We support flexible arrays at the end of structs in other structs
3824          // as an extension.
3825          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3826            << FD->getDeclName();
3827          if (Record)
3828            Record->setHasFlexibleArrayMember(true);
3829        }
3830      }
3831    }
3832    /// A field cannot be an Objective-c object
3833    if (FDTy->isObjCInterfaceType()) {
3834      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3835      FD->setInvalidDecl();
3836      EnclosingDecl->setInvalidDecl();
3837      continue;
3838    }
3839    // Keep track of the number of named members.
3840    if (FD->getIdentifier())
3841      ++NumNamedMembers;
3842  }
3843
3844  // Okay, we successfully defined 'Record'.
3845  if (Record) {
3846    Record->completeDefinition(Context);
3847  } else {
3848    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3849    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3850      ID->setIVarList(ClsFields, RecFields.size(), Context);
3851      ID->setLocEnd(RBrac);
3852
3853      // Must enforce the rule that ivars in the base classes may not be
3854      // duplicates.
3855      if (ID->getSuperClass()) {
3856        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3857             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3858          ObjCIvarDecl* Ivar = (*IVI);
3859          IdentifierInfo *II = Ivar->getIdentifier();
3860          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3861          if (prevIvar) {
3862            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3863            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3864          }
3865        }
3866      }
3867    } else if (ObjCImplementationDecl *IMPDecl =
3868                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3869      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3870      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3871      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3872    }
3873  }
3874
3875  if (Attr)
3876    ProcessDeclAttributeList(Record, Attr);
3877}
3878
3879Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3880                                      DeclTy *lastEnumConst,
3881                                      SourceLocation IdLoc, IdentifierInfo *Id,
3882                                      SourceLocation EqualLoc, ExprTy *val) {
3883  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3884  EnumConstantDecl *LastEnumConst =
3885    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3886  Expr *Val = static_cast<Expr*>(val);
3887
3888  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3889  // we find one that is.
3890  S = getNonFieldDeclScope(S);
3891
3892  // Verify that there isn't already something declared with this name in this
3893  // scope.
3894  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3895  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3896    // Maybe we will complain about the shadowed template parameter.
3897    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3898    // Just pretend that we didn't see the previous declaration.
3899    PrevDecl = 0;
3900  }
3901
3902  if (PrevDecl) {
3903    // When in C++, we may get a TagDecl with the same name; in this case the
3904    // enum constant will 'hide' the tag.
3905    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3906           "Received TagDecl when not in C++!");
3907    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3908      if (isa<EnumConstantDecl>(PrevDecl))
3909        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3910      else
3911        Diag(IdLoc, diag::err_redefinition) << Id;
3912      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3913      Val->Destroy(Context);
3914      return 0;
3915    }
3916  }
3917
3918  llvm::APSInt EnumVal(32);
3919  QualType EltTy;
3920  if (Val) {
3921    // Make sure to promote the operand type to int.
3922    UsualUnaryConversions(Val);
3923
3924    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3925    SourceLocation ExpLoc;
3926    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3927      Val->Destroy(Context);
3928      Val = 0;  // Just forget about it.
3929    } else {
3930      EltTy = Val->getType();
3931    }
3932  }
3933
3934  if (!Val) {
3935    if (LastEnumConst) {
3936      // Assign the last value + 1.
3937      EnumVal = LastEnumConst->getInitVal();
3938      ++EnumVal;
3939
3940      // Check for overflow on increment.
3941      if (EnumVal < LastEnumConst->getInitVal())
3942        Diag(IdLoc, diag::warn_enum_value_overflow);
3943
3944      EltTy = LastEnumConst->getType();
3945    } else {
3946      // First value, set to zero.
3947      EltTy = Context.IntTy;
3948      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3949    }
3950  }
3951
3952  EnumConstantDecl *New =
3953    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3954                             Val, EnumVal);
3955
3956  // Register this decl in the current scope stack.
3957  PushOnScopeChains(New, S);
3958
3959  return New;
3960}
3961
3962// FIXME: For consistency with ActOnFields(), we should have the parser
3963// pass in the source location for the left/right braces.
3964void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3965                         DeclTy **Elements, unsigned NumElements) {
3966  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3967  QualType EnumType = Context.getTypeDeclType(Enum);
3968
3969  // TODO: If the result value doesn't fit in an int, it must be a long or long
3970  // long value.  ISO C does not support this, but GCC does as an extension,
3971  // emit a warning.
3972  unsigned IntWidth = Context.Target.getIntWidth();
3973
3974  // Verify that all the values are okay, compute the size of the values, and
3975  // reverse the list.
3976  unsigned NumNegativeBits = 0;
3977  unsigned NumPositiveBits = 0;
3978
3979  // Keep track of whether all elements have type int.
3980  bool AllElementsInt = true;
3981
3982  for (unsigned i = 0; i != NumElements; ++i) {
3983    EnumConstantDecl *ECD =
3984      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3985    if (!ECD) continue;  // Already issued a diagnostic.
3986
3987    // If the enum value doesn't fit in an int, emit an extension warning.
3988    const llvm::APSInt &InitVal = ECD->getInitVal();
3989    assert(InitVal.getBitWidth() >= IntWidth &&
3990           "Should have promoted value to int");
3991    if (InitVal.getBitWidth() > IntWidth) {
3992      llvm::APSInt V(InitVal);
3993      V.trunc(IntWidth);
3994      V.extend(InitVal.getBitWidth());
3995      if (V != InitVal)
3996        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3997          << InitVal.toString(10);
3998    }
3999
4000    // Keep track of the size of positive and negative values.
4001    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4002      NumPositiveBits = std::max(NumPositiveBits,
4003                                 (unsigned)InitVal.getActiveBits());
4004    else
4005      NumNegativeBits = std::max(NumNegativeBits,
4006                                 (unsigned)InitVal.getMinSignedBits());
4007
4008    // Keep track of whether every enum element has type int (very commmon).
4009    if (AllElementsInt)
4010      AllElementsInt = ECD->getType() == Context.IntTy;
4011  }
4012
4013  // Figure out the type that should be used for this enum.
4014  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4015  QualType BestType;
4016  unsigned BestWidth;
4017
4018  if (NumNegativeBits) {
4019    // If there is a negative value, figure out the smallest integer type (of
4020    // int/long/longlong) that fits.
4021    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4022      BestType = Context.IntTy;
4023      BestWidth = IntWidth;
4024    } else {
4025      BestWidth = Context.Target.getLongWidth();
4026
4027      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4028        BestType = Context.LongTy;
4029      else {
4030        BestWidth = Context.Target.getLongLongWidth();
4031
4032        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4033          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4034        BestType = Context.LongLongTy;
4035      }
4036    }
4037  } else {
4038    // If there is no negative value, figure out which of uint, ulong, ulonglong
4039    // fits.
4040    if (NumPositiveBits <= IntWidth) {
4041      BestType = Context.UnsignedIntTy;
4042      BestWidth = IntWidth;
4043    } else if (NumPositiveBits <=
4044               (BestWidth = Context.Target.getLongWidth())) {
4045      BestType = Context.UnsignedLongTy;
4046    } else {
4047      BestWidth = Context.Target.getLongLongWidth();
4048      assert(NumPositiveBits <= BestWidth &&
4049             "How could an initializer get larger than ULL?");
4050      BestType = Context.UnsignedLongLongTy;
4051    }
4052  }
4053
4054  // Loop over all of the enumerator constants, changing their types to match
4055  // the type of the enum if needed.
4056  for (unsigned i = 0; i != NumElements; ++i) {
4057    EnumConstantDecl *ECD =
4058      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4059    if (!ECD) continue;  // Already issued a diagnostic.
4060
4061    // Standard C says the enumerators have int type, but we allow, as an
4062    // extension, the enumerators to be larger than int size.  If each
4063    // enumerator value fits in an int, type it as an int, otherwise type it the
4064    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4065    // that X has type 'int', not 'unsigned'.
4066    if (ECD->getType() == Context.IntTy) {
4067      // Make sure the init value is signed.
4068      llvm::APSInt IV = ECD->getInitVal();
4069      IV.setIsSigned(true);
4070      ECD->setInitVal(IV);
4071
4072      if (getLangOptions().CPlusPlus)
4073        // C++ [dcl.enum]p4: Following the closing brace of an
4074        // enum-specifier, each enumerator has the type of its
4075        // enumeration.
4076        ECD->setType(EnumType);
4077      continue;  // Already int type.
4078    }
4079
4080    // Determine whether the value fits into an int.
4081    llvm::APSInt InitVal = ECD->getInitVal();
4082    bool FitsInInt;
4083    if (InitVal.isUnsigned() || !InitVal.isNegative())
4084      FitsInInt = InitVal.getActiveBits() < IntWidth;
4085    else
4086      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4087
4088    // If it fits into an integer type, force it.  Otherwise force it to match
4089    // the enum decl type.
4090    QualType NewTy;
4091    unsigned NewWidth;
4092    bool NewSign;
4093    if (FitsInInt) {
4094      NewTy = Context.IntTy;
4095      NewWidth = IntWidth;
4096      NewSign = true;
4097    } else if (ECD->getType() == BestType) {
4098      // Already the right type!
4099      if (getLangOptions().CPlusPlus)
4100        // C++ [dcl.enum]p4: Following the closing brace of an
4101        // enum-specifier, each enumerator has the type of its
4102        // enumeration.
4103        ECD->setType(EnumType);
4104      continue;
4105    } else {
4106      NewTy = BestType;
4107      NewWidth = BestWidth;
4108      NewSign = BestType->isSignedIntegerType();
4109    }
4110
4111    // Adjust the APSInt value.
4112    InitVal.extOrTrunc(NewWidth);
4113    InitVal.setIsSigned(NewSign);
4114    ECD->setInitVal(InitVal);
4115
4116    // Adjust the Expr initializer and type.
4117    if (ECD->getInitExpr())
4118      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4119                                                      /*isLvalue=*/false));
4120    if (getLangOptions().CPlusPlus)
4121      // C++ [dcl.enum]p4: Following the closing brace of an
4122      // enum-specifier, each enumerator has the type of its
4123      // enumeration.
4124      ECD->setType(EnumType);
4125    else
4126      ECD->setType(NewTy);
4127  }
4128
4129  Enum->completeDefinition(Context, BestType);
4130}
4131
4132Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4133                                          ExprArg expr) {
4134  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4135
4136  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4137}
4138
4139