SemaDecl.cpp revision da844b3483669c64d02082ff2a9e68d46bd00c1f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->getLinkage() == ExternalLinkage)
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1468/// file scope.  lazily create a decl for it. ForRedeclaration is true
1469/// if we're creating this built-in in anticipation of redeclaring the
1470/// built-in.
1471NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1472                                     Scope *S, bool ForRedeclaration,
1473                                     SourceLocation Loc) {
1474  Builtin::ID BID = (Builtin::ID)bid;
1475
1476  ASTContext::GetBuiltinTypeError Error;
1477  QualType R = Context.GetBuiltinType(BID, Error);
1478  switch (Error) {
1479  case ASTContext::GE_None:
1480    // Okay
1481    break;
1482
1483  case ASTContext::GE_Missing_stdio:
1484    if (ForRedeclaration)
1485      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1486        << Context.BuiltinInfo.GetName(BID);
1487    return 0;
1488
1489  case ASTContext::GE_Missing_setjmp:
1490    if (ForRedeclaration)
1491      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1492        << Context.BuiltinInfo.GetName(BID);
1493    return 0;
1494
1495  case ASTContext::GE_Missing_ucontext:
1496    if (ForRedeclaration)
1497      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1498        << Context.BuiltinInfo.GetName(BID);
1499    return 0;
1500  }
1501
1502  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1503    Diag(Loc, diag::ext_implicit_lib_function_decl)
1504      << Context.BuiltinInfo.GetName(BID)
1505      << R;
1506    if (Context.BuiltinInfo.getHeaderName(BID) &&
1507        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1508          != DiagnosticsEngine::Ignored)
1509      Diag(Loc, diag::note_please_include_header)
1510        << Context.BuiltinInfo.getHeaderName(BID)
1511        << Context.BuiltinInfo.GetName(BID);
1512  }
1513
1514  FunctionDecl *New = FunctionDecl::Create(Context,
1515                                           Context.getTranslationUnitDecl(),
1516                                           Loc, Loc, II, R, /*TInfo=*/0,
1517                                           SC_Extern,
1518                                           SC_None, false,
1519                                           /*hasPrototype=*/true);
1520  New->setImplicit();
1521
1522  // Create Decl objects for each parameter, adding them to the
1523  // FunctionDecl.
1524  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1525    SmallVector<ParmVarDecl*, 16> Params;
1526    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1527      ParmVarDecl *parm =
1528        ParmVarDecl::Create(Context, New, SourceLocation(),
1529                            SourceLocation(), 0,
1530                            FT->getArgType(i), /*TInfo=*/0,
1531                            SC_None, SC_None, 0);
1532      parm->setScopeInfo(0, i);
1533      Params.push_back(parm);
1534    }
1535    New->setParams(Params);
1536  }
1537
1538  AddKnownFunctionAttributes(New);
1539
1540  // TUScope is the translation-unit scope to insert this function into.
1541  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1542  // relate Scopes to DeclContexts, and probably eliminate CurContext
1543  // entirely, but we're not there yet.
1544  DeclContext *SavedContext = CurContext;
1545  CurContext = Context.getTranslationUnitDecl();
1546  PushOnScopeChains(New, TUScope);
1547  CurContext = SavedContext;
1548  return New;
1549}
1550
1551bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1552  QualType OldType;
1553  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1554    OldType = OldTypedef->getUnderlyingType();
1555  else
1556    OldType = Context.getTypeDeclType(Old);
1557  QualType NewType = New->getUnderlyingType();
1558
1559  if (NewType->isVariablyModifiedType()) {
1560    // Must not redefine a typedef with a variably-modified type.
1561    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1562    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1563      << Kind << NewType;
1564    if (Old->getLocation().isValid())
1565      Diag(Old->getLocation(), diag::note_previous_definition);
1566    New->setInvalidDecl();
1567    return true;
1568  }
1569
1570  if (OldType != NewType &&
1571      !OldType->isDependentType() &&
1572      !NewType->isDependentType() &&
1573      !Context.hasSameType(OldType, NewType)) {
1574    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1575    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1576      << Kind << NewType << OldType;
1577    if (Old->getLocation().isValid())
1578      Diag(Old->getLocation(), diag::note_previous_definition);
1579    New->setInvalidDecl();
1580    return true;
1581  }
1582  return false;
1583}
1584
1585/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1586/// same name and scope as a previous declaration 'Old'.  Figure out
1587/// how to resolve this situation, merging decls or emitting
1588/// diagnostics as appropriate. If there was an error, set New to be invalid.
1589///
1590void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1591  // If the new decl is known invalid already, don't bother doing any
1592  // merging checks.
1593  if (New->isInvalidDecl()) return;
1594
1595  // Allow multiple definitions for ObjC built-in typedefs.
1596  // FIXME: Verify the underlying types are equivalent!
1597  if (getLangOpts().ObjC1) {
1598    const IdentifierInfo *TypeID = New->getIdentifier();
1599    switch (TypeID->getLength()) {
1600    default: break;
1601    case 2:
1602      {
1603        if (!TypeID->isStr("id"))
1604          break;
1605        QualType T = New->getUnderlyingType();
1606        if (!T->isPointerType())
1607          break;
1608        if (!T->isVoidPointerType()) {
1609          QualType PT = T->getAs<PointerType>()->getPointeeType();
1610          if (!PT->isStructureType())
1611            break;
1612        }
1613        Context.setObjCIdRedefinitionType(T);
1614        // Install the built-in type for 'id', ignoring the current definition.
1615        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1616        return;
1617      }
1618    case 5:
1619      if (!TypeID->isStr("Class"))
1620        break;
1621      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1622      // Install the built-in type for 'Class', ignoring the current definition.
1623      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1624      return;
1625    case 3:
1626      if (!TypeID->isStr("SEL"))
1627        break;
1628      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1629      // Install the built-in type for 'SEL', ignoring the current definition.
1630      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1631      return;
1632    }
1633    // Fall through - the typedef name was not a builtin type.
1634  }
1635
1636  // Verify the old decl was also a type.
1637  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1638  if (!Old) {
1639    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1640      << New->getDeclName();
1641
1642    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1643    if (OldD->getLocation().isValid())
1644      Diag(OldD->getLocation(), diag::note_previous_definition);
1645
1646    return New->setInvalidDecl();
1647  }
1648
1649  // If the old declaration is invalid, just give up here.
1650  if (Old->isInvalidDecl())
1651    return New->setInvalidDecl();
1652
1653  // If the typedef types are not identical, reject them in all languages and
1654  // with any extensions enabled.
1655  if (isIncompatibleTypedef(Old, New))
1656    return;
1657
1658  // The types match.  Link up the redeclaration chain if the old
1659  // declaration was a typedef.
1660  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1661    New->setPreviousDeclaration(Typedef);
1662
1663  if (getLangOpts().MicrosoftExt)
1664    return;
1665
1666  if (getLangOpts().CPlusPlus) {
1667    // C++ [dcl.typedef]p2:
1668    //   In a given non-class scope, a typedef specifier can be used to
1669    //   redefine the name of any type declared in that scope to refer
1670    //   to the type to which it already refers.
1671    if (!isa<CXXRecordDecl>(CurContext))
1672      return;
1673
1674    // C++0x [dcl.typedef]p4:
1675    //   In a given class scope, a typedef specifier can be used to redefine
1676    //   any class-name declared in that scope that is not also a typedef-name
1677    //   to refer to the type to which it already refers.
1678    //
1679    // This wording came in via DR424, which was a correction to the
1680    // wording in DR56, which accidentally banned code like:
1681    //
1682    //   struct S {
1683    //     typedef struct A { } A;
1684    //   };
1685    //
1686    // in the C++03 standard. We implement the C++0x semantics, which
1687    // allow the above but disallow
1688    //
1689    //   struct S {
1690    //     typedef int I;
1691    //     typedef int I;
1692    //   };
1693    //
1694    // since that was the intent of DR56.
1695    if (!isa<TypedefNameDecl>(Old))
1696      return;
1697
1698    Diag(New->getLocation(), diag::err_redefinition)
1699      << New->getDeclName();
1700    Diag(Old->getLocation(), diag::note_previous_definition);
1701    return New->setInvalidDecl();
1702  }
1703
1704  // Modules always permit redefinition of typedefs, as does C11.
1705  if (getLangOpts().Modules || getLangOpts().C11)
1706    return;
1707
1708  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1709  // is normally mapped to an error, but can be controlled with
1710  // -Wtypedef-redefinition.  If either the original or the redefinition is
1711  // in a system header, don't emit this for compatibility with GCC.
1712  if (getDiagnostics().getSuppressSystemWarnings() &&
1713      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1714       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1715    return;
1716
1717  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1718    << New->getDeclName();
1719  Diag(Old->getLocation(), diag::note_previous_definition);
1720  return;
1721}
1722
1723/// DeclhasAttr - returns true if decl Declaration already has the target
1724/// attribute.
1725static bool
1726DeclHasAttr(const Decl *D, const Attr *A) {
1727  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1728  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1729  // responsible for making sure they are consistent.
1730  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1731  if (AA)
1732    return false;
1733
1734  // The following thread safety attributes can also be duplicated.
1735  switch (A->getKind()) {
1736    case attr::ExclusiveLocksRequired:
1737    case attr::SharedLocksRequired:
1738    case attr::LocksExcluded:
1739    case attr::ExclusiveLockFunction:
1740    case attr::SharedLockFunction:
1741    case attr::UnlockFunction:
1742    case attr::ExclusiveTrylockFunction:
1743    case attr::SharedTrylockFunction:
1744    case attr::GuardedBy:
1745    case attr::PtGuardedBy:
1746    case attr::AcquiredBefore:
1747    case attr::AcquiredAfter:
1748      return false;
1749    default:
1750      ;
1751  }
1752
1753  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1754  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1755  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1756    if ((*i)->getKind() == A->getKind()) {
1757      if (Ann) {
1758        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1759          return true;
1760        continue;
1761      }
1762      // FIXME: Don't hardcode this check
1763      if (OA && isa<OwnershipAttr>(*i))
1764        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1765      return true;
1766    }
1767
1768  return false;
1769}
1770
1771bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1772  InheritableAttr *NewAttr = NULL;
1773  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1774    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1775                                    AA->getIntroduced(), AA->getDeprecated(),
1776                                    AA->getObsoleted(), AA->getUnavailable(),
1777                                    AA->getMessage());
1778  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr)) {
1779    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1780    if (NewAttr) {
1781      NamedDecl *ND = cast<NamedDecl>(D);
1782      ND->ClearLVCache();
1783    }
1784  } else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1785    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1786  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1787    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1788  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1789    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1790                              FA->getFormatIdx(), FA->getFirstArg());
1791  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1792    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1793  else if (!DeclHasAttr(D, Attr))
1794    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1795
1796  if (NewAttr) {
1797    NewAttr->setInherited(true);
1798    D->addAttr(NewAttr);
1799    return true;
1800  }
1801
1802  return false;
1803}
1804
1805static const Decl *getDefinition(const Decl *D) {
1806  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1807    return TD->getDefinition();
1808  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1809    return VD->getDefinition();
1810  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1811    const FunctionDecl* Def;
1812    if (FD->hasBody(Def))
1813      return Def;
1814  }
1815  return NULL;
1816}
1817
1818static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1819  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1820       I != E; ++I) {
1821    Attr *Attribute = *I;
1822    if (Attribute->getKind() == Kind)
1823      return true;
1824  }
1825  return false;
1826}
1827
1828/// checkNewAttributesAfterDef - If we already have a definition, check that
1829/// there are no new attributes in this declaration.
1830static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1831  if (!New->hasAttrs())
1832    return;
1833
1834  const Decl *Def = getDefinition(Old);
1835  if (!Def || Def == New)
1836    return;
1837
1838  AttrVec &NewAttributes = New->getAttrs();
1839  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1840    const Attr *NewAttribute = NewAttributes[I];
1841    if (hasAttribute(Def, NewAttribute->getKind())) {
1842      ++I;
1843      continue; // regular attr merging will take care of validating this.
1844    }
1845    S.Diag(NewAttribute->getLocation(),
1846           diag::warn_attribute_precede_definition);
1847    S.Diag(Def->getLocation(), diag::note_previous_definition);
1848    NewAttributes.erase(NewAttributes.begin() + I);
1849    --E;
1850  }
1851}
1852
1853/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1854void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1855                               bool MergeDeprecation) {
1856  // attributes declared post-definition are currently ignored
1857  checkNewAttributesAfterDef(*this, New, Old);
1858
1859  if (!Old->hasAttrs())
1860    return;
1861
1862  bool foundAny = New->hasAttrs();
1863
1864  // Ensure that any moving of objects within the allocated map is done before
1865  // we process them.
1866  if (!foundAny) New->setAttrs(AttrVec());
1867
1868  for (specific_attr_iterator<InheritableAttr>
1869         i = Old->specific_attr_begin<InheritableAttr>(),
1870         e = Old->specific_attr_end<InheritableAttr>();
1871       i != e; ++i) {
1872    // Ignore deprecated/unavailable/availability attributes if requested.
1873    if (!MergeDeprecation &&
1874        (isa<DeprecatedAttr>(*i) ||
1875         isa<UnavailableAttr>(*i) ||
1876         isa<AvailabilityAttr>(*i)))
1877      continue;
1878
1879    if (mergeDeclAttribute(New, *i))
1880      foundAny = true;
1881  }
1882
1883  if (!foundAny) New->dropAttrs();
1884}
1885
1886/// mergeParamDeclAttributes - Copy attributes from the old parameter
1887/// to the new one.
1888static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1889                                     const ParmVarDecl *oldDecl,
1890                                     ASTContext &C) {
1891  if (!oldDecl->hasAttrs())
1892    return;
1893
1894  bool foundAny = newDecl->hasAttrs();
1895
1896  // Ensure that any moving of objects within the allocated map is
1897  // done before we process them.
1898  if (!foundAny) newDecl->setAttrs(AttrVec());
1899
1900  for (specific_attr_iterator<InheritableParamAttr>
1901       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1902       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1903    if (!DeclHasAttr(newDecl, *i)) {
1904      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1905      newAttr->setInherited(true);
1906      newDecl->addAttr(newAttr);
1907      foundAny = true;
1908    }
1909  }
1910
1911  if (!foundAny) newDecl->dropAttrs();
1912}
1913
1914namespace {
1915
1916/// Used in MergeFunctionDecl to keep track of function parameters in
1917/// C.
1918struct GNUCompatibleParamWarning {
1919  ParmVarDecl *OldParm;
1920  ParmVarDecl *NewParm;
1921  QualType PromotedType;
1922};
1923
1924}
1925
1926/// getSpecialMember - get the special member enum for a method.
1927Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1928  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1929    if (Ctor->isDefaultConstructor())
1930      return Sema::CXXDefaultConstructor;
1931
1932    if (Ctor->isCopyConstructor())
1933      return Sema::CXXCopyConstructor;
1934
1935    if (Ctor->isMoveConstructor())
1936      return Sema::CXXMoveConstructor;
1937  } else if (isa<CXXDestructorDecl>(MD)) {
1938    return Sema::CXXDestructor;
1939  } else if (MD->isCopyAssignmentOperator()) {
1940    return Sema::CXXCopyAssignment;
1941  } else if (MD->isMoveAssignmentOperator()) {
1942    return Sema::CXXMoveAssignment;
1943  }
1944
1945  return Sema::CXXInvalid;
1946}
1947
1948/// canRedefineFunction - checks if a function can be redefined. Currently,
1949/// only extern inline functions can be redefined, and even then only in
1950/// GNU89 mode.
1951static bool canRedefineFunction(const FunctionDecl *FD,
1952                                const LangOptions& LangOpts) {
1953  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1954          !LangOpts.CPlusPlus &&
1955          FD->isInlineSpecified() &&
1956          FD->getStorageClass() == SC_Extern);
1957}
1958
1959/// Is the given calling convention the ABI default for the given
1960/// declaration?
1961static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1962  CallingConv ABIDefaultCC;
1963  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1964    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1965  } else {
1966    // Free C function or a static method.
1967    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1968  }
1969  return ABIDefaultCC == CC;
1970}
1971
1972/// MergeFunctionDecl - We just parsed a function 'New' from
1973/// declarator D which has the same name and scope as a previous
1974/// declaration 'Old'.  Figure out how to resolve this situation,
1975/// merging decls or emitting diagnostics as appropriate.
1976///
1977/// In C++, New and Old must be declarations that are not
1978/// overloaded. Use IsOverload to determine whether New and Old are
1979/// overloaded, and to select the Old declaration that New should be
1980/// merged with.
1981///
1982/// Returns true if there was an error, false otherwise.
1983bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1984  // Verify the old decl was also a function.
1985  FunctionDecl *Old = 0;
1986  if (FunctionTemplateDecl *OldFunctionTemplate
1987        = dyn_cast<FunctionTemplateDecl>(OldD))
1988    Old = OldFunctionTemplate->getTemplatedDecl();
1989  else
1990    Old = dyn_cast<FunctionDecl>(OldD);
1991  if (!Old) {
1992    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1993      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1994      Diag(Shadow->getTargetDecl()->getLocation(),
1995           diag::note_using_decl_target);
1996      Diag(Shadow->getUsingDecl()->getLocation(),
1997           diag::note_using_decl) << 0;
1998      return true;
1999    }
2000
2001    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2002      << New->getDeclName();
2003    Diag(OldD->getLocation(), diag::note_previous_definition);
2004    return true;
2005  }
2006
2007  // Determine whether the previous declaration was a definition,
2008  // implicit declaration, or a declaration.
2009  diag::kind PrevDiag;
2010  if (Old->isThisDeclarationADefinition())
2011    PrevDiag = diag::note_previous_definition;
2012  else if (Old->isImplicit())
2013    PrevDiag = diag::note_previous_implicit_declaration;
2014  else
2015    PrevDiag = diag::note_previous_declaration;
2016
2017  QualType OldQType = Context.getCanonicalType(Old->getType());
2018  QualType NewQType = Context.getCanonicalType(New->getType());
2019
2020  // Don't complain about this if we're in GNU89 mode and the old function
2021  // is an extern inline function.
2022  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2023      New->getStorageClass() == SC_Static &&
2024      Old->getStorageClass() != SC_Static &&
2025      !canRedefineFunction(Old, getLangOpts())) {
2026    if (getLangOpts().MicrosoftExt) {
2027      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2028      Diag(Old->getLocation(), PrevDiag);
2029    } else {
2030      Diag(New->getLocation(), diag::err_static_non_static) << New;
2031      Diag(Old->getLocation(), PrevDiag);
2032      return true;
2033    }
2034  }
2035
2036  // If a function is first declared with a calling convention, but is
2037  // later declared or defined without one, the second decl assumes the
2038  // calling convention of the first.
2039  //
2040  // It's OK if a function is first declared without a calling convention,
2041  // but is later declared or defined with the default calling convention.
2042  //
2043  // For the new decl, we have to look at the NON-canonical type to tell the
2044  // difference between a function that really doesn't have a calling
2045  // convention and one that is declared cdecl. That's because in
2046  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2047  // because it is the default calling convention.
2048  //
2049  // Note also that we DO NOT return at this point, because we still have
2050  // other tests to run.
2051  const FunctionType *OldType = cast<FunctionType>(OldQType);
2052  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2053  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2054  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2055  bool RequiresAdjustment = false;
2056  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2057    // Fast path: nothing to do.
2058
2059  // Inherit the CC from the previous declaration if it was specified
2060  // there but not here.
2061  } else if (NewTypeInfo.getCC() == CC_Default) {
2062    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2063    RequiresAdjustment = true;
2064
2065  // Don't complain about mismatches when the default CC is
2066  // effectively the same as the explict one.
2067  } else if (OldTypeInfo.getCC() == CC_Default &&
2068             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2069    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2070    RequiresAdjustment = true;
2071
2072  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2073                                     NewTypeInfo.getCC())) {
2074    // Calling conventions really aren't compatible, so complain.
2075    Diag(New->getLocation(), diag::err_cconv_change)
2076      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2077      << (OldTypeInfo.getCC() == CC_Default)
2078      << (OldTypeInfo.getCC() == CC_Default ? "" :
2079          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2080    Diag(Old->getLocation(), diag::note_previous_declaration);
2081    return true;
2082  }
2083
2084  // FIXME: diagnose the other way around?
2085  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2086    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2087    RequiresAdjustment = true;
2088  }
2089
2090  // Merge regparm attribute.
2091  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2092      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2093    if (NewTypeInfo.getHasRegParm()) {
2094      Diag(New->getLocation(), diag::err_regparm_mismatch)
2095        << NewType->getRegParmType()
2096        << OldType->getRegParmType();
2097      Diag(Old->getLocation(), diag::note_previous_declaration);
2098      return true;
2099    }
2100
2101    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2102    RequiresAdjustment = true;
2103  }
2104
2105  // Merge ns_returns_retained attribute.
2106  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2107    if (NewTypeInfo.getProducesResult()) {
2108      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2109      Diag(Old->getLocation(), diag::note_previous_declaration);
2110      return true;
2111    }
2112
2113    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2114    RequiresAdjustment = true;
2115  }
2116
2117  if (RequiresAdjustment) {
2118    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2119    New->setType(QualType(NewType, 0));
2120    NewQType = Context.getCanonicalType(New->getType());
2121  }
2122
2123  if (getLangOpts().CPlusPlus) {
2124    // (C++98 13.1p2):
2125    //   Certain function declarations cannot be overloaded:
2126    //     -- Function declarations that differ only in the return type
2127    //        cannot be overloaded.
2128    QualType OldReturnType = OldType->getResultType();
2129    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2130    QualType ResQT;
2131    if (OldReturnType != NewReturnType) {
2132      if (NewReturnType->isObjCObjectPointerType()
2133          && OldReturnType->isObjCObjectPointerType())
2134        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2135      if (ResQT.isNull()) {
2136        if (New->isCXXClassMember() && New->isOutOfLine())
2137          Diag(New->getLocation(),
2138               diag::err_member_def_does_not_match_ret_type) << New;
2139        else
2140          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2141        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2142        return true;
2143      }
2144      else
2145        NewQType = ResQT;
2146    }
2147
2148    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2149    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2150    if (OldMethod && NewMethod) {
2151      // Preserve triviality.
2152      NewMethod->setTrivial(OldMethod->isTrivial());
2153
2154      // MSVC allows explicit template specialization at class scope:
2155      // 2 CXMethodDecls referring to the same function will be injected.
2156      // We don't want a redeclartion error.
2157      bool IsClassScopeExplicitSpecialization =
2158                              OldMethod->isFunctionTemplateSpecialization() &&
2159                              NewMethod->isFunctionTemplateSpecialization();
2160      bool isFriend = NewMethod->getFriendObjectKind();
2161
2162      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2163          !IsClassScopeExplicitSpecialization) {
2164        //    -- Member function declarations with the same name and the
2165        //       same parameter types cannot be overloaded if any of them
2166        //       is a static member function declaration.
2167        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2168          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2169          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2170          return true;
2171        }
2172
2173        // C++ [class.mem]p1:
2174        //   [...] A member shall not be declared twice in the
2175        //   member-specification, except that a nested class or member
2176        //   class template can be declared and then later defined.
2177        if (ActiveTemplateInstantiations.empty()) {
2178          unsigned NewDiag;
2179          if (isa<CXXConstructorDecl>(OldMethod))
2180            NewDiag = diag::err_constructor_redeclared;
2181          else if (isa<CXXDestructorDecl>(NewMethod))
2182            NewDiag = diag::err_destructor_redeclared;
2183          else if (isa<CXXConversionDecl>(NewMethod))
2184            NewDiag = diag::err_conv_function_redeclared;
2185          else
2186            NewDiag = diag::err_member_redeclared;
2187
2188          Diag(New->getLocation(), NewDiag);
2189        } else {
2190          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2191            << New << New->getType();
2192        }
2193        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2194
2195      // Complain if this is an explicit declaration of a special
2196      // member that was initially declared implicitly.
2197      //
2198      // As an exception, it's okay to befriend such methods in order
2199      // to permit the implicit constructor/destructor/operator calls.
2200      } else if (OldMethod->isImplicit()) {
2201        if (isFriend) {
2202          NewMethod->setImplicit();
2203        } else {
2204          Diag(NewMethod->getLocation(),
2205               diag::err_definition_of_implicitly_declared_member)
2206            << New << getSpecialMember(OldMethod);
2207          return true;
2208        }
2209      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2210        Diag(NewMethod->getLocation(),
2211             diag::err_definition_of_explicitly_defaulted_member)
2212          << getSpecialMember(OldMethod);
2213        return true;
2214      }
2215    }
2216
2217    // (C++98 8.3.5p3):
2218    //   All declarations for a function shall agree exactly in both the
2219    //   return type and the parameter-type-list.
2220    // We also want to respect all the extended bits except noreturn.
2221
2222    // noreturn should now match unless the old type info didn't have it.
2223    QualType OldQTypeForComparison = OldQType;
2224    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2225      assert(OldQType == QualType(OldType, 0));
2226      const FunctionType *OldTypeForComparison
2227        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2228      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2229      assert(OldQTypeForComparison.isCanonical());
2230    }
2231
2232    if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2233      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2234      Diag(Old->getLocation(), PrevDiag);
2235      return true;
2236    }
2237
2238    if (OldQTypeForComparison == NewQType)
2239      return MergeCompatibleFunctionDecls(New, Old, S);
2240
2241    // Fall through for conflicting redeclarations and redefinitions.
2242  }
2243
2244  // C: Function types need to be compatible, not identical. This handles
2245  // duplicate function decls like "void f(int); void f(enum X);" properly.
2246  if (!getLangOpts().CPlusPlus &&
2247      Context.typesAreCompatible(OldQType, NewQType)) {
2248    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2249    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2250    const FunctionProtoType *OldProto = 0;
2251    if (isa<FunctionNoProtoType>(NewFuncType) &&
2252        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2253      // The old declaration provided a function prototype, but the
2254      // new declaration does not. Merge in the prototype.
2255      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2256      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2257                                                 OldProto->arg_type_end());
2258      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2259                                         ParamTypes.data(), ParamTypes.size(),
2260                                         OldProto->getExtProtoInfo());
2261      New->setType(NewQType);
2262      New->setHasInheritedPrototype();
2263
2264      // Synthesize a parameter for each argument type.
2265      SmallVector<ParmVarDecl*, 16> Params;
2266      for (FunctionProtoType::arg_type_iterator
2267             ParamType = OldProto->arg_type_begin(),
2268             ParamEnd = OldProto->arg_type_end();
2269           ParamType != ParamEnd; ++ParamType) {
2270        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2271                                                 SourceLocation(),
2272                                                 SourceLocation(), 0,
2273                                                 *ParamType, /*TInfo=*/0,
2274                                                 SC_None, SC_None,
2275                                                 0);
2276        Param->setScopeInfo(0, Params.size());
2277        Param->setImplicit();
2278        Params.push_back(Param);
2279      }
2280
2281      New->setParams(Params);
2282    }
2283
2284    return MergeCompatibleFunctionDecls(New, Old, S);
2285  }
2286
2287  // GNU C permits a K&R definition to follow a prototype declaration
2288  // if the declared types of the parameters in the K&R definition
2289  // match the types in the prototype declaration, even when the
2290  // promoted types of the parameters from the K&R definition differ
2291  // from the types in the prototype. GCC then keeps the types from
2292  // the prototype.
2293  //
2294  // If a variadic prototype is followed by a non-variadic K&R definition,
2295  // the K&R definition becomes variadic.  This is sort of an edge case, but
2296  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2297  // C99 6.9.1p8.
2298  if (!getLangOpts().CPlusPlus &&
2299      Old->hasPrototype() && !New->hasPrototype() &&
2300      New->getType()->getAs<FunctionProtoType>() &&
2301      Old->getNumParams() == New->getNumParams()) {
2302    SmallVector<QualType, 16> ArgTypes;
2303    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2304    const FunctionProtoType *OldProto
2305      = Old->getType()->getAs<FunctionProtoType>();
2306    const FunctionProtoType *NewProto
2307      = New->getType()->getAs<FunctionProtoType>();
2308
2309    // Determine whether this is the GNU C extension.
2310    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2311                                               NewProto->getResultType());
2312    bool LooseCompatible = !MergedReturn.isNull();
2313    for (unsigned Idx = 0, End = Old->getNumParams();
2314         LooseCompatible && Idx != End; ++Idx) {
2315      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2316      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2317      if (Context.typesAreCompatible(OldParm->getType(),
2318                                     NewProto->getArgType(Idx))) {
2319        ArgTypes.push_back(NewParm->getType());
2320      } else if (Context.typesAreCompatible(OldParm->getType(),
2321                                            NewParm->getType(),
2322                                            /*CompareUnqualified=*/true)) {
2323        GNUCompatibleParamWarning Warn
2324          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2325        Warnings.push_back(Warn);
2326        ArgTypes.push_back(NewParm->getType());
2327      } else
2328        LooseCompatible = false;
2329    }
2330
2331    if (LooseCompatible) {
2332      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2333        Diag(Warnings[Warn].NewParm->getLocation(),
2334             diag::ext_param_promoted_not_compatible_with_prototype)
2335          << Warnings[Warn].PromotedType
2336          << Warnings[Warn].OldParm->getType();
2337        if (Warnings[Warn].OldParm->getLocation().isValid())
2338          Diag(Warnings[Warn].OldParm->getLocation(),
2339               diag::note_previous_declaration);
2340      }
2341
2342      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2343                                           ArgTypes.size(),
2344                                           OldProto->getExtProtoInfo()));
2345      return MergeCompatibleFunctionDecls(New, Old, S);
2346    }
2347
2348    // Fall through to diagnose conflicting types.
2349  }
2350
2351  // A function that has already been declared has been redeclared or defined
2352  // with a different type- show appropriate diagnostic
2353  if (unsigned BuiltinID = Old->getBuiltinID()) {
2354    // The user has declared a builtin function with an incompatible
2355    // signature.
2356    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2357      // The function the user is redeclaring is a library-defined
2358      // function like 'malloc' or 'printf'. Warn about the
2359      // redeclaration, then pretend that we don't know about this
2360      // library built-in.
2361      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2362      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2363        << Old << Old->getType();
2364      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2365      Old->setInvalidDecl();
2366      return false;
2367    }
2368
2369    PrevDiag = diag::note_previous_builtin_declaration;
2370  }
2371
2372  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2373  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2374  return true;
2375}
2376
2377/// \brief Completes the merge of two function declarations that are
2378/// known to be compatible.
2379///
2380/// This routine handles the merging of attributes and other
2381/// properties of function declarations form the old declaration to
2382/// the new declaration, once we know that New is in fact a
2383/// redeclaration of Old.
2384///
2385/// \returns false
2386bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2387                                        Scope *S) {
2388  // Merge the attributes
2389  mergeDeclAttributes(New, Old);
2390
2391  // Merge the storage class.
2392  if (Old->getStorageClass() != SC_Extern &&
2393      Old->getStorageClass() != SC_None)
2394    New->setStorageClass(Old->getStorageClass());
2395
2396  // Merge "pure" flag.
2397  if (Old->isPure())
2398    New->setPure();
2399
2400  // Merge "used" flag.
2401  if (Old->isUsed(false))
2402    New->setUsed();
2403
2404  // Merge attributes from the parameters.  These can mismatch with K&R
2405  // declarations.
2406  if (New->getNumParams() == Old->getNumParams())
2407    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2408      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2409                               Context);
2410
2411  if (getLangOpts().CPlusPlus)
2412    return MergeCXXFunctionDecl(New, Old, S);
2413
2414  // Merge the function types so the we get the composite types for the return
2415  // and argument types.
2416  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2417  if (!Merged.isNull())
2418    New->setType(Merged);
2419
2420  return false;
2421}
2422
2423
2424void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2425                                ObjCMethodDecl *oldMethod) {
2426
2427  // Merge the attributes, including deprecated/unavailable
2428  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2429
2430  // Merge attributes from the parameters.
2431  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2432                                       oe = oldMethod->param_end();
2433  for (ObjCMethodDecl::param_iterator
2434         ni = newMethod->param_begin(), ne = newMethod->param_end();
2435       ni != ne && oi != oe; ++ni, ++oi)
2436    mergeParamDeclAttributes(*ni, *oi, Context);
2437
2438  CheckObjCMethodOverride(newMethod, oldMethod, true);
2439}
2440
2441/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2442/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2443/// emitting diagnostics as appropriate.
2444///
2445/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2446/// to here in AddInitializerToDecl. We can't check them before the initializer
2447/// is attached.
2448void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2449  if (New->isInvalidDecl() || Old->isInvalidDecl())
2450    return;
2451
2452  QualType MergedT;
2453  if (getLangOpts().CPlusPlus) {
2454    AutoType *AT = New->getType()->getContainedAutoType();
2455    if (AT && !AT->isDeduced()) {
2456      // We don't know what the new type is until the initializer is attached.
2457      return;
2458    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2459      // These could still be something that needs exception specs checked.
2460      return MergeVarDeclExceptionSpecs(New, Old);
2461    }
2462    // C++ [basic.link]p10:
2463    //   [...] the types specified by all declarations referring to a given
2464    //   object or function shall be identical, except that declarations for an
2465    //   array object can specify array types that differ by the presence or
2466    //   absence of a major array bound (8.3.4).
2467    else if (Old->getType()->isIncompleteArrayType() &&
2468             New->getType()->isArrayType()) {
2469      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2470      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2471      if (Context.hasSameType(OldArray->getElementType(),
2472                              NewArray->getElementType()))
2473        MergedT = New->getType();
2474    } else if (Old->getType()->isArrayType() &&
2475             New->getType()->isIncompleteArrayType()) {
2476      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2477      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2478      if (Context.hasSameType(OldArray->getElementType(),
2479                              NewArray->getElementType()))
2480        MergedT = Old->getType();
2481    } else if (New->getType()->isObjCObjectPointerType()
2482               && Old->getType()->isObjCObjectPointerType()) {
2483        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2484                                                        Old->getType());
2485    }
2486  } else {
2487    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2488  }
2489  if (MergedT.isNull()) {
2490    Diag(New->getLocation(), diag::err_redefinition_different_type)
2491      << New->getDeclName() << New->getType() << Old->getType();
2492    Diag(Old->getLocation(), diag::note_previous_definition);
2493    return New->setInvalidDecl();
2494  }
2495  New->setType(MergedT);
2496}
2497
2498/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2499/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2500/// situation, merging decls or emitting diagnostics as appropriate.
2501///
2502/// Tentative definition rules (C99 6.9.2p2) are checked by
2503/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2504/// definitions here, since the initializer hasn't been attached.
2505///
2506void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2507  // If the new decl is already invalid, don't do any other checking.
2508  if (New->isInvalidDecl())
2509    return;
2510
2511  // Verify the old decl was also a variable.
2512  VarDecl *Old = 0;
2513  if (!Previous.isSingleResult() ||
2514      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2515    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2516      << New->getDeclName();
2517    Diag(Previous.getRepresentativeDecl()->getLocation(),
2518         diag::note_previous_definition);
2519    return New->setInvalidDecl();
2520  }
2521
2522  // C++ [class.mem]p1:
2523  //   A member shall not be declared twice in the member-specification [...]
2524  //
2525  // Here, we need only consider static data members.
2526  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2527    Diag(New->getLocation(), diag::err_duplicate_member)
2528      << New->getIdentifier();
2529    Diag(Old->getLocation(), diag::note_previous_declaration);
2530    New->setInvalidDecl();
2531  }
2532
2533  mergeDeclAttributes(New, Old);
2534  // Warn if an already-declared variable is made a weak_import in a subsequent
2535  // declaration
2536  if (New->getAttr<WeakImportAttr>() &&
2537      Old->getStorageClass() == SC_None &&
2538      !Old->getAttr<WeakImportAttr>()) {
2539    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2540    Diag(Old->getLocation(), diag::note_previous_definition);
2541    // Remove weak_import attribute on new declaration.
2542    New->dropAttr<WeakImportAttr>();
2543  }
2544
2545  // Merge the types.
2546  MergeVarDeclTypes(New, Old);
2547  if (New->isInvalidDecl())
2548    return;
2549
2550  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2551  if (New->getStorageClass() == SC_Static &&
2552      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2553    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2554    Diag(Old->getLocation(), diag::note_previous_definition);
2555    return New->setInvalidDecl();
2556  }
2557  // C99 6.2.2p4:
2558  //   For an identifier declared with the storage-class specifier
2559  //   extern in a scope in which a prior declaration of that
2560  //   identifier is visible,23) if the prior declaration specifies
2561  //   internal or external linkage, the linkage of the identifier at
2562  //   the later declaration is the same as the linkage specified at
2563  //   the prior declaration. If no prior declaration is visible, or
2564  //   if the prior declaration specifies no linkage, then the
2565  //   identifier has external linkage.
2566  if (New->hasExternalStorage() && Old->hasLinkage())
2567    /* Okay */;
2568  else if (New->getStorageClass() != SC_Static &&
2569           Old->getStorageClass() == SC_Static) {
2570    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2571    Diag(Old->getLocation(), diag::note_previous_definition);
2572    return New->setInvalidDecl();
2573  }
2574
2575  // Check if extern is followed by non-extern and vice-versa.
2576  if (New->hasExternalStorage() &&
2577      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2578    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2579    Diag(Old->getLocation(), diag::note_previous_definition);
2580    return New->setInvalidDecl();
2581  }
2582  if (Old->hasExternalStorage() &&
2583      !New->hasLinkage() && New->isLocalVarDecl()) {
2584    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2585    Diag(Old->getLocation(), diag::note_previous_definition);
2586    return New->setInvalidDecl();
2587  }
2588
2589  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2590
2591  // FIXME: The test for external storage here seems wrong? We still
2592  // need to check for mismatches.
2593  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2594      // Don't complain about out-of-line definitions of static members.
2595      !(Old->getLexicalDeclContext()->isRecord() &&
2596        !New->getLexicalDeclContext()->isRecord())) {
2597    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2598    Diag(Old->getLocation(), diag::note_previous_definition);
2599    return New->setInvalidDecl();
2600  }
2601
2602  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2603    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2604    Diag(Old->getLocation(), diag::note_previous_definition);
2605  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2606    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2607    Diag(Old->getLocation(), diag::note_previous_definition);
2608  }
2609
2610  // C++ doesn't have tentative definitions, so go right ahead and check here.
2611  const VarDecl *Def;
2612  if (getLangOpts().CPlusPlus &&
2613      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2614      (Def = Old->getDefinition())) {
2615    Diag(New->getLocation(), diag::err_redefinition)
2616      << New->getDeclName();
2617    Diag(Def->getLocation(), diag::note_previous_definition);
2618    New->setInvalidDecl();
2619    return;
2620  }
2621
2622  if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2623    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2624    Diag(Old->getLocation(), diag::note_previous_definition);
2625    New->setInvalidDecl();
2626    return;
2627  }
2628
2629  // c99 6.2.2 P4.
2630  // For an identifier declared with the storage-class specifier extern in a
2631  // scope in which a prior declaration of that identifier is visible, if
2632  // the prior declaration specifies internal or external linkage, the linkage
2633  // of the identifier at the later declaration is the same as the linkage
2634  // specified at the prior declaration.
2635  // FIXME. revisit this code.
2636  if (New->hasExternalStorage() &&
2637      Old->getLinkage() == InternalLinkage)
2638    New->setStorageClass(Old->getStorageClass());
2639
2640  // Merge "used" flag.
2641  if (Old->isUsed(false))
2642    New->setUsed();
2643
2644  // Keep a chain of previous declarations.
2645  New->setPreviousDeclaration(Old);
2646
2647  // Inherit access appropriately.
2648  New->setAccess(Old->getAccess());
2649}
2650
2651/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2652/// no declarator (e.g. "struct foo;") is parsed.
2653Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2654                                       DeclSpec &DS) {
2655  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2656}
2657
2658/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2659/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2660/// parameters to cope with template friend declarations.
2661Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2662                                       DeclSpec &DS,
2663                                       MultiTemplateParamsArg TemplateParams) {
2664  Decl *TagD = 0;
2665  TagDecl *Tag = 0;
2666  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2667      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2668      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2669      DS.getTypeSpecType() == DeclSpec::TST_union ||
2670      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2671    TagD = DS.getRepAsDecl();
2672
2673    if (!TagD) // We probably had an error
2674      return 0;
2675
2676    // Note that the above type specs guarantee that the
2677    // type rep is a Decl, whereas in many of the others
2678    // it's a Type.
2679    if (isa<TagDecl>(TagD))
2680      Tag = cast<TagDecl>(TagD);
2681    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2682      Tag = CTD->getTemplatedDecl();
2683  }
2684
2685  if (Tag) {
2686    getASTContext().addUnnamedTag(Tag);
2687    Tag->setFreeStanding();
2688    if (Tag->isInvalidDecl())
2689      return Tag;
2690  }
2691
2692  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2693    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2694    // or incomplete types shall not be restrict-qualified."
2695    if (TypeQuals & DeclSpec::TQ_restrict)
2696      Diag(DS.getRestrictSpecLoc(),
2697           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2698           << DS.getSourceRange();
2699  }
2700
2701  if (DS.isConstexprSpecified()) {
2702    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2703    // and definitions of functions and variables.
2704    if (Tag)
2705      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2706        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2707            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2708            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2709            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2710    else
2711      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2712    // Don't emit warnings after this error.
2713    return TagD;
2714  }
2715
2716  if (DS.isFriendSpecified()) {
2717    // If we're dealing with a decl but not a TagDecl, assume that
2718    // whatever routines created it handled the friendship aspect.
2719    if (TagD && !Tag)
2720      return 0;
2721    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2722  }
2723
2724  // Track whether we warned about the fact that there aren't any
2725  // declarators.
2726  bool emittedWarning = false;
2727
2728  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2729    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2730        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2731      if (getLangOpts().CPlusPlus ||
2732          Record->getDeclContext()->isRecord())
2733        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2734
2735      Diag(DS.getLocStart(), diag::ext_no_declarators)
2736        << DS.getSourceRange();
2737      emittedWarning = true;
2738    }
2739  }
2740
2741  // Check for Microsoft C extension: anonymous struct.
2742  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2743      CurContext->isRecord() &&
2744      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2745    // Handle 2 kinds of anonymous struct:
2746    //   struct STRUCT;
2747    // and
2748    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2749    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2750    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2751        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2752         DS.getRepAsType().get()->isStructureType())) {
2753      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2754        << DS.getSourceRange();
2755      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2756    }
2757  }
2758
2759  if (getLangOpts().CPlusPlus &&
2760      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2761    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2762      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2763          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2764        Diag(Enum->getLocation(), diag::ext_no_declarators)
2765          << DS.getSourceRange();
2766        emittedWarning = true;
2767      }
2768
2769  // Skip all the checks below if we have a type error.
2770  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2771
2772  if (!DS.isMissingDeclaratorOk()) {
2773    // Warn about typedefs of enums without names, since this is an
2774    // extension in both Microsoft and GNU.
2775    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2776        Tag && isa<EnumDecl>(Tag)) {
2777      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2778        << DS.getSourceRange();
2779      return Tag;
2780    }
2781
2782    Diag(DS.getLocStart(), diag::ext_no_declarators)
2783      << DS.getSourceRange();
2784    emittedWarning = true;
2785  }
2786
2787  // We're going to complain about a bunch of spurious specifiers;
2788  // only do this if we're declaring a tag, because otherwise we
2789  // should be getting diag::ext_no_declarators.
2790  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2791    return TagD;
2792
2793  // Note that a linkage-specification sets a storage class, but
2794  // 'extern "C" struct foo;' is actually valid and not theoretically
2795  // useless.
2796  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2797    if (!DS.isExternInLinkageSpec())
2798      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2799        << DeclSpec::getSpecifierName(scs);
2800
2801  if (DS.isThreadSpecified())
2802    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2803  if (DS.getTypeQualifiers()) {
2804    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2805      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2806    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2807      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2808    // Restrict is covered above.
2809  }
2810  if (DS.isInlineSpecified())
2811    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2812  if (DS.isVirtualSpecified())
2813    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2814  if (DS.isExplicitSpecified())
2815    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2816
2817  if (DS.isModulePrivateSpecified() &&
2818      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2819    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2820      << Tag->getTagKind()
2821      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2822
2823  // Warn about ignored type attributes, for example:
2824  // __attribute__((aligned)) struct A;
2825  // Attributes should be placed after tag to apply to type declaration.
2826  if (!DS.getAttributes().empty()) {
2827    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2828    if (TypeSpecType == DeclSpec::TST_class ||
2829        TypeSpecType == DeclSpec::TST_struct ||
2830        TypeSpecType == DeclSpec::TST_interface ||
2831        TypeSpecType == DeclSpec::TST_union ||
2832        TypeSpecType == DeclSpec::TST_enum) {
2833      AttributeList* attrs = DS.getAttributes().getList();
2834      while (attrs) {
2835        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2836        << attrs->getName()
2837        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2838            TypeSpecType == DeclSpec::TST_struct ? 1 :
2839            TypeSpecType == DeclSpec::TST_union ? 2 :
2840            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2841        attrs = attrs->getNext();
2842      }
2843    }
2844  }
2845
2846  ActOnDocumentableDecl(TagD);
2847
2848  return TagD;
2849}
2850
2851/// We are trying to inject an anonymous member into the given scope;
2852/// check if there's an existing declaration that can't be overloaded.
2853///
2854/// \return true if this is a forbidden redeclaration
2855static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2856                                         Scope *S,
2857                                         DeclContext *Owner,
2858                                         DeclarationName Name,
2859                                         SourceLocation NameLoc,
2860                                         unsigned diagnostic) {
2861  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2862                 Sema::ForRedeclaration);
2863  if (!SemaRef.LookupName(R, S)) return false;
2864
2865  if (R.getAsSingle<TagDecl>())
2866    return false;
2867
2868  // Pick a representative declaration.
2869  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2870  assert(PrevDecl && "Expected a non-null Decl");
2871
2872  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2873    return false;
2874
2875  SemaRef.Diag(NameLoc, diagnostic) << Name;
2876  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2877
2878  return true;
2879}
2880
2881/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2882/// anonymous struct or union AnonRecord into the owning context Owner
2883/// and scope S. This routine will be invoked just after we realize
2884/// that an unnamed union or struct is actually an anonymous union or
2885/// struct, e.g.,
2886///
2887/// @code
2888/// union {
2889///   int i;
2890///   float f;
2891/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2892///    // f into the surrounding scope.x
2893/// @endcode
2894///
2895/// This routine is recursive, injecting the names of nested anonymous
2896/// structs/unions into the owning context and scope as well.
2897static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2898                                                DeclContext *Owner,
2899                                                RecordDecl *AnonRecord,
2900                                                AccessSpecifier AS,
2901                              SmallVector<NamedDecl*, 2> &Chaining,
2902                                                      bool MSAnonStruct) {
2903  unsigned diagKind
2904    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2905                            : diag::err_anonymous_struct_member_redecl;
2906
2907  bool Invalid = false;
2908
2909  // Look every FieldDecl and IndirectFieldDecl with a name.
2910  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2911                               DEnd = AnonRecord->decls_end();
2912       D != DEnd; ++D) {
2913    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2914        cast<NamedDecl>(*D)->getDeclName()) {
2915      ValueDecl *VD = cast<ValueDecl>(*D);
2916      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2917                                       VD->getLocation(), diagKind)) {
2918        // C++ [class.union]p2:
2919        //   The names of the members of an anonymous union shall be
2920        //   distinct from the names of any other entity in the
2921        //   scope in which the anonymous union is declared.
2922        Invalid = true;
2923      } else {
2924        // C++ [class.union]p2:
2925        //   For the purpose of name lookup, after the anonymous union
2926        //   definition, the members of the anonymous union are
2927        //   considered to have been defined in the scope in which the
2928        //   anonymous union is declared.
2929        unsigned OldChainingSize = Chaining.size();
2930        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2931          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2932               PE = IF->chain_end(); PI != PE; ++PI)
2933            Chaining.push_back(*PI);
2934        else
2935          Chaining.push_back(VD);
2936
2937        assert(Chaining.size() >= 2);
2938        NamedDecl **NamedChain =
2939          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2940        for (unsigned i = 0; i < Chaining.size(); i++)
2941          NamedChain[i] = Chaining[i];
2942
2943        IndirectFieldDecl* IndirectField =
2944          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2945                                    VD->getIdentifier(), VD->getType(),
2946                                    NamedChain, Chaining.size());
2947
2948        IndirectField->setAccess(AS);
2949        IndirectField->setImplicit();
2950        SemaRef.PushOnScopeChains(IndirectField, S);
2951
2952        // That includes picking up the appropriate access specifier.
2953        if (AS != AS_none) IndirectField->setAccess(AS);
2954
2955        Chaining.resize(OldChainingSize);
2956      }
2957    }
2958  }
2959
2960  return Invalid;
2961}
2962
2963/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2964/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2965/// illegal input values are mapped to SC_None.
2966static StorageClass
2967StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2968  switch (StorageClassSpec) {
2969  case DeclSpec::SCS_unspecified:    return SC_None;
2970  case DeclSpec::SCS_extern:         return SC_Extern;
2971  case DeclSpec::SCS_static:         return SC_Static;
2972  case DeclSpec::SCS_auto:           return SC_Auto;
2973  case DeclSpec::SCS_register:       return SC_Register;
2974  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2975    // Illegal SCSs map to None: error reporting is up to the caller.
2976  case DeclSpec::SCS_mutable:        // Fall through.
2977  case DeclSpec::SCS_typedef:        return SC_None;
2978  }
2979  llvm_unreachable("unknown storage class specifier");
2980}
2981
2982/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2983/// a StorageClass. Any error reporting is up to the caller:
2984/// illegal input values are mapped to SC_None.
2985static StorageClass
2986StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2987  switch (StorageClassSpec) {
2988  case DeclSpec::SCS_unspecified:    return SC_None;
2989  case DeclSpec::SCS_extern:         return SC_Extern;
2990  case DeclSpec::SCS_static:         return SC_Static;
2991  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2992    // Illegal SCSs map to None: error reporting is up to the caller.
2993  case DeclSpec::SCS_auto:           // Fall through.
2994  case DeclSpec::SCS_mutable:        // Fall through.
2995  case DeclSpec::SCS_register:       // Fall through.
2996  case DeclSpec::SCS_typedef:        return SC_None;
2997  }
2998  llvm_unreachable("unknown storage class specifier");
2999}
3000
3001/// BuildAnonymousStructOrUnion - Handle the declaration of an
3002/// anonymous structure or union. Anonymous unions are a C++ feature
3003/// (C++ [class.union]) and a C11 feature; anonymous structures
3004/// are a C11 feature and GNU C++ extension.
3005Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3006                                             AccessSpecifier AS,
3007                                             RecordDecl *Record) {
3008  DeclContext *Owner = Record->getDeclContext();
3009
3010  // Diagnose whether this anonymous struct/union is an extension.
3011  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3012    Diag(Record->getLocation(), diag::ext_anonymous_union);
3013  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3014    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3015  else if (!Record->isUnion() && !getLangOpts().C11)
3016    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3017
3018  // C and C++ require different kinds of checks for anonymous
3019  // structs/unions.
3020  bool Invalid = false;
3021  if (getLangOpts().CPlusPlus) {
3022    const char* PrevSpec = 0;
3023    unsigned DiagID;
3024    if (Record->isUnion()) {
3025      // C++ [class.union]p6:
3026      //   Anonymous unions declared in a named namespace or in the
3027      //   global namespace shall be declared static.
3028      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3029          (isa<TranslationUnitDecl>(Owner) ||
3030           (isa<NamespaceDecl>(Owner) &&
3031            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3032        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3033          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3034
3035        // Recover by adding 'static'.
3036        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3037                               PrevSpec, DiagID);
3038      }
3039      // C++ [class.union]p6:
3040      //   A storage class is not allowed in a declaration of an
3041      //   anonymous union in a class scope.
3042      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3043               isa<RecordDecl>(Owner)) {
3044        Diag(DS.getStorageClassSpecLoc(),
3045             diag::err_anonymous_union_with_storage_spec)
3046          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3047
3048        // Recover by removing the storage specifier.
3049        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3050                               SourceLocation(),
3051                               PrevSpec, DiagID);
3052      }
3053    }
3054
3055    // Ignore const/volatile/restrict qualifiers.
3056    if (DS.getTypeQualifiers()) {
3057      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3058        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3059          << Record->isUnion() << 0
3060          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3061      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3062        Diag(DS.getVolatileSpecLoc(),
3063             diag::ext_anonymous_struct_union_qualified)
3064          << Record->isUnion() << 1
3065          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3066      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3067        Diag(DS.getRestrictSpecLoc(),
3068             diag::ext_anonymous_struct_union_qualified)
3069          << Record->isUnion() << 2
3070          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3071
3072      DS.ClearTypeQualifiers();
3073    }
3074
3075    // C++ [class.union]p2:
3076    //   The member-specification of an anonymous union shall only
3077    //   define non-static data members. [Note: nested types and
3078    //   functions cannot be declared within an anonymous union. ]
3079    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3080                                 MemEnd = Record->decls_end();
3081         Mem != MemEnd; ++Mem) {
3082      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3083        // C++ [class.union]p3:
3084        //   An anonymous union shall not have private or protected
3085        //   members (clause 11).
3086        assert(FD->getAccess() != AS_none);
3087        if (FD->getAccess() != AS_public) {
3088          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3089            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3090          Invalid = true;
3091        }
3092
3093        // C++ [class.union]p1
3094        //   An object of a class with a non-trivial constructor, a non-trivial
3095        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3096        //   assignment operator cannot be a member of a union, nor can an
3097        //   array of such objects.
3098        if (CheckNontrivialField(FD))
3099          Invalid = true;
3100      } else if ((*Mem)->isImplicit()) {
3101        // Any implicit members are fine.
3102      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3103        // This is a type that showed up in an
3104        // elaborated-type-specifier inside the anonymous struct or
3105        // union, but which actually declares a type outside of the
3106        // anonymous struct or union. It's okay.
3107      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3108        if (!MemRecord->isAnonymousStructOrUnion() &&
3109            MemRecord->getDeclName()) {
3110          // Visual C++ allows type definition in anonymous struct or union.
3111          if (getLangOpts().MicrosoftExt)
3112            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3113              << (int)Record->isUnion();
3114          else {
3115            // This is a nested type declaration.
3116            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3117              << (int)Record->isUnion();
3118            Invalid = true;
3119          }
3120        }
3121      } else if (isa<AccessSpecDecl>(*Mem)) {
3122        // Any access specifier is fine.
3123      } else {
3124        // We have something that isn't a non-static data
3125        // member. Complain about it.
3126        unsigned DK = diag::err_anonymous_record_bad_member;
3127        if (isa<TypeDecl>(*Mem))
3128          DK = diag::err_anonymous_record_with_type;
3129        else if (isa<FunctionDecl>(*Mem))
3130          DK = diag::err_anonymous_record_with_function;
3131        else if (isa<VarDecl>(*Mem))
3132          DK = diag::err_anonymous_record_with_static;
3133
3134        // Visual C++ allows type definition in anonymous struct or union.
3135        if (getLangOpts().MicrosoftExt &&
3136            DK == diag::err_anonymous_record_with_type)
3137          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3138            << (int)Record->isUnion();
3139        else {
3140          Diag((*Mem)->getLocation(), DK)
3141              << (int)Record->isUnion();
3142          Invalid = true;
3143        }
3144      }
3145    }
3146  }
3147
3148  if (!Record->isUnion() && !Owner->isRecord()) {
3149    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3150      << (int)getLangOpts().CPlusPlus;
3151    Invalid = true;
3152  }
3153
3154  // Mock up a declarator.
3155  Declarator Dc(DS, Declarator::MemberContext);
3156  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3157  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3158
3159  // Create a declaration for this anonymous struct/union.
3160  NamedDecl *Anon = 0;
3161  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3162    Anon = FieldDecl::Create(Context, OwningClass,
3163                             DS.getLocStart(),
3164                             Record->getLocation(),
3165                             /*IdentifierInfo=*/0,
3166                             Context.getTypeDeclType(Record),
3167                             TInfo,
3168                             /*BitWidth=*/0, /*Mutable=*/false,
3169                             /*InitStyle=*/ICIS_NoInit);
3170    Anon->setAccess(AS);
3171    if (getLangOpts().CPlusPlus)
3172      FieldCollector->Add(cast<FieldDecl>(Anon));
3173  } else {
3174    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3175    assert(SCSpec != DeclSpec::SCS_typedef &&
3176           "Parser allowed 'typedef' as storage class VarDecl.");
3177    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3178    if (SCSpec == DeclSpec::SCS_mutable) {
3179      // mutable can only appear on non-static class members, so it's always
3180      // an error here
3181      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3182      Invalid = true;
3183      SC = SC_None;
3184    }
3185    SCSpec = DS.getStorageClassSpecAsWritten();
3186    VarDecl::StorageClass SCAsWritten
3187      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3188
3189    Anon = VarDecl::Create(Context, Owner,
3190                           DS.getLocStart(),
3191                           Record->getLocation(), /*IdentifierInfo=*/0,
3192                           Context.getTypeDeclType(Record),
3193                           TInfo, SC, SCAsWritten);
3194
3195    // Default-initialize the implicit variable. This initialization will be
3196    // trivial in almost all cases, except if a union member has an in-class
3197    // initializer:
3198    //   union { int n = 0; };
3199    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3200  }
3201  Anon->setImplicit();
3202
3203  // Add the anonymous struct/union object to the current
3204  // context. We'll be referencing this object when we refer to one of
3205  // its members.
3206  Owner->addDecl(Anon);
3207
3208  // Inject the members of the anonymous struct/union into the owning
3209  // context and into the identifier resolver chain for name lookup
3210  // purposes.
3211  SmallVector<NamedDecl*, 2> Chain;
3212  Chain.push_back(Anon);
3213
3214  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3215                                          Chain, false))
3216    Invalid = true;
3217
3218  // Mark this as an anonymous struct/union type. Note that we do not
3219  // do this until after we have already checked and injected the
3220  // members of this anonymous struct/union type, because otherwise
3221  // the members could be injected twice: once by DeclContext when it
3222  // builds its lookup table, and once by
3223  // InjectAnonymousStructOrUnionMembers.
3224  Record->setAnonymousStructOrUnion(true);
3225
3226  if (Invalid)
3227    Anon->setInvalidDecl();
3228
3229  return Anon;
3230}
3231
3232/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3233/// Microsoft C anonymous structure.
3234/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3235/// Example:
3236///
3237/// struct A { int a; };
3238/// struct B { struct A; int b; };
3239///
3240/// void foo() {
3241///   B var;
3242///   var.a = 3;
3243/// }
3244///
3245Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3246                                           RecordDecl *Record) {
3247
3248  // If there is no Record, get the record via the typedef.
3249  if (!Record)
3250    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3251
3252  // Mock up a declarator.
3253  Declarator Dc(DS, Declarator::TypeNameContext);
3254  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3255  assert(TInfo && "couldn't build declarator info for anonymous struct");
3256
3257  // Create a declaration for this anonymous struct.
3258  NamedDecl* Anon = FieldDecl::Create(Context,
3259                             cast<RecordDecl>(CurContext),
3260                             DS.getLocStart(),
3261                             DS.getLocStart(),
3262                             /*IdentifierInfo=*/0,
3263                             Context.getTypeDeclType(Record),
3264                             TInfo,
3265                             /*BitWidth=*/0, /*Mutable=*/false,
3266                             /*InitStyle=*/ICIS_NoInit);
3267  Anon->setImplicit();
3268
3269  // Add the anonymous struct object to the current context.
3270  CurContext->addDecl(Anon);
3271
3272  // Inject the members of the anonymous struct into the current
3273  // context and into the identifier resolver chain for name lookup
3274  // purposes.
3275  SmallVector<NamedDecl*, 2> Chain;
3276  Chain.push_back(Anon);
3277
3278  RecordDecl *RecordDef = Record->getDefinition();
3279  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3280                                                        RecordDef, AS_none,
3281                                                        Chain, true))
3282    Anon->setInvalidDecl();
3283
3284  return Anon;
3285}
3286
3287/// GetNameForDeclarator - Determine the full declaration name for the
3288/// given Declarator.
3289DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3290  return GetNameFromUnqualifiedId(D.getName());
3291}
3292
3293/// \brief Retrieves the declaration name from a parsed unqualified-id.
3294DeclarationNameInfo
3295Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3296  DeclarationNameInfo NameInfo;
3297  NameInfo.setLoc(Name.StartLocation);
3298
3299  switch (Name.getKind()) {
3300
3301  case UnqualifiedId::IK_ImplicitSelfParam:
3302  case UnqualifiedId::IK_Identifier:
3303    NameInfo.setName(Name.Identifier);
3304    NameInfo.setLoc(Name.StartLocation);
3305    return NameInfo;
3306
3307  case UnqualifiedId::IK_OperatorFunctionId:
3308    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3309                                           Name.OperatorFunctionId.Operator));
3310    NameInfo.setLoc(Name.StartLocation);
3311    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3312      = Name.OperatorFunctionId.SymbolLocations[0];
3313    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3314      = Name.EndLocation.getRawEncoding();
3315    return NameInfo;
3316
3317  case UnqualifiedId::IK_LiteralOperatorId:
3318    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3319                                                           Name.Identifier));
3320    NameInfo.setLoc(Name.StartLocation);
3321    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3322    return NameInfo;
3323
3324  case UnqualifiedId::IK_ConversionFunctionId: {
3325    TypeSourceInfo *TInfo;
3326    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3327    if (Ty.isNull())
3328      return DeclarationNameInfo();
3329    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3330                                               Context.getCanonicalType(Ty)));
3331    NameInfo.setLoc(Name.StartLocation);
3332    NameInfo.setNamedTypeInfo(TInfo);
3333    return NameInfo;
3334  }
3335
3336  case UnqualifiedId::IK_ConstructorName: {
3337    TypeSourceInfo *TInfo;
3338    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3339    if (Ty.isNull())
3340      return DeclarationNameInfo();
3341    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3342                                              Context.getCanonicalType(Ty)));
3343    NameInfo.setLoc(Name.StartLocation);
3344    NameInfo.setNamedTypeInfo(TInfo);
3345    return NameInfo;
3346  }
3347
3348  case UnqualifiedId::IK_ConstructorTemplateId: {
3349    // In well-formed code, we can only have a constructor
3350    // template-id that refers to the current context, so go there
3351    // to find the actual type being constructed.
3352    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3353    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3354      return DeclarationNameInfo();
3355
3356    // Determine the type of the class being constructed.
3357    QualType CurClassType = Context.getTypeDeclType(CurClass);
3358
3359    // FIXME: Check two things: that the template-id names the same type as
3360    // CurClassType, and that the template-id does not occur when the name
3361    // was qualified.
3362
3363    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3364                                    Context.getCanonicalType(CurClassType)));
3365    NameInfo.setLoc(Name.StartLocation);
3366    // FIXME: should we retrieve TypeSourceInfo?
3367    NameInfo.setNamedTypeInfo(0);
3368    return NameInfo;
3369  }
3370
3371  case UnqualifiedId::IK_DestructorName: {
3372    TypeSourceInfo *TInfo;
3373    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3374    if (Ty.isNull())
3375      return DeclarationNameInfo();
3376    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3377                                              Context.getCanonicalType(Ty)));
3378    NameInfo.setLoc(Name.StartLocation);
3379    NameInfo.setNamedTypeInfo(TInfo);
3380    return NameInfo;
3381  }
3382
3383  case UnqualifiedId::IK_TemplateId: {
3384    TemplateName TName = Name.TemplateId->Template.get();
3385    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3386    return Context.getNameForTemplate(TName, TNameLoc);
3387  }
3388
3389  } // switch (Name.getKind())
3390
3391  llvm_unreachable("Unknown name kind");
3392}
3393
3394static QualType getCoreType(QualType Ty) {
3395  do {
3396    if (Ty->isPointerType() || Ty->isReferenceType())
3397      Ty = Ty->getPointeeType();
3398    else if (Ty->isArrayType())
3399      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3400    else
3401      return Ty.withoutLocalFastQualifiers();
3402  } while (true);
3403}
3404
3405/// hasSimilarParameters - Determine whether the C++ functions Declaration
3406/// and Definition have "nearly" matching parameters. This heuristic is
3407/// used to improve diagnostics in the case where an out-of-line function
3408/// definition doesn't match any declaration within the class or namespace.
3409/// Also sets Params to the list of indices to the parameters that differ
3410/// between the declaration and the definition. If hasSimilarParameters
3411/// returns true and Params is empty, then all of the parameters match.
3412static bool hasSimilarParameters(ASTContext &Context,
3413                                     FunctionDecl *Declaration,
3414                                     FunctionDecl *Definition,
3415                                     llvm::SmallVectorImpl<unsigned> &Params) {
3416  Params.clear();
3417  if (Declaration->param_size() != Definition->param_size())
3418    return false;
3419  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3420    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3421    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3422
3423    // The parameter types are identical
3424    if (Context.hasSameType(DefParamTy, DeclParamTy))
3425      continue;
3426
3427    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3428    QualType DefParamBaseTy = getCoreType(DefParamTy);
3429    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3430    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3431
3432    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3433        (DeclTyName && DeclTyName == DefTyName))
3434      Params.push_back(Idx);
3435    else  // The two parameters aren't even close
3436      return false;
3437  }
3438
3439  return true;
3440}
3441
3442/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3443/// declarator needs to be rebuilt in the current instantiation.
3444/// Any bits of declarator which appear before the name are valid for
3445/// consideration here.  That's specifically the type in the decl spec
3446/// and the base type in any member-pointer chunks.
3447static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3448                                                    DeclarationName Name) {
3449  // The types we specifically need to rebuild are:
3450  //   - typenames, typeofs, and decltypes
3451  //   - types which will become injected class names
3452  // Of course, we also need to rebuild any type referencing such a
3453  // type.  It's safest to just say "dependent", but we call out a
3454  // few cases here.
3455
3456  DeclSpec &DS = D.getMutableDeclSpec();
3457  switch (DS.getTypeSpecType()) {
3458  case DeclSpec::TST_typename:
3459  case DeclSpec::TST_typeofType:
3460  case DeclSpec::TST_underlyingType:
3461  case DeclSpec::TST_atomic: {
3462    // Grab the type from the parser.
3463    TypeSourceInfo *TSI = 0;
3464    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3465    if (T.isNull() || !T->isDependentType()) break;
3466
3467    // Make sure there's a type source info.  This isn't really much
3468    // of a waste; most dependent types should have type source info
3469    // attached already.
3470    if (!TSI)
3471      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3472
3473    // Rebuild the type in the current instantiation.
3474    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3475    if (!TSI) return true;
3476
3477    // Store the new type back in the decl spec.
3478    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3479    DS.UpdateTypeRep(LocType);
3480    break;
3481  }
3482
3483  case DeclSpec::TST_decltype:
3484  case DeclSpec::TST_typeofExpr: {
3485    Expr *E = DS.getRepAsExpr();
3486    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3487    if (Result.isInvalid()) return true;
3488    DS.UpdateExprRep(Result.get());
3489    break;
3490  }
3491
3492  default:
3493    // Nothing to do for these decl specs.
3494    break;
3495  }
3496
3497  // It doesn't matter what order we do this in.
3498  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3499    DeclaratorChunk &Chunk = D.getTypeObject(I);
3500
3501    // The only type information in the declarator which can come
3502    // before the declaration name is the base type of a member
3503    // pointer.
3504    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3505      continue;
3506
3507    // Rebuild the scope specifier in-place.
3508    CXXScopeSpec &SS = Chunk.Mem.Scope();
3509    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3510      return true;
3511  }
3512
3513  return false;
3514}
3515
3516Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3517  D.setFunctionDefinitionKind(FDK_Declaration);
3518  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3519
3520  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3521      Dcl && Dcl->getDeclContext()->isFileContext())
3522    Dcl->setTopLevelDeclInObjCContainer();
3523
3524  return Dcl;
3525}
3526
3527/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3528///   If T is the name of a class, then each of the following shall have a
3529///   name different from T:
3530///     - every static data member of class T;
3531///     - every member function of class T
3532///     - every member of class T that is itself a type;
3533/// \returns true if the declaration name violates these rules.
3534bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3535                                   DeclarationNameInfo NameInfo) {
3536  DeclarationName Name = NameInfo.getName();
3537
3538  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3539    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3540      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3541      return true;
3542    }
3543
3544  return false;
3545}
3546
3547/// \brief Diagnose a declaration whose declarator-id has the given
3548/// nested-name-specifier.
3549///
3550/// \param SS The nested-name-specifier of the declarator-id.
3551///
3552/// \param DC The declaration context to which the nested-name-specifier
3553/// resolves.
3554///
3555/// \param Name The name of the entity being declared.
3556///
3557/// \param Loc The location of the name of the entity being declared.
3558///
3559/// \returns true if we cannot safely recover from this error, false otherwise.
3560bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3561                                        DeclarationName Name,
3562                                      SourceLocation Loc) {
3563  DeclContext *Cur = CurContext;
3564  while (isa<LinkageSpecDecl>(Cur))
3565    Cur = Cur->getParent();
3566
3567  // C++ [dcl.meaning]p1:
3568  //   A declarator-id shall not be qualified except for the definition
3569  //   of a member function (9.3) or static data member (9.4) outside of
3570  //   its class, the definition or explicit instantiation of a function
3571  //   or variable member of a namespace outside of its namespace, or the
3572  //   definition of an explicit specialization outside of its namespace,
3573  //   or the declaration of a friend function that is a member of
3574  //   another class or namespace (11.3). [...]
3575
3576  // The user provided a superfluous scope specifier that refers back to the
3577  // class or namespaces in which the entity is already declared.
3578  //
3579  // class X {
3580  //   void X::f();
3581  // };
3582  if (Cur->Equals(DC)) {
3583    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3584                                   : diag::err_member_extra_qualification)
3585      << Name << FixItHint::CreateRemoval(SS.getRange());
3586    SS.clear();
3587    return false;
3588  }
3589
3590  // Check whether the qualifying scope encloses the scope of the original
3591  // declaration.
3592  if (!Cur->Encloses(DC)) {
3593    if (Cur->isRecord())
3594      Diag(Loc, diag::err_member_qualification)
3595        << Name << SS.getRange();
3596    else if (isa<TranslationUnitDecl>(DC))
3597      Diag(Loc, diag::err_invalid_declarator_global_scope)
3598        << Name << SS.getRange();
3599    else if (isa<FunctionDecl>(Cur))
3600      Diag(Loc, diag::err_invalid_declarator_in_function)
3601        << Name << SS.getRange();
3602    else
3603      Diag(Loc, diag::err_invalid_declarator_scope)
3604      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3605
3606    return true;
3607  }
3608
3609  if (Cur->isRecord()) {
3610    // Cannot qualify members within a class.
3611    Diag(Loc, diag::err_member_qualification)
3612      << Name << SS.getRange();
3613    SS.clear();
3614
3615    // C++ constructors and destructors with incorrect scopes can break
3616    // our AST invariants by having the wrong underlying types. If
3617    // that's the case, then drop this declaration entirely.
3618    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3619         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3620        !Context.hasSameType(Name.getCXXNameType(),
3621                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3622      return true;
3623
3624    return false;
3625  }
3626
3627  // C++11 [dcl.meaning]p1:
3628  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3629  //   not begin with a decltype-specifer"
3630  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3631  while (SpecLoc.getPrefix())
3632    SpecLoc = SpecLoc.getPrefix();
3633  if (dyn_cast_or_null<DecltypeType>(
3634        SpecLoc.getNestedNameSpecifier()->getAsType()))
3635    Diag(Loc, diag::err_decltype_in_declarator)
3636      << SpecLoc.getTypeLoc().getSourceRange();
3637
3638  return false;
3639}
3640
3641Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3642                             MultiTemplateParamsArg TemplateParamLists) {
3643  // TODO: consider using NameInfo for diagnostic.
3644  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3645  DeclarationName Name = NameInfo.getName();
3646
3647  // All of these full declarators require an identifier.  If it doesn't have
3648  // one, the ParsedFreeStandingDeclSpec action should be used.
3649  if (!Name) {
3650    if (!D.isInvalidType())  // Reject this if we think it is valid.
3651      Diag(D.getDeclSpec().getLocStart(),
3652           diag::err_declarator_need_ident)
3653        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3654    return 0;
3655  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3656    return 0;
3657
3658  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3659  // we find one that is.
3660  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3661         (S->getFlags() & Scope::TemplateParamScope) != 0)
3662    S = S->getParent();
3663
3664  DeclContext *DC = CurContext;
3665  if (D.getCXXScopeSpec().isInvalid())
3666    D.setInvalidType();
3667  else if (D.getCXXScopeSpec().isSet()) {
3668    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3669                                        UPPC_DeclarationQualifier))
3670      return 0;
3671
3672    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3673    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3674    if (!DC) {
3675      // If we could not compute the declaration context, it's because the
3676      // declaration context is dependent but does not refer to a class,
3677      // class template, or class template partial specialization. Complain
3678      // and return early, to avoid the coming semantic disaster.
3679      Diag(D.getIdentifierLoc(),
3680           diag::err_template_qualified_declarator_no_match)
3681        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3682        << D.getCXXScopeSpec().getRange();
3683      return 0;
3684    }
3685    bool IsDependentContext = DC->isDependentContext();
3686
3687    if (!IsDependentContext &&
3688        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3689      return 0;
3690
3691    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3692      Diag(D.getIdentifierLoc(),
3693           diag::err_member_def_undefined_record)
3694        << Name << DC << D.getCXXScopeSpec().getRange();
3695      D.setInvalidType();
3696    } else if (!D.getDeclSpec().isFriendSpecified()) {
3697      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3698                                      Name, D.getIdentifierLoc())) {
3699        if (DC->isRecord())
3700          return 0;
3701
3702        D.setInvalidType();
3703      }
3704    }
3705
3706    // Check whether we need to rebuild the type of the given
3707    // declaration in the current instantiation.
3708    if (EnteringContext && IsDependentContext &&
3709        TemplateParamLists.size() != 0) {
3710      ContextRAII SavedContext(*this, DC);
3711      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3712        D.setInvalidType();
3713    }
3714  }
3715
3716  if (DiagnoseClassNameShadow(DC, NameInfo))
3717    // If this is a typedef, we'll end up spewing multiple diagnostics.
3718    // Just return early; it's safer.
3719    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3720      return 0;
3721
3722  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3723  QualType R = TInfo->getType();
3724
3725  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3726                                      UPPC_DeclarationType))
3727    D.setInvalidType();
3728
3729  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3730                        ForRedeclaration);
3731
3732  // See if this is a redefinition of a variable in the same scope.
3733  if (!D.getCXXScopeSpec().isSet()) {
3734    bool IsLinkageLookup = false;
3735
3736    // If the declaration we're planning to build will be a function
3737    // or object with linkage, then look for another declaration with
3738    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3739    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3740      /* Do nothing*/;
3741    else if (R->isFunctionType()) {
3742      if (CurContext->isFunctionOrMethod() ||
3743          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3744        IsLinkageLookup = true;
3745    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3746      IsLinkageLookup = true;
3747    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3748             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3749      IsLinkageLookup = true;
3750
3751    if (IsLinkageLookup)
3752      Previous.clear(LookupRedeclarationWithLinkage);
3753
3754    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3755  } else { // Something like "int foo::x;"
3756    LookupQualifiedName(Previous, DC);
3757
3758    // C++ [dcl.meaning]p1:
3759    //   When the declarator-id is qualified, the declaration shall refer to a
3760    //  previously declared member of the class or namespace to which the
3761    //  qualifier refers (or, in the case of a namespace, of an element of the
3762    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3763    //  thereof; [...]
3764    //
3765    // Note that we already checked the context above, and that we do not have
3766    // enough information to make sure that Previous contains the declaration
3767    // we want to match. For example, given:
3768    //
3769    //   class X {
3770    //     void f();
3771    //     void f(float);
3772    //   };
3773    //
3774    //   void X::f(int) { } // ill-formed
3775    //
3776    // In this case, Previous will point to the overload set
3777    // containing the two f's declared in X, but neither of them
3778    // matches.
3779
3780    // C++ [dcl.meaning]p1:
3781    //   [...] the member shall not merely have been introduced by a
3782    //   using-declaration in the scope of the class or namespace nominated by
3783    //   the nested-name-specifier of the declarator-id.
3784    RemoveUsingDecls(Previous);
3785  }
3786
3787  if (Previous.isSingleResult() &&
3788      Previous.getFoundDecl()->isTemplateParameter()) {
3789    // Maybe we will complain about the shadowed template parameter.
3790    if (!D.isInvalidType())
3791      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3792                                      Previous.getFoundDecl());
3793
3794    // Just pretend that we didn't see the previous declaration.
3795    Previous.clear();
3796  }
3797
3798  // In C++, the previous declaration we find might be a tag type
3799  // (class or enum). In this case, the new declaration will hide the
3800  // tag type. Note that this does does not apply if we're declaring a
3801  // typedef (C++ [dcl.typedef]p4).
3802  if (Previous.isSingleTagDecl() &&
3803      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3804    Previous.clear();
3805
3806  NamedDecl *New;
3807
3808  bool AddToScope = true;
3809  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3810    if (TemplateParamLists.size()) {
3811      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3812      return 0;
3813    }
3814
3815    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3816  } else if (R->isFunctionType()) {
3817    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3818                                  TemplateParamLists,
3819                                  AddToScope);
3820  } else {
3821    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3822                                  TemplateParamLists);
3823  }
3824
3825  if (New == 0)
3826    return 0;
3827
3828  // If this has an identifier and is not an invalid redeclaration or
3829  // function template specialization, add it to the scope stack.
3830  if (New->getDeclName() && AddToScope &&
3831       !(D.isRedeclaration() && New->isInvalidDecl()))
3832    PushOnScopeChains(New, S);
3833
3834  return New;
3835}
3836
3837/// Helper method to turn variable array types into constant array
3838/// types in certain situations which would otherwise be errors (for
3839/// GCC compatibility).
3840static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3841                                                    ASTContext &Context,
3842                                                    bool &SizeIsNegative,
3843                                                    llvm::APSInt &Oversized) {
3844  // This method tries to turn a variable array into a constant
3845  // array even when the size isn't an ICE.  This is necessary
3846  // for compatibility with code that depends on gcc's buggy
3847  // constant expression folding, like struct {char x[(int)(char*)2];}
3848  SizeIsNegative = false;
3849  Oversized = 0;
3850
3851  if (T->isDependentType())
3852    return QualType();
3853
3854  QualifierCollector Qs;
3855  const Type *Ty = Qs.strip(T);
3856
3857  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3858    QualType Pointee = PTy->getPointeeType();
3859    QualType FixedType =
3860        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3861                                            Oversized);
3862    if (FixedType.isNull()) return FixedType;
3863    FixedType = Context.getPointerType(FixedType);
3864    return Qs.apply(Context, FixedType);
3865  }
3866  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3867    QualType Inner = PTy->getInnerType();
3868    QualType FixedType =
3869        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3870                                            Oversized);
3871    if (FixedType.isNull()) return FixedType;
3872    FixedType = Context.getParenType(FixedType);
3873    return Qs.apply(Context, FixedType);
3874  }
3875
3876  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3877  if (!VLATy)
3878    return QualType();
3879  // FIXME: We should probably handle this case
3880  if (VLATy->getElementType()->isVariablyModifiedType())
3881    return QualType();
3882
3883  llvm::APSInt Res;
3884  if (!VLATy->getSizeExpr() ||
3885      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3886    return QualType();
3887
3888  // Check whether the array size is negative.
3889  if (Res.isSigned() && Res.isNegative()) {
3890    SizeIsNegative = true;
3891    return QualType();
3892  }
3893
3894  // Check whether the array is too large to be addressed.
3895  unsigned ActiveSizeBits
3896    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3897                                              Res);
3898  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3899    Oversized = Res;
3900    return QualType();
3901  }
3902
3903  return Context.getConstantArrayType(VLATy->getElementType(),
3904                                      Res, ArrayType::Normal, 0);
3905}
3906
3907static void
3908FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
3909  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
3910    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
3911    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
3912                                      DstPTL->getPointeeLoc());
3913    DstPTL->setStarLoc(SrcPTL->getStarLoc());
3914    return;
3915  }
3916  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
3917    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
3918    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
3919                                      DstPTL->getInnerLoc());
3920    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
3921    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
3922    return;
3923  }
3924  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
3925  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
3926  TypeLoc SrcElemTL = SrcATL->getElementLoc();
3927  TypeLoc DstElemTL = DstATL->getElementLoc();
3928  DstElemTL.initializeFullCopy(SrcElemTL);
3929  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
3930  DstATL->setSizeExpr(SrcATL->getSizeExpr());
3931  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
3932}
3933
3934/// Helper method to turn variable array types into constant array
3935/// types in certain situations which would otherwise be errors (for
3936/// GCC compatibility).
3937static TypeSourceInfo*
3938TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
3939                                              ASTContext &Context,
3940                                              bool &SizeIsNegative,
3941                                              llvm::APSInt &Oversized) {
3942  QualType FixedTy
3943    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
3944                                          SizeIsNegative, Oversized);
3945  if (FixedTy.isNull())
3946    return 0;
3947  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
3948  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
3949                                    FixedTInfo->getTypeLoc());
3950  return FixedTInfo;
3951}
3952
3953/// \brief Register the given locally-scoped external C declaration so
3954/// that it can be found later for redeclarations
3955void
3956Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3957                                       const LookupResult &Previous,
3958                                       Scope *S) {
3959  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3960         "Decl is not a locally-scoped decl!");
3961  // Note that we have a locally-scoped external with this name.
3962  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3963
3964  if (!Previous.isSingleResult())
3965    return;
3966
3967  NamedDecl *PrevDecl = Previous.getFoundDecl();
3968
3969  // If there was a previous declaration of this variable, it may be
3970  // in our identifier chain. Update the identifier chain with the new
3971  // declaration.
3972  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3973    // The previous declaration was found on the identifer resolver
3974    // chain, so remove it from its scope.
3975
3976    if (S->isDeclScope(PrevDecl)) {
3977      // Special case for redeclarations in the SAME scope.
3978      // Because this declaration is going to be added to the identifier chain
3979      // later, we should temporarily take it OFF the chain.
3980      IdResolver.RemoveDecl(ND);
3981
3982    } else {
3983      // Find the scope for the original declaration.
3984      while (S && !S->isDeclScope(PrevDecl))
3985        S = S->getParent();
3986    }
3987
3988    if (S)
3989      S->RemoveDecl(PrevDecl);
3990  }
3991}
3992
3993llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3994Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3995  if (ExternalSource) {
3996    // Load locally-scoped external decls from the external source.
3997    SmallVector<NamedDecl *, 4> Decls;
3998    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3999    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4000      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4001        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
4002      if (Pos == LocallyScopedExternalDecls.end())
4003        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
4004    }
4005  }
4006
4007  return LocallyScopedExternalDecls.find(Name);
4008}
4009
4010/// \brief Diagnose function specifiers on a declaration of an identifier that
4011/// does not identify a function.
4012void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4013  // FIXME: We should probably indicate the identifier in question to avoid
4014  // confusion for constructs like "inline int a(), b;"
4015  if (D.getDeclSpec().isInlineSpecified())
4016    Diag(D.getDeclSpec().getInlineSpecLoc(),
4017         diag::err_inline_non_function);
4018
4019  if (D.getDeclSpec().isVirtualSpecified())
4020    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4021         diag::err_virtual_non_function);
4022
4023  if (D.getDeclSpec().isExplicitSpecified())
4024    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4025         diag::err_explicit_non_function);
4026}
4027
4028NamedDecl*
4029Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4030                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4031  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4032  if (D.getCXXScopeSpec().isSet()) {
4033    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4034      << D.getCXXScopeSpec().getRange();
4035    D.setInvalidType();
4036    // Pretend we didn't see the scope specifier.
4037    DC = CurContext;
4038    Previous.clear();
4039  }
4040
4041  if (getLangOpts().CPlusPlus) {
4042    // Check that there are no default arguments (C++ only).
4043    CheckExtraCXXDefaultArguments(D);
4044  }
4045
4046  DiagnoseFunctionSpecifiers(D);
4047
4048  if (D.getDeclSpec().isThreadSpecified())
4049    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4050  if (D.getDeclSpec().isConstexprSpecified())
4051    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4052      << 1;
4053
4054  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4055    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4056      << D.getName().getSourceRange();
4057    return 0;
4058  }
4059
4060  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4061  if (!NewTD) return 0;
4062
4063  // Handle attributes prior to checking for duplicates in MergeVarDecl
4064  ProcessDeclAttributes(S, NewTD, D);
4065
4066  CheckTypedefForVariablyModifiedType(S, NewTD);
4067
4068  bool Redeclaration = D.isRedeclaration();
4069  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4070  D.setRedeclaration(Redeclaration);
4071  return ND;
4072}
4073
4074void
4075Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4076  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4077  // then it shall have block scope.
4078  // Note that variably modified types must be fixed before merging the decl so
4079  // that redeclarations will match.
4080  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4081  QualType T = TInfo->getType();
4082  if (T->isVariablyModifiedType()) {
4083    getCurFunction()->setHasBranchProtectedScope();
4084
4085    if (S->getFnParent() == 0) {
4086      bool SizeIsNegative;
4087      llvm::APSInt Oversized;
4088      TypeSourceInfo *FixedTInfo =
4089        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4090                                                      SizeIsNegative,
4091                                                      Oversized);
4092      if (FixedTInfo) {
4093        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4094        NewTD->setTypeSourceInfo(FixedTInfo);
4095      } else {
4096        if (SizeIsNegative)
4097          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4098        else if (T->isVariableArrayType())
4099          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4100        else if (Oversized.getBoolValue())
4101          Diag(NewTD->getLocation(), diag::err_array_too_large)
4102            << Oversized.toString(10);
4103        else
4104          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4105        NewTD->setInvalidDecl();
4106      }
4107    }
4108  }
4109}
4110
4111
4112/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4113/// declares a typedef-name, either using the 'typedef' type specifier or via
4114/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4115NamedDecl*
4116Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4117                           LookupResult &Previous, bool &Redeclaration) {
4118  // Merge the decl with the existing one if appropriate. If the decl is
4119  // in an outer scope, it isn't the same thing.
4120  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4121                       /*ExplicitInstantiationOrSpecialization=*/false);
4122  if (!Previous.empty()) {
4123    Redeclaration = true;
4124    MergeTypedefNameDecl(NewTD, Previous);
4125  }
4126
4127  // If this is the C FILE type, notify the AST context.
4128  if (IdentifierInfo *II = NewTD->getIdentifier())
4129    if (!NewTD->isInvalidDecl() &&
4130        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4131      if (II->isStr("FILE"))
4132        Context.setFILEDecl(NewTD);
4133      else if (II->isStr("jmp_buf"))
4134        Context.setjmp_bufDecl(NewTD);
4135      else if (II->isStr("sigjmp_buf"))
4136        Context.setsigjmp_bufDecl(NewTD);
4137      else if (II->isStr("ucontext_t"))
4138        Context.setucontext_tDecl(NewTD);
4139    }
4140
4141  return NewTD;
4142}
4143
4144/// \brief Determines whether the given declaration is an out-of-scope
4145/// previous declaration.
4146///
4147/// This routine should be invoked when name lookup has found a
4148/// previous declaration (PrevDecl) that is not in the scope where a
4149/// new declaration by the same name is being introduced. If the new
4150/// declaration occurs in a local scope, previous declarations with
4151/// linkage may still be considered previous declarations (C99
4152/// 6.2.2p4-5, C++ [basic.link]p6).
4153///
4154/// \param PrevDecl the previous declaration found by name
4155/// lookup
4156///
4157/// \param DC the context in which the new declaration is being
4158/// declared.
4159///
4160/// \returns true if PrevDecl is an out-of-scope previous declaration
4161/// for a new delcaration with the same name.
4162static bool
4163isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4164                                ASTContext &Context) {
4165  if (!PrevDecl)
4166    return false;
4167
4168  if (!PrevDecl->hasLinkage())
4169    return false;
4170
4171  if (Context.getLangOpts().CPlusPlus) {
4172    // C++ [basic.link]p6:
4173    //   If there is a visible declaration of an entity with linkage
4174    //   having the same name and type, ignoring entities declared
4175    //   outside the innermost enclosing namespace scope, the block
4176    //   scope declaration declares that same entity and receives the
4177    //   linkage of the previous declaration.
4178    DeclContext *OuterContext = DC->getRedeclContext();
4179    if (!OuterContext->isFunctionOrMethod())
4180      // This rule only applies to block-scope declarations.
4181      return false;
4182
4183    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4184    if (PrevOuterContext->isRecord())
4185      // We found a member function: ignore it.
4186      return false;
4187
4188    // Find the innermost enclosing namespace for the new and
4189    // previous declarations.
4190    OuterContext = OuterContext->getEnclosingNamespaceContext();
4191    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4192
4193    // The previous declaration is in a different namespace, so it
4194    // isn't the same function.
4195    if (!OuterContext->Equals(PrevOuterContext))
4196      return false;
4197  }
4198
4199  return true;
4200}
4201
4202static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4203  CXXScopeSpec &SS = D.getCXXScopeSpec();
4204  if (!SS.isSet()) return;
4205  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4206}
4207
4208bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4209  QualType type = decl->getType();
4210  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4211  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4212    // Various kinds of declaration aren't allowed to be __autoreleasing.
4213    unsigned kind = -1U;
4214    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4215      if (var->hasAttr<BlocksAttr>())
4216        kind = 0; // __block
4217      else if (!var->hasLocalStorage())
4218        kind = 1; // global
4219    } else if (isa<ObjCIvarDecl>(decl)) {
4220      kind = 3; // ivar
4221    } else if (isa<FieldDecl>(decl)) {
4222      kind = 2; // field
4223    }
4224
4225    if (kind != -1U) {
4226      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4227        << kind;
4228    }
4229  } else if (lifetime == Qualifiers::OCL_None) {
4230    // Try to infer lifetime.
4231    if (!type->isObjCLifetimeType())
4232      return false;
4233
4234    lifetime = type->getObjCARCImplicitLifetime();
4235    type = Context.getLifetimeQualifiedType(type, lifetime);
4236    decl->setType(type);
4237  }
4238
4239  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4240    // Thread-local variables cannot have lifetime.
4241    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4242        var->isThreadSpecified()) {
4243      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4244        << var->getType();
4245      return true;
4246    }
4247  }
4248
4249  return false;
4250}
4251
4252NamedDecl*
4253Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4254                              TypeSourceInfo *TInfo, LookupResult &Previous,
4255                              MultiTemplateParamsArg TemplateParamLists) {
4256  QualType R = TInfo->getType();
4257  DeclarationName Name = GetNameForDeclarator(D).getName();
4258
4259  // Check that there are no default arguments (C++ only).
4260  if (getLangOpts().CPlusPlus)
4261    CheckExtraCXXDefaultArguments(D);
4262
4263  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4264  assert(SCSpec != DeclSpec::SCS_typedef &&
4265         "Parser allowed 'typedef' as storage class VarDecl.");
4266  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4267  if (SCSpec == DeclSpec::SCS_mutable) {
4268    // mutable can only appear on non-static class members, so it's always
4269    // an error here
4270    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4271    D.setInvalidType();
4272    SC = SC_None;
4273  }
4274  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4275  VarDecl::StorageClass SCAsWritten
4276    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4277
4278  IdentifierInfo *II = Name.getAsIdentifierInfo();
4279  if (!II) {
4280    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4281      << Name;
4282    return 0;
4283  }
4284
4285  DiagnoseFunctionSpecifiers(D);
4286
4287  if (!DC->isRecord() && S->getFnParent() == 0) {
4288    // C99 6.9p2: The storage-class specifiers auto and register shall not
4289    // appear in the declaration specifiers in an external declaration.
4290    if (SC == SC_Auto || SC == SC_Register) {
4291
4292      // If this is a register variable with an asm label specified, then this
4293      // is a GNU extension.
4294      if (SC == SC_Register && D.getAsmLabel())
4295        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4296      else
4297        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4298      D.setInvalidType();
4299    }
4300  }
4301
4302  if (getLangOpts().OpenCL) {
4303    // Set up the special work-group-local storage class for variables in the
4304    // OpenCL __local address space.
4305    if (R.getAddressSpace() == LangAS::opencl_local) {
4306      SC = SC_OpenCLWorkGroupLocal;
4307      SCAsWritten = SC_OpenCLWorkGroupLocal;
4308    }
4309  }
4310
4311  bool isExplicitSpecialization = false;
4312  VarDecl *NewVD;
4313  if (!getLangOpts().CPlusPlus) {
4314    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4315                            D.getIdentifierLoc(), II,
4316                            R, TInfo, SC, SCAsWritten);
4317
4318    if (D.isInvalidType())
4319      NewVD->setInvalidDecl();
4320  } else {
4321    if (DC->isRecord() && !CurContext->isRecord()) {
4322      // This is an out-of-line definition of a static data member.
4323      if (SC == SC_Static) {
4324        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4325             diag::err_static_out_of_line)
4326          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4327      } else if (SC == SC_None)
4328        SC = SC_Static;
4329    }
4330    if (SC == SC_Static && CurContext->isRecord()) {
4331      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4332        if (RD->isLocalClass())
4333          Diag(D.getIdentifierLoc(),
4334               diag::err_static_data_member_not_allowed_in_local_class)
4335            << Name << RD->getDeclName();
4336
4337        // C++98 [class.union]p1: If a union contains a static data member,
4338        // the program is ill-formed. C++11 drops this restriction.
4339        if (RD->isUnion())
4340          Diag(D.getIdentifierLoc(),
4341               getLangOpts().CPlusPlus11
4342                 ? diag::warn_cxx98_compat_static_data_member_in_union
4343                 : diag::ext_static_data_member_in_union) << Name;
4344        // We conservatively disallow static data members in anonymous structs.
4345        else if (!RD->getDeclName())
4346          Diag(D.getIdentifierLoc(),
4347               diag::err_static_data_member_not_allowed_in_anon_struct)
4348            << Name << RD->isUnion();
4349      }
4350    }
4351
4352    // Match up the template parameter lists with the scope specifier, then
4353    // determine whether we have a template or a template specialization.
4354    isExplicitSpecialization = false;
4355    bool Invalid = false;
4356    if (TemplateParameterList *TemplateParams
4357        = MatchTemplateParametersToScopeSpecifier(
4358                                  D.getDeclSpec().getLocStart(),
4359                                                  D.getIdentifierLoc(),
4360                                                  D.getCXXScopeSpec(),
4361                                                  TemplateParamLists.data(),
4362                                                  TemplateParamLists.size(),
4363                                                  /*never a friend*/ false,
4364                                                  isExplicitSpecialization,
4365                                                  Invalid)) {
4366      if (TemplateParams->size() > 0) {
4367        // There is no such thing as a variable template.
4368        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4369          << II
4370          << SourceRange(TemplateParams->getTemplateLoc(),
4371                         TemplateParams->getRAngleLoc());
4372        return 0;
4373      } else {
4374        // There is an extraneous 'template<>' for this variable. Complain
4375        // about it, but allow the declaration of the variable.
4376        Diag(TemplateParams->getTemplateLoc(),
4377             diag::err_template_variable_noparams)
4378          << II
4379          << SourceRange(TemplateParams->getTemplateLoc(),
4380                         TemplateParams->getRAngleLoc());
4381      }
4382    }
4383
4384    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4385                            D.getIdentifierLoc(), II,
4386                            R, TInfo, SC, SCAsWritten);
4387
4388    // If this decl has an auto type in need of deduction, make a note of the
4389    // Decl so we can diagnose uses of it in its own initializer.
4390    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4391        R->getContainedAutoType())
4392      ParsingInitForAutoVars.insert(NewVD);
4393
4394    if (D.isInvalidType() || Invalid)
4395      NewVD->setInvalidDecl();
4396
4397    SetNestedNameSpecifier(NewVD, D);
4398
4399    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4400      NewVD->setTemplateParameterListsInfo(Context,
4401                                           TemplateParamLists.size(),
4402                                           TemplateParamLists.data());
4403    }
4404
4405    if (D.getDeclSpec().isConstexprSpecified())
4406      NewVD->setConstexpr(true);
4407  }
4408
4409  // Set the lexical context. If the declarator has a C++ scope specifier, the
4410  // lexical context will be different from the semantic context.
4411  NewVD->setLexicalDeclContext(CurContext);
4412
4413  if (D.getDeclSpec().isThreadSpecified()) {
4414    if (NewVD->hasLocalStorage())
4415      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4416    else if (!Context.getTargetInfo().isTLSSupported())
4417      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4418    else
4419      NewVD->setThreadSpecified(true);
4420  }
4421
4422  if (D.getDeclSpec().isModulePrivateSpecified()) {
4423    if (isExplicitSpecialization)
4424      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4425        << 2
4426        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4427    else if (NewVD->hasLocalStorage())
4428      Diag(NewVD->getLocation(), diag::err_module_private_local)
4429        << 0 << NewVD->getDeclName()
4430        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4431        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4432    else
4433      NewVD->setModulePrivate();
4434  }
4435
4436  // Handle attributes prior to checking for duplicates in MergeVarDecl
4437  ProcessDeclAttributes(S, NewVD, D);
4438
4439  if (getLangOpts().CUDA) {
4440    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4441    // storage [duration]."
4442    if (SC == SC_None && S->getFnParent() != 0 &&
4443        (NewVD->hasAttr<CUDASharedAttr>() ||
4444         NewVD->hasAttr<CUDAConstantAttr>())) {
4445      NewVD->setStorageClass(SC_Static);
4446      NewVD->setStorageClassAsWritten(SC_Static);
4447    }
4448  }
4449
4450  // In auto-retain/release, infer strong retension for variables of
4451  // retainable type.
4452  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4453    NewVD->setInvalidDecl();
4454
4455  // Handle GNU asm-label extension (encoded as an attribute).
4456  if (Expr *E = (Expr*)D.getAsmLabel()) {
4457    // The parser guarantees this is a string.
4458    StringLiteral *SE = cast<StringLiteral>(E);
4459    StringRef Label = SE->getString();
4460    if (S->getFnParent() != 0) {
4461      switch (SC) {
4462      case SC_None:
4463      case SC_Auto:
4464        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4465        break;
4466      case SC_Register:
4467        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4468          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4469        break;
4470      case SC_Static:
4471      case SC_Extern:
4472      case SC_PrivateExtern:
4473      case SC_OpenCLWorkGroupLocal:
4474        break;
4475      }
4476    }
4477
4478    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4479                                                Context, Label));
4480  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4481    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4482      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4483    if (I != ExtnameUndeclaredIdentifiers.end()) {
4484      NewVD->addAttr(I->second);
4485      ExtnameUndeclaredIdentifiers.erase(I);
4486    }
4487  }
4488
4489  // Diagnose shadowed variables before filtering for scope.
4490  if (!D.getCXXScopeSpec().isSet())
4491    CheckShadow(S, NewVD, Previous);
4492
4493  // Don't consider existing declarations that are in a different
4494  // scope and are out-of-semantic-context declarations (if the new
4495  // declaration has linkage).
4496  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4497                       isExplicitSpecialization);
4498
4499  if (!getLangOpts().CPlusPlus) {
4500    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4501  } else {
4502    // Merge the decl with the existing one if appropriate.
4503    if (!Previous.empty()) {
4504      if (Previous.isSingleResult() &&
4505          isa<FieldDecl>(Previous.getFoundDecl()) &&
4506          D.getCXXScopeSpec().isSet()) {
4507        // The user tried to define a non-static data member
4508        // out-of-line (C++ [dcl.meaning]p1).
4509        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4510          << D.getCXXScopeSpec().getRange();
4511        Previous.clear();
4512        NewVD->setInvalidDecl();
4513      }
4514    } else if (D.getCXXScopeSpec().isSet()) {
4515      // No previous declaration in the qualifying scope.
4516      Diag(D.getIdentifierLoc(), diag::err_no_member)
4517        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4518        << D.getCXXScopeSpec().getRange();
4519      NewVD->setInvalidDecl();
4520    }
4521
4522    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4523
4524    // This is an explicit specialization of a static data member. Check it.
4525    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4526        CheckMemberSpecialization(NewVD, Previous))
4527      NewVD->setInvalidDecl();
4528  }
4529
4530  // If this is a locally-scoped extern C variable, update the map of
4531  // such variables.
4532  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4533      !NewVD->isInvalidDecl())
4534    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4535
4536  // If there's a #pragma GCC visibility in scope, and this isn't a class
4537  // member, set the visibility of this variable.
4538  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4539    AddPushedVisibilityAttribute(NewVD);
4540
4541  MarkUnusedFileScopedDecl(NewVD);
4542
4543  return NewVD;
4544}
4545
4546/// \brief Diagnose variable or built-in function shadowing.  Implements
4547/// -Wshadow.
4548///
4549/// This method is called whenever a VarDecl is added to a "useful"
4550/// scope.
4551///
4552/// \param S the scope in which the shadowing name is being declared
4553/// \param R the lookup of the name
4554///
4555void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4556  // Return if warning is ignored.
4557  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4558        DiagnosticsEngine::Ignored)
4559    return;
4560
4561  // Don't diagnose declarations at file scope.
4562  if (D->hasGlobalStorage())
4563    return;
4564
4565  DeclContext *NewDC = D->getDeclContext();
4566
4567  // Only diagnose if we're shadowing an unambiguous field or variable.
4568  if (R.getResultKind() != LookupResult::Found)
4569    return;
4570
4571  NamedDecl* ShadowedDecl = R.getFoundDecl();
4572  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4573    return;
4574
4575  // Fields are not shadowed by variables in C++ static methods.
4576  if (isa<FieldDecl>(ShadowedDecl))
4577    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4578      if (MD->isStatic())
4579        return;
4580
4581  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4582    if (shadowedVar->isExternC()) {
4583      // For shadowing external vars, make sure that we point to the global
4584      // declaration, not a locally scoped extern declaration.
4585      for (VarDecl::redecl_iterator
4586             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4587           I != E; ++I)
4588        if (I->isFileVarDecl()) {
4589          ShadowedDecl = *I;
4590          break;
4591        }
4592    }
4593
4594  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4595
4596  // Only warn about certain kinds of shadowing for class members.
4597  if (NewDC && NewDC->isRecord()) {
4598    // In particular, don't warn about shadowing non-class members.
4599    if (!OldDC->isRecord())
4600      return;
4601
4602    // TODO: should we warn about static data members shadowing
4603    // static data members from base classes?
4604
4605    // TODO: don't diagnose for inaccessible shadowed members.
4606    // This is hard to do perfectly because we might friend the
4607    // shadowing context, but that's just a false negative.
4608  }
4609
4610  // Determine what kind of declaration we're shadowing.
4611  unsigned Kind;
4612  if (isa<RecordDecl>(OldDC)) {
4613    if (isa<FieldDecl>(ShadowedDecl))
4614      Kind = 3; // field
4615    else
4616      Kind = 2; // static data member
4617  } else if (OldDC->isFileContext())
4618    Kind = 1; // global
4619  else
4620    Kind = 0; // local
4621
4622  DeclarationName Name = R.getLookupName();
4623
4624  // Emit warning and note.
4625  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4626  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4627}
4628
4629/// \brief Check -Wshadow without the advantage of a previous lookup.
4630void Sema::CheckShadow(Scope *S, VarDecl *D) {
4631  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4632        DiagnosticsEngine::Ignored)
4633    return;
4634
4635  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4636                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4637  LookupName(R, S);
4638  CheckShadow(S, D, R);
4639}
4640
4641/// \brief Perform semantic checking on a newly-created variable
4642/// declaration.
4643///
4644/// This routine performs all of the type-checking required for a
4645/// variable declaration once it has been built. It is used both to
4646/// check variables after they have been parsed and their declarators
4647/// have been translated into a declaration, and to check variables
4648/// that have been instantiated from a template.
4649///
4650/// Sets NewVD->isInvalidDecl() if an error was encountered.
4651///
4652/// Returns true if the variable declaration is a redeclaration.
4653bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4654                                    LookupResult &Previous) {
4655  // If the decl is already known invalid, don't check it.
4656  if (NewVD->isInvalidDecl())
4657    return false;
4658
4659  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4660  QualType T = TInfo->getType();
4661
4662  if (T->isObjCObjectType()) {
4663    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4664      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4665    T = Context.getObjCObjectPointerType(T);
4666    NewVD->setType(T);
4667  }
4668
4669  // Emit an error if an address space was applied to decl with local storage.
4670  // This includes arrays of objects with address space qualifiers, but not
4671  // automatic variables that point to other address spaces.
4672  // ISO/IEC TR 18037 S5.1.2
4673  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4674    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4675    NewVD->setInvalidDecl();
4676    return false;
4677  }
4678
4679  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4680  // scope.
4681  if ((getLangOpts().OpenCLVersion >= 120)
4682      && NewVD->isStaticLocal()) {
4683    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4684    NewVD->setInvalidDecl();
4685    return false;
4686  }
4687
4688  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4689      && !NewVD->hasAttr<BlocksAttr>()) {
4690    if (getLangOpts().getGC() != LangOptions::NonGC)
4691      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4692    else {
4693      assert(!getLangOpts().ObjCAutoRefCount);
4694      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4695    }
4696  }
4697
4698  bool isVM = T->isVariablyModifiedType();
4699  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4700      NewVD->hasAttr<BlocksAttr>())
4701    getCurFunction()->setHasBranchProtectedScope();
4702
4703  if ((isVM && NewVD->hasLinkage()) ||
4704      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4705    bool SizeIsNegative;
4706    llvm::APSInt Oversized;
4707    TypeSourceInfo *FixedTInfo =
4708      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4709                                                    SizeIsNegative, Oversized);
4710    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4711      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4712      // FIXME: This won't give the correct result for
4713      // int a[10][n];
4714      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4715
4716      if (NewVD->isFileVarDecl())
4717        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4718        << SizeRange;
4719      else if (NewVD->getStorageClass() == SC_Static)
4720        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4721        << SizeRange;
4722      else
4723        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4724        << SizeRange;
4725      NewVD->setInvalidDecl();
4726      return false;
4727    }
4728
4729    if (FixedTInfo == 0) {
4730      if (NewVD->isFileVarDecl())
4731        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4732      else
4733        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4734      NewVD->setInvalidDecl();
4735      return false;
4736    }
4737
4738    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4739    NewVD->setType(FixedTInfo->getType());
4740    NewVD->setTypeSourceInfo(FixedTInfo);
4741  }
4742
4743  if (Previous.empty() && NewVD->isExternC()) {
4744    // Since we did not find anything by this name and we're declaring
4745    // an extern "C" variable, look for a non-visible extern "C"
4746    // declaration with the same name.
4747    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4748      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4749    if (Pos != LocallyScopedExternalDecls.end())
4750      Previous.addDecl(Pos->second);
4751  }
4752
4753  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4754    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4755      << T;
4756    NewVD->setInvalidDecl();
4757    return false;
4758  }
4759
4760  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4761    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4762    NewVD->setInvalidDecl();
4763    return false;
4764  }
4765
4766  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4767    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4768    NewVD->setInvalidDecl();
4769    return false;
4770  }
4771
4772  if (NewVD->isConstexpr() && !T->isDependentType() &&
4773      RequireLiteralType(NewVD->getLocation(), T,
4774                         diag::err_constexpr_var_non_literal)) {
4775    NewVD->setInvalidDecl();
4776    return false;
4777  }
4778
4779  if (!Previous.empty()) {
4780    MergeVarDecl(NewVD, Previous);
4781    return true;
4782  }
4783  return false;
4784}
4785
4786/// \brief Data used with FindOverriddenMethod
4787struct FindOverriddenMethodData {
4788  Sema *S;
4789  CXXMethodDecl *Method;
4790};
4791
4792/// \brief Member lookup function that determines whether a given C++
4793/// method overrides a method in a base class, to be used with
4794/// CXXRecordDecl::lookupInBases().
4795static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4796                                 CXXBasePath &Path,
4797                                 void *UserData) {
4798  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4799
4800  FindOverriddenMethodData *Data
4801    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4802
4803  DeclarationName Name = Data->Method->getDeclName();
4804
4805  // FIXME: Do we care about other names here too?
4806  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4807    // We really want to find the base class destructor here.
4808    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4809    CanQualType CT = Data->S->Context.getCanonicalType(T);
4810
4811    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4812  }
4813
4814  for (Path.Decls = BaseRecord->lookup(Name);
4815       !Path.Decls.empty();
4816       Path.Decls = Path.Decls.slice(1)) {
4817    NamedDecl *D = Path.Decls.front();
4818    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4819      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4820        return true;
4821    }
4822  }
4823
4824  return false;
4825}
4826
4827namespace {
4828  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
4829}
4830/// \brief Report an error regarding overriding, along with any relevant
4831/// overriden methods.
4832///
4833/// \param DiagID the primary error to report.
4834/// \param MD the overriding method.
4835/// \param OEK which overrides to include as notes.
4836static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
4837                            OverrideErrorKind OEK = OEK_All) {
4838  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
4839  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4840                                      E = MD->end_overridden_methods();
4841       I != E; ++I) {
4842    // This check (& the OEK parameter) could be replaced by a predicate, but
4843    // without lambdas that would be overkill. This is still nicer than writing
4844    // out the diag loop 3 times.
4845    if ((OEK == OEK_All) ||
4846        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
4847        (OEK == OEK_Deleted && (*I)->isDeleted()))
4848      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
4849  }
4850}
4851
4852/// AddOverriddenMethods - See if a method overrides any in the base classes,
4853/// and if so, check that it's a valid override and remember it.
4854bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4855  // Look for virtual methods in base classes that this method might override.
4856  CXXBasePaths Paths;
4857  FindOverriddenMethodData Data;
4858  Data.Method = MD;
4859  Data.S = this;
4860  bool hasDeletedOverridenMethods = false;
4861  bool hasNonDeletedOverridenMethods = false;
4862  bool AddedAny = false;
4863  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4864    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4865         E = Paths.found_decls_end(); I != E; ++I) {
4866      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4867        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4868        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4869            !CheckOverridingFunctionAttributes(MD, OldMD) &&
4870            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4871            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4872          hasDeletedOverridenMethods |= OldMD->isDeleted();
4873          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
4874          AddedAny = true;
4875        }
4876      }
4877    }
4878  }
4879
4880  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
4881    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
4882  }
4883  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
4884    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
4885  }
4886
4887  return AddedAny;
4888}
4889
4890namespace {
4891  // Struct for holding all of the extra arguments needed by
4892  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4893  struct ActOnFDArgs {
4894    Scope *S;
4895    Declarator &D;
4896    MultiTemplateParamsArg TemplateParamLists;
4897    bool AddToScope;
4898  };
4899}
4900
4901namespace {
4902
4903// Callback to only accept typo corrections that have a non-zero edit distance.
4904// Also only accept corrections that have the same parent decl.
4905class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4906 public:
4907  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4908                            CXXRecordDecl *Parent)
4909      : Context(Context), OriginalFD(TypoFD),
4910        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4911
4912  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4913    if (candidate.getEditDistance() == 0)
4914      return false;
4915
4916    llvm::SmallVector<unsigned, 1> MismatchedParams;
4917    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4918                                          CDeclEnd = candidate.end();
4919         CDecl != CDeclEnd; ++CDecl) {
4920      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4921
4922      if (FD && !FD->hasBody() &&
4923          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4924        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4925          CXXRecordDecl *Parent = MD->getParent();
4926          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4927            return true;
4928        } else if (!ExpectedParent) {
4929          return true;
4930        }
4931      }
4932    }
4933
4934    return false;
4935  }
4936
4937 private:
4938  ASTContext &Context;
4939  FunctionDecl *OriginalFD;
4940  CXXRecordDecl *ExpectedParent;
4941};
4942
4943}
4944
4945/// \brief Generate diagnostics for an invalid function redeclaration.
4946///
4947/// This routine handles generating the diagnostic messages for an invalid
4948/// function redeclaration, including finding possible similar declarations
4949/// or performing typo correction if there are no previous declarations with
4950/// the same name.
4951///
4952/// Returns a NamedDecl iff typo correction was performed and substituting in
4953/// the new declaration name does not cause new errors.
4954static NamedDecl* DiagnoseInvalidRedeclaration(
4955    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4956    ActOnFDArgs &ExtraArgs) {
4957  NamedDecl *Result = NULL;
4958  DeclarationName Name = NewFD->getDeclName();
4959  DeclContext *NewDC = NewFD->getDeclContext();
4960  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4961                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4962  llvm::SmallVector<unsigned, 1> MismatchedParams;
4963  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4964  TypoCorrection Correction;
4965  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4966                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4967  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4968                                  : diag::err_member_def_does_not_match;
4969
4970  NewFD->setInvalidDecl();
4971  SemaRef.LookupQualifiedName(Prev, NewDC);
4972  assert(!Prev.isAmbiguous() &&
4973         "Cannot have an ambiguity in previous-declaration lookup");
4974  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4975  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4976                                      MD ? MD->getParent() : 0);
4977  if (!Prev.empty()) {
4978    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4979         Func != FuncEnd; ++Func) {
4980      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4981      if (FD &&
4982          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4983        // Add 1 to the index so that 0 can mean the mismatch didn't
4984        // involve a parameter
4985        unsigned ParamNum =
4986            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4987        NearMatches.push_back(std::make_pair(FD, ParamNum));
4988      }
4989    }
4990  // If the qualified name lookup yielded nothing, try typo correction
4991  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4992                                         Prev.getLookupKind(), 0, 0,
4993                                         Validator, NewDC))) {
4994    // Trap errors.
4995    Sema::SFINAETrap Trap(SemaRef);
4996
4997    // Set up everything for the call to ActOnFunctionDeclarator
4998    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4999                              ExtraArgs.D.getIdentifierLoc());
5000    Previous.clear();
5001    Previous.setLookupName(Correction.getCorrection());
5002    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5003                                    CDeclEnd = Correction.end();
5004         CDecl != CDeclEnd; ++CDecl) {
5005      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5006      if (FD && !FD->hasBody() &&
5007          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5008        Previous.addDecl(FD);
5009      }
5010    }
5011    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5012    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5013    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5014    // eliminate the need for the parameter pack ExtraArgs.
5015    Result = SemaRef.ActOnFunctionDeclarator(
5016        ExtraArgs.S, ExtraArgs.D,
5017        Correction.getCorrectionDecl()->getDeclContext(),
5018        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5019        ExtraArgs.AddToScope);
5020    if (Trap.hasErrorOccurred()) {
5021      // Pretend the typo correction never occurred
5022      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5023                                ExtraArgs.D.getIdentifierLoc());
5024      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5025      Previous.clear();
5026      Previous.setLookupName(Name);
5027      Result = NULL;
5028    } else {
5029      for (LookupResult::iterator Func = Previous.begin(),
5030                               FuncEnd = Previous.end();
5031           Func != FuncEnd; ++Func) {
5032        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5033          NearMatches.push_back(std::make_pair(FD, 0));
5034      }
5035    }
5036    if (NearMatches.empty()) {
5037      // Ignore the correction if it didn't yield any close FunctionDecl matches
5038      Correction = TypoCorrection();
5039    } else {
5040      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5041                             : diag::err_member_def_does_not_match_suggest;
5042    }
5043  }
5044
5045  if (Correction) {
5046    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5047    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5048    // turn causes the correction to fully qualify the name. If we fix
5049    // CorrectTypo to minimally qualify then this change should be good.
5050    SourceRange FixItLoc(NewFD->getLocation());
5051    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5052    if (Correction.getCorrectionSpecifier() && SS.isValid())
5053      FixItLoc.setBegin(SS.getBeginLoc());
5054    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5055        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5056        << FixItHint::CreateReplacement(
5057            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5058  } else {
5059    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5060        << Name << NewDC << NewFD->getLocation();
5061  }
5062
5063  bool NewFDisConst = false;
5064  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5065    NewFDisConst = NewMD->isConst();
5066
5067  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
5068       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5069       NearMatch != NearMatchEnd; ++NearMatch) {
5070    FunctionDecl *FD = NearMatch->first;
5071    bool FDisConst = false;
5072    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5073      FDisConst = MD->isConst();
5074
5075    if (unsigned Idx = NearMatch->second) {
5076      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5077      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5078      if (Loc.isInvalid()) Loc = FD->getLocation();
5079      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5080          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5081    } else if (Correction) {
5082      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5083          << Correction.getQuoted(SemaRef.getLangOpts());
5084    } else if (FDisConst != NewFDisConst) {
5085      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5086          << NewFDisConst << FD->getSourceRange().getEnd();
5087    } else
5088      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5089  }
5090  return Result;
5091}
5092
5093static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5094                                                          Declarator &D) {
5095  switch (D.getDeclSpec().getStorageClassSpec()) {
5096  default: llvm_unreachable("Unknown storage class!");
5097  case DeclSpec::SCS_auto:
5098  case DeclSpec::SCS_register:
5099  case DeclSpec::SCS_mutable:
5100    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5101                 diag::err_typecheck_sclass_func);
5102    D.setInvalidType();
5103    break;
5104  case DeclSpec::SCS_unspecified: break;
5105  case DeclSpec::SCS_extern: return SC_Extern;
5106  case DeclSpec::SCS_static: {
5107    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5108      // C99 6.7.1p5:
5109      //   The declaration of an identifier for a function that has
5110      //   block scope shall have no explicit storage-class specifier
5111      //   other than extern
5112      // See also (C++ [dcl.stc]p4).
5113      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5114                   diag::err_static_block_func);
5115      break;
5116    } else
5117      return SC_Static;
5118  }
5119  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5120  }
5121
5122  // No explicit storage class has already been returned
5123  return SC_None;
5124}
5125
5126static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5127                                           DeclContext *DC, QualType &R,
5128                                           TypeSourceInfo *TInfo,
5129                                           FunctionDecl::StorageClass SC,
5130                                           bool &IsVirtualOkay) {
5131  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5132  DeclarationName Name = NameInfo.getName();
5133
5134  FunctionDecl *NewFD = 0;
5135  bool isInline = D.getDeclSpec().isInlineSpecified();
5136  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5137  FunctionDecl::StorageClass SCAsWritten
5138    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5139
5140  if (!SemaRef.getLangOpts().CPlusPlus) {
5141    // Determine whether the function was written with a
5142    // prototype. This true when:
5143    //   - there is a prototype in the declarator, or
5144    //   - the type R of the function is some kind of typedef or other reference
5145    //     to a type name (which eventually refers to a function type).
5146    bool HasPrototype =
5147      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5148      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5149
5150    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5151                                 D.getLocStart(), NameInfo, R,
5152                                 TInfo, SC, SCAsWritten, isInline,
5153                                 HasPrototype);
5154    if (D.isInvalidType())
5155      NewFD->setInvalidDecl();
5156
5157    // Set the lexical context.
5158    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5159
5160    return NewFD;
5161  }
5162
5163  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5164  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5165
5166  // Check that the return type is not an abstract class type.
5167  // For record types, this is done by the AbstractClassUsageDiagnoser once
5168  // the class has been completely parsed.
5169  if (!DC->isRecord() &&
5170      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5171                                     R->getAs<FunctionType>()->getResultType(),
5172                                     diag::err_abstract_type_in_decl,
5173                                     SemaRef.AbstractReturnType))
5174    D.setInvalidType();
5175
5176  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5177    // This is a C++ constructor declaration.
5178    assert(DC->isRecord() &&
5179           "Constructors can only be declared in a member context");
5180
5181    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5182    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5183                                      D.getLocStart(), NameInfo,
5184                                      R, TInfo, isExplicit, isInline,
5185                                      /*isImplicitlyDeclared=*/false,
5186                                      isConstexpr);
5187
5188  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5189    // This is a C++ destructor declaration.
5190    if (DC->isRecord()) {
5191      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5192      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5193      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5194                                        SemaRef.Context, Record,
5195                                        D.getLocStart(),
5196                                        NameInfo, R, TInfo, isInline,
5197                                        /*isImplicitlyDeclared=*/false);
5198
5199      // If the class is complete, then we now create the implicit exception
5200      // specification. If the class is incomplete or dependent, we can't do
5201      // it yet.
5202      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5203          Record->getDefinition() && !Record->isBeingDefined() &&
5204          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5205        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5206      }
5207
5208      IsVirtualOkay = true;
5209      return NewDD;
5210
5211    } else {
5212      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5213      D.setInvalidType();
5214
5215      // Create a FunctionDecl to satisfy the function definition parsing
5216      // code path.
5217      return FunctionDecl::Create(SemaRef.Context, DC,
5218                                  D.getLocStart(),
5219                                  D.getIdentifierLoc(), Name, R, TInfo,
5220                                  SC, SCAsWritten, isInline,
5221                                  /*hasPrototype=*/true, isConstexpr);
5222    }
5223
5224  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5225    if (!DC->isRecord()) {
5226      SemaRef.Diag(D.getIdentifierLoc(),
5227           diag::err_conv_function_not_member);
5228      return 0;
5229    }
5230
5231    SemaRef.CheckConversionDeclarator(D, R, SC);
5232    IsVirtualOkay = true;
5233    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5234                                     D.getLocStart(), NameInfo,
5235                                     R, TInfo, isInline, isExplicit,
5236                                     isConstexpr, SourceLocation());
5237
5238  } else if (DC->isRecord()) {
5239    // If the name of the function is the same as the name of the record,
5240    // then this must be an invalid constructor that has a return type.
5241    // (The parser checks for a return type and makes the declarator a
5242    // constructor if it has no return type).
5243    if (Name.getAsIdentifierInfo() &&
5244        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5245      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5246        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5247        << SourceRange(D.getIdentifierLoc());
5248      return 0;
5249    }
5250
5251    bool isStatic = SC == SC_Static;
5252
5253    // [class.free]p1:
5254    // Any allocation function for a class T is a static member
5255    // (even if not explicitly declared static).
5256    if (Name.getCXXOverloadedOperator() == OO_New ||
5257        Name.getCXXOverloadedOperator() == OO_Array_New)
5258      isStatic = true;
5259
5260    // [class.free]p6 Any deallocation function for a class X is a static member
5261    // (even if not explicitly declared static).
5262    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5263        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5264      isStatic = true;
5265
5266    IsVirtualOkay = !isStatic;
5267
5268    // This is a C++ method declaration.
5269    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5270                                 D.getLocStart(), NameInfo, R,
5271                                 TInfo, isStatic, SCAsWritten, isInline,
5272                                 isConstexpr, SourceLocation());
5273
5274  } else {
5275    // Determine whether the function was written with a
5276    // prototype. This true when:
5277    //   - we're in C++ (where every function has a prototype),
5278    return FunctionDecl::Create(SemaRef.Context, DC,
5279                                D.getLocStart(),
5280                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5281                                true/*HasPrototype*/, isConstexpr);
5282  }
5283}
5284
5285void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5286  // In C++, the empty parameter-type-list must be spelled "void"; a
5287  // typedef of void is not permitted.
5288  if (getLangOpts().CPlusPlus &&
5289      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5290    bool IsTypeAlias = false;
5291    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5292      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5293    else if (const TemplateSpecializationType *TST =
5294               Param->getType()->getAs<TemplateSpecializationType>())
5295      IsTypeAlias = TST->isTypeAlias();
5296    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5297      << IsTypeAlias;
5298  }
5299}
5300
5301NamedDecl*
5302Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5303                              TypeSourceInfo *TInfo, LookupResult &Previous,
5304                              MultiTemplateParamsArg TemplateParamLists,
5305                              bool &AddToScope) {
5306  QualType R = TInfo->getType();
5307
5308  assert(R.getTypePtr()->isFunctionType());
5309
5310  // TODO: consider using NameInfo for diagnostic.
5311  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5312  DeclarationName Name = NameInfo.getName();
5313  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5314
5315  if (D.getDeclSpec().isThreadSpecified())
5316    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5317
5318  // Do not allow returning a objc interface by-value.
5319  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5320    Diag(D.getIdentifierLoc(),
5321         diag::err_object_cannot_be_passed_returned_by_value) << 0
5322    << R->getAs<FunctionType>()->getResultType()
5323    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5324
5325    QualType T = R->getAs<FunctionType>()->getResultType();
5326    T = Context.getObjCObjectPointerType(T);
5327    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5328      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5329      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5330                                  FPT->getNumArgs(), EPI);
5331    }
5332    else if (isa<FunctionNoProtoType>(R))
5333      R = Context.getFunctionNoProtoType(T);
5334  }
5335
5336  bool isFriend = false;
5337  FunctionTemplateDecl *FunctionTemplate = 0;
5338  bool isExplicitSpecialization = false;
5339  bool isFunctionTemplateSpecialization = false;
5340
5341  bool isDependentClassScopeExplicitSpecialization = false;
5342  bool HasExplicitTemplateArgs = false;
5343  TemplateArgumentListInfo TemplateArgs;
5344
5345  bool isVirtualOkay = false;
5346
5347  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5348                                              isVirtualOkay);
5349  if (!NewFD) return 0;
5350
5351  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5352    NewFD->setTopLevelDeclInObjCContainer();
5353
5354  if (getLangOpts().CPlusPlus) {
5355    bool isInline = D.getDeclSpec().isInlineSpecified();
5356    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5357    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5358    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5359    isFriend = D.getDeclSpec().isFriendSpecified();
5360    if (isFriend && !isInline && D.isFunctionDefinition()) {
5361      // C++ [class.friend]p5
5362      //   A function can be defined in a friend declaration of a
5363      //   class . . . . Such a function is implicitly inline.
5364      NewFD->setImplicitlyInline();
5365    }
5366
5367    // If this is a method defined in an __interface, and is not a constructor
5368    // or an overloaded operator, then set the pure flag (isVirtual will already
5369    // return true).
5370    if (const CXXRecordDecl *Parent =
5371          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5372      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5373        NewFD->setPure(true);
5374    }
5375
5376    SetNestedNameSpecifier(NewFD, D);
5377    isExplicitSpecialization = false;
5378    isFunctionTemplateSpecialization = false;
5379    if (D.isInvalidType())
5380      NewFD->setInvalidDecl();
5381
5382    // Set the lexical context. If the declarator has a C++
5383    // scope specifier, or is the object of a friend declaration, the
5384    // lexical context will be different from the semantic context.
5385    NewFD->setLexicalDeclContext(CurContext);
5386
5387    // Match up the template parameter lists with the scope specifier, then
5388    // determine whether we have a template or a template specialization.
5389    bool Invalid = false;
5390    if (TemplateParameterList *TemplateParams
5391          = MatchTemplateParametersToScopeSpecifier(
5392                                  D.getDeclSpec().getLocStart(),
5393                                  D.getIdentifierLoc(),
5394                                  D.getCXXScopeSpec(),
5395                                  TemplateParamLists.data(),
5396                                  TemplateParamLists.size(),
5397                                  isFriend,
5398                                  isExplicitSpecialization,
5399                                  Invalid)) {
5400      if (TemplateParams->size() > 0) {
5401        // This is a function template
5402
5403        // Check that we can declare a template here.
5404        if (CheckTemplateDeclScope(S, TemplateParams))
5405          return 0;
5406
5407        // A destructor cannot be a template.
5408        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5409          Diag(NewFD->getLocation(), diag::err_destructor_template);
5410          return 0;
5411        }
5412
5413        // If we're adding a template to a dependent context, we may need to
5414        // rebuilding some of the types used within the template parameter list,
5415        // now that we know what the current instantiation is.
5416        if (DC->isDependentContext()) {
5417          ContextRAII SavedContext(*this, DC);
5418          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5419            Invalid = true;
5420        }
5421
5422
5423        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5424                                                        NewFD->getLocation(),
5425                                                        Name, TemplateParams,
5426                                                        NewFD);
5427        FunctionTemplate->setLexicalDeclContext(CurContext);
5428        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5429
5430        // For source fidelity, store the other template param lists.
5431        if (TemplateParamLists.size() > 1) {
5432          NewFD->setTemplateParameterListsInfo(Context,
5433                                               TemplateParamLists.size() - 1,
5434                                               TemplateParamLists.data());
5435        }
5436      } else {
5437        // This is a function template specialization.
5438        isFunctionTemplateSpecialization = true;
5439        // For source fidelity, store all the template param lists.
5440        NewFD->setTemplateParameterListsInfo(Context,
5441                                             TemplateParamLists.size(),
5442                                             TemplateParamLists.data());
5443
5444        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5445        if (isFriend) {
5446          // We want to remove the "template<>", found here.
5447          SourceRange RemoveRange = TemplateParams->getSourceRange();
5448
5449          // If we remove the template<> and the name is not a
5450          // template-id, we're actually silently creating a problem:
5451          // the friend declaration will refer to an untemplated decl,
5452          // and clearly the user wants a template specialization.  So
5453          // we need to insert '<>' after the name.
5454          SourceLocation InsertLoc;
5455          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5456            InsertLoc = D.getName().getSourceRange().getEnd();
5457            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5458          }
5459
5460          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5461            << Name << RemoveRange
5462            << FixItHint::CreateRemoval(RemoveRange)
5463            << FixItHint::CreateInsertion(InsertLoc, "<>");
5464        }
5465      }
5466    }
5467    else {
5468      // All template param lists were matched against the scope specifier:
5469      // this is NOT (an explicit specialization of) a template.
5470      if (TemplateParamLists.size() > 0)
5471        // For source fidelity, store all the template param lists.
5472        NewFD->setTemplateParameterListsInfo(Context,
5473                                             TemplateParamLists.size(),
5474                                             TemplateParamLists.data());
5475    }
5476
5477    if (Invalid) {
5478      NewFD->setInvalidDecl();
5479      if (FunctionTemplate)
5480        FunctionTemplate->setInvalidDecl();
5481    }
5482
5483    // C++ [dcl.fct.spec]p5:
5484    //   The virtual specifier shall only be used in declarations of
5485    //   nonstatic class member functions that appear within a
5486    //   member-specification of a class declaration; see 10.3.
5487    //
5488    if (isVirtual && !NewFD->isInvalidDecl()) {
5489      if (!isVirtualOkay) {
5490        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5491             diag::err_virtual_non_function);
5492      } else if (!CurContext->isRecord()) {
5493        // 'virtual' was specified outside of the class.
5494        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5495             diag::err_virtual_out_of_class)
5496          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5497      } else if (NewFD->getDescribedFunctionTemplate()) {
5498        // C++ [temp.mem]p3:
5499        //  A member function template shall not be virtual.
5500        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5501             diag::err_virtual_member_function_template)
5502          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5503      } else {
5504        // Okay: Add virtual to the method.
5505        NewFD->setVirtualAsWritten(true);
5506      }
5507    }
5508
5509    // C++ [dcl.fct.spec]p3:
5510    //  The inline specifier shall not appear on a block scope function
5511    //  declaration.
5512    if (isInline && !NewFD->isInvalidDecl()) {
5513      if (CurContext->isFunctionOrMethod()) {
5514        // 'inline' is not allowed on block scope function declaration.
5515        Diag(D.getDeclSpec().getInlineSpecLoc(),
5516             diag::err_inline_declaration_block_scope) << Name
5517          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5518      }
5519    }
5520
5521    // C++ [dcl.fct.spec]p6:
5522    //  The explicit specifier shall be used only in the declaration of a
5523    //  constructor or conversion function within its class definition;
5524    //  see 12.3.1 and 12.3.2.
5525    if (isExplicit && !NewFD->isInvalidDecl()) {
5526      if (!CurContext->isRecord()) {
5527        // 'explicit' was specified outside of the class.
5528        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5529             diag::err_explicit_out_of_class)
5530          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5531      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5532                 !isa<CXXConversionDecl>(NewFD)) {
5533        // 'explicit' was specified on a function that wasn't a constructor
5534        // or conversion function.
5535        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5536             diag::err_explicit_non_ctor_or_conv_function)
5537          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5538      }
5539    }
5540
5541    if (isConstexpr) {
5542      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5543      // are implicitly inline.
5544      NewFD->setImplicitlyInline();
5545
5546      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5547      // be either constructors or to return a literal type. Therefore,
5548      // destructors cannot be declared constexpr.
5549      if (isa<CXXDestructorDecl>(NewFD))
5550        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5551    }
5552
5553    // If __module_private__ was specified, mark the function accordingly.
5554    if (D.getDeclSpec().isModulePrivateSpecified()) {
5555      if (isFunctionTemplateSpecialization) {
5556        SourceLocation ModulePrivateLoc
5557          = D.getDeclSpec().getModulePrivateSpecLoc();
5558        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5559          << 0
5560          << FixItHint::CreateRemoval(ModulePrivateLoc);
5561      } else {
5562        NewFD->setModulePrivate();
5563        if (FunctionTemplate)
5564          FunctionTemplate->setModulePrivate();
5565      }
5566    }
5567
5568    if (isFriend) {
5569      // For now, claim that the objects have no previous declaration.
5570      if (FunctionTemplate) {
5571        FunctionTemplate->setObjectOfFriendDecl(false);
5572        FunctionTemplate->setAccess(AS_public);
5573      }
5574      NewFD->setObjectOfFriendDecl(false);
5575      NewFD->setAccess(AS_public);
5576    }
5577
5578    // If a function is defined as defaulted or deleted, mark it as such now.
5579    switch (D.getFunctionDefinitionKind()) {
5580      case FDK_Declaration:
5581      case FDK_Definition:
5582        break;
5583
5584      case FDK_Defaulted:
5585        NewFD->setDefaulted();
5586        break;
5587
5588      case FDK_Deleted:
5589        NewFD->setDeletedAsWritten();
5590        break;
5591    }
5592
5593    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5594        D.isFunctionDefinition()) {
5595      // C++ [class.mfct]p2:
5596      //   A member function may be defined (8.4) in its class definition, in
5597      //   which case it is an inline member function (7.1.2)
5598      NewFD->setImplicitlyInline();
5599    }
5600
5601    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5602        !CurContext->isRecord()) {
5603      // C++ [class.static]p1:
5604      //   A data or function member of a class may be declared static
5605      //   in a class definition, in which case it is a static member of
5606      //   the class.
5607
5608      // Complain about the 'static' specifier if it's on an out-of-line
5609      // member function definition.
5610      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5611           diag::err_static_out_of_line)
5612        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5613    }
5614
5615    // C++11 [except.spec]p15:
5616    //   A deallocation function with no exception-specification is treated
5617    //   as if it were specified with noexcept(true).
5618    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5619    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5620         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5621        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5622      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5623      EPI.ExceptionSpecType = EST_BasicNoexcept;
5624      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5625                                             FPT->arg_type_begin(),
5626                                             FPT->getNumArgs(), EPI));
5627    }
5628  }
5629
5630  // Filter out previous declarations that don't match the scope.
5631  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5632                       isExplicitSpecialization ||
5633                       isFunctionTemplateSpecialization);
5634
5635  // Handle GNU asm-label extension (encoded as an attribute).
5636  if (Expr *E = (Expr*) D.getAsmLabel()) {
5637    // The parser guarantees this is a string.
5638    StringLiteral *SE = cast<StringLiteral>(E);
5639    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5640                                                SE->getString()));
5641  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5642    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5643      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5644    if (I != ExtnameUndeclaredIdentifiers.end()) {
5645      NewFD->addAttr(I->second);
5646      ExtnameUndeclaredIdentifiers.erase(I);
5647    }
5648  }
5649
5650  // Copy the parameter declarations from the declarator D to the function
5651  // declaration NewFD, if they are available.  First scavenge them into Params.
5652  SmallVector<ParmVarDecl*, 16> Params;
5653  if (D.isFunctionDeclarator()) {
5654    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5655
5656    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5657    // function that takes no arguments, not a function that takes a
5658    // single void argument.
5659    // We let through "const void" here because Sema::GetTypeForDeclarator
5660    // already checks for that case.
5661    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5662        FTI.ArgInfo[0].Param &&
5663        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5664      // Empty arg list, don't push any params.
5665      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5666    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5667      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5668        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5669        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5670        Param->setDeclContext(NewFD);
5671        Params.push_back(Param);
5672
5673        if (Param->isInvalidDecl())
5674          NewFD->setInvalidDecl();
5675      }
5676    }
5677
5678  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5679    // When we're declaring a function with a typedef, typeof, etc as in the
5680    // following example, we'll need to synthesize (unnamed)
5681    // parameters for use in the declaration.
5682    //
5683    // @code
5684    // typedef void fn(int);
5685    // fn f;
5686    // @endcode
5687
5688    // Synthesize a parameter for each argument type.
5689    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5690         AE = FT->arg_type_end(); AI != AE; ++AI) {
5691      ParmVarDecl *Param =
5692        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5693      Param->setScopeInfo(0, Params.size());
5694      Params.push_back(Param);
5695    }
5696  } else {
5697    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5698           "Should not need args for typedef of non-prototype fn");
5699  }
5700
5701  // Finally, we know we have the right number of parameters, install them.
5702  NewFD->setParams(Params);
5703
5704  // Find all anonymous symbols defined during the declaration of this function
5705  // and add to NewFD. This lets us track decls such 'enum Y' in:
5706  //
5707  //   void f(enum Y {AA} x) {}
5708  //
5709  // which would otherwise incorrectly end up in the translation unit scope.
5710  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5711  DeclsInPrototypeScope.clear();
5712
5713  // Process the non-inheritable attributes on this declaration.
5714  ProcessDeclAttributes(S, NewFD, D,
5715                        /*NonInheritable=*/true, /*Inheritable=*/false);
5716
5717  // Functions returning a variably modified type violate C99 6.7.5.2p2
5718  // because all functions have linkage.
5719  if (!NewFD->isInvalidDecl() &&
5720      NewFD->getResultType()->isVariablyModifiedType()) {
5721    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5722    NewFD->setInvalidDecl();
5723  }
5724
5725  // Handle attributes.
5726  ProcessDeclAttributes(S, NewFD, D,
5727                        /*NonInheritable=*/false, /*Inheritable=*/true);
5728
5729  QualType RetType = NewFD->getResultType();
5730  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5731      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5732  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5733      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5734    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5735    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5736      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5737                                                        Context));
5738    }
5739  }
5740
5741  if (!getLangOpts().CPlusPlus) {
5742    // Perform semantic checking on the function declaration.
5743    bool isExplicitSpecialization=false;
5744    if (!NewFD->isInvalidDecl()) {
5745      if (NewFD->isMain())
5746        CheckMain(NewFD, D.getDeclSpec());
5747      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5748                                                  isExplicitSpecialization));
5749    }
5750    // Make graceful recovery from an invalid redeclaration.
5751    else if (!Previous.empty())
5752           D.setRedeclaration(true);
5753    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5754            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5755           "previous declaration set still overloaded");
5756  } else {
5757    // If the declarator is a template-id, translate the parser's template
5758    // argument list into our AST format.
5759    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5760      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5761      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5762      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5763      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5764                                         TemplateId->NumArgs);
5765      translateTemplateArguments(TemplateArgsPtr,
5766                                 TemplateArgs);
5767
5768      HasExplicitTemplateArgs = true;
5769
5770      if (NewFD->isInvalidDecl()) {
5771        HasExplicitTemplateArgs = false;
5772      } else if (FunctionTemplate) {
5773        // Function template with explicit template arguments.
5774        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5775          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5776
5777        HasExplicitTemplateArgs = false;
5778      } else if (!isFunctionTemplateSpecialization &&
5779                 !D.getDeclSpec().isFriendSpecified()) {
5780        // We have encountered something that the user meant to be a
5781        // specialization (because it has explicitly-specified template
5782        // arguments) but that was not introduced with a "template<>" (or had
5783        // too few of them).
5784        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5785          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5786          << FixItHint::CreateInsertion(
5787                                    D.getDeclSpec().getLocStart(),
5788                                        "template<> ");
5789        isFunctionTemplateSpecialization = true;
5790      } else {
5791        // "friend void foo<>(int);" is an implicit specialization decl.
5792        isFunctionTemplateSpecialization = true;
5793      }
5794    } else if (isFriend && isFunctionTemplateSpecialization) {
5795      // This combination is only possible in a recovery case;  the user
5796      // wrote something like:
5797      //   template <> friend void foo(int);
5798      // which we're recovering from as if the user had written:
5799      //   friend void foo<>(int);
5800      // Go ahead and fake up a template id.
5801      HasExplicitTemplateArgs = true;
5802        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5803      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5804    }
5805
5806    // If it's a friend (and only if it's a friend), it's possible
5807    // that either the specialized function type or the specialized
5808    // template is dependent, and therefore matching will fail.  In
5809    // this case, don't check the specialization yet.
5810    bool InstantiationDependent = false;
5811    if (isFunctionTemplateSpecialization && isFriend &&
5812        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5813         TemplateSpecializationType::anyDependentTemplateArguments(
5814            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5815            InstantiationDependent))) {
5816      assert(HasExplicitTemplateArgs &&
5817             "friend function specialization without template args");
5818      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5819                                                       Previous))
5820        NewFD->setInvalidDecl();
5821    } else if (isFunctionTemplateSpecialization) {
5822      if (CurContext->isDependentContext() && CurContext->isRecord()
5823          && !isFriend) {
5824        isDependentClassScopeExplicitSpecialization = true;
5825        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5826          diag::ext_function_specialization_in_class :
5827          diag::err_function_specialization_in_class)
5828          << NewFD->getDeclName();
5829      } else if (CheckFunctionTemplateSpecialization(NewFD,
5830                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5831                                                     Previous))
5832        NewFD->setInvalidDecl();
5833
5834      // C++ [dcl.stc]p1:
5835      //   A storage-class-specifier shall not be specified in an explicit
5836      //   specialization (14.7.3)
5837      if (SC != SC_None) {
5838        if (SC != NewFD->getStorageClass())
5839          Diag(NewFD->getLocation(),
5840               diag::err_explicit_specialization_inconsistent_storage_class)
5841            << SC
5842            << FixItHint::CreateRemoval(
5843                                      D.getDeclSpec().getStorageClassSpecLoc());
5844
5845        else
5846          Diag(NewFD->getLocation(),
5847               diag::ext_explicit_specialization_storage_class)
5848            << FixItHint::CreateRemoval(
5849                                      D.getDeclSpec().getStorageClassSpecLoc());
5850      }
5851
5852    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5853      if (CheckMemberSpecialization(NewFD, Previous))
5854          NewFD->setInvalidDecl();
5855    }
5856
5857    // Perform semantic checking on the function declaration.
5858    if (!isDependentClassScopeExplicitSpecialization) {
5859      if (NewFD->isInvalidDecl()) {
5860        // If this is a class member, mark the class invalid immediately.
5861        // This avoids some consistency errors later.
5862        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5863          methodDecl->getParent()->setInvalidDecl();
5864      } else {
5865        if (NewFD->isMain())
5866          CheckMain(NewFD, D.getDeclSpec());
5867        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5868                                                    isExplicitSpecialization));
5869      }
5870    }
5871
5872    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5873            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5874           "previous declaration set still overloaded");
5875
5876    NamedDecl *PrincipalDecl = (FunctionTemplate
5877                                ? cast<NamedDecl>(FunctionTemplate)
5878                                : NewFD);
5879
5880    if (isFriend && D.isRedeclaration()) {
5881      AccessSpecifier Access = AS_public;
5882      if (!NewFD->isInvalidDecl())
5883        Access = NewFD->getPreviousDecl()->getAccess();
5884
5885      NewFD->setAccess(Access);
5886      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5887
5888      PrincipalDecl->setObjectOfFriendDecl(true);
5889    }
5890
5891    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5892        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5893      PrincipalDecl->setNonMemberOperator();
5894
5895    // If we have a function template, check the template parameter
5896    // list. This will check and merge default template arguments.
5897    if (FunctionTemplate) {
5898      FunctionTemplateDecl *PrevTemplate =
5899                                     FunctionTemplate->getPreviousDecl();
5900      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5901                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5902                            D.getDeclSpec().isFriendSpecified()
5903                              ? (D.isFunctionDefinition()
5904                                   ? TPC_FriendFunctionTemplateDefinition
5905                                   : TPC_FriendFunctionTemplate)
5906                              : (D.getCXXScopeSpec().isSet() &&
5907                                 DC && DC->isRecord() &&
5908                                 DC->isDependentContext())
5909                                  ? TPC_ClassTemplateMember
5910                                  : TPC_FunctionTemplate);
5911    }
5912
5913    if (NewFD->isInvalidDecl()) {
5914      // Ignore all the rest of this.
5915    } else if (!D.isRedeclaration()) {
5916      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5917                                       AddToScope };
5918      // Fake up an access specifier if it's supposed to be a class member.
5919      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5920        NewFD->setAccess(AS_public);
5921
5922      // Qualified decls generally require a previous declaration.
5923      if (D.getCXXScopeSpec().isSet()) {
5924        // ...with the major exception of templated-scope or
5925        // dependent-scope friend declarations.
5926
5927        // TODO: we currently also suppress this check in dependent
5928        // contexts because (1) the parameter depth will be off when
5929        // matching friend templates and (2) we might actually be
5930        // selecting a friend based on a dependent factor.  But there
5931        // are situations where these conditions don't apply and we
5932        // can actually do this check immediately.
5933        if (isFriend &&
5934            (TemplateParamLists.size() ||
5935             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5936             CurContext->isDependentContext())) {
5937          // ignore these
5938        } else {
5939          // The user tried to provide an out-of-line definition for a
5940          // function that is a member of a class or namespace, but there
5941          // was no such member function declared (C++ [class.mfct]p2,
5942          // C++ [namespace.memdef]p2). For example:
5943          //
5944          // class X {
5945          //   void f() const;
5946          // };
5947          //
5948          // void X::f() { } // ill-formed
5949          //
5950          // Complain about this problem, and attempt to suggest close
5951          // matches (e.g., those that differ only in cv-qualifiers and
5952          // whether the parameter types are references).
5953
5954          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5955                                                               NewFD,
5956                                                               ExtraArgs)) {
5957            AddToScope = ExtraArgs.AddToScope;
5958            return Result;
5959          }
5960        }
5961
5962        // Unqualified local friend declarations are required to resolve
5963        // to something.
5964      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5965        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5966                                                             NewFD,
5967                                                             ExtraArgs)) {
5968          AddToScope = ExtraArgs.AddToScope;
5969          return Result;
5970        }
5971      }
5972
5973    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5974               !isFriend && !isFunctionTemplateSpecialization &&
5975               !isExplicitSpecialization) {
5976      // An out-of-line member function declaration must also be a
5977      // definition (C++ [dcl.meaning]p1).
5978      // Note that this is not the case for explicit specializations of
5979      // function templates or member functions of class templates, per
5980      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5981      // extension for compatibility with old SWIG code which likes to
5982      // generate them.
5983      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5984        << D.getCXXScopeSpec().getRange();
5985    }
5986  }
5987
5988  AddKnownFunctionAttributes(NewFD);
5989
5990  if (NewFD->hasAttr<OverloadableAttr>() &&
5991      !NewFD->getType()->getAs<FunctionProtoType>()) {
5992    Diag(NewFD->getLocation(),
5993         diag::err_attribute_overloadable_no_prototype)
5994      << NewFD;
5995
5996    // Turn this into a variadic function with no parameters.
5997    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5998    FunctionProtoType::ExtProtoInfo EPI;
5999    EPI.Variadic = true;
6000    EPI.ExtInfo = FT->getExtInfo();
6001
6002    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
6003    NewFD->setType(R);
6004  }
6005
6006  // If there's a #pragma GCC visibility in scope, and this isn't a class
6007  // member, set the visibility of this function.
6008  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
6009    AddPushedVisibilityAttribute(NewFD);
6010
6011  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6012  // marking the function.
6013  AddCFAuditedAttribute(NewFD);
6014
6015  // If this is a locally-scoped extern C function, update the
6016  // map of such names.
6017  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6018      && !NewFD->isInvalidDecl())
6019    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6020
6021  // Set this FunctionDecl's range up to the right paren.
6022  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6023
6024  if (getLangOpts().CPlusPlus) {
6025    if (FunctionTemplate) {
6026      if (NewFD->isInvalidDecl())
6027        FunctionTemplate->setInvalidDecl();
6028      return FunctionTemplate;
6029    }
6030  }
6031
6032  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6033  if ((getLangOpts().OpenCLVersion >= 120)
6034      && NewFD->hasAttr<OpenCLKernelAttr>()
6035      && (SC == SC_Static)) {
6036    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6037    D.setInvalidType();
6038  }
6039
6040  MarkUnusedFileScopedDecl(NewFD);
6041
6042  if (getLangOpts().CUDA)
6043    if (IdentifierInfo *II = NewFD->getIdentifier())
6044      if (!NewFD->isInvalidDecl() &&
6045          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6046        if (II->isStr("cudaConfigureCall")) {
6047          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6048            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6049
6050          Context.setcudaConfigureCallDecl(NewFD);
6051        }
6052      }
6053
6054  // Here we have an function template explicit specialization at class scope.
6055  // The actually specialization will be postponed to template instatiation
6056  // time via the ClassScopeFunctionSpecializationDecl node.
6057  if (isDependentClassScopeExplicitSpecialization) {
6058    ClassScopeFunctionSpecializationDecl *NewSpec =
6059                         ClassScopeFunctionSpecializationDecl::Create(
6060                                Context, CurContext, SourceLocation(),
6061                                cast<CXXMethodDecl>(NewFD),
6062                                HasExplicitTemplateArgs, TemplateArgs);
6063    CurContext->addDecl(NewSpec);
6064    AddToScope = false;
6065  }
6066
6067  return NewFD;
6068}
6069
6070/// \brief Perform semantic checking of a new function declaration.
6071///
6072/// Performs semantic analysis of the new function declaration
6073/// NewFD. This routine performs all semantic checking that does not
6074/// require the actual declarator involved in the declaration, and is
6075/// used both for the declaration of functions as they are parsed
6076/// (called via ActOnDeclarator) and for the declaration of functions
6077/// that have been instantiated via C++ template instantiation (called
6078/// via InstantiateDecl).
6079///
6080/// \param IsExplicitSpecialization whether this new function declaration is
6081/// an explicit specialization of the previous declaration.
6082///
6083/// This sets NewFD->isInvalidDecl() to true if there was an error.
6084///
6085/// \returns true if the function declaration is a redeclaration.
6086bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6087                                    LookupResult &Previous,
6088                                    bool IsExplicitSpecialization) {
6089  assert(!NewFD->getResultType()->isVariablyModifiedType()
6090         && "Variably modified return types are not handled here");
6091
6092  // Check for a previous declaration of this name.
6093  if (Previous.empty() && NewFD->isExternC()) {
6094    // Since we did not find anything by this name and we're declaring
6095    // an extern "C" function, look for a non-visible extern "C"
6096    // declaration with the same name.
6097    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6098      = findLocallyScopedExternalDecl(NewFD->getDeclName());
6099    if (Pos != LocallyScopedExternalDecls.end())
6100      Previous.addDecl(Pos->second);
6101  }
6102
6103  bool Redeclaration = false;
6104
6105  // Merge or overload the declaration with an existing declaration of
6106  // the same name, if appropriate.
6107  if (!Previous.empty()) {
6108    // Determine whether NewFD is an overload of PrevDecl or
6109    // a declaration that requires merging. If it's an overload,
6110    // there's no more work to do here; we'll just add the new
6111    // function to the scope.
6112
6113    NamedDecl *OldDecl = 0;
6114    if (!AllowOverloadingOfFunction(Previous, Context)) {
6115      Redeclaration = true;
6116      OldDecl = Previous.getFoundDecl();
6117    } else {
6118      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6119                            /*NewIsUsingDecl*/ false)) {
6120      case Ovl_Match:
6121        Redeclaration = true;
6122        break;
6123
6124      case Ovl_NonFunction:
6125        Redeclaration = true;
6126        break;
6127
6128      case Ovl_Overload:
6129        Redeclaration = false;
6130        break;
6131      }
6132
6133      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6134        // If a function name is overloadable in C, then every function
6135        // with that name must be marked "overloadable".
6136        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6137          << Redeclaration << NewFD;
6138        NamedDecl *OverloadedDecl = 0;
6139        if (Redeclaration)
6140          OverloadedDecl = OldDecl;
6141        else if (!Previous.empty())
6142          OverloadedDecl = Previous.getRepresentativeDecl();
6143        if (OverloadedDecl)
6144          Diag(OverloadedDecl->getLocation(),
6145               diag::note_attribute_overloadable_prev_overload);
6146        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6147                                                        Context));
6148      }
6149    }
6150
6151    if (Redeclaration) {
6152      // NewFD and OldDecl represent declarations that need to be
6153      // merged.
6154      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6155        NewFD->setInvalidDecl();
6156        return Redeclaration;
6157      }
6158
6159      Previous.clear();
6160      Previous.addDecl(OldDecl);
6161
6162      if (FunctionTemplateDecl *OldTemplateDecl
6163                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6164        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6165        FunctionTemplateDecl *NewTemplateDecl
6166          = NewFD->getDescribedFunctionTemplate();
6167        assert(NewTemplateDecl && "Template/non-template mismatch");
6168        if (CXXMethodDecl *Method
6169              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6170          Method->setAccess(OldTemplateDecl->getAccess());
6171          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6172        }
6173
6174        // If this is an explicit specialization of a member that is a function
6175        // template, mark it as a member specialization.
6176        if (IsExplicitSpecialization &&
6177            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6178          NewTemplateDecl->setMemberSpecialization();
6179          assert(OldTemplateDecl->isMemberSpecialization());
6180        }
6181
6182      } else {
6183        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6184          NewFD->setAccess(OldDecl->getAccess());
6185        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6186      }
6187    }
6188  }
6189
6190  // Semantic checking for this function declaration (in isolation).
6191  if (getLangOpts().CPlusPlus) {
6192    // C++-specific checks.
6193    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6194      CheckConstructor(Constructor);
6195    } else if (CXXDestructorDecl *Destructor =
6196                dyn_cast<CXXDestructorDecl>(NewFD)) {
6197      CXXRecordDecl *Record = Destructor->getParent();
6198      QualType ClassType = Context.getTypeDeclType(Record);
6199
6200      // FIXME: Shouldn't we be able to perform this check even when the class
6201      // type is dependent? Both gcc and edg can handle that.
6202      if (!ClassType->isDependentType()) {
6203        DeclarationName Name
6204          = Context.DeclarationNames.getCXXDestructorName(
6205                                        Context.getCanonicalType(ClassType));
6206        if (NewFD->getDeclName() != Name) {
6207          Diag(NewFD->getLocation(), diag::err_destructor_name);
6208          NewFD->setInvalidDecl();
6209          return Redeclaration;
6210        }
6211      }
6212    } else if (CXXConversionDecl *Conversion
6213               = dyn_cast<CXXConversionDecl>(NewFD)) {
6214      ActOnConversionDeclarator(Conversion);
6215    }
6216
6217    // Find any virtual functions that this function overrides.
6218    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6219      if (!Method->isFunctionTemplateSpecialization() &&
6220          !Method->getDescribedFunctionTemplate() &&
6221          Method->isCanonicalDecl()) {
6222        if (AddOverriddenMethods(Method->getParent(), Method)) {
6223          // If the function was marked as "static", we have a problem.
6224          if (NewFD->getStorageClass() == SC_Static) {
6225            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6226          }
6227        }
6228      }
6229
6230      if (Method->isStatic())
6231        checkThisInStaticMemberFunctionType(Method);
6232    }
6233
6234    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6235    if (NewFD->isOverloadedOperator() &&
6236        CheckOverloadedOperatorDeclaration(NewFD)) {
6237      NewFD->setInvalidDecl();
6238      return Redeclaration;
6239    }
6240
6241    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6242    if (NewFD->getLiteralIdentifier() &&
6243        CheckLiteralOperatorDeclaration(NewFD)) {
6244      NewFD->setInvalidDecl();
6245      return Redeclaration;
6246    }
6247
6248    // In C++, check default arguments now that we have merged decls. Unless
6249    // the lexical context is the class, because in this case this is done
6250    // during delayed parsing anyway.
6251    if (!CurContext->isRecord())
6252      CheckCXXDefaultArguments(NewFD);
6253
6254    // If this function declares a builtin function, check the type of this
6255    // declaration against the expected type for the builtin.
6256    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6257      ASTContext::GetBuiltinTypeError Error;
6258      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6259      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6260        // The type of this function differs from the type of the builtin,
6261        // so forget about the builtin entirely.
6262        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6263      }
6264    }
6265
6266    // If this function is declared as being extern "C", then check to see if
6267    // the function returns a UDT (class, struct, or union type) that is not C
6268    // compatible, and if it does, warn the user.
6269    if (NewFD->hasCLanguageLinkage()) {
6270      QualType R = NewFD->getResultType();
6271      if (R->isIncompleteType() && !R->isVoidType())
6272        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6273            << NewFD << R;
6274      else if (!R.isPODType(Context) && !R->isVoidType() &&
6275               !R->isObjCObjectPointerType())
6276        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6277    }
6278  }
6279  return Redeclaration;
6280}
6281
6282void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6283  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6284  //   static or constexpr is ill-formed.
6285  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6286  //   shall not appear in a declaration of main.
6287  // static main is not an error under C99, but we should warn about it.
6288  if (FD->getStorageClass() == SC_Static)
6289    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6290         ? diag::err_static_main : diag::warn_static_main)
6291      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6292  if (FD->isInlineSpecified())
6293    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6294      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6295  if (FD->isConstexpr()) {
6296    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6297      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6298    FD->setConstexpr(false);
6299  }
6300
6301  QualType T = FD->getType();
6302  assert(T->isFunctionType() && "function decl is not of function type");
6303  const FunctionType* FT = T->castAs<FunctionType>();
6304
6305  // All the standards say that main() should should return 'int'.
6306  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6307    // In C and C++, main magically returns 0 if you fall off the end;
6308    // set the flag which tells us that.
6309    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6310    FD->setHasImplicitReturnZero(true);
6311
6312  // In C with GNU extensions we allow main() to have non-integer return
6313  // type, but we should warn about the extension, and we disable the
6314  // implicit-return-zero rule.
6315  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6316    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6317
6318  // Otherwise, this is just a flat-out error.
6319  } else {
6320    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6321    FD->setInvalidDecl(true);
6322  }
6323
6324  // Treat protoless main() as nullary.
6325  if (isa<FunctionNoProtoType>(FT)) return;
6326
6327  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6328  unsigned nparams = FTP->getNumArgs();
6329  assert(FD->getNumParams() == nparams);
6330
6331  bool HasExtraParameters = (nparams > 3);
6332
6333  // Darwin passes an undocumented fourth argument of type char**.  If
6334  // other platforms start sprouting these, the logic below will start
6335  // getting shifty.
6336  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6337    HasExtraParameters = false;
6338
6339  if (HasExtraParameters) {
6340    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6341    FD->setInvalidDecl(true);
6342    nparams = 3;
6343  }
6344
6345  // FIXME: a lot of the following diagnostics would be improved
6346  // if we had some location information about types.
6347
6348  QualType CharPP =
6349    Context.getPointerType(Context.getPointerType(Context.CharTy));
6350  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6351
6352  for (unsigned i = 0; i < nparams; ++i) {
6353    QualType AT = FTP->getArgType(i);
6354
6355    bool mismatch = true;
6356
6357    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6358      mismatch = false;
6359    else if (Expected[i] == CharPP) {
6360      // As an extension, the following forms are okay:
6361      //   char const **
6362      //   char const * const *
6363      //   char * const *
6364
6365      QualifierCollector qs;
6366      const PointerType* PT;
6367      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6368          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6369          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6370        qs.removeConst();
6371        mismatch = !qs.empty();
6372      }
6373    }
6374
6375    if (mismatch) {
6376      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6377      // TODO: suggest replacing given type with expected type
6378      FD->setInvalidDecl(true);
6379    }
6380  }
6381
6382  if (nparams == 1 && !FD->isInvalidDecl()) {
6383    Diag(FD->getLocation(), diag::warn_main_one_arg);
6384  }
6385
6386  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6387    Diag(FD->getLocation(), diag::err_main_template_decl);
6388    FD->setInvalidDecl();
6389  }
6390}
6391
6392bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6393  // FIXME: Need strict checking.  In C89, we need to check for
6394  // any assignment, increment, decrement, function-calls, or
6395  // commas outside of a sizeof.  In C99, it's the same list,
6396  // except that the aforementioned are allowed in unevaluated
6397  // expressions.  Everything else falls under the
6398  // "may accept other forms of constant expressions" exception.
6399  // (We never end up here for C++, so the constant expression
6400  // rules there don't matter.)
6401  if (Init->isConstantInitializer(Context, false))
6402    return false;
6403  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6404    << Init->getSourceRange();
6405  return true;
6406}
6407
6408namespace {
6409  // Visits an initialization expression to see if OrigDecl is evaluated in
6410  // its own initialization and throws a warning if it does.
6411  class SelfReferenceChecker
6412      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6413    Sema &S;
6414    Decl *OrigDecl;
6415    bool isRecordType;
6416    bool isPODType;
6417    bool isReferenceType;
6418
6419  public:
6420    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6421
6422    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6423                                                    S(S), OrigDecl(OrigDecl) {
6424      isPODType = false;
6425      isRecordType = false;
6426      isReferenceType = false;
6427      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6428        isPODType = VD->getType().isPODType(S.Context);
6429        isRecordType = VD->getType()->isRecordType();
6430        isReferenceType = VD->getType()->isReferenceType();
6431      }
6432    }
6433
6434    // For most expressions, the cast is directly above the DeclRefExpr.
6435    // For conditional operators, the cast can be outside the conditional
6436    // operator if both expressions are DeclRefExpr's.
6437    void HandleValue(Expr *E) {
6438      if (isReferenceType)
6439        return;
6440      E = E->IgnoreParenImpCasts();
6441      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6442        HandleDeclRefExpr(DRE);
6443        return;
6444      }
6445
6446      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6447        HandleValue(CO->getTrueExpr());
6448        HandleValue(CO->getFalseExpr());
6449        return;
6450      }
6451
6452      if (isa<MemberExpr>(E)) {
6453        Expr *Base = E->IgnoreParenImpCasts();
6454        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6455          // Check for static member variables and don't warn on them.
6456          if (!isa<FieldDecl>(ME->getMemberDecl()))
6457            return;
6458          Base = ME->getBase()->IgnoreParenImpCasts();
6459        }
6460        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6461          HandleDeclRefExpr(DRE);
6462        return;
6463      }
6464    }
6465
6466    // Reference types are handled here since all uses of references are
6467    // bad, not just r-value uses.
6468    void VisitDeclRefExpr(DeclRefExpr *E) {
6469      if (isReferenceType)
6470        HandleDeclRefExpr(E);
6471    }
6472
6473    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6474      if (E->getCastKind() == CK_LValueToRValue ||
6475          (isRecordType && E->getCastKind() == CK_NoOp))
6476        HandleValue(E->getSubExpr());
6477
6478      Inherited::VisitImplicitCastExpr(E);
6479    }
6480
6481    void VisitMemberExpr(MemberExpr *E) {
6482      // Don't warn on arrays since they can be treated as pointers.
6483      if (E->getType()->canDecayToPointerType()) return;
6484
6485      // Warn when a non-static method call is followed by non-static member
6486      // field accesses, which is followed by a DeclRefExpr.
6487      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6488      bool Warn = (MD && !MD->isStatic());
6489      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6490      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6491        if (!isa<FieldDecl>(ME->getMemberDecl()))
6492          Warn = false;
6493        Base = ME->getBase()->IgnoreParenImpCasts();
6494      }
6495
6496      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6497        if (Warn)
6498          HandleDeclRefExpr(DRE);
6499        return;
6500      }
6501
6502      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6503      // Visit that expression.
6504      Visit(Base);
6505    }
6506
6507    void VisitUnaryOperator(UnaryOperator *E) {
6508      // For POD record types, addresses of its own members are well-defined.
6509      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6510          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6511        if (!isPODType)
6512          HandleValue(E->getSubExpr());
6513        return;
6514      }
6515      Inherited::VisitUnaryOperator(E);
6516    }
6517
6518    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6519
6520    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6521      Decl* ReferenceDecl = DRE->getDecl();
6522      if (OrigDecl != ReferenceDecl) return;
6523      unsigned diag = isReferenceType
6524          ? diag::warn_uninit_self_reference_in_reference_init
6525          : diag::warn_uninit_self_reference_in_init;
6526      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6527                            S.PDiag(diag)
6528                              << DRE->getNameInfo().getName()
6529                              << OrigDecl->getLocation()
6530                              << DRE->getSourceRange());
6531    }
6532  };
6533
6534  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6535  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6536                                 bool DirectInit) {
6537    // Parameters arguments are occassionially constructed with itself,
6538    // for instance, in recursive functions.  Skip them.
6539    if (isa<ParmVarDecl>(OrigDecl))
6540      return;
6541
6542    E = E->IgnoreParens();
6543
6544    // Skip checking T a = a where T is not a record or reference type.
6545    // Doing so is a way to silence uninitialized warnings.
6546    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6547      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6548        if (ICE->getCastKind() == CK_LValueToRValue)
6549          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6550            if (DRE->getDecl() == OrigDecl)
6551              return;
6552
6553    SelfReferenceChecker(S, OrigDecl).Visit(E);
6554  }
6555}
6556
6557/// AddInitializerToDecl - Adds the initializer Init to the
6558/// declaration dcl. If DirectInit is true, this is C++ direct
6559/// initialization rather than copy initialization.
6560void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6561                                bool DirectInit, bool TypeMayContainAuto) {
6562  // If there is no declaration, there was an error parsing it.  Just ignore
6563  // the initializer.
6564  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6565    return;
6566
6567  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6568    // With declarators parsed the way they are, the parser cannot
6569    // distinguish between a normal initializer and a pure-specifier.
6570    // Thus this grotesque test.
6571    IntegerLiteral *IL;
6572    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6573        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6574      CheckPureMethod(Method, Init->getSourceRange());
6575    else {
6576      Diag(Method->getLocation(), diag::err_member_function_initialization)
6577        << Method->getDeclName() << Init->getSourceRange();
6578      Method->setInvalidDecl();
6579    }
6580    return;
6581  }
6582
6583  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6584  if (!VDecl) {
6585    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6586    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6587    RealDecl->setInvalidDecl();
6588    return;
6589  }
6590
6591  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6592
6593  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6594  AutoType *Auto = 0;
6595  if (TypeMayContainAuto &&
6596      (Auto = VDecl->getType()->getContainedAutoType()) &&
6597      !Auto->isDeduced()) {
6598    Expr *DeduceInit = Init;
6599    // Initializer could be a C++ direct-initializer. Deduction only works if it
6600    // contains exactly one expression.
6601    if (CXXDirectInit) {
6602      if (CXXDirectInit->getNumExprs() == 0) {
6603        // It isn't possible to write this directly, but it is possible to
6604        // end up in this situation with "auto x(some_pack...);"
6605        Diag(CXXDirectInit->getLocStart(),
6606             diag::err_auto_var_init_no_expression)
6607          << VDecl->getDeclName() << VDecl->getType()
6608          << VDecl->getSourceRange();
6609        RealDecl->setInvalidDecl();
6610        return;
6611      } else if (CXXDirectInit->getNumExprs() > 1) {
6612        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6613             diag::err_auto_var_init_multiple_expressions)
6614          << VDecl->getDeclName() << VDecl->getType()
6615          << VDecl->getSourceRange();
6616        RealDecl->setInvalidDecl();
6617        return;
6618      } else {
6619        DeduceInit = CXXDirectInit->getExpr(0);
6620      }
6621    }
6622    TypeSourceInfo *DeducedType = 0;
6623    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6624            DAR_Failed)
6625      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6626    if (!DeducedType) {
6627      RealDecl->setInvalidDecl();
6628      return;
6629    }
6630    VDecl->setTypeSourceInfo(DeducedType);
6631    VDecl->setType(DeducedType->getType());
6632    VDecl->ClearLVCache();
6633
6634    // In ARC, infer lifetime.
6635    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6636      VDecl->setInvalidDecl();
6637
6638    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6639    // 'id' instead of a specific object type prevents most of our usual checks.
6640    // We only want to warn outside of template instantiations, though:
6641    // inside a template, the 'id' could have come from a parameter.
6642    if (ActiveTemplateInstantiations.empty() &&
6643        DeducedType->getType()->isObjCIdType()) {
6644      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6645      Diag(Loc, diag::warn_auto_var_is_id)
6646        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6647    }
6648
6649    // If this is a redeclaration, check that the type we just deduced matches
6650    // the previously declared type.
6651    if (VarDecl *Old = VDecl->getPreviousDecl())
6652      MergeVarDeclTypes(VDecl, Old);
6653  }
6654
6655  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6656    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6657    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6658    VDecl->setInvalidDecl();
6659    return;
6660  }
6661
6662  if (!VDecl->getType()->isDependentType()) {
6663    // A definition must end up with a complete type, which means it must be
6664    // complete with the restriction that an array type might be completed by
6665    // the initializer; note that later code assumes this restriction.
6666    QualType BaseDeclType = VDecl->getType();
6667    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6668      BaseDeclType = Array->getElementType();
6669    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6670                            diag::err_typecheck_decl_incomplete_type)) {
6671      RealDecl->setInvalidDecl();
6672      return;
6673    }
6674
6675    // The variable can not have an abstract class type.
6676    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6677                               diag::err_abstract_type_in_decl,
6678                               AbstractVariableType))
6679      VDecl->setInvalidDecl();
6680  }
6681
6682  const VarDecl *Def;
6683  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6684    Diag(VDecl->getLocation(), diag::err_redefinition)
6685      << VDecl->getDeclName();
6686    Diag(Def->getLocation(), diag::note_previous_definition);
6687    VDecl->setInvalidDecl();
6688    return;
6689  }
6690
6691  const VarDecl* PrevInit = 0;
6692  if (getLangOpts().CPlusPlus) {
6693    // C++ [class.static.data]p4
6694    //   If a static data member is of const integral or const
6695    //   enumeration type, its declaration in the class definition can
6696    //   specify a constant-initializer which shall be an integral
6697    //   constant expression (5.19). In that case, the member can appear
6698    //   in integral constant expressions. The member shall still be
6699    //   defined in a namespace scope if it is used in the program and the
6700    //   namespace scope definition shall not contain an initializer.
6701    //
6702    // We already performed a redefinition check above, but for static
6703    // data members we also need to check whether there was an in-class
6704    // declaration with an initializer.
6705    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6706      Diag(VDecl->getLocation(), diag::err_redefinition)
6707        << VDecl->getDeclName();
6708      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6709      return;
6710    }
6711
6712    if (VDecl->hasLocalStorage())
6713      getCurFunction()->setHasBranchProtectedScope();
6714
6715    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6716      VDecl->setInvalidDecl();
6717      return;
6718    }
6719  }
6720
6721  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6722  // a kernel function cannot be initialized."
6723  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6724    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6725    VDecl->setInvalidDecl();
6726    return;
6727  }
6728
6729  // Get the decls type and save a reference for later, since
6730  // CheckInitializerTypes may change it.
6731  QualType DclT = VDecl->getType(), SavT = DclT;
6732
6733  // Top-level message sends default to 'id' when we're in a debugger
6734  // and we are assigning it to a variable of 'id' type.
6735  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6736    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6737      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6738      if (Result.isInvalid()) {
6739        VDecl->setInvalidDecl();
6740        return;
6741      }
6742      Init = Result.take();
6743    }
6744
6745  // Perform the initialization.
6746  if (!VDecl->isInvalidDecl()) {
6747    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6748    InitializationKind Kind
6749      = DirectInit ?
6750          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6751                                                           Init->getLocStart(),
6752                                                           Init->getLocEnd())
6753                        : InitializationKind::CreateDirectList(
6754                                                          VDecl->getLocation())
6755                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6756                                                    Init->getLocStart());
6757
6758    Expr **Args = &Init;
6759    unsigned NumArgs = 1;
6760    if (CXXDirectInit) {
6761      Args = CXXDirectInit->getExprs();
6762      NumArgs = CXXDirectInit->getNumExprs();
6763    }
6764    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6765    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6766                                        MultiExprArg(Args, NumArgs), &DclT);
6767    if (Result.isInvalid()) {
6768      VDecl->setInvalidDecl();
6769      return;
6770    }
6771
6772    Init = Result.takeAs<Expr>();
6773  }
6774
6775  // Check for self-references within variable initializers.
6776  // Variables declared within a function/method body (except for references)
6777  // are handled by a dataflow analysis.
6778  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
6779      VDecl->getType()->isReferenceType()) {
6780    CheckSelfReference(*this, RealDecl, Init, DirectInit);
6781  }
6782
6783  // If the type changed, it means we had an incomplete type that was
6784  // completed by the initializer. For example:
6785  //   int ary[] = { 1, 3, 5 };
6786  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6787  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6788    VDecl->setType(DclT);
6789
6790  // Check any implicit conversions within the expression.
6791  CheckImplicitConversions(Init, VDecl->getLocation());
6792
6793  if (!VDecl->isInvalidDecl()) {
6794    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6795
6796    if (VDecl->hasAttr<BlocksAttr>())
6797      checkRetainCycles(VDecl, Init);
6798
6799    // It is safe to assign a weak reference into a strong variable.
6800    // Although this code can still have problems:
6801    //   id x = self.weakProp;
6802    //   id y = self.weakProp;
6803    // we do not warn to warn spuriously when 'x' and 'y' are on separate
6804    // paths through the function. This should be revisited if
6805    // -Wrepeated-use-of-weak is made flow-sensitive.
6806    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
6807      DiagnosticsEngine::Level Level =
6808        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
6809                                 Init->getLocStart());
6810      if (Level != DiagnosticsEngine::Ignored)
6811        getCurFunction()->markSafeWeakUse(Init);
6812    }
6813  }
6814
6815  Init = MaybeCreateExprWithCleanups(Init);
6816  // Attach the initializer to the decl.
6817  VDecl->setInit(Init);
6818
6819  if (VDecl->isLocalVarDecl()) {
6820    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6821    // static storage duration shall be constant expressions or string literals.
6822    // C++ does not have this restriction.
6823    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6824        VDecl->getStorageClass() == SC_Static)
6825      CheckForConstantInitializer(Init, DclT);
6826  } else if (VDecl->isStaticDataMember() &&
6827             VDecl->getLexicalDeclContext()->isRecord()) {
6828    // This is an in-class initialization for a static data member, e.g.,
6829    //
6830    // struct S {
6831    //   static const int value = 17;
6832    // };
6833
6834    // C++ [class.mem]p4:
6835    //   A member-declarator can contain a constant-initializer only
6836    //   if it declares a static member (9.4) of const integral or
6837    //   const enumeration type, see 9.4.2.
6838    //
6839    // C++11 [class.static.data]p3:
6840    //   If a non-volatile const static data member is of integral or
6841    //   enumeration type, its declaration in the class definition can
6842    //   specify a brace-or-equal-initializer in which every initalizer-clause
6843    //   that is an assignment-expression is a constant expression. A static
6844    //   data member of literal type can be declared in the class definition
6845    //   with the constexpr specifier; if so, its declaration shall specify a
6846    //   brace-or-equal-initializer in which every initializer-clause that is
6847    //   an assignment-expression is a constant expression.
6848
6849    // Do nothing on dependent types.
6850    if (DclT->isDependentType()) {
6851
6852    // Allow any 'static constexpr' members, whether or not they are of literal
6853    // type. We separately check that every constexpr variable is of literal
6854    // type.
6855    } else if (VDecl->isConstexpr()) {
6856
6857    // Require constness.
6858    } else if (!DclT.isConstQualified()) {
6859      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6860        << Init->getSourceRange();
6861      VDecl->setInvalidDecl();
6862
6863    // We allow integer constant expressions in all cases.
6864    } else if (DclT->isIntegralOrEnumerationType()) {
6865      // Check whether the expression is a constant expression.
6866      SourceLocation Loc;
6867      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
6868        // In C++11, a non-constexpr const static data member with an
6869        // in-class initializer cannot be volatile.
6870        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6871      else if (Init->isValueDependent())
6872        ; // Nothing to check.
6873      else if (Init->isIntegerConstantExpr(Context, &Loc))
6874        ; // Ok, it's an ICE!
6875      else if (Init->isEvaluatable(Context)) {
6876        // If we can constant fold the initializer through heroics, accept it,
6877        // but report this as a use of an extension for -pedantic.
6878        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6879          << Init->getSourceRange();
6880      } else {
6881        // Otherwise, this is some crazy unknown case.  Report the issue at the
6882        // location provided by the isIntegerConstantExpr failed check.
6883        Diag(Loc, diag::err_in_class_initializer_non_constant)
6884          << Init->getSourceRange();
6885        VDecl->setInvalidDecl();
6886      }
6887
6888    // We allow foldable floating-point constants as an extension.
6889    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6890      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6891        << DclT << Init->getSourceRange();
6892      if (getLangOpts().CPlusPlus11)
6893        Diag(VDecl->getLocation(),
6894             diag::note_in_class_initializer_float_type_constexpr)
6895          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6896
6897      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6898        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6899          << Init->getSourceRange();
6900        VDecl->setInvalidDecl();
6901      }
6902
6903    // Suggest adding 'constexpr' in C++11 for literal types.
6904    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
6905      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6906        << DclT << Init->getSourceRange()
6907        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6908      VDecl->setConstexpr(true);
6909
6910    } else {
6911      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6912        << DclT << Init->getSourceRange();
6913      VDecl->setInvalidDecl();
6914    }
6915  } else if (VDecl->isFileVarDecl()) {
6916    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6917        (!getLangOpts().CPlusPlus ||
6918         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6919      Diag(VDecl->getLocation(), diag::warn_extern_init);
6920
6921    // C99 6.7.8p4. All file scoped initializers need to be constant.
6922    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6923      CheckForConstantInitializer(Init, DclT);
6924  }
6925
6926  // We will represent direct-initialization similarly to copy-initialization:
6927  //    int x(1);  -as-> int x = 1;
6928  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6929  //
6930  // Clients that want to distinguish between the two forms, can check for
6931  // direct initializer using VarDecl::getInitStyle().
6932  // A major benefit is that clients that don't particularly care about which
6933  // exactly form was it (like the CodeGen) can handle both cases without
6934  // special case code.
6935
6936  // C++ 8.5p11:
6937  // The form of initialization (using parentheses or '=') is generally
6938  // insignificant, but does matter when the entity being initialized has a
6939  // class type.
6940  if (CXXDirectInit) {
6941    assert(DirectInit && "Call-style initializer must be direct init.");
6942    VDecl->setInitStyle(VarDecl::CallInit);
6943  } else if (DirectInit) {
6944    // This must be list-initialization. No other way is direct-initialization.
6945    VDecl->setInitStyle(VarDecl::ListInit);
6946  }
6947
6948  CheckCompleteVariableDeclaration(VDecl);
6949}
6950
6951/// ActOnInitializerError - Given that there was an error parsing an
6952/// initializer for the given declaration, try to return to some form
6953/// of sanity.
6954void Sema::ActOnInitializerError(Decl *D) {
6955  // Our main concern here is re-establishing invariants like "a
6956  // variable's type is either dependent or complete".
6957  if (!D || D->isInvalidDecl()) return;
6958
6959  VarDecl *VD = dyn_cast<VarDecl>(D);
6960  if (!VD) return;
6961
6962  // Auto types are meaningless if we can't make sense of the initializer.
6963  if (ParsingInitForAutoVars.count(D)) {
6964    D->setInvalidDecl();
6965    return;
6966  }
6967
6968  QualType Ty = VD->getType();
6969  if (Ty->isDependentType()) return;
6970
6971  // Require a complete type.
6972  if (RequireCompleteType(VD->getLocation(),
6973                          Context.getBaseElementType(Ty),
6974                          diag::err_typecheck_decl_incomplete_type)) {
6975    VD->setInvalidDecl();
6976    return;
6977  }
6978
6979  // Require an abstract type.
6980  if (RequireNonAbstractType(VD->getLocation(), Ty,
6981                             diag::err_abstract_type_in_decl,
6982                             AbstractVariableType)) {
6983    VD->setInvalidDecl();
6984    return;
6985  }
6986
6987  // Don't bother complaining about constructors or destructors,
6988  // though.
6989}
6990
6991void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6992                                  bool TypeMayContainAuto) {
6993  // If there is no declaration, there was an error parsing it. Just ignore it.
6994  if (RealDecl == 0)
6995    return;
6996
6997  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6998    QualType Type = Var->getType();
6999
7000    // C++11 [dcl.spec.auto]p3
7001    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7002      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7003        << Var->getDeclName() << Type;
7004      Var->setInvalidDecl();
7005      return;
7006    }
7007
7008    // C++11 [class.static.data]p3: A static data member can be declared with
7009    // the constexpr specifier; if so, its declaration shall specify
7010    // a brace-or-equal-initializer.
7011    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7012    // the definition of a variable [...] or the declaration of a static data
7013    // member.
7014    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7015      if (Var->isStaticDataMember())
7016        Diag(Var->getLocation(),
7017             diag::err_constexpr_static_mem_var_requires_init)
7018          << Var->getDeclName();
7019      else
7020        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7021      Var->setInvalidDecl();
7022      return;
7023    }
7024
7025    switch (Var->isThisDeclarationADefinition()) {
7026    case VarDecl::Definition:
7027      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7028        break;
7029
7030      // We have an out-of-line definition of a static data member
7031      // that has an in-class initializer, so we type-check this like
7032      // a declaration.
7033      //
7034      // Fall through
7035
7036    case VarDecl::DeclarationOnly:
7037      // It's only a declaration.
7038
7039      // Block scope. C99 6.7p7: If an identifier for an object is
7040      // declared with no linkage (C99 6.2.2p6), the type for the
7041      // object shall be complete.
7042      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7043          !Var->getLinkage() && !Var->isInvalidDecl() &&
7044          RequireCompleteType(Var->getLocation(), Type,
7045                              diag::err_typecheck_decl_incomplete_type))
7046        Var->setInvalidDecl();
7047
7048      // Make sure that the type is not abstract.
7049      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7050          RequireNonAbstractType(Var->getLocation(), Type,
7051                                 diag::err_abstract_type_in_decl,
7052                                 AbstractVariableType))
7053        Var->setInvalidDecl();
7054      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7055          Var->getStorageClass() == SC_PrivateExtern) {
7056        Diag(Var->getLocation(), diag::warn_private_extern);
7057        Diag(Var->getLocation(), diag::note_private_extern);
7058      }
7059
7060      return;
7061
7062    case VarDecl::TentativeDefinition:
7063      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7064      // object that has file scope without an initializer, and without a
7065      // storage-class specifier or with the storage-class specifier "static",
7066      // constitutes a tentative definition. Note: A tentative definition with
7067      // external linkage is valid (C99 6.2.2p5).
7068      if (!Var->isInvalidDecl()) {
7069        if (const IncompleteArrayType *ArrayT
7070                                    = Context.getAsIncompleteArrayType(Type)) {
7071          if (RequireCompleteType(Var->getLocation(),
7072                                  ArrayT->getElementType(),
7073                                  diag::err_illegal_decl_array_incomplete_type))
7074            Var->setInvalidDecl();
7075        } else if (Var->getStorageClass() == SC_Static) {
7076          // C99 6.9.2p3: If the declaration of an identifier for an object is
7077          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7078          // declared type shall not be an incomplete type.
7079          // NOTE: code such as the following
7080          //     static struct s;
7081          //     struct s { int a; };
7082          // is accepted by gcc. Hence here we issue a warning instead of
7083          // an error and we do not invalidate the static declaration.
7084          // NOTE: to avoid multiple warnings, only check the first declaration.
7085          if (Var->getPreviousDecl() == 0)
7086            RequireCompleteType(Var->getLocation(), Type,
7087                                diag::ext_typecheck_decl_incomplete_type);
7088        }
7089      }
7090
7091      // Record the tentative definition; we're done.
7092      if (!Var->isInvalidDecl())
7093        TentativeDefinitions.push_back(Var);
7094      return;
7095    }
7096
7097    // Provide a specific diagnostic for uninitialized variable
7098    // definitions with incomplete array type.
7099    if (Type->isIncompleteArrayType()) {
7100      Diag(Var->getLocation(),
7101           diag::err_typecheck_incomplete_array_needs_initializer);
7102      Var->setInvalidDecl();
7103      return;
7104    }
7105
7106    // Provide a specific diagnostic for uninitialized variable
7107    // definitions with reference type.
7108    if (Type->isReferenceType()) {
7109      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7110        << Var->getDeclName()
7111        << SourceRange(Var->getLocation(), Var->getLocation());
7112      Var->setInvalidDecl();
7113      return;
7114    }
7115
7116    // Do not attempt to type-check the default initializer for a
7117    // variable with dependent type.
7118    if (Type->isDependentType())
7119      return;
7120
7121    if (Var->isInvalidDecl())
7122      return;
7123
7124    if (RequireCompleteType(Var->getLocation(),
7125                            Context.getBaseElementType(Type),
7126                            diag::err_typecheck_decl_incomplete_type)) {
7127      Var->setInvalidDecl();
7128      return;
7129    }
7130
7131    // The variable can not have an abstract class type.
7132    if (RequireNonAbstractType(Var->getLocation(), Type,
7133                               diag::err_abstract_type_in_decl,
7134                               AbstractVariableType)) {
7135      Var->setInvalidDecl();
7136      return;
7137    }
7138
7139    // Check for jumps past the implicit initializer.  C++0x
7140    // clarifies that this applies to a "variable with automatic
7141    // storage duration", not a "local variable".
7142    // C++11 [stmt.dcl]p3
7143    //   A program that jumps from a point where a variable with automatic
7144    //   storage duration is not in scope to a point where it is in scope is
7145    //   ill-formed unless the variable has scalar type, class type with a
7146    //   trivial default constructor and a trivial destructor, a cv-qualified
7147    //   version of one of these types, or an array of one of the preceding
7148    //   types and is declared without an initializer.
7149    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7150      if (const RecordType *Record
7151            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7152        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7153        // Mark the function for further checking even if the looser rules of
7154        // C++11 do not require such checks, so that we can diagnose
7155        // incompatibilities with C++98.
7156        if (!CXXRecord->isPOD())
7157          getCurFunction()->setHasBranchProtectedScope();
7158      }
7159    }
7160
7161    // C++03 [dcl.init]p9:
7162    //   If no initializer is specified for an object, and the
7163    //   object is of (possibly cv-qualified) non-POD class type (or
7164    //   array thereof), the object shall be default-initialized; if
7165    //   the object is of const-qualified type, the underlying class
7166    //   type shall have a user-declared default
7167    //   constructor. Otherwise, if no initializer is specified for
7168    //   a non- static object, the object and its subobjects, if
7169    //   any, have an indeterminate initial value); if the object
7170    //   or any of its subobjects are of const-qualified type, the
7171    //   program is ill-formed.
7172    // C++0x [dcl.init]p11:
7173    //   If no initializer is specified for an object, the object is
7174    //   default-initialized; [...].
7175    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7176    InitializationKind Kind
7177      = InitializationKind::CreateDefault(Var->getLocation());
7178
7179    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7180    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7181    if (Init.isInvalid())
7182      Var->setInvalidDecl();
7183    else if (Init.get()) {
7184      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7185      // This is important for template substitution.
7186      Var->setInitStyle(VarDecl::CallInit);
7187    }
7188
7189    CheckCompleteVariableDeclaration(Var);
7190  }
7191}
7192
7193void Sema::ActOnCXXForRangeDecl(Decl *D) {
7194  VarDecl *VD = dyn_cast<VarDecl>(D);
7195  if (!VD) {
7196    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7197    D->setInvalidDecl();
7198    return;
7199  }
7200
7201  VD->setCXXForRangeDecl(true);
7202
7203  // for-range-declaration cannot be given a storage class specifier.
7204  int Error = -1;
7205  switch (VD->getStorageClassAsWritten()) {
7206  case SC_None:
7207    break;
7208  case SC_Extern:
7209    Error = 0;
7210    break;
7211  case SC_Static:
7212    Error = 1;
7213    break;
7214  case SC_PrivateExtern:
7215    Error = 2;
7216    break;
7217  case SC_Auto:
7218    Error = 3;
7219    break;
7220  case SC_Register:
7221    Error = 4;
7222    break;
7223  case SC_OpenCLWorkGroupLocal:
7224    llvm_unreachable("Unexpected storage class");
7225  }
7226  if (VD->isConstexpr())
7227    Error = 5;
7228  if (Error != -1) {
7229    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7230      << VD->getDeclName() << Error;
7231    D->setInvalidDecl();
7232  }
7233}
7234
7235void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7236  if (var->isInvalidDecl()) return;
7237
7238  // In ARC, don't allow jumps past the implicit initialization of a
7239  // local retaining variable.
7240  if (getLangOpts().ObjCAutoRefCount &&
7241      var->hasLocalStorage()) {
7242    switch (var->getType().getObjCLifetime()) {
7243    case Qualifiers::OCL_None:
7244    case Qualifiers::OCL_ExplicitNone:
7245    case Qualifiers::OCL_Autoreleasing:
7246      break;
7247
7248    case Qualifiers::OCL_Weak:
7249    case Qualifiers::OCL_Strong:
7250      getCurFunction()->setHasBranchProtectedScope();
7251      break;
7252    }
7253  }
7254
7255  if (var->isThisDeclarationADefinition() &&
7256      var->getLinkage() == ExternalLinkage &&
7257      getDiagnostics().getDiagnosticLevel(
7258                       diag::warn_missing_variable_declarations,
7259                       var->getLocation())) {
7260    // Find a previous declaration that's not a definition.
7261    VarDecl *prev = var->getPreviousDecl();
7262    while (prev && prev->isThisDeclarationADefinition())
7263      prev = prev->getPreviousDecl();
7264
7265    if (!prev)
7266      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7267  }
7268
7269  // All the following checks are C++ only.
7270  if (!getLangOpts().CPlusPlus) return;
7271
7272  QualType type = var->getType();
7273  if (type->isDependentType()) return;
7274
7275  // __block variables might require us to capture a copy-initializer.
7276  if (var->hasAttr<BlocksAttr>()) {
7277    // It's currently invalid to ever have a __block variable with an
7278    // array type; should we diagnose that here?
7279
7280    // Regardless, we don't want to ignore array nesting when
7281    // constructing this copy.
7282    if (type->isStructureOrClassType()) {
7283      SourceLocation poi = var->getLocation();
7284      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7285      ExprResult result =
7286        PerformCopyInitialization(
7287                        InitializedEntity::InitializeBlock(poi, type, false),
7288                                  poi, Owned(varRef));
7289      if (!result.isInvalid()) {
7290        result = MaybeCreateExprWithCleanups(result);
7291        Expr *init = result.takeAs<Expr>();
7292        Context.setBlockVarCopyInits(var, init);
7293      }
7294    }
7295  }
7296
7297  Expr *Init = var->getInit();
7298  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7299  QualType baseType = Context.getBaseElementType(type);
7300
7301  if (!var->getDeclContext()->isDependentContext() &&
7302      Init && !Init->isValueDependent()) {
7303    if (IsGlobal && !var->isConstexpr() &&
7304        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7305                                            var->getLocation())
7306          != DiagnosticsEngine::Ignored &&
7307        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7308      Diag(var->getLocation(), diag::warn_global_constructor)
7309        << Init->getSourceRange();
7310
7311    if (var->isConstexpr()) {
7312      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7313      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7314        SourceLocation DiagLoc = var->getLocation();
7315        // If the note doesn't add any useful information other than a source
7316        // location, fold it into the primary diagnostic.
7317        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7318              diag::note_invalid_subexpr_in_const_expr) {
7319          DiagLoc = Notes[0].first;
7320          Notes.clear();
7321        }
7322        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7323          << var << Init->getSourceRange();
7324        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7325          Diag(Notes[I].first, Notes[I].second);
7326      }
7327    } else if (var->isUsableInConstantExpressions(Context)) {
7328      // Check whether the initializer of a const variable of integral or
7329      // enumeration type is an ICE now, since we can't tell whether it was
7330      // initialized by a constant expression if we check later.
7331      var->checkInitIsICE();
7332    }
7333  }
7334
7335  // Require the destructor.
7336  if (const RecordType *recordType = baseType->getAs<RecordType>())
7337    FinalizeVarWithDestructor(var, recordType);
7338}
7339
7340/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7341/// any semantic actions necessary after any initializer has been attached.
7342void
7343Sema::FinalizeDeclaration(Decl *ThisDecl) {
7344  // Note that we are no longer parsing the initializer for this declaration.
7345  ParsingInitForAutoVars.erase(ThisDecl);
7346
7347  const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7348  if (!VD)
7349    return;
7350
7351  // Now we have parsed the initializer and can update the table of magic
7352  // tag values.
7353  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7354      !VD->getType()->isIntegralOrEnumerationType())
7355    return;
7356
7357  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7358         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7359         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7360       I != E; ++I) {
7361    const Expr *MagicValueExpr = VD->getInit();
7362    if (!MagicValueExpr) {
7363      continue;
7364    }
7365    llvm::APSInt MagicValueInt;
7366    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7367      Diag(I->getRange().getBegin(),
7368           diag::err_type_tag_for_datatype_not_ice)
7369        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7370      continue;
7371    }
7372    if (MagicValueInt.getActiveBits() > 64) {
7373      Diag(I->getRange().getBegin(),
7374           diag::err_type_tag_for_datatype_too_large)
7375        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7376      continue;
7377    }
7378    uint64_t MagicValue = MagicValueInt.getZExtValue();
7379    RegisterTypeTagForDatatype(I->getArgumentKind(),
7380                               MagicValue,
7381                               I->getMatchingCType(),
7382                               I->getLayoutCompatible(),
7383                               I->getMustBeNull());
7384  }
7385}
7386
7387Sema::DeclGroupPtrTy
7388Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7389                              Decl **Group, unsigned NumDecls) {
7390  SmallVector<Decl*, 8> Decls;
7391
7392  if (DS.isTypeSpecOwned())
7393    Decls.push_back(DS.getRepAsDecl());
7394
7395  for (unsigned i = 0; i != NumDecls; ++i)
7396    if (Decl *D = Group[i])
7397      Decls.push_back(D);
7398
7399  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7400    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7401      getASTContext().addUnnamedTag(Tag);
7402
7403  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7404                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7405}
7406
7407/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7408/// group, performing any necessary semantic checking.
7409Sema::DeclGroupPtrTy
7410Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7411                           bool TypeMayContainAuto) {
7412  // C++0x [dcl.spec.auto]p7:
7413  //   If the type deduced for the template parameter U is not the same in each
7414  //   deduction, the program is ill-formed.
7415  // FIXME: When initializer-list support is added, a distinction is needed
7416  // between the deduced type U and the deduced type which 'auto' stands for.
7417  //   auto a = 0, b = { 1, 2, 3 };
7418  // is legal because the deduced type U is 'int' in both cases.
7419  if (TypeMayContainAuto && NumDecls > 1) {
7420    QualType Deduced;
7421    CanQualType DeducedCanon;
7422    VarDecl *DeducedDecl = 0;
7423    for (unsigned i = 0; i != NumDecls; ++i) {
7424      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7425        AutoType *AT = D->getType()->getContainedAutoType();
7426        // Don't reissue diagnostics when instantiating a template.
7427        if (AT && D->isInvalidDecl())
7428          break;
7429        if (AT && AT->isDeduced()) {
7430          QualType U = AT->getDeducedType();
7431          CanQualType UCanon = Context.getCanonicalType(U);
7432          if (Deduced.isNull()) {
7433            Deduced = U;
7434            DeducedCanon = UCanon;
7435            DeducedDecl = D;
7436          } else if (DeducedCanon != UCanon) {
7437            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7438                 diag::err_auto_different_deductions)
7439              << Deduced << DeducedDecl->getDeclName()
7440              << U << D->getDeclName()
7441              << DeducedDecl->getInit()->getSourceRange()
7442              << D->getInit()->getSourceRange();
7443            D->setInvalidDecl();
7444            break;
7445          }
7446        }
7447      }
7448    }
7449  }
7450
7451  ActOnDocumentableDecls(Group, NumDecls);
7452
7453  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7454}
7455
7456void Sema::ActOnDocumentableDecl(Decl *D) {
7457  ActOnDocumentableDecls(&D, 1);
7458}
7459
7460void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7461  // Don't parse the comment if Doxygen diagnostics are ignored.
7462  if (NumDecls == 0 || !Group[0])
7463   return;
7464
7465  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7466                               Group[0]->getLocation())
7467        == DiagnosticsEngine::Ignored)
7468    return;
7469
7470  if (NumDecls >= 2) {
7471    // This is a decl group.  Normally it will contain only declarations
7472    // procuded from declarator list.  But in case we have any definitions or
7473    // additional declaration references:
7474    //   'typedef struct S {} S;'
7475    //   'typedef struct S *S;'
7476    //   'struct S *pS;'
7477    // FinalizeDeclaratorGroup adds these as separate declarations.
7478    Decl *MaybeTagDecl = Group[0];
7479    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7480      Group++;
7481      NumDecls--;
7482    }
7483  }
7484
7485  // See if there are any new comments that are not attached to a decl.
7486  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7487  if (!Comments.empty() &&
7488      !Comments.back()->isAttached()) {
7489    // There is at least one comment that not attached to a decl.
7490    // Maybe it should be attached to one of these decls?
7491    //
7492    // Note that this way we pick up not only comments that precede the
7493    // declaration, but also comments that *follow* the declaration -- thanks to
7494    // the lookahead in the lexer: we've consumed the semicolon and looked
7495    // ahead through comments.
7496    for (unsigned i = 0; i != NumDecls; ++i)
7497      Context.getCommentForDecl(Group[i], &PP);
7498  }
7499}
7500
7501/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7502/// to introduce parameters into function prototype scope.
7503Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7504  const DeclSpec &DS = D.getDeclSpec();
7505
7506  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7507  // C++03 [dcl.stc]p2 also permits 'auto'.
7508  VarDecl::StorageClass StorageClass = SC_None;
7509  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7510  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7511    StorageClass = SC_Register;
7512    StorageClassAsWritten = SC_Register;
7513  } else if (getLangOpts().CPlusPlus &&
7514             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7515    StorageClass = SC_Auto;
7516    StorageClassAsWritten = SC_Auto;
7517  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7518    Diag(DS.getStorageClassSpecLoc(),
7519         diag::err_invalid_storage_class_in_func_decl);
7520    D.getMutableDeclSpec().ClearStorageClassSpecs();
7521  }
7522
7523  if (D.getDeclSpec().isThreadSpecified())
7524    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7525  if (D.getDeclSpec().isConstexprSpecified())
7526    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7527      << 0;
7528
7529  DiagnoseFunctionSpecifiers(D);
7530
7531  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7532  QualType parmDeclType = TInfo->getType();
7533
7534  if (getLangOpts().CPlusPlus) {
7535    // Check that there are no default arguments inside the type of this
7536    // parameter.
7537    CheckExtraCXXDefaultArguments(D);
7538
7539    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7540    if (D.getCXXScopeSpec().isSet()) {
7541      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7542        << D.getCXXScopeSpec().getRange();
7543      D.getCXXScopeSpec().clear();
7544    }
7545  }
7546
7547  // Ensure we have a valid name
7548  IdentifierInfo *II = 0;
7549  if (D.hasName()) {
7550    II = D.getIdentifier();
7551    if (!II) {
7552      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7553        << GetNameForDeclarator(D).getName().getAsString();
7554      D.setInvalidType(true);
7555    }
7556  }
7557
7558  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7559  if (II) {
7560    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7561                   ForRedeclaration);
7562    LookupName(R, S);
7563    if (R.isSingleResult()) {
7564      NamedDecl *PrevDecl = R.getFoundDecl();
7565      if (PrevDecl->isTemplateParameter()) {
7566        // Maybe we will complain about the shadowed template parameter.
7567        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7568        // Just pretend that we didn't see the previous declaration.
7569        PrevDecl = 0;
7570      } else if (S->isDeclScope(PrevDecl)) {
7571        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7572        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7573
7574        // Recover by removing the name
7575        II = 0;
7576        D.SetIdentifier(0, D.getIdentifierLoc());
7577        D.setInvalidType(true);
7578      }
7579    }
7580  }
7581
7582  // Temporarily put parameter variables in the translation unit, not
7583  // the enclosing context.  This prevents them from accidentally
7584  // looking like class members in C++.
7585  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7586                                    D.getLocStart(),
7587                                    D.getIdentifierLoc(), II,
7588                                    parmDeclType, TInfo,
7589                                    StorageClass, StorageClassAsWritten);
7590
7591  if (D.isInvalidType())
7592    New->setInvalidDecl();
7593
7594  assert(S->isFunctionPrototypeScope());
7595  assert(S->getFunctionPrototypeDepth() >= 1);
7596  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7597                    S->getNextFunctionPrototypeIndex());
7598
7599  // Add the parameter declaration into this scope.
7600  S->AddDecl(New);
7601  if (II)
7602    IdResolver.AddDecl(New);
7603
7604  ProcessDeclAttributes(S, New, D);
7605
7606  if (D.getDeclSpec().isModulePrivateSpecified())
7607    Diag(New->getLocation(), diag::err_module_private_local)
7608      << 1 << New->getDeclName()
7609      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7610      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7611
7612  if (New->hasAttr<BlocksAttr>()) {
7613    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7614  }
7615  return New;
7616}
7617
7618/// \brief Synthesizes a variable for a parameter arising from a
7619/// typedef.
7620ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7621                                              SourceLocation Loc,
7622                                              QualType T) {
7623  /* FIXME: setting StartLoc == Loc.
7624     Would it be worth to modify callers so as to provide proper source
7625     location for the unnamed parameters, embedding the parameter's type? */
7626  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7627                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7628                                           SC_None, SC_None, 0);
7629  Param->setImplicit();
7630  return Param;
7631}
7632
7633void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7634                                    ParmVarDecl * const *ParamEnd) {
7635  // Don't diagnose unused-parameter errors in template instantiations; we
7636  // will already have done so in the template itself.
7637  if (!ActiveTemplateInstantiations.empty())
7638    return;
7639
7640  for (; Param != ParamEnd; ++Param) {
7641    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7642        !(*Param)->hasAttr<UnusedAttr>()) {
7643      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7644        << (*Param)->getDeclName();
7645    }
7646  }
7647}
7648
7649void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7650                                                  ParmVarDecl * const *ParamEnd,
7651                                                  QualType ReturnTy,
7652                                                  NamedDecl *D) {
7653  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7654    return;
7655
7656  // Warn if the return value is pass-by-value and larger than the specified
7657  // threshold.
7658  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7659    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7660    if (Size > LangOpts.NumLargeByValueCopy)
7661      Diag(D->getLocation(), diag::warn_return_value_size)
7662          << D->getDeclName() << Size;
7663  }
7664
7665  // Warn if any parameter is pass-by-value and larger than the specified
7666  // threshold.
7667  for (; Param != ParamEnd; ++Param) {
7668    QualType T = (*Param)->getType();
7669    if (T->isDependentType() || !T.isPODType(Context))
7670      continue;
7671    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7672    if (Size > LangOpts.NumLargeByValueCopy)
7673      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7674          << (*Param)->getDeclName() << Size;
7675  }
7676}
7677
7678ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7679                                  SourceLocation NameLoc, IdentifierInfo *Name,
7680                                  QualType T, TypeSourceInfo *TSInfo,
7681                                  VarDecl::StorageClass StorageClass,
7682                                  VarDecl::StorageClass StorageClassAsWritten) {
7683  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7684  if (getLangOpts().ObjCAutoRefCount &&
7685      T.getObjCLifetime() == Qualifiers::OCL_None &&
7686      T->isObjCLifetimeType()) {
7687
7688    Qualifiers::ObjCLifetime lifetime;
7689
7690    // Special cases for arrays:
7691    //   - if it's const, use __unsafe_unretained
7692    //   - otherwise, it's an error
7693    if (T->isArrayType()) {
7694      if (!T.isConstQualified()) {
7695        DelayedDiagnostics.add(
7696            sema::DelayedDiagnostic::makeForbiddenType(
7697            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7698      }
7699      lifetime = Qualifiers::OCL_ExplicitNone;
7700    } else {
7701      lifetime = T->getObjCARCImplicitLifetime();
7702    }
7703    T = Context.getLifetimeQualifiedType(T, lifetime);
7704  }
7705
7706  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7707                                         Context.getAdjustedParameterType(T),
7708                                         TSInfo,
7709                                         StorageClass, StorageClassAsWritten,
7710                                         0);
7711
7712  // Parameters can not be abstract class types.
7713  // For record types, this is done by the AbstractClassUsageDiagnoser once
7714  // the class has been completely parsed.
7715  if (!CurContext->isRecord() &&
7716      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7717                             AbstractParamType))
7718    New->setInvalidDecl();
7719
7720  // Parameter declarators cannot be interface types. All ObjC objects are
7721  // passed by reference.
7722  if (T->isObjCObjectType()) {
7723    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7724    Diag(NameLoc,
7725         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7726      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7727    T = Context.getObjCObjectPointerType(T);
7728    New->setType(T);
7729  }
7730
7731  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7732  // duration shall not be qualified by an address-space qualifier."
7733  // Since all parameters have automatic store duration, they can not have
7734  // an address space.
7735  if (T.getAddressSpace() != 0) {
7736    Diag(NameLoc, diag::err_arg_with_address_space);
7737    New->setInvalidDecl();
7738  }
7739
7740  return New;
7741}
7742
7743void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7744                                           SourceLocation LocAfterDecls) {
7745  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7746
7747  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7748  // for a K&R function.
7749  if (!FTI.hasPrototype) {
7750    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7751      --i;
7752      if (FTI.ArgInfo[i].Param == 0) {
7753        SmallString<256> Code;
7754        llvm::raw_svector_ostream(Code) << "  int "
7755                                        << FTI.ArgInfo[i].Ident->getName()
7756                                        << ";\n";
7757        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7758          << FTI.ArgInfo[i].Ident
7759          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7760
7761        // Implicitly declare the argument as type 'int' for lack of a better
7762        // type.
7763        AttributeFactory attrs;
7764        DeclSpec DS(attrs);
7765        const char* PrevSpec; // unused
7766        unsigned DiagID; // unused
7767        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7768                           PrevSpec, DiagID);
7769        // Use the identifier location for the type source range.
7770        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
7771        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
7772        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7773        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7774        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7775      }
7776    }
7777  }
7778}
7779
7780Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7781  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7782  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7783  Scope *ParentScope = FnBodyScope->getParent();
7784
7785  D.setFunctionDefinitionKind(FDK_Definition);
7786  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7787  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7788}
7789
7790static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
7791                             const FunctionDecl*& PossibleZeroParamPrototype) {
7792  // Don't warn about invalid declarations.
7793  if (FD->isInvalidDecl())
7794    return false;
7795
7796  // Or declarations that aren't global.
7797  if (!FD->isGlobal())
7798    return false;
7799
7800  // Don't warn about C++ member functions.
7801  if (isa<CXXMethodDecl>(FD))
7802    return false;
7803
7804  // Don't warn about 'main'.
7805  if (FD->isMain())
7806    return false;
7807
7808  // Don't warn about inline functions.
7809  if (FD->isInlined())
7810    return false;
7811
7812  // Don't warn about function templates.
7813  if (FD->getDescribedFunctionTemplate())
7814    return false;
7815
7816  // Don't warn about function template specializations.
7817  if (FD->isFunctionTemplateSpecialization())
7818    return false;
7819
7820  // Don't warn for OpenCL kernels.
7821  if (FD->hasAttr<OpenCLKernelAttr>())
7822    return false;
7823
7824  bool MissingPrototype = true;
7825  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7826       Prev; Prev = Prev->getPreviousDecl()) {
7827    // Ignore any declarations that occur in function or method
7828    // scope, because they aren't visible from the header.
7829    if (Prev->getDeclContext()->isFunctionOrMethod())
7830      continue;
7831
7832    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7833    if (FD->getNumParams() == 0)
7834      PossibleZeroParamPrototype = Prev;
7835    break;
7836  }
7837
7838  return MissingPrototype;
7839}
7840
7841void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7842  // Don't complain if we're in GNU89 mode and the previous definition
7843  // was an extern inline function.
7844  const FunctionDecl *Definition;
7845  if (FD->isDefined(Definition) &&
7846      !canRedefineFunction(Definition, getLangOpts())) {
7847    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7848        Definition->getStorageClass() == SC_Extern)
7849      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7850        << FD->getDeclName() << getLangOpts().CPlusPlus;
7851    else
7852      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7853    Diag(Definition->getLocation(), diag::note_previous_definition);
7854    FD->setInvalidDecl();
7855  }
7856}
7857
7858Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7859  // Clear the last template instantiation error context.
7860  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7861
7862  if (!D)
7863    return D;
7864  FunctionDecl *FD = 0;
7865
7866  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7867    FD = FunTmpl->getTemplatedDecl();
7868  else
7869    FD = cast<FunctionDecl>(D);
7870
7871  // Enter a new function scope
7872  PushFunctionScope();
7873
7874  // See if this is a redefinition.
7875  if (!FD->isLateTemplateParsed())
7876    CheckForFunctionRedefinition(FD);
7877
7878  // Builtin functions cannot be defined.
7879  if (unsigned BuiltinID = FD->getBuiltinID()) {
7880    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7881      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7882      FD->setInvalidDecl();
7883    }
7884  }
7885
7886  // The return type of a function definition must be complete
7887  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7888  QualType ResultType = FD->getResultType();
7889  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7890      !FD->isInvalidDecl() &&
7891      RequireCompleteType(FD->getLocation(), ResultType,
7892                          diag::err_func_def_incomplete_result))
7893    FD->setInvalidDecl();
7894
7895  // GNU warning -Wmissing-prototypes:
7896  //   Warn if a global function is defined without a previous
7897  //   prototype declaration. This warning is issued even if the
7898  //   definition itself provides a prototype. The aim is to detect
7899  //   global functions that fail to be declared in header files.
7900  const FunctionDecl *PossibleZeroParamPrototype = 0;
7901  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
7902    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7903
7904    if (PossibleZeroParamPrototype) {
7905      // We found a declaration that is not a prototype,
7906      // but that could be a zero-parameter prototype
7907      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
7908      TypeLoc TL = TI->getTypeLoc();
7909      if (FunctionNoProtoTypeLoc* FTL = dyn_cast<FunctionNoProtoTypeLoc>(&TL))
7910        Diag(PossibleZeroParamPrototype->getLocation(),
7911             diag::note_declaration_not_a_prototype)
7912          << PossibleZeroParamPrototype
7913          << FixItHint::CreateInsertion(FTL->getRParenLoc(), "void");
7914    }
7915  }
7916
7917  if (FnBodyScope)
7918    PushDeclContext(FnBodyScope, FD);
7919
7920  // Check the validity of our function parameters
7921  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7922                           /*CheckParameterNames=*/true);
7923
7924  // Introduce our parameters into the function scope
7925  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7926    ParmVarDecl *Param = FD->getParamDecl(p);
7927    Param->setOwningFunction(FD);
7928
7929    // If this has an identifier, add it to the scope stack.
7930    if (Param->getIdentifier() && FnBodyScope) {
7931      CheckShadow(FnBodyScope, Param);
7932
7933      PushOnScopeChains(Param, FnBodyScope);
7934    }
7935  }
7936
7937  // If we had any tags defined in the function prototype,
7938  // introduce them into the function scope.
7939  if (FnBodyScope) {
7940    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7941           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7942      NamedDecl *D = *I;
7943
7944      // Some of these decls (like enums) may have been pinned to the translation unit
7945      // for lack of a real context earlier. If so, remove from the translation unit
7946      // and reattach to the current context.
7947      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7948        // Is the decl actually in the context?
7949        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7950               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7951          if (*DI == D) {
7952            Context.getTranslationUnitDecl()->removeDecl(D);
7953            break;
7954          }
7955        }
7956        // Either way, reassign the lexical decl context to our FunctionDecl.
7957        D->setLexicalDeclContext(CurContext);
7958      }
7959
7960      // If the decl has a non-null name, make accessible in the current scope.
7961      if (!D->getName().empty())
7962        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7963
7964      // Similarly, dive into enums and fish their constants out, making them
7965      // accessible in this scope.
7966      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7967        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7968               EE = ED->enumerator_end(); EI != EE; ++EI)
7969          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7970      }
7971    }
7972  }
7973
7974  // Ensure that the function's exception specification is instantiated.
7975  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7976    ResolveExceptionSpec(D->getLocation(), FPT);
7977
7978  // Checking attributes of current function definition
7979  // dllimport attribute.
7980  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7981  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7982    // dllimport attribute cannot be directly applied to definition.
7983    // Microsoft accepts dllimport for functions defined within class scope.
7984    if (!DA->isInherited() &&
7985        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7986      Diag(FD->getLocation(),
7987           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7988        << "dllimport";
7989      FD->setInvalidDecl();
7990      return D;
7991    }
7992
7993    // Visual C++ appears to not think this is an issue, so only issue
7994    // a warning when Microsoft extensions are disabled.
7995    if (!LangOpts.MicrosoftExt) {
7996      // If a symbol previously declared dllimport is later defined, the
7997      // attribute is ignored in subsequent references, and a warning is
7998      // emitted.
7999      Diag(FD->getLocation(),
8000           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8001        << FD->getName() << "dllimport";
8002    }
8003  }
8004  // We want to attach documentation to original Decl (which might be
8005  // a function template).
8006  ActOnDocumentableDecl(D);
8007  return D;
8008}
8009
8010/// \brief Given the set of return statements within a function body,
8011/// compute the variables that are subject to the named return value
8012/// optimization.
8013///
8014/// Each of the variables that is subject to the named return value
8015/// optimization will be marked as NRVO variables in the AST, and any
8016/// return statement that has a marked NRVO variable as its NRVO candidate can
8017/// use the named return value optimization.
8018///
8019/// This function applies a very simplistic algorithm for NRVO: if every return
8020/// statement in the function has the same NRVO candidate, that candidate is
8021/// the NRVO variable.
8022///
8023/// FIXME: Employ a smarter algorithm that accounts for multiple return
8024/// statements and the lifetimes of the NRVO candidates. We should be able to
8025/// find a maximal set of NRVO variables.
8026void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8027  ReturnStmt **Returns = Scope->Returns.data();
8028
8029  const VarDecl *NRVOCandidate = 0;
8030  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8031    if (!Returns[I]->getNRVOCandidate())
8032      return;
8033
8034    if (!NRVOCandidate)
8035      NRVOCandidate = Returns[I]->getNRVOCandidate();
8036    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8037      return;
8038  }
8039
8040  if (NRVOCandidate)
8041    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8042}
8043
8044bool Sema::canSkipFunctionBody(Decl *D) {
8045  if (!Consumer.shouldSkipFunctionBody(D))
8046    return false;
8047
8048  if (isa<ObjCMethodDecl>(D))
8049    return true;
8050
8051  FunctionDecl *FD = 0;
8052  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8053    FD = FTD->getTemplatedDecl();
8054  else
8055    FD = cast<FunctionDecl>(D);
8056
8057  // We cannot skip the body of a function (or function template) which is
8058  // constexpr, since we may need to evaluate its body in order to parse the
8059  // rest of the file.
8060  return !FD->isConstexpr();
8061}
8062
8063Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8064  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
8065    FD->setHasSkippedBody();
8066  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
8067    MD->setHasSkippedBody();
8068  return ActOnFinishFunctionBody(Decl, 0);
8069}
8070
8071Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8072  return ActOnFinishFunctionBody(D, BodyArg, false);
8073}
8074
8075Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8076                                    bool IsInstantiation) {
8077  FunctionDecl *FD = 0;
8078  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8079  if (FunTmpl)
8080    FD = FunTmpl->getTemplatedDecl();
8081  else
8082    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8083
8084  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8085  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8086
8087  if (FD) {
8088    FD->setBody(Body);
8089
8090    // If the function implicitly returns zero (like 'main') or is naked,
8091    // don't complain about missing return statements.
8092    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8093      WP.disableCheckFallThrough();
8094
8095    // MSVC permits the use of pure specifier (=0) on function definition,
8096    // defined at class scope, warn about this non standard construct.
8097    if (getLangOpts().MicrosoftExt && FD->isPure())
8098      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8099
8100    if (!FD->isInvalidDecl()) {
8101      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8102      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8103                                             FD->getResultType(), FD);
8104
8105      // If this is a constructor, we need a vtable.
8106      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8107        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8108
8109      // Try to apply the named return value optimization. We have to check
8110      // if we can do this here because lambdas keep return statements around
8111      // to deduce an implicit return type.
8112      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8113          !FD->isDependentContext())
8114        computeNRVO(Body, getCurFunction());
8115    }
8116
8117    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8118           "Function parsing confused");
8119  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8120    assert(MD == getCurMethodDecl() && "Method parsing confused");
8121    MD->setBody(Body);
8122    if (!MD->isInvalidDecl()) {
8123      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8124      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8125                                             MD->getResultType(), MD);
8126
8127      if (Body)
8128        computeNRVO(Body, getCurFunction());
8129    }
8130    if (getCurFunction()->ObjCShouldCallSuper) {
8131      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8132        << MD->getSelector().getAsString();
8133      getCurFunction()->ObjCShouldCallSuper = false;
8134    }
8135  } else {
8136    return 0;
8137  }
8138
8139  assert(!getCurFunction()->ObjCShouldCallSuper &&
8140         "This should only be set for ObjC methods, which should have been "
8141         "handled in the block above.");
8142
8143  // Verify and clean out per-function state.
8144  if (Body) {
8145    // C++ constructors that have function-try-blocks can't have return
8146    // statements in the handlers of that block. (C++ [except.handle]p14)
8147    // Verify this.
8148    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8149      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8150
8151    // Verify that gotos and switch cases don't jump into scopes illegally.
8152    if (getCurFunction()->NeedsScopeChecking() &&
8153        !dcl->isInvalidDecl() &&
8154        !hasAnyUnrecoverableErrorsInThisFunction() &&
8155        !PP.isCodeCompletionEnabled())
8156      DiagnoseInvalidJumps(Body);
8157
8158    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8159      if (!Destructor->getParent()->isDependentType())
8160        CheckDestructor(Destructor);
8161
8162      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8163                                             Destructor->getParent());
8164    }
8165
8166    // If any errors have occurred, clear out any temporaries that may have
8167    // been leftover. This ensures that these temporaries won't be picked up for
8168    // deletion in some later function.
8169    if (PP.getDiagnostics().hasErrorOccurred() ||
8170        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8171      DiscardCleanupsInEvaluationContext();
8172    }
8173    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8174        !isa<FunctionTemplateDecl>(dcl)) {
8175      // Since the body is valid, issue any analysis-based warnings that are
8176      // enabled.
8177      ActivePolicy = &WP;
8178    }
8179
8180    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8181        (!CheckConstexprFunctionDecl(FD) ||
8182         !CheckConstexprFunctionBody(FD, Body)))
8183      FD->setInvalidDecl();
8184
8185    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8186    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8187    assert(MaybeODRUseExprs.empty() &&
8188           "Leftover expressions for odr-use checking");
8189  }
8190
8191  if (!IsInstantiation)
8192    PopDeclContext();
8193
8194  PopFunctionScopeInfo(ActivePolicy, dcl);
8195
8196  // If any errors have occurred, clear out any temporaries that may have
8197  // been leftover. This ensures that these temporaries won't be picked up for
8198  // deletion in some later function.
8199  if (getDiagnostics().hasErrorOccurred()) {
8200    DiscardCleanupsInEvaluationContext();
8201  }
8202
8203  return dcl;
8204}
8205
8206
8207/// When we finish delayed parsing of an attribute, we must attach it to the
8208/// relevant Decl.
8209void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8210                                       ParsedAttributes &Attrs) {
8211  // Always attach attributes to the underlying decl.
8212  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8213    D = TD->getTemplatedDecl();
8214  ProcessDeclAttributeList(S, D, Attrs.getList());
8215
8216  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8217    if (Method->isStatic())
8218      checkThisInStaticMemberFunctionAttributes(Method);
8219}
8220
8221
8222/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8223/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8224NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8225                                          IdentifierInfo &II, Scope *S) {
8226  // Before we produce a declaration for an implicitly defined
8227  // function, see whether there was a locally-scoped declaration of
8228  // this name as a function or variable. If so, use that
8229  // (non-visible) declaration, and complain about it.
8230  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8231    = findLocallyScopedExternalDecl(&II);
8232  if (Pos != LocallyScopedExternalDecls.end()) {
8233    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8234    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8235    return Pos->second;
8236  }
8237
8238  // Extension in C99.  Legal in C90, but warn about it.
8239  unsigned diag_id;
8240  if (II.getName().startswith("__builtin_"))
8241    diag_id = diag::warn_builtin_unknown;
8242  else if (getLangOpts().C99)
8243    diag_id = diag::ext_implicit_function_decl;
8244  else
8245    diag_id = diag::warn_implicit_function_decl;
8246  Diag(Loc, diag_id) << &II;
8247
8248  // Because typo correction is expensive, only do it if the implicit
8249  // function declaration is going to be treated as an error.
8250  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8251    TypoCorrection Corrected;
8252    DeclFilterCCC<FunctionDecl> Validator;
8253    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8254                                      LookupOrdinaryName, S, 0, Validator))) {
8255      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8256      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8257      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8258
8259      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8260          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8261
8262      if (Func->getLocation().isValid()
8263          && !II.getName().startswith("__builtin_"))
8264        Diag(Func->getLocation(), diag::note_previous_decl)
8265            << CorrectedQuotedStr;
8266    }
8267  }
8268
8269  // Set a Declarator for the implicit definition: int foo();
8270  const char *Dummy;
8271  AttributeFactory attrFactory;
8272  DeclSpec DS(attrFactory);
8273  unsigned DiagID;
8274  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8275  (void)Error; // Silence warning.
8276  assert(!Error && "Error setting up implicit decl!");
8277  SourceLocation NoLoc;
8278  Declarator D(DS, Declarator::BlockContext);
8279  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8280                                             /*IsAmbiguous=*/false,
8281                                             /*RParenLoc=*/NoLoc,
8282                                             /*ArgInfo=*/0,
8283                                             /*NumArgs=*/0,
8284                                             /*EllipsisLoc=*/NoLoc,
8285                                             /*RParenLoc=*/NoLoc,
8286                                             /*TypeQuals=*/0,
8287                                             /*RefQualifierIsLvalueRef=*/true,
8288                                             /*RefQualifierLoc=*/NoLoc,
8289                                             /*ConstQualifierLoc=*/NoLoc,
8290                                             /*VolatileQualifierLoc=*/NoLoc,
8291                                             /*MutableLoc=*/NoLoc,
8292                                             EST_None,
8293                                             /*ESpecLoc=*/NoLoc,
8294                                             /*Exceptions=*/0,
8295                                             /*ExceptionRanges=*/0,
8296                                             /*NumExceptions=*/0,
8297                                             /*NoexceptExpr=*/0,
8298                                             Loc, Loc, D),
8299                DS.getAttributes(),
8300                SourceLocation());
8301  D.SetIdentifier(&II, Loc);
8302
8303  // Insert this function into translation-unit scope.
8304
8305  DeclContext *PrevDC = CurContext;
8306  CurContext = Context.getTranslationUnitDecl();
8307
8308  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8309  FD->setImplicit();
8310
8311  CurContext = PrevDC;
8312
8313  AddKnownFunctionAttributes(FD);
8314
8315  return FD;
8316}
8317
8318/// \brief Adds any function attributes that we know a priori based on
8319/// the declaration of this function.
8320///
8321/// These attributes can apply both to implicitly-declared builtins
8322/// (like __builtin___printf_chk) or to library-declared functions
8323/// like NSLog or printf.
8324///
8325/// We need to check for duplicate attributes both here and where user-written
8326/// attributes are applied to declarations.
8327void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8328  if (FD->isInvalidDecl())
8329    return;
8330
8331  // If this is a built-in function, map its builtin attributes to
8332  // actual attributes.
8333  if (unsigned BuiltinID = FD->getBuiltinID()) {
8334    // Handle printf-formatting attributes.
8335    unsigned FormatIdx;
8336    bool HasVAListArg;
8337    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8338      if (!FD->getAttr<FormatAttr>()) {
8339        const char *fmt = "printf";
8340        unsigned int NumParams = FD->getNumParams();
8341        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8342            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8343          fmt = "NSString";
8344        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8345                                               fmt, FormatIdx+1,
8346                                               HasVAListArg ? 0 : FormatIdx+2));
8347      }
8348    }
8349    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8350                                             HasVAListArg)) {
8351     if (!FD->getAttr<FormatAttr>())
8352       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8353                                              "scanf", FormatIdx+1,
8354                                              HasVAListArg ? 0 : FormatIdx+2));
8355    }
8356
8357    // Mark const if we don't care about errno and that is the only
8358    // thing preventing the function from being const. This allows
8359    // IRgen to use LLVM intrinsics for such functions.
8360    if (!getLangOpts().MathErrno &&
8361        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8362      if (!FD->getAttr<ConstAttr>())
8363        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8364    }
8365
8366    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8367        !FD->getAttr<ReturnsTwiceAttr>())
8368      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8369    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8370      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8371    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8372      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8373  }
8374
8375  IdentifierInfo *Name = FD->getIdentifier();
8376  if (!Name)
8377    return;
8378  if ((!getLangOpts().CPlusPlus &&
8379       FD->getDeclContext()->isTranslationUnit()) ||
8380      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8381       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8382       LinkageSpecDecl::lang_c)) {
8383    // Okay: this could be a libc/libm/Objective-C function we know
8384    // about.
8385  } else
8386    return;
8387
8388  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8389    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8390    // target-specific builtins, perhaps?
8391    if (!FD->getAttr<FormatAttr>())
8392      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8393                                             "printf", 2,
8394                                             Name->isStr("vasprintf") ? 0 : 3));
8395  }
8396
8397  if (Name->isStr("__CFStringMakeConstantString")) {
8398    // We already have a __builtin___CFStringMakeConstantString,
8399    // but builds that use -fno-constant-cfstrings don't go through that.
8400    if (!FD->getAttr<FormatArgAttr>())
8401      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8402  }
8403}
8404
8405TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8406                                    TypeSourceInfo *TInfo) {
8407  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8408  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8409
8410  if (!TInfo) {
8411    assert(D.isInvalidType() && "no declarator info for valid type");
8412    TInfo = Context.getTrivialTypeSourceInfo(T);
8413  }
8414
8415  // Scope manipulation handled by caller.
8416  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8417                                           D.getLocStart(),
8418                                           D.getIdentifierLoc(),
8419                                           D.getIdentifier(),
8420                                           TInfo);
8421
8422  // Bail out immediately if we have an invalid declaration.
8423  if (D.isInvalidType()) {
8424    NewTD->setInvalidDecl();
8425    return NewTD;
8426  }
8427
8428  if (D.getDeclSpec().isModulePrivateSpecified()) {
8429    if (CurContext->isFunctionOrMethod())
8430      Diag(NewTD->getLocation(), diag::err_module_private_local)
8431        << 2 << NewTD->getDeclName()
8432        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8433        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8434    else
8435      NewTD->setModulePrivate();
8436  }
8437
8438  // C++ [dcl.typedef]p8:
8439  //   If the typedef declaration defines an unnamed class (or
8440  //   enum), the first typedef-name declared by the declaration
8441  //   to be that class type (or enum type) is used to denote the
8442  //   class type (or enum type) for linkage purposes only.
8443  // We need to check whether the type was declared in the declaration.
8444  switch (D.getDeclSpec().getTypeSpecType()) {
8445  case TST_enum:
8446  case TST_struct:
8447  case TST_interface:
8448  case TST_union:
8449  case TST_class: {
8450    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8451
8452    // Do nothing if the tag is not anonymous or already has an
8453    // associated typedef (from an earlier typedef in this decl group).
8454    if (tagFromDeclSpec->getIdentifier()) break;
8455    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8456
8457    // A well-formed anonymous tag must always be a TUK_Definition.
8458    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8459
8460    // The type must match the tag exactly;  no qualifiers allowed.
8461    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8462      break;
8463
8464    // Otherwise, set this is the anon-decl typedef for the tag.
8465    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8466    break;
8467  }
8468
8469  default:
8470    break;
8471  }
8472
8473  return NewTD;
8474}
8475
8476
8477/// \brief Check that this is a valid underlying type for an enum declaration.
8478bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8479  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8480  QualType T = TI->getType();
8481
8482  if (T->isDependentType())
8483    return false;
8484
8485  if (const BuiltinType *BT = T->getAs<BuiltinType>())
8486    if (BT->isInteger())
8487      return false;
8488
8489  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8490  return true;
8491}
8492
8493/// Check whether this is a valid redeclaration of a previous enumeration.
8494/// \return true if the redeclaration was invalid.
8495bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8496                                  QualType EnumUnderlyingTy,
8497                                  const EnumDecl *Prev) {
8498  bool IsFixed = !EnumUnderlyingTy.isNull();
8499
8500  if (IsScoped != Prev->isScoped()) {
8501    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8502      << Prev->isScoped();
8503    Diag(Prev->getLocation(), diag::note_previous_use);
8504    return true;
8505  }
8506
8507  if (IsFixed && Prev->isFixed()) {
8508    if (!EnumUnderlyingTy->isDependentType() &&
8509        !Prev->getIntegerType()->isDependentType() &&
8510        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8511                                        Prev->getIntegerType())) {
8512      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8513        << EnumUnderlyingTy << Prev->getIntegerType();
8514      Diag(Prev->getLocation(), diag::note_previous_use);
8515      return true;
8516    }
8517  } else if (IsFixed != Prev->isFixed()) {
8518    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8519      << Prev->isFixed();
8520    Diag(Prev->getLocation(), diag::note_previous_use);
8521    return true;
8522  }
8523
8524  return false;
8525}
8526
8527/// \brief Get diagnostic %select index for tag kind for
8528/// redeclaration diagnostic message.
8529/// WARNING: Indexes apply to particular diagnostics only!
8530///
8531/// \returns diagnostic %select index.
8532static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8533  switch (Tag) {
8534  case TTK_Struct: return 0;
8535  case TTK_Interface: return 1;
8536  case TTK_Class:  return 2;
8537  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8538  }
8539}
8540
8541/// \brief Determine if tag kind is a class-key compatible with
8542/// class for redeclaration (class, struct, or __interface).
8543///
8544/// \returns true iff the tag kind is compatible.
8545static bool isClassCompatTagKind(TagTypeKind Tag)
8546{
8547  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8548}
8549
8550/// \brief Determine whether a tag with a given kind is acceptable
8551/// as a redeclaration of the given tag declaration.
8552///
8553/// \returns true if the new tag kind is acceptable, false otherwise.
8554bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8555                                        TagTypeKind NewTag, bool isDefinition,
8556                                        SourceLocation NewTagLoc,
8557                                        const IdentifierInfo &Name) {
8558  // C++ [dcl.type.elab]p3:
8559  //   The class-key or enum keyword present in the
8560  //   elaborated-type-specifier shall agree in kind with the
8561  //   declaration to which the name in the elaborated-type-specifier
8562  //   refers. This rule also applies to the form of
8563  //   elaborated-type-specifier that declares a class-name or
8564  //   friend class since it can be construed as referring to the
8565  //   definition of the class. Thus, in any
8566  //   elaborated-type-specifier, the enum keyword shall be used to
8567  //   refer to an enumeration (7.2), the union class-key shall be
8568  //   used to refer to a union (clause 9), and either the class or
8569  //   struct class-key shall be used to refer to a class (clause 9)
8570  //   declared using the class or struct class-key.
8571  TagTypeKind OldTag = Previous->getTagKind();
8572  if (!isDefinition || !isClassCompatTagKind(NewTag))
8573    if (OldTag == NewTag)
8574      return true;
8575
8576  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8577    // Warn about the struct/class tag mismatch.
8578    bool isTemplate = false;
8579    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8580      isTemplate = Record->getDescribedClassTemplate();
8581
8582    if (!ActiveTemplateInstantiations.empty()) {
8583      // In a template instantiation, do not offer fix-its for tag mismatches
8584      // since they usually mess up the template instead of fixing the problem.
8585      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8586        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8587        << getRedeclDiagFromTagKind(OldTag);
8588      return true;
8589    }
8590
8591    if (isDefinition) {
8592      // On definitions, check previous tags and issue a fix-it for each
8593      // one that doesn't match the current tag.
8594      if (Previous->getDefinition()) {
8595        // Don't suggest fix-its for redefinitions.
8596        return true;
8597      }
8598
8599      bool previousMismatch = false;
8600      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8601           E(Previous->redecls_end()); I != E; ++I) {
8602        if (I->getTagKind() != NewTag) {
8603          if (!previousMismatch) {
8604            previousMismatch = true;
8605            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8606              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8607              << getRedeclDiagFromTagKind(I->getTagKind());
8608          }
8609          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8610            << getRedeclDiagFromTagKind(NewTag)
8611            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8612                 TypeWithKeyword::getTagTypeKindName(NewTag));
8613        }
8614      }
8615      return true;
8616    }
8617
8618    // Check for a previous definition.  If current tag and definition
8619    // are same type, do nothing.  If no definition, but disagree with
8620    // with previous tag type, give a warning, but no fix-it.
8621    const TagDecl *Redecl = Previous->getDefinition() ?
8622                            Previous->getDefinition() : Previous;
8623    if (Redecl->getTagKind() == NewTag) {
8624      return true;
8625    }
8626
8627    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8628      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8629      << getRedeclDiagFromTagKind(OldTag);
8630    Diag(Redecl->getLocation(), diag::note_previous_use);
8631
8632    // If there is a previous defintion, suggest a fix-it.
8633    if (Previous->getDefinition()) {
8634        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8635          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8636          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8637               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8638    }
8639
8640    return true;
8641  }
8642  return false;
8643}
8644
8645/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8646/// former case, Name will be non-null.  In the later case, Name will be null.
8647/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8648/// reference/declaration/definition of a tag.
8649Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8650                     SourceLocation KWLoc, CXXScopeSpec &SS,
8651                     IdentifierInfo *Name, SourceLocation NameLoc,
8652                     AttributeList *Attr, AccessSpecifier AS,
8653                     SourceLocation ModulePrivateLoc,
8654                     MultiTemplateParamsArg TemplateParameterLists,
8655                     bool &OwnedDecl, bool &IsDependent,
8656                     SourceLocation ScopedEnumKWLoc,
8657                     bool ScopedEnumUsesClassTag,
8658                     TypeResult UnderlyingType) {
8659  // If this is not a definition, it must have a name.
8660  IdentifierInfo *OrigName = Name;
8661  assert((Name != 0 || TUK == TUK_Definition) &&
8662         "Nameless record must be a definition!");
8663  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8664
8665  OwnedDecl = false;
8666  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8667  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8668
8669  // FIXME: Check explicit specializations more carefully.
8670  bool isExplicitSpecialization = false;
8671  bool Invalid = false;
8672
8673  // We only need to do this matching if we have template parameters
8674  // or a scope specifier, which also conveniently avoids this work
8675  // for non-C++ cases.
8676  if (TemplateParameterLists.size() > 0 ||
8677      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8678    if (TemplateParameterList *TemplateParams
8679          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8680                                                TemplateParameterLists.data(),
8681                                                TemplateParameterLists.size(),
8682                                                    TUK == TUK_Friend,
8683                                                    isExplicitSpecialization,
8684                                                    Invalid)) {
8685      if (TemplateParams->size() > 0) {
8686        // This is a declaration or definition of a class template (which may
8687        // be a member of another template).
8688
8689        if (Invalid)
8690          return 0;
8691
8692        OwnedDecl = false;
8693        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8694                                               SS, Name, NameLoc, Attr,
8695                                               TemplateParams, AS,
8696                                               ModulePrivateLoc,
8697                                               TemplateParameterLists.size()-1,
8698                                               TemplateParameterLists.data());
8699        return Result.get();
8700      } else {
8701        // The "template<>" header is extraneous.
8702        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8703          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8704        isExplicitSpecialization = true;
8705      }
8706    }
8707  }
8708
8709  // Figure out the underlying type if this a enum declaration. We need to do
8710  // this early, because it's needed to detect if this is an incompatible
8711  // redeclaration.
8712  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8713
8714  if (Kind == TTK_Enum) {
8715    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8716      // No underlying type explicitly specified, or we failed to parse the
8717      // type, default to int.
8718      EnumUnderlying = Context.IntTy.getTypePtr();
8719    else if (UnderlyingType.get()) {
8720      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8721      // integral type; any cv-qualification is ignored.
8722      TypeSourceInfo *TI = 0;
8723      GetTypeFromParser(UnderlyingType.get(), &TI);
8724      EnumUnderlying = TI;
8725
8726      if (CheckEnumUnderlyingType(TI))
8727        // Recover by falling back to int.
8728        EnumUnderlying = Context.IntTy.getTypePtr();
8729
8730      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8731                                          UPPC_FixedUnderlyingType))
8732        EnumUnderlying = Context.IntTy.getTypePtr();
8733
8734    } else if (getLangOpts().MicrosoftMode)
8735      // Microsoft enums are always of int type.
8736      EnumUnderlying = Context.IntTy.getTypePtr();
8737  }
8738
8739  DeclContext *SearchDC = CurContext;
8740  DeclContext *DC = CurContext;
8741  bool isStdBadAlloc = false;
8742
8743  RedeclarationKind Redecl = ForRedeclaration;
8744  if (TUK == TUK_Friend || TUK == TUK_Reference)
8745    Redecl = NotForRedeclaration;
8746
8747  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8748
8749  if (Name && SS.isNotEmpty()) {
8750    // We have a nested-name tag ('struct foo::bar').
8751
8752    // Check for invalid 'foo::'.
8753    if (SS.isInvalid()) {
8754      Name = 0;
8755      goto CreateNewDecl;
8756    }
8757
8758    // If this is a friend or a reference to a class in a dependent
8759    // context, don't try to make a decl for it.
8760    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8761      DC = computeDeclContext(SS, false);
8762      if (!DC) {
8763        IsDependent = true;
8764        return 0;
8765      }
8766    } else {
8767      DC = computeDeclContext(SS, true);
8768      if (!DC) {
8769        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8770          << SS.getRange();
8771        return 0;
8772      }
8773    }
8774
8775    if (RequireCompleteDeclContext(SS, DC))
8776      return 0;
8777
8778    SearchDC = DC;
8779    // Look-up name inside 'foo::'.
8780    LookupQualifiedName(Previous, DC);
8781
8782    if (Previous.isAmbiguous())
8783      return 0;
8784
8785    if (Previous.empty()) {
8786      // Name lookup did not find anything. However, if the
8787      // nested-name-specifier refers to the current instantiation,
8788      // and that current instantiation has any dependent base
8789      // classes, we might find something at instantiation time: treat
8790      // this as a dependent elaborated-type-specifier.
8791      // But this only makes any sense for reference-like lookups.
8792      if (Previous.wasNotFoundInCurrentInstantiation() &&
8793          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8794        IsDependent = true;
8795        return 0;
8796      }
8797
8798      // A tag 'foo::bar' must already exist.
8799      Diag(NameLoc, diag::err_not_tag_in_scope)
8800        << Kind << Name << DC << SS.getRange();
8801      Name = 0;
8802      Invalid = true;
8803      goto CreateNewDecl;
8804    }
8805  } else if (Name) {
8806    // If this is a named struct, check to see if there was a previous forward
8807    // declaration or definition.
8808    // FIXME: We're looking into outer scopes here, even when we
8809    // shouldn't be. Doing so can result in ambiguities that we
8810    // shouldn't be diagnosing.
8811    LookupName(Previous, S);
8812
8813    if (Previous.isAmbiguous() &&
8814        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8815      LookupResult::Filter F = Previous.makeFilter();
8816      while (F.hasNext()) {
8817        NamedDecl *ND = F.next();
8818        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8819          F.erase();
8820      }
8821      F.done();
8822    }
8823
8824    // Note:  there used to be some attempt at recovery here.
8825    if (Previous.isAmbiguous())
8826      return 0;
8827
8828    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8829      // FIXME: This makes sure that we ignore the contexts associated
8830      // with C structs, unions, and enums when looking for a matching
8831      // tag declaration or definition. See the similar lookup tweak
8832      // in Sema::LookupName; is there a better way to deal with this?
8833      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8834        SearchDC = SearchDC->getParent();
8835    }
8836  } else if (S->isFunctionPrototypeScope()) {
8837    // If this is an enum declaration in function prototype scope, set its
8838    // initial context to the translation unit.
8839    // FIXME: [citation needed]
8840    SearchDC = Context.getTranslationUnitDecl();
8841  }
8842
8843  if (Previous.isSingleResult() &&
8844      Previous.getFoundDecl()->isTemplateParameter()) {
8845    // Maybe we will complain about the shadowed template parameter.
8846    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8847    // Just pretend that we didn't see the previous declaration.
8848    Previous.clear();
8849  }
8850
8851  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8852      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8853    // This is a declaration of or a reference to "std::bad_alloc".
8854    isStdBadAlloc = true;
8855
8856    if (Previous.empty() && StdBadAlloc) {
8857      // std::bad_alloc has been implicitly declared (but made invisible to
8858      // name lookup). Fill in this implicit declaration as the previous
8859      // declaration, so that the declarations get chained appropriately.
8860      Previous.addDecl(getStdBadAlloc());
8861    }
8862  }
8863
8864  // If we didn't find a previous declaration, and this is a reference
8865  // (or friend reference), move to the correct scope.  In C++, we
8866  // also need to do a redeclaration lookup there, just in case
8867  // there's a shadow friend decl.
8868  if (Name && Previous.empty() &&
8869      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8870    if (Invalid) goto CreateNewDecl;
8871    assert(SS.isEmpty());
8872
8873    if (TUK == TUK_Reference) {
8874      // C++ [basic.scope.pdecl]p5:
8875      //   -- for an elaborated-type-specifier of the form
8876      //
8877      //          class-key identifier
8878      //
8879      //      if the elaborated-type-specifier is used in the
8880      //      decl-specifier-seq or parameter-declaration-clause of a
8881      //      function defined in namespace scope, the identifier is
8882      //      declared as a class-name in the namespace that contains
8883      //      the declaration; otherwise, except as a friend
8884      //      declaration, the identifier is declared in the smallest
8885      //      non-class, non-function-prototype scope that contains the
8886      //      declaration.
8887      //
8888      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8889      // C structs and unions.
8890      //
8891      // It is an error in C++ to declare (rather than define) an enum
8892      // type, including via an elaborated type specifier.  We'll
8893      // diagnose that later; for now, declare the enum in the same
8894      // scope as we would have picked for any other tag type.
8895      //
8896      // GNU C also supports this behavior as part of its incomplete
8897      // enum types extension, while GNU C++ does not.
8898      //
8899      // Find the context where we'll be declaring the tag.
8900      // FIXME: We would like to maintain the current DeclContext as the
8901      // lexical context,
8902      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8903        SearchDC = SearchDC->getParent();
8904
8905      // Find the scope where we'll be declaring the tag.
8906      while (S->isClassScope() ||
8907             (getLangOpts().CPlusPlus &&
8908              S->isFunctionPrototypeScope()) ||
8909             ((S->getFlags() & Scope::DeclScope) == 0) ||
8910             (S->getEntity() &&
8911              ((DeclContext *)S->getEntity())->isTransparentContext()))
8912        S = S->getParent();
8913    } else {
8914      assert(TUK == TUK_Friend);
8915      // C++ [namespace.memdef]p3:
8916      //   If a friend declaration in a non-local class first declares a
8917      //   class or function, the friend class or function is a member of
8918      //   the innermost enclosing namespace.
8919      SearchDC = SearchDC->getEnclosingNamespaceContext();
8920    }
8921
8922    // In C++, we need to do a redeclaration lookup to properly
8923    // diagnose some problems.
8924    if (getLangOpts().CPlusPlus) {
8925      Previous.setRedeclarationKind(ForRedeclaration);
8926      LookupQualifiedName(Previous, SearchDC);
8927    }
8928  }
8929
8930  if (!Previous.empty()) {
8931    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8932
8933    // It's okay to have a tag decl in the same scope as a typedef
8934    // which hides a tag decl in the same scope.  Finding this
8935    // insanity with a redeclaration lookup can only actually happen
8936    // in C++.
8937    //
8938    // This is also okay for elaborated-type-specifiers, which is
8939    // technically forbidden by the current standard but which is
8940    // okay according to the likely resolution of an open issue;
8941    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8942    if (getLangOpts().CPlusPlus) {
8943      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8944        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8945          TagDecl *Tag = TT->getDecl();
8946          if (Tag->getDeclName() == Name &&
8947              Tag->getDeclContext()->getRedeclContext()
8948                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8949            PrevDecl = Tag;
8950            Previous.clear();
8951            Previous.addDecl(Tag);
8952            Previous.resolveKind();
8953          }
8954        }
8955      }
8956    }
8957
8958    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8959      // If this is a use of a previous tag, or if the tag is already declared
8960      // in the same scope (so that the definition/declaration completes or
8961      // rementions the tag), reuse the decl.
8962      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8963          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8964        // Make sure that this wasn't declared as an enum and now used as a
8965        // struct or something similar.
8966        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8967                                          TUK == TUK_Definition, KWLoc,
8968                                          *Name)) {
8969          bool SafeToContinue
8970            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8971               Kind != TTK_Enum);
8972          if (SafeToContinue)
8973            Diag(KWLoc, diag::err_use_with_wrong_tag)
8974              << Name
8975              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8976                                              PrevTagDecl->getKindName());
8977          else
8978            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8979          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8980
8981          if (SafeToContinue)
8982            Kind = PrevTagDecl->getTagKind();
8983          else {
8984            // Recover by making this an anonymous redefinition.
8985            Name = 0;
8986            Previous.clear();
8987            Invalid = true;
8988          }
8989        }
8990
8991        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8992          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8993
8994          // If this is an elaborated-type-specifier for a scoped enumeration,
8995          // the 'class' keyword is not necessary and not permitted.
8996          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8997            if (ScopedEnum)
8998              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8999                << PrevEnum->isScoped()
9000                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9001            return PrevTagDecl;
9002          }
9003
9004          QualType EnumUnderlyingTy;
9005          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9006            EnumUnderlyingTy = TI->getType();
9007          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9008            EnumUnderlyingTy = QualType(T, 0);
9009
9010          // All conflicts with previous declarations are recovered by
9011          // returning the previous declaration, unless this is a definition,
9012          // in which case we want the caller to bail out.
9013          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9014                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9015            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9016        }
9017
9018        if (!Invalid) {
9019          // If this is a use, just return the declaration we found.
9020
9021          // FIXME: In the future, return a variant or some other clue
9022          // for the consumer of this Decl to know it doesn't own it.
9023          // For our current ASTs this shouldn't be a problem, but will
9024          // need to be changed with DeclGroups.
9025          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9026               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9027            return PrevTagDecl;
9028
9029          // Diagnose attempts to redefine a tag.
9030          if (TUK == TUK_Definition) {
9031            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9032              // If we're defining a specialization and the previous definition
9033              // is from an implicit instantiation, don't emit an error
9034              // here; we'll catch this in the general case below.
9035              bool IsExplicitSpecializationAfterInstantiation = false;
9036              if (isExplicitSpecialization) {
9037                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9038                  IsExplicitSpecializationAfterInstantiation =
9039                    RD->getTemplateSpecializationKind() !=
9040                    TSK_ExplicitSpecialization;
9041                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9042                  IsExplicitSpecializationAfterInstantiation =
9043                    ED->getTemplateSpecializationKind() !=
9044                    TSK_ExplicitSpecialization;
9045              }
9046
9047              if (!IsExplicitSpecializationAfterInstantiation) {
9048                // A redeclaration in function prototype scope in C isn't
9049                // visible elsewhere, so merely issue a warning.
9050                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9051                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9052                else
9053                  Diag(NameLoc, diag::err_redefinition) << Name;
9054                Diag(Def->getLocation(), diag::note_previous_definition);
9055                // If this is a redefinition, recover by making this
9056                // struct be anonymous, which will make any later
9057                // references get the previous definition.
9058                Name = 0;
9059                Previous.clear();
9060                Invalid = true;
9061              }
9062            } else {
9063              // If the type is currently being defined, complain
9064              // about a nested redefinition.
9065              const TagType *Tag
9066                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9067              if (Tag->isBeingDefined()) {
9068                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9069                Diag(PrevTagDecl->getLocation(),
9070                     diag::note_previous_definition);
9071                Name = 0;
9072                Previous.clear();
9073                Invalid = true;
9074              }
9075            }
9076
9077            // Okay, this is definition of a previously declared or referenced
9078            // tag PrevDecl. We're going to create a new Decl for it.
9079          }
9080        }
9081        // If we get here we have (another) forward declaration or we
9082        // have a definition.  Just create a new decl.
9083
9084      } else {
9085        // If we get here, this is a definition of a new tag type in a nested
9086        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9087        // new decl/type.  We set PrevDecl to NULL so that the entities
9088        // have distinct types.
9089        Previous.clear();
9090      }
9091      // If we get here, we're going to create a new Decl. If PrevDecl
9092      // is non-NULL, it's a definition of the tag declared by
9093      // PrevDecl. If it's NULL, we have a new definition.
9094
9095
9096    // Otherwise, PrevDecl is not a tag, but was found with tag
9097    // lookup.  This is only actually possible in C++, where a few
9098    // things like templates still live in the tag namespace.
9099    } else {
9100      // Use a better diagnostic if an elaborated-type-specifier
9101      // found the wrong kind of type on the first
9102      // (non-redeclaration) lookup.
9103      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9104          !Previous.isForRedeclaration()) {
9105        unsigned Kind = 0;
9106        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9107        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9108        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9109        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9110        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9111        Invalid = true;
9112
9113      // Otherwise, only diagnose if the declaration is in scope.
9114      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9115                                isExplicitSpecialization)) {
9116        // do nothing
9117
9118      // Diagnose implicit declarations introduced by elaborated types.
9119      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9120        unsigned Kind = 0;
9121        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9122        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9123        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9124        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9125        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9126        Invalid = true;
9127
9128      // Otherwise it's a declaration.  Call out a particularly common
9129      // case here.
9130      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9131        unsigned Kind = 0;
9132        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9133        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9134          << Name << Kind << TND->getUnderlyingType();
9135        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9136        Invalid = true;
9137
9138      // Otherwise, diagnose.
9139      } else {
9140        // The tag name clashes with something else in the target scope,
9141        // issue an error and recover by making this tag be anonymous.
9142        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9143        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9144        Name = 0;
9145        Invalid = true;
9146      }
9147
9148      // The existing declaration isn't relevant to us; we're in a
9149      // new scope, so clear out the previous declaration.
9150      Previous.clear();
9151    }
9152  }
9153
9154CreateNewDecl:
9155
9156  TagDecl *PrevDecl = 0;
9157  if (Previous.isSingleResult())
9158    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9159
9160  // If there is an identifier, use the location of the identifier as the
9161  // location of the decl, otherwise use the location of the struct/union
9162  // keyword.
9163  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9164
9165  // Otherwise, create a new declaration. If there is a previous
9166  // declaration of the same entity, the two will be linked via
9167  // PrevDecl.
9168  TagDecl *New;
9169
9170  bool IsForwardReference = false;
9171  if (Kind == TTK_Enum) {
9172    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9173    // enum X { A, B, C } D;    D should chain to X.
9174    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9175                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9176                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9177    // If this is an undefined enum, warn.
9178    if (TUK != TUK_Definition && !Invalid) {
9179      TagDecl *Def;
9180      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9181        // C++0x: 7.2p2: opaque-enum-declaration.
9182        // Conflicts are diagnosed above. Do nothing.
9183      }
9184      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9185        Diag(Loc, diag::ext_forward_ref_enum_def)
9186          << New;
9187        Diag(Def->getLocation(), diag::note_previous_definition);
9188      } else {
9189        unsigned DiagID = diag::ext_forward_ref_enum;
9190        if (getLangOpts().MicrosoftMode)
9191          DiagID = diag::ext_ms_forward_ref_enum;
9192        else if (getLangOpts().CPlusPlus)
9193          DiagID = diag::err_forward_ref_enum;
9194        Diag(Loc, DiagID);
9195
9196        // If this is a forward-declared reference to an enumeration, make a
9197        // note of it; we won't actually be introducing the declaration into
9198        // the declaration context.
9199        if (TUK == TUK_Reference)
9200          IsForwardReference = true;
9201      }
9202    }
9203
9204    if (EnumUnderlying) {
9205      EnumDecl *ED = cast<EnumDecl>(New);
9206      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9207        ED->setIntegerTypeSourceInfo(TI);
9208      else
9209        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9210      ED->setPromotionType(ED->getIntegerType());
9211    }
9212
9213  } else {
9214    // struct/union/class
9215
9216    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9217    // struct X { int A; } D;    D should chain to X.
9218    if (getLangOpts().CPlusPlus) {
9219      // FIXME: Look for a way to use RecordDecl for simple structs.
9220      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9221                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9222
9223      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9224        StdBadAlloc = cast<CXXRecordDecl>(New);
9225    } else
9226      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9227                               cast_or_null<RecordDecl>(PrevDecl));
9228  }
9229
9230  // Maybe add qualifier info.
9231  if (SS.isNotEmpty()) {
9232    if (SS.isSet()) {
9233      // If this is either a declaration or a definition, check the
9234      // nested-name-specifier against the current context. We don't do this
9235      // for explicit specializations, because they have similar checking
9236      // (with more specific diagnostics) in the call to
9237      // CheckMemberSpecialization, below.
9238      if (!isExplicitSpecialization &&
9239          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9240          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9241        Invalid = true;
9242
9243      New->setQualifierInfo(SS.getWithLocInContext(Context));
9244      if (TemplateParameterLists.size() > 0) {
9245        New->setTemplateParameterListsInfo(Context,
9246                                           TemplateParameterLists.size(),
9247                                           TemplateParameterLists.data());
9248      }
9249    }
9250    else
9251      Invalid = true;
9252  }
9253
9254  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9255    // Add alignment attributes if necessary; these attributes are checked when
9256    // the ASTContext lays out the structure.
9257    //
9258    // It is important for implementing the correct semantics that this
9259    // happen here (in act on tag decl). The #pragma pack stack is
9260    // maintained as a result of parser callbacks which can occur at
9261    // many points during the parsing of a struct declaration (because
9262    // the #pragma tokens are effectively skipped over during the
9263    // parsing of the struct).
9264    if (TUK == TUK_Definition) {
9265      AddAlignmentAttributesForRecord(RD);
9266      AddMsStructLayoutForRecord(RD);
9267    }
9268  }
9269
9270  if (ModulePrivateLoc.isValid()) {
9271    if (isExplicitSpecialization)
9272      Diag(New->getLocation(), diag::err_module_private_specialization)
9273        << 2
9274        << FixItHint::CreateRemoval(ModulePrivateLoc);
9275    // __module_private__ does not apply to local classes. However, we only
9276    // diagnose this as an error when the declaration specifiers are
9277    // freestanding. Here, we just ignore the __module_private__.
9278    else if (!SearchDC->isFunctionOrMethod())
9279      New->setModulePrivate();
9280  }
9281
9282  // If this is a specialization of a member class (of a class template),
9283  // check the specialization.
9284  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9285    Invalid = true;
9286
9287  if (Invalid)
9288    New->setInvalidDecl();
9289
9290  if (Attr)
9291    ProcessDeclAttributeList(S, New, Attr);
9292
9293  // If we're declaring or defining a tag in function prototype scope
9294  // in C, note that this type can only be used within the function.
9295  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9296    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9297
9298  // Set the lexical context. If the tag has a C++ scope specifier, the
9299  // lexical context will be different from the semantic context.
9300  New->setLexicalDeclContext(CurContext);
9301
9302  // Mark this as a friend decl if applicable.
9303  // In Microsoft mode, a friend declaration also acts as a forward
9304  // declaration so we always pass true to setObjectOfFriendDecl to make
9305  // the tag name visible.
9306  if (TUK == TUK_Friend)
9307    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9308                               getLangOpts().MicrosoftExt);
9309
9310  // Set the access specifier.
9311  if (!Invalid && SearchDC->isRecord())
9312    SetMemberAccessSpecifier(New, PrevDecl, AS);
9313
9314  if (TUK == TUK_Definition)
9315    New->startDefinition();
9316
9317  // If this has an identifier, add it to the scope stack.
9318  if (TUK == TUK_Friend) {
9319    // We might be replacing an existing declaration in the lookup tables;
9320    // if so, borrow its access specifier.
9321    if (PrevDecl)
9322      New->setAccess(PrevDecl->getAccess());
9323
9324    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9325    DC->makeDeclVisibleInContext(New);
9326    if (Name) // can be null along some error paths
9327      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9328        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9329  } else if (Name) {
9330    S = getNonFieldDeclScope(S);
9331    PushOnScopeChains(New, S, !IsForwardReference);
9332    if (IsForwardReference)
9333      SearchDC->makeDeclVisibleInContext(New);
9334
9335  } else {
9336    CurContext->addDecl(New);
9337  }
9338
9339  // If this is the C FILE type, notify the AST context.
9340  if (IdentifierInfo *II = New->getIdentifier())
9341    if (!New->isInvalidDecl() &&
9342        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9343        II->isStr("FILE"))
9344      Context.setFILEDecl(New);
9345
9346  // If we were in function prototype scope (and not in C++ mode), add this
9347  // tag to the list of decls to inject into the function definition scope.
9348  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9349      InFunctionDeclarator && Name)
9350    DeclsInPrototypeScope.push_back(New);
9351
9352  if (PrevDecl)
9353    mergeDeclAttributes(New, PrevDecl);
9354
9355  // If there's a #pragma GCC visibility in scope, set the visibility of this
9356  // record.
9357  AddPushedVisibilityAttribute(New);
9358
9359  OwnedDecl = true;
9360  // In C++, don't return an invalid declaration. We can't recover well from
9361  // the cases where we make the type anonymous.
9362  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9363}
9364
9365void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9366  AdjustDeclIfTemplate(TagD);
9367  TagDecl *Tag = cast<TagDecl>(TagD);
9368
9369  // Enter the tag context.
9370  PushDeclContext(S, Tag);
9371
9372  ActOnDocumentableDecl(TagD);
9373
9374  // If there's a #pragma GCC visibility in scope, set the visibility of this
9375  // record.
9376  AddPushedVisibilityAttribute(Tag);
9377}
9378
9379Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9380  assert(isa<ObjCContainerDecl>(IDecl) &&
9381         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9382  DeclContext *OCD = cast<DeclContext>(IDecl);
9383  assert(getContainingDC(OCD) == CurContext &&
9384      "The next DeclContext should be lexically contained in the current one.");
9385  CurContext = OCD;
9386  return IDecl;
9387}
9388
9389void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9390                                           SourceLocation FinalLoc,
9391                                           SourceLocation LBraceLoc) {
9392  AdjustDeclIfTemplate(TagD);
9393  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9394
9395  FieldCollector->StartClass();
9396
9397  if (!Record->getIdentifier())
9398    return;
9399
9400  if (FinalLoc.isValid())
9401    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9402
9403  // C++ [class]p2:
9404  //   [...] The class-name is also inserted into the scope of the
9405  //   class itself; this is known as the injected-class-name. For
9406  //   purposes of access checking, the injected-class-name is treated
9407  //   as if it were a public member name.
9408  CXXRecordDecl *InjectedClassName
9409    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9410                            Record->getLocStart(), Record->getLocation(),
9411                            Record->getIdentifier(),
9412                            /*PrevDecl=*/0,
9413                            /*DelayTypeCreation=*/true);
9414  Context.getTypeDeclType(InjectedClassName, Record);
9415  InjectedClassName->setImplicit();
9416  InjectedClassName->setAccess(AS_public);
9417  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9418      InjectedClassName->setDescribedClassTemplate(Template);
9419  PushOnScopeChains(InjectedClassName, S);
9420  assert(InjectedClassName->isInjectedClassName() &&
9421         "Broken injected-class-name");
9422}
9423
9424void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9425                                    SourceLocation RBraceLoc) {
9426  AdjustDeclIfTemplate(TagD);
9427  TagDecl *Tag = cast<TagDecl>(TagD);
9428  Tag->setRBraceLoc(RBraceLoc);
9429
9430  // Make sure we "complete" the definition even it is invalid.
9431  if (Tag->isBeingDefined()) {
9432    assert(Tag->isInvalidDecl() && "We should already have completed it");
9433    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9434      RD->completeDefinition();
9435  }
9436
9437  if (isa<CXXRecordDecl>(Tag))
9438    FieldCollector->FinishClass();
9439
9440  // Exit this scope of this tag's definition.
9441  PopDeclContext();
9442
9443  // Notify the consumer that we've defined a tag.
9444  Consumer.HandleTagDeclDefinition(Tag);
9445}
9446
9447void Sema::ActOnObjCContainerFinishDefinition() {
9448  // Exit this scope of this interface definition.
9449  PopDeclContext();
9450}
9451
9452void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9453  assert(DC == CurContext && "Mismatch of container contexts");
9454  OriginalLexicalContext = DC;
9455  ActOnObjCContainerFinishDefinition();
9456}
9457
9458void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9459  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9460  OriginalLexicalContext = 0;
9461}
9462
9463void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9464  AdjustDeclIfTemplate(TagD);
9465  TagDecl *Tag = cast<TagDecl>(TagD);
9466  Tag->setInvalidDecl();
9467
9468  // Make sure we "complete" the definition even it is invalid.
9469  if (Tag->isBeingDefined()) {
9470    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9471      RD->completeDefinition();
9472  }
9473
9474  // We're undoing ActOnTagStartDefinition here, not
9475  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9476  // the FieldCollector.
9477
9478  PopDeclContext();
9479}
9480
9481// Note that FieldName may be null for anonymous bitfields.
9482ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9483                                IdentifierInfo *FieldName,
9484                                QualType FieldTy, Expr *BitWidth,
9485                                bool *ZeroWidth) {
9486  // Default to true; that shouldn't confuse checks for emptiness
9487  if (ZeroWidth)
9488    *ZeroWidth = true;
9489
9490  // C99 6.7.2.1p4 - verify the field type.
9491  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9492  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9493    // Handle incomplete types with specific error.
9494    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9495      return ExprError();
9496    if (FieldName)
9497      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9498        << FieldName << FieldTy << BitWidth->getSourceRange();
9499    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9500      << FieldTy << BitWidth->getSourceRange();
9501  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9502                                             UPPC_BitFieldWidth))
9503    return ExprError();
9504
9505  // If the bit-width is type- or value-dependent, don't try to check
9506  // it now.
9507  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9508    return Owned(BitWidth);
9509
9510  llvm::APSInt Value;
9511  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9512  if (ICE.isInvalid())
9513    return ICE;
9514  BitWidth = ICE.take();
9515
9516  if (Value != 0 && ZeroWidth)
9517    *ZeroWidth = false;
9518
9519  // Zero-width bitfield is ok for anonymous field.
9520  if (Value == 0 && FieldName)
9521    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9522
9523  if (Value.isSigned() && Value.isNegative()) {
9524    if (FieldName)
9525      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9526               << FieldName << Value.toString(10);
9527    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9528      << Value.toString(10);
9529  }
9530
9531  if (!FieldTy->isDependentType()) {
9532    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9533    if (Value.getZExtValue() > TypeSize) {
9534      if (!getLangOpts().CPlusPlus) {
9535        if (FieldName)
9536          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9537            << FieldName << (unsigned)Value.getZExtValue()
9538            << (unsigned)TypeSize;
9539
9540        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9541          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9542      }
9543
9544      if (FieldName)
9545        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9546          << FieldName << (unsigned)Value.getZExtValue()
9547          << (unsigned)TypeSize;
9548      else
9549        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9550          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9551    }
9552  }
9553
9554  return Owned(BitWidth);
9555}
9556
9557/// ActOnField - Each field of a C struct/union is passed into this in order
9558/// to create a FieldDecl object for it.
9559Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9560                       Declarator &D, Expr *BitfieldWidth) {
9561  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9562                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9563                               /*InitStyle=*/ICIS_NoInit, AS_public);
9564  return Res;
9565}
9566
9567/// HandleField - Analyze a field of a C struct or a C++ data member.
9568///
9569FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9570                             SourceLocation DeclStart,
9571                             Declarator &D, Expr *BitWidth,
9572                             InClassInitStyle InitStyle,
9573                             AccessSpecifier AS) {
9574  IdentifierInfo *II = D.getIdentifier();
9575  SourceLocation Loc = DeclStart;
9576  if (II) Loc = D.getIdentifierLoc();
9577
9578  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9579  QualType T = TInfo->getType();
9580  if (getLangOpts().CPlusPlus) {
9581    CheckExtraCXXDefaultArguments(D);
9582
9583    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9584                                        UPPC_DataMemberType)) {
9585      D.setInvalidType();
9586      T = Context.IntTy;
9587      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9588    }
9589  }
9590
9591  DiagnoseFunctionSpecifiers(D);
9592
9593  if (D.getDeclSpec().isThreadSpecified())
9594    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9595  if (D.getDeclSpec().isConstexprSpecified())
9596    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9597      << 2;
9598
9599  // Check to see if this name was declared as a member previously
9600  NamedDecl *PrevDecl = 0;
9601  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9602  LookupName(Previous, S);
9603  switch (Previous.getResultKind()) {
9604    case LookupResult::Found:
9605    case LookupResult::FoundUnresolvedValue:
9606      PrevDecl = Previous.getAsSingle<NamedDecl>();
9607      break;
9608
9609    case LookupResult::FoundOverloaded:
9610      PrevDecl = Previous.getRepresentativeDecl();
9611      break;
9612
9613    case LookupResult::NotFound:
9614    case LookupResult::NotFoundInCurrentInstantiation:
9615    case LookupResult::Ambiguous:
9616      break;
9617  }
9618  Previous.suppressDiagnostics();
9619
9620  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9621    // Maybe we will complain about the shadowed template parameter.
9622    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9623    // Just pretend that we didn't see the previous declaration.
9624    PrevDecl = 0;
9625  }
9626
9627  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9628    PrevDecl = 0;
9629
9630  bool Mutable
9631    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9632  SourceLocation TSSL = D.getLocStart();
9633  FieldDecl *NewFD
9634    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9635                     TSSL, AS, PrevDecl, &D);
9636
9637  if (NewFD->isInvalidDecl())
9638    Record->setInvalidDecl();
9639
9640  if (D.getDeclSpec().isModulePrivateSpecified())
9641    NewFD->setModulePrivate();
9642
9643  if (NewFD->isInvalidDecl() && PrevDecl) {
9644    // Don't introduce NewFD into scope; there's already something
9645    // with the same name in the same scope.
9646  } else if (II) {
9647    PushOnScopeChains(NewFD, S);
9648  } else
9649    Record->addDecl(NewFD);
9650
9651  return NewFD;
9652}
9653
9654/// \brief Build a new FieldDecl and check its well-formedness.
9655///
9656/// This routine builds a new FieldDecl given the fields name, type,
9657/// record, etc. \p PrevDecl should refer to any previous declaration
9658/// with the same name and in the same scope as the field to be
9659/// created.
9660///
9661/// \returns a new FieldDecl.
9662///
9663/// \todo The Declarator argument is a hack. It will be removed once
9664FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9665                                TypeSourceInfo *TInfo,
9666                                RecordDecl *Record, SourceLocation Loc,
9667                                bool Mutable, Expr *BitWidth,
9668                                InClassInitStyle InitStyle,
9669                                SourceLocation TSSL,
9670                                AccessSpecifier AS, NamedDecl *PrevDecl,
9671                                Declarator *D) {
9672  IdentifierInfo *II = Name.getAsIdentifierInfo();
9673  bool InvalidDecl = false;
9674  if (D) InvalidDecl = D->isInvalidType();
9675
9676  // If we receive a broken type, recover by assuming 'int' and
9677  // marking this declaration as invalid.
9678  if (T.isNull()) {
9679    InvalidDecl = true;
9680    T = Context.IntTy;
9681  }
9682
9683  QualType EltTy = Context.getBaseElementType(T);
9684  if (!EltTy->isDependentType()) {
9685    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9686      // Fields of incomplete type force their record to be invalid.
9687      Record->setInvalidDecl();
9688      InvalidDecl = true;
9689    } else {
9690      NamedDecl *Def;
9691      EltTy->isIncompleteType(&Def);
9692      if (Def && Def->isInvalidDecl()) {
9693        Record->setInvalidDecl();
9694        InvalidDecl = true;
9695      }
9696    }
9697  }
9698
9699  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9700  // than a variably modified type.
9701  if (!InvalidDecl && T->isVariablyModifiedType()) {
9702    bool SizeIsNegative;
9703    llvm::APSInt Oversized;
9704
9705    TypeSourceInfo *FixedTInfo =
9706      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
9707                                                    SizeIsNegative,
9708                                                    Oversized);
9709    if (FixedTInfo) {
9710      Diag(Loc, diag::warn_illegal_constant_array_size);
9711      TInfo = FixedTInfo;
9712      T = FixedTInfo->getType();
9713    } else {
9714      if (SizeIsNegative)
9715        Diag(Loc, diag::err_typecheck_negative_array_size);
9716      else if (Oversized.getBoolValue())
9717        Diag(Loc, diag::err_array_too_large)
9718          << Oversized.toString(10);
9719      else
9720        Diag(Loc, diag::err_typecheck_field_variable_size);
9721      InvalidDecl = true;
9722    }
9723  }
9724
9725  // Fields can not have abstract class types
9726  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9727                                             diag::err_abstract_type_in_decl,
9728                                             AbstractFieldType))
9729    InvalidDecl = true;
9730
9731  bool ZeroWidth = false;
9732  // If this is declared as a bit-field, check the bit-field.
9733  if (!InvalidDecl && BitWidth) {
9734    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9735    if (!BitWidth) {
9736      InvalidDecl = true;
9737      BitWidth = 0;
9738      ZeroWidth = false;
9739    }
9740  }
9741
9742  // Check that 'mutable' is consistent with the type of the declaration.
9743  if (!InvalidDecl && Mutable) {
9744    unsigned DiagID = 0;
9745    if (T->isReferenceType())
9746      DiagID = diag::err_mutable_reference;
9747    else if (T.isConstQualified())
9748      DiagID = diag::err_mutable_const;
9749
9750    if (DiagID) {
9751      SourceLocation ErrLoc = Loc;
9752      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9753        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9754      Diag(ErrLoc, DiagID);
9755      Mutable = false;
9756      InvalidDecl = true;
9757    }
9758  }
9759
9760  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9761                                       BitWidth, Mutable, InitStyle);
9762  if (InvalidDecl)
9763    NewFD->setInvalidDecl();
9764
9765  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9766    Diag(Loc, diag::err_duplicate_member) << II;
9767    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9768    NewFD->setInvalidDecl();
9769  }
9770
9771  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9772    if (Record->isUnion()) {
9773      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9774        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9775        if (RDecl->getDefinition()) {
9776          // C++ [class.union]p1: An object of a class with a non-trivial
9777          // constructor, a non-trivial copy constructor, a non-trivial
9778          // destructor, or a non-trivial copy assignment operator
9779          // cannot be a member of a union, nor can an array of such
9780          // objects.
9781          if (CheckNontrivialField(NewFD))
9782            NewFD->setInvalidDecl();
9783        }
9784      }
9785
9786      // C++ [class.union]p1: If a union contains a member of reference type,
9787      // the program is ill-formed.
9788      if (EltTy->isReferenceType()) {
9789        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9790          << NewFD->getDeclName() << EltTy;
9791        NewFD->setInvalidDecl();
9792      }
9793    }
9794  }
9795
9796  // FIXME: We need to pass in the attributes given an AST
9797  // representation, not a parser representation.
9798  if (D)
9799    // FIXME: What to pass instead of TUScope?
9800    ProcessDeclAttributes(TUScope, NewFD, *D);
9801
9802  // In auto-retain/release, infer strong retension for fields of
9803  // retainable type.
9804  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9805    NewFD->setInvalidDecl();
9806
9807  if (T.isObjCGCWeak())
9808    Diag(Loc, diag::warn_attribute_weak_on_field);
9809
9810  NewFD->setAccess(AS);
9811  return NewFD;
9812}
9813
9814bool Sema::CheckNontrivialField(FieldDecl *FD) {
9815  assert(FD);
9816  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9817
9818  if (FD->isInvalidDecl())
9819    return true;
9820
9821  QualType EltTy = Context.getBaseElementType(FD->getType());
9822  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9823    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
9824    if (RDecl->getDefinition()) {
9825      // We check for copy constructors before constructors
9826      // because otherwise we'll never get complaints about
9827      // copy constructors.
9828
9829      CXXSpecialMember member = CXXInvalid;
9830      // We're required to check for any non-trivial constructors. Since the
9831      // implicit default constructor is suppressed if there are any
9832      // user-declared constructors, we just need to check that there is a
9833      // trivial default constructor and a trivial copy constructor. (We don't
9834      // worry about move constructors here, since this is a C++98 check.)
9835      if (RDecl->hasNonTrivialCopyConstructor())
9836        member = CXXCopyConstructor;
9837      else if (!RDecl->hasTrivialDefaultConstructor())
9838        member = CXXDefaultConstructor;
9839      else if (RDecl->hasNonTrivialCopyAssignment())
9840        member = CXXCopyAssignment;
9841      else if (RDecl->hasNonTrivialDestructor())
9842        member = CXXDestructor;
9843
9844      if (member != CXXInvalid) {
9845        if (!getLangOpts().CPlusPlus11 &&
9846            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9847          // Objective-C++ ARC: it is an error to have a non-trivial field of
9848          // a union. However, system headers in Objective-C programs
9849          // occasionally have Objective-C lifetime objects within unions,
9850          // and rather than cause the program to fail, we make those
9851          // members unavailable.
9852          SourceLocation Loc = FD->getLocation();
9853          if (getSourceManager().isInSystemHeader(Loc)) {
9854            if (!FD->hasAttr<UnavailableAttr>())
9855              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9856                                  "this system field has retaining ownership"));
9857            return false;
9858          }
9859        }
9860
9861        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
9862               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9863               diag::err_illegal_union_or_anon_struct_member)
9864          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9865        DiagnoseNontrivial(RDecl, member);
9866        return !getLangOpts().CPlusPlus11;
9867      }
9868    }
9869  }
9870
9871  return false;
9872}
9873
9874/// TranslateIvarVisibility - Translate visibility from a token ID to an
9875///  AST enum value.
9876static ObjCIvarDecl::AccessControl
9877TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9878  switch (ivarVisibility) {
9879  default: llvm_unreachable("Unknown visitibility kind");
9880  case tok::objc_private: return ObjCIvarDecl::Private;
9881  case tok::objc_public: return ObjCIvarDecl::Public;
9882  case tok::objc_protected: return ObjCIvarDecl::Protected;
9883  case tok::objc_package: return ObjCIvarDecl::Package;
9884  }
9885}
9886
9887/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9888/// in order to create an IvarDecl object for it.
9889Decl *Sema::ActOnIvar(Scope *S,
9890                                SourceLocation DeclStart,
9891                                Declarator &D, Expr *BitfieldWidth,
9892                                tok::ObjCKeywordKind Visibility) {
9893
9894  IdentifierInfo *II = D.getIdentifier();
9895  Expr *BitWidth = (Expr*)BitfieldWidth;
9896  SourceLocation Loc = DeclStart;
9897  if (II) Loc = D.getIdentifierLoc();
9898
9899  // FIXME: Unnamed fields can be handled in various different ways, for
9900  // example, unnamed unions inject all members into the struct namespace!
9901
9902  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9903  QualType T = TInfo->getType();
9904
9905  if (BitWidth) {
9906    // 6.7.2.1p3, 6.7.2.1p4
9907    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9908    if (!BitWidth)
9909      D.setInvalidType();
9910  } else {
9911    // Not a bitfield.
9912
9913    // validate II.
9914
9915  }
9916  if (T->isReferenceType()) {
9917    Diag(Loc, diag::err_ivar_reference_type);
9918    D.setInvalidType();
9919  }
9920  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9921  // than a variably modified type.
9922  else if (T->isVariablyModifiedType()) {
9923    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9924    D.setInvalidType();
9925  }
9926
9927  // Get the visibility (access control) for this ivar.
9928  ObjCIvarDecl::AccessControl ac =
9929    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9930                                        : ObjCIvarDecl::None;
9931  // Must set ivar's DeclContext to its enclosing interface.
9932  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9933  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9934    return 0;
9935  ObjCContainerDecl *EnclosingContext;
9936  if (ObjCImplementationDecl *IMPDecl =
9937      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9938    if (LangOpts.ObjCRuntime.isFragile()) {
9939    // Case of ivar declared in an implementation. Context is that of its class.
9940      EnclosingContext = IMPDecl->getClassInterface();
9941      assert(EnclosingContext && "Implementation has no class interface!");
9942    }
9943    else
9944      EnclosingContext = EnclosingDecl;
9945  } else {
9946    if (ObjCCategoryDecl *CDecl =
9947        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9948      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9949        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9950        return 0;
9951      }
9952    }
9953    EnclosingContext = EnclosingDecl;
9954  }
9955
9956  // Construct the decl.
9957  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9958                                             DeclStart, Loc, II, T,
9959                                             TInfo, ac, (Expr *)BitfieldWidth);
9960
9961  if (II) {
9962    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9963                                           ForRedeclaration);
9964    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9965        && !isa<TagDecl>(PrevDecl)) {
9966      Diag(Loc, diag::err_duplicate_member) << II;
9967      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9968      NewID->setInvalidDecl();
9969    }
9970  }
9971
9972  // Process attributes attached to the ivar.
9973  ProcessDeclAttributes(S, NewID, D);
9974
9975  if (D.isInvalidType())
9976    NewID->setInvalidDecl();
9977
9978  // In ARC, infer 'retaining' for ivars of retainable type.
9979  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9980    NewID->setInvalidDecl();
9981
9982  if (D.getDeclSpec().isModulePrivateSpecified())
9983    NewID->setModulePrivate();
9984
9985  if (II) {
9986    // FIXME: When interfaces are DeclContexts, we'll need to add
9987    // these to the interface.
9988    S->AddDecl(NewID);
9989    IdResolver.AddDecl(NewID);
9990  }
9991
9992  if (LangOpts.ObjCRuntime.isNonFragile() &&
9993      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9994    Diag(Loc, diag::warn_ivars_in_interface);
9995
9996  return NewID;
9997}
9998
9999/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10000/// class and class extensions. For every class @interface and class
10001/// extension @interface, if the last ivar is a bitfield of any type,
10002/// then add an implicit `char :0` ivar to the end of that interface.
10003void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10004                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10005  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10006    return;
10007
10008  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10009  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10010
10011  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10012    return;
10013  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10014  if (!ID) {
10015    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10016      if (!CD->IsClassExtension())
10017        return;
10018    }
10019    // No need to add this to end of @implementation.
10020    else
10021      return;
10022  }
10023  // All conditions are met. Add a new bitfield to the tail end of ivars.
10024  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10025  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10026
10027  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10028                              DeclLoc, DeclLoc, 0,
10029                              Context.CharTy,
10030                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10031                                                               DeclLoc),
10032                              ObjCIvarDecl::Private, BW,
10033                              true);
10034  AllIvarDecls.push_back(Ivar);
10035}
10036
10037void Sema::ActOnFields(Scope* S,
10038                       SourceLocation RecLoc, Decl *EnclosingDecl,
10039                       llvm::ArrayRef<Decl *> Fields,
10040                       SourceLocation LBrac, SourceLocation RBrac,
10041                       AttributeList *Attr) {
10042  assert(EnclosingDecl && "missing record or interface decl");
10043
10044  // If this is an Objective-C @implementation or category and we have
10045  // new fields here we should reset the layout of the interface since
10046  // it will now change.
10047  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10048    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10049    switch (DC->getKind()) {
10050    default: break;
10051    case Decl::ObjCCategory:
10052      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10053      break;
10054    case Decl::ObjCImplementation:
10055      Context.
10056        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10057      break;
10058    }
10059  }
10060
10061  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10062
10063  // Start counting up the number of named members; make sure to include
10064  // members of anonymous structs and unions in the total.
10065  unsigned NumNamedMembers = 0;
10066  if (Record) {
10067    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10068                                   e = Record->decls_end(); i != e; i++) {
10069      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10070        if (IFD->getDeclName())
10071          ++NumNamedMembers;
10072    }
10073  }
10074
10075  // Verify that all the fields are okay.
10076  SmallVector<FieldDecl*, 32> RecFields;
10077
10078  bool ARCErrReported = false;
10079  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10080       i != end; ++i) {
10081    FieldDecl *FD = cast<FieldDecl>(*i);
10082
10083    // Get the type for the field.
10084    const Type *FDTy = FD->getType().getTypePtr();
10085
10086    if (!FD->isAnonymousStructOrUnion()) {
10087      // Remember all fields written by the user.
10088      RecFields.push_back(FD);
10089    }
10090
10091    // If the field is already invalid for some reason, don't emit more
10092    // diagnostics about it.
10093    if (FD->isInvalidDecl()) {
10094      EnclosingDecl->setInvalidDecl();
10095      continue;
10096    }
10097
10098    // C99 6.7.2.1p2:
10099    //   A structure or union shall not contain a member with
10100    //   incomplete or function type (hence, a structure shall not
10101    //   contain an instance of itself, but may contain a pointer to
10102    //   an instance of itself), except that the last member of a
10103    //   structure with more than one named member may have incomplete
10104    //   array type; such a structure (and any union containing,
10105    //   possibly recursively, a member that is such a structure)
10106    //   shall not be a member of a structure or an element of an
10107    //   array.
10108    if (FDTy->isFunctionType()) {
10109      // Field declared as a function.
10110      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10111        << FD->getDeclName();
10112      FD->setInvalidDecl();
10113      EnclosingDecl->setInvalidDecl();
10114      continue;
10115    } else if (FDTy->isIncompleteArrayType() && Record &&
10116               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10117                ((getLangOpts().MicrosoftExt ||
10118                  getLangOpts().CPlusPlus) &&
10119                 (i + 1 == Fields.end() || Record->isUnion())))) {
10120      // Flexible array member.
10121      // Microsoft and g++ is more permissive regarding flexible array.
10122      // It will accept flexible array in union and also
10123      // as the sole element of a struct/class.
10124      if (getLangOpts().MicrosoftExt) {
10125        if (Record->isUnion())
10126          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10127            << FD->getDeclName();
10128        else if (Fields.size() == 1)
10129          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10130            << FD->getDeclName() << Record->getTagKind();
10131      } else if (getLangOpts().CPlusPlus) {
10132        if (Record->isUnion())
10133          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10134            << FD->getDeclName();
10135        else if (Fields.size() == 1)
10136          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10137            << FD->getDeclName() << Record->getTagKind();
10138      } else if (!getLangOpts().C99) {
10139      if (Record->isUnion())
10140        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10141          << FD->getDeclName();
10142      else
10143        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10144          << FD->getDeclName() << Record->getTagKind();
10145      } else if (NumNamedMembers < 1) {
10146        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10147          << FD->getDeclName();
10148        FD->setInvalidDecl();
10149        EnclosingDecl->setInvalidDecl();
10150        continue;
10151      }
10152      if (!FD->getType()->isDependentType() &&
10153          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10154        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10155          << FD->getDeclName() << FD->getType();
10156        FD->setInvalidDecl();
10157        EnclosingDecl->setInvalidDecl();
10158        continue;
10159      }
10160      // Okay, we have a legal flexible array member at the end of the struct.
10161      if (Record)
10162        Record->setHasFlexibleArrayMember(true);
10163    } else if (!FDTy->isDependentType() &&
10164               RequireCompleteType(FD->getLocation(), FD->getType(),
10165                                   diag::err_field_incomplete)) {
10166      // Incomplete type
10167      FD->setInvalidDecl();
10168      EnclosingDecl->setInvalidDecl();
10169      continue;
10170    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10171      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10172        // If this is a member of a union, then entire union becomes "flexible".
10173        if (Record && Record->isUnion()) {
10174          Record->setHasFlexibleArrayMember(true);
10175        } else {
10176          // If this is a struct/class and this is not the last element, reject
10177          // it.  Note that GCC supports variable sized arrays in the middle of
10178          // structures.
10179          if (i + 1 != Fields.end())
10180            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10181              << FD->getDeclName() << FD->getType();
10182          else {
10183            // We support flexible arrays at the end of structs in
10184            // other structs as an extension.
10185            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10186              << FD->getDeclName();
10187            if (Record)
10188              Record->setHasFlexibleArrayMember(true);
10189          }
10190        }
10191      }
10192      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10193          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10194                                 diag::err_abstract_type_in_decl,
10195                                 AbstractIvarType)) {
10196        // Ivars can not have abstract class types
10197        FD->setInvalidDecl();
10198      }
10199      if (Record && FDTTy->getDecl()->hasObjectMember())
10200        Record->setHasObjectMember(true);
10201    } else if (FDTy->isObjCObjectType()) {
10202      /// A field cannot be an Objective-c object
10203      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10204        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10205      QualType T = Context.getObjCObjectPointerType(FD->getType());
10206      FD->setType(T);
10207    } else if (!getLangOpts().CPlusPlus) {
10208      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10209        // It's an error in ARC if a field has lifetime.
10210        // We don't want to report this in a system header, though,
10211        // so we just make the field unavailable.
10212        // FIXME: that's really not sufficient; we need to make the type
10213        // itself invalid to, say, initialize or copy.
10214        QualType T = FD->getType();
10215        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10216        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10217          SourceLocation loc = FD->getLocation();
10218          if (getSourceManager().isInSystemHeader(loc)) {
10219            if (!FD->hasAttr<UnavailableAttr>()) {
10220              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10221                                "this system field has retaining ownership"));
10222            }
10223          } else {
10224            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10225              << T->isBlockPointerType();
10226          }
10227          ARCErrReported = true;
10228        }
10229      }
10230      else if (getLangOpts().ObjC1 &&
10231               getLangOpts().getGC() != LangOptions::NonGC &&
10232               Record && !Record->hasObjectMember()) {
10233        if (FD->getType()->isObjCObjectPointerType() ||
10234            FD->getType().isObjCGCStrong())
10235          Record->setHasObjectMember(true);
10236        else if (Context.getAsArrayType(FD->getType())) {
10237          QualType BaseType = Context.getBaseElementType(FD->getType());
10238          if (BaseType->isRecordType() &&
10239              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10240            Record->setHasObjectMember(true);
10241          else if (BaseType->isObjCObjectPointerType() ||
10242                   BaseType.isObjCGCStrong())
10243                 Record->setHasObjectMember(true);
10244        }
10245      }
10246    }
10247    // Keep track of the number of named members.
10248    if (FD->getIdentifier())
10249      ++NumNamedMembers;
10250  }
10251
10252  // Okay, we successfully defined 'Record'.
10253  if (Record) {
10254    bool Completed = false;
10255    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10256      if (!CXXRecord->isInvalidDecl()) {
10257        // Set access bits correctly on the directly-declared conversions.
10258        for (CXXRecordDecl::conversion_iterator
10259               I = CXXRecord->conversion_begin(),
10260               E = CXXRecord->conversion_end(); I != E; ++I)
10261          I.setAccess((*I)->getAccess());
10262
10263        if (!CXXRecord->isDependentType()) {
10264          // Adjust user-defined destructor exception spec.
10265          if (getLangOpts().CPlusPlus11 &&
10266              CXXRecord->hasUserDeclaredDestructor())
10267            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10268
10269          // Add any implicitly-declared members to this class.
10270          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10271
10272          // If we have virtual base classes, we may end up finding multiple
10273          // final overriders for a given virtual function. Check for this
10274          // problem now.
10275          if (CXXRecord->getNumVBases()) {
10276            CXXFinalOverriderMap FinalOverriders;
10277            CXXRecord->getFinalOverriders(FinalOverriders);
10278
10279            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10280                                             MEnd = FinalOverriders.end();
10281                 M != MEnd; ++M) {
10282              for (OverridingMethods::iterator SO = M->second.begin(),
10283                                            SOEnd = M->second.end();
10284                   SO != SOEnd; ++SO) {
10285                assert(SO->second.size() > 0 &&
10286                       "Virtual function without overridding functions?");
10287                if (SO->second.size() == 1)
10288                  continue;
10289
10290                // C++ [class.virtual]p2:
10291                //   In a derived class, if a virtual member function of a base
10292                //   class subobject has more than one final overrider the
10293                //   program is ill-formed.
10294                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10295                  << (const NamedDecl *)M->first << Record;
10296                Diag(M->first->getLocation(),
10297                     diag::note_overridden_virtual_function);
10298                for (OverridingMethods::overriding_iterator
10299                          OM = SO->second.begin(),
10300                       OMEnd = SO->second.end();
10301                     OM != OMEnd; ++OM)
10302                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10303                    << (const NamedDecl *)M->first << OM->Method->getParent();
10304
10305                Record->setInvalidDecl();
10306              }
10307            }
10308            CXXRecord->completeDefinition(&FinalOverriders);
10309            Completed = true;
10310          }
10311        }
10312      }
10313    }
10314
10315    if (!Completed)
10316      Record->completeDefinition();
10317
10318  } else {
10319    ObjCIvarDecl **ClsFields =
10320      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10321    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10322      ID->setEndOfDefinitionLoc(RBrac);
10323      // Add ivar's to class's DeclContext.
10324      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10325        ClsFields[i]->setLexicalDeclContext(ID);
10326        ID->addDecl(ClsFields[i]);
10327      }
10328      // Must enforce the rule that ivars in the base classes may not be
10329      // duplicates.
10330      if (ID->getSuperClass())
10331        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10332    } else if (ObjCImplementationDecl *IMPDecl =
10333                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10334      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10335      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10336        // Ivar declared in @implementation never belongs to the implementation.
10337        // Only it is in implementation's lexical context.
10338        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10339      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10340      IMPDecl->setIvarLBraceLoc(LBrac);
10341      IMPDecl->setIvarRBraceLoc(RBrac);
10342    } else if (ObjCCategoryDecl *CDecl =
10343                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10344      // case of ivars in class extension; all other cases have been
10345      // reported as errors elsewhere.
10346      // FIXME. Class extension does not have a LocEnd field.
10347      // CDecl->setLocEnd(RBrac);
10348      // Add ivar's to class extension's DeclContext.
10349      // Diagnose redeclaration of private ivars.
10350      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10351      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10352        if (IDecl) {
10353          if (const ObjCIvarDecl *ClsIvar =
10354              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10355            Diag(ClsFields[i]->getLocation(),
10356                 diag::err_duplicate_ivar_declaration);
10357            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10358            continue;
10359          }
10360          for (const ObjCCategoryDecl *ClsExtDecl =
10361                IDecl->getFirstClassExtension();
10362               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10363            if (const ObjCIvarDecl *ClsExtIvar =
10364                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10365              Diag(ClsFields[i]->getLocation(),
10366                   diag::err_duplicate_ivar_declaration);
10367              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10368              continue;
10369            }
10370          }
10371        }
10372        ClsFields[i]->setLexicalDeclContext(CDecl);
10373        CDecl->addDecl(ClsFields[i]);
10374      }
10375      CDecl->setIvarLBraceLoc(LBrac);
10376      CDecl->setIvarRBraceLoc(RBrac);
10377    }
10378  }
10379
10380  if (Attr)
10381    ProcessDeclAttributeList(S, Record, Attr);
10382}
10383
10384/// \brief Determine whether the given integral value is representable within
10385/// the given type T.
10386static bool isRepresentableIntegerValue(ASTContext &Context,
10387                                        llvm::APSInt &Value,
10388                                        QualType T) {
10389  assert(T->isIntegralType(Context) && "Integral type required!");
10390  unsigned BitWidth = Context.getIntWidth(T);
10391
10392  if (Value.isUnsigned() || Value.isNonNegative()) {
10393    if (T->isSignedIntegerOrEnumerationType())
10394      --BitWidth;
10395    return Value.getActiveBits() <= BitWidth;
10396  }
10397  return Value.getMinSignedBits() <= BitWidth;
10398}
10399
10400// \brief Given an integral type, return the next larger integral type
10401// (or a NULL type of no such type exists).
10402static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10403  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10404  // enum checking below.
10405  assert(T->isIntegralType(Context) && "Integral type required!");
10406  const unsigned NumTypes = 4;
10407  QualType SignedIntegralTypes[NumTypes] = {
10408    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10409  };
10410  QualType UnsignedIntegralTypes[NumTypes] = {
10411    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10412    Context.UnsignedLongLongTy
10413  };
10414
10415  unsigned BitWidth = Context.getTypeSize(T);
10416  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10417                                                        : UnsignedIntegralTypes;
10418  for (unsigned I = 0; I != NumTypes; ++I)
10419    if (Context.getTypeSize(Types[I]) > BitWidth)
10420      return Types[I];
10421
10422  return QualType();
10423}
10424
10425EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10426                                          EnumConstantDecl *LastEnumConst,
10427                                          SourceLocation IdLoc,
10428                                          IdentifierInfo *Id,
10429                                          Expr *Val) {
10430  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10431  llvm::APSInt EnumVal(IntWidth);
10432  QualType EltTy;
10433
10434  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10435    Val = 0;
10436
10437  if (Val)
10438    Val = DefaultLvalueConversion(Val).take();
10439
10440  if (Val) {
10441    if (Enum->isDependentType() || Val->isTypeDependent())
10442      EltTy = Context.DependentTy;
10443    else {
10444      SourceLocation ExpLoc;
10445      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
10446          !getLangOpts().MicrosoftMode) {
10447        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10448        // constant-expression in the enumerator-definition shall be a converted
10449        // constant expression of the underlying type.
10450        EltTy = Enum->getIntegerType();
10451        ExprResult Converted =
10452          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10453                                           CCEK_Enumerator);
10454        if (Converted.isInvalid())
10455          Val = 0;
10456        else
10457          Val = Converted.take();
10458      } else if (!Val->isValueDependent() &&
10459                 !(Val = VerifyIntegerConstantExpression(Val,
10460                                                         &EnumVal).take())) {
10461        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10462      } else {
10463        if (Enum->isFixed()) {
10464          EltTy = Enum->getIntegerType();
10465
10466          // In Obj-C and Microsoft mode, require the enumeration value to be
10467          // representable in the underlying type of the enumeration. In C++11,
10468          // we perform a non-narrowing conversion as part of converted constant
10469          // expression checking.
10470          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10471            if (getLangOpts().MicrosoftMode) {
10472              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10473              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10474            } else
10475              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10476          } else
10477            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10478        } else if (getLangOpts().CPlusPlus) {
10479          // C++11 [dcl.enum]p5:
10480          //   If the underlying type is not fixed, the type of each enumerator
10481          //   is the type of its initializing value:
10482          //     - If an initializer is specified for an enumerator, the
10483          //       initializing value has the same type as the expression.
10484          EltTy = Val->getType();
10485        } else {
10486          // C99 6.7.2.2p2:
10487          //   The expression that defines the value of an enumeration constant
10488          //   shall be an integer constant expression that has a value
10489          //   representable as an int.
10490
10491          // Complain if the value is not representable in an int.
10492          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10493            Diag(IdLoc, diag::ext_enum_value_not_int)
10494              << EnumVal.toString(10) << Val->getSourceRange()
10495              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10496          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10497            // Force the type of the expression to 'int'.
10498            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10499          }
10500          EltTy = Val->getType();
10501        }
10502      }
10503    }
10504  }
10505
10506  if (!Val) {
10507    if (Enum->isDependentType())
10508      EltTy = Context.DependentTy;
10509    else if (!LastEnumConst) {
10510      // C++0x [dcl.enum]p5:
10511      //   If the underlying type is not fixed, the type of each enumerator
10512      //   is the type of its initializing value:
10513      //     - If no initializer is specified for the first enumerator, the
10514      //       initializing value has an unspecified integral type.
10515      //
10516      // GCC uses 'int' for its unspecified integral type, as does
10517      // C99 6.7.2.2p3.
10518      if (Enum->isFixed()) {
10519        EltTy = Enum->getIntegerType();
10520      }
10521      else {
10522        EltTy = Context.IntTy;
10523      }
10524    } else {
10525      // Assign the last value + 1.
10526      EnumVal = LastEnumConst->getInitVal();
10527      ++EnumVal;
10528      EltTy = LastEnumConst->getType();
10529
10530      // Check for overflow on increment.
10531      if (EnumVal < LastEnumConst->getInitVal()) {
10532        // C++0x [dcl.enum]p5:
10533        //   If the underlying type is not fixed, the type of each enumerator
10534        //   is the type of its initializing value:
10535        //
10536        //     - Otherwise the type of the initializing value is the same as
10537        //       the type of the initializing value of the preceding enumerator
10538        //       unless the incremented value is not representable in that type,
10539        //       in which case the type is an unspecified integral type
10540        //       sufficient to contain the incremented value. If no such type
10541        //       exists, the program is ill-formed.
10542        QualType T = getNextLargerIntegralType(Context, EltTy);
10543        if (T.isNull() || Enum->isFixed()) {
10544          // There is no integral type larger enough to represent this
10545          // value. Complain, then allow the value to wrap around.
10546          EnumVal = LastEnumConst->getInitVal();
10547          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10548          ++EnumVal;
10549          if (Enum->isFixed())
10550            // When the underlying type is fixed, this is ill-formed.
10551            Diag(IdLoc, diag::err_enumerator_wrapped)
10552              << EnumVal.toString(10)
10553              << EltTy;
10554          else
10555            Diag(IdLoc, diag::warn_enumerator_too_large)
10556              << EnumVal.toString(10);
10557        } else {
10558          EltTy = T;
10559        }
10560
10561        // Retrieve the last enumerator's value, extent that type to the
10562        // type that is supposed to be large enough to represent the incremented
10563        // value, then increment.
10564        EnumVal = LastEnumConst->getInitVal();
10565        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10566        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10567        ++EnumVal;
10568
10569        // If we're not in C++, diagnose the overflow of enumerator values,
10570        // which in C99 means that the enumerator value is not representable in
10571        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10572        // permits enumerator values that are representable in some larger
10573        // integral type.
10574        if (!getLangOpts().CPlusPlus && !T.isNull())
10575          Diag(IdLoc, diag::warn_enum_value_overflow);
10576      } else if (!getLangOpts().CPlusPlus &&
10577                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10578        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10579        Diag(IdLoc, diag::ext_enum_value_not_int)
10580          << EnumVal.toString(10) << 1;
10581      }
10582    }
10583  }
10584
10585  if (!EltTy->isDependentType()) {
10586    // Make the enumerator value match the signedness and size of the
10587    // enumerator's type.
10588    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10589    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10590  }
10591
10592  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10593                                  Val, EnumVal);
10594}
10595
10596
10597Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10598                              SourceLocation IdLoc, IdentifierInfo *Id,
10599                              AttributeList *Attr,
10600                              SourceLocation EqualLoc, Expr *Val) {
10601  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10602  EnumConstantDecl *LastEnumConst =
10603    cast_or_null<EnumConstantDecl>(lastEnumConst);
10604
10605  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10606  // we find one that is.
10607  S = getNonFieldDeclScope(S);
10608
10609  // Verify that there isn't already something declared with this name in this
10610  // scope.
10611  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10612                                         ForRedeclaration);
10613  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10614    // Maybe we will complain about the shadowed template parameter.
10615    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10616    // Just pretend that we didn't see the previous declaration.
10617    PrevDecl = 0;
10618  }
10619
10620  if (PrevDecl) {
10621    // When in C++, we may get a TagDecl with the same name; in this case the
10622    // enum constant will 'hide' the tag.
10623    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10624           "Received TagDecl when not in C++!");
10625    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10626      if (isa<EnumConstantDecl>(PrevDecl))
10627        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10628      else
10629        Diag(IdLoc, diag::err_redefinition) << Id;
10630      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10631      return 0;
10632    }
10633  }
10634
10635  // C++ [class.mem]p15:
10636  // If T is the name of a class, then each of the following shall have a name
10637  // different from T:
10638  // - every enumerator of every member of class T that is an unscoped
10639  // enumerated type
10640  if (CXXRecordDecl *Record
10641                      = dyn_cast<CXXRecordDecl>(
10642                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10643    if (!TheEnumDecl->isScoped() &&
10644        Record->getIdentifier() && Record->getIdentifier() == Id)
10645      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10646
10647  EnumConstantDecl *New =
10648    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10649
10650  if (New) {
10651    // Process attributes.
10652    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10653
10654    // Register this decl in the current scope stack.
10655    New->setAccess(TheEnumDecl->getAccess());
10656    PushOnScopeChains(New, S);
10657  }
10658
10659  ActOnDocumentableDecl(New);
10660
10661  return New;
10662}
10663
10664// Returns true when the enum initial expression does not trigger the
10665// duplicate enum warning.  A few common cases are exempted as follows:
10666// Element2 = Element1
10667// Element2 = Element1 + 1
10668// Element2 = Element1 - 1
10669// Where Element2 and Element1 are from the same enum.
10670static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
10671  Expr *InitExpr = ECD->getInitExpr();
10672  if (!InitExpr)
10673    return true;
10674  InitExpr = InitExpr->IgnoreImpCasts();
10675
10676  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
10677    if (!BO->isAdditiveOp())
10678      return true;
10679    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
10680    if (!IL)
10681      return true;
10682    if (IL->getValue() != 1)
10683      return true;
10684
10685    InitExpr = BO->getLHS();
10686  }
10687
10688  // This checks if the elements are from the same enum.
10689  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
10690  if (!DRE)
10691    return true;
10692
10693  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
10694  if (!EnumConstant)
10695    return true;
10696
10697  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
10698      Enum)
10699    return true;
10700
10701  return false;
10702}
10703
10704struct DupKey {
10705  int64_t val;
10706  bool isTombstoneOrEmptyKey;
10707  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
10708    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
10709};
10710
10711static DupKey GetDupKey(const llvm::APSInt& Val) {
10712  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
10713                false);
10714}
10715
10716struct DenseMapInfoDupKey {
10717  static DupKey getEmptyKey() { return DupKey(0, true); }
10718  static DupKey getTombstoneKey() { return DupKey(1, true); }
10719  static unsigned getHashValue(const DupKey Key) {
10720    return (unsigned)(Key.val * 37);
10721  }
10722  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
10723    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
10724           LHS.val == RHS.val;
10725  }
10726};
10727
10728// Emits a warning when an element is implicitly set a value that
10729// a previous element has already been set to.
10730static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
10731                                        unsigned NumElements, EnumDecl *Enum,
10732                                        QualType EnumType) {
10733  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
10734                                 Enum->getLocation()) ==
10735      DiagnosticsEngine::Ignored)
10736    return;
10737  // Avoid anonymous enums
10738  if (!Enum->getIdentifier())
10739    return;
10740
10741  // Only check for small enums.
10742  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
10743    return;
10744
10745  typedef llvm::SmallVector<EnumConstantDecl*, 3> ECDVector;
10746  typedef llvm::SmallVector<ECDVector*, 3> DuplicatesVector;
10747
10748  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
10749  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
10750          ValueToVectorMap;
10751
10752  DuplicatesVector DupVector;
10753  ValueToVectorMap EnumMap;
10754
10755  // Populate the EnumMap with all values represented by enum constants without
10756  // an initialier.
10757  for (unsigned i = 0; i < NumElements; ++i) {
10758    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10759
10760    // Null EnumConstantDecl means a previous diagnostic has been emitted for
10761    // this constant.  Skip this enum since it may be ill-formed.
10762    if (!ECD) {
10763      return;
10764    }
10765
10766    if (ECD->getInitExpr())
10767      continue;
10768
10769    DupKey Key = GetDupKey(ECD->getInitVal());
10770    DeclOrVector &Entry = EnumMap[Key];
10771
10772    // First time encountering this value.
10773    if (Entry.isNull())
10774      Entry = ECD;
10775  }
10776
10777  // Create vectors for any values that has duplicates.
10778  for (unsigned i = 0; i < NumElements; ++i) {
10779    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
10780    if (!ValidDuplicateEnum(ECD, Enum))
10781      continue;
10782
10783    DupKey Key = GetDupKey(ECD->getInitVal());
10784
10785    DeclOrVector& Entry = EnumMap[Key];
10786    if (Entry.isNull())
10787      continue;
10788
10789    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
10790      // Ensure constants are different.
10791      if (D == ECD)
10792        continue;
10793
10794      // Create new vector and push values onto it.
10795      ECDVector *Vec = new ECDVector();
10796      Vec->push_back(D);
10797      Vec->push_back(ECD);
10798
10799      // Update entry to point to the duplicates vector.
10800      Entry = Vec;
10801
10802      // Store the vector somewhere we can consult later for quick emission of
10803      // diagnostics.
10804      DupVector.push_back(Vec);
10805      continue;
10806    }
10807
10808    ECDVector *Vec = Entry.get<ECDVector*>();
10809    // Make sure constants are not added more than once.
10810    if (*Vec->begin() == ECD)
10811      continue;
10812
10813    Vec->push_back(ECD);
10814  }
10815
10816  // Emit diagnostics.
10817  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
10818                                  DupVectorEnd = DupVector.end();
10819       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
10820    ECDVector *Vec = *DupVectorIter;
10821    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
10822
10823    // Emit warning for one enum constant.
10824    ECDVector::iterator I = Vec->begin();
10825    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
10826      << (*I)->getName() << (*I)->getInitVal().toString(10)
10827      << (*I)->getSourceRange();
10828    ++I;
10829
10830    // Emit one note for each of the remaining enum constants with
10831    // the same value.
10832    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
10833      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
10834        << (*I)->getName() << (*I)->getInitVal().toString(10)
10835        << (*I)->getSourceRange();
10836    delete Vec;
10837  }
10838}
10839
10840void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10841                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10842                         Decl **Elements, unsigned NumElements,
10843                         Scope *S, AttributeList *Attr) {
10844  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10845  QualType EnumType = Context.getTypeDeclType(Enum);
10846
10847  if (Attr)
10848    ProcessDeclAttributeList(S, Enum, Attr);
10849
10850  if (Enum->isDependentType()) {
10851    for (unsigned i = 0; i != NumElements; ++i) {
10852      EnumConstantDecl *ECD =
10853        cast_or_null<EnumConstantDecl>(Elements[i]);
10854      if (!ECD) continue;
10855
10856      ECD->setType(EnumType);
10857    }
10858
10859    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10860    return;
10861  }
10862
10863  // TODO: If the result value doesn't fit in an int, it must be a long or long
10864  // long value.  ISO C does not support this, but GCC does as an extension,
10865  // emit a warning.
10866  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10867  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10868  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10869
10870  // Verify that all the values are okay, compute the size of the values, and
10871  // reverse the list.
10872  unsigned NumNegativeBits = 0;
10873  unsigned NumPositiveBits = 0;
10874
10875  // Keep track of whether all elements have type int.
10876  bool AllElementsInt = true;
10877
10878  for (unsigned i = 0; i != NumElements; ++i) {
10879    EnumConstantDecl *ECD =
10880      cast_or_null<EnumConstantDecl>(Elements[i]);
10881    if (!ECD) continue;  // Already issued a diagnostic.
10882
10883    const llvm::APSInt &InitVal = ECD->getInitVal();
10884
10885    // Keep track of the size of positive and negative values.
10886    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10887      NumPositiveBits = std::max(NumPositiveBits,
10888                                 (unsigned)InitVal.getActiveBits());
10889    else
10890      NumNegativeBits = std::max(NumNegativeBits,
10891                                 (unsigned)InitVal.getMinSignedBits());
10892
10893    // Keep track of whether every enum element has type int (very commmon).
10894    if (AllElementsInt)
10895      AllElementsInt = ECD->getType() == Context.IntTy;
10896  }
10897
10898  // Figure out the type that should be used for this enum.
10899  QualType BestType;
10900  unsigned BestWidth;
10901
10902  // C++0x N3000 [conv.prom]p3:
10903  //   An rvalue of an unscoped enumeration type whose underlying
10904  //   type is not fixed can be converted to an rvalue of the first
10905  //   of the following types that can represent all the values of
10906  //   the enumeration: int, unsigned int, long int, unsigned long
10907  //   int, long long int, or unsigned long long int.
10908  // C99 6.4.4.3p2:
10909  //   An identifier declared as an enumeration constant has type int.
10910  // The C99 rule is modified by a gcc extension
10911  QualType BestPromotionType;
10912
10913  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10914  // -fshort-enums is the equivalent to specifying the packed attribute on all
10915  // enum definitions.
10916  if (LangOpts.ShortEnums)
10917    Packed = true;
10918
10919  if (Enum->isFixed()) {
10920    BestType = Enum->getIntegerType();
10921    if (BestType->isPromotableIntegerType())
10922      BestPromotionType = Context.getPromotedIntegerType(BestType);
10923    else
10924      BestPromotionType = BestType;
10925    // We don't need to set BestWidth, because BestType is going to be the type
10926    // of the enumerators, but we do anyway because otherwise some compilers
10927    // warn that it might be used uninitialized.
10928    BestWidth = CharWidth;
10929  }
10930  else if (NumNegativeBits) {
10931    // If there is a negative value, figure out the smallest integer type (of
10932    // int/long/longlong) that fits.
10933    // If it's packed, check also if it fits a char or a short.
10934    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10935      BestType = Context.SignedCharTy;
10936      BestWidth = CharWidth;
10937    } else if (Packed && NumNegativeBits <= ShortWidth &&
10938               NumPositiveBits < ShortWidth) {
10939      BestType = Context.ShortTy;
10940      BestWidth = ShortWidth;
10941    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10942      BestType = Context.IntTy;
10943      BestWidth = IntWidth;
10944    } else {
10945      BestWidth = Context.getTargetInfo().getLongWidth();
10946
10947      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10948        BestType = Context.LongTy;
10949      } else {
10950        BestWidth = Context.getTargetInfo().getLongLongWidth();
10951
10952        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10953          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10954        BestType = Context.LongLongTy;
10955      }
10956    }
10957    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10958  } else {
10959    // If there is no negative value, figure out the smallest type that fits
10960    // all of the enumerator values.
10961    // If it's packed, check also if it fits a char or a short.
10962    if (Packed && NumPositiveBits <= CharWidth) {
10963      BestType = Context.UnsignedCharTy;
10964      BestPromotionType = Context.IntTy;
10965      BestWidth = CharWidth;
10966    } else if (Packed && NumPositiveBits <= ShortWidth) {
10967      BestType = Context.UnsignedShortTy;
10968      BestPromotionType = Context.IntTy;
10969      BestWidth = ShortWidth;
10970    } else if (NumPositiveBits <= IntWidth) {
10971      BestType = Context.UnsignedIntTy;
10972      BestWidth = IntWidth;
10973      BestPromotionType
10974        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10975                           ? Context.UnsignedIntTy : Context.IntTy;
10976    } else if (NumPositiveBits <=
10977               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10978      BestType = Context.UnsignedLongTy;
10979      BestPromotionType
10980        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10981                           ? Context.UnsignedLongTy : Context.LongTy;
10982    } else {
10983      BestWidth = Context.getTargetInfo().getLongLongWidth();
10984      assert(NumPositiveBits <= BestWidth &&
10985             "How could an initializer get larger than ULL?");
10986      BestType = Context.UnsignedLongLongTy;
10987      BestPromotionType
10988        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10989                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10990    }
10991  }
10992
10993  // Loop over all of the enumerator constants, changing their types to match
10994  // the type of the enum if needed.
10995  for (unsigned i = 0; i != NumElements; ++i) {
10996    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10997    if (!ECD) continue;  // Already issued a diagnostic.
10998
10999    // Standard C says the enumerators have int type, but we allow, as an
11000    // extension, the enumerators to be larger than int size.  If each
11001    // enumerator value fits in an int, type it as an int, otherwise type it the
11002    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11003    // that X has type 'int', not 'unsigned'.
11004
11005    // Determine whether the value fits into an int.
11006    llvm::APSInt InitVal = ECD->getInitVal();
11007
11008    // If it fits into an integer type, force it.  Otherwise force it to match
11009    // the enum decl type.
11010    QualType NewTy;
11011    unsigned NewWidth;
11012    bool NewSign;
11013    if (!getLangOpts().CPlusPlus &&
11014        !Enum->isFixed() &&
11015        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11016      NewTy = Context.IntTy;
11017      NewWidth = IntWidth;
11018      NewSign = true;
11019    } else if (ECD->getType() == BestType) {
11020      // Already the right type!
11021      if (getLangOpts().CPlusPlus)
11022        // C++ [dcl.enum]p4: Following the closing brace of an
11023        // enum-specifier, each enumerator has the type of its
11024        // enumeration.
11025        ECD->setType(EnumType);
11026      continue;
11027    } else {
11028      NewTy = BestType;
11029      NewWidth = BestWidth;
11030      NewSign = BestType->isSignedIntegerOrEnumerationType();
11031    }
11032
11033    // Adjust the APSInt value.
11034    InitVal = InitVal.extOrTrunc(NewWidth);
11035    InitVal.setIsSigned(NewSign);
11036    ECD->setInitVal(InitVal);
11037
11038    // Adjust the Expr initializer and type.
11039    if (ECD->getInitExpr() &&
11040        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11041      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11042                                                CK_IntegralCast,
11043                                                ECD->getInitExpr(),
11044                                                /*base paths*/ 0,
11045                                                VK_RValue));
11046    if (getLangOpts().CPlusPlus)
11047      // C++ [dcl.enum]p4: Following the closing brace of an
11048      // enum-specifier, each enumerator has the type of its
11049      // enumeration.
11050      ECD->setType(EnumType);
11051    else
11052      ECD->setType(NewTy);
11053  }
11054
11055  Enum->completeDefinition(BestType, BestPromotionType,
11056                           NumPositiveBits, NumNegativeBits);
11057
11058  // If we're declaring a function, ensure this decl isn't forgotten about -
11059  // it needs to go into the function scope.
11060  if (InFunctionDeclarator)
11061    DeclsInPrototypeScope.push_back(Enum);
11062
11063  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11064}
11065
11066Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11067                                  SourceLocation StartLoc,
11068                                  SourceLocation EndLoc) {
11069  StringLiteral *AsmString = cast<StringLiteral>(expr);
11070
11071  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11072                                                   AsmString, StartLoc,
11073                                                   EndLoc);
11074  CurContext->addDecl(New);
11075  return New;
11076}
11077
11078DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11079                                   SourceLocation ImportLoc,
11080                                   ModuleIdPath Path) {
11081  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11082                                                Module::AllVisible,
11083                                                /*IsIncludeDirective=*/false);
11084  if (!Mod)
11085    return true;
11086
11087  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
11088  Module *ModCheck = Mod;
11089  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11090    // If we've run out of module parents, just drop the remaining identifiers.
11091    // We need the length to be consistent.
11092    if (!ModCheck)
11093      break;
11094    ModCheck = ModCheck->Parent;
11095
11096    IdentifierLocs.push_back(Path[I].second);
11097  }
11098
11099  ImportDecl *Import = ImportDecl::Create(Context,
11100                                          Context.getTranslationUnitDecl(),
11101                                          AtLoc.isValid()? AtLoc : ImportLoc,
11102                                          Mod, IdentifierLocs);
11103  Context.getTranslationUnitDecl()->addDecl(Import);
11104  return Import;
11105}
11106
11107void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11108                                      IdentifierInfo* AliasName,
11109                                      SourceLocation PragmaLoc,
11110                                      SourceLocation NameLoc,
11111                                      SourceLocation AliasNameLoc) {
11112  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11113                                    LookupOrdinaryName);
11114  AsmLabelAttr *Attr =
11115     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11116
11117  if (PrevDecl)
11118    PrevDecl->addAttr(Attr);
11119  else
11120    (void)ExtnameUndeclaredIdentifiers.insert(
11121      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11122}
11123
11124void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11125                             SourceLocation PragmaLoc,
11126                             SourceLocation NameLoc) {
11127  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11128
11129  if (PrevDecl) {
11130    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11131  } else {
11132    (void)WeakUndeclaredIdentifiers.insert(
11133      std::pair<IdentifierInfo*,WeakInfo>
11134        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11135  }
11136}
11137
11138void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11139                                IdentifierInfo* AliasName,
11140                                SourceLocation PragmaLoc,
11141                                SourceLocation NameLoc,
11142                                SourceLocation AliasNameLoc) {
11143  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11144                                    LookupOrdinaryName);
11145  WeakInfo W = WeakInfo(Name, NameLoc);
11146
11147  if (PrevDecl) {
11148    if (!PrevDecl->hasAttr<AliasAttr>())
11149      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11150        DeclApplyPragmaWeak(TUScope, ND, W);
11151  } else {
11152    (void)WeakUndeclaredIdentifiers.insert(
11153      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11154  }
11155}
11156
11157Decl *Sema::getObjCDeclContext() const {
11158  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11159}
11160
11161AvailabilityResult Sema::getCurContextAvailability() const {
11162  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11163  return D->getAvailability();
11164}
11165