SemaDecl.cpp revision d97cec3deb6e34f0f9d4f5f8ec11b28e44812727
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Lex/HeaderSearch.h"
40#include "llvm/ADT/Triple.h"
41#include <algorithm>
42#include <cstring>
43#include <functional>
44using namespace clang;
45using namespace sema;
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName, bool HasTrailingDot,
65                             ParsedType ObjectTypePtr,
66                             bool WantNontrivialTypeSourceInfo) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = ObjectTypePtr.get();
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return ParsedType();
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        if (WantNontrivialTypeSourceInfo)
93          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
94
95        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
96        QualType T =
97          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
98                            II, NameLoc);
99
100          return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS && SS->isNotEmpty()) {
200      if (WantNontrivialTypeSourceInfo) {
201        // Construct a type with type-source information.
202        TypeLocBuilder Builder;
203        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
204
205        T = getElaboratedType(ETK_None, *SS, T);
206        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
207        ElabTL.setKeywordLoc(SourceLocation());
208        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
209        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
210      } else {
211        T = getElaboratedType(ETK_None, *SS, T);
212      }
213    }
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    if (!HasTrailingDot)
216      T = Context.getObjCInterfaceType(IDecl);
217  }
218
219  if (T.isNull()) {
220    // If it's not plausibly a type, suppress diagnostics.
221    Result.suppressDiagnostics();
222    return ParsedType();
223  }
224  return ParsedType::make(T);
225}
226
227/// isTagName() - This method is called *for error recovery purposes only*
228/// to determine if the specified name is a valid tag name ("struct foo").  If
229/// so, this returns the TST for the tag corresponding to it (TST_enum,
230/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
231/// where the user forgot to specify the tag.
232DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
233  // Do a tag name lookup in this scope.
234  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
235  LookupName(R, S, false);
236  R.suppressDiagnostics();
237  if (R.getResultKind() == LookupResult::Found)
238    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
239      switch (TD->getTagKind()) {
240      default:         return DeclSpec::TST_unspecified;
241      case TTK_Struct: return DeclSpec::TST_struct;
242      case TTK_Union:  return DeclSpec::TST_union;
243      case TTK_Class:  return DeclSpec::TST_class;
244      case TTK_Enum:   return DeclSpec::TST_enum;
245      }
246    }
247
248  return DeclSpec::TST_unspecified;
249}
250
251bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
252                                   SourceLocation IILoc,
253                                   Scope *S,
254                                   CXXScopeSpec *SS,
255                                   ParsedType &SuggestedType) {
256  // We don't have anything to suggest (yet).
257  SuggestedType = ParsedType();
258
259  // There may have been a typo in the name of the type. Look up typo
260  // results, in case we have something that we can suggest.
261  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
262                      NotForRedeclaration);
263
264  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
265    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
266      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
267          !Result->isInvalidDecl()) {
268        // We found a similarly-named type or interface; suggest that.
269        if (!SS || !SS->isSet())
270          Diag(IILoc, diag::err_unknown_typename_suggest)
271            << &II << Lookup.getLookupName()
272            << FixItHint::CreateReplacement(SourceRange(IILoc),
273                                            Result->getNameAsString());
274        else if (DeclContext *DC = computeDeclContext(*SS, false))
275          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
276            << &II << DC << Lookup.getLookupName() << SS->getRange()
277            << FixItHint::CreateReplacement(SourceRange(IILoc),
278                                            Result->getNameAsString());
279        else
280          llvm_unreachable("could not have corrected a typo here");
281
282        Diag(Result->getLocation(), diag::note_previous_decl)
283          << Result->getDeclName();
284
285        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
286                                    false, false, ParsedType(),
287                                    /*NonTrivialTypeSourceInfo=*/true);
288        return true;
289      }
290    } else if (Lookup.empty()) {
291      // We corrected to a keyword.
292      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
293      Diag(IILoc, diag::err_unknown_typename_suggest)
294        << &II << Corrected;
295      return true;
296    }
297  }
298
299  if (getLangOptions().CPlusPlus) {
300    // See if II is a class template that the user forgot to pass arguments to.
301    UnqualifiedId Name;
302    Name.setIdentifier(&II, IILoc);
303    CXXScopeSpec EmptySS;
304    TemplateTy TemplateResult;
305    bool MemberOfUnknownSpecialization;
306    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
307                       Name, ParsedType(), true, TemplateResult,
308                       MemberOfUnknownSpecialization) == TNK_Type_template) {
309      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
310      Diag(IILoc, diag::err_template_missing_args) << TplName;
311      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
312        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
313          << TplDecl->getTemplateParameters()->getSourceRange();
314      }
315      return true;
316    }
317  }
318
319  // FIXME: Should we move the logic that tries to recover from a missing tag
320  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
321
322  if (!SS || (!SS->isSet() && !SS->isInvalid()))
323    Diag(IILoc, diag::err_unknown_typename) << &II;
324  else if (DeclContext *DC = computeDeclContext(*SS, false))
325    Diag(IILoc, diag::err_typename_nested_not_found)
326      << &II << DC << SS->getRange();
327  else if (isDependentScopeSpecifier(*SS)) {
328    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
329      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
330      << SourceRange(SS->getRange().getBegin(), IILoc)
331      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
332    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
333  } else {
334    assert(SS && SS->isInvalid() &&
335           "Invalid scope specifier has already been diagnosed");
336  }
337
338  return true;
339}
340
341// Determines the context to return to after temporarily entering a
342// context.  This depends in an unnecessarily complicated way on the
343// exact ordering of callbacks from the parser.
344DeclContext *Sema::getContainingDC(DeclContext *DC) {
345
346  // Functions defined inline within classes aren't parsed until we've
347  // finished parsing the top-level class, so the top-level class is
348  // the context we'll need to return to.
349  if (isa<FunctionDecl>(DC)) {
350    DC = DC->getLexicalParent();
351
352    // A function not defined within a class will always return to its
353    // lexical context.
354    if (!isa<CXXRecordDecl>(DC))
355      return DC;
356
357    // A C++ inline method/friend is parsed *after* the topmost class
358    // it was declared in is fully parsed ("complete");  the topmost
359    // class is the context we need to return to.
360    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
361      DC = RD;
362
363    // Return the declaration context of the topmost class the inline method is
364    // declared in.
365    return DC;
366  }
367
368  // ObjCMethodDecls are parsed (for some reason) outside the context
369  // of the class.
370  if (isa<ObjCMethodDecl>(DC))
371    return DC->getLexicalParent()->getLexicalParent();
372
373  return DC->getLexicalParent();
374}
375
376void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
377  assert(getContainingDC(DC) == CurContext &&
378      "The next DeclContext should be lexically contained in the current one.");
379  CurContext = DC;
380  S->setEntity(DC);
381}
382
383void Sema::PopDeclContext() {
384  assert(CurContext && "DeclContext imbalance!");
385
386  CurContext = getContainingDC(CurContext);
387  assert(CurContext && "Popped translation unit!");
388}
389
390/// EnterDeclaratorContext - Used when we must lookup names in the context
391/// of a declarator's nested name specifier.
392///
393void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
394  // C++0x [basic.lookup.unqual]p13:
395  //   A name used in the definition of a static data member of class
396  //   X (after the qualified-id of the static member) is looked up as
397  //   if the name was used in a member function of X.
398  // C++0x [basic.lookup.unqual]p14:
399  //   If a variable member of a namespace is defined outside of the
400  //   scope of its namespace then any name used in the definition of
401  //   the variable member (after the declarator-id) is looked up as
402  //   if the definition of the variable member occurred in its
403  //   namespace.
404  // Both of these imply that we should push a scope whose context
405  // is the semantic context of the declaration.  We can't use
406  // PushDeclContext here because that context is not necessarily
407  // lexically contained in the current context.  Fortunately,
408  // the containing scope should have the appropriate information.
409
410  assert(!S->getEntity() && "scope already has entity");
411
412#ifndef NDEBUG
413  Scope *Ancestor = S->getParent();
414  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
415  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
416#endif
417
418  CurContext = DC;
419  S->setEntity(DC);
420}
421
422void Sema::ExitDeclaratorContext(Scope *S) {
423  assert(S->getEntity() == CurContext && "Context imbalance!");
424
425  // Switch back to the lexical context.  The safety of this is
426  // enforced by an assert in EnterDeclaratorContext.
427  Scope *Ancestor = S->getParent();
428  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
429  CurContext = (DeclContext*) Ancestor->getEntity();
430
431  // We don't need to do anything with the scope, which is going to
432  // disappear.
433}
434
435/// \brief Determine whether we allow overloading of the function
436/// PrevDecl with another declaration.
437///
438/// This routine determines whether overloading is possible, not
439/// whether some new function is actually an overload. It will return
440/// true in C++ (where we can always provide overloads) or, as an
441/// extension, in C when the previous function is already an
442/// overloaded function declaration or has the "overloadable"
443/// attribute.
444static bool AllowOverloadingOfFunction(LookupResult &Previous,
445                                       ASTContext &Context) {
446  if (Context.getLangOptions().CPlusPlus)
447    return true;
448
449  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
450    return true;
451
452  return (Previous.getResultKind() == LookupResult::Found
453          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
454}
455
456/// Add this decl to the scope shadowed decl chains.
457void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
458  // Move up the scope chain until we find the nearest enclosing
459  // non-transparent context. The declaration will be introduced into this
460  // scope.
461  while (S->getEntity() &&
462         ((DeclContext *)S->getEntity())->isTransparentContext())
463    S = S->getParent();
464
465  // Add scoped declarations into their context, so that they can be
466  // found later. Declarations without a context won't be inserted
467  // into any context.
468  if (AddToContext)
469    CurContext->addDecl(D);
470
471  // Out-of-line definitions shouldn't be pushed into scope in C++.
472  // Out-of-line variable and function definitions shouldn't even in C.
473  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
474      D->isOutOfLine())
475    return;
476
477  // Template instantiations should also not be pushed into scope.
478  if (isa<FunctionDecl>(D) &&
479      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
480    return;
481
482  // If this replaces anything in the current scope,
483  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
484                               IEnd = IdResolver.end();
485  for (; I != IEnd; ++I) {
486    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
487      S->RemoveDecl(*I);
488      IdResolver.RemoveDecl(*I);
489
490      // Should only need to replace one decl.
491      break;
492    }
493  }
494
495  S->AddDecl(D);
496  IdResolver.AddDecl(D);
497}
498
499bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
500                         bool ExplicitInstantiationOrSpecialization) {
501  return IdResolver.isDeclInScope(D, Ctx, Context, S,
502                                  ExplicitInstantiationOrSpecialization);
503}
504
505Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
506  DeclContext *TargetDC = DC->getPrimaryContext();
507  do {
508    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
509      if (ScopeDC->getPrimaryContext() == TargetDC)
510        return S;
511  } while ((S = S->getParent()));
512
513  return 0;
514}
515
516static bool isOutOfScopePreviousDeclaration(NamedDecl *,
517                                            DeclContext*,
518                                            ASTContext&);
519
520/// Filters out lookup results that don't fall within the given scope
521/// as determined by isDeclInScope.
522static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
523                                 DeclContext *Ctx, Scope *S,
524                                 bool ConsiderLinkage,
525                                 bool ExplicitInstantiationOrSpecialization) {
526  LookupResult::Filter F = R.makeFilter();
527  while (F.hasNext()) {
528    NamedDecl *D = F.next();
529
530    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
531      continue;
532
533    if (ConsiderLinkage &&
534        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
535      continue;
536
537    F.erase();
538  }
539
540  F.done();
541}
542
543static bool isUsingDecl(NamedDecl *D) {
544  return isa<UsingShadowDecl>(D) ||
545         isa<UnresolvedUsingTypenameDecl>(D) ||
546         isa<UnresolvedUsingValueDecl>(D);
547}
548
549/// Removes using shadow declarations from the lookup results.
550static void RemoveUsingDecls(LookupResult &R) {
551  LookupResult::Filter F = R.makeFilter();
552  while (F.hasNext())
553    if (isUsingDecl(F.next()))
554      F.erase();
555
556  F.done();
557}
558
559/// \brief Check for this common pattern:
560/// @code
561/// class S {
562///   S(const S&); // DO NOT IMPLEMENT
563///   void operator=(const S&); // DO NOT IMPLEMENT
564/// };
565/// @endcode
566static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
567  // FIXME: Should check for private access too but access is set after we get
568  // the decl here.
569  if (D->isThisDeclarationADefinition())
570    return false;
571
572  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
573    return CD->isCopyConstructor();
574  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
575    return Method->isCopyAssignmentOperator();
576  return false;
577}
578
579bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
580  assert(D);
581
582  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
583    return false;
584
585  // Ignore class templates.
586  if (D->getDeclContext()->isDependentContext() ||
587      D->getLexicalDeclContext()->isDependentContext())
588    return false;
589
590  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
591    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
592      return false;
593
594    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
595      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
596        return false;
597    } else {
598      // 'static inline' functions are used in headers; don't warn.
599      if (FD->getStorageClass() == SC_Static &&
600          FD->isInlineSpecified())
601        return false;
602    }
603
604    if (FD->isThisDeclarationADefinition() &&
605        Context.DeclMustBeEmitted(FD))
606      return false;
607
608  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    if (!VD->isFileVarDecl() ||
610        VD->getType().isConstant(Context) ||
611        Context.DeclMustBeEmitted(VD))
612      return false;
613
614    if (VD->isStaticDataMember() &&
615        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
616      return false;
617
618  } else {
619    return false;
620  }
621
622  // Only warn for unused decls internal to the translation unit.
623  if (D->getLinkage() == ExternalLinkage)
624    return false;
625
626  return true;
627}
628
629void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
630  if (!D)
631    return;
632
633  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
634    const FunctionDecl *First = FD->getFirstDeclaration();
635    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
636      return; // First should already be in the vector.
637  }
638
639  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
640    const VarDecl *First = VD->getFirstDeclaration();
641    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
642      return; // First should already be in the vector.
643  }
644
645   if (ShouldWarnIfUnusedFileScopedDecl(D))
646     UnusedFileScopedDecls.push_back(D);
647 }
648
649static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
650  if (D->isInvalidDecl())
651    return false;
652
653  if (D->isUsed() || D->hasAttr<UnusedAttr>())
654    return false;
655
656  if (isa<LabelDecl>(D))
657    return true;
658
659  // White-list anything that isn't a local variable.
660  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
661      !D->getDeclContext()->isFunctionOrMethod())
662    return false;
663
664  // Types of valid local variables should be complete, so this should succeed.
665  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
666
667    // White-list anything with an __attribute__((unused)) type.
668    QualType Ty = VD->getType();
669
670    // Only look at the outermost level of typedef.
671    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
672      if (TT->getDecl()->hasAttr<UnusedAttr>())
673        return false;
674    }
675
676    // If we failed to complete the type for some reason, or if the type is
677    // dependent, don't diagnose the variable.
678    if (Ty->isIncompleteType() || Ty->isDependentType())
679      return false;
680
681    if (const TagType *TT = Ty->getAs<TagType>()) {
682      const TagDecl *Tag = TT->getDecl();
683      if (Tag->hasAttr<UnusedAttr>())
684        return false;
685
686      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
687        // FIXME: Checking for the presence of a user-declared constructor
688        // isn't completely accurate; we'd prefer to check that the initializer
689        // has no side effects.
690        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
691          return false;
692      }
693    }
694
695    // TODO: __attribute__((unused)) templates?
696  }
697
698  return true;
699}
700
701/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
702/// unless they are marked attr(unused).
703void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
704  if (!ShouldDiagnoseUnusedDecl(D))
705    return;
706
707  unsigned DiagID;
708  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
709    DiagID = diag::warn_unused_exception_param;
710  else if (isa<LabelDecl>(D))
711    DiagID = diag::warn_unused_label;
712  else
713    DiagID = diag::warn_unused_variable;
714
715  Diag(D->getLocation(), DiagID) << D->getDeclName();
716}
717
718static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
719  // Verify that we have no forward references left.  If so, there was a goto
720  // or address of a label taken, but no definition of it.  Label fwd
721  // definitions are indicated with a null substmt.
722  if (L->getStmt() == 0)
723    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
724}
725
726void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
727  if (S->decl_empty()) return;
728  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
729         "Scope shouldn't contain decls!");
730
731  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
732       I != E; ++I) {
733    Decl *TmpD = (*I);
734    assert(TmpD && "This decl didn't get pushed??");
735
736    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
737    NamedDecl *D = cast<NamedDecl>(TmpD);
738
739    if (!D->getDeclName()) continue;
740
741    // Diagnose unused variables in this scope.
742    if (!S->hasErrorOccurred())
743      DiagnoseUnusedDecl(D);
744
745    // If this was a forward reference to a label, verify it was defined.
746    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
747      CheckPoppedLabel(LD, *this);
748
749    // Remove this name from our lexical scope.
750    IdResolver.RemoveDecl(D);
751  }
752}
753
754/// \brief Look for an Objective-C class in the translation unit.
755///
756/// \param Id The name of the Objective-C class we're looking for. If
757/// typo-correction fixes this name, the Id will be updated
758/// to the fixed name.
759///
760/// \param IdLoc The location of the name in the translation unit.
761///
762/// \param TypoCorrection If true, this routine will attempt typo correction
763/// if there is no class with the given name.
764///
765/// \returns The declaration of the named Objective-C class, or NULL if the
766/// class could not be found.
767ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
768                                              SourceLocation IdLoc,
769                                              bool TypoCorrection) {
770  // The third "scope" argument is 0 since we aren't enabling lazy built-in
771  // creation from this context.
772  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
773
774  if (!IDecl && TypoCorrection) {
775    // Perform typo correction at the given location, but only if we
776    // find an Objective-C class name.
777    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
778    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
779        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
780      Diag(IdLoc, diag::err_undef_interface_suggest)
781        << Id << IDecl->getDeclName()
782        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
783      Diag(IDecl->getLocation(), diag::note_previous_decl)
784        << IDecl->getDeclName();
785
786      Id = IDecl->getIdentifier();
787    }
788  }
789
790  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
791}
792
793/// getNonFieldDeclScope - Retrieves the innermost scope, starting
794/// from S, where a non-field would be declared. This routine copes
795/// with the difference between C and C++ scoping rules in structs and
796/// unions. For example, the following code is well-formed in C but
797/// ill-formed in C++:
798/// @code
799/// struct S6 {
800///   enum { BAR } e;
801/// };
802///
803/// void test_S6() {
804///   struct S6 a;
805///   a.e = BAR;
806/// }
807/// @endcode
808/// For the declaration of BAR, this routine will return a different
809/// scope. The scope S will be the scope of the unnamed enumeration
810/// within S6. In C++, this routine will return the scope associated
811/// with S6, because the enumeration's scope is a transparent
812/// context but structures can contain non-field names. In C, this
813/// routine will return the translation unit scope, since the
814/// enumeration's scope is a transparent context and structures cannot
815/// contain non-field names.
816Scope *Sema::getNonFieldDeclScope(Scope *S) {
817  while (((S->getFlags() & Scope::DeclScope) == 0) ||
818         (S->getEntity() &&
819          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
820         (S->isClassScope() && !getLangOptions().CPlusPlus))
821    S = S->getParent();
822  return S;
823}
824
825/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
826/// file scope.  lazily create a decl for it. ForRedeclaration is true
827/// if we're creating this built-in in anticipation of redeclaring the
828/// built-in.
829NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
830                                     Scope *S, bool ForRedeclaration,
831                                     SourceLocation Loc) {
832  Builtin::ID BID = (Builtin::ID)bid;
833
834  ASTContext::GetBuiltinTypeError Error;
835  QualType R = Context.GetBuiltinType(BID, Error);
836  switch (Error) {
837  case ASTContext::GE_None:
838    // Okay
839    break;
840
841  case ASTContext::GE_Missing_stdio:
842    if (ForRedeclaration)
843      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
844        << Context.BuiltinInfo.GetName(BID);
845    return 0;
846
847  case ASTContext::GE_Missing_setjmp:
848    if (ForRedeclaration)
849      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
850        << Context.BuiltinInfo.GetName(BID);
851    return 0;
852  }
853
854  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
855    Diag(Loc, diag::ext_implicit_lib_function_decl)
856      << Context.BuiltinInfo.GetName(BID)
857      << R;
858    if (Context.BuiltinInfo.getHeaderName(BID) &&
859        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
860          != Diagnostic::Ignored)
861      Diag(Loc, diag::note_please_include_header)
862        << Context.BuiltinInfo.getHeaderName(BID)
863        << Context.BuiltinInfo.GetName(BID);
864  }
865
866  FunctionDecl *New = FunctionDecl::Create(Context,
867                                           Context.getTranslationUnitDecl(),
868                                           Loc, II, R, /*TInfo=*/0,
869                                           SC_Extern,
870                                           SC_None, false,
871                                           /*hasPrototype=*/true);
872  New->setImplicit();
873
874  // Create Decl objects for each parameter, adding them to the
875  // FunctionDecl.
876  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
877    llvm::SmallVector<ParmVarDecl*, 16> Params;
878    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
879      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
880                                           FT->getArgType(i), /*TInfo=*/0,
881                                           SC_None, SC_None, 0));
882    New->setParams(Params.data(), Params.size());
883  }
884
885  AddKnownFunctionAttributes(New);
886
887  // TUScope is the translation-unit scope to insert this function into.
888  // FIXME: This is hideous. We need to teach PushOnScopeChains to
889  // relate Scopes to DeclContexts, and probably eliminate CurContext
890  // entirely, but we're not there yet.
891  DeclContext *SavedContext = CurContext;
892  CurContext = Context.getTranslationUnitDecl();
893  PushOnScopeChains(New, TUScope);
894  CurContext = SavedContext;
895  return New;
896}
897
898/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
899/// same name and scope as a previous declaration 'Old'.  Figure out
900/// how to resolve this situation, merging decls or emitting
901/// diagnostics as appropriate. If there was an error, set New to be invalid.
902///
903void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
904  // If the new decl is known invalid already, don't bother doing any
905  // merging checks.
906  if (New->isInvalidDecl()) return;
907
908  // Allow multiple definitions for ObjC built-in typedefs.
909  // FIXME: Verify the underlying types are equivalent!
910  if (getLangOptions().ObjC1) {
911    const IdentifierInfo *TypeID = New->getIdentifier();
912    switch (TypeID->getLength()) {
913    default: break;
914    case 2:
915      if (!TypeID->isStr("id"))
916        break;
917      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
918      // Install the built-in type for 'id', ignoring the current definition.
919      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
920      return;
921    case 5:
922      if (!TypeID->isStr("Class"))
923        break;
924      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
925      // Install the built-in type for 'Class', ignoring the current definition.
926      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
927      return;
928    case 3:
929      if (!TypeID->isStr("SEL"))
930        break;
931      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
932      // Install the built-in type for 'SEL', ignoring the current definition.
933      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
934      return;
935    case 8:
936      if (!TypeID->isStr("Protocol"))
937        break;
938      Context.setObjCProtoType(New->getUnderlyingType());
939      return;
940    }
941    // Fall through - the typedef name was not a builtin type.
942  }
943
944  // Verify the old decl was also a type.
945  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
946  if (!Old) {
947    Diag(New->getLocation(), diag::err_redefinition_different_kind)
948      << New->getDeclName();
949
950    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
951    if (OldD->getLocation().isValid())
952      Diag(OldD->getLocation(), diag::note_previous_definition);
953
954    return New->setInvalidDecl();
955  }
956
957  // If the old declaration is invalid, just give up here.
958  if (Old->isInvalidDecl())
959    return New->setInvalidDecl();
960
961  // Determine the "old" type we'll use for checking and diagnostics.
962  QualType OldType;
963  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
964    OldType = OldTypedef->getUnderlyingType();
965  else
966    OldType = Context.getTypeDeclType(Old);
967
968  // If the typedef types are not identical, reject them in all languages and
969  // with any extensions enabled.
970
971  if (OldType != New->getUnderlyingType() &&
972      Context.getCanonicalType(OldType) !=
973      Context.getCanonicalType(New->getUnderlyingType())) {
974    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
975      << New->getUnderlyingType() << OldType;
976    if (Old->getLocation().isValid())
977      Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980
981  // The types match.  Link up the redeclaration chain if the old
982  // declaration was a typedef.
983  // FIXME: this is a potential source of wierdness if the type
984  // spellings don't match exactly.
985  if (isa<TypedefDecl>(Old))
986    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
987
988  if (getLangOptions().Microsoft)
989    return;
990
991  if (getLangOptions().CPlusPlus) {
992    // C++ [dcl.typedef]p2:
993    //   In a given non-class scope, a typedef specifier can be used to
994    //   redefine the name of any type declared in that scope to refer
995    //   to the type to which it already refers.
996    if (!isa<CXXRecordDecl>(CurContext))
997      return;
998
999    // C++0x [dcl.typedef]p4:
1000    //   In a given class scope, a typedef specifier can be used to redefine
1001    //   any class-name declared in that scope that is not also a typedef-name
1002    //   to refer to the type to which it already refers.
1003    //
1004    // This wording came in via DR424, which was a correction to the
1005    // wording in DR56, which accidentally banned code like:
1006    //
1007    //   struct S {
1008    //     typedef struct A { } A;
1009    //   };
1010    //
1011    // in the C++03 standard. We implement the C++0x semantics, which
1012    // allow the above but disallow
1013    //
1014    //   struct S {
1015    //     typedef int I;
1016    //     typedef int I;
1017    //   };
1018    //
1019    // since that was the intent of DR56.
1020    if (!isa<TypedefDecl >(Old))
1021      return;
1022
1023    Diag(New->getLocation(), diag::err_redefinition)
1024      << New->getDeclName();
1025    Diag(Old->getLocation(), diag::note_previous_definition);
1026    return New->setInvalidDecl();
1027  }
1028
1029  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1030  // is normally mapped to an error, but can be controlled with
1031  // -Wtypedef-redefinition.  If either the original or the redefinition is
1032  // in a system header, don't emit this for compatibility with GCC.
1033  if (getDiagnostics().getSuppressSystemWarnings() &&
1034      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1035       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1036    return;
1037
1038  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1039    << New->getDeclName();
1040  Diag(Old->getLocation(), diag::note_previous_definition);
1041  return;
1042}
1043
1044/// DeclhasAttr - returns true if decl Declaration already has the target
1045/// attribute.
1046static bool
1047DeclHasAttr(const Decl *D, const Attr *A) {
1048  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1049  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1050    if ((*i)->getKind() == A->getKind()) {
1051      // FIXME: Don't hardcode this check
1052      if (OA && isa<OwnershipAttr>(*i))
1053        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1054      return true;
1055    }
1056
1057  return false;
1058}
1059
1060/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1061static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1062                                ASTContext &C) {
1063  if (!oldDecl->hasAttrs())
1064    return;
1065
1066  bool foundAny = newDecl->hasAttrs();
1067
1068  // Ensure that any moving of objects within the allocated map is done before
1069  // we process them.
1070  if (!foundAny) newDecl->setAttrs(AttrVec());
1071
1072  for (specific_attr_iterator<InheritableAttr>
1073       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1074       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1075    if (!DeclHasAttr(newDecl, *i)) {
1076      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1077      newAttr->setInherited(true);
1078      newDecl->addAttr(newAttr);
1079      foundAny = true;
1080    }
1081  }
1082
1083  if (!foundAny) newDecl->dropAttrs();
1084}
1085
1086/// mergeParamDeclAttributes - Copy attributes from the old parameter
1087/// to the new one.
1088static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1089                                     const ParmVarDecl *oldDecl,
1090                                     ASTContext &C) {
1091  if (!oldDecl->hasAttrs())
1092    return;
1093
1094  bool foundAny = newDecl->hasAttrs();
1095
1096  // Ensure that any moving of objects within the allocated map is
1097  // done before we process them.
1098  if (!foundAny) newDecl->setAttrs(AttrVec());
1099
1100  for (specific_attr_iterator<InheritableParamAttr>
1101       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1102       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1103    if (!DeclHasAttr(newDecl, *i)) {
1104      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1105      newAttr->setInherited(true);
1106      newDecl->addAttr(newAttr);
1107      foundAny = true;
1108    }
1109  }
1110
1111  if (!foundAny) newDecl->dropAttrs();
1112}
1113
1114namespace {
1115
1116/// Used in MergeFunctionDecl to keep track of function parameters in
1117/// C.
1118struct GNUCompatibleParamWarning {
1119  ParmVarDecl *OldParm;
1120  ParmVarDecl *NewParm;
1121  QualType PromotedType;
1122};
1123
1124}
1125
1126/// getSpecialMember - get the special member enum for a method.
1127Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1128  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1129    if (Ctor->isCopyConstructor())
1130      return Sema::CXXCopyConstructor;
1131
1132    return Sema::CXXConstructor;
1133  }
1134
1135  if (isa<CXXDestructorDecl>(MD))
1136    return Sema::CXXDestructor;
1137
1138  assert(MD->isCopyAssignmentOperator() &&
1139         "Must have copy assignment operator");
1140  return Sema::CXXCopyAssignment;
1141}
1142
1143/// canRedefineFunction - checks if a function can be redefined. Currently,
1144/// only extern inline functions can be redefined, and even then only in
1145/// GNU89 mode.
1146static bool canRedefineFunction(const FunctionDecl *FD,
1147                                const LangOptions& LangOpts) {
1148  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1149          FD->isInlineSpecified() &&
1150          FD->getStorageClass() == SC_Extern);
1151}
1152
1153/// MergeFunctionDecl - We just parsed a function 'New' from
1154/// declarator D which has the same name and scope as a previous
1155/// declaration 'Old'.  Figure out how to resolve this situation,
1156/// merging decls or emitting diagnostics as appropriate.
1157///
1158/// In C++, New and Old must be declarations that are not
1159/// overloaded. Use IsOverload to determine whether New and Old are
1160/// overloaded, and to select the Old declaration that New should be
1161/// merged with.
1162///
1163/// Returns true if there was an error, false otherwise.
1164bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1165  // Verify the old decl was also a function.
1166  FunctionDecl *Old = 0;
1167  if (FunctionTemplateDecl *OldFunctionTemplate
1168        = dyn_cast<FunctionTemplateDecl>(OldD))
1169    Old = OldFunctionTemplate->getTemplatedDecl();
1170  else
1171    Old = dyn_cast<FunctionDecl>(OldD);
1172  if (!Old) {
1173    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1174      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1175      Diag(Shadow->getTargetDecl()->getLocation(),
1176           diag::note_using_decl_target);
1177      Diag(Shadow->getUsingDecl()->getLocation(),
1178           diag::note_using_decl) << 0;
1179      return true;
1180    }
1181
1182    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1183      << New->getDeclName();
1184    Diag(OldD->getLocation(), diag::note_previous_definition);
1185    return true;
1186  }
1187
1188  // Determine whether the previous declaration was a definition,
1189  // implicit declaration, or a declaration.
1190  diag::kind PrevDiag;
1191  if (Old->isThisDeclarationADefinition())
1192    PrevDiag = diag::note_previous_definition;
1193  else if (Old->isImplicit())
1194    PrevDiag = diag::note_previous_implicit_declaration;
1195  else
1196    PrevDiag = diag::note_previous_declaration;
1197
1198  QualType OldQType = Context.getCanonicalType(Old->getType());
1199  QualType NewQType = Context.getCanonicalType(New->getType());
1200
1201  // Don't complain about this if we're in GNU89 mode and the old function
1202  // is an extern inline function.
1203  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1204      New->getStorageClass() == SC_Static &&
1205      Old->getStorageClass() != SC_Static &&
1206      !canRedefineFunction(Old, getLangOptions())) {
1207    Diag(New->getLocation(), diag::err_static_non_static)
1208      << New;
1209    Diag(Old->getLocation(), PrevDiag);
1210    return true;
1211  }
1212
1213  // If a function is first declared with a calling convention, but is
1214  // later declared or defined without one, the second decl assumes the
1215  // calling convention of the first.
1216  //
1217  // For the new decl, we have to look at the NON-canonical type to tell the
1218  // difference between a function that really doesn't have a calling
1219  // convention and one that is declared cdecl. That's because in
1220  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1221  // because it is the default calling convention.
1222  //
1223  // Note also that we DO NOT return at this point, because we still have
1224  // other tests to run.
1225  const FunctionType *OldType = cast<FunctionType>(OldQType);
1226  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1227  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1228  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1229  bool RequiresAdjustment = false;
1230  if (OldTypeInfo.getCC() != CC_Default &&
1231      NewTypeInfo.getCC() == CC_Default) {
1232    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1233    RequiresAdjustment = true;
1234  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1235                                     NewTypeInfo.getCC())) {
1236    // Calling conventions really aren't compatible, so complain.
1237    Diag(New->getLocation(), diag::err_cconv_change)
1238      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1239      << (OldTypeInfo.getCC() == CC_Default)
1240      << (OldTypeInfo.getCC() == CC_Default ? "" :
1241          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1242    Diag(Old->getLocation(), diag::note_previous_declaration);
1243    return true;
1244  }
1245
1246  // FIXME: diagnose the other way around?
1247  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1248    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1249    RequiresAdjustment = true;
1250  }
1251
1252  // Merge regparm attribute.
1253  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1254    if (NewTypeInfo.getRegParm()) {
1255      Diag(New->getLocation(), diag::err_regparm_mismatch)
1256        << NewType->getRegParmType()
1257        << OldType->getRegParmType();
1258      Diag(Old->getLocation(), diag::note_previous_declaration);
1259      return true;
1260    }
1261
1262    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1263    RequiresAdjustment = true;
1264  }
1265
1266  if (RequiresAdjustment) {
1267    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1268    New->setType(QualType(NewType, 0));
1269    NewQType = Context.getCanonicalType(New->getType());
1270  }
1271
1272  if (getLangOptions().CPlusPlus) {
1273    // (C++98 13.1p2):
1274    //   Certain function declarations cannot be overloaded:
1275    //     -- Function declarations that differ only in the return type
1276    //        cannot be overloaded.
1277    QualType OldReturnType = OldType->getResultType();
1278    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1279    QualType ResQT;
1280    if (OldReturnType != NewReturnType) {
1281      if (NewReturnType->isObjCObjectPointerType()
1282          && OldReturnType->isObjCObjectPointerType())
1283        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1284      if (ResQT.isNull()) {
1285        if (New->isCXXClassMember() && New->isOutOfLine())
1286          Diag(New->getLocation(),
1287               diag::err_member_def_does_not_match_ret_type) << New;
1288        else
1289          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1290        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1291        return true;
1292      }
1293      else
1294        NewQType = ResQT;
1295    }
1296
1297    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1298    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1299    if (OldMethod && NewMethod) {
1300      // Preserve triviality.
1301      NewMethod->setTrivial(OldMethod->isTrivial());
1302
1303      bool isFriend = NewMethod->getFriendObjectKind();
1304
1305      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1306        //    -- Member function declarations with the same name and the
1307        //       same parameter types cannot be overloaded if any of them
1308        //       is a static member function declaration.
1309        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1310          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1311          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1312          return true;
1313        }
1314
1315        // C++ [class.mem]p1:
1316        //   [...] A member shall not be declared twice in the
1317        //   member-specification, except that a nested class or member
1318        //   class template can be declared and then later defined.
1319        unsigned NewDiag;
1320        if (isa<CXXConstructorDecl>(OldMethod))
1321          NewDiag = diag::err_constructor_redeclared;
1322        else if (isa<CXXDestructorDecl>(NewMethod))
1323          NewDiag = diag::err_destructor_redeclared;
1324        else if (isa<CXXConversionDecl>(NewMethod))
1325          NewDiag = diag::err_conv_function_redeclared;
1326        else
1327          NewDiag = diag::err_member_redeclared;
1328
1329        Diag(New->getLocation(), NewDiag);
1330        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1331
1332      // Complain if this is an explicit declaration of a special
1333      // member that was initially declared implicitly.
1334      //
1335      // As an exception, it's okay to befriend such methods in order
1336      // to permit the implicit constructor/destructor/operator calls.
1337      } else if (OldMethod->isImplicit()) {
1338        if (isFriend) {
1339          NewMethod->setImplicit();
1340        } else {
1341          Diag(NewMethod->getLocation(),
1342               diag::err_definition_of_implicitly_declared_member)
1343            << New << getSpecialMember(OldMethod);
1344          return true;
1345        }
1346      }
1347    }
1348
1349    // (C++98 8.3.5p3):
1350    //   All declarations for a function shall agree exactly in both the
1351    //   return type and the parameter-type-list.
1352    // We also want to respect all the extended bits except noreturn.
1353
1354    // noreturn should now match unless the old type info didn't have it.
1355    QualType OldQTypeForComparison = OldQType;
1356    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1357      assert(OldQType == QualType(OldType, 0));
1358      const FunctionType *OldTypeForComparison
1359        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1360      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1361      assert(OldQTypeForComparison.isCanonical());
1362    }
1363
1364    if (OldQTypeForComparison == NewQType)
1365      return MergeCompatibleFunctionDecls(New, Old);
1366
1367    // Fall through for conflicting redeclarations and redefinitions.
1368  }
1369
1370  // C: Function types need to be compatible, not identical. This handles
1371  // duplicate function decls like "void f(int); void f(enum X);" properly.
1372  if (!getLangOptions().CPlusPlus &&
1373      Context.typesAreCompatible(OldQType, NewQType)) {
1374    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1375    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1376    const FunctionProtoType *OldProto = 0;
1377    if (isa<FunctionNoProtoType>(NewFuncType) &&
1378        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1379      // The old declaration provided a function prototype, but the
1380      // new declaration does not. Merge in the prototype.
1381      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1382      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1383                                                 OldProto->arg_type_end());
1384      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1385                                         ParamTypes.data(), ParamTypes.size(),
1386                                         OldProto->getExtProtoInfo());
1387      New->setType(NewQType);
1388      New->setHasInheritedPrototype();
1389
1390      // Synthesize a parameter for each argument type.
1391      llvm::SmallVector<ParmVarDecl*, 16> Params;
1392      for (FunctionProtoType::arg_type_iterator
1393             ParamType = OldProto->arg_type_begin(),
1394             ParamEnd = OldProto->arg_type_end();
1395           ParamType != ParamEnd; ++ParamType) {
1396        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1397                                                 SourceLocation(), 0,
1398                                                 *ParamType, /*TInfo=*/0,
1399                                                 SC_None, SC_None,
1400                                                 0);
1401        Param->setImplicit();
1402        Params.push_back(Param);
1403      }
1404
1405      New->setParams(Params.data(), Params.size());
1406    }
1407
1408    return MergeCompatibleFunctionDecls(New, Old);
1409  }
1410
1411  // GNU C permits a K&R definition to follow a prototype declaration
1412  // if the declared types of the parameters in the K&R definition
1413  // match the types in the prototype declaration, even when the
1414  // promoted types of the parameters from the K&R definition differ
1415  // from the types in the prototype. GCC then keeps the types from
1416  // the prototype.
1417  //
1418  // If a variadic prototype is followed by a non-variadic K&R definition,
1419  // the K&R definition becomes variadic.  This is sort of an edge case, but
1420  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1421  // C99 6.9.1p8.
1422  if (!getLangOptions().CPlusPlus &&
1423      Old->hasPrototype() && !New->hasPrototype() &&
1424      New->getType()->getAs<FunctionProtoType>() &&
1425      Old->getNumParams() == New->getNumParams()) {
1426    llvm::SmallVector<QualType, 16> ArgTypes;
1427    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1428    const FunctionProtoType *OldProto
1429      = Old->getType()->getAs<FunctionProtoType>();
1430    const FunctionProtoType *NewProto
1431      = New->getType()->getAs<FunctionProtoType>();
1432
1433    // Determine whether this is the GNU C extension.
1434    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1435                                               NewProto->getResultType());
1436    bool LooseCompatible = !MergedReturn.isNull();
1437    for (unsigned Idx = 0, End = Old->getNumParams();
1438         LooseCompatible && Idx != End; ++Idx) {
1439      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1440      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1441      if (Context.typesAreCompatible(OldParm->getType(),
1442                                     NewProto->getArgType(Idx))) {
1443        ArgTypes.push_back(NewParm->getType());
1444      } else if (Context.typesAreCompatible(OldParm->getType(),
1445                                            NewParm->getType(),
1446                                            /*CompareUnqualified=*/true)) {
1447        GNUCompatibleParamWarning Warn
1448          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1449        Warnings.push_back(Warn);
1450        ArgTypes.push_back(NewParm->getType());
1451      } else
1452        LooseCompatible = false;
1453    }
1454
1455    if (LooseCompatible) {
1456      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1457        Diag(Warnings[Warn].NewParm->getLocation(),
1458             diag::ext_param_promoted_not_compatible_with_prototype)
1459          << Warnings[Warn].PromotedType
1460          << Warnings[Warn].OldParm->getType();
1461        if (Warnings[Warn].OldParm->getLocation().isValid())
1462          Diag(Warnings[Warn].OldParm->getLocation(),
1463               diag::note_previous_declaration);
1464      }
1465
1466      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1467                                           ArgTypes.size(),
1468                                           OldProto->getExtProtoInfo()));
1469      return MergeCompatibleFunctionDecls(New, Old);
1470    }
1471
1472    // Fall through to diagnose conflicting types.
1473  }
1474
1475  // A function that has already been declared has been redeclared or defined
1476  // with a different type- show appropriate diagnostic
1477  if (unsigned BuiltinID = Old->getBuiltinID()) {
1478    // The user has declared a builtin function with an incompatible
1479    // signature.
1480    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1481      // The function the user is redeclaring is a library-defined
1482      // function like 'malloc' or 'printf'. Warn about the
1483      // redeclaration, then pretend that we don't know about this
1484      // library built-in.
1485      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1486      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1487        << Old << Old->getType();
1488      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1489      Old->setInvalidDecl();
1490      return false;
1491    }
1492
1493    PrevDiag = diag::note_previous_builtin_declaration;
1494  }
1495
1496  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1497  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1498  return true;
1499}
1500
1501/// \brief Completes the merge of two function declarations that are
1502/// known to be compatible.
1503///
1504/// This routine handles the merging of attributes and other
1505/// properties of function declarations form the old declaration to
1506/// the new declaration, once we know that New is in fact a
1507/// redeclaration of Old.
1508///
1509/// \returns false
1510bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1511  // Merge the attributes
1512  mergeDeclAttributes(New, Old, Context);
1513
1514  // Merge the storage class.
1515  if (Old->getStorageClass() != SC_Extern &&
1516      Old->getStorageClass() != SC_None)
1517    New->setStorageClass(Old->getStorageClass());
1518
1519  // Merge "pure" flag.
1520  if (Old->isPure())
1521    New->setPure();
1522
1523  // Merge the "deleted" flag.
1524  if (Old->isDeleted())
1525    New->setDeleted();
1526
1527  // Merge attributes from the parameters.  These can mismatch with K&R
1528  // declarations.
1529  if (New->getNumParams() == Old->getNumParams())
1530    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1531      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1532                               Context);
1533
1534  if (getLangOptions().CPlusPlus)
1535    return MergeCXXFunctionDecl(New, Old);
1536
1537  return false;
1538}
1539
1540void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1541                                const ObjCMethodDecl *oldMethod) {
1542  // Merge the attributes.
1543  mergeDeclAttributes(newMethod, oldMethod, Context);
1544
1545  // Merge attributes from the parameters.
1546  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1547         ni = newMethod->param_begin(), ne = newMethod->param_end();
1548       ni != ne; ++ni, ++oi)
1549    mergeParamDeclAttributes(*ni, *oi, Context);
1550}
1551
1552/// MergeVarDecl - We parsed a variable 'New' which has the same name and scope
1553/// as a previous declaration 'Old'.  Figure out how to merge their types,
1554/// emitting diagnostics as appropriate.
1555///
1556/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1557/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1558/// check them before the initializer is attached.
1559///
1560void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1561  if (New->isInvalidDecl() || Old->isInvalidDecl())
1562    return;
1563
1564  QualType MergedT;
1565  if (getLangOptions().CPlusPlus) {
1566    AutoType *AT = New->getType()->getContainedAutoType();
1567    if (AT && !AT->isDeduced()) {
1568      // We don't know what the new type is until the initializer is attached.
1569      return;
1570    } else if (Context.hasSameType(New->getType(), Old->getType()))
1571      return;
1572    // C++ [basic.link]p10:
1573    //   [...] the types specified by all declarations referring to a given
1574    //   object or function shall be identical, except that declarations for an
1575    //   array object can specify array types that differ by the presence or
1576    //   absence of a major array bound (8.3.4).
1577    else if (Old->getType()->isIncompleteArrayType() &&
1578             New->getType()->isArrayType()) {
1579      CanQual<ArrayType> OldArray
1580        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1581      CanQual<ArrayType> NewArray
1582        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1583      if (OldArray->getElementType() == NewArray->getElementType())
1584        MergedT = New->getType();
1585    } else if (Old->getType()->isArrayType() &&
1586             New->getType()->isIncompleteArrayType()) {
1587      CanQual<ArrayType> OldArray
1588        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1589      CanQual<ArrayType> NewArray
1590        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1591      if (OldArray->getElementType() == NewArray->getElementType())
1592        MergedT = Old->getType();
1593    } else if (New->getType()->isObjCObjectPointerType()
1594               && Old->getType()->isObjCObjectPointerType()) {
1595        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1596                                                        Old->getType());
1597    }
1598  } else {
1599    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1600  }
1601  if (MergedT.isNull()) {
1602    Diag(New->getLocation(), diag::err_redefinition_different_type)
1603      << New->getDeclName();
1604    Diag(Old->getLocation(), diag::note_previous_definition);
1605    return New->setInvalidDecl();
1606  }
1607  New->setType(MergedT);
1608}
1609
1610/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1611/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1612/// situation, merging decls or emitting diagnostics as appropriate.
1613///
1614/// Tentative definition rules (C99 6.9.2p2) are checked by
1615/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1616/// definitions here, since the initializer hasn't been attached.
1617///
1618void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1619  // If the new decl is already invalid, don't do any other checking.
1620  if (New->isInvalidDecl())
1621    return;
1622
1623  // Verify the old decl was also a variable.
1624  VarDecl *Old = 0;
1625  if (!Previous.isSingleResult() ||
1626      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1627    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1628      << New->getDeclName();
1629    Diag(Previous.getRepresentativeDecl()->getLocation(),
1630         diag::note_previous_definition);
1631    return New->setInvalidDecl();
1632  }
1633
1634  // C++ [class.mem]p1:
1635  //   A member shall not be declared twice in the member-specification [...]
1636  //
1637  // Here, we need only consider static data members.
1638  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1639    Diag(New->getLocation(), diag::err_duplicate_member)
1640      << New->getIdentifier();
1641    Diag(Old->getLocation(), diag::note_previous_declaration);
1642    New->setInvalidDecl();
1643  }
1644
1645  mergeDeclAttributes(New, Old, Context);
1646
1647  // Merge the types.
1648  MergeVarDeclTypes(New, Old);
1649  if (New->isInvalidDecl())
1650    return;
1651
1652  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1653  if (New->getStorageClass() == SC_Static &&
1654      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1655    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1656    Diag(Old->getLocation(), diag::note_previous_definition);
1657    return New->setInvalidDecl();
1658  }
1659  // C99 6.2.2p4:
1660  //   For an identifier declared with the storage-class specifier
1661  //   extern in a scope in which a prior declaration of that
1662  //   identifier is visible,23) if the prior declaration specifies
1663  //   internal or external linkage, the linkage of the identifier at
1664  //   the later declaration is the same as the linkage specified at
1665  //   the prior declaration. If no prior declaration is visible, or
1666  //   if the prior declaration specifies no linkage, then the
1667  //   identifier has external linkage.
1668  if (New->hasExternalStorage() && Old->hasLinkage())
1669    /* Okay */;
1670  else if (New->getStorageClass() != SC_Static &&
1671           Old->getStorageClass() == SC_Static) {
1672    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1673    Diag(Old->getLocation(), diag::note_previous_definition);
1674    return New->setInvalidDecl();
1675  }
1676
1677  // Check if extern is followed by non-extern and vice-versa.
1678  if (New->hasExternalStorage() &&
1679      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1680    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1681    Diag(Old->getLocation(), diag::note_previous_definition);
1682    return New->setInvalidDecl();
1683  }
1684  if (Old->hasExternalStorage() &&
1685      !New->hasLinkage() && New->isLocalVarDecl()) {
1686    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1687    Diag(Old->getLocation(), diag::note_previous_definition);
1688    return New->setInvalidDecl();
1689  }
1690
1691  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1692
1693  // FIXME: The test for external storage here seems wrong? We still
1694  // need to check for mismatches.
1695  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1696      // Don't complain about out-of-line definitions of static members.
1697      !(Old->getLexicalDeclContext()->isRecord() &&
1698        !New->getLexicalDeclContext()->isRecord())) {
1699    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1700    Diag(Old->getLocation(), diag::note_previous_definition);
1701    return New->setInvalidDecl();
1702  }
1703
1704  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1705    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1706    Diag(Old->getLocation(), diag::note_previous_definition);
1707  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1708    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1709    Diag(Old->getLocation(), diag::note_previous_definition);
1710  }
1711
1712  // C++ doesn't have tentative definitions, so go right ahead and check here.
1713  const VarDecl *Def;
1714  if (getLangOptions().CPlusPlus &&
1715      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1716      (Def = Old->getDefinition())) {
1717    Diag(New->getLocation(), diag::err_redefinition)
1718      << New->getDeclName();
1719    Diag(Def->getLocation(), diag::note_previous_definition);
1720    New->setInvalidDecl();
1721    return;
1722  }
1723  // c99 6.2.2 P4.
1724  // For an identifier declared with the storage-class specifier extern in a
1725  // scope in which a prior declaration of that identifier is visible, if
1726  // the prior declaration specifies internal or external linkage, the linkage
1727  // of the identifier at the later declaration is the same as the linkage
1728  // specified at the prior declaration.
1729  // FIXME. revisit this code.
1730  if (New->hasExternalStorage() &&
1731      Old->getLinkage() == InternalLinkage &&
1732      New->getDeclContext() == Old->getDeclContext())
1733    New->setStorageClass(Old->getStorageClass());
1734
1735  // Keep a chain of previous declarations.
1736  New->setPreviousDeclaration(Old);
1737
1738  // Inherit access appropriately.
1739  New->setAccess(Old->getAccess());
1740}
1741
1742/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1743/// no declarator (e.g. "struct foo;") is parsed.
1744Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1745                                            DeclSpec &DS) {
1746  // FIXME: Error on inline/virtual/explicit
1747  // FIXME: Warn on useless __thread
1748  // FIXME: Warn on useless const/volatile
1749  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1750  // FIXME: Warn on useless attributes
1751  Decl *TagD = 0;
1752  TagDecl *Tag = 0;
1753  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1754      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1755      DS.getTypeSpecType() == DeclSpec::TST_union ||
1756      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1757    TagD = DS.getRepAsDecl();
1758
1759    if (!TagD) // We probably had an error
1760      return 0;
1761
1762    // Note that the above type specs guarantee that the
1763    // type rep is a Decl, whereas in many of the others
1764    // it's a Type.
1765    Tag = dyn_cast<TagDecl>(TagD);
1766  }
1767
1768  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1769    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1770    // or incomplete types shall not be restrict-qualified."
1771    if (TypeQuals & DeclSpec::TQ_restrict)
1772      Diag(DS.getRestrictSpecLoc(),
1773           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1774           << DS.getSourceRange();
1775  }
1776
1777  if (DS.isFriendSpecified()) {
1778    // If we're dealing with a decl but not a TagDecl, assume that
1779    // whatever routines created it handled the friendship aspect.
1780    if (TagD && !Tag)
1781      return 0;
1782    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1783  }
1784
1785  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1786    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1787
1788    if (!Record->getDeclName() && Record->isDefinition() &&
1789        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1790      if (getLangOptions().CPlusPlus ||
1791          Record->getDeclContext()->isRecord())
1792        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1793
1794      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1795        << DS.getSourceRange();
1796    }
1797  }
1798
1799  // Check for Microsoft C extension: anonymous struct.
1800  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1801      CurContext->isRecord() &&
1802      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1803    // Handle 2 kinds of anonymous struct:
1804    //   struct STRUCT;
1805    // and
1806    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1807    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1808    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1809        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1810         DS.getRepAsType().get()->isStructureType())) {
1811      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1812        << DS.getSourceRange();
1813      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1814    }
1815  }
1816
1817  if (getLangOptions().CPlusPlus &&
1818      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1819    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1820      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1821          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1822        Diag(Enum->getLocation(), diag::ext_no_declarators)
1823          << DS.getSourceRange();
1824
1825  if (!DS.isMissingDeclaratorOk() &&
1826      DS.getTypeSpecType() != DeclSpec::TST_error) {
1827    // Warn about typedefs of enums without names, since this is an
1828    // extension in both Microsoft and GNU.
1829    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1830        Tag && isa<EnumDecl>(Tag)) {
1831      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1832        << DS.getSourceRange();
1833      return Tag;
1834    }
1835
1836    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1837      << DS.getSourceRange();
1838  }
1839
1840  return TagD;
1841}
1842
1843/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1844/// builds a statement for it and returns it so it is evaluated.
1845StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1846  StmtResult R;
1847  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1848    Expr *Exp = DS.getRepAsExpr();
1849    QualType Ty = Exp->getType();
1850    if (Ty->isPointerType()) {
1851      do
1852        Ty = Ty->getAs<PointerType>()->getPointeeType();
1853      while (Ty->isPointerType());
1854    }
1855    if (Ty->isVariableArrayType()) {
1856      R = ActOnExprStmt(MakeFullExpr(Exp));
1857    }
1858  }
1859  return R;
1860}
1861
1862/// We are trying to inject an anonymous member into the given scope;
1863/// check if there's an existing declaration that can't be overloaded.
1864///
1865/// \return true if this is a forbidden redeclaration
1866static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1867                                         Scope *S,
1868                                         DeclContext *Owner,
1869                                         DeclarationName Name,
1870                                         SourceLocation NameLoc,
1871                                         unsigned diagnostic) {
1872  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1873                 Sema::ForRedeclaration);
1874  if (!SemaRef.LookupName(R, S)) return false;
1875
1876  if (R.getAsSingle<TagDecl>())
1877    return false;
1878
1879  // Pick a representative declaration.
1880  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1881  assert(PrevDecl && "Expected a non-null Decl");
1882
1883  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1884    return false;
1885
1886  SemaRef.Diag(NameLoc, diagnostic) << Name;
1887  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1888
1889  return true;
1890}
1891
1892/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1893/// anonymous struct or union AnonRecord into the owning context Owner
1894/// and scope S. This routine will be invoked just after we realize
1895/// that an unnamed union or struct is actually an anonymous union or
1896/// struct, e.g.,
1897///
1898/// @code
1899/// union {
1900///   int i;
1901///   float f;
1902/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1903///    // f into the surrounding scope.x
1904/// @endcode
1905///
1906/// This routine is recursive, injecting the names of nested anonymous
1907/// structs/unions into the owning context and scope as well.
1908static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1909                                                DeclContext *Owner,
1910                                                RecordDecl *AnonRecord,
1911                                                AccessSpecifier AS,
1912                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1913                                                      bool MSAnonStruct) {
1914  unsigned diagKind
1915    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1916                            : diag::err_anonymous_struct_member_redecl;
1917
1918  bool Invalid = false;
1919
1920  // Look every FieldDecl and IndirectFieldDecl with a name.
1921  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1922                               DEnd = AnonRecord->decls_end();
1923       D != DEnd; ++D) {
1924    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1925        cast<NamedDecl>(*D)->getDeclName()) {
1926      ValueDecl *VD = cast<ValueDecl>(*D);
1927      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1928                                       VD->getLocation(), diagKind)) {
1929        // C++ [class.union]p2:
1930        //   The names of the members of an anonymous union shall be
1931        //   distinct from the names of any other entity in the
1932        //   scope in which the anonymous union is declared.
1933        Invalid = true;
1934      } else {
1935        // C++ [class.union]p2:
1936        //   For the purpose of name lookup, after the anonymous union
1937        //   definition, the members of the anonymous union are
1938        //   considered to have been defined in the scope in which the
1939        //   anonymous union is declared.
1940        unsigned OldChainingSize = Chaining.size();
1941        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1942          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1943               PE = IF->chain_end(); PI != PE; ++PI)
1944            Chaining.push_back(*PI);
1945        else
1946          Chaining.push_back(VD);
1947
1948        assert(Chaining.size() >= 2);
1949        NamedDecl **NamedChain =
1950          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1951        for (unsigned i = 0; i < Chaining.size(); i++)
1952          NamedChain[i] = Chaining[i];
1953
1954        IndirectFieldDecl* IndirectField =
1955          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1956                                    VD->getIdentifier(), VD->getType(),
1957                                    NamedChain, Chaining.size());
1958
1959        IndirectField->setAccess(AS);
1960        IndirectField->setImplicit();
1961        SemaRef.PushOnScopeChains(IndirectField, S);
1962
1963        // That includes picking up the appropriate access specifier.
1964        if (AS != AS_none) IndirectField->setAccess(AS);
1965
1966        Chaining.resize(OldChainingSize);
1967      }
1968    }
1969  }
1970
1971  return Invalid;
1972}
1973
1974/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1975/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1976/// illegal input values are mapped to SC_None.
1977static StorageClass
1978StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1979  switch (StorageClassSpec) {
1980  case DeclSpec::SCS_unspecified:    return SC_None;
1981  case DeclSpec::SCS_extern:         return SC_Extern;
1982  case DeclSpec::SCS_static:         return SC_Static;
1983  case DeclSpec::SCS_auto:           return SC_Auto;
1984  case DeclSpec::SCS_register:       return SC_Register;
1985  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1986    // Illegal SCSs map to None: error reporting is up to the caller.
1987  case DeclSpec::SCS_mutable:        // Fall through.
1988  case DeclSpec::SCS_typedef:        return SC_None;
1989  }
1990  llvm_unreachable("unknown storage class specifier");
1991}
1992
1993/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1994/// a StorageClass. Any error reporting is up to the caller:
1995/// illegal input values are mapped to SC_None.
1996static StorageClass
1997StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1998  switch (StorageClassSpec) {
1999  case DeclSpec::SCS_unspecified:    return SC_None;
2000  case DeclSpec::SCS_extern:         return SC_Extern;
2001  case DeclSpec::SCS_static:         return SC_Static;
2002  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2003    // Illegal SCSs map to None: error reporting is up to the caller.
2004  case DeclSpec::SCS_auto:           // Fall through.
2005  case DeclSpec::SCS_mutable:        // Fall through.
2006  case DeclSpec::SCS_register:       // Fall through.
2007  case DeclSpec::SCS_typedef:        return SC_None;
2008  }
2009  llvm_unreachable("unknown storage class specifier");
2010}
2011
2012/// BuildAnonymousStructOrUnion - Handle the declaration of an
2013/// anonymous structure or union. Anonymous unions are a C++ feature
2014/// (C++ [class.union]) and a GNU C extension; anonymous structures
2015/// are a GNU C and GNU C++ extension.
2016Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2017                                             AccessSpecifier AS,
2018                                             RecordDecl *Record) {
2019  DeclContext *Owner = Record->getDeclContext();
2020
2021  // Diagnose whether this anonymous struct/union is an extension.
2022  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2023    Diag(Record->getLocation(), diag::ext_anonymous_union);
2024  else if (!Record->isUnion())
2025    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2026
2027  // C and C++ require different kinds of checks for anonymous
2028  // structs/unions.
2029  bool Invalid = false;
2030  if (getLangOptions().CPlusPlus) {
2031    const char* PrevSpec = 0;
2032    unsigned DiagID;
2033    // C++ [class.union]p3:
2034    //   Anonymous unions declared in a named namespace or in the
2035    //   global namespace shall be declared static.
2036    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2037        (isa<TranslationUnitDecl>(Owner) ||
2038         (isa<NamespaceDecl>(Owner) &&
2039          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2040      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2041      Invalid = true;
2042
2043      // Recover by adding 'static'.
2044      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2045                             PrevSpec, DiagID, getLangOptions());
2046    }
2047    // C++ [class.union]p3:
2048    //   A storage class is not allowed in a declaration of an
2049    //   anonymous union in a class scope.
2050    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2051             isa<RecordDecl>(Owner)) {
2052      Diag(DS.getStorageClassSpecLoc(),
2053           diag::err_anonymous_union_with_storage_spec);
2054      Invalid = true;
2055
2056      // Recover by removing the storage specifier.
2057      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2058                             PrevSpec, DiagID, getLangOptions());
2059    }
2060
2061    // C++ [class.union]p2:
2062    //   The member-specification of an anonymous union shall only
2063    //   define non-static data members. [Note: nested types and
2064    //   functions cannot be declared within an anonymous union. ]
2065    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2066                                 MemEnd = Record->decls_end();
2067         Mem != MemEnd; ++Mem) {
2068      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2069        // C++ [class.union]p3:
2070        //   An anonymous union shall not have private or protected
2071        //   members (clause 11).
2072        assert(FD->getAccess() != AS_none);
2073        if (FD->getAccess() != AS_public) {
2074          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2075            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2076          Invalid = true;
2077        }
2078
2079        if (CheckNontrivialField(FD))
2080          Invalid = true;
2081      } else if ((*Mem)->isImplicit()) {
2082        // Any implicit members are fine.
2083      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2084        // This is a type that showed up in an
2085        // elaborated-type-specifier inside the anonymous struct or
2086        // union, but which actually declares a type outside of the
2087        // anonymous struct or union. It's okay.
2088      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2089        if (!MemRecord->isAnonymousStructOrUnion() &&
2090            MemRecord->getDeclName()) {
2091          // Visual C++ allows type definition in anonymous struct or union.
2092          if (getLangOptions().Microsoft)
2093            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2094              << (int)Record->isUnion();
2095          else {
2096            // This is a nested type declaration.
2097            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2098              << (int)Record->isUnion();
2099            Invalid = true;
2100          }
2101        }
2102      } else if (isa<AccessSpecDecl>(*Mem)) {
2103        // Any access specifier is fine.
2104      } else {
2105        // We have something that isn't a non-static data
2106        // member. Complain about it.
2107        unsigned DK = diag::err_anonymous_record_bad_member;
2108        if (isa<TypeDecl>(*Mem))
2109          DK = diag::err_anonymous_record_with_type;
2110        else if (isa<FunctionDecl>(*Mem))
2111          DK = diag::err_anonymous_record_with_function;
2112        else if (isa<VarDecl>(*Mem))
2113          DK = diag::err_anonymous_record_with_static;
2114
2115        // Visual C++ allows type definition in anonymous struct or union.
2116        if (getLangOptions().Microsoft &&
2117            DK == diag::err_anonymous_record_with_type)
2118          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2119            << (int)Record->isUnion();
2120        else {
2121          Diag((*Mem)->getLocation(), DK)
2122              << (int)Record->isUnion();
2123          Invalid = true;
2124        }
2125      }
2126    }
2127  }
2128
2129  if (!Record->isUnion() && !Owner->isRecord()) {
2130    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2131      << (int)getLangOptions().CPlusPlus;
2132    Invalid = true;
2133  }
2134
2135  // Mock up a declarator.
2136  Declarator Dc(DS, Declarator::TypeNameContext);
2137  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2138  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2139
2140  // Create a declaration for this anonymous struct/union.
2141  NamedDecl *Anon = 0;
2142  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2143    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2144                             /*IdentifierInfo=*/0,
2145                             Context.getTypeDeclType(Record),
2146                             TInfo,
2147                             /*BitWidth=*/0, /*Mutable=*/false);
2148    Anon->setAccess(AS);
2149    if (getLangOptions().CPlusPlus)
2150      FieldCollector->Add(cast<FieldDecl>(Anon));
2151  } else {
2152    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2153    assert(SCSpec != DeclSpec::SCS_typedef &&
2154           "Parser allowed 'typedef' as storage class VarDecl.");
2155    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2156    if (SCSpec == DeclSpec::SCS_mutable) {
2157      // mutable can only appear on non-static class members, so it's always
2158      // an error here
2159      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2160      Invalid = true;
2161      SC = SC_None;
2162    }
2163    SCSpec = DS.getStorageClassSpecAsWritten();
2164    VarDecl::StorageClass SCAsWritten
2165      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2166
2167    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2168                           /*IdentifierInfo=*/0,
2169                           Context.getTypeDeclType(Record),
2170                           TInfo, SC, SCAsWritten);
2171  }
2172  Anon->setImplicit();
2173
2174  // Add the anonymous struct/union object to the current
2175  // context. We'll be referencing this object when we refer to one of
2176  // its members.
2177  Owner->addDecl(Anon);
2178
2179  // Inject the members of the anonymous struct/union into the owning
2180  // context and into the identifier resolver chain for name lookup
2181  // purposes.
2182  llvm::SmallVector<NamedDecl*, 2> Chain;
2183  Chain.push_back(Anon);
2184
2185  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2186                                          Chain, false))
2187    Invalid = true;
2188
2189  // Mark this as an anonymous struct/union type. Note that we do not
2190  // do this until after we have already checked and injected the
2191  // members of this anonymous struct/union type, because otherwise
2192  // the members could be injected twice: once by DeclContext when it
2193  // builds its lookup table, and once by
2194  // InjectAnonymousStructOrUnionMembers.
2195  Record->setAnonymousStructOrUnion(true);
2196
2197  if (Invalid)
2198    Anon->setInvalidDecl();
2199
2200  return Anon;
2201}
2202
2203/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2204/// Microsoft C anonymous structure.
2205/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2206/// Example:
2207///
2208/// struct A { int a; };
2209/// struct B { struct A; int b; };
2210///
2211/// void foo() {
2212///   B var;
2213///   var.a = 3;
2214/// }
2215///
2216Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2217                                           RecordDecl *Record) {
2218
2219  // If there is no Record, get the record via the typedef.
2220  if (!Record)
2221    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2222
2223  // Mock up a declarator.
2224  Declarator Dc(DS, Declarator::TypeNameContext);
2225  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2226  assert(TInfo && "couldn't build declarator info for anonymous struct");
2227
2228  // Create a declaration for this anonymous struct.
2229  NamedDecl* Anon = FieldDecl::Create(Context,
2230                             cast<RecordDecl>(CurContext),
2231                             DS.getSourceRange().getBegin(),
2232                             /*IdentifierInfo=*/0,
2233                             Context.getTypeDeclType(Record),
2234                             TInfo,
2235                             /*BitWidth=*/0, /*Mutable=*/false);
2236  Anon->setImplicit();
2237
2238  // Add the anonymous struct object to the current context.
2239  CurContext->addDecl(Anon);
2240
2241  // Inject the members of the anonymous struct into the current
2242  // context and into the identifier resolver chain for name lookup
2243  // purposes.
2244  llvm::SmallVector<NamedDecl*, 2> Chain;
2245  Chain.push_back(Anon);
2246
2247  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2248                                          Record->getDefinition(),
2249                                          AS_none, Chain, true))
2250    Anon->setInvalidDecl();
2251
2252  return Anon;
2253}
2254
2255/// GetNameForDeclarator - Determine the full declaration name for the
2256/// given Declarator.
2257DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2258  return GetNameFromUnqualifiedId(D.getName());
2259}
2260
2261/// \brief Retrieves the declaration name from a parsed unqualified-id.
2262DeclarationNameInfo
2263Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2264  DeclarationNameInfo NameInfo;
2265  NameInfo.setLoc(Name.StartLocation);
2266
2267  switch (Name.getKind()) {
2268
2269  case UnqualifiedId::IK_Identifier:
2270    NameInfo.setName(Name.Identifier);
2271    NameInfo.setLoc(Name.StartLocation);
2272    return NameInfo;
2273
2274  case UnqualifiedId::IK_OperatorFunctionId:
2275    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2276                                           Name.OperatorFunctionId.Operator));
2277    NameInfo.setLoc(Name.StartLocation);
2278    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2279      = Name.OperatorFunctionId.SymbolLocations[0];
2280    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2281      = Name.EndLocation.getRawEncoding();
2282    return NameInfo;
2283
2284  case UnqualifiedId::IK_LiteralOperatorId:
2285    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2286                                                           Name.Identifier));
2287    NameInfo.setLoc(Name.StartLocation);
2288    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2289    return NameInfo;
2290
2291  case UnqualifiedId::IK_ConversionFunctionId: {
2292    TypeSourceInfo *TInfo;
2293    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2294    if (Ty.isNull())
2295      return DeclarationNameInfo();
2296    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2297                                               Context.getCanonicalType(Ty)));
2298    NameInfo.setLoc(Name.StartLocation);
2299    NameInfo.setNamedTypeInfo(TInfo);
2300    return NameInfo;
2301  }
2302
2303  case UnqualifiedId::IK_ConstructorName: {
2304    TypeSourceInfo *TInfo;
2305    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2306    if (Ty.isNull())
2307      return DeclarationNameInfo();
2308    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2309                                              Context.getCanonicalType(Ty)));
2310    NameInfo.setLoc(Name.StartLocation);
2311    NameInfo.setNamedTypeInfo(TInfo);
2312    return NameInfo;
2313  }
2314
2315  case UnqualifiedId::IK_ConstructorTemplateId: {
2316    // In well-formed code, we can only have a constructor
2317    // template-id that refers to the current context, so go there
2318    // to find the actual type being constructed.
2319    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2320    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2321      return DeclarationNameInfo();
2322
2323    // Determine the type of the class being constructed.
2324    QualType CurClassType = Context.getTypeDeclType(CurClass);
2325
2326    // FIXME: Check two things: that the template-id names the same type as
2327    // CurClassType, and that the template-id does not occur when the name
2328    // was qualified.
2329
2330    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2331                                    Context.getCanonicalType(CurClassType)));
2332    NameInfo.setLoc(Name.StartLocation);
2333    // FIXME: should we retrieve TypeSourceInfo?
2334    NameInfo.setNamedTypeInfo(0);
2335    return NameInfo;
2336  }
2337
2338  case UnqualifiedId::IK_DestructorName: {
2339    TypeSourceInfo *TInfo;
2340    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2341    if (Ty.isNull())
2342      return DeclarationNameInfo();
2343    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2344                                              Context.getCanonicalType(Ty)));
2345    NameInfo.setLoc(Name.StartLocation);
2346    NameInfo.setNamedTypeInfo(TInfo);
2347    return NameInfo;
2348  }
2349
2350  case UnqualifiedId::IK_TemplateId: {
2351    TemplateName TName = Name.TemplateId->Template.get();
2352    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2353    return Context.getNameForTemplate(TName, TNameLoc);
2354  }
2355
2356  } // switch (Name.getKind())
2357
2358  assert(false && "Unknown name kind");
2359  return DeclarationNameInfo();
2360}
2361
2362/// isNearlyMatchingFunction - Determine whether the C++ functions
2363/// Declaration and Definition are "nearly" matching. This heuristic
2364/// is used to improve diagnostics in the case where an out-of-line
2365/// function definition doesn't match any declaration within
2366/// the class or namespace.
2367static bool isNearlyMatchingFunction(ASTContext &Context,
2368                                     FunctionDecl *Declaration,
2369                                     FunctionDecl *Definition) {
2370  if (Declaration->param_size() != Definition->param_size())
2371    return false;
2372  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2373    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2374    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2375
2376    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2377                                        DefParamTy.getNonReferenceType()))
2378      return false;
2379  }
2380
2381  return true;
2382}
2383
2384/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2385/// declarator needs to be rebuilt in the current instantiation.
2386/// Any bits of declarator which appear before the name are valid for
2387/// consideration here.  That's specifically the type in the decl spec
2388/// and the base type in any member-pointer chunks.
2389static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2390                                                    DeclarationName Name) {
2391  // The types we specifically need to rebuild are:
2392  //   - typenames, typeofs, and decltypes
2393  //   - types which will become injected class names
2394  // Of course, we also need to rebuild any type referencing such a
2395  // type.  It's safest to just say "dependent", but we call out a
2396  // few cases here.
2397
2398  DeclSpec &DS = D.getMutableDeclSpec();
2399  switch (DS.getTypeSpecType()) {
2400  case DeclSpec::TST_typename:
2401  case DeclSpec::TST_typeofType:
2402  case DeclSpec::TST_decltype: {
2403    // Grab the type from the parser.
2404    TypeSourceInfo *TSI = 0;
2405    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2406    if (T.isNull() || !T->isDependentType()) break;
2407
2408    // Make sure there's a type source info.  This isn't really much
2409    // of a waste; most dependent types should have type source info
2410    // attached already.
2411    if (!TSI)
2412      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2413
2414    // Rebuild the type in the current instantiation.
2415    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2416    if (!TSI) return true;
2417
2418    // Store the new type back in the decl spec.
2419    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2420    DS.UpdateTypeRep(LocType);
2421    break;
2422  }
2423
2424  case DeclSpec::TST_typeofExpr: {
2425    Expr *E = DS.getRepAsExpr();
2426    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2427    if (Result.isInvalid()) return true;
2428    DS.UpdateExprRep(Result.get());
2429    break;
2430  }
2431
2432  default:
2433    // Nothing to do for these decl specs.
2434    break;
2435  }
2436
2437  // It doesn't matter what order we do this in.
2438  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2439    DeclaratorChunk &Chunk = D.getTypeObject(I);
2440
2441    // The only type information in the declarator which can come
2442    // before the declaration name is the base type of a member
2443    // pointer.
2444    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2445      continue;
2446
2447    // Rebuild the scope specifier in-place.
2448    CXXScopeSpec &SS = Chunk.Mem.Scope();
2449    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2450      return true;
2451  }
2452
2453  return false;
2454}
2455
2456Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2457  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2458}
2459
2460Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2461                             MultiTemplateParamsArg TemplateParamLists,
2462                             bool IsFunctionDefinition) {
2463  // TODO: consider using NameInfo for diagnostic.
2464  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2465  DeclarationName Name = NameInfo.getName();
2466
2467  // All of these full declarators require an identifier.  If it doesn't have
2468  // one, the ParsedFreeStandingDeclSpec action should be used.
2469  if (!Name) {
2470    if (!D.isInvalidType())  // Reject this if we think it is valid.
2471      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2472           diag::err_declarator_need_ident)
2473        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2474    return 0;
2475  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2476    return 0;
2477
2478  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2479  // we find one that is.
2480  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2481         (S->getFlags() & Scope::TemplateParamScope) != 0)
2482    S = S->getParent();
2483
2484  DeclContext *DC = CurContext;
2485  if (D.getCXXScopeSpec().isInvalid())
2486    D.setInvalidType();
2487  else if (D.getCXXScopeSpec().isSet()) {
2488    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2489                                        UPPC_DeclarationQualifier))
2490      return 0;
2491
2492    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2493    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2494    if (!DC) {
2495      // If we could not compute the declaration context, it's because the
2496      // declaration context is dependent but does not refer to a class,
2497      // class template, or class template partial specialization. Complain
2498      // and return early, to avoid the coming semantic disaster.
2499      Diag(D.getIdentifierLoc(),
2500           diag::err_template_qualified_declarator_no_match)
2501        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2502        << D.getCXXScopeSpec().getRange();
2503      return 0;
2504    }
2505
2506    bool IsDependentContext = DC->isDependentContext();
2507
2508    if (!IsDependentContext &&
2509        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2510      return 0;
2511
2512    if (isa<CXXRecordDecl>(DC)) {
2513      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2514        Diag(D.getIdentifierLoc(),
2515             diag::err_member_def_undefined_record)
2516          << Name << DC << D.getCXXScopeSpec().getRange();
2517        D.setInvalidType();
2518      } else if (isa<CXXRecordDecl>(CurContext) &&
2519                 !D.getDeclSpec().isFriendSpecified()) {
2520        // The user provided a superfluous scope specifier inside a class
2521        // definition:
2522        //
2523        // class X {
2524        //   void X::f();
2525        // };
2526        if (CurContext->Equals(DC))
2527          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2528            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2529        else
2530          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2531            << Name << D.getCXXScopeSpec().getRange();
2532
2533        // Pretend that this qualifier was not here.
2534        D.getCXXScopeSpec().clear();
2535      }
2536    }
2537
2538    // Check whether we need to rebuild the type of the given
2539    // declaration in the current instantiation.
2540    if (EnteringContext && IsDependentContext &&
2541        TemplateParamLists.size() != 0) {
2542      ContextRAII SavedContext(*this, DC);
2543      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2544        D.setInvalidType();
2545    }
2546  }
2547
2548  // C++ [class.mem]p13:
2549  //   If T is the name of a class, then each of the following shall have a
2550  //   name different from T:
2551  //     - every static data member of class T;
2552  //     - every member function of class T
2553  //     - every member of class T that is itself a type;
2554  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2555    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2556      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2557        << Name;
2558
2559      // If this is a typedef, we'll end up spewing multiple diagnostics.
2560      // Just return early; it's safer.
2561      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2562        return 0;
2563    }
2564
2565  NamedDecl *New;
2566
2567  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2568  QualType R = TInfo->getType();
2569
2570  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2571                                      UPPC_DeclarationType))
2572    D.setInvalidType();
2573
2574  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2575                        ForRedeclaration);
2576
2577  // See if this is a redefinition of a variable in the same scope.
2578  if (!D.getCXXScopeSpec().isSet()) {
2579    bool IsLinkageLookup = false;
2580
2581    // If the declaration we're planning to build will be a function
2582    // or object with linkage, then look for another declaration with
2583    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2584    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2585      /* Do nothing*/;
2586    else if (R->isFunctionType()) {
2587      if (CurContext->isFunctionOrMethod() ||
2588          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2589        IsLinkageLookup = true;
2590    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2591      IsLinkageLookup = true;
2592    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2593             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2594      IsLinkageLookup = true;
2595
2596    if (IsLinkageLookup)
2597      Previous.clear(LookupRedeclarationWithLinkage);
2598
2599    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2600  } else { // Something like "int foo::x;"
2601    LookupQualifiedName(Previous, DC);
2602
2603    // Don't consider using declarations as previous declarations for
2604    // out-of-line members.
2605    RemoveUsingDecls(Previous);
2606
2607    // C++ 7.3.1.2p2:
2608    // Members (including explicit specializations of templates) of a named
2609    // namespace can also be defined outside that namespace by explicit
2610    // qualification of the name being defined, provided that the entity being
2611    // defined was already declared in the namespace and the definition appears
2612    // after the point of declaration in a namespace that encloses the
2613    // declarations namespace.
2614    //
2615    // Note that we only check the context at this point. We don't yet
2616    // have enough information to make sure that PrevDecl is actually
2617    // the declaration we want to match. For example, given:
2618    //
2619    //   class X {
2620    //     void f();
2621    //     void f(float);
2622    //   };
2623    //
2624    //   void X::f(int) { } // ill-formed
2625    //
2626    // In this case, PrevDecl will point to the overload set
2627    // containing the two f's declared in X, but neither of them
2628    // matches.
2629
2630    // First check whether we named the global scope.
2631    if (isa<TranslationUnitDecl>(DC)) {
2632      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2633        << Name << D.getCXXScopeSpec().getRange();
2634    } else {
2635      DeclContext *Cur = CurContext;
2636      while (isa<LinkageSpecDecl>(Cur))
2637        Cur = Cur->getParent();
2638      if (!Cur->Encloses(DC)) {
2639        // The qualifying scope doesn't enclose the original declaration.
2640        // Emit diagnostic based on current scope.
2641        SourceLocation L = D.getIdentifierLoc();
2642        SourceRange R = D.getCXXScopeSpec().getRange();
2643        if (isa<FunctionDecl>(Cur))
2644          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2645        else
2646          Diag(L, diag::err_invalid_declarator_scope)
2647            << Name << cast<NamedDecl>(DC) << R;
2648        D.setInvalidType();
2649      }
2650    }
2651  }
2652
2653  if (Previous.isSingleResult() &&
2654      Previous.getFoundDecl()->isTemplateParameter()) {
2655    // Maybe we will complain about the shadowed template parameter.
2656    if (!D.isInvalidType())
2657      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2658                                          Previous.getFoundDecl()))
2659        D.setInvalidType();
2660
2661    // Just pretend that we didn't see the previous declaration.
2662    Previous.clear();
2663  }
2664
2665  // In C++, the previous declaration we find might be a tag type
2666  // (class or enum). In this case, the new declaration will hide the
2667  // tag type. Note that this does does not apply if we're declaring a
2668  // typedef (C++ [dcl.typedef]p4).
2669  if (Previous.isSingleTagDecl() &&
2670      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2671    Previous.clear();
2672
2673  bool Redeclaration = false;
2674  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2675    if (TemplateParamLists.size()) {
2676      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2677      return 0;
2678    }
2679
2680    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2681  } else if (R->isFunctionType()) {
2682    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2683                                  move(TemplateParamLists),
2684                                  IsFunctionDefinition, Redeclaration);
2685  } else {
2686    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2687                                  move(TemplateParamLists),
2688                                  Redeclaration);
2689  }
2690
2691  if (New == 0)
2692    return 0;
2693
2694  // If this has an identifier and is not an invalid redeclaration or
2695  // function template specialization, add it to the scope stack.
2696  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2697    PushOnScopeChains(New, S);
2698
2699  return New;
2700}
2701
2702/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2703/// types into constant array types in certain situations which would otherwise
2704/// be errors (for GCC compatibility).
2705static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2706                                                    ASTContext &Context,
2707                                                    bool &SizeIsNegative,
2708                                                    llvm::APSInt &Oversized) {
2709  // This method tries to turn a variable array into a constant
2710  // array even when the size isn't an ICE.  This is necessary
2711  // for compatibility with code that depends on gcc's buggy
2712  // constant expression folding, like struct {char x[(int)(char*)2];}
2713  SizeIsNegative = false;
2714  Oversized = 0;
2715
2716  if (T->isDependentType())
2717    return QualType();
2718
2719  QualifierCollector Qs;
2720  const Type *Ty = Qs.strip(T);
2721
2722  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2723    QualType Pointee = PTy->getPointeeType();
2724    QualType FixedType =
2725        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2726                                            Oversized);
2727    if (FixedType.isNull()) return FixedType;
2728    FixedType = Context.getPointerType(FixedType);
2729    return Qs.apply(Context, FixedType);
2730  }
2731  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2732    QualType Inner = PTy->getInnerType();
2733    QualType FixedType =
2734        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2735                                            Oversized);
2736    if (FixedType.isNull()) return FixedType;
2737    FixedType = Context.getParenType(FixedType);
2738    return Qs.apply(Context, FixedType);
2739  }
2740
2741  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2742  if (!VLATy)
2743    return QualType();
2744  // FIXME: We should probably handle this case
2745  if (VLATy->getElementType()->isVariablyModifiedType())
2746    return QualType();
2747
2748  Expr::EvalResult EvalResult;
2749  if (!VLATy->getSizeExpr() ||
2750      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2751      !EvalResult.Val.isInt())
2752    return QualType();
2753
2754  // Check whether the array size is negative.
2755  llvm::APSInt &Res = EvalResult.Val.getInt();
2756  if (Res.isSigned() && Res.isNegative()) {
2757    SizeIsNegative = true;
2758    return QualType();
2759  }
2760
2761  // Check whether the array is too large to be addressed.
2762  unsigned ActiveSizeBits
2763    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2764                                              Res);
2765  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2766    Oversized = Res;
2767    return QualType();
2768  }
2769
2770  return Context.getConstantArrayType(VLATy->getElementType(),
2771                                      Res, ArrayType::Normal, 0);
2772}
2773
2774/// \brief Register the given locally-scoped external C declaration so
2775/// that it can be found later for redeclarations
2776void
2777Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2778                                       const LookupResult &Previous,
2779                                       Scope *S) {
2780  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2781         "Decl is not a locally-scoped decl!");
2782  // Note that we have a locally-scoped external with this name.
2783  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2784
2785  if (!Previous.isSingleResult())
2786    return;
2787
2788  NamedDecl *PrevDecl = Previous.getFoundDecl();
2789
2790  // If there was a previous declaration of this variable, it may be
2791  // in our identifier chain. Update the identifier chain with the new
2792  // declaration.
2793  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2794    // The previous declaration was found on the identifer resolver
2795    // chain, so remove it from its scope.
2796    while (S && !S->isDeclScope(PrevDecl))
2797      S = S->getParent();
2798
2799    if (S)
2800      S->RemoveDecl(PrevDecl);
2801  }
2802}
2803
2804/// \brief Diagnose function specifiers on a declaration of an identifier that
2805/// does not identify a function.
2806void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2807  // FIXME: We should probably indicate the identifier in question to avoid
2808  // confusion for constructs like "inline int a(), b;"
2809  if (D.getDeclSpec().isInlineSpecified())
2810    Diag(D.getDeclSpec().getInlineSpecLoc(),
2811         diag::err_inline_non_function);
2812
2813  if (D.getDeclSpec().isVirtualSpecified())
2814    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2815         diag::err_virtual_non_function);
2816
2817  if (D.getDeclSpec().isExplicitSpecified())
2818    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2819         diag::err_explicit_non_function);
2820}
2821
2822NamedDecl*
2823Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2824                             QualType R,  TypeSourceInfo *TInfo,
2825                             LookupResult &Previous, bool &Redeclaration) {
2826  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2827  if (D.getCXXScopeSpec().isSet()) {
2828    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2829      << D.getCXXScopeSpec().getRange();
2830    D.setInvalidType();
2831    // Pretend we didn't see the scope specifier.
2832    DC = CurContext;
2833    Previous.clear();
2834  }
2835
2836  if (getLangOptions().CPlusPlus) {
2837    // Check that there are no default arguments (C++ only).
2838    CheckExtraCXXDefaultArguments(D);
2839  }
2840
2841  DiagnoseFunctionSpecifiers(D);
2842
2843  if (D.getDeclSpec().isThreadSpecified())
2844    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2845
2846  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2847    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2848      << D.getName().getSourceRange();
2849    return 0;
2850  }
2851
2852  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2853  if (!NewTD) return 0;
2854
2855  // Handle attributes prior to checking for duplicates in MergeVarDecl
2856  ProcessDeclAttributes(S, NewTD, D);
2857
2858  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2859  // then it shall have block scope.
2860  // Note that variably modified types must be fixed before merging the decl so
2861  // that redeclarations will match.
2862  QualType T = NewTD->getUnderlyingType();
2863  if (T->isVariablyModifiedType()) {
2864    getCurFunction()->setHasBranchProtectedScope();
2865
2866    if (S->getFnParent() == 0) {
2867      bool SizeIsNegative;
2868      llvm::APSInt Oversized;
2869      QualType FixedTy =
2870          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2871                                              Oversized);
2872      if (!FixedTy.isNull()) {
2873        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2874        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2875      } else {
2876        if (SizeIsNegative)
2877          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2878        else if (T->isVariableArrayType())
2879          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2880        else if (Oversized.getBoolValue())
2881          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2882            << Oversized.toString(10);
2883        else
2884          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2885        NewTD->setInvalidDecl();
2886      }
2887    }
2888  }
2889
2890  // Merge the decl with the existing one if appropriate. If the decl is
2891  // in an outer scope, it isn't the same thing.
2892  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2893                       /*ExplicitInstantiationOrSpecialization=*/false);
2894  if (!Previous.empty()) {
2895    Redeclaration = true;
2896    MergeTypeDefDecl(NewTD, Previous);
2897  }
2898
2899  // If this is the C FILE type, notify the AST context.
2900  if (IdentifierInfo *II = NewTD->getIdentifier())
2901    if (!NewTD->isInvalidDecl() &&
2902        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2903      if (II->isStr("FILE"))
2904        Context.setFILEDecl(NewTD);
2905      else if (II->isStr("jmp_buf"))
2906        Context.setjmp_bufDecl(NewTD);
2907      else if (II->isStr("sigjmp_buf"))
2908        Context.setsigjmp_bufDecl(NewTD);
2909      else if (II->isStr("__builtin_va_list"))
2910        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2911    }
2912
2913  return NewTD;
2914}
2915
2916/// \brief Determines whether the given declaration is an out-of-scope
2917/// previous declaration.
2918///
2919/// This routine should be invoked when name lookup has found a
2920/// previous declaration (PrevDecl) that is not in the scope where a
2921/// new declaration by the same name is being introduced. If the new
2922/// declaration occurs in a local scope, previous declarations with
2923/// linkage may still be considered previous declarations (C99
2924/// 6.2.2p4-5, C++ [basic.link]p6).
2925///
2926/// \param PrevDecl the previous declaration found by name
2927/// lookup
2928///
2929/// \param DC the context in which the new declaration is being
2930/// declared.
2931///
2932/// \returns true if PrevDecl is an out-of-scope previous declaration
2933/// for a new delcaration with the same name.
2934static bool
2935isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2936                                ASTContext &Context) {
2937  if (!PrevDecl)
2938    return false;
2939
2940  if (!PrevDecl->hasLinkage())
2941    return false;
2942
2943  if (Context.getLangOptions().CPlusPlus) {
2944    // C++ [basic.link]p6:
2945    //   If there is a visible declaration of an entity with linkage
2946    //   having the same name and type, ignoring entities declared
2947    //   outside the innermost enclosing namespace scope, the block
2948    //   scope declaration declares that same entity and receives the
2949    //   linkage of the previous declaration.
2950    DeclContext *OuterContext = DC->getRedeclContext();
2951    if (!OuterContext->isFunctionOrMethod())
2952      // This rule only applies to block-scope declarations.
2953      return false;
2954
2955    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2956    if (PrevOuterContext->isRecord())
2957      // We found a member function: ignore it.
2958      return false;
2959
2960    // Find the innermost enclosing namespace for the new and
2961    // previous declarations.
2962    OuterContext = OuterContext->getEnclosingNamespaceContext();
2963    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2964
2965    // The previous declaration is in a different namespace, so it
2966    // isn't the same function.
2967    if (!OuterContext->Equals(PrevOuterContext))
2968      return false;
2969  }
2970
2971  return true;
2972}
2973
2974static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2975  CXXScopeSpec &SS = D.getCXXScopeSpec();
2976  if (!SS.isSet()) return;
2977  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
2978}
2979
2980NamedDecl*
2981Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2982                              QualType R, TypeSourceInfo *TInfo,
2983                              LookupResult &Previous,
2984                              MultiTemplateParamsArg TemplateParamLists,
2985                              bool &Redeclaration) {
2986  DeclarationName Name = GetNameForDeclarator(D).getName();
2987
2988  // Check that there are no default arguments (C++ only).
2989  if (getLangOptions().CPlusPlus)
2990    CheckExtraCXXDefaultArguments(D);
2991
2992  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2993  assert(SCSpec != DeclSpec::SCS_typedef &&
2994         "Parser allowed 'typedef' as storage class VarDecl.");
2995  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2996  if (SCSpec == DeclSpec::SCS_mutable) {
2997    // mutable can only appear on non-static class members, so it's always
2998    // an error here
2999    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3000    D.setInvalidType();
3001    SC = SC_None;
3002  }
3003  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3004  VarDecl::StorageClass SCAsWritten
3005    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3006
3007  IdentifierInfo *II = Name.getAsIdentifierInfo();
3008  if (!II) {
3009    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3010      << Name.getAsString();
3011    return 0;
3012  }
3013
3014  DiagnoseFunctionSpecifiers(D);
3015
3016  if (!DC->isRecord() && S->getFnParent() == 0) {
3017    // C99 6.9p2: The storage-class specifiers auto and register shall not
3018    // appear in the declaration specifiers in an external declaration.
3019    if (SC == SC_Auto || SC == SC_Register) {
3020
3021      // If this is a register variable with an asm label specified, then this
3022      // is a GNU extension.
3023      if (SC == SC_Register && D.getAsmLabel())
3024        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3025      else
3026        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3027      D.setInvalidType();
3028    }
3029  }
3030
3031  bool isExplicitSpecialization = false;
3032  VarDecl *NewVD;
3033  if (!getLangOptions().CPlusPlus) {
3034      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
3035                              II, R, TInfo, SC, SCAsWritten);
3036
3037    if (D.isInvalidType())
3038      NewVD->setInvalidDecl();
3039  } else {
3040    if (DC->isRecord() && !CurContext->isRecord()) {
3041      // This is an out-of-line definition of a static data member.
3042      if (SC == SC_Static) {
3043        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3044             diag::err_static_out_of_line)
3045          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3046      } else if (SC == SC_None)
3047        SC = SC_Static;
3048    }
3049    if (SC == SC_Static) {
3050      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3051        if (RD->isLocalClass())
3052          Diag(D.getIdentifierLoc(),
3053               diag::err_static_data_member_not_allowed_in_local_class)
3054            << Name << RD->getDeclName();
3055
3056        // C++ [class.union]p1: If a union contains a static data member,
3057        // the program is ill-formed.
3058        //
3059        // We also disallow static data members in anonymous structs.
3060        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3061          Diag(D.getIdentifierLoc(),
3062               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3063            << Name << RD->isUnion();
3064      }
3065    }
3066
3067    // Match up the template parameter lists with the scope specifier, then
3068    // determine whether we have a template or a template specialization.
3069    isExplicitSpecialization = false;
3070    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3071    bool Invalid = false;
3072    if (TemplateParameterList *TemplateParams
3073        = MatchTemplateParametersToScopeSpecifier(
3074                                                  D.getDeclSpec().getSourceRange().getBegin(),
3075                                                  D.getCXXScopeSpec(),
3076                                                  TemplateParamLists.get(),
3077                                                  TemplateParamLists.size(),
3078                                                  /*never a friend*/ false,
3079                                                  isExplicitSpecialization,
3080                                                  Invalid)) {
3081      // All but one template parameter lists have been matching.
3082      --NumMatchedTemplateParamLists;
3083
3084      if (TemplateParams->size() > 0) {
3085        // There is no such thing as a variable template.
3086        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3087          << II
3088          << SourceRange(TemplateParams->getTemplateLoc(),
3089                         TemplateParams->getRAngleLoc());
3090        return 0;
3091      } else {
3092        // There is an extraneous 'template<>' for this variable. Complain
3093        // about it, but allow the declaration of the variable.
3094        Diag(TemplateParams->getTemplateLoc(),
3095             diag::err_template_variable_noparams)
3096          << II
3097          << SourceRange(TemplateParams->getTemplateLoc(),
3098                         TemplateParams->getRAngleLoc());
3099
3100        isExplicitSpecialization = true;
3101      }
3102    }
3103
3104    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
3105                            II, R, TInfo, SC, SCAsWritten);
3106
3107    // If this decl has an auto type in need of deduction, make a note of the
3108    // Decl so we can diagnose uses of it in its own initializer.
3109    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3110        R->getContainedAutoType())
3111      ParsingInitForAutoVars.insert(NewVD);
3112
3113    if (D.isInvalidType() || Invalid)
3114      NewVD->setInvalidDecl();
3115
3116    SetNestedNameSpecifier(NewVD, D);
3117
3118    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3119      NewVD->setTemplateParameterListsInfo(Context,
3120                                           NumMatchedTemplateParamLists,
3121                                           TemplateParamLists.release());
3122    }
3123  }
3124
3125  if (D.getDeclSpec().isThreadSpecified()) {
3126    if (NewVD->hasLocalStorage())
3127      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3128    else if (!Context.Target.isTLSSupported())
3129      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3130    else
3131      NewVD->setThreadSpecified(true);
3132  }
3133
3134  // Set the lexical context. If the declarator has a C++ scope specifier, the
3135  // lexical context will be different from the semantic context.
3136  NewVD->setLexicalDeclContext(CurContext);
3137
3138  // Handle attributes prior to checking for duplicates in MergeVarDecl
3139  ProcessDeclAttributes(S, NewVD, D);
3140
3141  // Handle GNU asm-label extension (encoded as an attribute).
3142  if (Expr *E = (Expr*)D.getAsmLabel()) {
3143    // The parser guarantees this is a string.
3144    StringLiteral *SE = cast<StringLiteral>(E);
3145    llvm::StringRef Label = SE->getString();
3146    if (S->getFnParent() != 0) {
3147      switch (SC) {
3148      case SC_None:
3149      case SC_Auto:
3150        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3151        break;
3152      case SC_Register:
3153        if (!Context.Target.isValidGCCRegisterName(Label))
3154          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3155        break;
3156      case SC_Static:
3157      case SC_Extern:
3158      case SC_PrivateExtern:
3159        break;
3160      }
3161    }
3162
3163    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3164                                                Context, Label));
3165  }
3166
3167  // Diagnose shadowed variables before filtering for scope.
3168  if (!D.getCXXScopeSpec().isSet())
3169    CheckShadow(S, NewVD, Previous);
3170
3171  // Don't consider existing declarations that are in a different
3172  // scope and are out-of-semantic-context declarations (if the new
3173  // declaration has linkage).
3174  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3175                       isExplicitSpecialization);
3176
3177  if (!getLangOptions().CPlusPlus)
3178    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3179  else {
3180    // Merge the decl with the existing one if appropriate.
3181    if (!Previous.empty()) {
3182      if (Previous.isSingleResult() &&
3183          isa<FieldDecl>(Previous.getFoundDecl()) &&
3184          D.getCXXScopeSpec().isSet()) {
3185        // The user tried to define a non-static data member
3186        // out-of-line (C++ [dcl.meaning]p1).
3187        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3188          << D.getCXXScopeSpec().getRange();
3189        Previous.clear();
3190        NewVD->setInvalidDecl();
3191      }
3192    } else if (D.getCXXScopeSpec().isSet()) {
3193      // No previous declaration in the qualifying scope.
3194      Diag(D.getIdentifierLoc(), diag::err_no_member)
3195        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3196        << D.getCXXScopeSpec().getRange();
3197      NewVD->setInvalidDecl();
3198    }
3199
3200    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3201
3202    // This is an explicit specialization of a static data member. Check it.
3203    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3204        CheckMemberSpecialization(NewVD, Previous))
3205      NewVD->setInvalidDecl();
3206  }
3207
3208  // attributes declared post-definition are currently ignored
3209  // FIXME: This should be handled in attribute merging, not
3210  // here.
3211  if (Previous.isSingleResult()) {
3212    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3213    if (Def && (Def = Def->getDefinition()) &&
3214        Def != NewVD && D.hasAttributes()) {
3215      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3216      Diag(Def->getLocation(), diag::note_previous_definition);
3217    }
3218  }
3219
3220  // If this is a locally-scoped extern C variable, update the map of
3221  // such variables.
3222  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3223      !NewVD->isInvalidDecl())
3224    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3225
3226  // If there's a #pragma GCC visibility in scope, and this isn't a class
3227  // member, set the visibility of this variable.
3228  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3229    AddPushedVisibilityAttribute(NewVD);
3230
3231  MarkUnusedFileScopedDecl(NewVD);
3232
3233  return NewVD;
3234}
3235
3236/// \brief Diagnose variable or built-in function shadowing.  Implements
3237/// -Wshadow.
3238///
3239/// This method is called whenever a VarDecl is added to a "useful"
3240/// scope.
3241///
3242/// \param S the scope in which the shadowing name is being declared
3243/// \param R the lookup of the name
3244///
3245void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3246  // Return if warning is ignored.
3247  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3248        Diagnostic::Ignored)
3249    return;
3250
3251  // Don't diagnose declarations at file scope.
3252  DeclContext *NewDC = D->getDeclContext();
3253  if (NewDC->isFileContext())
3254    return;
3255
3256  // Only diagnose if we're shadowing an unambiguous field or variable.
3257  if (R.getResultKind() != LookupResult::Found)
3258    return;
3259
3260  NamedDecl* ShadowedDecl = R.getFoundDecl();
3261  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3262    return;
3263
3264  // Fields are not shadowed by variables in C++ static methods.
3265  if (isa<FieldDecl>(ShadowedDecl))
3266    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3267      if (MD->isStatic())
3268        return;
3269
3270  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3271    if (shadowedVar->isExternC()) {
3272      // Don't warn for this case:
3273      //
3274      // @code
3275      // extern int bob;
3276      // void f() {
3277      //   extern int bob;
3278      // }
3279      // @endcode
3280      if (D->isExternC())
3281        return;
3282
3283      // For shadowing external vars, make sure that we point to the global
3284      // declaration, not a locally scoped extern declaration.
3285      for (VarDecl::redecl_iterator
3286             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3287           I != E; ++I)
3288        if (I->isFileVarDecl()) {
3289          ShadowedDecl = *I;
3290          break;
3291        }
3292    }
3293
3294  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3295
3296  // Only warn about certain kinds of shadowing for class members.
3297  if (NewDC && NewDC->isRecord()) {
3298    // In particular, don't warn about shadowing non-class members.
3299    if (!OldDC->isRecord())
3300      return;
3301
3302    // TODO: should we warn about static data members shadowing
3303    // static data members from base classes?
3304
3305    // TODO: don't diagnose for inaccessible shadowed members.
3306    // This is hard to do perfectly because we might friend the
3307    // shadowing context, but that's just a false negative.
3308  }
3309
3310  // Determine what kind of declaration we're shadowing.
3311  unsigned Kind;
3312  if (isa<RecordDecl>(OldDC)) {
3313    if (isa<FieldDecl>(ShadowedDecl))
3314      Kind = 3; // field
3315    else
3316      Kind = 2; // static data member
3317  } else if (OldDC->isFileContext())
3318    Kind = 1; // global
3319  else
3320    Kind = 0; // local
3321
3322  DeclarationName Name = R.getLookupName();
3323
3324  // Emit warning and note.
3325  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3326  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3327}
3328
3329/// \brief Check -Wshadow without the advantage of a previous lookup.
3330void Sema::CheckShadow(Scope *S, VarDecl *D) {
3331  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3332        Diagnostic::Ignored)
3333    return;
3334
3335  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3336                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3337  LookupName(R, S);
3338  CheckShadow(S, D, R);
3339}
3340
3341/// \brief Perform semantic checking on a newly-created variable
3342/// declaration.
3343///
3344/// This routine performs all of the type-checking required for a
3345/// variable declaration once it has been built. It is used both to
3346/// check variables after they have been parsed and their declarators
3347/// have been translated into a declaration, and to check variables
3348/// that have been instantiated from a template.
3349///
3350/// Sets NewVD->isInvalidDecl() if an error was encountered.
3351void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3352                                    LookupResult &Previous,
3353                                    bool &Redeclaration) {
3354  // If the decl is already known invalid, don't check it.
3355  if (NewVD->isInvalidDecl())
3356    return;
3357
3358  QualType T = NewVD->getType();
3359
3360  if (T->isObjCObjectType()) {
3361    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3362    return NewVD->setInvalidDecl();
3363  }
3364
3365  // Emit an error if an address space was applied to decl with local storage.
3366  // This includes arrays of objects with address space qualifiers, but not
3367  // automatic variables that point to other address spaces.
3368  // ISO/IEC TR 18037 S5.1.2
3369  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3370    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3371    return NewVD->setInvalidDecl();
3372  }
3373
3374  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3375      && !NewVD->hasAttr<BlocksAttr>())
3376    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3377
3378  bool isVM = T->isVariablyModifiedType();
3379  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3380      NewVD->hasAttr<BlocksAttr>())
3381    getCurFunction()->setHasBranchProtectedScope();
3382
3383  if ((isVM && NewVD->hasLinkage()) ||
3384      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3385    bool SizeIsNegative;
3386    llvm::APSInt Oversized;
3387    QualType FixedTy =
3388        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3389                                            Oversized);
3390
3391    if (FixedTy.isNull() && T->isVariableArrayType()) {
3392      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3393      // FIXME: This won't give the correct result for
3394      // int a[10][n];
3395      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3396
3397      if (NewVD->isFileVarDecl())
3398        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3399        << SizeRange;
3400      else if (NewVD->getStorageClass() == SC_Static)
3401        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3402        << SizeRange;
3403      else
3404        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3405        << SizeRange;
3406      return NewVD->setInvalidDecl();
3407    }
3408
3409    if (FixedTy.isNull()) {
3410      if (NewVD->isFileVarDecl())
3411        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3412      else
3413        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3414      return NewVD->setInvalidDecl();
3415    }
3416
3417    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3418    NewVD->setType(FixedTy);
3419  }
3420
3421  if (Previous.empty() && NewVD->isExternC()) {
3422    // Since we did not find anything by this name and we're declaring
3423    // an extern "C" variable, look for a non-visible extern "C"
3424    // declaration with the same name.
3425    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3426      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3427    if (Pos != LocallyScopedExternalDecls.end())
3428      Previous.addDecl(Pos->second);
3429  }
3430
3431  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3432    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3433      << T;
3434    return NewVD->setInvalidDecl();
3435  }
3436
3437  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3438    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3439    return NewVD->setInvalidDecl();
3440  }
3441
3442  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3443    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3444    return NewVD->setInvalidDecl();
3445  }
3446
3447  // Function pointers and references cannot have qualified function type, only
3448  // function pointer-to-members can do that.
3449  QualType Pointee;
3450  unsigned PtrOrRef = 0;
3451  if (const PointerType *Ptr = T->getAs<PointerType>())
3452    Pointee = Ptr->getPointeeType();
3453  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3454    Pointee = Ref->getPointeeType();
3455    PtrOrRef = 1;
3456  }
3457  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3458      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3459    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3460        << PtrOrRef;
3461    return NewVD->setInvalidDecl();
3462  }
3463
3464  if (!Previous.empty()) {
3465    Redeclaration = true;
3466    MergeVarDecl(NewVD, Previous);
3467  }
3468}
3469
3470/// \brief Data used with FindOverriddenMethod
3471struct FindOverriddenMethodData {
3472  Sema *S;
3473  CXXMethodDecl *Method;
3474};
3475
3476/// \brief Member lookup function that determines whether a given C++
3477/// method overrides a method in a base class, to be used with
3478/// CXXRecordDecl::lookupInBases().
3479static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3480                                 CXXBasePath &Path,
3481                                 void *UserData) {
3482  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3483
3484  FindOverriddenMethodData *Data
3485    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3486
3487  DeclarationName Name = Data->Method->getDeclName();
3488
3489  // FIXME: Do we care about other names here too?
3490  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3491    // We really want to find the base class destructor here.
3492    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3493    CanQualType CT = Data->S->Context.getCanonicalType(T);
3494
3495    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3496  }
3497
3498  for (Path.Decls = BaseRecord->lookup(Name);
3499       Path.Decls.first != Path.Decls.second;
3500       ++Path.Decls.first) {
3501    NamedDecl *D = *Path.Decls.first;
3502    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3503      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3504        return true;
3505    }
3506  }
3507
3508  return false;
3509}
3510
3511/// AddOverriddenMethods - See if a method overrides any in the base classes,
3512/// and if so, check that it's a valid override and remember it.
3513bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3514  // Look for virtual methods in base classes that this method might override.
3515  CXXBasePaths Paths;
3516  FindOverriddenMethodData Data;
3517  Data.Method = MD;
3518  Data.S = this;
3519  bool AddedAny = false;
3520  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3521    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3522         E = Paths.found_decls_end(); I != E; ++I) {
3523      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3524        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3525            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3526            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3527          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3528          AddedAny = true;
3529        }
3530      }
3531    }
3532  }
3533
3534  return AddedAny;
3535}
3536
3537static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3538  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3539                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3540  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3541  assert(!Prev.isAmbiguous() &&
3542         "Cannot have an ambiguity in previous-declaration lookup");
3543  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3544       Func != FuncEnd; ++Func) {
3545    if (isa<FunctionDecl>(*Func) &&
3546        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3547      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3548  }
3549}
3550
3551NamedDecl*
3552Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3553                              QualType R, TypeSourceInfo *TInfo,
3554                              LookupResult &Previous,
3555                              MultiTemplateParamsArg TemplateParamLists,
3556                              bool IsFunctionDefinition, bool &Redeclaration) {
3557  assert(R.getTypePtr()->isFunctionType());
3558
3559  // TODO: consider using NameInfo for diagnostic.
3560  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3561  DeclarationName Name = NameInfo.getName();
3562  FunctionDecl::StorageClass SC = SC_None;
3563  switch (D.getDeclSpec().getStorageClassSpec()) {
3564  default: assert(0 && "Unknown storage class!");
3565  case DeclSpec::SCS_auto:
3566  case DeclSpec::SCS_register:
3567  case DeclSpec::SCS_mutable:
3568    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3569         diag::err_typecheck_sclass_func);
3570    D.setInvalidType();
3571    break;
3572  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3573  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3574  case DeclSpec::SCS_static: {
3575    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3576      // C99 6.7.1p5:
3577      //   The declaration of an identifier for a function that has
3578      //   block scope shall have no explicit storage-class specifier
3579      //   other than extern
3580      // See also (C++ [dcl.stc]p4).
3581      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3582           diag::err_static_block_func);
3583      SC = SC_None;
3584    } else
3585      SC = SC_Static;
3586    break;
3587  }
3588  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3589  }
3590
3591  if (D.getDeclSpec().isThreadSpecified())
3592    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3593
3594  // Do not allow returning a objc interface by-value.
3595  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3596    Diag(D.getIdentifierLoc(),
3597         diag::err_object_cannot_be_passed_returned_by_value) << 0
3598    << R->getAs<FunctionType>()->getResultType();
3599    D.setInvalidType();
3600  }
3601
3602  FunctionDecl *NewFD;
3603  bool isInline = D.getDeclSpec().isInlineSpecified();
3604  bool isFriend = false;
3605  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3606  FunctionDecl::StorageClass SCAsWritten
3607    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3608  FunctionTemplateDecl *FunctionTemplate = 0;
3609  bool isExplicitSpecialization = false;
3610  bool isFunctionTemplateSpecialization = false;
3611  unsigned NumMatchedTemplateParamLists = 0;
3612
3613  if (!getLangOptions().CPlusPlus) {
3614    // Determine whether the function was written with a
3615    // prototype. This true when:
3616    //   - there is a prototype in the declarator, or
3617    //   - the type R of the function is some kind of typedef or other reference
3618    //     to a type name (which eventually refers to a function type).
3619    bool HasPrototype =
3620    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3621    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3622
3623    NewFD = FunctionDecl::Create(Context, DC,
3624                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3625                                 HasPrototype);
3626    if (D.isInvalidType())
3627      NewFD->setInvalidDecl();
3628
3629    // Set the lexical context.
3630    NewFD->setLexicalDeclContext(CurContext);
3631    // Filter out previous declarations that don't match the scope.
3632    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3633                         /*ExplicitInstantiationOrSpecialization=*/false);
3634  } else {
3635    isFriend = D.getDeclSpec().isFriendSpecified();
3636    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3637    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3638    bool isVirtualOkay = false;
3639
3640    // Check that the return type is not an abstract class type.
3641    // For record types, this is done by the AbstractClassUsageDiagnoser once
3642    // the class has been completely parsed.
3643    if (!DC->isRecord() &&
3644      RequireNonAbstractType(D.getIdentifierLoc(),
3645                             R->getAs<FunctionType>()->getResultType(),
3646                             diag::err_abstract_type_in_decl,
3647                             AbstractReturnType))
3648      D.setInvalidType();
3649
3650
3651    if (isFriend) {
3652      // C++ [class.friend]p5
3653      //   A function can be defined in a friend declaration of a
3654      //   class . . . . Such a function is implicitly inline.
3655      isInline |= IsFunctionDefinition;
3656    }
3657
3658    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3659      // This is a C++ constructor declaration.
3660      assert(DC->isRecord() &&
3661             "Constructors can only be declared in a member context");
3662
3663      R = CheckConstructorDeclarator(D, R, SC);
3664
3665      // Create the new declaration
3666      NewFD = CXXConstructorDecl::Create(Context,
3667                                         cast<CXXRecordDecl>(DC),
3668                                         NameInfo, R, TInfo,
3669                                         isExplicit, isInline,
3670                                         /*isImplicitlyDeclared=*/false);
3671    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3672      // This is a C++ destructor declaration.
3673      if (DC->isRecord()) {
3674        R = CheckDestructorDeclarator(D, R, SC);
3675
3676        NewFD = CXXDestructorDecl::Create(Context,
3677                                          cast<CXXRecordDecl>(DC),
3678                                          NameInfo, R, TInfo,
3679                                          isInline,
3680                                          /*isImplicitlyDeclared=*/false);
3681        isVirtualOkay = true;
3682      } else {
3683        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3684
3685        // Create a FunctionDecl to satisfy the function definition parsing
3686        // code path.
3687        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3688                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3689                                     /*hasPrototype=*/true);
3690        D.setInvalidType();
3691      }
3692    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3693      if (!DC->isRecord()) {
3694        Diag(D.getIdentifierLoc(),
3695             diag::err_conv_function_not_member);
3696        return 0;
3697      }
3698
3699      CheckConversionDeclarator(D, R, SC);
3700      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3701                                        NameInfo, R, TInfo,
3702                                        isInline, isExplicit);
3703
3704      isVirtualOkay = true;
3705    } else if (DC->isRecord()) {
3706      // If the of the function is the same as the name of the record, then this
3707      // must be an invalid constructor that has a return type.
3708      // (The parser checks for a return type and makes the declarator a
3709      // constructor if it has no return type).
3710      // must have an invalid constructor that has a return type
3711      if (Name.getAsIdentifierInfo() &&
3712          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3713        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3714          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3715          << SourceRange(D.getIdentifierLoc());
3716        return 0;
3717      }
3718
3719      bool isStatic = SC == SC_Static;
3720
3721      // [class.free]p1:
3722      // Any allocation function for a class T is a static member
3723      // (even if not explicitly declared static).
3724      if (Name.getCXXOverloadedOperator() == OO_New ||
3725          Name.getCXXOverloadedOperator() == OO_Array_New)
3726        isStatic = true;
3727
3728      // [class.free]p6 Any deallocation function for a class X is a static member
3729      // (even if not explicitly declared static).
3730      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3731          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3732        isStatic = true;
3733
3734      // This is a C++ method declaration.
3735      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3736                                    NameInfo, R, TInfo,
3737                                    isStatic, SCAsWritten, isInline);
3738
3739      isVirtualOkay = !isStatic;
3740    } else {
3741      // Determine whether the function was written with a
3742      // prototype. This true when:
3743      //   - we're in C++ (where every function has a prototype),
3744      NewFD = FunctionDecl::Create(Context, DC,
3745                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3746                                   true/*HasPrototype*/);
3747    }
3748    SetNestedNameSpecifier(NewFD, D);
3749    isExplicitSpecialization = false;
3750    isFunctionTemplateSpecialization = false;
3751    NumMatchedTemplateParamLists = TemplateParamLists.size();
3752    if (D.isInvalidType())
3753      NewFD->setInvalidDecl();
3754
3755    // Set the lexical context. If the declarator has a C++
3756    // scope specifier, or is the object of a friend declaration, the
3757    // lexical context will be different from the semantic context.
3758    NewFD->setLexicalDeclContext(CurContext);
3759
3760    // Match up the template parameter lists with the scope specifier, then
3761    // determine whether we have a template or a template specialization.
3762    bool Invalid = false;
3763    if (TemplateParameterList *TemplateParams
3764          = MatchTemplateParametersToScopeSpecifier(
3765                                  D.getDeclSpec().getSourceRange().getBegin(),
3766                                  D.getCXXScopeSpec(),
3767                                  TemplateParamLists.get(),
3768                                  TemplateParamLists.size(),
3769                                  isFriend,
3770                                  isExplicitSpecialization,
3771                                  Invalid)) {
3772          // All but one template parameter lists have been matching.
3773          --NumMatchedTemplateParamLists;
3774
3775          if (TemplateParams->size() > 0) {
3776            // This is a function template
3777
3778            // Check that we can declare a template here.
3779            if (CheckTemplateDeclScope(S, TemplateParams))
3780              return 0;
3781
3782            // A destructor cannot be a template.
3783            if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3784              Diag(NewFD->getLocation(), diag::err_destructor_template);
3785              return 0;
3786            }
3787
3788
3789            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3790                                                      NewFD->getLocation(),
3791                                                      Name, TemplateParams,
3792                                                      NewFD);
3793            FunctionTemplate->setLexicalDeclContext(CurContext);
3794            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3795          } else {
3796            // This is a function template specialization.
3797            isFunctionTemplateSpecialization = true;
3798
3799            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3800            if (isFriend && isFunctionTemplateSpecialization) {
3801              // We want to remove the "template<>", found here.
3802              SourceRange RemoveRange = TemplateParams->getSourceRange();
3803
3804              // If we remove the template<> and the name is not a
3805              // template-id, we're actually silently creating a problem:
3806              // the friend declaration will refer to an untemplated decl,
3807              // and clearly the user wants a template specialization.  So
3808              // we need to insert '<>' after the name.
3809              SourceLocation InsertLoc;
3810              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3811                InsertLoc = D.getName().getSourceRange().getEnd();
3812                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3813              }
3814
3815              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3816              << Name << RemoveRange
3817              << FixItHint::CreateRemoval(RemoveRange)
3818              << FixItHint::CreateInsertion(InsertLoc, "<>");
3819            }
3820          }
3821        }
3822
3823    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3824      NewFD->setTemplateParameterListsInfo(Context,
3825                                           NumMatchedTemplateParamLists,
3826                                           TemplateParamLists.release());
3827    }
3828
3829    if (Invalid) {
3830      NewFD->setInvalidDecl();
3831      if (FunctionTemplate)
3832        FunctionTemplate->setInvalidDecl();
3833    }
3834
3835    // C++ [dcl.fct.spec]p5:
3836    //   The virtual specifier shall only be used in declarations of
3837    //   nonstatic class member functions that appear within a
3838    //   member-specification of a class declaration; see 10.3.
3839    //
3840    if (isVirtual && !NewFD->isInvalidDecl()) {
3841      if (!isVirtualOkay) {
3842        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3843             diag::err_virtual_non_function);
3844      } else if (!CurContext->isRecord()) {
3845        // 'virtual' was specified outside of the class.
3846        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3847             diag::err_virtual_out_of_class)
3848          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3849      } else if (NewFD->getDescribedFunctionTemplate()) {
3850        // C++ [temp.mem]p3:
3851        //  A member function template shall not be virtual.
3852        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3853             diag::err_virtual_member_function_template)
3854          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3855      } else {
3856        // Okay: Add virtual to the method.
3857        NewFD->setVirtualAsWritten(true);
3858      }
3859    }
3860
3861    // C++ [dcl.fct.spec]p3:
3862    //  The inline specifier shall not appear on a block scope function declaration.
3863    if (isInline && !NewFD->isInvalidDecl()) {
3864      if (CurContext->isFunctionOrMethod()) {
3865        // 'inline' is not allowed on block scope function declaration.
3866        Diag(D.getDeclSpec().getInlineSpecLoc(),
3867             diag::err_inline_declaration_block_scope) << Name
3868          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3869      }
3870    }
3871
3872    // C++ [dcl.fct.spec]p6:
3873    //  The explicit specifier shall be used only in the declaration of a
3874    //  constructor or conversion function within its class definition; see 12.3.1
3875    //  and 12.3.2.
3876    if (isExplicit && !NewFD->isInvalidDecl()) {
3877      if (!CurContext->isRecord()) {
3878        // 'explicit' was specified outside of the class.
3879        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3880             diag::err_explicit_out_of_class)
3881          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3882      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3883                 !isa<CXXConversionDecl>(NewFD)) {
3884        // 'explicit' was specified on a function that wasn't a constructor
3885        // or conversion function.
3886        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3887             diag::err_explicit_non_ctor_or_conv_function)
3888          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3889      }
3890    }
3891
3892    // Filter out previous declarations that don't match the scope.
3893    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3894                         isExplicitSpecialization ||
3895                         isFunctionTemplateSpecialization);
3896
3897    if (isFriend) {
3898      // For now, claim that the objects have no previous declaration.
3899      if (FunctionTemplate) {
3900        FunctionTemplate->setObjectOfFriendDecl(false);
3901        FunctionTemplate->setAccess(AS_public);
3902      }
3903      NewFD->setObjectOfFriendDecl(false);
3904      NewFD->setAccess(AS_public);
3905    }
3906
3907    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3908      // A method is implicitly inline if it's defined in its class
3909      // definition.
3910      NewFD->setImplicitlyInline();
3911    }
3912
3913    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3914        !CurContext->isRecord()) {
3915      // C++ [class.static]p1:
3916      //   A data or function member of a class may be declared static
3917      //   in a class definition, in which case it is a static member of
3918      //   the class.
3919
3920      // Complain about the 'static' specifier if it's on an out-of-line
3921      // member function definition.
3922      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3923           diag::err_static_out_of_line)
3924        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3925    }
3926  }
3927
3928  // Handle GNU asm-label extension (encoded as an attribute).
3929  if (Expr *E = (Expr*) D.getAsmLabel()) {
3930    // The parser guarantees this is a string.
3931    StringLiteral *SE = cast<StringLiteral>(E);
3932    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3933                                                SE->getString()));
3934  }
3935
3936  // Copy the parameter declarations from the declarator D to the function
3937  // declaration NewFD, if they are available.  First scavenge them into Params.
3938  llvm::SmallVector<ParmVarDecl*, 16> Params;
3939  if (D.isFunctionDeclarator()) {
3940    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3941
3942    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3943    // function that takes no arguments, not a function that takes a
3944    // single void argument.
3945    // We let through "const void" here because Sema::GetTypeForDeclarator
3946    // already checks for that case.
3947    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3948        FTI.ArgInfo[0].Param &&
3949        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3950      // Empty arg list, don't push any params.
3951      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3952
3953      // In C++, the empty parameter-type-list must be spelled "void"; a
3954      // typedef of void is not permitted.
3955      if (getLangOptions().CPlusPlus &&
3956          Param->getType().getUnqualifiedType() != Context.VoidTy)
3957        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3958    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3959      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3960        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3961        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3962        Param->setDeclContext(NewFD);
3963        Params.push_back(Param);
3964
3965        if (Param->isInvalidDecl())
3966          NewFD->setInvalidDecl();
3967      }
3968    }
3969
3970  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3971    // When we're declaring a function with a typedef, typeof, etc as in the
3972    // following example, we'll need to synthesize (unnamed)
3973    // parameters for use in the declaration.
3974    //
3975    // @code
3976    // typedef void fn(int);
3977    // fn f;
3978    // @endcode
3979
3980    // Synthesize a parameter for each argument type.
3981    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3982         AE = FT->arg_type_end(); AI != AE; ++AI) {
3983      ParmVarDecl *Param =
3984        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3985      Params.push_back(Param);
3986    }
3987  } else {
3988    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3989           "Should not need args for typedef of non-prototype fn");
3990  }
3991  // Finally, we know we have the right number of parameters, install them.
3992  NewFD->setParams(Params.data(), Params.size());
3993
3994  // Process the non-inheritable attributes on this declaration.
3995  ProcessDeclAttributes(S, NewFD, D,
3996                        /*NonInheritable=*/true, /*Inheritable=*/false);
3997
3998  if (!getLangOptions().CPlusPlus) {
3999    // Perform semantic checking on the function declaration.
4000    bool isExplctSpecialization=false;
4001    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4002                             Redeclaration);
4003    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4004            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4005           "previous declaration set still overloaded");
4006  } else {
4007    // If the declarator is a template-id, translate the parser's template
4008    // argument list into our AST format.
4009    bool HasExplicitTemplateArgs = false;
4010    TemplateArgumentListInfo TemplateArgs;
4011    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4012      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4013      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4014      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4015      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4016                                         TemplateId->getTemplateArgs(),
4017                                         TemplateId->NumArgs);
4018      translateTemplateArguments(TemplateArgsPtr,
4019                                 TemplateArgs);
4020      TemplateArgsPtr.release();
4021
4022      HasExplicitTemplateArgs = true;
4023
4024      if (FunctionTemplate) {
4025        // Function template with explicit template arguments.
4026        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4027          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4028
4029        HasExplicitTemplateArgs = false;
4030      } else if (!isFunctionTemplateSpecialization &&
4031                 !D.getDeclSpec().isFriendSpecified()) {
4032        // We have encountered something that the user meant to be a
4033        // specialization (because it has explicitly-specified template
4034        // arguments) but that was not introduced with a "template<>" (or had
4035        // too few of them).
4036        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4037          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4038          << FixItHint::CreateInsertion(
4039                                        D.getDeclSpec().getSourceRange().getBegin(),
4040                                                  "template<> ");
4041        isFunctionTemplateSpecialization = true;
4042      } else {
4043        // "friend void foo<>(int);" is an implicit specialization decl.
4044        isFunctionTemplateSpecialization = true;
4045      }
4046    } else if (isFriend && isFunctionTemplateSpecialization) {
4047      // This combination is only possible in a recovery case;  the user
4048      // wrote something like:
4049      //   template <> friend void foo(int);
4050      // which we're recovering from as if the user had written:
4051      //   friend void foo<>(int);
4052      // Go ahead and fake up a template id.
4053      HasExplicitTemplateArgs = true;
4054        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4055      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4056    }
4057
4058    // If it's a friend (and only if it's a friend), it's possible
4059    // that either the specialized function type or the specialized
4060    // template is dependent, and therefore matching will fail.  In
4061    // this case, don't check the specialization yet.
4062    if (isFunctionTemplateSpecialization && isFriend &&
4063        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4064      assert(HasExplicitTemplateArgs &&
4065             "friend function specialization without template args");
4066      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4067                                                       Previous))
4068        NewFD->setInvalidDecl();
4069    } else if (isFunctionTemplateSpecialization) {
4070      if (CheckFunctionTemplateSpecialization(NewFD,
4071                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4072                                              Previous))
4073        NewFD->setInvalidDecl();
4074    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4075      if (CheckMemberSpecialization(NewFD, Previous))
4076          NewFD->setInvalidDecl();
4077    }
4078
4079    // Perform semantic checking on the function declaration.
4080    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4081                             Redeclaration);
4082
4083    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4084            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4085           "previous declaration set still overloaded");
4086
4087    NamedDecl *PrincipalDecl = (FunctionTemplate
4088                                ? cast<NamedDecl>(FunctionTemplate)
4089                                : NewFD);
4090
4091    if (isFriend && Redeclaration) {
4092      AccessSpecifier Access = AS_public;
4093      if (!NewFD->isInvalidDecl())
4094        Access = NewFD->getPreviousDeclaration()->getAccess();
4095
4096      NewFD->setAccess(Access);
4097      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4098
4099      PrincipalDecl->setObjectOfFriendDecl(true);
4100    }
4101
4102    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4103        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4104      PrincipalDecl->setNonMemberOperator();
4105
4106    // If we have a function template, check the template parameter
4107    // list. This will check and merge default template arguments.
4108    if (FunctionTemplate) {
4109      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4110      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4111                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4112                            D.getDeclSpec().isFriendSpecified()
4113                              ? (IsFunctionDefinition
4114                                   ? TPC_FriendFunctionTemplateDefinition
4115                                   : TPC_FriendFunctionTemplate)
4116                              : (D.getCXXScopeSpec().isSet() &&
4117                                 DC && DC->isRecord() &&
4118                                 DC->isDependentContext())
4119                                  ? TPC_ClassTemplateMember
4120                                  : TPC_FunctionTemplate);
4121    }
4122
4123    if (NewFD->isInvalidDecl()) {
4124      // Ignore all the rest of this.
4125    } else if (!Redeclaration) {
4126      // Fake up an access specifier if it's supposed to be a class member.
4127      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4128        NewFD->setAccess(AS_public);
4129
4130      // Qualified decls generally require a previous declaration.
4131      if (D.getCXXScopeSpec().isSet()) {
4132        // ...with the major exception of templated-scope or
4133        // dependent-scope friend declarations.
4134
4135        // TODO: we currently also suppress this check in dependent
4136        // contexts because (1) the parameter depth will be off when
4137        // matching friend templates and (2) we might actually be
4138        // selecting a friend based on a dependent factor.  But there
4139        // are situations where these conditions don't apply and we
4140        // can actually do this check immediately.
4141        if (isFriend &&
4142            (NumMatchedTemplateParamLists ||
4143             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4144             CurContext->isDependentContext())) {
4145              // ignore these
4146            } else {
4147              // The user tried to provide an out-of-line definition for a
4148              // function that is a member of a class or namespace, but there
4149              // was no such member function declared (C++ [class.mfct]p2,
4150              // C++ [namespace.memdef]p2). For example:
4151              //
4152              // class X {
4153              //   void f() const;
4154              // };
4155              //
4156              // void X::f() { } // ill-formed
4157              //
4158              // Complain about this problem, and attempt to suggest close
4159              // matches (e.g., those that differ only in cv-qualifiers and
4160              // whether the parameter types are references).
4161              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4162              << Name << DC << D.getCXXScopeSpec().getRange();
4163              NewFD->setInvalidDecl();
4164
4165              DiagnoseInvalidRedeclaration(*this, NewFD);
4166            }
4167
4168        // Unqualified local friend declarations are required to resolve
4169        // to something.
4170        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4171          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4172          NewFD->setInvalidDecl();
4173          DiagnoseInvalidRedeclaration(*this, NewFD);
4174        }
4175
4176    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4177               !isFriend && !isFunctionTemplateSpecialization &&
4178               !isExplicitSpecialization) {
4179      // An out-of-line member function declaration must also be a
4180      // definition (C++ [dcl.meaning]p1).
4181      // Note that this is not the case for explicit specializations of
4182      // function templates or member functions of class templates, per
4183      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4184      // for compatibility with old SWIG code which likes to generate them.
4185      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4186        << D.getCXXScopeSpec().getRange();
4187    }
4188  }
4189
4190
4191  // Handle attributes. We need to have merged decls when handling attributes
4192  // (for example to check for conflicts, etc).
4193  // FIXME: This needs to happen before we merge declarations. Then,
4194  // let attribute merging cope with attribute conflicts.
4195  ProcessDeclAttributes(S, NewFD, D,
4196                        /*NonInheritable=*/false, /*Inheritable=*/true);
4197
4198  // attributes declared post-definition are currently ignored
4199  // FIXME: This should happen during attribute merging
4200  if (Redeclaration && Previous.isSingleResult()) {
4201    const FunctionDecl *Def;
4202    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4203    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4204      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4205      Diag(Def->getLocation(), diag::note_previous_definition);
4206    }
4207  }
4208
4209  AddKnownFunctionAttributes(NewFD);
4210
4211  if (NewFD->hasAttr<OverloadableAttr>() &&
4212      !NewFD->getType()->getAs<FunctionProtoType>()) {
4213    Diag(NewFD->getLocation(),
4214         diag::err_attribute_overloadable_no_prototype)
4215      << NewFD;
4216
4217    // Turn this into a variadic function with no parameters.
4218    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4219    FunctionProtoType::ExtProtoInfo EPI;
4220    EPI.Variadic = true;
4221    EPI.ExtInfo = FT->getExtInfo();
4222
4223    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4224    NewFD->setType(R);
4225  }
4226
4227  // If there's a #pragma GCC visibility in scope, and this isn't a class
4228  // member, set the visibility of this function.
4229  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4230    AddPushedVisibilityAttribute(NewFD);
4231
4232  // If this is a locally-scoped extern C function, update the
4233  // map of such names.
4234  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4235      && !NewFD->isInvalidDecl())
4236    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4237
4238  // Set this FunctionDecl's range up to the right paren.
4239  NewFD->setLocEnd(D.getSourceRange().getEnd());
4240
4241  if (getLangOptions().CPlusPlus) {
4242    if (FunctionTemplate) {
4243      if (NewFD->isInvalidDecl())
4244        FunctionTemplate->setInvalidDecl();
4245      return FunctionTemplate;
4246    }
4247  }
4248
4249  MarkUnusedFileScopedDecl(NewFD);
4250
4251  if (getLangOptions().CUDA)
4252    if (IdentifierInfo *II = NewFD->getIdentifier())
4253      if (!NewFD->isInvalidDecl() &&
4254          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4255        if (II->isStr("cudaConfigureCall")) {
4256          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4257            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4258
4259          Context.setcudaConfigureCallDecl(NewFD);
4260        }
4261      }
4262
4263  return NewFD;
4264}
4265
4266/// \brief Perform semantic checking of a new function declaration.
4267///
4268/// Performs semantic analysis of the new function declaration
4269/// NewFD. This routine performs all semantic checking that does not
4270/// require the actual declarator involved in the declaration, and is
4271/// used both for the declaration of functions as they are parsed
4272/// (called via ActOnDeclarator) and for the declaration of functions
4273/// that have been instantiated via C++ template instantiation (called
4274/// via InstantiateDecl).
4275///
4276/// \param IsExplicitSpecialiation whether this new function declaration is
4277/// an explicit specialization of the previous declaration.
4278///
4279/// This sets NewFD->isInvalidDecl() to true if there was an error.
4280void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4281                                    LookupResult &Previous,
4282                                    bool IsExplicitSpecialization,
4283                                    bool &Redeclaration) {
4284  // If NewFD is already known erroneous, don't do any of this checking.
4285  if (NewFD->isInvalidDecl()) {
4286    // If this is a class member, mark the class invalid immediately.
4287    // This avoids some consistency errors later.
4288    if (isa<CXXMethodDecl>(NewFD))
4289      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4290
4291    return;
4292  }
4293
4294  if (NewFD->getResultType()->isVariablyModifiedType()) {
4295    // Functions returning a variably modified type violate C99 6.7.5.2p2
4296    // because all functions have linkage.
4297    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4298    return NewFD->setInvalidDecl();
4299  }
4300
4301  if (NewFD->isMain())
4302    CheckMain(NewFD);
4303
4304  // Check for a previous declaration of this name.
4305  if (Previous.empty() && NewFD->isExternC()) {
4306    // Since we did not find anything by this name and we're declaring
4307    // an extern "C" function, look for a non-visible extern "C"
4308    // declaration with the same name.
4309    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4310      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4311    if (Pos != LocallyScopedExternalDecls.end())
4312      Previous.addDecl(Pos->second);
4313  }
4314
4315  // Merge or overload the declaration with an existing declaration of
4316  // the same name, if appropriate.
4317  if (!Previous.empty()) {
4318    // Determine whether NewFD is an overload of PrevDecl or
4319    // a declaration that requires merging. If it's an overload,
4320    // there's no more work to do here; we'll just add the new
4321    // function to the scope.
4322
4323    NamedDecl *OldDecl = 0;
4324    if (!AllowOverloadingOfFunction(Previous, Context)) {
4325      Redeclaration = true;
4326      OldDecl = Previous.getFoundDecl();
4327    } else {
4328      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4329                            /*NewIsUsingDecl*/ false)) {
4330      case Ovl_Match:
4331        Redeclaration = true;
4332        break;
4333
4334      case Ovl_NonFunction:
4335        Redeclaration = true;
4336        break;
4337
4338      case Ovl_Overload:
4339        Redeclaration = false;
4340        break;
4341      }
4342
4343      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4344        // If a function name is overloadable in C, then every function
4345        // with that name must be marked "overloadable".
4346        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4347          << Redeclaration << NewFD;
4348        NamedDecl *OverloadedDecl = 0;
4349        if (Redeclaration)
4350          OverloadedDecl = OldDecl;
4351        else if (!Previous.empty())
4352          OverloadedDecl = Previous.getRepresentativeDecl();
4353        if (OverloadedDecl)
4354          Diag(OverloadedDecl->getLocation(),
4355               diag::note_attribute_overloadable_prev_overload);
4356        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4357                                                        Context));
4358      }
4359    }
4360
4361    if (Redeclaration) {
4362      // NewFD and OldDecl represent declarations that need to be
4363      // merged.
4364      if (MergeFunctionDecl(NewFD, OldDecl))
4365        return NewFD->setInvalidDecl();
4366
4367      Previous.clear();
4368      Previous.addDecl(OldDecl);
4369
4370      if (FunctionTemplateDecl *OldTemplateDecl
4371                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4372        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4373        FunctionTemplateDecl *NewTemplateDecl
4374          = NewFD->getDescribedFunctionTemplate();
4375        assert(NewTemplateDecl && "Template/non-template mismatch");
4376        if (CXXMethodDecl *Method
4377              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4378          Method->setAccess(OldTemplateDecl->getAccess());
4379          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4380        }
4381
4382        // If this is an explicit specialization of a member that is a function
4383        // template, mark it as a member specialization.
4384        if (IsExplicitSpecialization &&
4385            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4386          NewTemplateDecl->setMemberSpecialization();
4387          assert(OldTemplateDecl->isMemberSpecialization());
4388        }
4389      } else {
4390        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4391          NewFD->setAccess(OldDecl->getAccess());
4392        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4393      }
4394    }
4395  }
4396
4397  // Semantic checking for this function declaration (in isolation).
4398  if (getLangOptions().CPlusPlus) {
4399    // C++-specific checks.
4400    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4401      CheckConstructor(Constructor);
4402    } else if (CXXDestructorDecl *Destructor =
4403                dyn_cast<CXXDestructorDecl>(NewFD)) {
4404      CXXRecordDecl *Record = Destructor->getParent();
4405      QualType ClassType = Context.getTypeDeclType(Record);
4406
4407      // FIXME: Shouldn't we be able to perform this check even when the class
4408      // type is dependent? Both gcc and edg can handle that.
4409      if (!ClassType->isDependentType()) {
4410        DeclarationName Name
4411          = Context.DeclarationNames.getCXXDestructorName(
4412                                        Context.getCanonicalType(ClassType));
4413        if (NewFD->getDeclName() != Name) {
4414          Diag(NewFD->getLocation(), diag::err_destructor_name);
4415          return NewFD->setInvalidDecl();
4416        }
4417      }
4418    } else if (CXXConversionDecl *Conversion
4419               = dyn_cast<CXXConversionDecl>(NewFD)) {
4420      ActOnConversionDeclarator(Conversion);
4421    }
4422
4423    // Find any virtual functions that this function overrides.
4424    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4425      if (!Method->isFunctionTemplateSpecialization() &&
4426          !Method->getDescribedFunctionTemplate()) {
4427        if (AddOverriddenMethods(Method->getParent(), Method)) {
4428          // If the function was marked as "static", we have a problem.
4429          if (NewFD->getStorageClass() == SC_Static) {
4430            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4431              << NewFD->getDeclName();
4432            for (CXXMethodDecl::method_iterator
4433                      Overridden = Method->begin_overridden_methods(),
4434                   OverriddenEnd = Method->end_overridden_methods();
4435                 Overridden != OverriddenEnd;
4436                 ++Overridden) {
4437              Diag((*Overridden)->getLocation(),
4438                   diag::note_overridden_virtual_function);
4439            }
4440          }
4441        }
4442      }
4443    }
4444
4445    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4446    if (NewFD->isOverloadedOperator() &&
4447        CheckOverloadedOperatorDeclaration(NewFD))
4448      return NewFD->setInvalidDecl();
4449
4450    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4451    if (NewFD->getLiteralIdentifier() &&
4452        CheckLiteralOperatorDeclaration(NewFD))
4453      return NewFD->setInvalidDecl();
4454
4455    // In C++, check default arguments now that we have merged decls. Unless
4456    // the lexical context is the class, because in this case this is done
4457    // during delayed parsing anyway.
4458    if (!CurContext->isRecord())
4459      CheckCXXDefaultArguments(NewFD);
4460
4461    // If this function declares a builtin function, check the type of this
4462    // declaration against the expected type for the builtin.
4463    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4464      ASTContext::GetBuiltinTypeError Error;
4465      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4466      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4467        // The type of this function differs from the type of the builtin,
4468        // so forget about the builtin entirely.
4469        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4470      }
4471    }
4472  }
4473}
4474
4475void Sema::CheckMain(FunctionDecl* FD) {
4476  // C++ [basic.start.main]p3:  A program that declares main to be inline
4477  //   or static is ill-formed.
4478  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4479  //   shall not appear in a declaration of main.
4480  // static main is not an error under C99, but we should warn about it.
4481  bool isInline = FD->isInlineSpecified();
4482  bool isStatic = FD->getStorageClass() == SC_Static;
4483  if (isInline || isStatic) {
4484    unsigned diagID = diag::warn_unusual_main_decl;
4485    if (isInline || getLangOptions().CPlusPlus)
4486      diagID = diag::err_unusual_main_decl;
4487
4488    int which = isStatic + (isInline << 1) - 1;
4489    Diag(FD->getLocation(), diagID) << which;
4490  }
4491
4492  QualType T = FD->getType();
4493  assert(T->isFunctionType() && "function decl is not of function type");
4494  const FunctionType* FT = T->getAs<FunctionType>();
4495
4496  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4497    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4498    FD->setInvalidDecl(true);
4499  }
4500
4501  // Treat protoless main() as nullary.
4502  if (isa<FunctionNoProtoType>(FT)) return;
4503
4504  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4505  unsigned nparams = FTP->getNumArgs();
4506  assert(FD->getNumParams() == nparams);
4507
4508  bool HasExtraParameters = (nparams > 3);
4509
4510  // Darwin passes an undocumented fourth argument of type char**.  If
4511  // other platforms start sprouting these, the logic below will start
4512  // getting shifty.
4513  if (nparams == 4 &&
4514      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4515    HasExtraParameters = false;
4516
4517  if (HasExtraParameters) {
4518    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4519    FD->setInvalidDecl(true);
4520    nparams = 3;
4521  }
4522
4523  // FIXME: a lot of the following diagnostics would be improved
4524  // if we had some location information about types.
4525
4526  QualType CharPP =
4527    Context.getPointerType(Context.getPointerType(Context.CharTy));
4528  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4529
4530  for (unsigned i = 0; i < nparams; ++i) {
4531    QualType AT = FTP->getArgType(i);
4532
4533    bool mismatch = true;
4534
4535    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4536      mismatch = false;
4537    else if (Expected[i] == CharPP) {
4538      // As an extension, the following forms are okay:
4539      //   char const **
4540      //   char const * const *
4541      //   char * const *
4542
4543      QualifierCollector qs;
4544      const PointerType* PT;
4545      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4546          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4547          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4548        qs.removeConst();
4549        mismatch = !qs.empty();
4550      }
4551    }
4552
4553    if (mismatch) {
4554      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4555      // TODO: suggest replacing given type with expected type
4556      FD->setInvalidDecl(true);
4557    }
4558  }
4559
4560  if (nparams == 1 && !FD->isInvalidDecl()) {
4561    Diag(FD->getLocation(), diag::warn_main_one_arg);
4562  }
4563
4564  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4565    Diag(FD->getLocation(), diag::err_main_template_decl);
4566    FD->setInvalidDecl();
4567  }
4568}
4569
4570bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4571  // FIXME: Need strict checking.  In C89, we need to check for
4572  // any assignment, increment, decrement, function-calls, or
4573  // commas outside of a sizeof.  In C99, it's the same list,
4574  // except that the aforementioned are allowed in unevaluated
4575  // expressions.  Everything else falls under the
4576  // "may accept other forms of constant expressions" exception.
4577  // (We never end up here for C++, so the constant expression
4578  // rules there don't matter.)
4579  if (Init->isConstantInitializer(Context, false))
4580    return false;
4581  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4582    << Init->getSourceRange();
4583  return true;
4584}
4585
4586/// AddInitializerToDecl - Adds the initializer Init to the
4587/// declaration dcl. If DirectInit is true, this is C++ direct
4588/// initialization rather than copy initialization.
4589void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4590                                bool DirectInit, bool TypeMayContainAuto) {
4591  // If there is no declaration, there was an error parsing it.  Just ignore
4592  // the initializer.
4593  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4594    return;
4595
4596  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4597    // With declarators parsed the way they are, the parser cannot
4598    // distinguish between a normal initializer and a pure-specifier.
4599    // Thus this grotesque test.
4600    IntegerLiteral *IL;
4601    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4602        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4603      CheckPureMethod(Method, Init->getSourceRange());
4604    else {
4605      Diag(Method->getLocation(), diag::err_member_function_initialization)
4606        << Method->getDeclName() << Init->getSourceRange();
4607      Method->setInvalidDecl();
4608    }
4609    return;
4610  }
4611
4612  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4613  if (!VDecl) {
4614    if (getLangOptions().CPlusPlus &&
4615        RealDecl->getLexicalDeclContext()->isRecord() &&
4616        isa<NamedDecl>(RealDecl))
4617      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4618    else
4619      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4620    RealDecl->setInvalidDecl();
4621    return;
4622  }
4623
4624  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4625  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4626    QualType DeducedType;
4627    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
4628      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4629        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4630        << Init->getSourceRange();
4631      RealDecl->setInvalidDecl();
4632      return;
4633    }
4634    VDecl->setType(DeducedType);
4635
4636    // If this is a redeclaration, check that the type we just deduced matches
4637    // the previously declared type.
4638    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4639      MergeVarDeclTypes(VDecl, Old);
4640  }
4641
4642
4643  // A definition must end up with a complete type, which means it must be
4644  // complete with the restriction that an array type might be completed by the
4645  // initializer; note that later code assumes this restriction.
4646  QualType BaseDeclType = VDecl->getType();
4647  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4648    BaseDeclType = Array->getElementType();
4649  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4650                          diag::err_typecheck_decl_incomplete_type)) {
4651    RealDecl->setInvalidDecl();
4652    return;
4653  }
4654
4655  // The variable can not have an abstract class type.
4656  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4657                             diag::err_abstract_type_in_decl,
4658                             AbstractVariableType))
4659    VDecl->setInvalidDecl();
4660
4661  const VarDecl *Def;
4662  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4663    Diag(VDecl->getLocation(), diag::err_redefinition)
4664      << VDecl->getDeclName();
4665    Diag(Def->getLocation(), diag::note_previous_definition);
4666    VDecl->setInvalidDecl();
4667    return;
4668  }
4669
4670  const VarDecl* PrevInit = 0;
4671  if (getLangOptions().CPlusPlus) {
4672    // C++ [class.static.data]p4
4673    //   If a static data member is of const integral or const
4674    //   enumeration type, its declaration in the class definition can
4675    //   specify a constant-initializer which shall be an integral
4676    //   constant expression (5.19). In that case, the member can appear
4677    //   in integral constant expressions. The member shall still be
4678    //   defined in a namespace scope if it is used in the program and the
4679    //   namespace scope definition shall not contain an initializer.
4680    //
4681    // We already performed a redefinition check above, but for static
4682    // data members we also need to check whether there was an in-class
4683    // declaration with an initializer.
4684    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4685      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4686      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4687      return;
4688    }
4689
4690    if (VDecl->hasLocalStorage())
4691      getCurFunction()->setHasBranchProtectedScope();
4692
4693    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4694      VDecl->setInvalidDecl();
4695      return;
4696    }
4697  }
4698
4699  // Capture the variable that is being initialized and the style of
4700  // initialization.
4701  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4702
4703  // FIXME: Poor source location information.
4704  InitializationKind Kind
4705    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4706                                                   Init->getLocStart(),
4707                                                   Init->getLocEnd())
4708                : InitializationKind::CreateCopy(VDecl->getLocation(),
4709                                                 Init->getLocStart());
4710
4711  // Get the decls type and save a reference for later, since
4712  // CheckInitializerTypes may change it.
4713  QualType DclT = VDecl->getType(), SavT = DclT;
4714  if (VDecl->isLocalVarDecl()) {
4715    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4716      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4717      VDecl->setInvalidDecl();
4718    } else if (!VDecl->isInvalidDecl()) {
4719      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4720      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4721                                                MultiExprArg(*this, &Init, 1),
4722                                                &DclT);
4723      if (Result.isInvalid()) {
4724        VDecl->setInvalidDecl();
4725        return;
4726      }
4727
4728      Init = Result.takeAs<Expr>();
4729
4730      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4731      // Don't check invalid declarations to avoid emitting useless diagnostics.
4732      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4733        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4734          CheckForConstantInitializer(Init, DclT);
4735      }
4736    }
4737  } else if (VDecl->isStaticDataMember() &&
4738             VDecl->getLexicalDeclContext()->isRecord()) {
4739    // This is an in-class initialization for a static data member, e.g.,
4740    //
4741    // struct S {
4742    //   static const int value = 17;
4743    // };
4744
4745    // Try to perform the initialization regardless.
4746    if (!VDecl->isInvalidDecl()) {
4747      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4748      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4749                                          MultiExprArg(*this, &Init, 1),
4750                                          &DclT);
4751      if (Result.isInvalid()) {
4752        VDecl->setInvalidDecl();
4753        return;
4754      }
4755
4756      Init = Result.takeAs<Expr>();
4757    }
4758
4759    // C++ [class.mem]p4:
4760    //   A member-declarator can contain a constant-initializer only
4761    //   if it declares a static member (9.4) of const integral or
4762    //   const enumeration type, see 9.4.2.
4763    QualType T = VDecl->getType();
4764
4765    // Do nothing on dependent types.
4766    if (T->isDependentType()) {
4767
4768    // Require constness.
4769    } else if (!T.isConstQualified()) {
4770      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4771        << Init->getSourceRange();
4772      VDecl->setInvalidDecl();
4773
4774    // We allow integer constant expressions in all cases.
4775    } else if (T->isIntegralOrEnumerationType()) {
4776      if (!Init->isValueDependent()) {
4777        // Check whether the expression is a constant expression.
4778        llvm::APSInt Value;
4779        SourceLocation Loc;
4780        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4781          Diag(Loc, diag::err_in_class_initializer_non_constant)
4782            << Init->getSourceRange();
4783          VDecl->setInvalidDecl();
4784        }
4785      }
4786
4787    // We allow floating-point constants as an extension in C++03, and
4788    // C++0x has far more complicated rules that we don't really
4789    // implement fully.
4790    } else {
4791      bool Allowed = false;
4792      if (getLangOptions().CPlusPlus0x) {
4793        Allowed = T->isLiteralType();
4794      } else if (T->isFloatingType()) { // also permits complex, which is ok
4795        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4796          << T << Init->getSourceRange();
4797        Allowed = true;
4798      }
4799
4800      if (!Allowed) {
4801        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4802          << T << Init->getSourceRange();
4803        VDecl->setInvalidDecl();
4804
4805      // TODO: there are probably expressions that pass here that shouldn't.
4806      } else if (!Init->isValueDependent() &&
4807                 !Init->isConstantInitializer(Context, false)) {
4808        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4809          << Init->getSourceRange();
4810        VDecl->setInvalidDecl();
4811      }
4812    }
4813  } else if (VDecl->isFileVarDecl()) {
4814    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4815        (!getLangOptions().CPlusPlus ||
4816         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4817      Diag(VDecl->getLocation(), diag::warn_extern_init);
4818    if (!VDecl->isInvalidDecl()) {
4819      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4820      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4821                                                MultiExprArg(*this, &Init, 1),
4822                                                &DclT);
4823      if (Result.isInvalid()) {
4824        VDecl->setInvalidDecl();
4825        return;
4826      }
4827
4828      Init = Result.takeAs<Expr>();
4829    }
4830
4831    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4832    // Don't check invalid declarations to avoid emitting useless diagnostics.
4833    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4834      // C99 6.7.8p4. All file scoped initializers need to be constant.
4835      CheckForConstantInitializer(Init, DclT);
4836    }
4837  }
4838  // If the type changed, it means we had an incomplete type that was
4839  // completed by the initializer. For example:
4840  //   int ary[] = { 1, 3, 5 };
4841  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4842  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4843    VDecl->setType(DclT);
4844    Init->setType(DclT);
4845  }
4846
4847
4848  // If this variable is a local declaration with record type, make sure it
4849  // doesn't have a flexible member initialization.  We only support this as a
4850  // global/static definition.
4851  if (VDecl->hasLocalStorage())
4852    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4853      if (RT->getDecl()->hasFlexibleArrayMember()) {
4854        // Check whether the initializer tries to initialize the flexible
4855        // array member itself to anything other than an empty initializer list.
4856        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4857          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4858                                         RT->getDecl()->field_end()) - 1;
4859          if (Index < ILE->getNumInits() &&
4860              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4861                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4862            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4863            VDecl->setInvalidDecl();
4864          }
4865        }
4866      }
4867
4868  // Check any implicit conversions within the expression.
4869  CheckImplicitConversions(Init, VDecl->getLocation());
4870
4871  Init = MaybeCreateExprWithCleanups(Init);
4872  // Attach the initializer to the decl.
4873  VDecl->setInit(Init);
4874
4875  CheckCompleteVariableDeclaration(VDecl);
4876}
4877
4878/// ActOnInitializerError - Given that there was an error parsing an
4879/// initializer for the given declaration, try to return to some form
4880/// of sanity.
4881void Sema::ActOnInitializerError(Decl *D) {
4882  // Our main concern here is re-establishing invariants like "a
4883  // variable's type is either dependent or complete".
4884  if (!D || D->isInvalidDecl()) return;
4885
4886  VarDecl *VD = dyn_cast<VarDecl>(D);
4887  if (!VD) return;
4888
4889  // Auto types are meaningless if we can't make sense of the initializer.
4890  if (ParsingInitForAutoVars.count(D)) {
4891    D->setInvalidDecl();
4892    return;
4893  }
4894
4895  QualType Ty = VD->getType();
4896  if (Ty->isDependentType()) return;
4897
4898  // Require a complete type.
4899  if (RequireCompleteType(VD->getLocation(),
4900                          Context.getBaseElementType(Ty),
4901                          diag::err_typecheck_decl_incomplete_type)) {
4902    VD->setInvalidDecl();
4903    return;
4904  }
4905
4906  // Require an abstract type.
4907  if (RequireNonAbstractType(VD->getLocation(), Ty,
4908                             diag::err_abstract_type_in_decl,
4909                             AbstractVariableType)) {
4910    VD->setInvalidDecl();
4911    return;
4912  }
4913
4914  // Don't bother complaining about constructors or destructors,
4915  // though.
4916}
4917
4918void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4919                                  bool TypeMayContainAuto) {
4920  // If there is no declaration, there was an error parsing it. Just ignore it.
4921  if (RealDecl == 0)
4922    return;
4923
4924  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4925    QualType Type = Var->getType();
4926
4927    // C++0x [dcl.spec.auto]p3
4928    if (TypeMayContainAuto && Type->getContainedAutoType()) {
4929      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4930        << Var->getDeclName() << Type;
4931      Var->setInvalidDecl();
4932      return;
4933    }
4934
4935    switch (Var->isThisDeclarationADefinition()) {
4936    case VarDecl::Definition:
4937      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4938        break;
4939
4940      // We have an out-of-line definition of a static data member
4941      // that has an in-class initializer, so we type-check this like
4942      // a declaration.
4943      //
4944      // Fall through
4945
4946    case VarDecl::DeclarationOnly:
4947      // It's only a declaration.
4948
4949      // Block scope. C99 6.7p7: If an identifier for an object is
4950      // declared with no linkage (C99 6.2.2p6), the type for the
4951      // object shall be complete.
4952      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4953          !Var->getLinkage() && !Var->isInvalidDecl() &&
4954          RequireCompleteType(Var->getLocation(), Type,
4955                              diag::err_typecheck_decl_incomplete_type))
4956        Var->setInvalidDecl();
4957
4958      // Make sure that the type is not abstract.
4959      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4960          RequireNonAbstractType(Var->getLocation(), Type,
4961                                 diag::err_abstract_type_in_decl,
4962                                 AbstractVariableType))
4963        Var->setInvalidDecl();
4964      return;
4965
4966    case VarDecl::TentativeDefinition:
4967      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4968      // object that has file scope without an initializer, and without a
4969      // storage-class specifier or with the storage-class specifier "static",
4970      // constitutes a tentative definition. Note: A tentative definition with
4971      // external linkage is valid (C99 6.2.2p5).
4972      if (!Var->isInvalidDecl()) {
4973        if (const IncompleteArrayType *ArrayT
4974                                    = Context.getAsIncompleteArrayType(Type)) {
4975          if (RequireCompleteType(Var->getLocation(),
4976                                  ArrayT->getElementType(),
4977                                  diag::err_illegal_decl_array_incomplete_type))
4978            Var->setInvalidDecl();
4979        } else if (Var->getStorageClass() == SC_Static) {
4980          // C99 6.9.2p3: If the declaration of an identifier for an object is
4981          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4982          // declared type shall not be an incomplete type.
4983          // NOTE: code such as the following
4984          //     static struct s;
4985          //     struct s { int a; };
4986          // is accepted by gcc. Hence here we issue a warning instead of
4987          // an error and we do not invalidate the static declaration.
4988          // NOTE: to avoid multiple warnings, only check the first declaration.
4989          if (Var->getPreviousDeclaration() == 0)
4990            RequireCompleteType(Var->getLocation(), Type,
4991                                diag::ext_typecheck_decl_incomplete_type);
4992        }
4993      }
4994
4995      // Record the tentative definition; we're done.
4996      if (!Var->isInvalidDecl())
4997        TentativeDefinitions.push_back(Var);
4998      return;
4999    }
5000
5001    // Provide a specific diagnostic for uninitialized variable
5002    // definitions with incomplete array type.
5003    if (Type->isIncompleteArrayType()) {
5004      Diag(Var->getLocation(),
5005           diag::err_typecheck_incomplete_array_needs_initializer);
5006      Var->setInvalidDecl();
5007      return;
5008    }
5009
5010    // Provide a specific diagnostic for uninitialized variable
5011    // definitions with reference type.
5012    if (Type->isReferenceType()) {
5013      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5014        << Var->getDeclName()
5015        << SourceRange(Var->getLocation(), Var->getLocation());
5016      Var->setInvalidDecl();
5017      return;
5018    }
5019
5020    // Do not attempt to type-check the default initializer for a
5021    // variable with dependent type.
5022    if (Type->isDependentType())
5023      return;
5024
5025    if (Var->isInvalidDecl())
5026      return;
5027
5028    if (RequireCompleteType(Var->getLocation(),
5029                            Context.getBaseElementType(Type),
5030                            diag::err_typecheck_decl_incomplete_type)) {
5031      Var->setInvalidDecl();
5032      return;
5033    }
5034
5035    // The variable can not have an abstract class type.
5036    if (RequireNonAbstractType(Var->getLocation(), Type,
5037                               diag::err_abstract_type_in_decl,
5038                               AbstractVariableType)) {
5039      Var->setInvalidDecl();
5040      return;
5041    }
5042
5043    const RecordType *Record
5044      = Context.getBaseElementType(Type)->getAs<RecordType>();
5045    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5046        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5047      // C++03 [dcl.init]p9:
5048      //   If no initializer is specified for an object, and the
5049      //   object is of (possibly cv-qualified) non-POD class type (or
5050      //   array thereof), the object shall be default-initialized; if
5051      //   the object is of const-qualified type, the underlying class
5052      //   type shall have a user-declared default
5053      //   constructor. Otherwise, if no initializer is specified for
5054      //   a non- static object, the object and its subobjects, if
5055      //   any, have an indeterminate initial value); if the object
5056      //   or any of its subobjects are of const-qualified type, the
5057      //   program is ill-formed.
5058      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5059    } else {
5060      // Check for jumps past the implicit initializer.  C++0x
5061      // clarifies that this applies to a "variable with automatic
5062      // storage duration", not a "local variable".
5063      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5064        getCurFunction()->setHasBranchProtectedScope();
5065
5066      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5067      InitializationKind Kind
5068        = InitializationKind::CreateDefault(Var->getLocation());
5069
5070      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5071      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5072                                        MultiExprArg(*this, 0, 0));
5073      if (Init.isInvalid())
5074        Var->setInvalidDecl();
5075      else if (Init.get())
5076        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5077    }
5078
5079    CheckCompleteVariableDeclaration(Var);
5080  }
5081}
5082
5083void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5084  if (var->isInvalidDecl()) return;
5085
5086  // All the following checks are C++ only.
5087  if (!getLangOptions().CPlusPlus) return;
5088
5089  QualType baseType = Context.getBaseElementType(var->getType());
5090  if (baseType->isDependentType()) return;
5091
5092  // __block variables might require us to capture a copy-initializer.
5093  if (var->hasAttr<BlocksAttr>()) {
5094    // It's currently invalid to ever have a __block variable with an
5095    // array type; should we diagnose that here?
5096
5097    // Regardless, we don't want to ignore array nesting when
5098    // constructing this copy.
5099    QualType type = var->getType();
5100
5101    if (type->isStructureOrClassType()) {
5102      SourceLocation poi = var->getLocation();
5103      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5104      ExprResult result =
5105        PerformCopyInitialization(
5106                        InitializedEntity::InitializeBlock(poi, type, false),
5107                                  poi, Owned(varRef));
5108      if (!result.isInvalid()) {
5109        result = MaybeCreateExprWithCleanups(result);
5110        Expr *init = result.takeAs<Expr>();
5111        Context.setBlockVarCopyInits(var, init);
5112      }
5113    }
5114  }
5115
5116  // Check for global constructors.
5117  if (!var->getDeclContext()->isDependentContext() &&
5118      var->hasGlobalStorage() &&
5119      !var->isStaticLocal() &&
5120      var->getInit() &&
5121      !var->getInit()->isConstantInitializer(Context,
5122                                             baseType->isReferenceType()))
5123    Diag(var->getLocation(), diag::warn_global_constructor)
5124      << var->getInit()->getSourceRange();
5125
5126  // Require the destructor.
5127  if (const RecordType *recordType = baseType->getAs<RecordType>())
5128    FinalizeVarWithDestructor(var, recordType);
5129}
5130
5131/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5132/// any semantic actions necessary after any initializer has been attached.
5133void
5134Sema::FinalizeDeclaration(Decl *ThisDecl) {
5135  // Note that we are no longer parsing the initializer for this declaration.
5136  ParsingInitForAutoVars.erase(ThisDecl);
5137}
5138
5139Sema::DeclGroupPtrTy
5140Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5141                              Decl **Group, unsigned NumDecls) {
5142  llvm::SmallVector<Decl*, 8> Decls;
5143
5144  if (DS.isTypeSpecOwned())
5145    Decls.push_back(DS.getRepAsDecl());
5146
5147  for (unsigned i = 0; i != NumDecls; ++i)
5148    if (Decl *D = Group[i])
5149      Decls.push_back(D);
5150
5151  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5152                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5153}
5154
5155/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5156/// group, performing any necessary semantic checking.
5157Sema::DeclGroupPtrTy
5158Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5159                           bool TypeMayContainAuto) {
5160  // C++0x [dcl.spec.auto]p7:
5161  //   If the type deduced for the template parameter U is not the same in each
5162  //   deduction, the program is ill-formed.
5163  // FIXME: When initializer-list support is added, a distinction is needed
5164  // between the deduced type U and the deduced type which 'auto' stands for.
5165  //   auto a = 0, b = { 1, 2, 3 };
5166  // is legal because the deduced type U is 'int' in both cases.
5167  if (TypeMayContainAuto && NumDecls > 1) {
5168    QualType Deduced;
5169    CanQualType DeducedCanon;
5170    VarDecl *DeducedDecl = 0;
5171    for (unsigned i = 0; i != NumDecls; ++i) {
5172      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5173        AutoType *AT = D->getType()->getContainedAutoType();
5174        // Don't reissue diagnostics when instantiating a template.
5175        if (AT && D->isInvalidDecl())
5176          break;
5177        if (AT && AT->isDeduced()) {
5178          QualType U = AT->getDeducedType();
5179          CanQualType UCanon = Context.getCanonicalType(U);
5180          if (Deduced.isNull()) {
5181            Deduced = U;
5182            DeducedCanon = UCanon;
5183            DeducedDecl = D;
5184          } else if (DeducedCanon != UCanon) {
5185            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5186                 diag::err_auto_different_deductions)
5187              << Deduced << DeducedDecl->getDeclName()
5188              << U << D->getDeclName()
5189              << DeducedDecl->getInit()->getSourceRange()
5190              << D->getInit()->getSourceRange();
5191            D->setInvalidDecl();
5192            break;
5193          }
5194        }
5195      }
5196    }
5197  }
5198
5199  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5200}
5201
5202
5203/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5204/// to introduce parameters into function prototype scope.
5205Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5206  const DeclSpec &DS = D.getDeclSpec();
5207
5208  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5209  VarDecl::StorageClass StorageClass = SC_None;
5210  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5211  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5212    StorageClass = SC_Register;
5213    StorageClassAsWritten = SC_Register;
5214  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5215    Diag(DS.getStorageClassSpecLoc(),
5216         diag::err_invalid_storage_class_in_func_decl);
5217    D.getMutableDeclSpec().ClearStorageClassSpecs();
5218  }
5219
5220  if (D.getDeclSpec().isThreadSpecified())
5221    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5222
5223  DiagnoseFunctionSpecifiers(D);
5224
5225  TagDecl *OwnedDecl = 0;
5226  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5227  QualType parmDeclType = TInfo->getType();
5228
5229  if (getLangOptions().CPlusPlus) {
5230    // Check that there are no default arguments inside the type of this
5231    // parameter.
5232    CheckExtraCXXDefaultArguments(D);
5233
5234    if (OwnedDecl && OwnedDecl->isDefinition()) {
5235      // C++ [dcl.fct]p6:
5236      //   Types shall not be defined in return or parameter types.
5237      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5238        << Context.getTypeDeclType(OwnedDecl);
5239    }
5240
5241    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5242    if (D.getCXXScopeSpec().isSet()) {
5243      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5244        << D.getCXXScopeSpec().getRange();
5245      D.getCXXScopeSpec().clear();
5246    }
5247  }
5248
5249  // Ensure we have a valid name
5250  IdentifierInfo *II = 0;
5251  if (D.hasName()) {
5252    II = D.getIdentifier();
5253    if (!II) {
5254      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5255        << GetNameForDeclarator(D).getName().getAsString();
5256      D.setInvalidType(true);
5257    }
5258  }
5259
5260  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5261  if (II) {
5262    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5263                   ForRedeclaration);
5264    LookupName(R, S);
5265    if (R.isSingleResult()) {
5266      NamedDecl *PrevDecl = R.getFoundDecl();
5267      if (PrevDecl->isTemplateParameter()) {
5268        // Maybe we will complain about the shadowed template parameter.
5269        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5270        // Just pretend that we didn't see the previous declaration.
5271        PrevDecl = 0;
5272      } else if (S->isDeclScope(PrevDecl)) {
5273        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5274        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5275
5276        // Recover by removing the name
5277        II = 0;
5278        D.SetIdentifier(0, D.getIdentifierLoc());
5279        D.setInvalidType(true);
5280      }
5281    }
5282  }
5283
5284  // Temporarily put parameter variables in the translation unit, not
5285  // the enclosing context.  This prevents them from accidentally
5286  // looking like class members in C++.
5287  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5288                                    TInfo, parmDeclType, II,
5289                                    D.getIdentifierLoc(),
5290                                    StorageClass, StorageClassAsWritten);
5291
5292  if (D.isInvalidType())
5293    New->setInvalidDecl();
5294
5295  // Add the parameter declaration into this scope.
5296  S->AddDecl(New);
5297  if (II)
5298    IdResolver.AddDecl(New);
5299
5300  ProcessDeclAttributes(S, New, D);
5301
5302  if (New->hasAttr<BlocksAttr>()) {
5303    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5304  }
5305  return New;
5306}
5307
5308/// \brief Synthesizes a variable for a parameter arising from a
5309/// typedef.
5310ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5311                                              SourceLocation Loc,
5312                                              QualType T) {
5313  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5314                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5315                                           SC_None, SC_None, 0);
5316  Param->setImplicit();
5317  return Param;
5318}
5319
5320void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5321                                    ParmVarDecl * const *ParamEnd) {
5322  // Don't diagnose unused-parameter errors in template instantiations; we
5323  // will already have done so in the template itself.
5324  if (!ActiveTemplateInstantiations.empty())
5325    return;
5326
5327  for (; Param != ParamEnd; ++Param) {
5328    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5329        !(*Param)->hasAttr<UnusedAttr>()) {
5330      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5331        << (*Param)->getDeclName();
5332    }
5333  }
5334}
5335
5336void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5337                                                  ParmVarDecl * const *ParamEnd,
5338                                                  QualType ReturnTy,
5339                                                  NamedDecl *D) {
5340  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5341    return;
5342
5343  // Warn if the return value is pass-by-value and larger than the specified
5344  // threshold.
5345  if (ReturnTy->isPODType()) {
5346    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5347    if (Size > LangOpts.NumLargeByValueCopy)
5348      Diag(D->getLocation(), diag::warn_return_value_size)
5349          << D->getDeclName() << Size;
5350  }
5351
5352  // Warn if any parameter is pass-by-value and larger than the specified
5353  // threshold.
5354  for (; Param != ParamEnd; ++Param) {
5355    QualType T = (*Param)->getType();
5356    if (!T->isPODType())
5357      continue;
5358    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5359    if (Size > LangOpts.NumLargeByValueCopy)
5360      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5361          << (*Param)->getDeclName() << Size;
5362  }
5363}
5364
5365ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5366                                  TypeSourceInfo *TSInfo, QualType T,
5367                                  IdentifierInfo *Name,
5368                                  SourceLocation NameLoc,
5369                                  VarDecl::StorageClass StorageClass,
5370                                  VarDecl::StorageClass StorageClassAsWritten) {
5371  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5372                                         adjustParameterType(T), TSInfo,
5373                                         StorageClass, StorageClassAsWritten,
5374                                         0);
5375
5376  // Parameters can not be abstract class types.
5377  // For record types, this is done by the AbstractClassUsageDiagnoser once
5378  // the class has been completely parsed.
5379  if (!CurContext->isRecord() &&
5380      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5381                             AbstractParamType))
5382    New->setInvalidDecl();
5383
5384  // Parameter declarators cannot be interface types. All ObjC objects are
5385  // passed by reference.
5386  if (T->isObjCObjectType()) {
5387    Diag(NameLoc,
5388         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5389    New->setInvalidDecl();
5390  }
5391
5392  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5393  // duration shall not be qualified by an address-space qualifier."
5394  // Since all parameters have automatic store duration, they can not have
5395  // an address space.
5396  if (T.getAddressSpace() != 0) {
5397    Diag(NameLoc, diag::err_arg_with_address_space);
5398    New->setInvalidDecl();
5399  }
5400
5401  return New;
5402}
5403
5404void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5405                                           SourceLocation LocAfterDecls) {
5406  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5407
5408  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5409  // for a K&R function.
5410  if (!FTI.hasPrototype) {
5411    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5412      --i;
5413      if (FTI.ArgInfo[i].Param == 0) {
5414        llvm::SmallString<256> Code;
5415        llvm::raw_svector_ostream(Code) << "  int "
5416                                        << FTI.ArgInfo[i].Ident->getName()
5417                                        << ";\n";
5418        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5419          << FTI.ArgInfo[i].Ident
5420          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5421
5422        // Implicitly declare the argument as type 'int' for lack of a better
5423        // type.
5424        DeclSpec DS;
5425        const char* PrevSpec; // unused
5426        unsigned DiagID; // unused
5427        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5428                           PrevSpec, DiagID);
5429        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5430        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5431        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5432      }
5433    }
5434  }
5435}
5436
5437Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5438                                         Declarator &D) {
5439  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5440  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5441  Scope *ParentScope = FnBodyScope->getParent();
5442
5443  Decl *DP = HandleDeclarator(ParentScope, D,
5444                              MultiTemplateParamsArg(*this),
5445                              /*IsFunctionDefinition=*/true);
5446  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5447}
5448
5449static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5450  // Don't warn about invalid declarations.
5451  if (FD->isInvalidDecl())
5452    return false;
5453
5454  // Or declarations that aren't global.
5455  if (!FD->isGlobal())
5456    return false;
5457
5458  // Don't warn about C++ member functions.
5459  if (isa<CXXMethodDecl>(FD))
5460    return false;
5461
5462  // Don't warn about 'main'.
5463  if (FD->isMain())
5464    return false;
5465
5466  // Don't warn about inline functions.
5467  if (FD->isInlineSpecified())
5468    return false;
5469
5470  // Don't warn about function templates.
5471  if (FD->getDescribedFunctionTemplate())
5472    return false;
5473
5474  // Don't warn about function template specializations.
5475  if (FD->isFunctionTemplateSpecialization())
5476    return false;
5477
5478  bool MissingPrototype = true;
5479  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5480       Prev; Prev = Prev->getPreviousDeclaration()) {
5481    // Ignore any declarations that occur in function or method
5482    // scope, because they aren't visible from the header.
5483    if (Prev->getDeclContext()->isFunctionOrMethod())
5484      continue;
5485
5486    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5487    break;
5488  }
5489
5490  return MissingPrototype;
5491}
5492
5493Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5494  // Clear the last template instantiation error context.
5495  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5496
5497  if (!D)
5498    return D;
5499  FunctionDecl *FD = 0;
5500
5501  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5502    FD = FunTmpl->getTemplatedDecl();
5503  else
5504    FD = cast<FunctionDecl>(D);
5505
5506  // Enter a new function scope
5507  PushFunctionScope();
5508
5509  // See if this is a redefinition.
5510  // But don't complain if we're in GNU89 mode and the previous definition
5511  // was an extern inline function.
5512  const FunctionDecl *Definition;
5513  if (FD->hasBody(Definition) &&
5514      !canRedefineFunction(Definition, getLangOptions())) {
5515    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5516        Definition->getStorageClass() == SC_Extern)
5517      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5518        << FD->getDeclName() << getLangOptions().CPlusPlus;
5519    else
5520      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5521    Diag(Definition->getLocation(), diag::note_previous_definition);
5522  }
5523
5524  // Builtin functions cannot be defined.
5525  if (unsigned BuiltinID = FD->getBuiltinID()) {
5526    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5527      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5528      FD->setInvalidDecl();
5529    }
5530  }
5531
5532  // The return type of a function definition must be complete
5533  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5534  QualType ResultType = FD->getResultType();
5535  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5536      !FD->isInvalidDecl() &&
5537      RequireCompleteType(FD->getLocation(), ResultType,
5538                          diag::err_func_def_incomplete_result))
5539    FD->setInvalidDecl();
5540
5541  // GNU warning -Wmissing-prototypes:
5542  //   Warn if a global function is defined without a previous
5543  //   prototype declaration. This warning is issued even if the
5544  //   definition itself provides a prototype. The aim is to detect
5545  //   global functions that fail to be declared in header files.
5546  if (ShouldWarnAboutMissingPrototype(FD))
5547    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5548
5549  if (FnBodyScope)
5550    PushDeclContext(FnBodyScope, FD);
5551
5552  // Check the validity of our function parameters
5553  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5554                           /*CheckParameterNames=*/true);
5555
5556  // Introduce our parameters into the function scope
5557  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5558    ParmVarDecl *Param = FD->getParamDecl(p);
5559    Param->setOwningFunction(FD);
5560
5561    // If this has an identifier, add it to the scope stack.
5562    if (Param->getIdentifier() && FnBodyScope) {
5563      CheckShadow(FnBodyScope, Param);
5564
5565      PushOnScopeChains(Param, FnBodyScope);
5566    }
5567  }
5568
5569  // Checking attributes of current function definition
5570  // dllimport attribute.
5571  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5572  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5573    // dllimport attribute cannot be directly applied to definition.
5574    if (!DA->isInherited()) {
5575      Diag(FD->getLocation(),
5576           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5577        << "dllimport";
5578      FD->setInvalidDecl();
5579      return FD;
5580    }
5581
5582    // Visual C++ appears to not think this is an issue, so only issue
5583    // a warning when Microsoft extensions are disabled.
5584    if (!LangOpts.Microsoft) {
5585      // If a symbol previously declared dllimport is later defined, the
5586      // attribute is ignored in subsequent references, and a warning is
5587      // emitted.
5588      Diag(FD->getLocation(),
5589           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5590        << FD->getName() << "dllimport";
5591    }
5592  }
5593  return FD;
5594}
5595
5596/// \brief Given the set of return statements within a function body,
5597/// compute the variables that are subject to the named return value
5598/// optimization.
5599///
5600/// Each of the variables that is subject to the named return value
5601/// optimization will be marked as NRVO variables in the AST, and any
5602/// return statement that has a marked NRVO variable as its NRVO candidate can
5603/// use the named return value optimization.
5604///
5605/// This function applies a very simplistic algorithm for NRVO: if every return
5606/// statement in the function has the same NRVO candidate, that candidate is
5607/// the NRVO variable.
5608///
5609/// FIXME: Employ a smarter algorithm that accounts for multiple return
5610/// statements and the lifetimes of the NRVO candidates. We should be able to
5611/// find a maximal set of NRVO variables.
5612static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5613  ReturnStmt **Returns = Scope->Returns.data();
5614
5615  const VarDecl *NRVOCandidate = 0;
5616  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5617    if (!Returns[I]->getNRVOCandidate())
5618      return;
5619
5620    if (!NRVOCandidate)
5621      NRVOCandidate = Returns[I]->getNRVOCandidate();
5622    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5623      return;
5624  }
5625
5626  if (NRVOCandidate)
5627    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5628}
5629
5630Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5631  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5632}
5633
5634Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5635                                    bool IsInstantiation) {
5636  FunctionDecl *FD = 0;
5637  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5638  if (FunTmpl)
5639    FD = FunTmpl->getTemplatedDecl();
5640  else
5641    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5642
5643  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5644  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5645
5646  if (FD) {
5647    FD->setBody(Body);
5648    if (FD->isMain()) {
5649      // C and C++ allow for main to automagically return 0.
5650      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5651      FD->setHasImplicitReturnZero(true);
5652      WP.disableCheckFallThrough();
5653    }
5654
5655    if (!FD->isInvalidDecl()) {
5656      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5657      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5658                                             FD->getResultType(), FD);
5659
5660      // If this is a constructor, we need a vtable.
5661      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5662        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5663
5664      ComputeNRVO(Body, getCurFunction());
5665    }
5666
5667    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5668  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5669    assert(MD == getCurMethodDecl() && "Method parsing confused");
5670    MD->setBody(Body);
5671    if (Body)
5672      MD->setEndLoc(Body->getLocEnd());
5673    if (!MD->isInvalidDecl()) {
5674      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5675      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5676                                             MD->getResultType(), MD);
5677    }
5678  } else {
5679    return 0;
5680  }
5681
5682  // Verify and clean out per-function state.
5683  if (Body) {
5684    // C++ constructors that have function-try-blocks can't have return
5685    // statements in the handlers of that block. (C++ [except.handle]p14)
5686    // Verify this.
5687    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5688      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5689
5690    // Verify that that gotos and switch cases don't jump into scopes illegally.
5691    // Verify that that gotos and switch cases don't jump into scopes illegally.
5692    if (getCurFunction()->NeedsScopeChecking() &&
5693        !dcl->isInvalidDecl() &&
5694        !hasAnyErrorsInThisFunction())
5695      DiagnoseInvalidJumps(Body);
5696
5697    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5698      if (!Destructor->getParent()->isDependentType())
5699        CheckDestructor(Destructor);
5700
5701      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5702                                             Destructor->getParent());
5703    }
5704
5705    // If any errors have occurred, clear out any temporaries that may have
5706    // been leftover. This ensures that these temporaries won't be picked up for
5707    // deletion in some later function.
5708    if (PP.getDiagnostics().hasErrorOccurred() ||
5709        PP.getDiagnostics().getSuppressAllDiagnostics())
5710      ExprTemporaries.clear();
5711    else if (!isa<FunctionTemplateDecl>(dcl)) {
5712      // Since the body is valid, issue any analysis-based warnings that are
5713      // enabled.
5714      ActivePolicy = &WP;
5715    }
5716
5717    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5718  }
5719
5720  if (!IsInstantiation)
5721    PopDeclContext();
5722
5723  PopFunctionOrBlockScope(ActivePolicy, dcl);
5724
5725  // If any errors have occurred, clear out any temporaries that may have
5726  // been leftover. This ensures that these temporaries won't be picked up for
5727  // deletion in some later function.
5728  if (getDiagnostics().hasErrorOccurred())
5729    ExprTemporaries.clear();
5730
5731  return dcl;
5732}
5733
5734/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5735/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5736NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5737                                          IdentifierInfo &II, Scope *S) {
5738  // Before we produce a declaration for an implicitly defined
5739  // function, see whether there was a locally-scoped declaration of
5740  // this name as a function or variable. If so, use that
5741  // (non-visible) declaration, and complain about it.
5742  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5743    = LocallyScopedExternalDecls.find(&II);
5744  if (Pos != LocallyScopedExternalDecls.end()) {
5745    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5746    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5747    return Pos->second;
5748  }
5749
5750  // Extension in C99.  Legal in C90, but warn about it.
5751  if (II.getName().startswith("__builtin_"))
5752    Diag(Loc, diag::warn_builtin_unknown) << &II;
5753  else if (getLangOptions().C99)
5754    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5755  else
5756    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5757
5758  // Set a Declarator for the implicit definition: int foo();
5759  const char *Dummy;
5760  DeclSpec DS;
5761  unsigned DiagID;
5762  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5763  (void)Error; // Silence warning.
5764  assert(!Error && "Error setting up implicit decl!");
5765  Declarator D(DS, Declarator::BlockContext);
5766  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5767                                             false, false, SourceLocation(), 0,
5768                                             0, 0, true, SourceLocation(),
5769                                             EST_None, SourceLocation(),
5770                                             0, 0, 0, 0, Loc, Loc, D),
5771                SourceLocation());
5772  D.SetIdentifier(&II, Loc);
5773
5774  // Insert this function into translation-unit scope.
5775
5776  DeclContext *PrevDC = CurContext;
5777  CurContext = Context.getTranslationUnitDecl();
5778
5779  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5780  FD->setImplicit();
5781
5782  CurContext = PrevDC;
5783
5784  AddKnownFunctionAttributes(FD);
5785
5786  return FD;
5787}
5788
5789/// \brief Adds any function attributes that we know a priori based on
5790/// the declaration of this function.
5791///
5792/// These attributes can apply both to implicitly-declared builtins
5793/// (like __builtin___printf_chk) or to library-declared functions
5794/// like NSLog or printf.
5795void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5796  if (FD->isInvalidDecl())
5797    return;
5798
5799  // If this is a built-in function, map its builtin attributes to
5800  // actual attributes.
5801  if (unsigned BuiltinID = FD->getBuiltinID()) {
5802    // Handle printf-formatting attributes.
5803    unsigned FormatIdx;
5804    bool HasVAListArg;
5805    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5806      if (!FD->getAttr<FormatAttr>())
5807        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5808                                                "printf", FormatIdx+1,
5809                                               HasVAListArg ? 0 : FormatIdx+2));
5810    }
5811    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5812                                             HasVAListArg)) {
5813     if (!FD->getAttr<FormatAttr>())
5814       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5815                                              "scanf", FormatIdx+1,
5816                                              HasVAListArg ? 0 : FormatIdx+2));
5817    }
5818
5819    // Mark const if we don't care about errno and that is the only
5820    // thing preventing the function from being const. This allows
5821    // IRgen to use LLVM intrinsics for such functions.
5822    if (!getLangOptions().MathErrno &&
5823        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5824      if (!FD->getAttr<ConstAttr>())
5825        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5826    }
5827
5828    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5829      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5830    if (Context.BuiltinInfo.isConst(BuiltinID))
5831      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5832  }
5833
5834  IdentifierInfo *Name = FD->getIdentifier();
5835  if (!Name)
5836    return;
5837  if ((!getLangOptions().CPlusPlus &&
5838       FD->getDeclContext()->isTranslationUnit()) ||
5839      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5840       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5841       LinkageSpecDecl::lang_c)) {
5842    // Okay: this could be a libc/libm/Objective-C function we know
5843    // about.
5844  } else
5845    return;
5846
5847  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5848    // FIXME: NSLog and NSLogv should be target specific
5849    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5850      // FIXME: We known better than our headers.
5851      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5852    } else
5853      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5854                                             "printf", 1,
5855                                             Name->isStr("NSLogv") ? 0 : 2));
5856  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5857    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5858    // target-specific builtins, perhaps?
5859    if (!FD->getAttr<FormatAttr>())
5860      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5861                                             "printf", 2,
5862                                             Name->isStr("vasprintf") ? 0 : 3));
5863  }
5864}
5865
5866TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5867                                    TypeSourceInfo *TInfo) {
5868  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5869  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5870
5871  if (!TInfo) {
5872    assert(D.isInvalidType() && "no declarator info for valid type");
5873    TInfo = Context.getTrivialTypeSourceInfo(T);
5874  }
5875
5876  // Scope manipulation handled by caller.
5877  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5878                                           D.getSourceRange().getBegin(),
5879                                           D.getIdentifierLoc(),
5880                                           D.getIdentifier(),
5881                                           TInfo);
5882
5883  // Bail out immediately if we have an invalid declaration.
5884  if (D.isInvalidType()) {
5885    NewTD->setInvalidDecl();
5886    return NewTD;
5887  }
5888
5889  // C++ [dcl.typedef]p8:
5890  //   If the typedef declaration defines an unnamed class (or
5891  //   enum), the first typedef-name declared by the declaration
5892  //   to be that class type (or enum type) is used to denote the
5893  //   class type (or enum type) for linkage purposes only.
5894  // We need to check whether the type was declared in the declaration.
5895  switch (D.getDeclSpec().getTypeSpecType()) {
5896  case TST_enum:
5897  case TST_struct:
5898  case TST_union:
5899  case TST_class: {
5900    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5901
5902    // Do nothing if the tag is not anonymous or already has an
5903    // associated typedef (from an earlier typedef in this decl group).
5904    if (tagFromDeclSpec->getIdentifier()) break;
5905    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5906
5907    // A well-formed anonymous tag must always be a TUK_Definition.
5908    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5909
5910    // The type must match the tag exactly;  no qualifiers allowed.
5911    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5912      break;
5913
5914    // Otherwise, set this is the anon-decl typedef for the tag.
5915    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5916    break;
5917  }
5918
5919  default:
5920    break;
5921  }
5922
5923  return NewTD;
5924}
5925
5926
5927/// \brief Determine whether a tag with a given kind is acceptable
5928/// as a redeclaration of the given tag declaration.
5929///
5930/// \returns true if the new tag kind is acceptable, false otherwise.
5931bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5932                                        TagTypeKind NewTag,
5933                                        SourceLocation NewTagLoc,
5934                                        const IdentifierInfo &Name) {
5935  // C++ [dcl.type.elab]p3:
5936  //   The class-key or enum keyword present in the
5937  //   elaborated-type-specifier shall agree in kind with the
5938  //   declaration to which the name in the elaborated-type-specifier
5939  //   refers. This rule also applies to the form of
5940  //   elaborated-type-specifier that declares a class-name or
5941  //   friend class since it can be construed as referring to the
5942  //   definition of the class. Thus, in any
5943  //   elaborated-type-specifier, the enum keyword shall be used to
5944  //   refer to an enumeration (7.2), the union class-key shall be
5945  //   used to refer to a union (clause 9), and either the class or
5946  //   struct class-key shall be used to refer to a class (clause 9)
5947  //   declared using the class or struct class-key.
5948  TagTypeKind OldTag = Previous->getTagKind();
5949  if (OldTag == NewTag)
5950    return true;
5951
5952  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5953      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5954    // Warn about the struct/class tag mismatch.
5955    bool isTemplate = false;
5956    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5957      isTemplate = Record->getDescribedClassTemplate();
5958
5959    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5960      << (NewTag == TTK_Class)
5961      << isTemplate << &Name
5962      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5963                              OldTag == TTK_Class? "class" : "struct");
5964    Diag(Previous->getLocation(), diag::note_previous_use);
5965    return true;
5966  }
5967  return false;
5968}
5969
5970/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5971/// former case, Name will be non-null.  In the later case, Name will be null.
5972/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5973/// reference/declaration/definition of a tag.
5974Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5975                     SourceLocation KWLoc, CXXScopeSpec &SS,
5976                     IdentifierInfo *Name, SourceLocation NameLoc,
5977                     AttributeList *Attr, AccessSpecifier AS,
5978                     MultiTemplateParamsArg TemplateParameterLists,
5979                     bool &OwnedDecl, bool &IsDependent,
5980                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5981                     TypeResult UnderlyingType) {
5982  // If this is not a definition, it must have a name.
5983  assert((Name != 0 || TUK == TUK_Definition) &&
5984         "Nameless record must be a definition!");
5985  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5986
5987  OwnedDecl = false;
5988  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5989
5990  // FIXME: Check explicit specializations more carefully.
5991  bool isExplicitSpecialization = false;
5992  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5993  bool Invalid = false;
5994
5995  // We only need to do this matching if we have template parameters
5996  // or a scope specifier, which also conveniently avoids this work
5997  // for non-C++ cases.
5998  if (NumMatchedTemplateParamLists ||
5999      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6000    if (TemplateParameterList *TemplateParams
6001          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6002                                                TemplateParameterLists.get(),
6003                                               TemplateParameterLists.size(),
6004                                                    TUK == TUK_Friend,
6005                                                    isExplicitSpecialization,
6006                                                    Invalid)) {
6007      // All but one template parameter lists have been matching.
6008      --NumMatchedTemplateParamLists;
6009
6010      if (TemplateParams->size() > 0) {
6011        // This is a declaration or definition of a class template (which may
6012        // be a member of another template).
6013        if (Invalid)
6014          return 0;
6015
6016        OwnedDecl = false;
6017        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6018                                               SS, Name, NameLoc, Attr,
6019                                               TemplateParams,
6020                                               AS);
6021        TemplateParameterLists.release();
6022        return Result.get();
6023      } else {
6024        // The "template<>" header is extraneous.
6025        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6026          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6027        isExplicitSpecialization = true;
6028      }
6029    }
6030  }
6031
6032  // Figure out the underlying type if this a enum declaration. We need to do
6033  // this early, because it's needed to detect if this is an incompatible
6034  // redeclaration.
6035  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6036
6037  if (Kind == TTK_Enum) {
6038    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6039      // No underlying type explicitly specified, or we failed to parse the
6040      // type, default to int.
6041      EnumUnderlying = Context.IntTy.getTypePtr();
6042    else if (UnderlyingType.get()) {
6043      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6044      // integral type; any cv-qualification is ignored.
6045      TypeSourceInfo *TI = 0;
6046      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6047      EnumUnderlying = TI;
6048
6049      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6050
6051      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6052        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6053          << T;
6054        // Recover by falling back to int.
6055        EnumUnderlying = Context.IntTy.getTypePtr();
6056      }
6057
6058      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6059                                          UPPC_FixedUnderlyingType))
6060        EnumUnderlying = Context.IntTy.getTypePtr();
6061
6062    } else if (getLangOptions().Microsoft)
6063      // Microsoft enums are always of int type.
6064      EnumUnderlying = Context.IntTy.getTypePtr();
6065  }
6066
6067  DeclContext *SearchDC = CurContext;
6068  DeclContext *DC = CurContext;
6069  bool isStdBadAlloc = false;
6070
6071  RedeclarationKind Redecl = ForRedeclaration;
6072  if (TUK == TUK_Friend || TUK == TUK_Reference)
6073    Redecl = NotForRedeclaration;
6074
6075  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6076
6077  if (Name && SS.isNotEmpty()) {
6078    // We have a nested-name tag ('struct foo::bar').
6079
6080    // Check for invalid 'foo::'.
6081    if (SS.isInvalid()) {
6082      Name = 0;
6083      goto CreateNewDecl;
6084    }
6085
6086    // If this is a friend or a reference to a class in a dependent
6087    // context, don't try to make a decl for it.
6088    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6089      DC = computeDeclContext(SS, false);
6090      if (!DC) {
6091        IsDependent = true;
6092        return 0;
6093      }
6094    } else {
6095      DC = computeDeclContext(SS, true);
6096      if (!DC) {
6097        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6098          << SS.getRange();
6099        return 0;
6100      }
6101    }
6102
6103    if (RequireCompleteDeclContext(SS, DC))
6104      return 0;
6105
6106    SearchDC = DC;
6107    // Look-up name inside 'foo::'.
6108    LookupQualifiedName(Previous, DC);
6109
6110    if (Previous.isAmbiguous())
6111      return 0;
6112
6113    if (Previous.empty()) {
6114      // Name lookup did not find anything. However, if the
6115      // nested-name-specifier refers to the current instantiation,
6116      // and that current instantiation has any dependent base
6117      // classes, we might find something at instantiation time: treat
6118      // this as a dependent elaborated-type-specifier.
6119      // But this only makes any sense for reference-like lookups.
6120      if (Previous.wasNotFoundInCurrentInstantiation() &&
6121          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6122        IsDependent = true;
6123        return 0;
6124      }
6125
6126      // A tag 'foo::bar' must already exist.
6127      Diag(NameLoc, diag::err_not_tag_in_scope)
6128        << Kind << Name << DC << SS.getRange();
6129      Name = 0;
6130      Invalid = true;
6131      goto CreateNewDecl;
6132    }
6133  } else if (Name) {
6134    // If this is a named struct, check to see if there was a previous forward
6135    // declaration or definition.
6136    // FIXME: We're looking into outer scopes here, even when we
6137    // shouldn't be. Doing so can result in ambiguities that we
6138    // shouldn't be diagnosing.
6139    LookupName(Previous, S);
6140
6141    // Note:  there used to be some attempt at recovery here.
6142    if (Previous.isAmbiguous())
6143      return 0;
6144
6145    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6146      // FIXME: This makes sure that we ignore the contexts associated
6147      // with C structs, unions, and enums when looking for a matching
6148      // tag declaration or definition. See the similar lookup tweak
6149      // in Sema::LookupName; is there a better way to deal with this?
6150      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6151        SearchDC = SearchDC->getParent();
6152    }
6153  } else if (S->isFunctionPrototypeScope()) {
6154    // If this is an enum declaration in function prototype scope, set its
6155    // initial context to the translation unit.
6156    SearchDC = Context.getTranslationUnitDecl();
6157  }
6158
6159  if (Previous.isSingleResult() &&
6160      Previous.getFoundDecl()->isTemplateParameter()) {
6161    // Maybe we will complain about the shadowed template parameter.
6162    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6163    // Just pretend that we didn't see the previous declaration.
6164    Previous.clear();
6165  }
6166
6167  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6168      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6169    // This is a declaration of or a reference to "std::bad_alloc".
6170    isStdBadAlloc = true;
6171
6172    if (Previous.empty() && StdBadAlloc) {
6173      // std::bad_alloc has been implicitly declared (but made invisible to
6174      // name lookup). Fill in this implicit declaration as the previous
6175      // declaration, so that the declarations get chained appropriately.
6176      Previous.addDecl(getStdBadAlloc());
6177    }
6178  }
6179
6180  // If we didn't find a previous declaration, and this is a reference
6181  // (or friend reference), move to the correct scope.  In C++, we
6182  // also need to do a redeclaration lookup there, just in case
6183  // there's a shadow friend decl.
6184  if (Name && Previous.empty() &&
6185      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6186    if (Invalid) goto CreateNewDecl;
6187    assert(SS.isEmpty());
6188
6189    if (TUK == TUK_Reference) {
6190      // C++ [basic.scope.pdecl]p5:
6191      //   -- for an elaborated-type-specifier of the form
6192      //
6193      //          class-key identifier
6194      //
6195      //      if the elaborated-type-specifier is used in the
6196      //      decl-specifier-seq or parameter-declaration-clause of a
6197      //      function defined in namespace scope, the identifier is
6198      //      declared as a class-name in the namespace that contains
6199      //      the declaration; otherwise, except as a friend
6200      //      declaration, the identifier is declared in the smallest
6201      //      non-class, non-function-prototype scope that contains the
6202      //      declaration.
6203      //
6204      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6205      // C structs and unions.
6206      //
6207      // It is an error in C++ to declare (rather than define) an enum
6208      // type, including via an elaborated type specifier.  We'll
6209      // diagnose that later; for now, declare the enum in the same
6210      // scope as we would have picked for any other tag type.
6211      //
6212      // GNU C also supports this behavior as part of its incomplete
6213      // enum types extension, while GNU C++ does not.
6214      //
6215      // Find the context where we'll be declaring the tag.
6216      // FIXME: We would like to maintain the current DeclContext as the
6217      // lexical context,
6218      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6219        SearchDC = SearchDC->getParent();
6220
6221      // Find the scope where we'll be declaring the tag.
6222      while (S->isClassScope() ||
6223             (getLangOptions().CPlusPlus &&
6224              S->isFunctionPrototypeScope()) ||
6225             ((S->getFlags() & Scope::DeclScope) == 0) ||
6226             (S->getEntity() &&
6227              ((DeclContext *)S->getEntity())->isTransparentContext()))
6228        S = S->getParent();
6229    } else {
6230      assert(TUK == TUK_Friend);
6231      // C++ [namespace.memdef]p3:
6232      //   If a friend declaration in a non-local class first declares a
6233      //   class or function, the friend class or function is a member of
6234      //   the innermost enclosing namespace.
6235      SearchDC = SearchDC->getEnclosingNamespaceContext();
6236    }
6237
6238    // In C++, we need to do a redeclaration lookup to properly
6239    // diagnose some problems.
6240    if (getLangOptions().CPlusPlus) {
6241      Previous.setRedeclarationKind(ForRedeclaration);
6242      LookupQualifiedName(Previous, SearchDC);
6243    }
6244  }
6245
6246  if (!Previous.empty()) {
6247    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6248
6249    // It's okay to have a tag decl in the same scope as a typedef
6250    // which hides a tag decl in the same scope.  Finding this
6251    // insanity with a redeclaration lookup can only actually happen
6252    // in C++.
6253    //
6254    // This is also okay for elaborated-type-specifiers, which is
6255    // technically forbidden by the current standard but which is
6256    // okay according to the likely resolution of an open issue;
6257    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6258    if (getLangOptions().CPlusPlus) {
6259      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6260        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6261          TagDecl *Tag = TT->getDecl();
6262          if (Tag->getDeclName() == Name &&
6263              Tag->getDeclContext()->getRedeclContext()
6264                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6265            PrevDecl = Tag;
6266            Previous.clear();
6267            Previous.addDecl(Tag);
6268            Previous.resolveKind();
6269          }
6270        }
6271      }
6272    }
6273
6274    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6275      // If this is a use of a previous tag, or if the tag is already declared
6276      // in the same scope (so that the definition/declaration completes or
6277      // rementions the tag), reuse the decl.
6278      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6279          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6280        // Make sure that this wasn't declared as an enum and now used as a
6281        // struct or something similar.
6282        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6283          bool SafeToContinue
6284            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6285               Kind != TTK_Enum);
6286          if (SafeToContinue)
6287            Diag(KWLoc, diag::err_use_with_wrong_tag)
6288              << Name
6289              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6290                                              PrevTagDecl->getKindName());
6291          else
6292            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6293          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6294
6295          if (SafeToContinue)
6296            Kind = PrevTagDecl->getTagKind();
6297          else {
6298            // Recover by making this an anonymous redefinition.
6299            Name = 0;
6300            Previous.clear();
6301            Invalid = true;
6302          }
6303        }
6304
6305        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6306          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6307
6308          // All conflicts with previous declarations are recovered by
6309          // returning the previous declaration.
6310          if (ScopedEnum != PrevEnum->isScoped()) {
6311            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6312              << PrevEnum->isScoped();
6313            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6314            return PrevTagDecl;
6315          }
6316          else if (EnumUnderlying && PrevEnum->isFixed()) {
6317            QualType T;
6318            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6319                T = TI->getType();
6320            else
6321                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6322
6323            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6324              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6325                   diag::err_enum_redeclare_type_mismatch)
6326                << T
6327                << PrevEnum->getIntegerType();
6328              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6329              return PrevTagDecl;
6330            }
6331          }
6332          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6333            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6334              << PrevEnum->isFixed();
6335            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6336            return PrevTagDecl;
6337          }
6338        }
6339
6340        if (!Invalid) {
6341          // If this is a use, just return the declaration we found.
6342
6343          // FIXME: In the future, return a variant or some other clue
6344          // for the consumer of this Decl to know it doesn't own it.
6345          // For our current ASTs this shouldn't be a problem, but will
6346          // need to be changed with DeclGroups.
6347          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6348              TUK == TUK_Friend)
6349            return PrevTagDecl;
6350
6351          // Diagnose attempts to redefine a tag.
6352          if (TUK == TUK_Definition) {
6353            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6354              // If we're defining a specialization and the previous definition
6355              // is from an implicit instantiation, don't emit an error
6356              // here; we'll catch this in the general case below.
6357              if (!isExplicitSpecialization ||
6358                  !isa<CXXRecordDecl>(Def) ||
6359                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6360                                               == TSK_ExplicitSpecialization) {
6361                Diag(NameLoc, diag::err_redefinition) << Name;
6362                Diag(Def->getLocation(), diag::note_previous_definition);
6363                // If this is a redefinition, recover by making this
6364                // struct be anonymous, which will make any later
6365                // references get the previous definition.
6366                Name = 0;
6367                Previous.clear();
6368                Invalid = true;
6369              }
6370            } else {
6371              // If the type is currently being defined, complain
6372              // about a nested redefinition.
6373              const TagType *Tag
6374                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6375              if (Tag->isBeingDefined()) {
6376                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6377                Diag(PrevTagDecl->getLocation(),
6378                     diag::note_previous_definition);
6379                Name = 0;
6380                Previous.clear();
6381                Invalid = true;
6382              }
6383            }
6384
6385            // Okay, this is definition of a previously declared or referenced
6386            // tag PrevDecl. We're going to create a new Decl for it.
6387          }
6388        }
6389        // If we get here we have (another) forward declaration or we
6390        // have a definition.  Just create a new decl.
6391
6392      } else {
6393        // If we get here, this is a definition of a new tag type in a nested
6394        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6395        // new decl/type.  We set PrevDecl to NULL so that the entities
6396        // have distinct types.
6397        Previous.clear();
6398      }
6399      // If we get here, we're going to create a new Decl. If PrevDecl
6400      // is non-NULL, it's a definition of the tag declared by
6401      // PrevDecl. If it's NULL, we have a new definition.
6402
6403
6404    // Otherwise, PrevDecl is not a tag, but was found with tag
6405    // lookup.  This is only actually possible in C++, where a few
6406    // things like templates still live in the tag namespace.
6407    } else {
6408      assert(getLangOptions().CPlusPlus);
6409
6410      // Use a better diagnostic if an elaborated-type-specifier
6411      // found the wrong kind of type on the first
6412      // (non-redeclaration) lookup.
6413      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6414          !Previous.isForRedeclaration()) {
6415        unsigned Kind = 0;
6416        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6417        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6418        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6419        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6420        Invalid = true;
6421
6422      // Otherwise, only diagnose if the declaration is in scope.
6423      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6424                                isExplicitSpecialization)) {
6425        // do nothing
6426
6427      // Diagnose implicit declarations introduced by elaborated types.
6428      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6429        unsigned Kind = 0;
6430        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6431        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6432        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6433        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6434        Invalid = true;
6435
6436      // Otherwise it's a declaration.  Call out a particularly common
6437      // case here.
6438      } else if (isa<TypedefDecl>(PrevDecl)) {
6439        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6440          << Name
6441          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6442        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6443        Invalid = true;
6444
6445      // Otherwise, diagnose.
6446      } else {
6447        // The tag name clashes with something else in the target scope,
6448        // issue an error and recover by making this tag be anonymous.
6449        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6450        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6451        Name = 0;
6452        Invalid = true;
6453      }
6454
6455      // The existing declaration isn't relevant to us; we're in a
6456      // new scope, so clear out the previous declaration.
6457      Previous.clear();
6458    }
6459  }
6460
6461CreateNewDecl:
6462
6463  TagDecl *PrevDecl = 0;
6464  if (Previous.isSingleResult())
6465    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6466
6467  // If there is an identifier, use the location of the identifier as the
6468  // location of the decl, otherwise use the location of the struct/union
6469  // keyword.
6470  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6471
6472  // Otherwise, create a new declaration. If there is a previous
6473  // declaration of the same entity, the two will be linked via
6474  // PrevDecl.
6475  TagDecl *New;
6476
6477  bool IsForwardReference = false;
6478  if (Kind == TTK_Enum) {
6479    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6480    // enum X { A, B, C } D;    D should chain to X.
6481    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6482                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6483                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6484    // If this is an undefined enum, warn.
6485    if (TUK != TUK_Definition && !Invalid) {
6486      TagDecl *Def;
6487      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6488        // C++0x: 7.2p2: opaque-enum-declaration.
6489        // Conflicts are diagnosed above. Do nothing.
6490      }
6491      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6492        Diag(Loc, diag::ext_forward_ref_enum_def)
6493          << New;
6494        Diag(Def->getLocation(), diag::note_previous_definition);
6495      } else {
6496        unsigned DiagID = diag::ext_forward_ref_enum;
6497        if (getLangOptions().Microsoft)
6498          DiagID = diag::ext_ms_forward_ref_enum;
6499        else if (getLangOptions().CPlusPlus)
6500          DiagID = diag::err_forward_ref_enum;
6501        Diag(Loc, DiagID);
6502
6503        // If this is a forward-declared reference to an enumeration, make a
6504        // note of it; we won't actually be introducing the declaration into
6505        // the declaration context.
6506        if (TUK == TUK_Reference)
6507          IsForwardReference = true;
6508      }
6509    }
6510
6511    if (EnumUnderlying) {
6512      EnumDecl *ED = cast<EnumDecl>(New);
6513      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6514        ED->setIntegerTypeSourceInfo(TI);
6515      else
6516        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6517      ED->setPromotionType(ED->getIntegerType());
6518    }
6519
6520  } else {
6521    // struct/union/class
6522
6523    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6524    // struct X { int A; } D;    D should chain to X.
6525    if (getLangOptions().CPlusPlus) {
6526      // FIXME: Look for a way to use RecordDecl for simple structs.
6527      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6528                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6529
6530      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6531        StdBadAlloc = cast<CXXRecordDecl>(New);
6532    } else
6533      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6534                               cast_or_null<RecordDecl>(PrevDecl));
6535  }
6536
6537  // Maybe add qualifier info.
6538  if (SS.isNotEmpty()) {
6539    if (SS.isSet()) {
6540      New->setQualifierInfo(SS.getWithLocInContext(Context));
6541      if (NumMatchedTemplateParamLists > 0) {
6542        New->setTemplateParameterListsInfo(Context,
6543                                           NumMatchedTemplateParamLists,
6544                    (TemplateParameterList**) TemplateParameterLists.release());
6545      }
6546    }
6547    else
6548      Invalid = true;
6549  }
6550
6551  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6552    // Add alignment attributes if necessary; these attributes are checked when
6553    // the ASTContext lays out the structure.
6554    //
6555    // It is important for implementing the correct semantics that this
6556    // happen here (in act on tag decl). The #pragma pack stack is
6557    // maintained as a result of parser callbacks which can occur at
6558    // many points during the parsing of a struct declaration (because
6559    // the #pragma tokens are effectively skipped over during the
6560    // parsing of the struct).
6561    AddAlignmentAttributesForRecord(RD);
6562  }
6563
6564  // If this is a specialization of a member class (of a class template),
6565  // check the specialization.
6566  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6567    Invalid = true;
6568
6569  if (Invalid)
6570    New->setInvalidDecl();
6571
6572  if (Attr)
6573    ProcessDeclAttributeList(S, New, Attr);
6574
6575  // If we're declaring or defining a tag in function prototype scope
6576  // in C, note that this type can only be used within the function.
6577  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6578    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6579
6580  // Set the lexical context. If the tag has a C++ scope specifier, the
6581  // lexical context will be different from the semantic context.
6582  New->setLexicalDeclContext(CurContext);
6583
6584  // Mark this as a friend decl if applicable.
6585  if (TUK == TUK_Friend)
6586    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6587
6588  // Set the access specifier.
6589  if (!Invalid && SearchDC->isRecord())
6590    SetMemberAccessSpecifier(New, PrevDecl, AS);
6591
6592  if (TUK == TUK_Definition)
6593    New->startDefinition();
6594
6595  // If this has an identifier, add it to the scope stack.
6596  if (TUK == TUK_Friend) {
6597    // We might be replacing an existing declaration in the lookup tables;
6598    // if so, borrow its access specifier.
6599    if (PrevDecl)
6600      New->setAccess(PrevDecl->getAccess());
6601
6602    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6603    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6604    if (Name) // can be null along some error paths
6605      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6606        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6607  } else if (Name) {
6608    S = getNonFieldDeclScope(S);
6609    PushOnScopeChains(New, S, !IsForwardReference);
6610    if (IsForwardReference)
6611      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6612
6613  } else {
6614    CurContext->addDecl(New);
6615  }
6616
6617  // If this is the C FILE type, notify the AST context.
6618  if (IdentifierInfo *II = New->getIdentifier())
6619    if (!New->isInvalidDecl() &&
6620        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6621        II->isStr("FILE"))
6622      Context.setFILEDecl(New);
6623
6624  OwnedDecl = true;
6625  return New;
6626}
6627
6628void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6629  AdjustDeclIfTemplate(TagD);
6630  TagDecl *Tag = cast<TagDecl>(TagD);
6631
6632  // Enter the tag context.
6633  PushDeclContext(S, Tag);
6634}
6635
6636void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6637                                           ClassVirtSpecifiers &CVS,
6638                                           SourceLocation LBraceLoc) {
6639  AdjustDeclIfTemplate(TagD);
6640  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6641
6642  FieldCollector->StartClass();
6643
6644  if (!Record->getIdentifier())
6645    return;
6646
6647  if (CVS.isFinalSpecified())
6648    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6649  if (CVS.isExplicitSpecified())
6650    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6651
6652  // C++ [class]p2:
6653  //   [...] The class-name is also inserted into the scope of the
6654  //   class itself; this is known as the injected-class-name. For
6655  //   purposes of access checking, the injected-class-name is treated
6656  //   as if it were a public member name.
6657  CXXRecordDecl *InjectedClassName
6658    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6659                            CurContext, Record->getLocation(),
6660                            Record->getIdentifier(),
6661                            Record->getLocStart(),
6662                            /*PrevDecl=*/0,
6663                            /*DelayTypeCreation=*/true);
6664  Context.getTypeDeclType(InjectedClassName, Record);
6665  InjectedClassName->setImplicit();
6666  InjectedClassName->setAccess(AS_public);
6667  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6668      InjectedClassName->setDescribedClassTemplate(Template);
6669  PushOnScopeChains(InjectedClassName, S);
6670  assert(InjectedClassName->isInjectedClassName() &&
6671         "Broken injected-class-name");
6672}
6673
6674void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6675                                    SourceLocation RBraceLoc) {
6676  AdjustDeclIfTemplate(TagD);
6677  TagDecl *Tag = cast<TagDecl>(TagD);
6678  Tag->setRBraceLoc(RBraceLoc);
6679
6680  if (isa<CXXRecordDecl>(Tag))
6681    FieldCollector->FinishClass();
6682
6683  // Exit this scope of this tag's definition.
6684  PopDeclContext();
6685
6686  // Notify the consumer that we've defined a tag.
6687  Consumer.HandleTagDeclDefinition(Tag);
6688}
6689
6690void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6691  AdjustDeclIfTemplate(TagD);
6692  TagDecl *Tag = cast<TagDecl>(TagD);
6693  Tag->setInvalidDecl();
6694
6695  // We're undoing ActOnTagStartDefinition here, not
6696  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6697  // the FieldCollector.
6698
6699  PopDeclContext();
6700}
6701
6702// Note that FieldName may be null for anonymous bitfields.
6703bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6704                          QualType FieldTy, const Expr *BitWidth,
6705                          bool *ZeroWidth) {
6706  // Default to true; that shouldn't confuse checks for emptiness
6707  if (ZeroWidth)
6708    *ZeroWidth = true;
6709
6710  // C99 6.7.2.1p4 - verify the field type.
6711  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6712  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6713    // Handle incomplete types with specific error.
6714    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6715      return true;
6716    if (FieldName)
6717      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6718        << FieldName << FieldTy << BitWidth->getSourceRange();
6719    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6720      << FieldTy << BitWidth->getSourceRange();
6721  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6722                                             UPPC_BitFieldWidth))
6723    return true;
6724
6725  // If the bit-width is type- or value-dependent, don't try to check
6726  // it now.
6727  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6728    return false;
6729
6730  llvm::APSInt Value;
6731  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6732    return true;
6733
6734  if (Value != 0 && ZeroWidth)
6735    *ZeroWidth = false;
6736
6737  // Zero-width bitfield is ok for anonymous field.
6738  if (Value == 0 && FieldName)
6739    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6740
6741  if (Value.isSigned() && Value.isNegative()) {
6742    if (FieldName)
6743      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6744               << FieldName << Value.toString(10);
6745    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6746      << Value.toString(10);
6747  }
6748
6749  if (!FieldTy->isDependentType()) {
6750    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6751    if (Value.getZExtValue() > TypeSize) {
6752      if (!getLangOptions().CPlusPlus) {
6753        if (FieldName)
6754          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6755            << FieldName << (unsigned)Value.getZExtValue()
6756            << (unsigned)TypeSize;
6757
6758        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6759          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6760      }
6761
6762      if (FieldName)
6763        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6764          << FieldName << (unsigned)Value.getZExtValue()
6765          << (unsigned)TypeSize;
6766      else
6767        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6768          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6769    }
6770  }
6771
6772  return false;
6773}
6774
6775/// ActOnField - Each field of a struct/union/class is passed into this in order
6776/// to create a FieldDecl object for it.
6777Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6778                                 SourceLocation DeclStart,
6779                                 Declarator &D, ExprTy *BitfieldWidth) {
6780  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6781                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6782                               AS_public);
6783  return Res;
6784}
6785
6786/// HandleField - Analyze a field of a C struct or a C++ data member.
6787///
6788FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6789                             SourceLocation DeclStart,
6790                             Declarator &D, Expr *BitWidth,
6791                             AccessSpecifier AS) {
6792  IdentifierInfo *II = D.getIdentifier();
6793  SourceLocation Loc = DeclStart;
6794  if (II) Loc = D.getIdentifierLoc();
6795
6796  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6797  QualType T = TInfo->getType();
6798  if (getLangOptions().CPlusPlus) {
6799    CheckExtraCXXDefaultArguments(D);
6800
6801    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6802                                        UPPC_DataMemberType)) {
6803      D.setInvalidType();
6804      T = Context.IntTy;
6805      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6806    }
6807  }
6808
6809  DiagnoseFunctionSpecifiers(D);
6810
6811  if (D.getDeclSpec().isThreadSpecified())
6812    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6813
6814  // Check to see if this name was declared as a member previously
6815  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6816  LookupName(Previous, S);
6817  assert((Previous.empty() || Previous.isOverloadedResult() ||
6818          Previous.isSingleResult())
6819    && "Lookup of member name should be either overloaded, single or null");
6820
6821  // If the name is overloaded then get any declaration else get the single result
6822  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6823    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6824
6825  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6826    // Maybe we will complain about the shadowed template parameter.
6827    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6828    // Just pretend that we didn't see the previous declaration.
6829    PrevDecl = 0;
6830  }
6831
6832  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6833    PrevDecl = 0;
6834
6835  bool Mutable
6836    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6837  SourceLocation TSSL = D.getSourceRange().getBegin();
6838  FieldDecl *NewFD
6839    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6840                     AS, PrevDecl, &D);
6841
6842  if (NewFD->isInvalidDecl())
6843    Record->setInvalidDecl();
6844
6845  if (NewFD->isInvalidDecl() && PrevDecl) {
6846    // Don't introduce NewFD into scope; there's already something
6847    // with the same name in the same scope.
6848  } else if (II) {
6849    PushOnScopeChains(NewFD, S);
6850  } else
6851    Record->addDecl(NewFD);
6852
6853  return NewFD;
6854}
6855
6856/// \brief Build a new FieldDecl and check its well-formedness.
6857///
6858/// This routine builds a new FieldDecl given the fields name, type,
6859/// record, etc. \p PrevDecl should refer to any previous declaration
6860/// with the same name and in the same scope as the field to be
6861/// created.
6862///
6863/// \returns a new FieldDecl.
6864///
6865/// \todo The Declarator argument is a hack. It will be removed once
6866FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6867                                TypeSourceInfo *TInfo,
6868                                RecordDecl *Record, SourceLocation Loc,
6869                                bool Mutable, Expr *BitWidth,
6870                                SourceLocation TSSL,
6871                                AccessSpecifier AS, NamedDecl *PrevDecl,
6872                                Declarator *D) {
6873  IdentifierInfo *II = Name.getAsIdentifierInfo();
6874  bool InvalidDecl = false;
6875  if (D) InvalidDecl = D->isInvalidType();
6876
6877  // If we receive a broken type, recover by assuming 'int' and
6878  // marking this declaration as invalid.
6879  if (T.isNull()) {
6880    InvalidDecl = true;
6881    T = Context.IntTy;
6882  }
6883
6884  QualType EltTy = Context.getBaseElementType(T);
6885  if (!EltTy->isDependentType() &&
6886      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6887    // Fields of incomplete type force their record to be invalid.
6888    Record->setInvalidDecl();
6889    InvalidDecl = true;
6890  }
6891
6892  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6893  // than a variably modified type.
6894  if (!InvalidDecl && T->isVariablyModifiedType()) {
6895    bool SizeIsNegative;
6896    llvm::APSInt Oversized;
6897    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6898                                                           SizeIsNegative,
6899                                                           Oversized);
6900    if (!FixedTy.isNull()) {
6901      Diag(Loc, diag::warn_illegal_constant_array_size);
6902      T = FixedTy;
6903    } else {
6904      if (SizeIsNegative)
6905        Diag(Loc, diag::err_typecheck_negative_array_size);
6906      else if (Oversized.getBoolValue())
6907        Diag(Loc, diag::err_array_too_large)
6908          << Oversized.toString(10);
6909      else
6910        Diag(Loc, diag::err_typecheck_field_variable_size);
6911      InvalidDecl = true;
6912    }
6913  }
6914
6915  // Fields can not have abstract class types
6916  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6917                                             diag::err_abstract_type_in_decl,
6918                                             AbstractFieldType))
6919    InvalidDecl = true;
6920
6921  bool ZeroWidth = false;
6922  // If this is declared as a bit-field, check the bit-field.
6923  if (!InvalidDecl && BitWidth &&
6924      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6925    InvalidDecl = true;
6926    BitWidth = 0;
6927    ZeroWidth = false;
6928  }
6929
6930  // Check that 'mutable' is consistent with the type of the declaration.
6931  if (!InvalidDecl && Mutable) {
6932    unsigned DiagID = 0;
6933    if (T->isReferenceType())
6934      DiagID = diag::err_mutable_reference;
6935    else if (T.isConstQualified())
6936      DiagID = diag::err_mutable_const;
6937
6938    if (DiagID) {
6939      SourceLocation ErrLoc = Loc;
6940      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6941        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6942      Diag(ErrLoc, DiagID);
6943      Mutable = false;
6944      InvalidDecl = true;
6945    }
6946  }
6947
6948  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6949                                       BitWidth, Mutable);
6950  if (InvalidDecl)
6951    NewFD->setInvalidDecl();
6952
6953  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6954    Diag(Loc, diag::err_duplicate_member) << II;
6955    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6956    NewFD->setInvalidDecl();
6957  }
6958
6959  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6960    if (Record->isUnion()) {
6961      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6962        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6963        if (RDecl->getDefinition()) {
6964          // C++ [class.union]p1: An object of a class with a non-trivial
6965          // constructor, a non-trivial copy constructor, a non-trivial
6966          // destructor, or a non-trivial copy assignment operator
6967          // cannot be a member of a union, nor can an array of such
6968          // objects.
6969          // TODO: C++0x alters this restriction significantly.
6970          if (CheckNontrivialField(NewFD))
6971            NewFD->setInvalidDecl();
6972        }
6973      }
6974
6975      // C++ [class.union]p1: If a union contains a member of reference type,
6976      // the program is ill-formed.
6977      if (EltTy->isReferenceType()) {
6978        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6979          << NewFD->getDeclName() << EltTy;
6980        NewFD->setInvalidDecl();
6981      }
6982    }
6983  }
6984
6985  // FIXME: We need to pass in the attributes given an AST
6986  // representation, not a parser representation.
6987  if (D)
6988    // FIXME: What to pass instead of TUScope?
6989    ProcessDeclAttributes(TUScope, NewFD, *D);
6990
6991  if (T.isObjCGCWeak())
6992    Diag(Loc, diag::warn_attribute_weak_on_field);
6993
6994  NewFD->setAccess(AS);
6995  return NewFD;
6996}
6997
6998bool Sema::CheckNontrivialField(FieldDecl *FD) {
6999  assert(FD);
7000  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7001
7002  if (FD->isInvalidDecl())
7003    return true;
7004
7005  QualType EltTy = Context.getBaseElementType(FD->getType());
7006  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7007    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7008    if (RDecl->getDefinition()) {
7009      // We check for copy constructors before constructors
7010      // because otherwise we'll never get complaints about
7011      // copy constructors.
7012
7013      CXXSpecialMember member = CXXInvalid;
7014      if (!RDecl->hasTrivialCopyConstructor())
7015        member = CXXCopyConstructor;
7016      else if (!RDecl->hasTrivialConstructor())
7017        member = CXXConstructor;
7018      else if (!RDecl->hasTrivialCopyAssignment())
7019        member = CXXCopyAssignment;
7020      else if (!RDecl->hasTrivialDestructor())
7021        member = CXXDestructor;
7022
7023      if (member != CXXInvalid) {
7024        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7025              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7026        DiagnoseNontrivial(RT, member);
7027        return true;
7028      }
7029    }
7030  }
7031
7032  return false;
7033}
7034
7035/// DiagnoseNontrivial - Given that a class has a non-trivial
7036/// special member, figure out why.
7037void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7038  QualType QT(T, 0U);
7039  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7040
7041  // Check whether the member was user-declared.
7042  switch (member) {
7043  case CXXInvalid:
7044    break;
7045
7046  case CXXConstructor:
7047    if (RD->hasUserDeclaredConstructor()) {
7048      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7049      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7050        const FunctionDecl *body = 0;
7051        ci->hasBody(body);
7052        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7053          SourceLocation CtorLoc = ci->getLocation();
7054          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7055          return;
7056        }
7057      }
7058
7059      assert(0 && "found no user-declared constructors");
7060      return;
7061    }
7062    break;
7063
7064  case CXXCopyConstructor:
7065    if (RD->hasUserDeclaredCopyConstructor()) {
7066      SourceLocation CtorLoc =
7067        RD->getCopyConstructor(Context, 0)->getLocation();
7068      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7069      return;
7070    }
7071    break;
7072
7073  case CXXCopyAssignment:
7074    if (RD->hasUserDeclaredCopyAssignment()) {
7075      // FIXME: this should use the location of the copy
7076      // assignment, not the type.
7077      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7078      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7079      return;
7080    }
7081    break;
7082
7083  case CXXDestructor:
7084    if (RD->hasUserDeclaredDestructor()) {
7085      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7086      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7087      return;
7088    }
7089    break;
7090  }
7091
7092  typedef CXXRecordDecl::base_class_iterator base_iter;
7093
7094  // Virtual bases and members inhibit trivial copying/construction,
7095  // but not trivial destruction.
7096  if (member != CXXDestructor) {
7097    // Check for virtual bases.  vbases includes indirect virtual bases,
7098    // so we just iterate through the direct bases.
7099    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7100      if (bi->isVirtual()) {
7101        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7102        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7103        return;
7104      }
7105
7106    // Check for virtual methods.
7107    typedef CXXRecordDecl::method_iterator meth_iter;
7108    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7109         ++mi) {
7110      if (mi->isVirtual()) {
7111        SourceLocation MLoc = mi->getSourceRange().getBegin();
7112        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7113        return;
7114      }
7115    }
7116  }
7117
7118  bool (CXXRecordDecl::*hasTrivial)() const;
7119  switch (member) {
7120  case CXXConstructor:
7121    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7122  case CXXCopyConstructor:
7123    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7124  case CXXCopyAssignment:
7125    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7126  case CXXDestructor:
7127    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7128  default:
7129    assert(0 && "unexpected special member"); return;
7130  }
7131
7132  // Check for nontrivial bases (and recurse).
7133  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7134    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7135    assert(BaseRT && "Don't know how to handle dependent bases");
7136    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7137    if (!(BaseRecTy->*hasTrivial)()) {
7138      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7139      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7140      DiagnoseNontrivial(BaseRT, member);
7141      return;
7142    }
7143  }
7144
7145  // Check for nontrivial members (and recurse).
7146  typedef RecordDecl::field_iterator field_iter;
7147  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7148       ++fi) {
7149    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7150    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7151      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7152
7153      if (!(EltRD->*hasTrivial)()) {
7154        SourceLocation FLoc = (*fi)->getLocation();
7155        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7156        DiagnoseNontrivial(EltRT, member);
7157        return;
7158      }
7159    }
7160  }
7161
7162  assert(0 && "found no explanation for non-trivial member");
7163}
7164
7165/// TranslateIvarVisibility - Translate visibility from a token ID to an
7166///  AST enum value.
7167static ObjCIvarDecl::AccessControl
7168TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7169  switch (ivarVisibility) {
7170  default: assert(0 && "Unknown visitibility kind");
7171  case tok::objc_private: return ObjCIvarDecl::Private;
7172  case tok::objc_public: return ObjCIvarDecl::Public;
7173  case tok::objc_protected: return ObjCIvarDecl::Protected;
7174  case tok::objc_package: return ObjCIvarDecl::Package;
7175  }
7176}
7177
7178/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7179/// in order to create an IvarDecl object for it.
7180Decl *Sema::ActOnIvar(Scope *S,
7181                                SourceLocation DeclStart,
7182                                Decl *IntfDecl,
7183                                Declarator &D, ExprTy *BitfieldWidth,
7184                                tok::ObjCKeywordKind Visibility) {
7185
7186  IdentifierInfo *II = D.getIdentifier();
7187  Expr *BitWidth = (Expr*)BitfieldWidth;
7188  SourceLocation Loc = DeclStart;
7189  if (II) Loc = D.getIdentifierLoc();
7190
7191  // FIXME: Unnamed fields can be handled in various different ways, for
7192  // example, unnamed unions inject all members into the struct namespace!
7193
7194  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7195  QualType T = TInfo->getType();
7196
7197  if (BitWidth) {
7198    // 6.7.2.1p3, 6.7.2.1p4
7199    if (VerifyBitField(Loc, II, T, BitWidth)) {
7200      D.setInvalidType();
7201      BitWidth = 0;
7202    }
7203  } else {
7204    // Not a bitfield.
7205
7206    // validate II.
7207
7208  }
7209  if (T->isReferenceType()) {
7210    Diag(Loc, diag::err_ivar_reference_type);
7211    D.setInvalidType();
7212  }
7213  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7214  // than a variably modified type.
7215  else if (T->isVariablyModifiedType()) {
7216    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7217    D.setInvalidType();
7218  }
7219
7220  // Get the visibility (access control) for this ivar.
7221  ObjCIvarDecl::AccessControl ac =
7222    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7223                                        : ObjCIvarDecl::None;
7224  // Must set ivar's DeclContext to its enclosing interface.
7225  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7226  ObjCContainerDecl *EnclosingContext;
7227  if (ObjCImplementationDecl *IMPDecl =
7228      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7229    if (!LangOpts.ObjCNonFragileABI2) {
7230    // Case of ivar declared in an implementation. Context is that of its class.
7231      EnclosingContext = IMPDecl->getClassInterface();
7232      assert(EnclosingContext && "Implementation has no class interface!");
7233    }
7234    else
7235      EnclosingContext = EnclosingDecl;
7236  } else {
7237    if (ObjCCategoryDecl *CDecl =
7238        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7239      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7240        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7241        return 0;
7242      }
7243    }
7244    EnclosingContext = EnclosingDecl;
7245  }
7246
7247  // Construct the decl.
7248  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
7249                                             EnclosingContext, Loc, II, T,
7250                                             TInfo, ac, (Expr *)BitfieldWidth);
7251
7252  if (II) {
7253    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7254                                           ForRedeclaration);
7255    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7256        && !isa<TagDecl>(PrevDecl)) {
7257      Diag(Loc, diag::err_duplicate_member) << II;
7258      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7259      NewID->setInvalidDecl();
7260    }
7261  }
7262
7263  // Process attributes attached to the ivar.
7264  ProcessDeclAttributes(S, NewID, D);
7265
7266  if (D.isInvalidType())
7267    NewID->setInvalidDecl();
7268
7269  if (II) {
7270    // FIXME: When interfaces are DeclContexts, we'll need to add
7271    // these to the interface.
7272    S->AddDecl(NewID);
7273    IdResolver.AddDecl(NewID);
7274  }
7275
7276  return NewID;
7277}
7278
7279/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7280/// class and class extensions. For every class @interface and class
7281/// extension @interface, if the last ivar is a bitfield of any type,
7282/// then add an implicit `char :0` ivar to the end of that interface.
7283void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7284                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7285  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7286    return;
7287
7288  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7289  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7290
7291  if (!Ivar->isBitField())
7292    return;
7293  uint64_t BitFieldSize =
7294    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7295  if (BitFieldSize == 0)
7296    return;
7297  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7298  if (!ID) {
7299    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7300      if (!CD->IsClassExtension())
7301        return;
7302    }
7303    // No need to add this to end of @implementation.
7304    else
7305      return;
7306  }
7307  // All conditions are met. Add a new bitfield to the tail end of ivars.
7308  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7309  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7310
7311  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7312                              DeclLoc, 0,
7313                              Context.CharTy,
7314                              Context.CreateTypeSourceInfo(Context.CharTy),
7315                              ObjCIvarDecl::Private, BW,
7316                              true);
7317  AllIvarDecls.push_back(Ivar);
7318}
7319
7320void Sema::ActOnFields(Scope* S,
7321                       SourceLocation RecLoc, Decl *EnclosingDecl,
7322                       Decl **Fields, unsigned NumFields,
7323                       SourceLocation LBrac, SourceLocation RBrac,
7324                       AttributeList *Attr) {
7325  assert(EnclosingDecl && "missing record or interface decl");
7326
7327  // If the decl this is being inserted into is invalid, then it may be a
7328  // redeclaration or some other bogus case.  Don't try to add fields to it.
7329  if (EnclosingDecl->isInvalidDecl()) {
7330    // FIXME: Deallocate fields?
7331    return;
7332  }
7333
7334
7335  // Verify that all the fields are okay.
7336  unsigned NumNamedMembers = 0;
7337  llvm::SmallVector<FieldDecl*, 32> RecFields;
7338
7339  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7340  for (unsigned i = 0; i != NumFields; ++i) {
7341    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7342
7343    // Get the type for the field.
7344    const Type *FDTy = FD->getType().getTypePtr();
7345
7346    if (!FD->isAnonymousStructOrUnion()) {
7347      // Remember all fields written by the user.
7348      RecFields.push_back(FD);
7349    }
7350
7351    // If the field is already invalid for some reason, don't emit more
7352    // diagnostics about it.
7353    if (FD->isInvalidDecl()) {
7354      EnclosingDecl->setInvalidDecl();
7355      continue;
7356    }
7357
7358    // C99 6.7.2.1p2:
7359    //   A structure or union shall not contain a member with
7360    //   incomplete or function type (hence, a structure shall not
7361    //   contain an instance of itself, but may contain a pointer to
7362    //   an instance of itself), except that the last member of a
7363    //   structure with more than one named member may have incomplete
7364    //   array type; such a structure (and any union containing,
7365    //   possibly recursively, a member that is such a structure)
7366    //   shall not be a member of a structure or an element of an
7367    //   array.
7368    if (FDTy->isFunctionType()) {
7369      // Field declared as a function.
7370      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7371        << FD->getDeclName();
7372      FD->setInvalidDecl();
7373      EnclosingDecl->setInvalidDecl();
7374      continue;
7375    } else if (FDTy->isIncompleteArrayType() && Record &&
7376               ((i == NumFields - 1 && !Record->isUnion()) ||
7377                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7378                 (i == NumFields - 1 || Record->isUnion())))) {
7379      // Flexible array member.
7380      // Microsoft and g++ is more permissive regarding flexible array.
7381      // It will accept flexible array in union and also
7382      // as the sole element of a struct/class.
7383      if (getLangOptions().Microsoft) {
7384        if (Record->isUnion())
7385          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7386            << FD->getDeclName();
7387        else if (NumFields == 1)
7388          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7389            << FD->getDeclName() << Record->getTagKind();
7390      } else if (getLangOptions().CPlusPlus) {
7391        if (Record->isUnion())
7392          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7393            << FD->getDeclName();
7394        else if (NumFields == 1)
7395          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7396            << FD->getDeclName() << Record->getTagKind();
7397      } else if (NumNamedMembers < 1) {
7398        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7399          << FD->getDeclName();
7400        FD->setInvalidDecl();
7401        EnclosingDecl->setInvalidDecl();
7402        continue;
7403      }
7404      if (!FD->getType()->isDependentType() &&
7405          !Context.getBaseElementType(FD->getType())->isPODType()) {
7406        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7407          << FD->getDeclName() << FD->getType();
7408        FD->setInvalidDecl();
7409        EnclosingDecl->setInvalidDecl();
7410        continue;
7411      }
7412      // Okay, we have a legal flexible array member at the end of the struct.
7413      if (Record)
7414        Record->setHasFlexibleArrayMember(true);
7415    } else if (!FDTy->isDependentType() &&
7416               RequireCompleteType(FD->getLocation(), FD->getType(),
7417                                   diag::err_field_incomplete)) {
7418      // Incomplete type
7419      FD->setInvalidDecl();
7420      EnclosingDecl->setInvalidDecl();
7421      continue;
7422    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7423      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7424        // If this is a member of a union, then entire union becomes "flexible".
7425        if (Record && Record->isUnion()) {
7426          Record->setHasFlexibleArrayMember(true);
7427        } else {
7428          // If this is a struct/class and this is not the last element, reject
7429          // it.  Note that GCC supports variable sized arrays in the middle of
7430          // structures.
7431          if (i != NumFields-1)
7432            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7433              << FD->getDeclName() << FD->getType();
7434          else {
7435            // We support flexible arrays at the end of structs in
7436            // other structs as an extension.
7437            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7438              << FD->getDeclName();
7439            if (Record)
7440              Record->setHasFlexibleArrayMember(true);
7441          }
7442        }
7443      }
7444      if (Record && FDTTy->getDecl()->hasObjectMember())
7445        Record->setHasObjectMember(true);
7446    } else if (FDTy->isObjCObjectType()) {
7447      /// A field cannot be an Objective-c object
7448      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7449      FD->setInvalidDecl();
7450      EnclosingDecl->setInvalidDecl();
7451      continue;
7452    } else if (getLangOptions().ObjC1 &&
7453               getLangOptions().getGCMode() != LangOptions::NonGC &&
7454               Record &&
7455               (FD->getType()->isObjCObjectPointerType() ||
7456                FD->getType().isObjCGCStrong()))
7457      Record->setHasObjectMember(true);
7458    else if (Context.getAsArrayType(FD->getType())) {
7459      QualType BaseType = Context.getBaseElementType(FD->getType());
7460      if (Record && BaseType->isRecordType() &&
7461          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7462        Record->setHasObjectMember(true);
7463    }
7464    // Keep track of the number of named members.
7465    if (FD->getIdentifier())
7466      ++NumNamedMembers;
7467  }
7468
7469  // Okay, we successfully defined 'Record'.
7470  if (Record) {
7471    bool Completed = false;
7472    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7473      if (!CXXRecord->isInvalidDecl()) {
7474        // Set access bits correctly on the directly-declared conversions.
7475        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7476        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7477             I != E; ++I)
7478          Convs->setAccess(I, (*I)->getAccess());
7479
7480        if (!CXXRecord->isDependentType()) {
7481          // Add any implicitly-declared members to this class.
7482          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7483
7484          // If we have virtual base classes, we may end up finding multiple
7485          // final overriders for a given virtual function. Check for this
7486          // problem now.
7487          if (CXXRecord->getNumVBases()) {
7488            CXXFinalOverriderMap FinalOverriders;
7489            CXXRecord->getFinalOverriders(FinalOverriders);
7490
7491            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7492                                             MEnd = FinalOverriders.end();
7493                 M != MEnd; ++M) {
7494              for (OverridingMethods::iterator SO = M->second.begin(),
7495                                            SOEnd = M->second.end();
7496                   SO != SOEnd; ++SO) {
7497                assert(SO->second.size() > 0 &&
7498                       "Virtual function without overridding functions?");
7499                if (SO->second.size() == 1)
7500                  continue;
7501
7502                // C++ [class.virtual]p2:
7503                //   In a derived class, if a virtual member function of a base
7504                //   class subobject has more than one final overrider the
7505                //   program is ill-formed.
7506                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7507                  << (NamedDecl *)M->first << Record;
7508                Diag(M->first->getLocation(),
7509                     diag::note_overridden_virtual_function);
7510                for (OverridingMethods::overriding_iterator
7511                          OM = SO->second.begin(),
7512                       OMEnd = SO->second.end();
7513                     OM != OMEnd; ++OM)
7514                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7515                    << (NamedDecl *)M->first << OM->Method->getParent();
7516
7517                Record->setInvalidDecl();
7518              }
7519            }
7520            CXXRecord->completeDefinition(&FinalOverriders);
7521            Completed = true;
7522          }
7523        }
7524      }
7525    }
7526
7527    if (!Completed)
7528      Record->completeDefinition();
7529  } else {
7530    ObjCIvarDecl **ClsFields =
7531      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7532    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7533      ID->setLocEnd(RBrac);
7534      // Add ivar's to class's DeclContext.
7535      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7536        ClsFields[i]->setLexicalDeclContext(ID);
7537        ID->addDecl(ClsFields[i]);
7538      }
7539      // Must enforce the rule that ivars in the base classes may not be
7540      // duplicates.
7541      if (ID->getSuperClass())
7542        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7543    } else if (ObjCImplementationDecl *IMPDecl =
7544                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7545      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7546      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7547        // Ivar declared in @implementation never belongs to the implementation.
7548        // Only it is in implementation's lexical context.
7549        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7550      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7551    } else if (ObjCCategoryDecl *CDecl =
7552                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7553      // case of ivars in class extension; all other cases have been
7554      // reported as errors elsewhere.
7555      // FIXME. Class extension does not have a LocEnd field.
7556      // CDecl->setLocEnd(RBrac);
7557      // Add ivar's to class extension's DeclContext.
7558      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7559        ClsFields[i]->setLexicalDeclContext(CDecl);
7560        CDecl->addDecl(ClsFields[i]);
7561      }
7562    }
7563  }
7564
7565  if (Attr)
7566    ProcessDeclAttributeList(S, Record, Attr);
7567
7568  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7569  // set the visibility of this record.
7570  if (Record && !Record->getDeclContext()->isRecord())
7571    AddPushedVisibilityAttribute(Record);
7572}
7573
7574/// \brief Determine whether the given integral value is representable within
7575/// the given type T.
7576static bool isRepresentableIntegerValue(ASTContext &Context,
7577                                        llvm::APSInt &Value,
7578                                        QualType T) {
7579  assert(T->isIntegralType(Context) && "Integral type required!");
7580  unsigned BitWidth = Context.getIntWidth(T);
7581
7582  if (Value.isUnsigned() || Value.isNonNegative()) {
7583    if (T->isSignedIntegerType())
7584      --BitWidth;
7585    return Value.getActiveBits() <= BitWidth;
7586  }
7587  return Value.getMinSignedBits() <= BitWidth;
7588}
7589
7590// \brief Given an integral type, return the next larger integral type
7591// (or a NULL type of no such type exists).
7592static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7593  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7594  // enum checking below.
7595  assert(T->isIntegralType(Context) && "Integral type required!");
7596  const unsigned NumTypes = 4;
7597  QualType SignedIntegralTypes[NumTypes] = {
7598    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7599  };
7600  QualType UnsignedIntegralTypes[NumTypes] = {
7601    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7602    Context.UnsignedLongLongTy
7603  };
7604
7605  unsigned BitWidth = Context.getTypeSize(T);
7606  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7607                                            : UnsignedIntegralTypes;
7608  for (unsigned I = 0; I != NumTypes; ++I)
7609    if (Context.getTypeSize(Types[I]) > BitWidth)
7610      return Types[I];
7611
7612  return QualType();
7613}
7614
7615EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7616                                          EnumConstantDecl *LastEnumConst,
7617                                          SourceLocation IdLoc,
7618                                          IdentifierInfo *Id,
7619                                          Expr *Val) {
7620  unsigned IntWidth = Context.Target.getIntWidth();
7621  llvm::APSInt EnumVal(IntWidth);
7622  QualType EltTy;
7623
7624  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7625    Val = 0;
7626
7627  if (Val) {
7628    if (Enum->isDependentType() || Val->isTypeDependent())
7629      EltTy = Context.DependentTy;
7630    else {
7631      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7632      SourceLocation ExpLoc;
7633      if (!Val->isValueDependent() &&
7634          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7635        Val = 0;
7636      } else {
7637        if (!getLangOptions().CPlusPlus) {
7638          // C99 6.7.2.2p2:
7639          //   The expression that defines the value of an enumeration constant
7640          //   shall be an integer constant expression that has a value
7641          //   representable as an int.
7642
7643          // Complain if the value is not representable in an int.
7644          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7645            Diag(IdLoc, diag::ext_enum_value_not_int)
7646              << EnumVal.toString(10) << Val->getSourceRange()
7647              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7648          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7649            // Force the type of the expression to 'int'.
7650            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7651          }
7652        }
7653
7654        if (Enum->isFixed()) {
7655          EltTy = Enum->getIntegerType();
7656
7657          // C++0x [dcl.enum]p5:
7658          //   ... if the initializing value of an enumerator cannot be
7659          //   represented by the underlying type, the program is ill-formed.
7660          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7661            if (getLangOptions().Microsoft) {
7662              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7663              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7664            } else
7665              Diag(IdLoc, diag::err_enumerator_too_large)
7666                << EltTy;
7667          } else
7668            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7669        }
7670        else {
7671          // C++0x [dcl.enum]p5:
7672          //   If the underlying type is not fixed, the type of each enumerator
7673          //   is the type of its initializing value:
7674          //     - If an initializer is specified for an enumerator, the
7675          //       initializing value has the same type as the expression.
7676          EltTy = Val->getType();
7677        }
7678      }
7679    }
7680  }
7681
7682  if (!Val) {
7683    if (Enum->isDependentType())
7684      EltTy = Context.DependentTy;
7685    else if (!LastEnumConst) {
7686      // C++0x [dcl.enum]p5:
7687      //   If the underlying type is not fixed, the type of each enumerator
7688      //   is the type of its initializing value:
7689      //     - If no initializer is specified for the first enumerator, the
7690      //       initializing value has an unspecified integral type.
7691      //
7692      // GCC uses 'int' for its unspecified integral type, as does
7693      // C99 6.7.2.2p3.
7694      if (Enum->isFixed()) {
7695        EltTy = Enum->getIntegerType();
7696      }
7697      else {
7698        EltTy = Context.IntTy;
7699      }
7700    } else {
7701      // Assign the last value + 1.
7702      EnumVal = LastEnumConst->getInitVal();
7703      ++EnumVal;
7704      EltTy = LastEnumConst->getType();
7705
7706      // Check for overflow on increment.
7707      if (EnumVal < LastEnumConst->getInitVal()) {
7708        // C++0x [dcl.enum]p5:
7709        //   If the underlying type is not fixed, the type of each enumerator
7710        //   is the type of its initializing value:
7711        //
7712        //     - Otherwise the type of the initializing value is the same as
7713        //       the type of the initializing value of the preceding enumerator
7714        //       unless the incremented value is not representable in that type,
7715        //       in which case the type is an unspecified integral type
7716        //       sufficient to contain the incremented value. If no such type
7717        //       exists, the program is ill-formed.
7718        QualType T = getNextLargerIntegralType(Context, EltTy);
7719        if (T.isNull() || Enum->isFixed()) {
7720          // There is no integral type larger enough to represent this
7721          // value. Complain, then allow the value to wrap around.
7722          EnumVal = LastEnumConst->getInitVal();
7723          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7724          ++EnumVal;
7725          if (Enum->isFixed())
7726            // When the underlying type is fixed, this is ill-formed.
7727            Diag(IdLoc, diag::err_enumerator_wrapped)
7728              << EnumVal.toString(10)
7729              << EltTy;
7730          else
7731            Diag(IdLoc, diag::warn_enumerator_too_large)
7732              << EnumVal.toString(10);
7733        } else {
7734          EltTy = T;
7735        }
7736
7737        // Retrieve the last enumerator's value, extent that type to the
7738        // type that is supposed to be large enough to represent the incremented
7739        // value, then increment.
7740        EnumVal = LastEnumConst->getInitVal();
7741        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7742        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7743        ++EnumVal;
7744
7745        // If we're not in C++, diagnose the overflow of enumerator values,
7746        // which in C99 means that the enumerator value is not representable in
7747        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7748        // permits enumerator values that are representable in some larger
7749        // integral type.
7750        if (!getLangOptions().CPlusPlus && !T.isNull())
7751          Diag(IdLoc, diag::warn_enum_value_overflow);
7752      } else if (!getLangOptions().CPlusPlus &&
7753                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7754        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7755        Diag(IdLoc, diag::ext_enum_value_not_int)
7756          << EnumVal.toString(10) << 1;
7757      }
7758    }
7759  }
7760
7761  if (!EltTy->isDependentType()) {
7762    // Make the enumerator value match the signedness and size of the
7763    // enumerator's type.
7764    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7765    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7766  }
7767
7768  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7769                                  Val, EnumVal);
7770}
7771
7772
7773Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7774                              SourceLocation IdLoc, IdentifierInfo *Id,
7775                              AttributeList *Attr,
7776                              SourceLocation EqualLoc, ExprTy *val) {
7777  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7778  EnumConstantDecl *LastEnumConst =
7779    cast_or_null<EnumConstantDecl>(lastEnumConst);
7780  Expr *Val = static_cast<Expr*>(val);
7781
7782  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7783  // we find one that is.
7784  S = getNonFieldDeclScope(S);
7785
7786  // Verify that there isn't already something declared with this name in this
7787  // scope.
7788  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7789                                         ForRedeclaration);
7790  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7791    // Maybe we will complain about the shadowed template parameter.
7792    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7793    // Just pretend that we didn't see the previous declaration.
7794    PrevDecl = 0;
7795  }
7796
7797  if (PrevDecl) {
7798    // When in C++, we may get a TagDecl with the same name; in this case the
7799    // enum constant will 'hide' the tag.
7800    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7801           "Received TagDecl when not in C++!");
7802    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7803      if (isa<EnumConstantDecl>(PrevDecl))
7804        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7805      else
7806        Diag(IdLoc, diag::err_redefinition) << Id;
7807      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7808      return 0;
7809    }
7810  }
7811
7812  // C++ [class.mem]p13:
7813  //   If T is the name of a class, then each of the following shall have a
7814  //   name different from T:
7815  //     - every enumerator of every member of class T that is an enumerated
7816  //       type
7817  if (CXXRecordDecl *Record
7818                      = dyn_cast<CXXRecordDecl>(
7819                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7820    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7821      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7822
7823  EnumConstantDecl *New =
7824    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7825
7826  if (New) {
7827    // Process attributes.
7828    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7829
7830    // Register this decl in the current scope stack.
7831    New->setAccess(TheEnumDecl->getAccess());
7832    PushOnScopeChains(New, S);
7833  }
7834
7835  return New;
7836}
7837
7838void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7839                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7840                         Decl **Elements, unsigned NumElements,
7841                         Scope *S, AttributeList *Attr) {
7842  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7843  QualType EnumType = Context.getTypeDeclType(Enum);
7844
7845  if (Attr)
7846    ProcessDeclAttributeList(S, Enum, Attr);
7847
7848  if (Enum->isDependentType()) {
7849    for (unsigned i = 0; i != NumElements; ++i) {
7850      EnumConstantDecl *ECD =
7851        cast_or_null<EnumConstantDecl>(Elements[i]);
7852      if (!ECD) continue;
7853
7854      ECD->setType(EnumType);
7855    }
7856
7857    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7858    return;
7859  }
7860
7861  // TODO: If the result value doesn't fit in an int, it must be a long or long
7862  // long value.  ISO C does not support this, but GCC does as an extension,
7863  // emit a warning.
7864  unsigned IntWidth = Context.Target.getIntWidth();
7865  unsigned CharWidth = Context.Target.getCharWidth();
7866  unsigned ShortWidth = Context.Target.getShortWidth();
7867
7868  // Verify that all the values are okay, compute the size of the values, and
7869  // reverse the list.
7870  unsigned NumNegativeBits = 0;
7871  unsigned NumPositiveBits = 0;
7872
7873  // Keep track of whether all elements have type int.
7874  bool AllElementsInt = true;
7875
7876  for (unsigned i = 0; i != NumElements; ++i) {
7877    EnumConstantDecl *ECD =
7878      cast_or_null<EnumConstantDecl>(Elements[i]);
7879    if (!ECD) continue;  // Already issued a diagnostic.
7880
7881    const llvm::APSInt &InitVal = ECD->getInitVal();
7882
7883    // Keep track of the size of positive and negative values.
7884    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7885      NumPositiveBits = std::max(NumPositiveBits,
7886                                 (unsigned)InitVal.getActiveBits());
7887    else
7888      NumNegativeBits = std::max(NumNegativeBits,
7889                                 (unsigned)InitVal.getMinSignedBits());
7890
7891    // Keep track of whether every enum element has type int (very commmon).
7892    if (AllElementsInt)
7893      AllElementsInt = ECD->getType() == Context.IntTy;
7894  }
7895
7896  // Figure out the type that should be used for this enum.
7897  QualType BestType;
7898  unsigned BestWidth;
7899
7900  // C++0x N3000 [conv.prom]p3:
7901  //   An rvalue of an unscoped enumeration type whose underlying
7902  //   type is not fixed can be converted to an rvalue of the first
7903  //   of the following types that can represent all the values of
7904  //   the enumeration: int, unsigned int, long int, unsigned long
7905  //   int, long long int, or unsigned long long int.
7906  // C99 6.4.4.3p2:
7907  //   An identifier declared as an enumeration constant has type int.
7908  // The C99 rule is modified by a gcc extension
7909  QualType BestPromotionType;
7910
7911  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7912  // -fshort-enums is the equivalent to specifying the packed attribute on all
7913  // enum definitions.
7914  if (LangOpts.ShortEnums)
7915    Packed = true;
7916
7917  if (Enum->isFixed()) {
7918    BestType = BestPromotionType = Enum->getIntegerType();
7919    // We don't need to set BestWidth, because BestType is going to be the type
7920    // of the enumerators, but we do anyway because otherwise some compilers
7921    // warn that it might be used uninitialized.
7922    BestWidth = CharWidth;
7923  }
7924  else if (NumNegativeBits) {
7925    // If there is a negative value, figure out the smallest integer type (of
7926    // int/long/longlong) that fits.
7927    // If it's packed, check also if it fits a char or a short.
7928    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7929      BestType = Context.SignedCharTy;
7930      BestWidth = CharWidth;
7931    } else if (Packed && NumNegativeBits <= ShortWidth &&
7932               NumPositiveBits < ShortWidth) {
7933      BestType = Context.ShortTy;
7934      BestWidth = ShortWidth;
7935    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7936      BestType = Context.IntTy;
7937      BestWidth = IntWidth;
7938    } else {
7939      BestWidth = Context.Target.getLongWidth();
7940
7941      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7942        BestType = Context.LongTy;
7943      } else {
7944        BestWidth = Context.Target.getLongLongWidth();
7945
7946        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7947          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7948        BestType = Context.LongLongTy;
7949      }
7950    }
7951    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7952  } else {
7953    // If there is no negative value, figure out the smallest type that fits
7954    // all of the enumerator values.
7955    // If it's packed, check also if it fits a char or a short.
7956    if (Packed && NumPositiveBits <= CharWidth) {
7957      BestType = Context.UnsignedCharTy;
7958      BestPromotionType = Context.IntTy;
7959      BestWidth = CharWidth;
7960    } else if (Packed && NumPositiveBits <= ShortWidth) {
7961      BestType = Context.UnsignedShortTy;
7962      BestPromotionType = Context.IntTy;
7963      BestWidth = ShortWidth;
7964    } else if (NumPositiveBits <= IntWidth) {
7965      BestType = Context.UnsignedIntTy;
7966      BestWidth = IntWidth;
7967      BestPromotionType
7968        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7969                           ? Context.UnsignedIntTy : Context.IntTy;
7970    } else if (NumPositiveBits <=
7971               (BestWidth = Context.Target.getLongWidth())) {
7972      BestType = Context.UnsignedLongTy;
7973      BestPromotionType
7974        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7975                           ? Context.UnsignedLongTy : Context.LongTy;
7976    } else {
7977      BestWidth = Context.Target.getLongLongWidth();
7978      assert(NumPositiveBits <= BestWidth &&
7979             "How could an initializer get larger than ULL?");
7980      BestType = Context.UnsignedLongLongTy;
7981      BestPromotionType
7982        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7983                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7984    }
7985  }
7986
7987  // Loop over all of the enumerator constants, changing their types to match
7988  // the type of the enum if needed.
7989  for (unsigned i = 0; i != NumElements; ++i) {
7990    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7991    if (!ECD) continue;  // Already issued a diagnostic.
7992
7993    // Standard C says the enumerators have int type, but we allow, as an
7994    // extension, the enumerators to be larger than int size.  If each
7995    // enumerator value fits in an int, type it as an int, otherwise type it the
7996    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7997    // that X has type 'int', not 'unsigned'.
7998
7999    // Determine whether the value fits into an int.
8000    llvm::APSInt InitVal = ECD->getInitVal();
8001
8002    // If it fits into an integer type, force it.  Otherwise force it to match
8003    // the enum decl type.
8004    QualType NewTy;
8005    unsigned NewWidth;
8006    bool NewSign;
8007    if (!getLangOptions().CPlusPlus &&
8008        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8009      NewTy = Context.IntTy;
8010      NewWidth = IntWidth;
8011      NewSign = true;
8012    } else if (ECD->getType() == BestType) {
8013      // Already the right type!
8014      if (getLangOptions().CPlusPlus)
8015        // C++ [dcl.enum]p4: Following the closing brace of an
8016        // enum-specifier, each enumerator has the type of its
8017        // enumeration.
8018        ECD->setType(EnumType);
8019      continue;
8020    } else {
8021      NewTy = BestType;
8022      NewWidth = BestWidth;
8023      NewSign = BestType->isSignedIntegerType();
8024    }
8025
8026    // Adjust the APSInt value.
8027    InitVal = InitVal.extOrTrunc(NewWidth);
8028    InitVal.setIsSigned(NewSign);
8029    ECD->setInitVal(InitVal);
8030
8031    // Adjust the Expr initializer and type.
8032    if (ECD->getInitExpr() &&
8033	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8034      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8035                                                CK_IntegralCast,
8036                                                ECD->getInitExpr(),
8037                                                /*base paths*/ 0,
8038                                                VK_RValue));
8039    if (getLangOptions().CPlusPlus)
8040      // C++ [dcl.enum]p4: Following the closing brace of an
8041      // enum-specifier, each enumerator has the type of its
8042      // enumeration.
8043      ECD->setType(EnumType);
8044    else
8045      ECD->setType(NewTy);
8046  }
8047
8048  Enum->completeDefinition(BestType, BestPromotionType,
8049                           NumPositiveBits, NumNegativeBits);
8050}
8051
8052Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8053                                  SourceLocation StartLoc,
8054                                  SourceLocation EndLoc) {
8055  StringLiteral *AsmString = cast<StringLiteral>(expr);
8056
8057  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8058                                                   AsmString, StartLoc,
8059                                                   EndLoc);
8060  CurContext->addDecl(New);
8061  return New;
8062}
8063
8064void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8065                             SourceLocation PragmaLoc,
8066                             SourceLocation NameLoc) {
8067  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8068
8069  if (PrevDecl) {
8070    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8071  } else {
8072    (void)WeakUndeclaredIdentifiers.insert(
8073      std::pair<IdentifierInfo*,WeakInfo>
8074        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8075  }
8076}
8077
8078void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8079                                IdentifierInfo* AliasName,
8080                                SourceLocation PragmaLoc,
8081                                SourceLocation NameLoc,
8082                                SourceLocation AliasNameLoc) {
8083  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8084                                    LookupOrdinaryName);
8085  WeakInfo W = WeakInfo(Name, NameLoc);
8086
8087  if (PrevDecl) {
8088    if (!PrevDecl->hasAttr<AliasAttr>())
8089      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8090        DeclApplyPragmaWeak(TUScope, ND, W);
8091  } else {
8092    (void)WeakUndeclaredIdentifiers.insert(
8093      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8094  }
8095}
8096