SemaDecl.cpp revision db422dffb720ff41d0b60e228f45c685600ffa9e
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  if (AddToContext)
297    CurContext->addDecl(D);
298
299  // C++ [basic.scope]p4:
300  //   -- exactly one declaration shall declare a class name or
301  //   enumeration name that is not a typedef name and the other
302  //   declarations shall all refer to the same object or
303  //   enumerator, or all refer to functions and function templates;
304  //   in this case the class name or enumeration name is hidden.
305  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
306    // We are pushing the name of a tag (enum or class).
307    if (CurContext->getLookupContext()
308          == TD->getDeclContext()->getLookupContext()) {
309      // We're pushing the tag into the current context, which might
310      // require some reshuffling in the identifier resolver.
311      IdentifierResolver::iterator
312        I = IdResolver.begin(TD->getDeclName()),
313        IEnd = IdResolver.end();
314      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
315        NamedDecl *PrevDecl = *I;
316        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
317             PrevDecl = *I, ++I) {
318          if (TD->declarationReplaces(*I)) {
319            // This is a redeclaration. Remove it from the chain and
320            // break out, so that we'll add in the shadowed
321            // declaration.
322            S->RemoveDecl(DeclPtrTy::make(*I));
323            if (PrevDecl == *I) {
324              IdResolver.RemoveDecl(*I);
325              IdResolver.AddDecl(TD);
326              return;
327            } else {
328              IdResolver.RemoveDecl(*I);
329              break;
330            }
331          }
332        }
333
334        // There is already a declaration with the same name in the same
335        // scope, which is not a tag declaration. It must be found
336        // before we find the new declaration, so insert the new
337        // declaration at the end of the chain.
338        IdResolver.AddShadowedDecl(TD, PrevDecl);
339
340        return;
341      }
342    }
343  } else if ((isa<FunctionDecl>(D) &&
344              AllowOverloadingOfFunction(D, Context)) ||
345             isa<FunctionTemplateDecl>(D)) {
346    // We are pushing the name of a function or function template,
347    // which might be an overloaded name.
348    IdentifierResolver::iterator Redecl
349      = std::find_if(IdResolver.begin(D->getDeclName()),
350                     IdResolver.end(),
351                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
352                                  D));
353    if (Redecl != IdResolver.end() &&
354        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
355      // There is already a declaration of a function on our
356      // IdResolver chain. Replace it with this declaration.
357      S->RemoveDecl(DeclPtrTy::make(*Redecl));
358      IdResolver.RemoveDecl(*Redecl);
359    }
360  } else if (isa<ObjCInterfaceDecl>(D)) {
361    // We're pushing an Objective-C interface into the current
362    // context. If there is already an alias declaration, remove it first.
363    for (IdentifierResolver::iterator
364           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
365         I != IEnd; ++I) {
366      if (isa<ObjCCompatibleAliasDecl>(*I)) {
367        S->RemoveDecl(DeclPtrTy::make(*I));
368        IdResolver.RemoveDecl(*I);
369        break;
370      }
371    }
372  }
373
374  IdResolver.AddDecl(D);
375}
376
377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
378  if (S->decl_empty()) return;
379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
380         "Scope shouldn't contain decls!");
381
382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
383       I != E; ++I) {
384    Decl *TmpD = (*I).getAs<Decl>();
385    assert(TmpD && "This decl didn't get pushed??");
386
387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
388    NamedDecl *D = cast<NamedDecl>(TmpD);
389
390    if (!D->getDeclName()) continue;
391
392    // Remove this name from our lexical scope.
393    IdResolver.RemoveDecl(D);
394  }
395}
396
397/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
398/// return 0 if one not found.
399ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
400  // The third "scope" argument is 0 since we aren't enabling lazy built-in
401  // creation from this context.
402  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
403
404  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
405}
406
407/// getNonFieldDeclScope - Retrieves the innermost scope, starting
408/// from S, where a non-field would be declared. This routine copes
409/// with the difference between C and C++ scoping rules in structs and
410/// unions. For example, the following code is well-formed in C but
411/// ill-formed in C++:
412/// @code
413/// struct S6 {
414///   enum { BAR } e;
415/// };
416///
417/// void test_S6() {
418///   struct S6 a;
419///   a.e = BAR;
420/// }
421/// @endcode
422/// For the declaration of BAR, this routine will return a different
423/// scope. The scope S will be the scope of the unnamed enumeration
424/// within S6. In C++, this routine will return the scope associated
425/// with S6, because the enumeration's scope is a transparent
426/// context but structures can contain non-field names. In C, this
427/// routine will return the translation unit scope, since the
428/// enumeration's scope is a transparent context and structures cannot
429/// contain non-field names.
430Scope *Sema::getNonFieldDeclScope(Scope *S) {
431  while (((S->getFlags() & Scope::DeclScope) == 0) ||
432         (S->getEntity() &&
433          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
434         (S->isClassScope() && !getLangOptions().CPlusPlus))
435    S = S->getParent();
436  return S;
437}
438
439void Sema::InitBuiltinVaListType() {
440  if (!Context.getBuiltinVaListType().isNull())
441    return;
442
443  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
444  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
445  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
446  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
447}
448
449/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
450/// file scope.  lazily create a decl for it. ForRedeclaration is true
451/// if we're creating this built-in in anticipation of redeclaring the
452/// built-in.
453NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
454                                     Scope *S, bool ForRedeclaration,
455                                     SourceLocation Loc) {
456  Builtin::ID BID = (Builtin::ID)bid;
457
458  if (Context.BuiltinInfo.hasVAListUse(BID))
459    InitBuiltinVaListType();
460
461  ASTContext::GetBuiltinTypeError Error;
462  QualType R = Context.GetBuiltinType(BID, Error);
463  switch (Error) {
464  case ASTContext::GE_None:
465    // Okay
466    break;
467
468  case ASTContext::GE_Missing_stdio:
469    if (ForRedeclaration)
470      Diag(Loc, diag::err_implicit_decl_requires_stdio)
471        << Context.BuiltinInfo.GetName(BID);
472    return 0;
473
474  case ASTContext::GE_Missing_setjmp:
475    if (ForRedeclaration)
476      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
477        << Context.BuiltinInfo.GetName(BID);
478    return 0;
479  }
480
481  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
482    Diag(Loc, diag::ext_implicit_lib_function_decl)
483      << Context.BuiltinInfo.GetName(BID)
484      << R;
485    if (Context.BuiltinInfo.getHeaderName(BID) &&
486        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
487          != Diagnostic::Ignored)
488      Diag(Loc, diag::note_please_include_header)
489        << Context.BuiltinInfo.getHeaderName(BID)
490        << Context.BuiltinInfo.GetName(BID);
491  }
492
493  FunctionDecl *New = FunctionDecl::Create(Context,
494                                           Context.getTranslationUnitDecl(),
495                                           Loc, II, R, /*DInfo=*/0,
496                                           FunctionDecl::Extern, false,
497                                           /*hasPrototype=*/true);
498  New->setImplicit();
499
500  // Create Decl objects for each parameter, adding them to the
501  // FunctionDecl.
502  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
503    llvm::SmallVector<ParmVarDecl*, 16> Params;
504    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
505      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
506                                           FT->getArgType(i), /*DInfo=*/0,
507                                           VarDecl::None, 0));
508    New->setParams(Context, Params.data(), Params.size());
509  }
510
511  AddKnownFunctionAttributes(New);
512
513  // TUScope is the translation-unit scope to insert this function into.
514  // FIXME: This is hideous. We need to teach PushOnScopeChains to
515  // relate Scopes to DeclContexts, and probably eliminate CurContext
516  // entirely, but we're not there yet.
517  DeclContext *SavedContext = CurContext;
518  CurContext = Context.getTranslationUnitDecl();
519  PushOnScopeChains(New, TUScope);
520  CurContext = SavedContext;
521  return New;
522}
523
524/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
525/// same name and scope as a previous declaration 'Old'.  Figure out
526/// how to resolve this situation, merging decls or emitting
527/// diagnostics as appropriate. If there was an error, set New to be invalid.
528///
529void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
530  // If either decl is known invalid already, set the new one to be invalid and
531  // don't bother doing any merging checks.
532  if (New->isInvalidDecl() || OldD->isInvalidDecl())
533    return New->setInvalidDecl();
534
535  // Allow multiple definitions for ObjC built-in typedefs.
536  // FIXME: Verify the underlying types are equivalent!
537  if (getLangOptions().ObjC1) {
538    const IdentifierInfo *TypeID = New->getIdentifier();
539    switch (TypeID->getLength()) {
540    default: break;
541    case 2:
542      if (!TypeID->isStr("id"))
543        break;
544      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'id', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
547      return;
548    case 5:
549      if (!TypeID->isStr("Class"))
550        break;
551      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
552      // Install the built-in type for 'Class', ignoring the current definition.
553      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
554      return;
555    case 3:
556      if (!TypeID->isStr("SEL"))
557        break;
558      Context.setObjCSelType(Context.getTypeDeclType(New));
559      return;
560    case 8:
561      if (!TypeID->isStr("Protocol"))
562        break;
563      Context.setObjCProtoType(New->getUnderlyingType());
564      return;
565    }
566    // Fall through - the typedef name was not a builtin type.
567  }
568  // Verify the old decl was also a type.
569  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
570  if (!Old) {
571    Diag(New->getLocation(), diag::err_redefinition_different_kind)
572      << New->getDeclName();
573    if (OldD->getLocation().isValid())
574      Diag(OldD->getLocation(), diag::note_previous_definition);
575    return New->setInvalidDecl();
576  }
577
578  // Determine the "old" type we'll use for checking and diagnostics.
579  QualType OldType;
580  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
581    OldType = OldTypedef->getUnderlyingType();
582  else
583    OldType = Context.getTypeDeclType(Old);
584
585  // If the typedef types are not identical, reject them in all languages and
586  // with any extensions enabled.
587
588  if (OldType != New->getUnderlyingType() &&
589      Context.getCanonicalType(OldType) !=
590      Context.getCanonicalType(New->getUnderlyingType())) {
591    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
592      << New->getUnderlyingType() << OldType;
593    if (Old->getLocation().isValid())
594      Diag(Old->getLocation(), diag::note_previous_definition);
595    return New->setInvalidDecl();
596  }
597
598  if (getLangOptions().Microsoft)
599    return;
600
601  // C++ [dcl.typedef]p2:
602  //   In a given non-class scope, a typedef specifier can be used to
603  //   redefine the name of any type declared in that scope to refer
604  //   to the type to which it already refers.
605  if (getLangOptions().CPlusPlus) {
606    if (!isa<CXXRecordDecl>(CurContext))
607      return;
608    Diag(New->getLocation(), diag::err_redefinition)
609      << New->getDeclName();
610    Diag(Old->getLocation(), diag::note_previous_definition);
611    return New->setInvalidDecl();
612  }
613
614  // If we have a redefinition of a typedef in C, emit a warning.  This warning
615  // is normally mapped to an error, but can be controlled with
616  // -Wtypedef-redefinition.  If either the original or the redefinition is
617  // in a system header, don't emit this for compatibility with GCC.
618  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
619      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
620       Context.getSourceManager().isInSystemHeader(New->getLocation())))
621    return;
622
623  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
624    << New->getDeclName();
625  Diag(Old->getLocation(), diag::note_previous_definition);
626  return;
627}
628
629/// DeclhasAttr - returns true if decl Declaration already has the target
630/// attribute.
631static bool
632DeclHasAttr(const Decl *decl, const Attr *target) {
633  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
634    if (attr->getKind() == target->getKind())
635      return true;
636
637  return false;
638}
639
640/// MergeAttributes - append attributes from the Old decl to the New one.
641static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
642  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
643    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
644      Attr *NewAttr = attr->clone(C);
645      NewAttr->setInherited(true);
646      New->addAttr(NewAttr);
647    }
648  }
649}
650
651/// Used in MergeFunctionDecl to keep track of function parameters in
652/// C.
653struct GNUCompatibleParamWarning {
654  ParmVarDecl *OldParm;
655  ParmVarDecl *NewParm;
656  QualType PromotedType;
657};
658
659/// MergeFunctionDecl - We just parsed a function 'New' from
660/// declarator D which has the same name and scope as a previous
661/// declaration 'Old'.  Figure out how to resolve this situation,
662/// merging decls or emitting diagnostics as appropriate.
663///
664/// In C++, New and Old must be declarations that are not
665/// overloaded. Use IsOverload to determine whether New and Old are
666/// overloaded, and to select the Old declaration that New should be
667/// merged with.
668///
669/// Returns true if there was an error, false otherwise.
670bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
671  assert(!isa<OverloadedFunctionDecl>(OldD) &&
672         "Cannot merge with an overloaded function declaration");
673
674  // Verify the old decl was also a function.
675  FunctionDecl *Old = 0;
676  if (FunctionTemplateDecl *OldFunctionTemplate
677        = dyn_cast<FunctionTemplateDecl>(OldD))
678    Old = OldFunctionTemplate->getTemplatedDecl();
679  else
680    Old = dyn_cast<FunctionDecl>(OldD);
681  if (!Old) {
682    Diag(New->getLocation(), diag::err_redefinition_different_kind)
683      << New->getDeclName();
684    Diag(OldD->getLocation(), diag::note_previous_definition);
685    return true;
686  }
687
688  // Determine whether the previous declaration was a definition,
689  // implicit declaration, or a declaration.
690  diag::kind PrevDiag;
691  if (Old->isThisDeclarationADefinition())
692    PrevDiag = diag::note_previous_definition;
693  else if (Old->isImplicit())
694    PrevDiag = diag::note_previous_implicit_declaration;
695  else
696    PrevDiag = diag::note_previous_declaration;
697
698  QualType OldQType = Context.getCanonicalType(Old->getType());
699  QualType NewQType = Context.getCanonicalType(New->getType());
700
701  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
702      New->getStorageClass() == FunctionDecl::Static &&
703      Old->getStorageClass() != FunctionDecl::Static) {
704    Diag(New->getLocation(), diag::err_static_non_static)
705      << New;
706    Diag(Old->getLocation(), PrevDiag);
707    return true;
708  }
709
710  if (getLangOptions().CPlusPlus) {
711    // (C++98 13.1p2):
712    //   Certain function declarations cannot be overloaded:
713    //     -- Function declarations that differ only in the return type
714    //        cannot be overloaded.
715    QualType OldReturnType
716      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
717    QualType NewReturnType
718      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
719    if (OldReturnType != NewReturnType) {
720      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
721      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
722      return true;
723    }
724
725    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
726    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
727    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
728        NewMethod->getLexicalDeclContext()->isRecord()) {
729      //    -- Member function declarations with the same name and the
730      //       same parameter types cannot be overloaded if any of them
731      //       is a static member function declaration.
732      if (OldMethod->isStatic() || NewMethod->isStatic()) {
733        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
734        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
735        return true;
736      }
737
738      // C++ [class.mem]p1:
739      //   [...] A member shall not be declared twice in the
740      //   member-specification, except that a nested class or member
741      //   class template can be declared and then later defined.
742      unsigned NewDiag;
743      if (isa<CXXConstructorDecl>(OldMethod))
744        NewDiag = diag::err_constructor_redeclared;
745      else if (isa<CXXDestructorDecl>(NewMethod))
746        NewDiag = diag::err_destructor_redeclared;
747      else if (isa<CXXConversionDecl>(NewMethod))
748        NewDiag = diag::err_conv_function_redeclared;
749      else
750        NewDiag = diag::err_member_redeclared;
751
752      Diag(New->getLocation(), NewDiag);
753      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
754    }
755
756    // (C++98 8.3.5p3):
757    //   All declarations for a function shall agree exactly in both the
758    //   return type and the parameter-type-list.
759    if (OldQType == NewQType)
760      return MergeCompatibleFunctionDecls(New, Old);
761
762    // Fall through for conflicting redeclarations and redefinitions.
763  }
764
765  // C: Function types need to be compatible, not identical. This handles
766  // duplicate function decls like "void f(int); void f(enum X);" properly.
767  if (!getLangOptions().CPlusPlus &&
768      Context.typesAreCompatible(OldQType, NewQType)) {
769    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
770    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
771    const FunctionProtoType *OldProto = 0;
772    if (isa<FunctionNoProtoType>(NewFuncType) &&
773        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
774      // The old declaration provided a function prototype, but the
775      // new declaration does not. Merge in the prototype.
776      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
777      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
778                                                 OldProto->arg_type_end());
779      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
780                                         ParamTypes.data(), ParamTypes.size(),
781                                         OldProto->isVariadic(),
782                                         OldProto->getTypeQuals());
783      New->setType(NewQType);
784      New->setHasInheritedPrototype();
785
786      // Synthesize a parameter for each argument type.
787      llvm::SmallVector<ParmVarDecl*, 16> Params;
788      for (FunctionProtoType::arg_type_iterator
789             ParamType = OldProto->arg_type_begin(),
790             ParamEnd = OldProto->arg_type_end();
791           ParamType != ParamEnd; ++ParamType) {
792        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
793                                                 SourceLocation(), 0,
794                                                 *ParamType, /*DInfo=*/0,
795                                                 VarDecl::None, 0);
796        Param->setImplicit();
797        Params.push_back(Param);
798      }
799
800      New->setParams(Context, Params.data(), Params.size());
801    }
802
803    return MergeCompatibleFunctionDecls(New, Old);
804  }
805
806  // GNU C permits a K&R definition to follow a prototype declaration
807  // if the declared types of the parameters in the K&R definition
808  // match the types in the prototype declaration, even when the
809  // promoted types of the parameters from the K&R definition differ
810  // from the types in the prototype. GCC then keeps the types from
811  // the prototype.
812  //
813  // If a variadic prototype is followed by a non-variadic K&R definition,
814  // the K&R definition becomes variadic.  This is sort of an edge case, but
815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
816  // C99 6.9.1p8.
817  if (!getLangOptions().CPlusPlus &&
818      Old->hasPrototype() && !New->hasPrototype() &&
819      New->getType()->getAs<FunctionProtoType>() &&
820      Old->getNumParams() == New->getNumParams()) {
821    llvm::SmallVector<QualType, 16> ArgTypes;
822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
823    const FunctionProtoType *OldProto
824      = Old->getType()->getAs<FunctionProtoType>();
825    const FunctionProtoType *NewProto
826      = New->getType()->getAs<FunctionProtoType>();
827
828    // Determine whether this is the GNU C extension.
829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
830                                               NewProto->getResultType());
831    bool LooseCompatible = !MergedReturn.isNull();
832    for (unsigned Idx = 0, End = Old->getNumParams();
833         LooseCompatible && Idx != End; ++Idx) {
834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
836      if (Context.typesAreCompatible(OldParm->getType(),
837                                     NewProto->getArgType(Idx))) {
838        ArgTypes.push_back(NewParm->getType());
839      } else if (Context.typesAreCompatible(OldParm->getType(),
840                                            NewParm->getType())) {
841        GNUCompatibleParamWarning Warn
842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
843        Warnings.push_back(Warn);
844        ArgTypes.push_back(NewParm->getType());
845      } else
846        LooseCompatible = false;
847    }
848
849    if (LooseCompatible) {
850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
851        Diag(Warnings[Warn].NewParm->getLocation(),
852             diag::ext_param_promoted_not_compatible_with_prototype)
853          << Warnings[Warn].PromotedType
854          << Warnings[Warn].OldParm->getType();
855        Diag(Warnings[Warn].OldParm->getLocation(),
856             diag::note_previous_declaration);
857      }
858
859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
860                                           ArgTypes.size(),
861                                           OldProto->isVariadic(), 0));
862      return MergeCompatibleFunctionDecls(New, Old);
863    }
864
865    // Fall through to diagnose conflicting types.
866  }
867
868  // A function that has already been declared has been redeclared or defined
869  // with a different type- show appropriate diagnostic
870  if (unsigned BuiltinID = Old->getBuiltinID()) {
871    // The user has declared a builtin function with an incompatible
872    // signature.
873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
874      // The function the user is redeclaring is a library-defined
875      // function like 'malloc' or 'printf'. Warn about the
876      // redeclaration, then pretend that we don't know about this
877      // library built-in.
878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
880        << Old << Old->getType();
881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
882      Old->setInvalidDecl();
883      return false;
884    }
885
886    PrevDiag = diag::note_previous_builtin_declaration;
887  }
888
889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
891  return true;
892}
893
894/// \brief Completes the merge of two function declarations that are
895/// known to be compatible.
896///
897/// This routine handles the merging of attributes and other
898/// properties of function declarations form the old declaration to
899/// the new declaration, once we know that New is in fact a
900/// redeclaration of Old.
901///
902/// \returns false
903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
904  // Merge the attributes
905  MergeAttributes(New, Old, Context);
906
907  // Merge the storage class.
908  if (Old->getStorageClass() != FunctionDecl::Extern &&
909      Old->getStorageClass() != FunctionDecl::None)
910    New->setStorageClass(Old->getStorageClass());
911
912  // Merge "pure" flag.
913  if (Old->isPure())
914    New->setPure();
915
916  // Merge the "deleted" flag.
917  if (Old->isDeleted())
918    New->setDeleted();
919
920  if (getLangOptions().CPlusPlus)
921    return MergeCXXFunctionDecl(New, Old);
922
923  return false;
924}
925
926/// MergeVarDecl - We just parsed a variable 'New' which has the same name
927/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
928/// situation, merging decls or emitting diagnostics as appropriate.
929///
930/// Tentative definition rules (C99 6.9.2p2) are checked by
931/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
932/// definitions here, since the initializer hasn't been attached.
933///
934void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
935  // If either decl is invalid, make sure the new one is marked invalid and
936  // don't do any other checking.
937  if (New->isInvalidDecl() || OldD->isInvalidDecl())
938    return New->setInvalidDecl();
939
940  // Verify the old decl was also a variable.
941  VarDecl *Old = dyn_cast<VarDecl>(OldD);
942  if (!Old) {
943    Diag(New->getLocation(), diag::err_redefinition_different_kind)
944      << New->getDeclName();
945    Diag(OldD->getLocation(), diag::note_previous_definition);
946    return New->setInvalidDecl();
947  }
948
949  MergeAttributes(New, Old, Context);
950
951  // Merge the types
952  QualType MergedT;
953  if (getLangOptions().CPlusPlus) {
954    if (Context.hasSameType(New->getType(), Old->getType()))
955      MergedT = New->getType();
956    // C++ [basic.types]p7:
957    //   [...] The declared type of an array object might be an array of
958    //   unknown size and therefore be incomplete at one point in a
959    //   translation unit and complete later on; [...]
960    else if (Old->getType()->isIncompleteArrayType() &&
961             New->getType()->isArrayType()) {
962      CanQual<ArrayType> OldArray
963        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
964      CanQual<ArrayType> NewArray
965        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
966      if (OldArray->getElementType() == NewArray->getElementType())
967        MergedT = New->getType();
968    }
969  } else {
970    MergedT = Context.mergeTypes(New->getType(), Old->getType());
971  }
972  if (MergedT.isNull()) {
973    Diag(New->getLocation(), diag::err_redefinition_different_type)
974      << New->getDeclName();
975    Diag(Old->getLocation(), diag::note_previous_definition);
976    return New->setInvalidDecl();
977  }
978  New->setType(MergedT);
979
980  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
981  if (New->getStorageClass() == VarDecl::Static &&
982      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
983    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
984    Diag(Old->getLocation(), diag::note_previous_definition);
985    return New->setInvalidDecl();
986  }
987  // C99 6.2.2p4:
988  //   For an identifier declared with the storage-class specifier
989  //   extern in a scope in which a prior declaration of that
990  //   identifier is visible,23) if the prior declaration specifies
991  //   internal or external linkage, the linkage of the identifier at
992  //   the later declaration is the same as the linkage specified at
993  //   the prior declaration. If no prior declaration is visible, or
994  //   if the prior declaration specifies no linkage, then the
995  //   identifier has external linkage.
996  if (New->hasExternalStorage() && Old->hasLinkage())
997    /* Okay */;
998  else if (New->getStorageClass() != VarDecl::Static &&
999           Old->getStorageClass() == VarDecl::Static) {
1000    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002    return New->setInvalidDecl();
1003  }
1004
1005  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1006
1007  // FIXME: The test for external storage here seems wrong? We still
1008  // need to check for mismatches.
1009  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1010      // Don't complain about out-of-line definitions of static members.
1011      !(Old->getLexicalDeclContext()->isRecord() &&
1012        !New->getLexicalDeclContext()->isRecord())) {
1013    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1019    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1020    Diag(Old->getLocation(), diag::note_previous_definition);
1021  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1022    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1023    Diag(Old->getLocation(), diag::note_previous_definition);
1024  }
1025
1026  // Keep a chain of previous declarations.
1027  New->setPreviousDeclaration(Old);
1028}
1029
1030/// CheckFallThrough - Check that we don't fall off the end of a
1031/// Statement that should return a value.
1032///
1033/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1034/// MaybeFallThrough iff we might or might not fall off the end and
1035/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1036/// that functions not marked noreturn will return.
1037Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1038  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1039
1040  // FIXME: They should never return 0, fix that, delete this code.
1041  if (cfg == 0)
1042    return NeverFallThrough;
1043  // The CFG leaves in dead things, and we don't want to dead code paths to
1044  // confuse us, so we mark all live things first.
1045  std::queue<CFGBlock*> workq;
1046  llvm::BitVector live(cfg->getNumBlockIDs());
1047  // Prep work queue
1048  workq.push(&cfg->getEntry());
1049  // Solve
1050  while (!workq.empty()) {
1051    CFGBlock *item = workq.front();
1052    workq.pop();
1053    live.set(item->getBlockID());
1054    for (CFGBlock::succ_iterator I=item->succ_begin(),
1055           E=item->succ_end();
1056         I != E;
1057         ++I) {
1058      if ((*I) && !live[(*I)->getBlockID()]) {
1059        live.set((*I)->getBlockID());
1060        workq.push(*I);
1061      }
1062    }
1063  }
1064
1065  // Now we know what is live, we check the live precessors of the exit block
1066  // and look for fall through paths, being careful to ignore normal returns,
1067  // and exceptional paths.
1068  bool HasLiveReturn = false;
1069  bool HasFakeEdge = false;
1070  bool HasPlainEdge = false;
1071  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1072         E = cfg->getExit().pred_end();
1073       I != E;
1074       ++I) {
1075    CFGBlock& B = **I;
1076    if (!live[B.getBlockID()])
1077      continue;
1078    if (B.size() == 0) {
1079      // A labeled empty statement, or the entry block...
1080      HasPlainEdge = true;
1081      continue;
1082    }
1083    Stmt *S = B[B.size()-1];
1084    if (isa<ReturnStmt>(S)) {
1085      HasLiveReturn = true;
1086      continue;
1087    }
1088    if (isa<ObjCAtThrowStmt>(S)) {
1089      HasFakeEdge = true;
1090      continue;
1091    }
1092    if (isa<CXXThrowExpr>(S)) {
1093      HasFakeEdge = true;
1094      continue;
1095    }
1096    bool NoReturnEdge = false;
1097    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1098      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1099      if (CEE->getType().getNoReturnAttr()) {
1100        NoReturnEdge = true;
1101        HasFakeEdge = true;
1102      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1103        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1104          if (FD->hasAttr<NoReturnAttr>()) {
1105            NoReturnEdge = true;
1106            HasFakeEdge = true;
1107          }
1108        }
1109      }
1110    }
1111    // FIXME: Add noreturn message sends.
1112    if (NoReturnEdge == false)
1113      HasPlainEdge = true;
1114  }
1115  if (!HasPlainEdge)
1116    return NeverFallThrough;
1117  if (HasFakeEdge || HasLiveReturn)
1118    return MaybeFallThrough;
1119  // This says AlwaysFallThrough for calls to functions that are not marked
1120  // noreturn, that don't return.  If people would like this warning to be more
1121  // accurate, such functions should be marked as noreturn.
1122  return AlwaysFallThrough;
1123}
1124
1125/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1126/// function that should return a value.  Check that we don't fall off the end
1127/// of a noreturn function.  We assume that functions and blocks not marked
1128/// noreturn will return.
1129void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1130  // FIXME: Would be nice if we had a better way to control cascading errors,
1131  // but for now, avoid them.  The problem is that when Parse sees:
1132  //   int foo() { return a; }
1133  // The return is eaten and the Sema code sees just:
1134  //   int foo() { }
1135  // which this code would then warn about.
1136  if (getDiagnostics().hasErrorOccurred())
1137    return;
1138  bool ReturnsVoid = false;
1139  bool HasNoReturn = false;
1140  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1141    if (FD->getResultType()->isVoidType())
1142      ReturnsVoid = true;
1143    if (FD->hasAttr<NoReturnAttr>())
1144      HasNoReturn = true;
1145  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1146    if (MD->getResultType()->isVoidType())
1147      ReturnsVoid = true;
1148    if (MD->hasAttr<NoReturnAttr>())
1149      HasNoReturn = true;
1150  }
1151
1152  // Short circuit for compilation speed.
1153  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1154       == Diagnostic::Ignored || ReturnsVoid)
1155      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1156          == Diagnostic::Ignored || !HasNoReturn)
1157      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1158          == Diagnostic::Ignored || !ReturnsVoid))
1159    return;
1160  // FIXME: Funtion try block
1161  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1162    switch (CheckFallThrough(Body)) {
1163    case MaybeFallThrough:
1164      if (HasNoReturn)
1165        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1166      else if (!ReturnsVoid)
1167        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1168      break;
1169    case AlwaysFallThrough:
1170      if (HasNoReturn)
1171        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1172      else if (!ReturnsVoid)
1173        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1174      break;
1175    case NeverFallThrough:
1176      if (ReturnsVoid)
1177        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1178      break;
1179    }
1180  }
1181}
1182
1183/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1184/// that should return a value.  Check that we don't fall off the end of a
1185/// noreturn block.  We assume that functions and blocks not marked noreturn
1186/// will return.
1187void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1188  // FIXME: Would be nice if we had a better way to control cascading errors,
1189  // but for now, avoid them.  The problem is that when Parse sees:
1190  //   int foo() { return a; }
1191  // The return is eaten and the Sema code sees just:
1192  //   int foo() { }
1193  // which this code would then warn about.
1194  if (getDiagnostics().hasErrorOccurred())
1195    return;
1196  bool ReturnsVoid = false;
1197  bool HasNoReturn = false;
1198  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1199    if (FT->getResultType()->isVoidType())
1200      ReturnsVoid = true;
1201    if (FT->getNoReturnAttr())
1202      HasNoReturn = true;
1203  }
1204
1205  // Short circuit for compilation speed.
1206  if (ReturnsVoid
1207      && !HasNoReturn
1208      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1209          == Diagnostic::Ignored || !ReturnsVoid))
1210    return;
1211  // FIXME: Funtion try block
1212  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1213    switch (CheckFallThrough(Body)) {
1214    case MaybeFallThrough:
1215      if (HasNoReturn)
1216        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1217      else if (!ReturnsVoid)
1218        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1219      break;
1220    case AlwaysFallThrough:
1221      if (HasNoReturn)
1222        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1223      else if (!ReturnsVoid)
1224        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1225      break;
1226    case NeverFallThrough:
1227      if (ReturnsVoid)
1228        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1229      break;
1230    }
1231  }
1232}
1233
1234/// CheckParmsForFunctionDef - Check that the parameters of the given
1235/// function are appropriate for the definition of a function. This
1236/// takes care of any checks that cannot be performed on the
1237/// declaration itself, e.g., that the types of each of the function
1238/// parameters are complete.
1239bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1240  bool HasInvalidParm = false;
1241  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1242    ParmVarDecl *Param = FD->getParamDecl(p);
1243
1244    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1245    // function declarator that is part of a function definition of
1246    // that function shall not have incomplete type.
1247    //
1248    // This is also C++ [dcl.fct]p6.
1249    if (!Param->isInvalidDecl() &&
1250        RequireCompleteType(Param->getLocation(), Param->getType(),
1251                               diag::err_typecheck_decl_incomplete_type)) {
1252      Param->setInvalidDecl();
1253      HasInvalidParm = true;
1254    }
1255
1256    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1257    // declaration of each parameter shall include an identifier.
1258    if (Param->getIdentifier() == 0 &&
1259        !Param->isImplicit() &&
1260        !getLangOptions().CPlusPlus)
1261      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1262  }
1263
1264  return HasInvalidParm;
1265}
1266
1267/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1268/// no declarator (e.g. "struct foo;") is parsed.
1269Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1270  // FIXME: Error on auto/register at file scope
1271  // FIXME: Error on inline/virtual/explicit
1272  // FIXME: Error on invalid restrict
1273  // FIXME: Warn on useless __thread
1274  // FIXME: Warn on useless const/volatile
1275  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1276  // FIXME: Warn on useless attributes
1277  TagDecl *Tag = 0;
1278  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1279      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1280      DS.getTypeSpecType() == DeclSpec::TST_union ||
1281      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1282    if (!DS.getTypeRep()) // We probably had an error
1283      return DeclPtrTy();
1284
1285    // Note that the above type specs guarantee that the
1286    // type rep is a Decl, whereas in many of the others
1287    // it's a Type.
1288    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1289  }
1290
1291  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1292    if (!Record->getDeclName() && Record->isDefinition() &&
1293        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1294      if (getLangOptions().CPlusPlus ||
1295          Record->getDeclContext()->isRecord())
1296        return BuildAnonymousStructOrUnion(S, DS, Record);
1297
1298      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1299        << DS.getSourceRange();
1300    }
1301
1302    // Microsoft allows unnamed struct/union fields. Don't complain
1303    // about them.
1304    // FIXME: Should we support Microsoft's extensions in this area?
1305    if (Record->getDeclName() && getLangOptions().Microsoft)
1306      return DeclPtrTy::make(Tag);
1307  }
1308
1309  if (!DS.isMissingDeclaratorOk() &&
1310      DS.getTypeSpecType() != DeclSpec::TST_error) {
1311    // Warn about typedefs of enums without names, since this is an
1312    // extension in both Microsoft an GNU.
1313    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1314        Tag && isa<EnumDecl>(Tag)) {
1315      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1316        << DS.getSourceRange();
1317      return DeclPtrTy::make(Tag);
1318    }
1319
1320    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1321      << DS.getSourceRange();
1322    return DeclPtrTy();
1323  }
1324
1325  return DeclPtrTy::make(Tag);
1326}
1327
1328/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1329/// anonymous struct or union AnonRecord into the owning context Owner
1330/// and scope S. This routine will be invoked just after we realize
1331/// that an unnamed union or struct is actually an anonymous union or
1332/// struct, e.g.,
1333///
1334/// @code
1335/// union {
1336///   int i;
1337///   float f;
1338/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1339///    // f into the surrounding scope.x
1340/// @endcode
1341///
1342/// This routine is recursive, injecting the names of nested anonymous
1343/// structs/unions into the owning context and scope as well.
1344bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1345                                               RecordDecl *AnonRecord) {
1346  bool Invalid = false;
1347  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1348                               FEnd = AnonRecord->field_end();
1349       F != FEnd; ++F) {
1350    if ((*F)->getDeclName()) {
1351      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1352                                                LookupOrdinaryName, true);
1353      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1354        // C++ [class.union]p2:
1355        //   The names of the members of an anonymous union shall be
1356        //   distinct from the names of any other entity in the
1357        //   scope in which the anonymous union is declared.
1358        unsigned diagKind
1359          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1360                                 : diag::err_anonymous_struct_member_redecl;
1361        Diag((*F)->getLocation(), diagKind)
1362          << (*F)->getDeclName();
1363        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1364        Invalid = true;
1365      } else {
1366        // C++ [class.union]p2:
1367        //   For the purpose of name lookup, after the anonymous union
1368        //   definition, the members of the anonymous union are
1369        //   considered to have been defined in the scope in which the
1370        //   anonymous union is declared.
1371        Owner->makeDeclVisibleInContext(*F);
1372        S->AddDecl(DeclPtrTy::make(*F));
1373        IdResolver.AddDecl(*F);
1374      }
1375    } else if (const RecordType *InnerRecordType
1376                 = (*F)->getType()->getAs<RecordType>()) {
1377      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1378      if (InnerRecord->isAnonymousStructOrUnion())
1379        Invalid = Invalid ||
1380          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1381    }
1382  }
1383
1384  return Invalid;
1385}
1386
1387/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1388/// anonymous structure or union. Anonymous unions are a C++ feature
1389/// (C++ [class.union]) and a GNU C extension; anonymous structures
1390/// are a GNU C and GNU C++ extension.
1391Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1392                                                  RecordDecl *Record) {
1393  DeclContext *Owner = Record->getDeclContext();
1394
1395  // Diagnose whether this anonymous struct/union is an extension.
1396  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1397    Diag(Record->getLocation(), diag::ext_anonymous_union);
1398  else if (!Record->isUnion())
1399    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1400
1401  // C and C++ require different kinds of checks for anonymous
1402  // structs/unions.
1403  bool Invalid = false;
1404  if (getLangOptions().CPlusPlus) {
1405    const char* PrevSpec = 0;
1406    unsigned DiagID;
1407    // C++ [class.union]p3:
1408    //   Anonymous unions declared in a named namespace or in the
1409    //   global namespace shall be declared static.
1410    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1411        (isa<TranslationUnitDecl>(Owner) ||
1412         (isa<NamespaceDecl>(Owner) &&
1413          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1414      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1415      Invalid = true;
1416
1417      // Recover by adding 'static'.
1418      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1419                             PrevSpec, DiagID);
1420    }
1421    // C++ [class.union]p3:
1422    //   A storage class is not allowed in a declaration of an
1423    //   anonymous union in a class scope.
1424    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1425             isa<RecordDecl>(Owner)) {
1426      Diag(DS.getStorageClassSpecLoc(),
1427           diag::err_anonymous_union_with_storage_spec);
1428      Invalid = true;
1429
1430      // Recover by removing the storage specifier.
1431      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1432                             PrevSpec, DiagID);
1433    }
1434
1435    // C++ [class.union]p2:
1436    //   The member-specification of an anonymous union shall only
1437    //   define non-static data members. [Note: nested types and
1438    //   functions cannot be declared within an anonymous union. ]
1439    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1440                                 MemEnd = Record->decls_end();
1441         Mem != MemEnd; ++Mem) {
1442      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1443        // C++ [class.union]p3:
1444        //   An anonymous union shall not have private or protected
1445        //   members (clause 11).
1446        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1447          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1448            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1449          Invalid = true;
1450        }
1451      } else if ((*Mem)->isImplicit()) {
1452        // Any implicit members are fine.
1453      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1454        // This is a type that showed up in an
1455        // elaborated-type-specifier inside the anonymous struct or
1456        // union, but which actually declares a type outside of the
1457        // anonymous struct or union. It's okay.
1458      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1459        if (!MemRecord->isAnonymousStructOrUnion() &&
1460            MemRecord->getDeclName()) {
1461          // This is a nested type declaration.
1462          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1463            << (int)Record->isUnion();
1464          Invalid = true;
1465        }
1466      } else {
1467        // We have something that isn't a non-static data
1468        // member. Complain about it.
1469        unsigned DK = diag::err_anonymous_record_bad_member;
1470        if (isa<TypeDecl>(*Mem))
1471          DK = diag::err_anonymous_record_with_type;
1472        else if (isa<FunctionDecl>(*Mem))
1473          DK = diag::err_anonymous_record_with_function;
1474        else if (isa<VarDecl>(*Mem))
1475          DK = diag::err_anonymous_record_with_static;
1476        Diag((*Mem)->getLocation(), DK)
1477            << (int)Record->isUnion();
1478          Invalid = true;
1479      }
1480    }
1481  }
1482
1483  if (!Record->isUnion() && !Owner->isRecord()) {
1484    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1485      << (int)getLangOptions().CPlusPlus;
1486    Invalid = true;
1487  }
1488
1489  // Create a declaration for this anonymous struct/union.
1490  NamedDecl *Anon = 0;
1491  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1492    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1493                             /*IdentifierInfo=*/0,
1494                             Context.getTypeDeclType(Record),
1495                             // FIXME: Type source info.
1496                             /*DInfo=*/0,
1497                             /*BitWidth=*/0, /*Mutable=*/false);
1498    Anon->setAccess(AS_public);
1499    if (getLangOptions().CPlusPlus)
1500      FieldCollector->Add(cast<FieldDecl>(Anon));
1501  } else {
1502    VarDecl::StorageClass SC;
1503    switch (DS.getStorageClassSpec()) {
1504    default: assert(0 && "Unknown storage class!");
1505    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1506    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1507    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1508    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1509    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1510    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1511    case DeclSpec::SCS_mutable:
1512      // mutable can only appear on non-static class members, so it's always
1513      // an error here
1514      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1515      Invalid = true;
1516      SC = VarDecl::None;
1517      break;
1518    }
1519
1520    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1521                           /*IdentifierInfo=*/0,
1522                           Context.getTypeDeclType(Record),
1523                           // FIXME: Type source info.
1524                           /*DInfo=*/0,
1525                           SC);
1526  }
1527  Anon->setImplicit();
1528
1529  // Add the anonymous struct/union object to the current
1530  // context. We'll be referencing this object when we refer to one of
1531  // its members.
1532  Owner->addDecl(Anon);
1533
1534  // Inject the members of the anonymous struct/union into the owning
1535  // context and into the identifier resolver chain for name lookup
1536  // purposes.
1537  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1538    Invalid = true;
1539
1540  // Mark this as an anonymous struct/union type. Note that we do not
1541  // do this until after we have already checked and injected the
1542  // members of this anonymous struct/union type, because otherwise
1543  // the members could be injected twice: once by DeclContext when it
1544  // builds its lookup table, and once by
1545  // InjectAnonymousStructOrUnionMembers.
1546  Record->setAnonymousStructOrUnion(true);
1547
1548  if (Invalid)
1549    Anon->setInvalidDecl();
1550
1551  return DeclPtrTy::make(Anon);
1552}
1553
1554
1555/// GetNameForDeclarator - Determine the full declaration name for the
1556/// given Declarator.
1557DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1558  switch (D.getKind()) {
1559  case Declarator::DK_Abstract:
1560    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1561    return DeclarationName();
1562
1563  case Declarator::DK_Normal:
1564    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1565    return DeclarationName(D.getIdentifier());
1566
1567  case Declarator::DK_Constructor: {
1568    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1569    return Context.DeclarationNames.getCXXConstructorName(
1570                                                Context.getCanonicalType(Ty));
1571  }
1572
1573  case Declarator::DK_Destructor: {
1574    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1575    return Context.DeclarationNames.getCXXDestructorName(
1576                                                Context.getCanonicalType(Ty));
1577  }
1578
1579  case Declarator::DK_Conversion: {
1580    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1581    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1582    return Context.DeclarationNames.getCXXConversionFunctionName(
1583                                                Context.getCanonicalType(Ty));
1584  }
1585
1586  case Declarator::DK_Operator:
1587    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1588    return Context.DeclarationNames.getCXXOperatorName(
1589                                                D.getOverloadedOperator());
1590
1591  case Declarator::DK_TemplateId: {
1592    TemplateName Name
1593      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1594    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1595      return Template->getDeclName();
1596    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1597      return Ovl->getDeclName();
1598
1599    return DeclarationName();
1600  }
1601  }
1602
1603  assert(false && "Unknown name kind");
1604  return DeclarationName();
1605}
1606
1607/// isNearlyMatchingFunction - Determine whether the C++ functions
1608/// Declaration and Definition are "nearly" matching. This heuristic
1609/// is used to improve diagnostics in the case where an out-of-line
1610/// function definition doesn't match any declaration within
1611/// the class or namespace.
1612static bool isNearlyMatchingFunction(ASTContext &Context,
1613                                     FunctionDecl *Declaration,
1614                                     FunctionDecl *Definition) {
1615  if (Declaration->param_size() != Definition->param_size())
1616    return false;
1617  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1618    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1619    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1620
1621    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1622    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1623    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1624      return false;
1625  }
1626
1627  return true;
1628}
1629
1630Sema::DeclPtrTy
1631Sema::HandleDeclarator(Scope *S, Declarator &D,
1632                       MultiTemplateParamsArg TemplateParamLists,
1633                       bool IsFunctionDefinition) {
1634  DeclarationName Name = GetNameForDeclarator(D);
1635
1636  // All of these full declarators require an identifier.  If it doesn't have
1637  // one, the ParsedFreeStandingDeclSpec action should be used.
1638  if (!Name) {
1639    if (!D.isInvalidType())  // Reject this if we think it is valid.
1640      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1641           diag::err_declarator_need_ident)
1642        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1643    return DeclPtrTy();
1644  }
1645
1646  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1647  // we find one that is.
1648  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1649         (S->getFlags() & Scope::TemplateParamScope) != 0)
1650    S = S->getParent();
1651
1652  // If this is an out-of-line definition of a member of a class template
1653  // or class template partial specialization, we may need to rebuild the
1654  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1655  // for more information.
1656  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1657  // handle expressions properly.
1658  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1659  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1660      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1661      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1662       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1663       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1664       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1665    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1666      // FIXME: Preserve type source info.
1667      QualType T = GetTypeFromParser(DS.getTypeRep());
1668      EnterDeclaratorContext(S, DC);
1669      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1670      ExitDeclaratorContext(S);
1671      if (T.isNull())
1672        return DeclPtrTy();
1673      DS.UpdateTypeRep(T.getAsOpaquePtr());
1674    }
1675  }
1676
1677  DeclContext *DC;
1678  NamedDecl *PrevDecl;
1679  NamedDecl *New;
1680
1681  DeclaratorInfo *DInfo = 0;
1682  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1683
1684  // See if this is a redefinition of a variable in the same scope.
1685  if (D.getCXXScopeSpec().isInvalid()) {
1686    DC = CurContext;
1687    PrevDecl = 0;
1688    D.setInvalidType();
1689  } else if (!D.getCXXScopeSpec().isSet()) {
1690    LookupNameKind NameKind = LookupOrdinaryName;
1691
1692    // If the declaration we're planning to build will be a function
1693    // or object with linkage, then look for another declaration with
1694    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1695    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1696      /* Do nothing*/;
1697    else if (R->isFunctionType()) {
1698      if (CurContext->isFunctionOrMethod() ||
1699          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1700        NameKind = LookupRedeclarationWithLinkage;
1701    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1702      NameKind = LookupRedeclarationWithLinkage;
1703    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1704             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1705      NameKind = LookupRedeclarationWithLinkage;
1706
1707    DC = CurContext;
1708    PrevDecl = LookupName(S, Name, NameKind, true,
1709                          NameKind == LookupRedeclarationWithLinkage,
1710                          D.getIdentifierLoc());
1711  } else { // Something like "int foo::x;"
1712    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1713
1714    if (!DC) {
1715      // If we could not compute the declaration context, it's because the
1716      // declaration context is dependent but does not refer to a class,
1717      // class template, or class template partial specialization. Complain
1718      // and return early, to avoid the coming semantic disaster.
1719      Diag(D.getIdentifierLoc(),
1720           diag::err_template_qualified_declarator_no_match)
1721        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1722        << D.getCXXScopeSpec().getRange();
1723      return DeclPtrTy();
1724    }
1725
1726    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1727
1728    // C++ 7.3.1.2p2:
1729    // Members (including explicit specializations of templates) of a named
1730    // namespace can also be defined outside that namespace by explicit
1731    // qualification of the name being defined, provided that the entity being
1732    // defined was already declared in the namespace and the definition appears
1733    // after the point of declaration in a namespace that encloses the
1734    // declarations namespace.
1735    //
1736    // Note that we only check the context at this point. We don't yet
1737    // have enough information to make sure that PrevDecl is actually
1738    // the declaration we want to match. For example, given:
1739    //
1740    //   class X {
1741    //     void f();
1742    //     void f(float);
1743    //   };
1744    //
1745    //   void X::f(int) { } // ill-formed
1746    //
1747    // In this case, PrevDecl will point to the overload set
1748    // containing the two f's declared in X, but neither of them
1749    // matches.
1750
1751    // First check whether we named the global scope.
1752    if (isa<TranslationUnitDecl>(DC)) {
1753      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1754        << Name << D.getCXXScopeSpec().getRange();
1755    } else if (!CurContext->Encloses(DC)) {
1756      // The qualifying scope doesn't enclose the original declaration.
1757      // Emit diagnostic based on current scope.
1758      SourceLocation L = D.getIdentifierLoc();
1759      SourceRange R = D.getCXXScopeSpec().getRange();
1760      if (isa<FunctionDecl>(CurContext))
1761        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1762      else
1763        Diag(L, diag::err_invalid_declarator_scope)
1764          << Name << cast<NamedDecl>(DC) << R;
1765      D.setInvalidType();
1766    }
1767  }
1768
1769  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1770    // Maybe we will complain about the shadowed template parameter.
1771    if (!D.isInvalidType())
1772      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1773        D.setInvalidType();
1774
1775    // Just pretend that we didn't see the previous declaration.
1776    PrevDecl = 0;
1777  }
1778
1779  // In C++, the previous declaration we find might be a tag type
1780  // (class or enum). In this case, the new declaration will hide the
1781  // tag type. Note that this does does not apply if we're declaring a
1782  // typedef (C++ [dcl.typedef]p4).
1783  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1784      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1785    PrevDecl = 0;
1786
1787  bool Redeclaration = false;
1788  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1789    if (TemplateParamLists.size()) {
1790      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1791      return DeclPtrTy();
1792    }
1793
1794    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1795  } else if (R->isFunctionType()) {
1796    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1797                                  move(TemplateParamLists),
1798                                  IsFunctionDefinition, Redeclaration);
1799  } else {
1800    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1801                                  move(TemplateParamLists),
1802                                  Redeclaration);
1803  }
1804
1805  if (New == 0)
1806    return DeclPtrTy();
1807
1808  // If this has an identifier and is not an invalid redeclaration or
1809  // function template specialization, add it to the scope stack.
1810  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1811      !(isa<FunctionDecl>(New) &&
1812        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1813    PushOnScopeChains(New, S);
1814
1815  return DeclPtrTy::make(New);
1816}
1817
1818/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1819/// types into constant array types in certain situations which would otherwise
1820/// be errors (for GCC compatibility).
1821static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1822                                                    ASTContext &Context,
1823                                                    bool &SizeIsNegative) {
1824  // This method tries to turn a variable array into a constant
1825  // array even when the size isn't an ICE.  This is necessary
1826  // for compatibility with code that depends on gcc's buggy
1827  // constant expression folding, like struct {char x[(int)(char*)2];}
1828  SizeIsNegative = false;
1829
1830  QualifierCollector Qs;
1831  const Type *Ty = Qs.strip(T);
1832
1833  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1834    QualType Pointee = PTy->getPointeeType();
1835    QualType FixedType =
1836        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1837    if (FixedType.isNull()) return FixedType;
1838    FixedType = Context.getPointerType(FixedType);
1839    return Qs.apply(FixedType);
1840  }
1841
1842  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1843  if (!VLATy)
1844    return QualType();
1845  // FIXME: We should probably handle this case
1846  if (VLATy->getElementType()->isVariablyModifiedType())
1847    return QualType();
1848
1849  Expr::EvalResult EvalResult;
1850  if (!VLATy->getSizeExpr() ||
1851      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1852      !EvalResult.Val.isInt())
1853    return QualType();
1854
1855  llvm::APSInt &Res = EvalResult.Val.getInt();
1856  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1857    Expr* ArySizeExpr = VLATy->getSizeExpr();
1858    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1859    // so as to transfer ownership to the ConstantArrayWithExpr.
1860    // Alternatively, we could "clone" it (how?).
1861    // Since we don't know how to do things above, we just use the
1862    // very same Expr*.
1863    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1864                                                Res, ArySizeExpr,
1865                                                ArrayType::Normal, 0,
1866                                                VLATy->getBracketsRange());
1867  }
1868
1869  SizeIsNegative = true;
1870  return QualType();
1871}
1872
1873/// \brief Register the given locally-scoped external C declaration so
1874/// that it can be found later for redeclarations
1875void
1876Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1877                                       Scope *S) {
1878  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1879         "Decl is not a locally-scoped decl!");
1880  // Note that we have a locally-scoped external with this name.
1881  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1882
1883  if (!PrevDecl)
1884    return;
1885
1886  // If there was a previous declaration of this variable, it may be
1887  // in our identifier chain. Update the identifier chain with the new
1888  // declaration.
1889  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1890    // The previous declaration was found on the identifer resolver
1891    // chain, so remove it from its scope.
1892    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1893      S = S->getParent();
1894
1895    if (S)
1896      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1897  }
1898}
1899
1900/// \brief Diagnose function specifiers on a declaration of an identifier that
1901/// does not identify a function.
1902void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1903  // FIXME: We should probably indicate the identifier in question to avoid
1904  // confusion for constructs like "inline int a(), b;"
1905  if (D.getDeclSpec().isInlineSpecified())
1906    Diag(D.getDeclSpec().getInlineSpecLoc(),
1907         diag::err_inline_non_function);
1908
1909  if (D.getDeclSpec().isVirtualSpecified())
1910    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1911         diag::err_virtual_non_function);
1912
1913  if (D.getDeclSpec().isExplicitSpecified())
1914    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1915         diag::err_explicit_non_function);
1916}
1917
1918NamedDecl*
1919Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1920                             QualType R,  DeclaratorInfo *DInfo,
1921                             Decl* PrevDecl, bool &Redeclaration) {
1922  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1923  if (D.getCXXScopeSpec().isSet()) {
1924    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1925      << D.getCXXScopeSpec().getRange();
1926    D.setInvalidType();
1927    // Pretend we didn't see the scope specifier.
1928    DC = 0;
1929  }
1930
1931  if (getLangOptions().CPlusPlus) {
1932    // Check that there are no default arguments (C++ only).
1933    CheckExtraCXXDefaultArguments(D);
1934  }
1935
1936  DiagnoseFunctionSpecifiers(D);
1937
1938  if (D.getDeclSpec().isThreadSpecified())
1939    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1940
1941  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1942  if (!NewTD) return 0;
1943
1944  if (D.isInvalidType())
1945    NewTD->setInvalidDecl();
1946
1947  // Handle attributes prior to checking for duplicates in MergeVarDecl
1948  ProcessDeclAttributes(S, NewTD, D);
1949  // Merge the decl with the existing one if appropriate. If the decl is
1950  // in an outer scope, it isn't the same thing.
1951  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1952    Redeclaration = true;
1953    MergeTypeDefDecl(NewTD, PrevDecl);
1954  }
1955
1956  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1957  // then it shall have block scope.
1958  QualType T = NewTD->getUnderlyingType();
1959  if (T->isVariablyModifiedType()) {
1960    CurFunctionNeedsScopeChecking = true;
1961
1962    if (S->getFnParent() == 0) {
1963      bool SizeIsNegative;
1964      QualType FixedTy =
1965          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1966      if (!FixedTy.isNull()) {
1967        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1968        NewTD->setUnderlyingType(FixedTy);
1969      } else {
1970        if (SizeIsNegative)
1971          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1972        else if (T->isVariableArrayType())
1973          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1974        else
1975          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1976        NewTD->setInvalidDecl();
1977      }
1978    }
1979  }
1980
1981  // If this is the C FILE type, notify the AST context.
1982  if (IdentifierInfo *II = NewTD->getIdentifier())
1983    if (!NewTD->isInvalidDecl() &&
1984        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1985      if (II->isStr("FILE"))
1986        Context.setFILEDecl(NewTD);
1987      else if (II->isStr("jmp_buf"))
1988        Context.setjmp_bufDecl(NewTD);
1989      else if (II->isStr("sigjmp_buf"))
1990        Context.setsigjmp_bufDecl(NewTD);
1991    }
1992
1993  return NewTD;
1994}
1995
1996/// \brief Determines whether the given declaration is an out-of-scope
1997/// previous declaration.
1998///
1999/// This routine should be invoked when name lookup has found a
2000/// previous declaration (PrevDecl) that is not in the scope where a
2001/// new declaration by the same name is being introduced. If the new
2002/// declaration occurs in a local scope, previous declarations with
2003/// linkage may still be considered previous declarations (C99
2004/// 6.2.2p4-5, C++ [basic.link]p6).
2005///
2006/// \param PrevDecl the previous declaration found by name
2007/// lookup
2008///
2009/// \param DC the context in which the new declaration is being
2010/// declared.
2011///
2012/// \returns true if PrevDecl is an out-of-scope previous declaration
2013/// for a new delcaration with the same name.
2014static bool
2015isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2016                                ASTContext &Context) {
2017  if (!PrevDecl)
2018    return 0;
2019
2020  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2021  // case we need to check each of the overloaded functions.
2022  if (!PrevDecl->hasLinkage())
2023    return false;
2024
2025  if (Context.getLangOptions().CPlusPlus) {
2026    // C++ [basic.link]p6:
2027    //   If there is a visible declaration of an entity with linkage
2028    //   having the same name and type, ignoring entities declared
2029    //   outside the innermost enclosing namespace scope, the block
2030    //   scope declaration declares that same entity and receives the
2031    //   linkage of the previous declaration.
2032    DeclContext *OuterContext = DC->getLookupContext();
2033    if (!OuterContext->isFunctionOrMethod())
2034      // This rule only applies to block-scope declarations.
2035      return false;
2036    else {
2037      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2038      if (PrevOuterContext->isRecord())
2039        // We found a member function: ignore it.
2040        return false;
2041      else {
2042        // Find the innermost enclosing namespace for the new and
2043        // previous declarations.
2044        while (!OuterContext->isFileContext())
2045          OuterContext = OuterContext->getParent();
2046        while (!PrevOuterContext->isFileContext())
2047          PrevOuterContext = PrevOuterContext->getParent();
2048
2049        // The previous declaration is in a different namespace, so it
2050        // isn't the same function.
2051        if (OuterContext->getPrimaryContext() !=
2052            PrevOuterContext->getPrimaryContext())
2053          return false;
2054      }
2055    }
2056  }
2057
2058  return true;
2059}
2060
2061NamedDecl*
2062Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2063                              QualType R, DeclaratorInfo *DInfo,
2064                              NamedDecl* PrevDecl,
2065                              MultiTemplateParamsArg TemplateParamLists,
2066                              bool &Redeclaration) {
2067  DeclarationName Name = GetNameForDeclarator(D);
2068
2069  // Check that there are no default arguments (C++ only).
2070  if (getLangOptions().CPlusPlus)
2071    CheckExtraCXXDefaultArguments(D);
2072
2073  VarDecl *NewVD;
2074  VarDecl::StorageClass SC;
2075  switch (D.getDeclSpec().getStorageClassSpec()) {
2076  default: assert(0 && "Unknown storage class!");
2077  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2078  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2079  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2080  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2081  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2082  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2083  case DeclSpec::SCS_mutable:
2084    // mutable can only appear on non-static class members, so it's always
2085    // an error here
2086    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2087    D.setInvalidType();
2088    SC = VarDecl::None;
2089    break;
2090  }
2091
2092  IdentifierInfo *II = Name.getAsIdentifierInfo();
2093  if (!II) {
2094    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2095      << Name.getAsString();
2096    return 0;
2097  }
2098
2099  DiagnoseFunctionSpecifiers(D);
2100
2101  if (!DC->isRecord() && S->getFnParent() == 0) {
2102    // C99 6.9p2: The storage-class specifiers auto and register shall not
2103    // appear in the declaration specifiers in an external declaration.
2104    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2105
2106      // If this is a register variable with an asm label specified, then this
2107      // is a GNU extension.
2108      if (SC == VarDecl::Register && D.getAsmLabel())
2109        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2110      else
2111        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2112      D.setInvalidType();
2113    }
2114  }
2115  if (DC->isRecord() && !CurContext->isRecord()) {
2116    // This is an out-of-line definition of a static data member.
2117    if (SC == VarDecl::Static) {
2118      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2119           diag::err_static_out_of_line)
2120        << CodeModificationHint::CreateRemoval(
2121                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2122    } else if (SC == VarDecl::None)
2123      SC = VarDecl::Static;
2124  }
2125  if (SC == VarDecl::Static) {
2126    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2127      if (RD->isLocalClass())
2128        Diag(D.getIdentifierLoc(),
2129             diag::err_static_data_member_not_allowed_in_local_class)
2130          << Name << RD->getDeclName();
2131    }
2132  }
2133
2134  // Match up the template parameter lists with the scope specifier, then
2135  // determine whether we have a template or a template specialization.
2136  if (TemplateParameterList *TemplateParams
2137      = MatchTemplateParametersToScopeSpecifier(
2138                                  D.getDeclSpec().getSourceRange().getBegin(),
2139                                                D.getCXXScopeSpec(),
2140                        (TemplateParameterList**)TemplateParamLists.get(),
2141                                                 TemplateParamLists.size())) {
2142    if (TemplateParams->size() > 0) {
2143      // There is no such thing as a variable template.
2144      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2145        << II
2146        << SourceRange(TemplateParams->getTemplateLoc(),
2147                       TemplateParams->getRAngleLoc());
2148      return 0;
2149    } else {
2150      // There is an extraneous 'template<>' for this variable. Complain
2151      // about it, but allow the declaration of the variable.
2152      Diag(TemplateParams->getTemplateLoc(),
2153           diag::err_template_variable_noparams)
2154        << II
2155        << SourceRange(TemplateParams->getTemplateLoc(),
2156                       TemplateParams->getRAngleLoc());
2157    }
2158  }
2159
2160  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2161                          II, R, DInfo, SC);
2162
2163  if (D.isInvalidType())
2164    NewVD->setInvalidDecl();
2165
2166  if (D.getDeclSpec().isThreadSpecified()) {
2167    if (NewVD->hasLocalStorage())
2168      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2169    else if (!Context.Target.isTLSSupported())
2170      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2171    else
2172      NewVD->setThreadSpecified(true);
2173  }
2174
2175  // Set the lexical context. If the declarator has a C++ scope specifier, the
2176  // lexical context will be different from the semantic context.
2177  NewVD->setLexicalDeclContext(CurContext);
2178
2179  // Handle attributes prior to checking for duplicates in MergeVarDecl
2180  ProcessDeclAttributes(S, NewVD, D);
2181
2182  // Handle GNU asm-label extension (encoded as an attribute).
2183  if (Expr *E = (Expr*) D.getAsmLabel()) {
2184    // The parser guarantees this is a string.
2185    StringLiteral *SE = cast<StringLiteral>(E);
2186    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2187                                                        SE->getByteLength())));
2188  }
2189
2190  // If name lookup finds a previous declaration that is not in the
2191  // same scope as the new declaration, this may still be an
2192  // acceptable redeclaration.
2193  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2194      !(NewVD->hasLinkage() &&
2195        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2196    PrevDecl = 0;
2197
2198  // Merge the decl with the existing one if appropriate.
2199  if (PrevDecl) {
2200    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2201      // The user tried to define a non-static data member
2202      // out-of-line (C++ [dcl.meaning]p1).
2203      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2204        << D.getCXXScopeSpec().getRange();
2205      PrevDecl = 0;
2206      NewVD->setInvalidDecl();
2207    }
2208  } else if (D.getCXXScopeSpec().isSet()) {
2209    // No previous declaration in the qualifying scope.
2210    NestedNameSpecifier *NNS =
2211      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2212    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2213                          D.getCXXScopeSpec().getRange());
2214    NewVD->setInvalidDecl();
2215  }
2216
2217  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2218
2219  // attributes declared post-definition are currently ignored
2220  if (PrevDecl) {
2221    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2222    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2223      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2224      Diag(Def->getLocation(), diag::note_previous_definition);
2225    }
2226  }
2227
2228  // If this is a locally-scoped extern C variable, update the map of
2229  // such variables.
2230  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2231      !NewVD->isInvalidDecl())
2232    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2233
2234  return NewVD;
2235}
2236
2237/// \brief Perform semantic checking on a newly-created variable
2238/// declaration.
2239///
2240/// This routine performs all of the type-checking required for a
2241/// variable declaration once it has been built. It is used both to
2242/// check variables after they have been parsed and their declarators
2243/// have been translated into a declaration, and to check variables
2244/// that have been instantiated from a template.
2245///
2246/// Sets NewVD->isInvalidDecl() if an error was encountered.
2247void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2248                                    bool &Redeclaration) {
2249  // If the decl is already known invalid, don't check it.
2250  if (NewVD->isInvalidDecl())
2251    return;
2252
2253  QualType T = NewVD->getType();
2254
2255  if (T->isObjCInterfaceType()) {
2256    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2257    return NewVD->setInvalidDecl();
2258  }
2259
2260  // The variable can not have an abstract class type.
2261  if (RequireNonAbstractType(NewVD->getLocation(), T,
2262                             diag::err_abstract_type_in_decl,
2263                             AbstractVariableType))
2264    return NewVD->setInvalidDecl();
2265
2266  // Emit an error if an address space was applied to decl with local storage.
2267  // This includes arrays of objects with address space qualifiers, but not
2268  // automatic variables that point to other address spaces.
2269  // ISO/IEC TR 18037 S5.1.2
2270  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2271    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2272    return NewVD->setInvalidDecl();
2273  }
2274
2275  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2276      && !NewVD->hasAttr<BlocksAttr>())
2277    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2278
2279  bool isVM = T->isVariablyModifiedType();
2280  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2281      NewVD->hasAttr<BlocksAttr>())
2282    CurFunctionNeedsScopeChecking = true;
2283
2284  if ((isVM && NewVD->hasLinkage()) ||
2285      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2286    bool SizeIsNegative;
2287    QualType FixedTy =
2288        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2289
2290    if (FixedTy.isNull() && T->isVariableArrayType()) {
2291      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2292      // FIXME: This won't give the correct result for
2293      // int a[10][n];
2294      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2295
2296      if (NewVD->isFileVarDecl())
2297        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2298        << SizeRange;
2299      else if (NewVD->getStorageClass() == VarDecl::Static)
2300        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2301        << SizeRange;
2302      else
2303        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2304        << SizeRange;
2305      return NewVD->setInvalidDecl();
2306    }
2307
2308    if (FixedTy.isNull()) {
2309      if (NewVD->isFileVarDecl())
2310        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2311      else
2312        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2313      return NewVD->setInvalidDecl();
2314    }
2315
2316    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2317    NewVD->setType(FixedTy);
2318  }
2319
2320  if (!PrevDecl && NewVD->isExternC()) {
2321    // Since we did not find anything by this name and we're declaring
2322    // an extern "C" variable, look for a non-visible extern "C"
2323    // declaration with the same name.
2324    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2325      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2326    if (Pos != LocallyScopedExternalDecls.end())
2327      PrevDecl = Pos->second;
2328  }
2329
2330  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2331    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2332      << T;
2333    return NewVD->setInvalidDecl();
2334  }
2335
2336  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2337    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2338    return NewVD->setInvalidDecl();
2339  }
2340
2341  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2342    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2343    return NewVD->setInvalidDecl();
2344  }
2345
2346  if (PrevDecl) {
2347    Redeclaration = true;
2348    MergeVarDecl(NewVD, PrevDecl);
2349  }
2350}
2351
2352static bool isUsingDecl(Decl *D) {
2353  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2354}
2355
2356NamedDecl*
2357Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2358                              QualType R, DeclaratorInfo *DInfo,
2359                              NamedDecl* PrevDecl,
2360                              MultiTemplateParamsArg TemplateParamLists,
2361                              bool IsFunctionDefinition, bool &Redeclaration) {
2362  assert(R.getTypePtr()->isFunctionType());
2363
2364  DeclarationName Name = GetNameForDeclarator(D);
2365  FunctionDecl::StorageClass SC = FunctionDecl::None;
2366  switch (D.getDeclSpec().getStorageClassSpec()) {
2367  default: assert(0 && "Unknown storage class!");
2368  case DeclSpec::SCS_auto:
2369  case DeclSpec::SCS_register:
2370  case DeclSpec::SCS_mutable:
2371    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2372         diag::err_typecheck_sclass_func);
2373    D.setInvalidType();
2374    break;
2375  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2376  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2377  case DeclSpec::SCS_static: {
2378    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2379      // C99 6.7.1p5:
2380      //   The declaration of an identifier for a function that has
2381      //   block scope shall have no explicit storage-class specifier
2382      //   other than extern
2383      // See also (C++ [dcl.stc]p4).
2384      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2385           diag::err_static_block_func);
2386      SC = FunctionDecl::None;
2387    } else
2388      SC = FunctionDecl::Static;
2389    break;
2390  }
2391  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2392  }
2393
2394  if (D.getDeclSpec().isThreadSpecified())
2395    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2396
2397  bool isFriend = D.getDeclSpec().isFriendSpecified();
2398  bool isInline = D.getDeclSpec().isInlineSpecified();
2399  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2400  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2401
2402  // Check that the return type is not an abstract class type.
2403  // For record types, this is done by the AbstractClassUsageDiagnoser once
2404  // the class has been completely parsed.
2405  if (!DC->isRecord() &&
2406      RequireNonAbstractType(D.getIdentifierLoc(),
2407                             R->getAs<FunctionType>()->getResultType(),
2408                             diag::err_abstract_type_in_decl,
2409                             AbstractReturnType))
2410    D.setInvalidType();
2411
2412  // Do not allow returning a objc interface by-value.
2413  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2414    Diag(D.getIdentifierLoc(),
2415         diag::err_object_cannot_be_passed_returned_by_value) << 0
2416      << R->getAs<FunctionType>()->getResultType();
2417    D.setInvalidType();
2418  }
2419
2420  bool isVirtualOkay = false;
2421  FunctionDecl *NewFD;
2422
2423  if (isFriend) {
2424    // DC is the namespace in which the function is being declared.
2425    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2426           "friend function being created in a non-namespace context");
2427
2428    // C++ [class.friend]p5
2429    //   A function can be defined in a friend declaration of a
2430    //   class . . . . Such a function is implicitly inline.
2431    isInline |= IsFunctionDefinition;
2432  }
2433
2434  if (D.getKind() == Declarator::DK_Constructor) {
2435    // This is a C++ constructor declaration.
2436    assert(DC->isRecord() &&
2437           "Constructors can only be declared in a member context");
2438
2439    R = CheckConstructorDeclarator(D, R, SC);
2440
2441    // Create the new declaration
2442    NewFD = CXXConstructorDecl::Create(Context,
2443                                       cast<CXXRecordDecl>(DC),
2444                                       D.getIdentifierLoc(), Name, R, DInfo,
2445                                       isExplicit, isInline,
2446                                       /*isImplicitlyDeclared=*/false);
2447  } else if (D.getKind() == Declarator::DK_Destructor) {
2448    // This is a C++ destructor declaration.
2449    if (DC->isRecord()) {
2450      R = CheckDestructorDeclarator(D, SC);
2451
2452      NewFD = CXXDestructorDecl::Create(Context,
2453                                        cast<CXXRecordDecl>(DC),
2454                                        D.getIdentifierLoc(), Name, R,
2455                                        isInline,
2456                                        /*isImplicitlyDeclared=*/false);
2457
2458      isVirtualOkay = true;
2459    } else {
2460      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2461
2462      // Create a FunctionDecl to satisfy the function definition parsing
2463      // code path.
2464      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2465                                   Name, R, DInfo, SC, isInline,
2466                                   /*hasPrototype=*/true);
2467      D.setInvalidType();
2468    }
2469  } else if (D.getKind() == Declarator::DK_Conversion) {
2470    if (!DC->isRecord()) {
2471      Diag(D.getIdentifierLoc(),
2472           diag::err_conv_function_not_member);
2473      return 0;
2474    }
2475
2476    CheckConversionDeclarator(D, R, SC);
2477    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2478                                      D.getIdentifierLoc(), Name, R, DInfo,
2479                                      isInline, isExplicit);
2480
2481    isVirtualOkay = true;
2482  } else if (DC->isRecord()) {
2483    // If the of the function is the same as the name of the record, then this
2484    // must be an invalid constructor that has a return type.
2485    // (The parser checks for a return type and makes the declarator a
2486    // constructor if it has no return type).
2487    // must have an invalid constructor that has a return type
2488    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2489      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2490        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2491        << SourceRange(D.getIdentifierLoc());
2492      return 0;
2493    }
2494
2495    // This is a C++ method declaration.
2496    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2497                                  D.getIdentifierLoc(), Name, R, DInfo,
2498                                  (SC == FunctionDecl::Static), isInline);
2499
2500    isVirtualOkay = (SC != FunctionDecl::Static);
2501  } else {
2502    // Determine whether the function was written with a
2503    // prototype. This true when:
2504    //   - we're in C++ (where every function has a prototype),
2505    //   - there is a prototype in the declarator, or
2506    //   - the type R of the function is some kind of typedef or other reference
2507    //     to a type name (which eventually refers to a function type).
2508    bool HasPrototype =
2509       getLangOptions().CPlusPlus ||
2510       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2511       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2512
2513    NewFD = FunctionDecl::Create(Context, DC,
2514                                 D.getIdentifierLoc(),
2515                                 Name, R, DInfo, SC, isInline, HasPrototype);
2516  }
2517
2518  if (D.isInvalidType())
2519    NewFD->setInvalidDecl();
2520
2521  // Set the lexical context. If the declarator has a C++
2522  // scope specifier, or is the object of a friend declaration, the
2523  // lexical context will be different from the semantic context.
2524  NewFD->setLexicalDeclContext(CurContext);
2525
2526  if (isFriend)
2527    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2528
2529  // Match up the template parameter lists with the scope specifier, then
2530  // determine whether we have a template or a template specialization.
2531  FunctionTemplateDecl *FunctionTemplate = 0;
2532  bool isFunctionTemplateSpecialization = false;
2533  if (TemplateParameterList *TemplateParams
2534        = MatchTemplateParametersToScopeSpecifier(
2535                                  D.getDeclSpec().getSourceRange().getBegin(),
2536                                  D.getCXXScopeSpec(),
2537                           (TemplateParameterList**)TemplateParamLists.get(),
2538                                                  TemplateParamLists.size())) {
2539    if (TemplateParams->size() > 0) {
2540      // This is a function template
2541
2542      // Check that we can declare a template here.
2543      if (CheckTemplateDeclScope(S, TemplateParams))
2544        return 0;
2545
2546      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2547                                                      NewFD->getLocation(),
2548                                                      Name, TemplateParams,
2549                                                      NewFD);
2550      FunctionTemplate->setLexicalDeclContext(CurContext);
2551      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2552    } else {
2553      // This is a function template specialization.
2554      isFunctionTemplateSpecialization = true;
2555    }
2556
2557    // FIXME: Free this memory properly.
2558    TemplateParamLists.release();
2559  }
2560
2561  // C++ [dcl.fct.spec]p5:
2562  //   The virtual specifier shall only be used in declarations of
2563  //   nonstatic class member functions that appear within a
2564  //   member-specification of a class declaration; see 10.3.
2565  //
2566  if (isVirtual && !NewFD->isInvalidDecl()) {
2567    if (!isVirtualOkay) {
2568       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2569           diag::err_virtual_non_function);
2570    } else if (!CurContext->isRecord()) {
2571      // 'virtual' was specified outside of the class.
2572      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2573        << CodeModificationHint::CreateRemoval(
2574                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2575    } else {
2576      // Okay: Add virtual to the method.
2577      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2578      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2579      CurClass->setAggregate(false);
2580      CurClass->setPOD(false);
2581      CurClass->setEmpty(false);
2582      CurClass->setPolymorphic(true);
2583      CurClass->setHasTrivialConstructor(false);
2584      CurClass->setHasTrivialCopyConstructor(false);
2585      CurClass->setHasTrivialCopyAssignment(false);
2586    }
2587  }
2588
2589  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2590    // Look for virtual methods in base classes that this method might override.
2591
2592    BasePaths Paths;
2593    if (LookupInBases(cast<CXXRecordDecl>(DC),
2594                      MemberLookupCriteria(NewMD), Paths)) {
2595      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2596           E = Paths.found_decls_end(); I != E; ++I) {
2597        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2598          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2599              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2600            NewMD->addOverriddenMethod(OldMD);
2601        }
2602      }
2603    }
2604  }
2605
2606  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2607      !CurContext->isRecord()) {
2608    // C++ [class.static]p1:
2609    //   A data or function member of a class may be declared static
2610    //   in a class definition, in which case it is a static member of
2611    //   the class.
2612
2613    // Complain about the 'static' specifier if it's on an out-of-line
2614    // member function definition.
2615    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2616         diag::err_static_out_of_line)
2617      << CodeModificationHint::CreateRemoval(
2618                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2619  }
2620
2621  // Handle GNU asm-label extension (encoded as an attribute).
2622  if (Expr *E = (Expr*) D.getAsmLabel()) {
2623    // The parser guarantees this is a string.
2624    StringLiteral *SE = cast<StringLiteral>(E);
2625    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2626                                                        SE->getByteLength())));
2627  }
2628
2629  // Copy the parameter declarations from the declarator D to the function
2630  // declaration NewFD, if they are available.  First scavenge them into Params.
2631  llvm::SmallVector<ParmVarDecl*, 16> Params;
2632  if (D.getNumTypeObjects() > 0) {
2633    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2634
2635    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2636    // function that takes no arguments, not a function that takes a
2637    // single void argument.
2638    // We let through "const void" here because Sema::GetTypeForDeclarator
2639    // already checks for that case.
2640    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2641        FTI.ArgInfo[0].Param &&
2642        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2643      // Empty arg list, don't push any params.
2644      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2645
2646      // In C++, the empty parameter-type-list must be spelled "void"; a
2647      // typedef of void is not permitted.
2648      if (getLangOptions().CPlusPlus &&
2649          Param->getType().getUnqualifiedType() != Context.VoidTy)
2650        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2651      // FIXME: Leaks decl?
2652    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2653      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2654        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2655        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2656        Param->setDeclContext(NewFD);
2657        Params.push_back(Param);
2658      }
2659    }
2660
2661  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2662    // When we're declaring a function with a typedef, typeof, etc as in the
2663    // following example, we'll need to synthesize (unnamed)
2664    // parameters for use in the declaration.
2665    //
2666    // @code
2667    // typedef void fn(int);
2668    // fn f;
2669    // @endcode
2670
2671    // Synthesize a parameter for each argument type.
2672    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2673         AE = FT->arg_type_end(); AI != AE; ++AI) {
2674      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2675                                               SourceLocation(), 0,
2676                                               *AI, /*DInfo=*/0,
2677                                               VarDecl::None, 0);
2678      Param->setImplicit();
2679      Params.push_back(Param);
2680    }
2681  } else {
2682    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2683           "Should not need args for typedef of non-prototype fn");
2684  }
2685  // Finally, we know we have the right number of parameters, install them.
2686  NewFD->setParams(Context, Params.data(), Params.size());
2687
2688  // If name lookup finds a previous declaration that is not in the
2689  // same scope as the new declaration, this may still be an
2690  // acceptable redeclaration.
2691  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2692      !(NewFD->hasLinkage() &&
2693        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2694    PrevDecl = 0;
2695
2696  // FIXME: If the declarator has a template argument list but
2697  // isFunctionTemplateSpecialization is false, this is a function template
2698  // specialization but the user forgot the "template<>" header. Complain about
2699  // the missing template<> header and set isFunctionTemplateSpecialization.
2700
2701  if (isFunctionTemplateSpecialization &&
2702      CheckFunctionTemplateSpecialization(NewFD,
2703                                          /*FIXME:*/false, SourceLocation(),
2704                                          0, 0, SourceLocation(),
2705                                          PrevDecl))
2706    NewFD->setInvalidDecl();
2707
2708  // Perform semantic checking on the function declaration.
2709  bool OverloadableAttrRequired = false; // FIXME: HACK!
2710  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2711                           /*FIXME:*/OverloadableAttrRequired);
2712
2713  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2714    // An out-of-line member function declaration must also be a
2715    // definition (C++ [dcl.meaning]p1).
2716    // FIXME: Find a better way to recognize out-of-line specializations!
2717    if (!IsFunctionDefinition && !isFriend &&
2718        !(TemplateParamLists.size() && !FunctionTemplate)) {
2719      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2720        << D.getCXXScopeSpec().getRange();
2721      NewFD->setInvalidDecl();
2722    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2723      // The user tried to provide an out-of-line definition for a
2724      // function that is a member of a class or namespace, but there
2725      // was no such member function declared (C++ [class.mfct]p2,
2726      // C++ [namespace.memdef]p2). For example:
2727      //
2728      // class X {
2729      //   void f() const;
2730      // };
2731      //
2732      // void X::f() { } // ill-formed
2733      //
2734      // Complain about this problem, and attempt to suggest close
2735      // matches (e.g., those that differ only in cv-qualifiers and
2736      // whether the parameter types are references).
2737      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2738        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2739      NewFD->setInvalidDecl();
2740
2741      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2742                                              true);
2743      assert(!Prev.isAmbiguous() &&
2744             "Cannot have an ambiguity in previous-declaration lookup");
2745      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2746           Func != FuncEnd; ++Func) {
2747        if (isa<FunctionDecl>(*Func) &&
2748            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2749          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2750      }
2751
2752      PrevDecl = 0;
2753    }
2754  }
2755
2756  // Handle attributes. We need to have merged decls when handling attributes
2757  // (for example to check for conflicts, etc).
2758  // FIXME: This needs to happen before we merge declarations. Then,
2759  // let attribute merging cope with attribute conflicts.
2760  ProcessDeclAttributes(S, NewFD, D);
2761
2762  // attributes declared post-definition are currently ignored
2763  if (Redeclaration && PrevDecl) {
2764    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2765    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2766      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2767      Diag(Def->getLocation(), diag::note_previous_definition);
2768    }
2769  }
2770
2771  AddKnownFunctionAttributes(NewFD);
2772
2773  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2774    // If a function name is overloadable in C, then every function
2775    // with that name must be marked "overloadable".
2776    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2777      << Redeclaration << NewFD;
2778    if (PrevDecl)
2779      Diag(PrevDecl->getLocation(),
2780           diag::note_attribute_overloadable_prev_overload);
2781    NewFD->addAttr(::new (Context) OverloadableAttr());
2782  }
2783
2784  // If this is a locally-scoped extern C function, update the
2785  // map of such names.
2786  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2787      && !NewFD->isInvalidDecl())
2788    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2789
2790  // Set this FunctionDecl's range up to the right paren.
2791  NewFD->setLocEnd(D.getSourceRange().getEnd());
2792
2793  if (FunctionTemplate && NewFD->isInvalidDecl())
2794    FunctionTemplate->setInvalidDecl();
2795
2796  if (FunctionTemplate)
2797    return FunctionTemplate;
2798
2799  return NewFD;
2800}
2801
2802/// \brief Perform semantic checking of a new function declaration.
2803///
2804/// Performs semantic analysis of the new function declaration
2805/// NewFD. This routine performs all semantic checking that does not
2806/// require the actual declarator involved in the declaration, and is
2807/// used both for the declaration of functions as they are parsed
2808/// (called via ActOnDeclarator) and for the declaration of functions
2809/// that have been instantiated via C++ template instantiation (called
2810/// via InstantiateDecl).
2811///
2812/// This sets NewFD->isInvalidDecl() to true if there was an error.
2813void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2814                                    bool &Redeclaration,
2815                                    bool &OverloadableAttrRequired) {
2816  // If NewFD is already known erroneous, don't do any of this checking.
2817  if (NewFD->isInvalidDecl())
2818    return;
2819
2820  if (NewFD->getResultType()->isVariablyModifiedType()) {
2821    // Functions returning a variably modified type violate C99 6.7.5.2p2
2822    // because all functions have linkage.
2823    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2824    return NewFD->setInvalidDecl();
2825  }
2826
2827  if (NewFD->isMain())
2828    CheckMain(NewFD);
2829
2830  // Check for a previous declaration of this name.
2831  if (!PrevDecl && NewFD->isExternC()) {
2832    // Since we did not find anything by this name and we're declaring
2833    // an extern "C" function, look for a non-visible extern "C"
2834    // declaration with the same name.
2835    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2836      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2837    if (Pos != LocallyScopedExternalDecls.end())
2838      PrevDecl = Pos->second;
2839  }
2840
2841  // Merge or overload the declaration with an existing declaration of
2842  // the same name, if appropriate.
2843  if (PrevDecl) {
2844    // Determine whether NewFD is an overload of PrevDecl or
2845    // a declaration that requires merging. If it's an overload,
2846    // there's no more work to do here; we'll just add the new
2847    // function to the scope.
2848    OverloadedFunctionDecl::function_iterator MatchedDecl;
2849
2850    if (!getLangOptions().CPlusPlus &&
2851        AllowOverloadingOfFunction(PrevDecl, Context)) {
2852      OverloadableAttrRequired = true;
2853
2854      // Functions marked "overloadable" must have a prototype (that
2855      // we can't get through declaration merging).
2856      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2857        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2858          << NewFD;
2859        Redeclaration = true;
2860
2861        // Turn this into a variadic function with no parameters.
2862        QualType R = Context.getFunctionType(
2863                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2864                       0, 0, true, 0);
2865        NewFD->setType(R);
2866        return NewFD->setInvalidDecl();
2867      }
2868    }
2869
2870    if (PrevDecl &&
2871        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2872         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
2873      Redeclaration = true;
2874      Decl *OldDecl = PrevDecl;
2875
2876      // If PrevDecl was an overloaded function, extract the
2877      // FunctionDecl that matched.
2878      if (isa<OverloadedFunctionDecl>(PrevDecl))
2879        OldDecl = *MatchedDecl;
2880
2881      // NewFD and OldDecl represent declarations that need to be
2882      // merged.
2883      if (MergeFunctionDecl(NewFD, OldDecl))
2884        return NewFD->setInvalidDecl();
2885
2886      if (FunctionTemplateDecl *OldTemplateDecl
2887            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2888        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2889      else {
2890        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2891          NewFD->setAccess(OldDecl->getAccess());
2892        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2893      }
2894    }
2895  }
2896
2897  // Semantic checking for this function declaration (in isolation).
2898  if (getLangOptions().CPlusPlus) {
2899    // C++-specific checks.
2900    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2901      CheckConstructor(Constructor);
2902    } else if (isa<CXXDestructorDecl>(NewFD)) {
2903      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2904      QualType ClassType = Context.getTypeDeclType(Record);
2905      if (!ClassType->isDependentType()) {
2906        DeclarationName Name
2907          = Context.DeclarationNames.getCXXDestructorName(
2908                                        Context.getCanonicalType(ClassType));
2909        if (NewFD->getDeclName() != Name) {
2910          Diag(NewFD->getLocation(), diag::err_destructor_name);
2911          return NewFD->setInvalidDecl();
2912        }
2913      }
2914      Record->setUserDeclaredDestructor(true);
2915      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2916      // user-defined destructor.
2917      Record->setPOD(false);
2918
2919      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2920      // declared destructor.
2921      // FIXME: C++0x: don't do this for "= default" destructors
2922      Record->setHasTrivialDestructor(false);
2923    } else if (CXXConversionDecl *Conversion
2924               = dyn_cast<CXXConversionDecl>(NewFD))
2925      ActOnConversionDeclarator(Conversion);
2926
2927    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2928    if (NewFD->isOverloadedOperator() &&
2929        CheckOverloadedOperatorDeclaration(NewFD))
2930      return NewFD->setInvalidDecl();
2931
2932    // In C++, check default arguments now that we have merged decls. Unless
2933    // the lexical context is the class, because in this case this is done
2934    // during delayed parsing anyway.
2935    if (!CurContext->isRecord())
2936      CheckCXXDefaultArguments(NewFD);
2937  }
2938}
2939
2940void Sema::CheckMain(FunctionDecl* FD) {
2941  // C++ [basic.start.main]p3:  A program that declares main to be inline
2942  //   or static is ill-formed.
2943  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2944  //   shall not appear in a declaration of main.
2945  // static main is not an error under C99, but we should warn about it.
2946  bool isInline = FD->isInline();
2947  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2948  if (isInline || isStatic) {
2949    unsigned diagID = diag::warn_unusual_main_decl;
2950    if (isInline || getLangOptions().CPlusPlus)
2951      diagID = diag::err_unusual_main_decl;
2952
2953    int which = isStatic + (isInline << 1) - 1;
2954    Diag(FD->getLocation(), diagID) << which;
2955  }
2956
2957  QualType T = FD->getType();
2958  assert(T->isFunctionType() && "function decl is not of function type");
2959  const FunctionType* FT = T->getAs<FunctionType>();
2960
2961  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2962    // TODO: add a replacement fixit to turn the return type into 'int'.
2963    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2964    FD->setInvalidDecl(true);
2965  }
2966
2967  // Treat protoless main() as nullary.
2968  if (isa<FunctionNoProtoType>(FT)) return;
2969
2970  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2971  unsigned nparams = FTP->getNumArgs();
2972  assert(FD->getNumParams() == nparams);
2973
2974  if (nparams > 3) {
2975    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2976    FD->setInvalidDecl(true);
2977    nparams = 3;
2978  }
2979
2980  // FIXME: a lot of the following diagnostics would be improved
2981  // if we had some location information about types.
2982
2983  QualType CharPP =
2984    Context.getPointerType(Context.getPointerType(Context.CharTy));
2985  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2986
2987  for (unsigned i = 0; i < nparams; ++i) {
2988    QualType AT = FTP->getArgType(i);
2989
2990    bool mismatch = true;
2991
2992    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2993      mismatch = false;
2994    else if (Expected[i] == CharPP) {
2995      // As an extension, the following forms are okay:
2996      //   char const **
2997      //   char const * const *
2998      //   char * const *
2999
3000      QualifierCollector qs;
3001      const PointerType* PT;
3002      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3003          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3004          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3005        qs.removeConst();
3006        mismatch = !qs.empty();
3007      }
3008    }
3009
3010    if (mismatch) {
3011      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3012      // TODO: suggest replacing given type with expected type
3013      FD->setInvalidDecl(true);
3014    }
3015  }
3016
3017  if (nparams == 1 && !FD->isInvalidDecl()) {
3018    Diag(FD->getLocation(), diag::warn_main_one_arg);
3019  }
3020}
3021
3022bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3023  // FIXME: Need strict checking.  In C89, we need to check for
3024  // any assignment, increment, decrement, function-calls, or
3025  // commas outside of a sizeof.  In C99, it's the same list,
3026  // except that the aforementioned are allowed in unevaluated
3027  // expressions.  Everything else falls under the
3028  // "may accept other forms of constant expressions" exception.
3029  // (We never end up here for C++, so the constant expression
3030  // rules there don't matter.)
3031  if (Init->isConstantInitializer(Context))
3032    return false;
3033  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3034    << Init->getSourceRange();
3035  return true;
3036}
3037
3038void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3039  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3040}
3041
3042/// AddInitializerToDecl - Adds the initializer Init to the
3043/// declaration dcl. If DirectInit is true, this is C++ direct
3044/// initialization rather than copy initialization.
3045void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3046  Decl *RealDecl = dcl.getAs<Decl>();
3047  // If there is no declaration, there was an error parsing it.  Just ignore
3048  // the initializer.
3049  if (RealDecl == 0)
3050    return;
3051
3052  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3053    // With declarators parsed the way they are, the parser cannot
3054    // distinguish between a normal initializer and a pure-specifier.
3055    // Thus this grotesque test.
3056    IntegerLiteral *IL;
3057    Expr *Init = static_cast<Expr *>(init.get());
3058    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3059        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3060      if (Method->isVirtualAsWritten()) {
3061        Method->setPure();
3062
3063        // A class is abstract if at least one function is pure virtual.
3064        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3065      } else if (!Method->isInvalidDecl()) {
3066        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3067          << Method->getDeclName() << Init->getSourceRange();
3068        Method->setInvalidDecl();
3069      }
3070    } else {
3071      Diag(Method->getLocation(), diag::err_member_function_initialization)
3072        << Method->getDeclName() << Init->getSourceRange();
3073      Method->setInvalidDecl();
3074    }
3075    return;
3076  }
3077
3078  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3079  if (!VDecl) {
3080    if (getLangOptions().CPlusPlus &&
3081        RealDecl->getLexicalDeclContext()->isRecord() &&
3082        isa<NamedDecl>(RealDecl))
3083      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3084        << cast<NamedDecl>(RealDecl)->getDeclName();
3085    else
3086      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3087    RealDecl->setInvalidDecl();
3088    return;
3089  }
3090
3091  if (!VDecl->getType()->isArrayType() &&
3092      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3093                          diag::err_typecheck_decl_incomplete_type)) {
3094    RealDecl->setInvalidDecl();
3095    return;
3096  }
3097
3098  const VarDecl *Def = 0;
3099  if (VDecl->getDefinition(Def)) {
3100    Diag(VDecl->getLocation(), diag::err_redefinition)
3101      << VDecl->getDeclName();
3102    Diag(Def->getLocation(), diag::note_previous_definition);
3103    VDecl->setInvalidDecl();
3104    return;
3105  }
3106
3107  // Take ownership of the expression, now that we're sure we have somewhere
3108  // to put it.
3109  Expr *Init = init.takeAs<Expr>();
3110  assert(Init && "missing initializer");
3111
3112  // Get the decls type and save a reference for later, since
3113  // CheckInitializerTypes may change it.
3114  QualType DclT = VDecl->getType(), SavT = DclT;
3115  if (VDecl->isBlockVarDecl()) {
3116    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3117      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3118      VDecl->setInvalidDecl();
3119    } else if (!VDecl->isInvalidDecl()) {
3120      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3121                                VDecl->getDeclName(), DirectInit))
3122        VDecl->setInvalidDecl();
3123
3124      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3125      // Don't check invalid declarations to avoid emitting useless diagnostics.
3126      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3127        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3128          CheckForConstantInitializer(Init, DclT);
3129      }
3130    }
3131  } else if (VDecl->isStaticDataMember() &&
3132             VDecl->getLexicalDeclContext()->isRecord()) {
3133    // This is an in-class initialization for a static data member, e.g.,
3134    //
3135    // struct S {
3136    //   static const int value = 17;
3137    // };
3138
3139    // Attach the initializer
3140    VDecl->setInit(Context, Init);
3141
3142    // C++ [class.mem]p4:
3143    //   A member-declarator can contain a constant-initializer only
3144    //   if it declares a static member (9.4) of const integral or
3145    //   const enumeration type, see 9.4.2.
3146    QualType T = VDecl->getType();
3147    if (!T->isDependentType() &&
3148        (!Context.getCanonicalType(T).isConstQualified() ||
3149         !T->isIntegralType())) {
3150      Diag(VDecl->getLocation(), diag::err_member_initialization)
3151        << VDecl->getDeclName() << Init->getSourceRange();
3152      VDecl->setInvalidDecl();
3153    } else {
3154      // C++ [class.static.data]p4:
3155      //   If a static data member is of const integral or const
3156      //   enumeration type, its declaration in the class definition
3157      //   can specify a constant-initializer which shall be an
3158      //   integral constant expression (5.19).
3159      if (!Init->isTypeDependent() &&
3160          !Init->getType()->isIntegralType()) {
3161        // We have a non-dependent, non-integral or enumeration type.
3162        Diag(Init->getSourceRange().getBegin(),
3163             diag::err_in_class_initializer_non_integral_type)
3164          << Init->getType() << Init->getSourceRange();
3165        VDecl->setInvalidDecl();
3166      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3167        // Check whether the expression is a constant expression.
3168        llvm::APSInt Value;
3169        SourceLocation Loc;
3170        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3171          Diag(Loc, diag::err_in_class_initializer_non_constant)
3172            << Init->getSourceRange();
3173          VDecl->setInvalidDecl();
3174        } else if (!VDecl->getType()->isDependentType())
3175          ImpCastExprToType(Init, VDecl->getType());
3176      }
3177    }
3178  } else if (VDecl->isFileVarDecl()) {
3179    if (VDecl->getStorageClass() == VarDecl::Extern)
3180      Diag(VDecl->getLocation(), diag::warn_extern_init);
3181    if (!VDecl->isInvalidDecl())
3182      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3183                                VDecl->getDeclName(), DirectInit))
3184        VDecl->setInvalidDecl();
3185
3186    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3187    // Don't check invalid declarations to avoid emitting useless diagnostics.
3188    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3189      // C99 6.7.8p4. All file scoped initializers need to be constant.
3190      CheckForConstantInitializer(Init, DclT);
3191    }
3192  }
3193  // If the type changed, it means we had an incomplete type that was
3194  // completed by the initializer. For example:
3195  //   int ary[] = { 1, 3, 5 };
3196  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3197  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3198    VDecl->setType(DclT);
3199    Init->setType(DclT);
3200  }
3201
3202  Init = MaybeCreateCXXExprWithTemporaries(Init,
3203                                           /*ShouldDestroyTemporaries=*/true);
3204  // Attach the initializer to the decl.
3205  VDecl->setInit(Context, Init);
3206
3207  // If the previous declaration of VDecl was a tentative definition,
3208  // remove it from the set of tentative definitions.
3209  if (VDecl->getPreviousDeclaration() &&
3210      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3211    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3212    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3213  }
3214
3215  return;
3216}
3217
3218void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3219                                  bool TypeContainsUndeducedAuto) {
3220  Decl *RealDecl = dcl.getAs<Decl>();
3221
3222  // If there is no declaration, there was an error parsing it. Just ignore it.
3223  if (RealDecl == 0)
3224    return;
3225
3226  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3227    QualType Type = Var->getType();
3228
3229    // Record tentative definitions.
3230    if (Var->isTentativeDefinition(Context)) {
3231      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3232        InsertPair =
3233           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3234
3235      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3236      // want the second one in the map.
3237      InsertPair.first->second = Var;
3238
3239      // However, for the list, we don't care about the order, just make sure
3240      // that there are no dupes for a given declaration name.
3241      if (InsertPair.second)
3242        TentativeDefinitionList.push_back(Var->getDeclName());
3243    }
3244
3245    // C++ [dcl.init.ref]p3:
3246    //   The initializer can be omitted for a reference only in a
3247    //   parameter declaration (8.3.5), in the declaration of a
3248    //   function return type, in the declaration of a class member
3249    //   within its class declaration (9.2), and where the extern
3250    //   specifier is explicitly used.
3251    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3252      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3253        << Var->getDeclName()
3254        << SourceRange(Var->getLocation(), Var->getLocation());
3255      Var->setInvalidDecl();
3256      return;
3257    }
3258
3259    // C++0x [dcl.spec.auto]p3
3260    if (TypeContainsUndeducedAuto) {
3261      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3262        << Var->getDeclName() << Type;
3263      Var->setInvalidDecl();
3264      return;
3265    }
3266
3267    // C++ [dcl.init]p9:
3268    //   If no initializer is specified for an object, and the object
3269    //   is of (possibly cv-qualified) non-POD class type (or array
3270    //   thereof), the object shall be default-initialized; if the
3271    //   object is of const-qualified type, the underlying class type
3272    //   shall have a user-declared default constructor.
3273    //
3274    // FIXME: Diagnose the "user-declared default constructor" bit.
3275    if (getLangOptions().CPlusPlus) {
3276      QualType InitType = Type;
3277      if (const ArrayType *Array = Context.getAsArrayType(Type))
3278        InitType = Array->getElementType();
3279      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3280          InitType->isRecordType() && !InitType->isDependentType()) {
3281        if (!RequireCompleteType(Var->getLocation(), InitType,
3282                                 diag::err_invalid_incomplete_type_use)) {
3283          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3284
3285          CXXConstructorDecl *Constructor
3286            = PerformInitializationByConstructor(InitType,
3287                                                 MultiExprArg(*this, 0, 0),
3288                                                 Var->getLocation(),
3289                                               SourceRange(Var->getLocation(),
3290                                                           Var->getLocation()),
3291                                                 Var->getDeclName(),
3292                                                 IK_Default,
3293                                                 ConstructorArgs);
3294
3295          // FIXME: Location info for the variable initialization?
3296          if (!Constructor)
3297            Var->setInvalidDecl();
3298          else {
3299            // FIXME: Cope with initialization of arrays
3300            if (!Constructor->isTrivial() &&
3301                InitializeVarWithConstructor(Var, Constructor, InitType,
3302                                             move_arg(ConstructorArgs)))
3303              Var->setInvalidDecl();
3304
3305            FinalizeVarWithDestructor(Var, InitType);
3306          }
3307        }
3308      }
3309    }
3310
3311#if 0
3312    // FIXME: Temporarily disabled because we are not properly parsing
3313    // linkage specifications on declarations, e.g.,
3314    //
3315    //   extern "C" const CGPoint CGPointerZero;
3316    //
3317    // C++ [dcl.init]p9:
3318    //
3319    //     If no initializer is specified for an object, and the
3320    //     object is of (possibly cv-qualified) non-POD class type (or
3321    //     array thereof), the object shall be default-initialized; if
3322    //     the object is of const-qualified type, the underlying class
3323    //     type shall have a user-declared default
3324    //     constructor. Otherwise, if no initializer is specified for
3325    //     an object, the object and its subobjects, if any, have an
3326    //     indeterminate initial value; if the object or any of its
3327    //     subobjects are of const-qualified type, the program is
3328    //     ill-formed.
3329    //
3330    // This isn't technically an error in C, so we don't diagnose it.
3331    //
3332    // FIXME: Actually perform the POD/user-defined default
3333    // constructor check.
3334    if (getLangOptions().CPlusPlus &&
3335        Context.getCanonicalType(Type).isConstQualified() &&
3336        !Var->hasExternalStorage())
3337      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3338        << Var->getName()
3339        << SourceRange(Var->getLocation(), Var->getLocation());
3340#endif
3341  }
3342}
3343
3344Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3345                                                   DeclPtrTy *Group,
3346                                                   unsigned NumDecls) {
3347  llvm::SmallVector<Decl*, 8> Decls;
3348
3349  if (DS.isTypeSpecOwned())
3350    Decls.push_back((Decl*)DS.getTypeRep());
3351
3352  for (unsigned i = 0; i != NumDecls; ++i)
3353    if (Decl *D = Group[i].getAs<Decl>())
3354      Decls.push_back(D);
3355
3356  // Perform semantic analysis that depends on having fully processed both
3357  // the declarator and initializer.
3358  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3359    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3360    if (!IDecl)
3361      continue;
3362    QualType T = IDecl->getType();
3363
3364    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3365    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3366    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3367      if (!IDecl->isInvalidDecl() &&
3368          RequireCompleteType(IDecl->getLocation(), T,
3369                              diag::err_typecheck_decl_incomplete_type))
3370        IDecl->setInvalidDecl();
3371    }
3372    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3373    // object that has file scope without an initializer, and without a
3374    // storage-class specifier or with the storage-class specifier "static",
3375    // constitutes a tentative definition. Note: A tentative definition with
3376    // external linkage is valid (C99 6.2.2p5).
3377    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3378      if (const IncompleteArrayType *ArrayT
3379          = Context.getAsIncompleteArrayType(T)) {
3380        if (RequireCompleteType(IDecl->getLocation(),
3381                                ArrayT->getElementType(),
3382                                diag::err_illegal_decl_array_incomplete_type))
3383          IDecl->setInvalidDecl();
3384      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3385        // C99 6.9.2p3: If the declaration of an identifier for an object is
3386        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3387        // declared type shall not be an incomplete type.
3388        // NOTE: code such as the following
3389        //     static struct s;
3390        //     struct s { int a; };
3391        // is accepted by gcc. Hence here we issue a warning instead of
3392        // an error and we do not invalidate the static declaration.
3393        // NOTE: to avoid multiple warnings, only check the first declaration.
3394        if (IDecl->getPreviousDeclaration() == 0)
3395          RequireCompleteType(IDecl->getLocation(), T,
3396                              diag::ext_typecheck_decl_incomplete_type);
3397      }
3398    }
3399  }
3400  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3401                                                   Decls.data(), Decls.size()));
3402}
3403
3404
3405/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3406/// to introduce parameters into function prototype scope.
3407Sema::DeclPtrTy
3408Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3409  const DeclSpec &DS = D.getDeclSpec();
3410
3411  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3412  VarDecl::StorageClass StorageClass = VarDecl::None;
3413  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3414    StorageClass = VarDecl::Register;
3415  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3416    Diag(DS.getStorageClassSpecLoc(),
3417         diag::err_invalid_storage_class_in_func_decl);
3418    D.getMutableDeclSpec().ClearStorageClassSpecs();
3419  }
3420
3421  if (D.getDeclSpec().isThreadSpecified())
3422    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3423
3424  DiagnoseFunctionSpecifiers(D);
3425
3426  // Check that there are no default arguments inside the type of this
3427  // parameter (C++ only).
3428  if (getLangOptions().CPlusPlus)
3429    CheckExtraCXXDefaultArguments(D);
3430
3431  DeclaratorInfo *DInfo = 0;
3432  TagDecl *OwnedDecl = 0;
3433  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3434                                               &OwnedDecl);
3435
3436  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3437    // C++ [dcl.fct]p6:
3438    //   Types shall not be defined in return or parameter types.
3439    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3440      << Context.getTypeDeclType(OwnedDecl);
3441  }
3442
3443  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3444  // Can this happen for params?  We already checked that they don't conflict
3445  // among each other.  Here they can only shadow globals, which is ok.
3446  IdentifierInfo *II = D.getIdentifier();
3447  if (II) {
3448    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3449      if (PrevDecl->isTemplateParameter()) {
3450        // Maybe we will complain about the shadowed template parameter.
3451        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3452        // Just pretend that we didn't see the previous declaration.
3453        PrevDecl = 0;
3454      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3455        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3456
3457        // Recover by removing the name
3458        II = 0;
3459        D.SetIdentifier(0, D.getIdentifierLoc());
3460      }
3461    }
3462  }
3463
3464  // Parameters can not be abstract class types.
3465  // For record types, this is done by the AbstractClassUsageDiagnoser once
3466  // the class has been completely parsed.
3467  if (!CurContext->isRecord() &&
3468      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3469                             diag::err_abstract_type_in_decl,
3470                             AbstractParamType))
3471    D.setInvalidType(true);
3472
3473  QualType T = adjustParameterType(parmDeclType);
3474
3475  ParmVarDecl *New;
3476  if (T == parmDeclType) // parameter type did not need adjustment
3477    New = ParmVarDecl::Create(Context, CurContext,
3478                              D.getIdentifierLoc(), II,
3479                              parmDeclType, DInfo, StorageClass,
3480                              0);
3481  else // keep track of both the adjusted and unadjusted types
3482    New = OriginalParmVarDecl::Create(Context, CurContext,
3483                                      D.getIdentifierLoc(), II, T, DInfo,
3484                                      parmDeclType, StorageClass, 0);
3485
3486  if (D.isInvalidType())
3487    New->setInvalidDecl();
3488
3489  // Parameter declarators cannot be interface types. All ObjC objects are
3490  // passed by reference.
3491  if (T->isObjCInterfaceType()) {
3492    Diag(D.getIdentifierLoc(),
3493         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3494    New->setInvalidDecl();
3495  }
3496
3497  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3498  if (D.getCXXScopeSpec().isSet()) {
3499    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3500      << D.getCXXScopeSpec().getRange();
3501    New->setInvalidDecl();
3502  }
3503
3504  // Add the parameter declaration into this scope.
3505  S->AddDecl(DeclPtrTy::make(New));
3506  if (II)
3507    IdResolver.AddDecl(New);
3508
3509  ProcessDeclAttributes(S, New, D);
3510
3511  if (New->hasAttr<BlocksAttr>()) {
3512    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3513  }
3514  return DeclPtrTy::make(New);
3515}
3516
3517void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3518                                           SourceLocation LocAfterDecls) {
3519  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3520         "Not a function declarator!");
3521  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3522
3523  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3524  // for a K&R function.
3525  if (!FTI.hasPrototype) {
3526    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3527      --i;
3528      if (FTI.ArgInfo[i].Param == 0) {
3529        std::string Code = "  int ";
3530        Code += FTI.ArgInfo[i].Ident->getName();
3531        Code += ";\n";
3532        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3533          << FTI.ArgInfo[i].Ident
3534          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3535
3536        // Implicitly declare the argument as type 'int' for lack of a better
3537        // type.
3538        DeclSpec DS;
3539        const char* PrevSpec; // unused
3540        unsigned DiagID; // unused
3541        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3542                           PrevSpec, DiagID);
3543        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3544        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3545        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3546      }
3547    }
3548  }
3549}
3550
3551Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3552                                              Declarator &D) {
3553  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3554  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3555         "Not a function declarator!");
3556  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3557
3558  if (FTI.hasPrototype) {
3559    // FIXME: Diagnose arguments without names in C.
3560  }
3561
3562  Scope *ParentScope = FnBodyScope->getParent();
3563
3564  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3565                                  MultiTemplateParamsArg(*this),
3566                                  /*IsFunctionDefinition=*/true);
3567  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3568}
3569
3570Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3571  if (!D)
3572    return D;
3573  FunctionDecl *FD = 0;
3574
3575  if (FunctionTemplateDecl *FunTmpl
3576        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3577    FD = FunTmpl->getTemplatedDecl();
3578  else
3579    FD = cast<FunctionDecl>(D.getAs<Decl>());
3580
3581  CurFunctionNeedsScopeChecking = false;
3582
3583  // See if this is a redefinition.
3584  const FunctionDecl *Definition;
3585  if (FD->getBody(Definition)) {
3586    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3587    Diag(Definition->getLocation(), diag::note_previous_definition);
3588  }
3589
3590  // Builtin functions cannot be defined.
3591  if (unsigned BuiltinID = FD->getBuiltinID()) {
3592    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3593      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3594      FD->setInvalidDecl();
3595    }
3596  }
3597
3598  // The return type of a function definition must be complete
3599  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3600  QualType ResultType = FD->getResultType();
3601  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3602      !FD->isInvalidDecl() &&
3603      RequireCompleteType(FD->getLocation(), ResultType,
3604                          diag::err_func_def_incomplete_result))
3605    FD->setInvalidDecl();
3606
3607  // GNU warning -Wmissing-prototypes:
3608  //   Warn if a global function is defined without a previous
3609  //   prototype declaration. This warning is issued even if the
3610  //   definition itself provides a prototype. The aim is to detect
3611  //   global functions that fail to be declared in header files.
3612  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3613      !FD->isMain()) {
3614    bool MissingPrototype = true;
3615    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3616         Prev; Prev = Prev->getPreviousDeclaration()) {
3617      // Ignore any declarations that occur in function or method
3618      // scope, because they aren't visible from the header.
3619      if (Prev->getDeclContext()->isFunctionOrMethod())
3620        continue;
3621
3622      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3623      break;
3624    }
3625
3626    if (MissingPrototype)
3627      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3628  }
3629
3630  if (FnBodyScope)
3631    PushDeclContext(FnBodyScope, FD);
3632
3633  // Check the validity of our function parameters
3634  CheckParmsForFunctionDef(FD);
3635
3636  // Introduce our parameters into the function scope
3637  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3638    ParmVarDecl *Param = FD->getParamDecl(p);
3639    Param->setOwningFunction(FD);
3640
3641    // If this has an identifier, add it to the scope stack.
3642    if (Param->getIdentifier() && FnBodyScope)
3643      PushOnScopeChains(Param, FnBodyScope);
3644  }
3645
3646  // Checking attributes of current function definition
3647  // dllimport attribute.
3648  if (FD->getAttr<DLLImportAttr>() &&
3649      (!FD->getAttr<DLLExportAttr>())) {
3650    // dllimport attribute cannot be applied to definition.
3651    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3652      Diag(FD->getLocation(),
3653           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3654        << "dllimport";
3655      FD->setInvalidDecl();
3656      return DeclPtrTy::make(FD);
3657    } else {
3658      // If a symbol previously declared dllimport is later defined, the
3659      // attribute is ignored in subsequent references, and a warning is
3660      // emitted.
3661      Diag(FD->getLocation(),
3662           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3663        << FD->getNameAsCString() << "dllimport";
3664    }
3665  }
3666  return DeclPtrTy::make(FD);
3667}
3668
3669Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3670  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3671}
3672
3673Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3674                                              bool IsInstantiation) {
3675  Decl *dcl = D.getAs<Decl>();
3676  Stmt *Body = BodyArg.takeAs<Stmt>();
3677
3678  FunctionDecl *FD = 0;
3679  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3680  if (FunTmpl)
3681    FD = FunTmpl->getTemplatedDecl();
3682  else
3683    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3684
3685  if (FD) {
3686    FD->setBody(Body);
3687    if (FD->isMain())
3688      // C and C++ allow for main to automagically return 0.
3689      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3690      FD->setHasImplicitReturnZero(true);
3691    else
3692      CheckFallThroughForFunctionDef(FD, Body);
3693
3694    if (!FD->isInvalidDecl())
3695      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3696
3697    // C++ [basic.def.odr]p2:
3698    //   [...] A virtual member function is used if it is not pure. [...]
3699    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3700      if (Method->isVirtual() && !Method->isPure())
3701        MarkDeclarationReferenced(Method->getLocation(), Method);
3702
3703    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3704  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3705    assert(MD == getCurMethodDecl() && "Method parsing confused");
3706    MD->setBody(Body);
3707    CheckFallThroughForFunctionDef(MD, Body);
3708    MD->setEndLoc(Body->getLocEnd());
3709
3710    if (!MD->isInvalidDecl())
3711      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3712  } else {
3713    Body->Destroy(Context);
3714    return DeclPtrTy();
3715  }
3716  if (!IsInstantiation)
3717    PopDeclContext();
3718
3719  // Verify and clean out per-function state.
3720
3721  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3722
3723  // Check goto/label use.
3724  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3725       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3726    LabelStmt *L = I->second;
3727
3728    // Verify that we have no forward references left.  If so, there was a goto
3729    // or address of a label taken, but no definition of it.  Label fwd
3730    // definitions are indicated with a null substmt.
3731    if (L->getSubStmt() != 0)
3732      continue;
3733
3734    // Emit error.
3735    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3736
3737    // At this point, we have gotos that use the bogus label.  Stitch it into
3738    // the function body so that they aren't leaked and that the AST is well
3739    // formed.
3740    if (Body == 0) {
3741      // The whole function wasn't parsed correctly, just delete this.
3742      L->Destroy(Context);
3743      continue;
3744    }
3745
3746    // Otherwise, the body is valid: we want to stitch the label decl into the
3747    // function somewhere so that it is properly owned and so that the goto
3748    // has a valid target.  Do this by creating a new compound stmt with the
3749    // label in it.
3750
3751    // Give the label a sub-statement.
3752    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3753
3754    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3755                               cast<CXXTryStmt>(Body)->getTryBlock() :
3756                               cast<CompoundStmt>(Body);
3757    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3758    Elements.push_back(L);
3759    Compound->setStmts(Context, &Elements[0], Elements.size());
3760  }
3761  FunctionLabelMap.clear();
3762
3763  if (!Body) return D;
3764
3765  // Verify that that gotos and switch cases don't jump into scopes illegally.
3766  if (CurFunctionNeedsScopeChecking)
3767    DiagnoseInvalidJumps(Body);
3768
3769  // C++ constructors that have function-try-blocks can't have return
3770  // statements in the handlers of that block. (C++ [except.handle]p14)
3771  // Verify this.
3772  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3773    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3774
3775  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3776    computeBaseOrMembersToDestroy(Destructor);
3777  return D;
3778}
3779
3780/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3781/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3782NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3783                                          IdentifierInfo &II, Scope *S) {
3784  // Before we produce a declaration for an implicitly defined
3785  // function, see whether there was a locally-scoped declaration of
3786  // this name as a function or variable. If so, use that
3787  // (non-visible) declaration, and complain about it.
3788  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3789    = LocallyScopedExternalDecls.find(&II);
3790  if (Pos != LocallyScopedExternalDecls.end()) {
3791    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3792    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3793    return Pos->second;
3794  }
3795
3796  // Extension in C99.  Legal in C90, but warn about it.
3797  if (getLangOptions().C99)
3798    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3799  else
3800    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3801
3802  // FIXME: handle stuff like:
3803  // void foo() { extern float X(); }
3804  // void bar() { X(); }  <-- implicit decl for X in another scope.
3805
3806  // Set a Declarator for the implicit definition: int foo();
3807  const char *Dummy;
3808  DeclSpec DS;
3809  unsigned DiagID;
3810  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3811  Error = Error; // Silence warning.
3812  assert(!Error && "Error setting up implicit decl!");
3813  Declarator D(DS, Declarator::BlockContext);
3814  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3815                                             0, 0, false, SourceLocation(),
3816                                             false, 0,0,0, Loc, Loc, D),
3817                SourceLocation());
3818  D.SetIdentifier(&II, Loc);
3819
3820  // Insert this function into translation-unit scope.
3821
3822  DeclContext *PrevDC = CurContext;
3823  CurContext = Context.getTranslationUnitDecl();
3824
3825  FunctionDecl *FD =
3826 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3827  FD->setImplicit();
3828
3829  CurContext = PrevDC;
3830
3831  AddKnownFunctionAttributes(FD);
3832
3833  return FD;
3834}
3835
3836/// \brief Adds any function attributes that we know a priori based on
3837/// the declaration of this function.
3838///
3839/// These attributes can apply both to implicitly-declared builtins
3840/// (like __builtin___printf_chk) or to library-declared functions
3841/// like NSLog or printf.
3842void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3843  if (FD->isInvalidDecl())
3844    return;
3845
3846  // If this is a built-in function, map its builtin attributes to
3847  // actual attributes.
3848  if (unsigned BuiltinID = FD->getBuiltinID()) {
3849    // Handle printf-formatting attributes.
3850    unsigned FormatIdx;
3851    bool HasVAListArg;
3852    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3853      if (!FD->getAttr<FormatAttr>())
3854        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3855                                             HasVAListArg ? 0 : FormatIdx + 2));
3856    }
3857
3858    // Mark const if we don't care about errno and that is the only
3859    // thing preventing the function from being const. This allows
3860    // IRgen to use LLVM intrinsics for such functions.
3861    if (!getLangOptions().MathErrno &&
3862        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3863      if (!FD->getAttr<ConstAttr>())
3864        FD->addAttr(::new (Context) ConstAttr());
3865    }
3866
3867    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3868      FD->addAttr(::new (Context) NoReturnAttr());
3869  }
3870
3871  IdentifierInfo *Name = FD->getIdentifier();
3872  if (!Name)
3873    return;
3874  if ((!getLangOptions().CPlusPlus &&
3875       FD->getDeclContext()->isTranslationUnit()) ||
3876      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3877       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3878       LinkageSpecDecl::lang_c)) {
3879    // Okay: this could be a libc/libm/Objective-C function we know
3880    // about.
3881  } else
3882    return;
3883
3884  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3885    // FIXME: NSLog and NSLogv should be target specific
3886    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3887      // FIXME: We known better than our headers.
3888      const_cast<FormatAttr *>(Format)->setType("printf");
3889    } else
3890      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3891                                             Name->isStr("NSLogv") ? 0 : 2));
3892  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3893    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3894    // target-specific builtins, perhaps?
3895    if (!FD->getAttr<FormatAttr>())
3896      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3897                                             Name->isStr("vasprintf") ? 0 : 3));
3898  }
3899}
3900
3901TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3902  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3903  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3904
3905  // Scope manipulation handled by caller.
3906  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3907                                           D.getIdentifierLoc(),
3908                                           D.getIdentifier(),
3909                                           T);
3910
3911  if (const TagType *TT = T->getAs<TagType>()) {
3912    TagDecl *TD = TT->getDecl();
3913
3914    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3915    // keep track of the TypedefDecl.
3916    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3917      TD->setTypedefForAnonDecl(NewTD);
3918  }
3919
3920  if (D.isInvalidType())
3921    NewTD->setInvalidDecl();
3922  return NewTD;
3923}
3924
3925
3926/// \brief Determine whether a tag with a given kind is acceptable
3927/// as a redeclaration of the given tag declaration.
3928///
3929/// \returns true if the new tag kind is acceptable, false otherwise.
3930bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3931                                        TagDecl::TagKind NewTag,
3932                                        SourceLocation NewTagLoc,
3933                                        const IdentifierInfo &Name) {
3934  // C++ [dcl.type.elab]p3:
3935  //   The class-key or enum keyword present in the
3936  //   elaborated-type-specifier shall agree in kind with the
3937  //   declaration to which the name in theelaborated-type-specifier
3938  //   refers. This rule also applies to the form of
3939  //   elaborated-type-specifier that declares a class-name or
3940  //   friend class since it can be construed as referring to the
3941  //   definition of the class. Thus, in any
3942  //   elaborated-type-specifier, the enum keyword shall be used to
3943  //   refer to an enumeration (7.2), the union class-keyshall be
3944  //   used to refer to a union (clause 9), and either the class or
3945  //   struct class-key shall be used to refer to a class (clause 9)
3946  //   declared using the class or struct class-key.
3947  TagDecl::TagKind OldTag = Previous->getTagKind();
3948  if (OldTag == NewTag)
3949    return true;
3950
3951  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3952      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3953    // Warn about the struct/class tag mismatch.
3954    bool isTemplate = false;
3955    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3956      isTemplate = Record->getDescribedClassTemplate();
3957
3958    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3959      << (NewTag == TagDecl::TK_class)
3960      << isTemplate << &Name
3961      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3962                              OldTag == TagDecl::TK_class? "class" : "struct");
3963    Diag(Previous->getLocation(), diag::note_previous_use);
3964    return true;
3965  }
3966  return false;
3967}
3968
3969/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3970/// former case, Name will be non-null.  In the later case, Name will be null.
3971/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3972/// reference/declaration/definition of a tag.
3973Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3974                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3975                               IdentifierInfo *Name, SourceLocation NameLoc,
3976                               AttributeList *Attr, AccessSpecifier AS,
3977                               MultiTemplateParamsArg TemplateParameterLists,
3978                               bool &OwnedDecl, bool &IsDependent) {
3979  // If this is not a definition, it must have a name.
3980  assert((Name != 0 || TUK == TUK_Definition) &&
3981         "Nameless record must be a definition!");
3982
3983  OwnedDecl = false;
3984  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
3985
3986  if (TUK != TUK_Reference) {
3987    if (TemplateParameterList *TemplateParams
3988          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3989                        (TemplateParameterList**)TemplateParameterLists.get(),
3990                                              TemplateParameterLists.size())) {
3991      if (TUK == TUK_Friend) {
3992        // When declaring a friend template, we do want to match the
3993        // template parameters to the scope specifier, but don't go so far
3994        // as to try to declare a new template.
3995      } else if (TemplateParams->size() > 0) {
3996        // This is a declaration or definition of a class template (which may
3997        // be a member of another template).
3998        OwnedDecl = false;
3999        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4000                                               SS, Name, NameLoc, Attr,
4001                                               TemplateParams,
4002                                               AS);
4003        TemplateParameterLists.release();
4004        return Result.get();
4005      } else {
4006        // FIXME: diagnose the extraneous 'template<>', once we recover
4007        // slightly better in ParseTemplate.cpp from bogus template
4008        // parameters.
4009      }
4010    }
4011  }
4012
4013  DeclContext *SearchDC = CurContext;
4014  DeclContext *DC = CurContext;
4015  NamedDecl *PrevDecl = 0;
4016  bool isStdBadAlloc = false;
4017  bool Invalid = false;
4018
4019  if (Name && SS.isNotEmpty()) {
4020    // We have a nested-name tag ('struct foo::bar').
4021
4022    // Check for invalid 'foo::'.
4023    if (SS.isInvalid()) {
4024      Name = 0;
4025      goto CreateNewDecl;
4026    }
4027
4028    // If this is a friend or a reference to a class in a dependent
4029    // context, don't try to make a decl for it.
4030    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4031      DC = computeDeclContext(SS, false);
4032      if (!DC) {
4033        IsDependent = true;
4034        return DeclPtrTy();
4035      }
4036    }
4037
4038    if (RequireCompleteDeclContext(SS))
4039      return DeclPtrTy::make((Decl *)0);
4040
4041    DC = computeDeclContext(SS, true);
4042    SearchDC = DC;
4043    // Look-up name inside 'foo::'.
4044    PrevDecl
4045      = dyn_cast_or_null<TagDecl>(
4046               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4047
4048    // A tag 'foo::bar' must already exist.
4049    if (PrevDecl == 0) {
4050      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4051      Name = 0;
4052      Invalid = true;
4053      goto CreateNewDecl;
4054    }
4055  } else if (Name) {
4056    // If this is a named struct, check to see if there was a previous forward
4057    // declaration or definition.
4058    // FIXME: We're looking into outer scopes here, even when we
4059    // shouldn't be. Doing so can result in ambiguities that we
4060    // shouldn't be diagnosing.
4061    LookupResult R = LookupName(S, Name, LookupTagName,
4062                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4063    if (R.isAmbiguous()) {
4064      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4065      // FIXME: This is not best way to recover from case like:
4066      //
4067      // struct S s;
4068      //
4069      // causes needless "incomplete type" error later.
4070      Name = 0;
4071      PrevDecl = 0;
4072      Invalid = true;
4073    } else
4074      PrevDecl = R;
4075
4076    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4077      // FIXME: This makes sure that we ignore the contexts associated
4078      // with C structs, unions, and enums when looking for a matching
4079      // tag declaration or definition. See the similar lookup tweak
4080      // in Sema::LookupName; is there a better way to deal with this?
4081      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4082        SearchDC = SearchDC->getParent();
4083    }
4084  }
4085
4086  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4087    // Maybe we will complain about the shadowed template parameter.
4088    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4089    // Just pretend that we didn't see the previous declaration.
4090    PrevDecl = 0;
4091  }
4092
4093  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4094      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4095    // This is a declaration of or a reference to "std::bad_alloc".
4096    isStdBadAlloc = true;
4097
4098    if (!PrevDecl && StdBadAlloc) {
4099      // std::bad_alloc has been implicitly declared (but made invisible to
4100      // name lookup). Fill in this implicit declaration as the previous
4101      // declaration, so that the declarations get chained appropriately.
4102      PrevDecl = StdBadAlloc;
4103    }
4104  }
4105
4106  if (PrevDecl) {
4107    // Check whether the previous declaration is usable.
4108    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4109
4110    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4111      // If this is a use of a previous tag, or if the tag is already declared
4112      // in the same scope (so that the definition/declaration completes or
4113      // rementions the tag), reuse the decl.
4114      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4115          isDeclInScope(PrevDecl, SearchDC, S)) {
4116        // Make sure that this wasn't declared as an enum and now used as a
4117        // struct or something similar.
4118        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4119          bool SafeToContinue
4120            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4121               Kind != TagDecl::TK_enum);
4122          if (SafeToContinue)
4123            Diag(KWLoc, diag::err_use_with_wrong_tag)
4124              << Name
4125              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4126                                                  PrevTagDecl->getKindName());
4127          else
4128            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4129          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4130
4131          if (SafeToContinue)
4132            Kind = PrevTagDecl->getTagKind();
4133          else {
4134            // Recover by making this an anonymous redefinition.
4135            Name = 0;
4136            PrevDecl = 0;
4137            Invalid = true;
4138          }
4139        }
4140
4141        if (!Invalid) {
4142          // If this is a use, just return the declaration we found.
4143
4144          // FIXME: In the future, return a variant or some other clue
4145          // for the consumer of this Decl to know it doesn't own it.
4146          // For our current ASTs this shouldn't be a problem, but will
4147          // need to be changed with DeclGroups.
4148          if (TUK == TUK_Reference)
4149            return DeclPtrTy::make(PrevDecl);
4150
4151          // If this is a friend, make sure we create the new
4152          // declaration in the appropriate semantic context.
4153          if (TUK == TUK_Friend)
4154            SearchDC = PrevDecl->getDeclContext();
4155
4156          // Diagnose attempts to redefine a tag.
4157          if (TUK == TUK_Definition) {
4158            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4159              Diag(NameLoc, diag::err_redefinition) << Name;
4160              Diag(Def->getLocation(), diag::note_previous_definition);
4161              // If this is a redefinition, recover by making this
4162              // struct be anonymous, which will make any later
4163              // references get the previous definition.
4164              Name = 0;
4165              PrevDecl = 0;
4166              Invalid = true;
4167            } else {
4168              // If the type is currently being defined, complain
4169              // about a nested redefinition.
4170              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4171              if (Tag->isBeingDefined()) {
4172                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4173                Diag(PrevTagDecl->getLocation(),
4174                     diag::note_previous_definition);
4175                Name = 0;
4176                PrevDecl = 0;
4177                Invalid = true;
4178              }
4179            }
4180
4181            // Okay, this is definition of a previously declared or referenced
4182            // tag PrevDecl. We're going to create a new Decl for it.
4183          }
4184        }
4185        // If we get here we have (another) forward declaration or we
4186        // have a definition.  Just create a new decl.
4187
4188      } else {
4189        // If we get here, this is a definition of a new tag type in a nested
4190        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4191        // new decl/type.  We set PrevDecl to NULL so that the entities
4192        // have distinct types.
4193        PrevDecl = 0;
4194      }
4195      // If we get here, we're going to create a new Decl. If PrevDecl
4196      // is non-NULL, it's a definition of the tag declared by
4197      // PrevDecl. If it's NULL, we have a new definition.
4198    } else {
4199      // PrevDecl is a namespace, template, or anything else
4200      // that lives in the IDNS_Tag identifier namespace.
4201      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4202        // The tag name clashes with a namespace name, issue an error and
4203        // recover by making this tag be anonymous.
4204        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4205        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4206        Name = 0;
4207        PrevDecl = 0;
4208        Invalid = true;
4209      } else {
4210        // The existing declaration isn't relevant to us; we're in a
4211        // new scope, so clear out the previous declaration.
4212        PrevDecl = 0;
4213      }
4214    }
4215  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4216             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4217    // C++ [basic.scope.pdecl]p5:
4218    //   -- for an elaborated-type-specifier of the form
4219    //
4220    //          class-key identifier
4221    //
4222    //      if the elaborated-type-specifier is used in the
4223    //      decl-specifier-seq or parameter-declaration-clause of a
4224    //      function defined in namespace scope, the identifier is
4225    //      declared as a class-name in the namespace that contains
4226    //      the declaration; otherwise, except as a friend
4227    //      declaration, the identifier is declared in the smallest
4228    //      non-class, non-function-prototype scope that contains the
4229    //      declaration.
4230    //
4231    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4232    // C structs and unions.
4233    //
4234    // GNU C also supports this behavior as part of its incomplete
4235    // enum types extension, while GNU C++ does not.
4236    //
4237    // Find the context where we'll be declaring the tag.
4238    // FIXME: We would like to maintain the current DeclContext as the
4239    // lexical context,
4240    while (SearchDC->isRecord())
4241      SearchDC = SearchDC->getParent();
4242
4243    // Find the scope where we'll be declaring the tag.
4244    while (S->isClassScope() ||
4245           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4246           ((S->getFlags() & Scope::DeclScope) == 0) ||
4247           (S->getEntity() &&
4248            ((DeclContext *)S->getEntity())->isTransparentContext()))
4249      S = S->getParent();
4250
4251  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4252    // C++ [namespace.memdef]p3:
4253    //   If a friend declaration in a non-local class first declares a
4254    //   class or function, the friend class or function is a member of
4255    //   the innermost enclosing namespace.
4256    while (!SearchDC->isFileContext())
4257      SearchDC = SearchDC->getParent();
4258
4259    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4260    while (S->getEntity() != SearchDC)
4261      S = S->getParent();
4262  }
4263
4264CreateNewDecl:
4265
4266  // If there is an identifier, use the location of the identifier as the
4267  // location of the decl, otherwise use the location of the struct/union
4268  // keyword.
4269  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4270
4271  // Otherwise, create a new declaration. If there is a previous
4272  // declaration of the same entity, the two will be linked via
4273  // PrevDecl.
4274  TagDecl *New;
4275
4276  if (Kind == TagDecl::TK_enum) {
4277    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4278    // enum X { A, B, C } D;    D should chain to X.
4279    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4280                           cast_or_null<EnumDecl>(PrevDecl));
4281    // If this is an undefined enum, warn.
4282    if (TUK != TUK_Definition && !Invalid)  {
4283      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4284                                              : diag::ext_forward_ref_enum;
4285      Diag(Loc, DK);
4286    }
4287  } else {
4288    // struct/union/class
4289
4290    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4291    // struct X { int A; } D;    D should chain to X.
4292    if (getLangOptions().CPlusPlus) {
4293      // FIXME: Look for a way to use RecordDecl for simple structs.
4294      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4295                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4296
4297      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4298        StdBadAlloc = cast<CXXRecordDecl>(New);
4299    } else
4300      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4301                               cast_or_null<RecordDecl>(PrevDecl));
4302  }
4303
4304  if (Kind != TagDecl::TK_enum) {
4305    // Handle #pragma pack: if the #pragma pack stack has non-default
4306    // alignment, make up a packed attribute for this decl. These
4307    // attributes are checked when the ASTContext lays out the
4308    // structure.
4309    //
4310    // It is important for implementing the correct semantics that this
4311    // happen here (in act on tag decl). The #pragma pack stack is
4312    // maintained as a result of parser callbacks which can occur at
4313    // many points during the parsing of a struct declaration (because
4314    // the #pragma tokens are effectively skipped over during the
4315    // parsing of the struct).
4316    if (unsigned Alignment = getPragmaPackAlignment())
4317      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4318  }
4319
4320  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4321    // C++ [dcl.typedef]p3:
4322    //   [...] Similarly, in a given scope, a class or enumeration
4323    //   shall not be declared with the same name as a typedef-name
4324    //   that is declared in that scope and refers to a type other
4325    //   than the class or enumeration itself.
4326    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4327    TypedefDecl *PrevTypedef = 0;
4328    if (Lookup.getKind() == LookupResult::Found)
4329      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4330
4331    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4332        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4333          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4334      Diag(Loc, diag::err_tag_definition_of_typedef)
4335        << Context.getTypeDeclType(New)
4336        << PrevTypedef->getUnderlyingType();
4337      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4338      Invalid = true;
4339    }
4340  }
4341
4342  if (Invalid)
4343    New->setInvalidDecl();
4344
4345  if (Attr)
4346    ProcessDeclAttributeList(S, New, Attr);
4347
4348  // If we're declaring or defining a tag in function prototype scope
4349  // in C, note that this type can only be used within the function.
4350  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4351    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4352
4353  // Set the lexical context. If the tag has a C++ scope specifier, the
4354  // lexical context will be different from the semantic context.
4355  New->setLexicalDeclContext(CurContext);
4356
4357  // Mark this as a friend decl if applicable.
4358  if (TUK == TUK_Friend)
4359    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4360
4361  // Set the access specifier.
4362  if (!Invalid && TUK != TUK_Friend)
4363    SetMemberAccessSpecifier(New, PrevDecl, AS);
4364
4365  if (TUK == TUK_Definition)
4366    New->startDefinition();
4367
4368  // If this has an identifier, add it to the scope stack.
4369  if (TUK == TUK_Friend) {
4370    // We might be replacing an existing declaration in the lookup tables;
4371    // if so, borrow its access specifier.
4372    if (PrevDecl)
4373      New->setAccess(PrevDecl->getAccess());
4374
4375    // Friend tag decls are visible in fairly strange ways.
4376    if (!CurContext->isDependentContext()) {
4377      DeclContext *DC = New->getDeclContext()->getLookupContext();
4378      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4379      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4380        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4381    }
4382  } else if (Name) {
4383    S = getNonFieldDeclScope(S);
4384    PushOnScopeChains(New, S);
4385  } else {
4386    CurContext->addDecl(New);
4387  }
4388
4389  // If this is the C FILE type, notify the AST context.
4390  if (IdentifierInfo *II = New->getIdentifier())
4391    if (!New->isInvalidDecl() &&
4392        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4393        II->isStr("FILE"))
4394      Context.setFILEDecl(New);
4395
4396  OwnedDecl = true;
4397  return DeclPtrTy::make(New);
4398}
4399
4400void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4401  AdjustDeclIfTemplate(TagD);
4402  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4403
4404  // Enter the tag context.
4405  PushDeclContext(S, Tag);
4406
4407  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4408    FieldCollector->StartClass();
4409
4410    if (Record->getIdentifier()) {
4411      // C++ [class]p2:
4412      //   [...] The class-name is also inserted into the scope of the
4413      //   class itself; this is known as the injected-class-name. For
4414      //   purposes of access checking, the injected-class-name is treated
4415      //   as if it were a public member name.
4416      CXXRecordDecl *InjectedClassName
4417        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4418                                CurContext, Record->getLocation(),
4419                                Record->getIdentifier(),
4420                                Record->getTagKeywordLoc(),
4421                                Record);
4422      InjectedClassName->setImplicit();
4423      InjectedClassName->setAccess(AS_public);
4424      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4425        InjectedClassName->setDescribedClassTemplate(Template);
4426      PushOnScopeChains(InjectedClassName, S);
4427      assert(InjectedClassName->isInjectedClassName() &&
4428             "Broken injected-class-name");
4429    }
4430  }
4431}
4432
4433void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4434                                    SourceLocation RBraceLoc) {
4435  AdjustDeclIfTemplate(TagD);
4436  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4437  Tag->setRBraceLoc(RBraceLoc);
4438
4439  if (isa<CXXRecordDecl>(Tag))
4440    FieldCollector->FinishClass();
4441
4442  // Exit this scope of this tag's definition.
4443  PopDeclContext();
4444
4445  // Notify the consumer that we've defined a tag.
4446  Consumer.HandleTagDeclDefinition(Tag);
4447}
4448
4449// Note that FieldName may be null for anonymous bitfields.
4450bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4451                          QualType FieldTy, const Expr *BitWidth,
4452                          bool *ZeroWidth) {
4453  // Default to true; that shouldn't confuse checks for emptiness
4454  if (ZeroWidth)
4455    *ZeroWidth = true;
4456
4457  // C99 6.7.2.1p4 - verify the field type.
4458  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4459  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4460    // Handle incomplete types with specific error.
4461    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4462      return true;
4463    if (FieldName)
4464      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4465        << FieldName << FieldTy << BitWidth->getSourceRange();
4466    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4467      << FieldTy << BitWidth->getSourceRange();
4468  }
4469
4470  // If the bit-width is type- or value-dependent, don't try to check
4471  // it now.
4472  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4473    return false;
4474
4475  llvm::APSInt Value;
4476  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4477    return true;
4478
4479  if (Value != 0 && ZeroWidth)
4480    *ZeroWidth = false;
4481
4482  // Zero-width bitfield is ok for anonymous field.
4483  if (Value == 0 && FieldName)
4484    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4485
4486  if (Value.isSigned() && Value.isNegative()) {
4487    if (FieldName)
4488      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4489               << FieldName << Value.toString(10);
4490    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4491      << Value.toString(10);
4492  }
4493
4494  if (!FieldTy->isDependentType()) {
4495    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4496    if (Value.getZExtValue() > TypeSize) {
4497      if (FieldName)
4498        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4499          << FieldName << (unsigned)TypeSize;
4500      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4501        << (unsigned)TypeSize;
4502    }
4503  }
4504
4505  return false;
4506}
4507
4508/// ActOnField - Each field of a struct/union/class is passed into this in order
4509/// to create a FieldDecl object for it.
4510Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4511                                 SourceLocation DeclStart,
4512                                 Declarator &D, ExprTy *BitfieldWidth) {
4513  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4514                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4515                               AS_public);
4516  return DeclPtrTy::make(Res);
4517}
4518
4519/// HandleField - Analyze a field of a C struct or a C++ data member.
4520///
4521FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4522                             SourceLocation DeclStart,
4523                             Declarator &D, Expr *BitWidth,
4524                             AccessSpecifier AS) {
4525  IdentifierInfo *II = D.getIdentifier();
4526  SourceLocation Loc = DeclStart;
4527  if (II) Loc = D.getIdentifierLoc();
4528
4529  DeclaratorInfo *DInfo = 0;
4530  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4531  if (getLangOptions().CPlusPlus)
4532    CheckExtraCXXDefaultArguments(D);
4533
4534  DiagnoseFunctionSpecifiers(D);
4535
4536  if (D.getDeclSpec().isThreadSpecified())
4537    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4538
4539  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4540
4541  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4542    // Maybe we will complain about the shadowed template parameter.
4543    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4544    // Just pretend that we didn't see the previous declaration.
4545    PrevDecl = 0;
4546  }
4547
4548  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4549    PrevDecl = 0;
4550
4551  bool Mutable
4552    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4553  SourceLocation TSSL = D.getSourceRange().getBegin();
4554  FieldDecl *NewFD
4555    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4556                     AS, PrevDecl, &D);
4557  if (NewFD->isInvalidDecl() && PrevDecl) {
4558    // Don't introduce NewFD into scope; there's already something
4559    // with the same name in the same scope.
4560  } else if (II) {
4561    PushOnScopeChains(NewFD, S);
4562  } else
4563    Record->addDecl(NewFD);
4564
4565  return NewFD;
4566}
4567
4568/// \brief Build a new FieldDecl and check its well-formedness.
4569///
4570/// This routine builds a new FieldDecl given the fields name, type,
4571/// record, etc. \p PrevDecl should refer to any previous declaration
4572/// with the same name and in the same scope as the field to be
4573/// created.
4574///
4575/// \returns a new FieldDecl.
4576///
4577/// \todo The Declarator argument is a hack. It will be removed once
4578FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4579                                DeclaratorInfo *DInfo,
4580                                RecordDecl *Record, SourceLocation Loc,
4581                                bool Mutable, Expr *BitWidth,
4582                                SourceLocation TSSL,
4583                                AccessSpecifier AS, NamedDecl *PrevDecl,
4584                                Declarator *D) {
4585  IdentifierInfo *II = Name.getAsIdentifierInfo();
4586  bool InvalidDecl = false;
4587  if (D) InvalidDecl = D->isInvalidType();
4588
4589  // If we receive a broken type, recover by assuming 'int' and
4590  // marking this declaration as invalid.
4591  if (T.isNull()) {
4592    InvalidDecl = true;
4593    T = Context.IntTy;
4594  }
4595
4596  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4597  // than a variably modified type.
4598  if (T->isVariablyModifiedType()) {
4599    bool SizeIsNegative;
4600    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4601                                                           SizeIsNegative);
4602    if (!FixedTy.isNull()) {
4603      Diag(Loc, diag::warn_illegal_constant_array_size);
4604      T = FixedTy;
4605    } else {
4606      if (SizeIsNegative)
4607        Diag(Loc, diag::err_typecheck_negative_array_size);
4608      else
4609        Diag(Loc, diag::err_typecheck_field_variable_size);
4610      InvalidDecl = true;
4611    }
4612  }
4613
4614  // Fields can not have abstract class types
4615  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4616                             AbstractFieldType))
4617    InvalidDecl = true;
4618
4619  bool ZeroWidth = false;
4620  // If this is declared as a bit-field, check the bit-field.
4621  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4622    InvalidDecl = true;
4623    DeleteExpr(BitWidth);
4624    BitWidth = 0;
4625    ZeroWidth = false;
4626  }
4627
4628  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4629                                       BitWidth, Mutable);
4630  if (InvalidDecl)
4631    NewFD->setInvalidDecl();
4632
4633  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4634    Diag(Loc, diag::err_duplicate_member) << II;
4635    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4636    NewFD->setInvalidDecl();
4637  }
4638
4639  if (getLangOptions().CPlusPlus) {
4640    QualType EltTy = Context.getBaseElementType(T);
4641
4642    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4643
4644    if (!T->isPODType())
4645      CXXRecord->setPOD(false);
4646    if (!ZeroWidth)
4647      CXXRecord->setEmpty(false);
4648
4649    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4650      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4651
4652      if (!RDecl->hasTrivialConstructor())
4653        CXXRecord->setHasTrivialConstructor(false);
4654      if (!RDecl->hasTrivialCopyConstructor())
4655        CXXRecord->setHasTrivialCopyConstructor(false);
4656      if (!RDecl->hasTrivialCopyAssignment())
4657        CXXRecord->setHasTrivialCopyAssignment(false);
4658      if (!RDecl->hasTrivialDestructor())
4659        CXXRecord->setHasTrivialDestructor(false);
4660
4661      // C++ 9.5p1: An object of a class with a non-trivial
4662      // constructor, a non-trivial copy constructor, a non-trivial
4663      // destructor, or a non-trivial copy assignment operator
4664      // cannot be a member of a union, nor can an array of such
4665      // objects.
4666      // TODO: C++0x alters this restriction significantly.
4667      if (Record->isUnion()) {
4668        // We check for copy constructors before constructors
4669        // because otherwise we'll never get complaints about
4670        // copy constructors.
4671
4672        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4673
4674        CXXSpecialMember member;
4675        if (!RDecl->hasTrivialCopyConstructor())
4676          member = CXXCopyConstructor;
4677        else if (!RDecl->hasTrivialConstructor())
4678          member = CXXDefaultConstructor;
4679        else if (!RDecl->hasTrivialCopyAssignment())
4680          member = CXXCopyAssignment;
4681        else if (!RDecl->hasTrivialDestructor())
4682          member = CXXDestructor;
4683        else
4684          member = invalid;
4685
4686        if (member != invalid) {
4687          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4688          DiagnoseNontrivial(RT, member);
4689          NewFD->setInvalidDecl();
4690        }
4691      }
4692    }
4693  }
4694
4695  // FIXME: We need to pass in the attributes given an AST
4696  // representation, not a parser representation.
4697  if (D)
4698    // FIXME: What to pass instead of TUScope?
4699    ProcessDeclAttributes(TUScope, NewFD, *D);
4700
4701  if (T.isObjCGCWeak())
4702    Diag(Loc, diag::warn_attribute_weak_on_field);
4703
4704  NewFD->setAccess(AS);
4705
4706  // C++ [dcl.init.aggr]p1:
4707  //   An aggregate is an array or a class (clause 9) with [...] no
4708  //   private or protected non-static data members (clause 11).
4709  // A POD must be an aggregate.
4710  if (getLangOptions().CPlusPlus &&
4711      (AS == AS_private || AS == AS_protected)) {
4712    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4713    CXXRecord->setAggregate(false);
4714    CXXRecord->setPOD(false);
4715  }
4716
4717  return NewFD;
4718}
4719
4720/// DiagnoseNontrivial - Given that a class has a non-trivial
4721/// special member, figure out why.
4722void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4723  QualType QT(T, 0U);
4724  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4725
4726  // Check whether the member was user-declared.
4727  switch (member) {
4728  case CXXDefaultConstructor:
4729    if (RD->hasUserDeclaredConstructor()) {
4730      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4731      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4732        if (!ci->isImplicitlyDefined(Context)) {
4733          SourceLocation CtorLoc = ci->getLocation();
4734          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4735          return;
4736        }
4737
4738      assert(0 && "found no user-declared constructors");
4739      return;
4740    }
4741    break;
4742
4743  case CXXCopyConstructor:
4744    if (RD->hasUserDeclaredCopyConstructor()) {
4745      SourceLocation CtorLoc =
4746        RD->getCopyConstructor(Context, 0)->getLocation();
4747      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4748      return;
4749    }
4750    break;
4751
4752  case CXXCopyAssignment:
4753    if (RD->hasUserDeclaredCopyAssignment()) {
4754      // FIXME: this should use the location of the copy
4755      // assignment, not the type.
4756      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4757      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4758      return;
4759    }
4760    break;
4761
4762  case CXXDestructor:
4763    if (RD->hasUserDeclaredDestructor()) {
4764      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4765      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4766      return;
4767    }
4768    break;
4769  }
4770
4771  typedef CXXRecordDecl::base_class_iterator base_iter;
4772
4773  // Virtual bases and members inhibit trivial copying/construction,
4774  // but not trivial destruction.
4775  if (member != CXXDestructor) {
4776    // Check for virtual bases.  vbases includes indirect virtual bases,
4777    // so we just iterate through the direct bases.
4778    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4779      if (bi->isVirtual()) {
4780        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4781        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4782        return;
4783      }
4784
4785    // Check for virtual methods.
4786    typedef CXXRecordDecl::method_iterator meth_iter;
4787    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4788         ++mi) {
4789      if (mi->isVirtual()) {
4790        SourceLocation MLoc = mi->getSourceRange().getBegin();
4791        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4792        return;
4793      }
4794    }
4795  }
4796
4797  bool (CXXRecordDecl::*hasTrivial)() const;
4798  switch (member) {
4799  case CXXDefaultConstructor:
4800    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4801  case CXXCopyConstructor:
4802    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4803  case CXXCopyAssignment:
4804    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4805  case CXXDestructor:
4806    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4807  default:
4808    assert(0 && "unexpected special member"); return;
4809  }
4810
4811  // Check for nontrivial bases (and recurse).
4812  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4813    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4814    assert(BaseRT);
4815    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4816    if (!(BaseRecTy->*hasTrivial)()) {
4817      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4818      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4819      DiagnoseNontrivial(BaseRT, member);
4820      return;
4821    }
4822  }
4823
4824  // Check for nontrivial members (and recurse).
4825  typedef RecordDecl::field_iterator field_iter;
4826  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4827       ++fi) {
4828    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4829    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4830      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4831
4832      if (!(EltRD->*hasTrivial)()) {
4833        SourceLocation FLoc = (*fi)->getLocation();
4834        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4835        DiagnoseNontrivial(EltRT, member);
4836        return;
4837      }
4838    }
4839  }
4840
4841  assert(0 && "found no explanation for non-trivial member");
4842}
4843
4844/// TranslateIvarVisibility - Translate visibility from a token ID to an
4845///  AST enum value.
4846static ObjCIvarDecl::AccessControl
4847TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4848  switch (ivarVisibility) {
4849  default: assert(0 && "Unknown visitibility kind");
4850  case tok::objc_private: return ObjCIvarDecl::Private;
4851  case tok::objc_public: return ObjCIvarDecl::Public;
4852  case tok::objc_protected: return ObjCIvarDecl::Protected;
4853  case tok::objc_package: return ObjCIvarDecl::Package;
4854  }
4855}
4856
4857/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4858/// in order to create an IvarDecl object for it.
4859Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4860                                SourceLocation DeclStart,
4861                                DeclPtrTy IntfDecl,
4862                                Declarator &D, ExprTy *BitfieldWidth,
4863                                tok::ObjCKeywordKind Visibility) {
4864
4865  IdentifierInfo *II = D.getIdentifier();
4866  Expr *BitWidth = (Expr*)BitfieldWidth;
4867  SourceLocation Loc = DeclStart;
4868  if (II) Loc = D.getIdentifierLoc();
4869
4870  // FIXME: Unnamed fields can be handled in various different ways, for
4871  // example, unnamed unions inject all members into the struct namespace!
4872
4873  DeclaratorInfo *DInfo = 0;
4874  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4875
4876  if (BitWidth) {
4877    // 6.7.2.1p3, 6.7.2.1p4
4878    if (VerifyBitField(Loc, II, T, BitWidth)) {
4879      D.setInvalidType();
4880      DeleteExpr(BitWidth);
4881      BitWidth = 0;
4882    }
4883  } else {
4884    // Not a bitfield.
4885
4886    // validate II.
4887
4888  }
4889
4890  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4891  // than a variably modified type.
4892  if (T->isVariablyModifiedType()) {
4893    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4894    D.setInvalidType();
4895  }
4896
4897  // Get the visibility (access control) for this ivar.
4898  ObjCIvarDecl::AccessControl ac =
4899    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4900                                        : ObjCIvarDecl::None;
4901  // Must set ivar's DeclContext to its enclosing interface.
4902  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4903  DeclContext *EnclosingContext;
4904  if (ObjCImplementationDecl *IMPDecl =
4905      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4906    // Case of ivar declared in an implementation. Context is that of its class.
4907    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4908    assert(IDecl && "No class- ActOnIvar");
4909    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4910  } else
4911    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4912  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4913
4914  // Construct the decl.
4915  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4916                                             EnclosingContext, Loc, II, T,
4917                                             DInfo, ac, (Expr *)BitfieldWidth);
4918
4919  if (II) {
4920    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4921    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4922        && !isa<TagDecl>(PrevDecl)) {
4923      Diag(Loc, diag::err_duplicate_member) << II;
4924      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4925      NewID->setInvalidDecl();
4926    }
4927  }
4928
4929  // Process attributes attached to the ivar.
4930  ProcessDeclAttributes(S, NewID, D);
4931
4932  if (D.isInvalidType())
4933    NewID->setInvalidDecl();
4934
4935  if (II) {
4936    // FIXME: When interfaces are DeclContexts, we'll need to add
4937    // these to the interface.
4938    S->AddDecl(DeclPtrTy::make(NewID));
4939    IdResolver.AddDecl(NewID);
4940  }
4941
4942  return DeclPtrTy::make(NewID);
4943}
4944
4945void Sema::ActOnFields(Scope* S,
4946                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4947                       DeclPtrTy *Fields, unsigned NumFields,
4948                       SourceLocation LBrac, SourceLocation RBrac,
4949                       AttributeList *Attr) {
4950  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4951  assert(EnclosingDecl && "missing record or interface decl");
4952
4953  // If the decl this is being inserted into is invalid, then it may be a
4954  // redeclaration or some other bogus case.  Don't try to add fields to it.
4955  if (EnclosingDecl->isInvalidDecl()) {
4956    // FIXME: Deallocate fields?
4957    return;
4958  }
4959
4960
4961  // Verify that all the fields are okay.
4962  unsigned NumNamedMembers = 0;
4963  llvm::SmallVector<FieldDecl*, 32> RecFields;
4964
4965  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4966  for (unsigned i = 0; i != NumFields; ++i) {
4967    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4968
4969    // Get the type for the field.
4970    Type *FDTy = FD->getType().getTypePtr();
4971
4972    if (!FD->isAnonymousStructOrUnion()) {
4973      // Remember all fields written by the user.
4974      RecFields.push_back(FD);
4975    }
4976
4977    // If the field is already invalid for some reason, don't emit more
4978    // diagnostics about it.
4979    if (FD->isInvalidDecl())
4980      continue;
4981
4982    // C99 6.7.2.1p2:
4983    //   A structure or union shall not contain a member with
4984    //   incomplete or function type (hence, a structure shall not
4985    //   contain an instance of itself, but may contain a pointer to
4986    //   an instance of itself), except that the last member of a
4987    //   structure with more than one named member may have incomplete
4988    //   array type; such a structure (and any union containing,
4989    //   possibly recursively, a member that is such a structure)
4990    //   shall not be a member of a structure or an element of an
4991    //   array.
4992    if (FDTy->isFunctionType()) {
4993      // Field declared as a function.
4994      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4995        << FD->getDeclName();
4996      FD->setInvalidDecl();
4997      EnclosingDecl->setInvalidDecl();
4998      continue;
4999    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5000               Record && Record->isStruct()) {
5001      // Flexible array member.
5002      if (NumNamedMembers < 1) {
5003        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5004          << FD->getDeclName();
5005        FD->setInvalidDecl();
5006        EnclosingDecl->setInvalidDecl();
5007        continue;
5008      }
5009      // Okay, we have a legal flexible array member at the end of the struct.
5010      if (Record)
5011        Record->setHasFlexibleArrayMember(true);
5012    } else if (!FDTy->isDependentType() &&
5013               RequireCompleteType(FD->getLocation(), FD->getType(),
5014                                   diag::err_field_incomplete)) {
5015      // Incomplete type
5016      FD->setInvalidDecl();
5017      EnclosingDecl->setInvalidDecl();
5018      continue;
5019    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5020      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5021        // If this is a member of a union, then entire union becomes "flexible".
5022        if (Record && Record->isUnion()) {
5023          Record->setHasFlexibleArrayMember(true);
5024        } else {
5025          // If this is a struct/class and this is not the last element, reject
5026          // it.  Note that GCC supports variable sized arrays in the middle of
5027          // structures.
5028          if (i != NumFields-1)
5029            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5030              << FD->getDeclName() << FD->getType();
5031          else {
5032            // We support flexible arrays at the end of structs in
5033            // other structs as an extension.
5034            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5035              << FD->getDeclName();
5036            if (Record)
5037              Record->setHasFlexibleArrayMember(true);
5038          }
5039        }
5040      }
5041      if (Record && FDTTy->getDecl()->hasObjectMember())
5042        Record->setHasObjectMember(true);
5043    } else if (FDTy->isObjCInterfaceType()) {
5044      /// A field cannot be an Objective-c object
5045      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5046      FD->setInvalidDecl();
5047      EnclosingDecl->setInvalidDecl();
5048      continue;
5049    } else if (getLangOptions().ObjC1 &&
5050               getLangOptions().getGCMode() != LangOptions::NonGC &&
5051               Record &&
5052               (FD->getType()->isObjCObjectPointerType() ||
5053                FD->getType().isObjCGCStrong()))
5054      Record->setHasObjectMember(true);
5055    // Keep track of the number of named members.
5056    if (FD->getIdentifier())
5057      ++NumNamedMembers;
5058  }
5059
5060  // Okay, we successfully defined 'Record'.
5061  if (Record) {
5062    Record->completeDefinition(Context);
5063  } else {
5064    ObjCIvarDecl **ClsFields =
5065      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5066    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5067      ID->setIVarList(ClsFields, RecFields.size(), Context);
5068      ID->setLocEnd(RBrac);
5069      // Add ivar's to class's DeclContext.
5070      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5071        ClsFields[i]->setLexicalDeclContext(ID);
5072        ID->addDecl(ClsFields[i]);
5073      }
5074      // Must enforce the rule that ivars in the base classes may not be
5075      // duplicates.
5076      if (ID->getSuperClass()) {
5077        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5078             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5079          ObjCIvarDecl* Ivar = (*IVI);
5080
5081          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5082            ObjCIvarDecl* prevIvar =
5083              ID->getSuperClass()->lookupInstanceVariable(II);
5084            if (prevIvar) {
5085              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5086              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5087            }
5088          }
5089        }
5090      }
5091    } else if (ObjCImplementationDecl *IMPDecl =
5092                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5093      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5094      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5095        // Ivar declared in @implementation never belongs to the implementation.
5096        // Only it is in implementation's lexical context.
5097        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5098      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5099    }
5100  }
5101
5102  if (Attr)
5103    ProcessDeclAttributeList(S, Record, Attr);
5104}
5105
5106EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5107                                          EnumConstantDecl *LastEnumConst,
5108                                          SourceLocation IdLoc,
5109                                          IdentifierInfo *Id,
5110                                          ExprArg val) {
5111  Expr *Val = (Expr *)val.get();
5112
5113  llvm::APSInt EnumVal(32);
5114  QualType EltTy;
5115  if (Val && !Val->isTypeDependent()) {
5116    // Make sure to promote the operand type to int.
5117    UsualUnaryConversions(Val);
5118    if (Val != val.get()) {
5119      val.release();
5120      val = Val;
5121    }
5122
5123    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5124    SourceLocation ExpLoc;
5125    if (!Val->isValueDependent() &&
5126        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5127      Val = 0;
5128    } else {
5129      EltTy = Val->getType();
5130    }
5131  }
5132
5133  if (!Val) {
5134    if (LastEnumConst) {
5135      // Assign the last value + 1.
5136      EnumVal = LastEnumConst->getInitVal();
5137      ++EnumVal;
5138
5139      // Check for overflow on increment.
5140      if (EnumVal < LastEnumConst->getInitVal())
5141        Diag(IdLoc, diag::warn_enum_value_overflow);
5142
5143      EltTy = LastEnumConst->getType();
5144    } else {
5145      // First value, set to zero.
5146      EltTy = Context.IntTy;
5147      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5148    }
5149  }
5150
5151  val.release();
5152  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5153                                  Val, EnumVal);
5154}
5155
5156
5157Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5158                                        DeclPtrTy lastEnumConst,
5159                                        SourceLocation IdLoc,
5160                                        IdentifierInfo *Id,
5161                                        SourceLocation EqualLoc, ExprTy *val) {
5162  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5163  EnumConstantDecl *LastEnumConst =
5164    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5165  Expr *Val = static_cast<Expr*>(val);
5166
5167  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5168  // we find one that is.
5169  S = getNonFieldDeclScope(S);
5170
5171  // Verify that there isn't already something declared with this name in this
5172  // scope.
5173  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5174  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5175    // Maybe we will complain about the shadowed template parameter.
5176    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5177    // Just pretend that we didn't see the previous declaration.
5178    PrevDecl = 0;
5179  }
5180
5181  if (PrevDecl) {
5182    // When in C++, we may get a TagDecl with the same name; in this case the
5183    // enum constant will 'hide' the tag.
5184    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5185           "Received TagDecl when not in C++!");
5186    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5187      if (isa<EnumConstantDecl>(PrevDecl))
5188        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5189      else
5190        Diag(IdLoc, diag::err_redefinition) << Id;
5191      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5192      if (Val) Val->Destroy(Context);
5193      return DeclPtrTy();
5194    }
5195  }
5196
5197  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5198                                            IdLoc, Id, Owned(Val));
5199
5200  // Register this decl in the current scope stack.
5201  if (New)
5202    PushOnScopeChains(New, S);
5203
5204  return DeclPtrTy::make(New);
5205}
5206
5207void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5208                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5209                         DeclPtrTy *Elements, unsigned NumElements,
5210                         Scope *S, AttributeList *Attr) {
5211  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5212  QualType EnumType = Context.getTypeDeclType(Enum);
5213
5214  if (Attr)
5215    ProcessDeclAttributeList(S, Enum, Attr);
5216
5217  // TODO: If the result value doesn't fit in an int, it must be a long or long
5218  // long value.  ISO C does not support this, but GCC does as an extension,
5219  // emit a warning.
5220  unsigned IntWidth = Context.Target.getIntWidth();
5221  unsigned CharWidth = Context.Target.getCharWidth();
5222  unsigned ShortWidth = Context.Target.getShortWidth();
5223
5224  // Verify that all the values are okay, compute the size of the values, and
5225  // reverse the list.
5226  unsigned NumNegativeBits = 0;
5227  unsigned NumPositiveBits = 0;
5228
5229  // Keep track of whether all elements have type int.
5230  bool AllElementsInt = true;
5231
5232  for (unsigned i = 0; i != NumElements; ++i) {
5233    EnumConstantDecl *ECD =
5234      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5235    if (!ECD) continue;  // Already issued a diagnostic.
5236
5237    // If the enum value doesn't fit in an int, emit an extension warning.
5238    const llvm::APSInt &InitVal = ECD->getInitVal();
5239    assert(InitVal.getBitWidth() >= IntWidth &&
5240           "Should have promoted value to int");
5241    if (InitVal.getBitWidth() > IntWidth) {
5242      llvm::APSInt V(InitVal);
5243      V.trunc(IntWidth);
5244      V.extend(InitVal.getBitWidth());
5245      if (V != InitVal)
5246        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5247          << InitVal.toString(10);
5248    }
5249
5250    // Keep track of the size of positive and negative values.
5251    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5252      NumPositiveBits = std::max(NumPositiveBits,
5253                                 (unsigned)InitVal.getActiveBits());
5254    else
5255      NumNegativeBits = std::max(NumNegativeBits,
5256                                 (unsigned)InitVal.getMinSignedBits());
5257
5258    // Keep track of whether every enum element has type int (very commmon).
5259    if (AllElementsInt)
5260      AllElementsInt = ECD->getType() == Context.IntTy;
5261  }
5262
5263  // Figure out the type that should be used for this enum.
5264  // FIXME: Support -fshort-enums.
5265  QualType BestType;
5266  unsigned BestWidth;
5267
5268  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5269
5270  if (NumNegativeBits) {
5271    // If there is a negative value, figure out the smallest integer type (of
5272    // int/long/longlong) that fits.
5273    // If it's packed, check also if it fits a char or a short.
5274    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5275        BestType = Context.SignedCharTy;
5276        BestWidth = CharWidth;
5277    } else if (Packed && NumNegativeBits <= ShortWidth &&
5278               NumPositiveBits < ShortWidth) {
5279        BestType = Context.ShortTy;
5280        BestWidth = ShortWidth;
5281    }
5282    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5283      BestType = Context.IntTy;
5284      BestWidth = IntWidth;
5285    } else {
5286      BestWidth = Context.Target.getLongWidth();
5287
5288      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5289        BestType = Context.LongTy;
5290      else {
5291        BestWidth = Context.Target.getLongLongWidth();
5292
5293        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5294          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5295        BestType = Context.LongLongTy;
5296      }
5297    }
5298  } else {
5299    // If there is no negative value, figure out which of uint, ulong, ulonglong
5300    // fits.
5301    // If it's packed, check also if it fits a char or a short.
5302    if (Packed && NumPositiveBits <= CharWidth) {
5303        BestType = Context.UnsignedCharTy;
5304        BestWidth = CharWidth;
5305    } else if (Packed && NumPositiveBits <= ShortWidth) {
5306        BestType = Context.UnsignedShortTy;
5307        BestWidth = ShortWidth;
5308    }
5309    else if (NumPositiveBits <= IntWidth) {
5310      BestType = Context.UnsignedIntTy;
5311      BestWidth = IntWidth;
5312    } else if (NumPositiveBits <=
5313               (BestWidth = Context.Target.getLongWidth())) {
5314      BestType = Context.UnsignedLongTy;
5315    } else {
5316      BestWidth = Context.Target.getLongLongWidth();
5317      assert(NumPositiveBits <= BestWidth &&
5318             "How could an initializer get larger than ULL?");
5319      BestType = Context.UnsignedLongLongTy;
5320    }
5321  }
5322
5323  // Loop over all of the enumerator constants, changing their types to match
5324  // the type of the enum if needed.
5325  for (unsigned i = 0; i != NumElements; ++i) {
5326    EnumConstantDecl *ECD =
5327      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5328    if (!ECD) continue;  // Already issued a diagnostic.
5329
5330    // Standard C says the enumerators have int type, but we allow, as an
5331    // extension, the enumerators to be larger than int size.  If each
5332    // enumerator value fits in an int, type it as an int, otherwise type it the
5333    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5334    // that X has type 'int', not 'unsigned'.
5335    if (ECD->getType() == Context.IntTy) {
5336      // Make sure the init value is signed.
5337      llvm::APSInt IV = ECD->getInitVal();
5338      IV.setIsSigned(true);
5339      ECD->setInitVal(IV);
5340
5341      if (getLangOptions().CPlusPlus)
5342        // C++ [dcl.enum]p4: Following the closing brace of an
5343        // enum-specifier, each enumerator has the type of its
5344        // enumeration.
5345        ECD->setType(EnumType);
5346      continue;  // Already int type.
5347    }
5348
5349    // Determine whether the value fits into an int.
5350    llvm::APSInt InitVal = ECD->getInitVal();
5351    bool FitsInInt;
5352    if (InitVal.isUnsigned() || !InitVal.isNegative())
5353      FitsInInt = InitVal.getActiveBits() < IntWidth;
5354    else
5355      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5356
5357    // If it fits into an integer type, force it.  Otherwise force it to match
5358    // the enum decl type.
5359    QualType NewTy;
5360    unsigned NewWidth;
5361    bool NewSign;
5362    if (FitsInInt) {
5363      NewTy = Context.IntTy;
5364      NewWidth = IntWidth;
5365      NewSign = true;
5366    } else if (ECD->getType() == BestType) {
5367      // Already the right type!
5368      if (getLangOptions().CPlusPlus)
5369        // C++ [dcl.enum]p4: Following the closing brace of an
5370        // enum-specifier, each enumerator has the type of its
5371        // enumeration.
5372        ECD->setType(EnumType);
5373      continue;
5374    } else {
5375      NewTy = BestType;
5376      NewWidth = BestWidth;
5377      NewSign = BestType->isSignedIntegerType();
5378    }
5379
5380    // Adjust the APSInt value.
5381    InitVal.extOrTrunc(NewWidth);
5382    InitVal.setIsSigned(NewSign);
5383    ECD->setInitVal(InitVal);
5384
5385    // Adjust the Expr initializer and type.
5386    if (ECD->getInitExpr())
5387      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5388                                                      CastExpr::CK_Unknown,
5389                                                      ECD->getInitExpr(),
5390                                                      /*isLvalue=*/false));
5391    if (getLangOptions().CPlusPlus)
5392      // C++ [dcl.enum]p4: Following the closing brace of an
5393      // enum-specifier, each enumerator has the type of its
5394      // enumeration.
5395      ECD->setType(EnumType);
5396    else
5397      ECD->setType(NewTy);
5398  }
5399
5400  Enum->completeDefinition(Context, BestType);
5401}
5402
5403Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5404                                            ExprArg expr) {
5405  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5406
5407  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5408                                                   Loc, AsmString);
5409  CurContext->addDecl(New);
5410  return DeclPtrTy::make(New);
5411}
5412
5413void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5414                             SourceLocation PragmaLoc,
5415                             SourceLocation NameLoc) {
5416  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5417
5418  if (PrevDecl) {
5419    PrevDecl->addAttr(::new (Context) WeakAttr());
5420  } else {
5421    (void)WeakUndeclaredIdentifiers.insert(
5422      std::pair<IdentifierInfo*,WeakInfo>
5423        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5424  }
5425}
5426
5427void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5428                                IdentifierInfo* AliasName,
5429                                SourceLocation PragmaLoc,
5430                                SourceLocation NameLoc,
5431                                SourceLocation AliasNameLoc) {
5432  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5433  WeakInfo W = WeakInfo(Name, NameLoc);
5434
5435  if (PrevDecl) {
5436    if (!PrevDecl->hasAttr<AliasAttr>())
5437      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5438        DeclApplyPragmaWeak(TUScope, ND, W);
5439  } else {
5440    (void)WeakUndeclaredIdentifiers.insert(
5441      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5442  }
5443}
5444