SemaDecl.cpp revision dccd04d8611b9d25fd17444f20566773e657a7e6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862  if ((NextToken.is(tok::identifier) ||
863       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866    DiagnoseUseOfDecl(Type, NameLoc);
867    QualType T = Context.getTypeDeclType(Type);
868    if (SS.isNotEmpty())
869      return buildNestedType(*this, SS, T, NameLoc);
870    return ParsedType::make(T);
871  }
872
873  if (FirstDecl->isCXXClassMember())
874    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
875
876  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
877  return BuildDeclarationNameExpr(SS, Result, ADL);
878}
879
880// Determines the context to return to after temporarily entering a
881// context.  This depends in an unnecessarily complicated way on the
882// exact ordering of callbacks from the parser.
883DeclContext *Sema::getContainingDC(DeclContext *DC) {
884
885  // Functions defined inline within classes aren't parsed until we've
886  // finished parsing the top-level class, so the top-level class is
887  // the context we'll need to return to.
888  if (isa<FunctionDecl>(DC)) {
889    DC = DC->getLexicalParent();
890
891    // A function not defined within a class will always return to its
892    // lexical context.
893    if (!isa<CXXRecordDecl>(DC))
894      return DC;
895
896    // A C++ inline method/friend is parsed *after* the topmost class
897    // it was declared in is fully parsed ("complete");  the topmost
898    // class is the context we need to return to.
899    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
900      DC = RD;
901
902    // Return the declaration context of the topmost class the inline method is
903    // declared in.
904    return DC;
905  }
906
907  return DC->getLexicalParent();
908}
909
910void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
911  assert(getContainingDC(DC) == CurContext &&
912      "The next DeclContext should be lexically contained in the current one.");
913  CurContext = DC;
914  S->setEntity(DC);
915}
916
917void Sema::PopDeclContext() {
918  assert(CurContext && "DeclContext imbalance!");
919
920  CurContext = getContainingDC(CurContext);
921  assert(CurContext && "Popped translation unit!");
922}
923
924/// EnterDeclaratorContext - Used when we must lookup names in the context
925/// of a declarator's nested name specifier.
926///
927void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
928  // C++0x [basic.lookup.unqual]p13:
929  //   A name used in the definition of a static data member of class
930  //   X (after the qualified-id of the static member) is looked up as
931  //   if the name was used in a member function of X.
932  // C++0x [basic.lookup.unqual]p14:
933  //   If a variable member of a namespace is defined outside of the
934  //   scope of its namespace then any name used in the definition of
935  //   the variable member (after the declarator-id) is looked up as
936  //   if the definition of the variable member occurred in its
937  //   namespace.
938  // Both of these imply that we should push a scope whose context
939  // is the semantic context of the declaration.  We can't use
940  // PushDeclContext here because that context is not necessarily
941  // lexically contained in the current context.  Fortunately,
942  // the containing scope should have the appropriate information.
943
944  assert(!S->getEntity() && "scope already has entity");
945
946#ifndef NDEBUG
947  Scope *Ancestor = S->getParent();
948  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
949  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
950#endif
951
952  CurContext = DC;
953  S->setEntity(DC);
954}
955
956void Sema::ExitDeclaratorContext(Scope *S) {
957  assert(S->getEntity() == CurContext && "Context imbalance!");
958
959  // Switch back to the lexical context.  The safety of this is
960  // enforced by an assert in EnterDeclaratorContext.
961  Scope *Ancestor = S->getParent();
962  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
963  CurContext = (DeclContext*) Ancestor->getEntity();
964
965  // We don't need to do anything with the scope, which is going to
966  // disappear.
967}
968
969
970void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
971  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
972  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
973    // We assume that the caller has already called
974    // ActOnReenterTemplateScope
975    FD = TFD->getTemplatedDecl();
976  }
977  if (!FD)
978    return;
979
980  // Same implementation as PushDeclContext, but enters the context
981  // from the lexical parent, rather than the top-level class.
982  assert(CurContext == FD->getLexicalParent() &&
983    "The next DeclContext should be lexically contained in the current one.");
984  CurContext = FD;
985  S->setEntity(CurContext);
986
987  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
988    ParmVarDecl *Param = FD->getParamDecl(P);
989    // If the parameter has an identifier, then add it to the scope
990    if (Param->getIdentifier()) {
991      S->AddDecl(Param);
992      IdResolver.AddDecl(Param);
993    }
994  }
995}
996
997
998void Sema::ActOnExitFunctionContext() {
999  // Same implementation as PopDeclContext, but returns to the lexical parent,
1000  // rather than the top-level class.
1001  assert(CurContext && "DeclContext imbalance!");
1002  CurContext = CurContext->getLexicalParent();
1003  assert(CurContext && "Popped translation unit!");
1004}
1005
1006
1007/// \brief Determine whether we allow overloading of the function
1008/// PrevDecl with another declaration.
1009///
1010/// This routine determines whether overloading is possible, not
1011/// whether some new function is actually an overload. It will return
1012/// true in C++ (where we can always provide overloads) or, as an
1013/// extension, in C when the previous function is already an
1014/// overloaded function declaration or has the "overloadable"
1015/// attribute.
1016static bool AllowOverloadingOfFunction(LookupResult &Previous,
1017                                       ASTContext &Context) {
1018  if (Context.getLangOpts().CPlusPlus)
1019    return true;
1020
1021  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1022    return true;
1023
1024  return (Previous.getResultKind() == LookupResult::Found
1025          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1026}
1027
1028/// Add this decl to the scope shadowed decl chains.
1029void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1030  // Move up the scope chain until we find the nearest enclosing
1031  // non-transparent context. The declaration will be introduced into this
1032  // scope.
1033  while (S->getEntity() &&
1034         ((DeclContext *)S->getEntity())->isTransparentContext())
1035    S = S->getParent();
1036
1037  // Add scoped declarations into their context, so that they can be
1038  // found later. Declarations without a context won't be inserted
1039  // into any context.
1040  if (AddToContext)
1041    CurContext->addDecl(D);
1042
1043  // Out-of-line definitions shouldn't be pushed into scope in C++.
1044  // Out-of-line variable and function definitions shouldn't even in C.
1045  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1046      D->isOutOfLine() &&
1047      !D->getDeclContext()->getRedeclContext()->Equals(
1048        D->getLexicalDeclContext()->getRedeclContext()))
1049    return;
1050
1051  // Template instantiations should also not be pushed into scope.
1052  if (isa<FunctionDecl>(D) &&
1053      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1054    return;
1055
1056  // If this replaces anything in the current scope,
1057  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1058                               IEnd = IdResolver.end();
1059  for (; I != IEnd; ++I) {
1060    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1061      S->RemoveDecl(*I);
1062      IdResolver.RemoveDecl(*I);
1063
1064      // Should only need to replace one decl.
1065      break;
1066    }
1067  }
1068
1069  S->AddDecl(D);
1070
1071  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1072    // Implicitly-generated labels may end up getting generated in an order that
1073    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1074    // the label at the appropriate place in the identifier chain.
1075    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1076      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1077      if (IDC == CurContext) {
1078        if (!S->isDeclScope(*I))
1079          continue;
1080      } else if (IDC->Encloses(CurContext))
1081        break;
1082    }
1083
1084    IdResolver.InsertDeclAfter(I, D);
1085  } else {
1086    IdResolver.AddDecl(D);
1087  }
1088}
1089
1090void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1091  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1092    TUScope->AddDecl(D);
1093}
1094
1095bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1096                         bool ExplicitInstantiationOrSpecialization) {
1097  return IdResolver.isDeclInScope(D, Ctx, S,
1098                                  ExplicitInstantiationOrSpecialization);
1099}
1100
1101Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1102  DeclContext *TargetDC = DC->getPrimaryContext();
1103  do {
1104    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1105      if (ScopeDC->getPrimaryContext() == TargetDC)
1106        return S;
1107  } while ((S = S->getParent()));
1108
1109  return 0;
1110}
1111
1112static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1113                                            DeclContext*,
1114                                            ASTContext&);
1115
1116/// Filters out lookup results that don't fall within the given scope
1117/// as determined by isDeclInScope.
1118void Sema::FilterLookupForScope(LookupResult &R,
1119                                DeclContext *Ctx, Scope *S,
1120                                bool ConsiderLinkage,
1121                                bool ExplicitInstantiationOrSpecialization) {
1122  LookupResult::Filter F = R.makeFilter();
1123  while (F.hasNext()) {
1124    NamedDecl *D = F.next();
1125
1126    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1127      continue;
1128
1129    if (ConsiderLinkage &&
1130        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1131      continue;
1132
1133    F.erase();
1134  }
1135
1136  F.done();
1137}
1138
1139static bool isUsingDecl(NamedDecl *D) {
1140  return isa<UsingShadowDecl>(D) ||
1141         isa<UnresolvedUsingTypenameDecl>(D) ||
1142         isa<UnresolvedUsingValueDecl>(D);
1143}
1144
1145/// Removes using shadow declarations from the lookup results.
1146static void RemoveUsingDecls(LookupResult &R) {
1147  LookupResult::Filter F = R.makeFilter();
1148  while (F.hasNext())
1149    if (isUsingDecl(F.next()))
1150      F.erase();
1151
1152  F.done();
1153}
1154
1155/// \brief Check for this common pattern:
1156/// @code
1157/// class S {
1158///   S(const S&); // DO NOT IMPLEMENT
1159///   void operator=(const S&); // DO NOT IMPLEMENT
1160/// };
1161/// @endcode
1162static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1163  // FIXME: Should check for private access too but access is set after we get
1164  // the decl here.
1165  if (D->doesThisDeclarationHaveABody())
1166    return false;
1167
1168  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1169    return CD->isCopyConstructor();
1170  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1171    return Method->isCopyAssignmentOperator();
1172  return false;
1173}
1174
1175// We need this to handle
1176//
1177// typedef struct {
1178//   void *foo() { return 0; }
1179// } A;
1180//
1181// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1182// for example. If 'A', foo will have external linkage. If we have '*A',
1183// foo will have no linkage. Since we can't know untill we get to the end
1184// of the typedef, this function finds out if D might have non external linkage.
1185// Callers should verify at the end of the TU if it D has external linkage or
1186// not.
1187bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1188  const DeclContext *DC = D->getDeclContext();
1189  while (!DC->isTranslationUnit()) {
1190    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1191      if (!RD->hasNameForLinkage())
1192        return true;
1193    }
1194    DC = DC->getParent();
1195  }
1196
1197  return !D->isExternallyVisible();
1198}
1199
1200bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1201  assert(D);
1202
1203  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1204    return false;
1205
1206  // Ignore class templates.
1207  if (D->getDeclContext()->isDependentContext() ||
1208      D->getLexicalDeclContext()->isDependentContext())
1209    return false;
1210
1211  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1212    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1213      return false;
1214
1215    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1216      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1217        return false;
1218    } else {
1219      // 'static inline' functions are used in headers; don't warn.
1220      // Make sure we get the storage class from the canonical declaration,
1221      // since otherwise we will get spurious warnings on specialized
1222      // static template functions.
1223      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1224          FD->isInlineSpecified())
1225        return false;
1226    }
1227
1228    if (FD->doesThisDeclarationHaveABody() &&
1229        Context.DeclMustBeEmitted(FD))
1230      return false;
1231  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1232    // Don't warn on variables of const-qualified or reference type, since their
1233    // values can be used even if though they're not odr-used, and because const
1234    // qualified variables can appear in headers in contexts where they're not
1235    // intended to be used.
1236    // FIXME: Use more principled rules for these exemptions.
1237    if (!VD->isFileVarDecl() ||
1238        VD->getType().isConstQualified() ||
1239        VD->getType()->isReferenceType() ||
1240        Context.DeclMustBeEmitted(VD))
1241      return false;
1242
1243    if (VD->isStaticDataMember() &&
1244        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1245      return false;
1246
1247  } else {
1248    return false;
1249  }
1250
1251  // Only warn for unused decls internal to the translation unit.
1252  return mightHaveNonExternalLinkage(D);
1253}
1254
1255void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1256  if (!D)
1257    return;
1258
1259  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1260    const FunctionDecl *First = FD->getFirstDeclaration();
1261    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1262      return; // First should already be in the vector.
1263  }
1264
1265  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1266    const VarDecl *First = VD->getFirstDeclaration();
1267    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1268      return; // First should already be in the vector.
1269  }
1270
1271  if (ShouldWarnIfUnusedFileScopedDecl(D))
1272    UnusedFileScopedDecls.push_back(D);
1273}
1274
1275static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1276  if (D->isInvalidDecl())
1277    return false;
1278
1279  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1280    return false;
1281
1282  if (isa<LabelDecl>(D))
1283    return true;
1284
1285  // White-list anything that isn't a local variable.
1286  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1287      !D->getDeclContext()->isFunctionOrMethod())
1288    return false;
1289
1290  // Types of valid local variables should be complete, so this should succeed.
1291  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1292
1293    // White-list anything with an __attribute__((unused)) type.
1294    QualType Ty = VD->getType();
1295
1296    // Only look at the outermost level of typedef.
1297    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1298      if (TT->getDecl()->hasAttr<UnusedAttr>())
1299        return false;
1300    }
1301
1302    // If we failed to complete the type for some reason, or if the type is
1303    // dependent, don't diagnose the variable.
1304    if (Ty->isIncompleteType() || Ty->isDependentType())
1305      return false;
1306
1307    if (const TagType *TT = Ty->getAs<TagType>()) {
1308      const TagDecl *Tag = TT->getDecl();
1309      if (Tag->hasAttr<UnusedAttr>())
1310        return false;
1311
1312      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1313        if (!RD->hasTrivialDestructor())
1314          return false;
1315
1316        if (const Expr *Init = VD->getInit()) {
1317          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1318            Init = Cleanups->getSubExpr();
1319          const CXXConstructExpr *Construct =
1320            dyn_cast<CXXConstructExpr>(Init);
1321          if (Construct && !Construct->isElidable()) {
1322            CXXConstructorDecl *CD = Construct->getConstructor();
1323            if (!CD->isTrivial())
1324              return false;
1325          }
1326        }
1327      }
1328    }
1329
1330    // TODO: __attribute__((unused)) templates?
1331  }
1332
1333  return true;
1334}
1335
1336static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1337                                     FixItHint &Hint) {
1338  if (isa<LabelDecl>(D)) {
1339    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1340                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1341    if (AfterColon.isInvalid())
1342      return;
1343    Hint = FixItHint::CreateRemoval(CharSourceRange::
1344                                    getCharRange(D->getLocStart(), AfterColon));
1345  }
1346  return;
1347}
1348
1349/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1350/// unless they are marked attr(unused).
1351void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1352  FixItHint Hint;
1353  if (!ShouldDiagnoseUnusedDecl(D))
1354    return;
1355
1356  GenerateFixForUnusedDecl(D, Context, Hint);
1357
1358  unsigned DiagID;
1359  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1360    DiagID = diag::warn_unused_exception_param;
1361  else if (isa<LabelDecl>(D))
1362    DiagID = diag::warn_unused_label;
1363  else
1364    DiagID = diag::warn_unused_variable;
1365
1366  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1367}
1368
1369static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1370  // Verify that we have no forward references left.  If so, there was a goto
1371  // or address of a label taken, but no definition of it.  Label fwd
1372  // definitions are indicated with a null substmt.
1373  if (L->getStmt() == 0)
1374    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1375}
1376
1377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1378  if (S->decl_empty()) return;
1379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1380         "Scope shouldn't contain decls!");
1381
1382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1383       I != E; ++I) {
1384    Decl *TmpD = (*I);
1385    assert(TmpD && "This decl didn't get pushed??");
1386
1387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1388    NamedDecl *D = cast<NamedDecl>(TmpD);
1389
1390    if (!D->getDeclName()) continue;
1391
1392    // Diagnose unused variables in this scope.
1393    if (!S->hasUnrecoverableErrorOccurred())
1394      DiagnoseUnusedDecl(D);
1395
1396    // If this was a forward reference to a label, verify it was defined.
1397    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1398      CheckPoppedLabel(LD, *this);
1399
1400    // Remove this name from our lexical scope.
1401    IdResolver.RemoveDecl(D);
1402  }
1403}
1404
1405void Sema::ActOnStartFunctionDeclarator() {
1406  ++InFunctionDeclarator;
1407}
1408
1409void Sema::ActOnEndFunctionDeclarator() {
1410  assert(InFunctionDeclarator);
1411  --InFunctionDeclarator;
1412}
1413
1414/// \brief Look for an Objective-C class in the translation unit.
1415///
1416/// \param Id The name of the Objective-C class we're looking for. If
1417/// typo-correction fixes this name, the Id will be updated
1418/// to the fixed name.
1419///
1420/// \param IdLoc The location of the name in the translation unit.
1421///
1422/// \param DoTypoCorrection If true, this routine will attempt typo correction
1423/// if there is no class with the given name.
1424///
1425/// \returns The declaration of the named Objective-C class, or NULL if the
1426/// class could not be found.
1427ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1428                                              SourceLocation IdLoc,
1429                                              bool DoTypoCorrection) {
1430  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1431  // creation from this context.
1432  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1433
1434  if (!IDecl && DoTypoCorrection) {
1435    // Perform typo correction at the given location, but only if we
1436    // find an Objective-C class name.
1437    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1438    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1439                                       LookupOrdinaryName, TUScope, NULL,
1440                                       Validator)) {
1441      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1442      Diag(IdLoc, diag::err_undef_interface_suggest)
1443        << Id << IDecl->getDeclName()
1444        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1445      Diag(IDecl->getLocation(), diag::note_previous_decl)
1446        << IDecl->getDeclName();
1447
1448      Id = IDecl->getIdentifier();
1449    }
1450  }
1451  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1452  // This routine must always return a class definition, if any.
1453  if (Def && Def->getDefinition())
1454      Def = Def->getDefinition();
1455  return Def;
1456}
1457
1458/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1459/// from S, where a non-field would be declared. This routine copes
1460/// with the difference between C and C++ scoping rules in structs and
1461/// unions. For example, the following code is well-formed in C but
1462/// ill-formed in C++:
1463/// @code
1464/// struct S6 {
1465///   enum { BAR } e;
1466/// };
1467///
1468/// void test_S6() {
1469///   struct S6 a;
1470///   a.e = BAR;
1471/// }
1472/// @endcode
1473/// For the declaration of BAR, this routine will return a different
1474/// scope. The scope S will be the scope of the unnamed enumeration
1475/// within S6. In C++, this routine will return the scope associated
1476/// with S6, because the enumeration's scope is a transparent
1477/// context but structures can contain non-field names. In C, this
1478/// routine will return the translation unit scope, since the
1479/// enumeration's scope is a transparent context and structures cannot
1480/// contain non-field names.
1481Scope *Sema::getNonFieldDeclScope(Scope *S) {
1482  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1483         (S->getEntity() &&
1484          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1485         (S->isClassScope() && !getLangOpts().CPlusPlus))
1486    S = S->getParent();
1487  return S;
1488}
1489
1490/// \brief Looks up the declaration of "struct objc_super" and
1491/// saves it for later use in building builtin declaration of
1492/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1493/// pre-existing declaration exists no action takes place.
1494static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1495                                        IdentifierInfo *II) {
1496  if (!II->isStr("objc_msgSendSuper"))
1497    return;
1498  ASTContext &Context = ThisSema.Context;
1499
1500  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1501                      SourceLocation(), Sema::LookupTagName);
1502  ThisSema.LookupName(Result, S);
1503  if (Result.getResultKind() == LookupResult::Found)
1504    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1505      Context.setObjCSuperType(Context.getTagDeclType(TD));
1506}
1507
1508/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1509/// file scope.  lazily create a decl for it. ForRedeclaration is true
1510/// if we're creating this built-in in anticipation of redeclaring the
1511/// built-in.
1512NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1513                                     Scope *S, bool ForRedeclaration,
1514                                     SourceLocation Loc) {
1515  LookupPredefedObjCSuperType(*this, S, II);
1516
1517  Builtin::ID BID = (Builtin::ID)bid;
1518
1519  ASTContext::GetBuiltinTypeError Error;
1520  QualType R = Context.GetBuiltinType(BID, Error);
1521  switch (Error) {
1522  case ASTContext::GE_None:
1523    // Okay
1524    break;
1525
1526  case ASTContext::GE_Missing_stdio:
1527    if (ForRedeclaration)
1528      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1529        << Context.BuiltinInfo.GetName(BID);
1530    return 0;
1531
1532  case ASTContext::GE_Missing_setjmp:
1533    if (ForRedeclaration)
1534      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1535        << Context.BuiltinInfo.GetName(BID);
1536    return 0;
1537
1538  case ASTContext::GE_Missing_ucontext:
1539    if (ForRedeclaration)
1540      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1541        << Context.BuiltinInfo.GetName(BID);
1542    return 0;
1543  }
1544
1545  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1546    Diag(Loc, diag::ext_implicit_lib_function_decl)
1547      << Context.BuiltinInfo.GetName(BID)
1548      << R;
1549    if (Context.BuiltinInfo.getHeaderName(BID) &&
1550        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1551          != DiagnosticsEngine::Ignored)
1552      Diag(Loc, diag::note_please_include_header)
1553        << Context.BuiltinInfo.getHeaderName(BID)
1554        << Context.BuiltinInfo.GetName(BID);
1555  }
1556
1557  FunctionDecl *New = FunctionDecl::Create(Context,
1558                                           Context.getTranslationUnitDecl(),
1559                                           Loc, Loc, II, R, /*TInfo=*/0,
1560                                           SC_Extern,
1561                                           false,
1562                                           /*hasPrototype=*/true);
1563  New->setImplicit();
1564
1565  // Create Decl objects for each parameter, adding them to the
1566  // FunctionDecl.
1567  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1568    SmallVector<ParmVarDecl*, 16> Params;
1569    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1570      ParmVarDecl *parm =
1571        ParmVarDecl::Create(Context, New, SourceLocation(),
1572                            SourceLocation(), 0,
1573                            FT->getArgType(i), /*TInfo=*/0,
1574                            SC_None, 0);
1575      parm->setScopeInfo(0, i);
1576      Params.push_back(parm);
1577    }
1578    New->setParams(Params);
1579  }
1580
1581  AddKnownFunctionAttributes(New);
1582
1583  // TUScope is the translation-unit scope to insert this function into.
1584  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1585  // relate Scopes to DeclContexts, and probably eliminate CurContext
1586  // entirely, but we're not there yet.
1587  DeclContext *SavedContext = CurContext;
1588  CurContext = Context.getTranslationUnitDecl();
1589  PushOnScopeChains(New, TUScope);
1590  CurContext = SavedContext;
1591  return New;
1592}
1593
1594/// \brief Filter out any previous declarations that the given declaration
1595/// should not consider because they are not permitted to conflict, e.g.,
1596/// because they come from hidden sub-modules and do not refer to the same
1597/// entity.
1598static void filterNonConflictingPreviousDecls(ASTContext &context,
1599                                              NamedDecl *decl,
1600                                              LookupResult &previous){
1601  // This is only interesting when modules are enabled.
1602  if (!context.getLangOpts().Modules)
1603    return;
1604
1605  // Empty sets are uninteresting.
1606  if (previous.empty())
1607    return;
1608
1609  LookupResult::Filter filter = previous.makeFilter();
1610  while (filter.hasNext()) {
1611    NamedDecl *old = filter.next();
1612
1613    // Non-hidden declarations are never ignored.
1614    if (!old->isHidden())
1615      continue;
1616
1617    if (!old->isExternallyVisible())
1618      filter.erase();
1619  }
1620
1621  filter.done();
1622}
1623
1624bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1625  QualType OldType;
1626  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1627    OldType = OldTypedef->getUnderlyingType();
1628  else
1629    OldType = Context.getTypeDeclType(Old);
1630  QualType NewType = New->getUnderlyingType();
1631
1632  if (NewType->isVariablyModifiedType()) {
1633    // Must not redefine a typedef with a variably-modified type.
1634    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1635    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1636      << Kind << NewType;
1637    if (Old->getLocation().isValid())
1638      Diag(Old->getLocation(), diag::note_previous_definition);
1639    New->setInvalidDecl();
1640    return true;
1641  }
1642
1643  if (OldType != NewType &&
1644      !OldType->isDependentType() &&
1645      !NewType->isDependentType() &&
1646      !Context.hasSameType(OldType, NewType)) {
1647    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1649      << Kind << NewType << OldType;
1650    if (Old->getLocation().isValid())
1651      Diag(Old->getLocation(), diag::note_previous_definition);
1652    New->setInvalidDecl();
1653    return true;
1654  }
1655  return false;
1656}
1657
1658/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1659/// same name and scope as a previous declaration 'Old'.  Figure out
1660/// how to resolve this situation, merging decls or emitting
1661/// diagnostics as appropriate. If there was an error, set New to be invalid.
1662///
1663void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1664  // If the new decl is known invalid already, don't bother doing any
1665  // merging checks.
1666  if (New->isInvalidDecl()) return;
1667
1668  // Allow multiple definitions for ObjC built-in typedefs.
1669  // FIXME: Verify the underlying types are equivalent!
1670  if (getLangOpts().ObjC1) {
1671    const IdentifierInfo *TypeID = New->getIdentifier();
1672    switch (TypeID->getLength()) {
1673    default: break;
1674    case 2:
1675      {
1676        if (!TypeID->isStr("id"))
1677          break;
1678        QualType T = New->getUnderlyingType();
1679        if (!T->isPointerType())
1680          break;
1681        if (!T->isVoidPointerType()) {
1682          QualType PT = T->getAs<PointerType>()->getPointeeType();
1683          if (!PT->isStructureType())
1684            break;
1685        }
1686        Context.setObjCIdRedefinitionType(T);
1687        // Install the built-in type for 'id', ignoring the current definition.
1688        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1689        return;
1690      }
1691    case 5:
1692      if (!TypeID->isStr("Class"))
1693        break;
1694      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1695      // Install the built-in type for 'Class', ignoring the current definition.
1696      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1697      return;
1698    case 3:
1699      if (!TypeID->isStr("SEL"))
1700        break;
1701      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1702      // Install the built-in type for 'SEL', ignoring the current definition.
1703      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1704      return;
1705    }
1706    // Fall through - the typedef name was not a builtin type.
1707  }
1708
1709  // Verify the old decl was also a type.
1710  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1711  if (!Old) {
1712    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1713      << New->getDeclName();
1714
1715    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1716    if (OldD->getLocation().isValid())
1717      Diag(OldD->getLocation(), diag::note_previous_definition);
1718
1719    return New->setInvalidDecl();
1720  }
1721
1722  // If the old declaration is invalid, just give up here.
1723  if (Old->isInvalidDecl())
1724    return New->setInvalidDecl();
1725
1726  // If the typedef types are not identical, reject them in all languages and
1727  // with any extensions enabled.
1728  if (isIncompatibleTypedef(Old, New))
1729    return;
1730
1731  // The types match.  Link up the redeclaration chain if the old
1732  // declaration was a typedef.
1733  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1734    New->setPreviousDeclaration(Typedef);
1735
1736  if (getLangOpts().MicrosoftExt)
1737    return;
1738
1739  if (getLangOpts().CPlusPlus) {
1740    // C++ [dcl.typedef]p2:
1741    //   In a given non-class scope, a typedef specifier can be used to
1742    //   redefine the name of any type declared in that scope to refer
1743    //   to the type to which it already refers.
1744    if (!isa<CXXRecordDecl>(CurContext))
1745      return;
1746
1747    // C++0x [dcl.typedef]p4:
1748    //   In a given class scope, a typedef specifier can be used to redefine
1749    //   any class-name declared in that scope that is not also a typedef-name
1750    //   to refer to the type to which it already refers.
1751    //
1752    // This wording came in via DR424, which was a correction to the
1753    // wording in DR56, which accidentally banned code like:
1754    //
1755    //   struct S {
1756    //     typedef struct A { } A;
1757    //   };
1758    //
1759    // in the C++03 standard. We implement the C++0x semantics, which
1760    // allow the above but disallow
1761    //
1762    //   struct S {
1763    //     typedef int I;
1764    //     typedef int I;
1765    //   };
1766    //
1767    // since that was the intent of DR56.
1768    if (!isa<TypedefNameDecl>(Old))
1769      return;
1770
1771    Diag(New->getLocation(), diag::err_redefinition)
1772      << New->getDeclName();
1773    Diag(Old->getLocation(), diag::note_previous_definition);
1774    return New->setInvalidDecl();
1775  }
1776
1777  // Modules always permit redefinition of typedefs, as does C11.
1778  if (getLangOpts().Modules || getLangOpts().C11)
1779    return;
1780
1781  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1782  // is normally mapped to an error, but can be controlled with
1783  // -Wtypedef-redefinition.  If either the original or the redefinition is
1784  // in a system header, don't emit this for compatibility with GCC.
1785  if (getDiagnostics().getSuppressSystemWarnings() &&
1786      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1787       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1788    return;
1789
1790  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1791    << New->getDeclName();
1792  Diag(Old->getLocation(), diag::note_previous_definition);
1793  return;
1794}
1795
1796/// DeclhasAttr - returns true if decl Declaration already has the target
1797/// attribute.
1798static bool
1799DeclHasAttr(const Decl *D, const Attr *A) {
1800  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1801  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1802  // responsible for making sure they are consistent.
1803  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1804  if (AA)
1805    return false;
1806
1807  // The following thread safety attributes can also be duplicated.
1808  switch (A->getKind()) {
1809    case attr::ExclusiveLocksRequired:
1810    case attr::SharedLocksRequired:
1811    case attr::LocksExcluded:
1812    case attr::ExclusiveLockFunction:
1813    case attr::SharedLockFunction:
1814    case attr::UnlockFunction:
1815    case attr::ExclusiveTrylockFunction:
1816    case attr::SharedTrylockFunction:
1817    case attr::GuardedBy:
1818    case attr::PtGuardedBy:
1819    case attr::AcquiredBefore:
1820    case attr::AcquiredAfter:
1821      return false;
1822    default:
1823      ;
1824  }
1825
1826  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1827  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1828  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1829    if ((*i)->getKind() == A->getKind()) {
1830      if (Ann) {
1831        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1832          return true;
1833        continue;
1834      }
1835      // FIXME: Don't hardcode this check
1836      if (OA && isa<OwnershipAttr>(*i))
1837        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1838      return true;
1839    }
1840
1841  return false;
1842}
1843
1844static bool isAttributeTargetADefinition(Decl *D) {
1845  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1846    return VD->isThisDeclarationADefinition();
1847  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1848    return TD->isCompleteDefinition() || TD->isBeingDefined();
1849  return true;
1850}
1851
1852/// Merge alignment attributes from \p Old to \p New, taking into account the
1853/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1854///
1855/// \return \c true if any attributes were added to \p New.
1856static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1857  // Look for alignas attributes on Old, and pick out whichever attribute
1858  // specifies the strictest alignment requirement.
1859  AlignedAttr *OldAlignasAttr = 0;
1860  AlignedAttr *OldStrictestAlignAttr = 0;
1861  unsigned OldAlign = 0;
1862  for (specific_attr_iterator<AlignedAttr>
1863         I = Old->specific_attr_begin<AlignedAttr>(),
1864         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1865    // FIXME: We have no way of representing inherited dependent alignments
1866    // in a case like:
1867    //   template<int A, int B> struct alignas(A) X;
1868    //   template<int A, int B> struct alignas(B) X {};
1869    // For now, we just ignore any alignas attributes which are not on the
1870    // definition in such a case.
1871    if (I->isAlignmentDependent())
1872      return false;
1873
1874    if (I->isAlignas())
1875      OldAlignasAttr = *I;
1876
1877    unsigned Align = I->getAlignment(S.Context);
1878    if (Align > OldAlign) {
1879      OldAlign = Align;
1880      OldStrictestAlignAttr = *I;
1881    }
1882  }
1883
1884  // Look for alignas attributes on New.
1885  AlignedAttr *NewAlignasAttr = 0;
1886  unsigned NewAlign = 0;
1887  for (specific_attr_iterator<AlignedAttr>
1888         I = New->specific_attr_begin<AlignedAttr>(),
1889         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1890    if (I->isAlignmentDependent())
1891      return false;
1892
1893    if (I->isAlignas())
1894      NewAlignasAttr = *I;
1895
1896    unsigned Align = I->getAlignment(S.Context);
1897    if (Align > NewAlign)
1898      NewAlign = Align;
1899  }
1900
1901  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1902    // Both declarations have 'alignas' attributes. We require them to match.
1903    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1904    // fall short. (If two declarations both have alignas, they must both match
1905    // every definition, and so must match each other if there is a definition.)
1906
1907    // If either declaration only contains 'alignas(0)' specifiers, then it
1908    // specifies the natural alignment for the type.
1909    if (OldAlign == 0 || NewAlign == 0) {
1910      QualType Ty;
1911      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1912        Ty = VD->getType();
1913      else
1914        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1915
1916      if (OldAlign == 0)
1917        OldAlign = S.Context.getTypeAlign(Ty);
1918      if (NewAlign == 0)
1919        NewAlign = S.Context.getTypeAlign(Ty);
1920    }
1921
1922    if (OldAlign != NewAlign) {
1923      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1924        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1925        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1926      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1927    }
1928  }
1929
1930  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1931    // C++11 [dcl.align]p6:
1932    //   if any declaration of an entity has an alignment-specifier,
1933    //   every defining declaration of that entity shall specify an
1934    //   equivalent alignment.
1935    // C11 6.7.5/7:
1936    //   If the definition of an object does not have an alignment
1937    //   specifier, any other declaration of that object shall also
1938    //   have no alignment specifier.
1939    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1940      << OldAlignasAttr->isC11();
1941    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1942      << OldAlignasAttr->isC11();
1943  }
1944
1945  bool AnyAdded = false;
1946
1947  // Ensure we have an attribute representing the strictest alignment.
1948  if (OldAlign > NewAlign) {
1949    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1950    Clone->setInherited(true);
1951    New->addAttr(Clone);
1952    AnyAdded = true;
1953  }
1954
1955  // Ensure we have an alignas attribute if the old declaration had one.
1956  if (OldAlignasAttr && !NewAlignasAttr &&
1957      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1958    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1959    Clone->setInherited(true);
1960    New->addAttr(Clone);
1961    AnyAdded = true;
1962  }
1963
1964  return AnyAdded;
1965}
1966
1967static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1968                               bool Override) {
1969  InheritableAttr *NewAttr = NULL;
1970  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1971  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1972    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1973                                      AA->getIntroduced(), AA->getDeprecated(),
1974                                      AA->getObsoleted(), AA->getUnavailable(),
1975                                      AA->getMessage(), Override,
1976                                      AttrSpellingListIndex);
1977  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1978    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1979                                    AttrSpellingListIndex);
1980  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1981    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1982                                        AttrSpellingListIndex);
1983  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1984    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1985                                   AttrSpellingListIndex);
1986  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1987    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1988                                   AttrSpellingListIndex);
1989  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1990    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1991                                FA->getFormatIdx(), FA->getFirstArg(),
1992                                AttrSpellingListIndex);
1993  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1994    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1995                                 AttrSpellingListIndex);
1996  else if (isa<AlignedAttr>(Attr))
1997    // AlignedAttrs are handled separately, because we need to handle all
1998    // such attributes on a declaration at the same time.
1999    NewAttr = 0;
2000  else if (!DeclHasAttr(D, Attr))
2001    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2002
2003  if (NewAttr) {
2004    NewAttr->setInherited(true);
2005    D->addAttr(NewAttr);
2006    return true;
2007  }
2008
2009  return false;
2010}
2011
2012static const Decl *getDefinition(const Decl *D) {
2013  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2014    return TD->getDefinition();
2015  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2016    return VD->getDefinition();
2017  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2018    const FunctionDecl* Def;
2019    if (FD->hasBody(Def))
2020      return Def;
2021  }
2022  return NULL;
2023}
2024
2025static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2026  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2027       I != E; ++I) {
2028    Attr *Attribute = *I;
2029    if (Attribute->getKind() == Kind)
2030      return true;
2031  }
2032  return false;
2033}
2034
2035/// checkNewAttributesAfterDef - If we already have a definition, check that
2036/// there are no new attributes in this declaration.
2037static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2038  if (!New->hasAttrs())
2039    return;
2040
2041  const Decl *Def = getDefinition(Old);
2042  if (!Def || Def == New)
2043    return;
2044
2045  AttrVec &NewAttributes = New->getAttrs();
2046  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2047    const Attr *NewAttribute = NewAttributes[I];
2048    if (hasAttribute(Def, NewAttribute->getKind())) {
2049      ++I;
2050      continue; // regular attr merging will take care of validating this.
2051    }
2052
2053    if (isa<C11NoReturnAttr>(NewAttribute)) {
2054      // C's _Noreturn is allowed to be added to a function after it is defined.
2055      ++I;
2056      continue;
2057    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2058      if (AA->isAlignas()) {
2059        // C++11 [dcl.align]p6:
2060        //   if any declaration of an entity has an alignment-specifier,
2061        //   every defining declaration of that entity shall specify an
2062        //   equivalent alignment.
2063        // C11 6.7.5/7:
2064        //   If the definition of an object does not have an alignment
2065        //   specifier, any other declaration of that object shall also
2066        //   have no alignment specifier.
2067        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2068          << AA->isC11();
2069        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2070          << AA->isC11();
2071        NewAttributes.erase(NewAttributes.begin() + I);
2072        --E;
2073        continue;
2074      }
2075    }
2076
2077    S.Diag(NewAttribute->getLocation(),
2078           diag::warn_attribute_precede_definition);
2079    S.Diag(Def->getLocation(), diag::note_previous_definition);
2080    NewAttributes.erase(NewAttributes.begin() + I);
2081    --E;
2082  }
2083}
2084
2085/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2086void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2087                               AvailabilityMergeKind AMK) {
2088  if (!Old->hasAttrs() && !New->hasAttrs())
2089    return;
2090
2091  // attributes declared post-definition are currently ignored
2092  checkNewAttributesAfterDef(*this, New, Old);
2093
2094  if (!Old->hasAttrs())
2095    return;
2096
2097  bool foundAny = New->hasAttrs();
2098
2099  // Ensure that any moving of objects within the allocated map is done before
2100  // we process them.
2101  if (!foundAny) New->setAttrs(AttrVec());
2102
2103  for (specific_attr_iterator<InheritableAttr>
2104         i = Old->specific_attr_begin<InheritableAttr>(),
2105         e = Old->specific_attr_end<InheritableAttr>();
2106       i != e; ++i) {
2107    bool Override = false;
2108    // Ignore deprecated/unavailable/availability attributes if requested.
2109    if (isa<DeprecatedAttr>(*i) ||
2110        isa<UnavailableAttr>(*i) ||
2111        isa<AvailabilityAttr>(*i)) {
2112      switch (AMK) {
2113      case AMK_None:
2114        continue;
2115
2116      case AMK_Redeclaration:
2117        break;
2118
2119      case AMK_Override:
2120        Override = true;
2121        break;
2122      }
2123    }
2124
2125    if (mergeDeclAttribute(*this, New, *i, Override))
2126      foundAny = true;
2127  }
2128
2129  if (mergeAlignedAttrs(*this, New, Old))
2130    foundAny = true;
2131
2132  if (!foundAny) New->dropAttrs();
2133}
2134
2135/// mergeParamDeclAttributes - Copy attributes from the old parameter
2136/// to the new one.
2137static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2138                                     const ParmVarDecl *oldDecl,
2139                                     Sema &S) {
2140  // C++11 [dcl.attr.depend]p2:
2141  //   The first declaration of a function shall specify the
2142  //   carries_dependency attribute for its declarator-id if any declaration
2143  //   of the function specifies the carries_dependency attribute.
2144  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2145      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2146    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2147           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2148    // Find the first declaration of the parameter.
2149    // FIXME: Should we build redeclaration chains for function parameters?
2150    const FunctionDecl *FirstFD =
2151      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2152    const ParmVarDecl *FirstVD =
2153      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2154    S.Diag(FirstVD->getLocation(),
2155           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2156  }
2157
2158  if (!oldDecl->hasAttrs())
2159    return;
2160
2161  bool foundAny = newDecl->hasAttrs();
2162
2163  // Ensure that any moving of objects within the allocated map is
2164  // done before we process them.
2165  if (!foundAny) newDecl->setAttrs(AttrVec());
2166
2167  for (specific_attr_iterator<InheritableParamAttr>
2168       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2169       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2170    if (!DeclHasAttr(newDecl, *i)) {
2171      InheritableAttr *newAttr =
2172        cast<InheritableParamAttr>((*i)->clone(S.Context));
2173      newAttr->setInherited(true);
2174      newDecl->addAttr(newAttr);
2175      foundAny = true;
2176    }
2177  }
2178
2179  if (!foundAny) newDecl->dropAttrs();
2180}
2181
2182namespace {
2183
2184/// Used in MergeFunctionDecl to keep track of function parameters in
2185/// C.
2186struct GNUCompatibleParamWarning {
2187  ParmVarDecl *OldParm;
2188  ParmVarDecl *NewParm;
2189  QualType PromotedType;
2190};
2191
2192}
2193
2194/// getSpecialMember - get the special member enum for a method.
2195Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2196  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2197    if (Ctor->isDefaultConstructor())
2198      return Sema::CXXDefaultConstructor;
2199
2200    if (Ctor->isCopyConstructor())
2201      return Sema::CXXCopyConstructor;
2202
2203    if (Ctor->isMoveConstructor())
2204      return Sema::CXXMoveConstructor;
2205  } else if (isa<CXXDestructorDecl>(MD)) {
2206    return Sema::CXXDestructor;
2207  } else if (MD->isCopyAssignmentOperator()) {
2208    return Sema::CXXCopyAssignment;
2209  } else if (MD->isMoveAssignmentOperator()) {
2210    return Sema::CXXMoveAssignment;
2211  }
2212
2213  return Sema::CXXInvalid;
2214}
2215
2216/// canRedefineFunction - checks if a function can be redefined. Currently,
2217/// only extern inline functions can be redefined, and even then only in
2218/// GNU89 mode.
2219static bool canRedefineFunction(const FunctionDecl *FD,
2220                                const LangOptions& LangOpts) {
2221  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2222          !LangOpts.CPlusPlus &&
2223          FD->isInlineSpecified() &&
2224          FD->getStorageClass() == SC_Extern);
2225}
2226
2227/// Is the given calling convention the ABI default for the given
2228/// declaration?
2229static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2230  CallingConv ABIDefaultCC;
2231  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2232    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2233  } else {
2234    // Free C function or a static method.
2235    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2236  }
2237  return ABIDefaultCC == CC;
2238}
2239
2240template <typename T>
2241static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2242  const DeclContext *DC = Old->getDeclContext();
2243  if (DC->isRecord())
2244    return false;
2245
2246  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2247  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2248    return true;
2249  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2250    return true;
2251  return false;
2252}
2253
2254/// MergeFunctionDecl - We just parsed a function 'New' from
2255/// declarator D which has the same name and scope as a previous
2256/// declaration 'Old'.  Figure out how to resolve this situation,
2257/// merging decls or emitting diagnostics as appropriate.
2258///
2259/// In C++, New and Old must be declarations that are not
2260/// overloaded. Use IsOverload to determine whether New and Old are
2261/// overloaded, and to select the Old declaration that New should be
2262/// merged with.
2263///
2264/// Returns true if there was an error, false otherwise.
2265bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2266  // Verify the old decl was also a function.
2267  FunctionDecl *Old = 0;
2268  if (FunctionTemplateDecl *OldFunctionTemplate
2269        = dyn_cast<FunctionTemplateDecl>(OldD))
2270    Old = OldFunctionTemplate->getTemplatedDecl();
2271  else
2272    Old = dyn_cast<FunctionDecl>(OldD);
2273  if (!Old) {
2274    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2275      if (New->getFriendObjectKind()) {
2276        Diag(New->getLocation(), diag::err_using_decl_friend);
2277        Diag(Shadow->getTargetDecl()->getLocation(),
2278             diag::note_using_decl_target);
2279        Diag(Shadow->getUsingDecl()->getLocation(),
2280             diag::note_using_decl) << 0;
2281        return true;
2282      }
2283
2284      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2285      Diag(Shadow->getTargetDecl()->getLocation(),
2286           diag::note_using_decl_target);
2287      Diag(Shadow->getUsingDecl()->getLocation(),
2288           diag::note_using_decl) << 0;
2289      return true;
2290    }
2291
2292    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2293      << New->getDeclName();
2294    Diag(OldD->getLocation(), diag::note_previous_definition);
2295    return true;
2296  }
2297
2298  // Determine whether the previous declaration was a definition,
2299  // implicit declaration, or a declaration.
2300  diag::kind PrevDiag;
2301  if (Old->isThisDeclarationADefinition())
2302    PrevDiag = diag::note_previous_definition;
2303  else if (Old->isImplicit())
2304    PrevDiag = diag::note_previous_implicit_declaration;
2305  else
2306    PrevDiag = diag::note_previous_declaration;
2307
2308  QualType OldQType = Context.getCanonicalType(Old->getType());
2309  QualType NewQType = Context.getCanonicalType(New->getType());
2310
2311  // Don't complain about this if we're in GNU89 mode and the old function
2312  // is an extern inline function.
2313  // Don't complain about specializations. They are not supposed to have
2314  // storage classes.
2315  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2316      New->getStorageClass() == SC_Static &&
2317      Old->hasExternalFormalLinkage() &&
2318      !New->getTemplateSpecializationInfo() &&
2319      !canRedefineFunction(Old, getLangOpts())) {
2320    if (getLangOpts().MicrosoftExt) {
2321      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2322      Diag(Old->getLocation(), PrevDiag);
2323    } else {
2324      Diag(New->getLocation(), diag::err_static_non_static) << New;
2325      Diag(Old->getLocation(), PrevDiag);
2326      return true;
2327    }
2328  }
2329
2330  // If a function is first declared with a calling convention, but is
2331  // later declared or defined without one, the second decl assumes the
2332  // calling convention of the first.
2333  //
2334  // It's OK if a function is first declared without a calling convention,
2335  // but is later declared or defined with the default calling convention.
2336  //
2337  // For the new decl, we have to look at the NON-canonical type to tell the
2338  // difference between a function that really doesn't have a calling
2339  // convention and one that is declared cdecl. That's because in
2340  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2341  // because it is the default calling convention.
2342  //
2343  // Note also that we DO NOT return at this point, because we still have
2344  // other tests to run.
2345  const FunctionType *OldType = cast<FunctionType>(OldQType);
2346  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2347  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2348  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2349  bool RequiresAdjustment = false;
2350  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2351    // Fast path: nothing to do.
2352
2353  // Inherit the CC from the previous declaration if it was specified
2354  // there but not here.
2355  } else if (NewTypeInfo.getCC() == CC_Default) {
2356    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2357    RequiresAdjustment = true;
2358
2359  // Don't complain about mismatches when the default CC is
2360  // effectively the same as the explict one. Only Old decl contains correct
2361  // information about storage class of CXXMethod.
2362  } else if (OldTypeInfo.getCC() == CC_Default &&
2363             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2364    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2365    RequiresAdjustment = true;
2366
2367  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2368                                     NewTypeInfo.getCC())) {
2369    // Calling conventions really aren't compatible, so complain.
2370    Diag(New->getLocation(), diag::err_cconv_change)
2371      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2372      << (OldTypeInfo.getCC() == CC_Default)
2373      << (OldTypeInfo.getCC() == CC_Default ? "" :
2374          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2375    Diag(Old->getLocation(), diag::note_previous_declaration);
2376    return true;
2377  }
2378
2379  // FIXME: diagnose the other way around?
2380  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2381    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2382    RequiresAdjustment = true;
2383  }
2384
2385  // Merge regparm attribute.
2386  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2387      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2388    if (NewTypeInfo.getHasRegParm()) {
2389      Diag(New->getLocation(), diag::err_regparm_mismatch)
2390        << NewType->getRegParmType()
2391        << OldType->getRegParmType();
2392      Diag(Old->getLocation(), diag::note_previous_declaration);
2393      return true;
2394    }
2395
2396    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2397    RequiresAdjustment = true;
2398  }
2399
2400  // Merge ns_returns_retained attribute.
2401  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2402    if (NewTypeInfo.getProducesResult()) {
2403      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2404      Diag(Old->getLocation(), diag::note_previous_declaration);
2405      return true;
2406    }
2407
2408    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2409    RequiresAdjustment = true;
2410  }
2411
2412  if (RequiresAdjustment) {
2413    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2414    New->setType(QualType(NewType, 0));
2415    NewQType = Context.getCanonicalType(New->getType());
2416  }
2417
2418  // If this redeclaration makes the function inline, we may need to add it to
2419  // UndefinedButUsed.
2420  if (!Old->isInlined() && New->isInlined() &&
2421      !New->hasAttr<GNUInlineAttr>() &&
2422      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2423      Old->isUsed(false) &&
2424      !Old->isDefined() && !New->isThisDeclarationADefinition())
2425    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2426                                           SourceLocation()));
2427
2428  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2429  // about it.
2430  if (New->hasAttr<GNUInlineAttr>() &&
2431      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2432    UndefinedButUsed.erase(Old->getCanonicalDecl());
2433  }
2434
2435  if (getLangOpts().CPlusPlus) {
2436    // (C++98 13.1p2):
2437    //   Certain function declarations cannot be overloaded:
2438    //     -- Function declarations that differ only in the return type
2439    //        cannot be overloaded.
2440
2441    // Go back to the type source info to compare the declared return types,
2442    // per C++1y [dcl.type.auto]p??:
2443    //   Redeclarations or specializations of a function or function template
2444    //   with a declared return type that uses a placeholder type shall also
2445    //   use that placeholder, not a deduced type.
2446    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2447      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2448      : OldType)->getResultType();
2449    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2450      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2451      : NewType)->getResultType();
2452    QualType ResQT;
2453    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2454      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2455          OldDeclaredReturnType->isObjCObjectPointerType())
2456        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2457      if (ResQT.isNull()) {
2458        if (New->isCXXClassMember() && New->isOutOfLine())
2459          Diag(New->getLocation(),
2460               diag::err_member_def_does_not_match_ret_type) << New;
2461        else
2462          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2463        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2464        return true;
2465      }
2466      else
2467        NewQType = ResQT;
2468    }
2469
2470    QualType OldReturnType = OldType->getResultType();
2471    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2472    if (OldReturnType != NewReturnType) {
2473      // If this function has a deduced return type and has already been
2474      // defined, copy the deduced value from the old declaration.
2475      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2476      if (OldAT && OldAT->isDeduced()) {
2477        New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2478        NewQType = Context.getCanonicalType(
2479            SubstAutoType(NewQType, OldAT->getDeducedType()));
2480      }
2481    }
2482
2483    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2484    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2485    if (OldMethod && NewMethod) {
2486      // Preserve triviality.
2487      NewMethod->setTrivial(OldMethod->isTrivial());
2488
2489      // MSVC allows explicit template specialization at class scope:
2490      // 2 CXMethodDecls referring to the same function will be injected.
2491      // We don't want a redeclartion error.
2492      bool IsClassScopeExplicitSpecialization =
2493                              OldMethod->isFunctionTemplateSpecialization() &&
2494                              NewMethod->isFunctionTemplateSpecialization();
2495      bool isFriend = NewMethod->getFriendObjectKind();
2496
2497      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2498          !IsClassScopeExplicitSpecialization) {
2499        //    -- Member function declarations with the same name and the
2500        //       same parameter types cannot be overloaded if any of them
2501        //       is a static member function declaration.
2502        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2503          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2504          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2505          return true;
2506        }
2507
2508        // C++ [class.mem]p1:
2509        //   [...] A member shall not be declared twice in the
2510        //   member-specification, except that a nested class or member
2511        //   class template can be declared and then later defined.
2512        if (ActiveTemplateInstantiations.empty()) {
2513          unsigned NewDiag;
2514          if (isa<CXXConstructorDecl>(OldMethod))
2515            NewDiag = diag::err_constructor_redeclared;
2516          else if (isa<CXXDestructorDecl>(NewMethod))
2517            NewDiag = diag::err_destructor_redeclared;
2518          else if (isa<CXXConversionDecl>(NewMethod))
2519            NewDiag = diag::err_conv_function_redeclared;
2520          else
2521            NewDiag = diag::err_member_redeclared;
2522
2523          Diag(New->getLocation(), NewDiag);
2524        } else {
2525          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2526            << New << New->getType();
2527        }
2528        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2529
2530      // Complain if this is an explicit declaration of a special
2531      // member that was initially declared implicitly.
2532      //
2533      // As an exception, it's okay to befriend such methods in order
2534      // to permit the implicit constructor/destructor/operator calls.
2535      } else if (OldMethod->isImplicit()) {
2536        if (isFriend) {
2537          NewMethod->setImplicit();
2538        } else {
2539          Diag(NewMethod->getLocation(),
2540               diag::err_definition_of_implicitly_declared_member)
2541            << New << getSpecialMember(OldMethod);
2542          return true;
2543        }
2544      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2545        Diag(NewMethod->getLocation(),
2546             diag::err_definition_of_explicitly_defaulted_member)
2547          << getSpecialMember(OldMethod);
2548        return true;
2549      }
2550    }
2551
2552    // C++11 [dcl.attr.noreturn]p1:
2553    //   The first declaration of a function shall specify the noreturn
2554    //   attribute if any declaration of that function specifies the noreturn
2555    //   attribute.
2556    if (New->hasAttr<CXX11NoReturnAttr>() &&
2557        !Old->hasAttr<CXX11NoReturnAttr>()) {
2558      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2559           diag::err_noreturn_missing_on_first_decl);
2560      Diag(Old->getFirstDeclaration()->getLocation(),
2561           diag::note_noreturn_missing_first_decl);
2562    }
2563
2564    // C++11 [dcl.attr.depend]p2:
2565    //   The first declaration of a function shall specify the
2566    //   carries_dependency attribute for its declarator-id if any declaration
2567    //   of the function specifies the carries_dependency attribute.
2568    if (New->hasAttr<CarriesDependencyAttr>() &&
2569        !Old->hasAttr<CarriesDependencyAttr>()) {
2570      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2571           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2572      Diag(Old->getFirstDeclaration()->getLocation(),
2573           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2574    }
2575
2576    // (C++98 8.3.5p3):
2577    //   All declarations for a function shall agree exactly in both the
2578    //   return type and the parameter-type-list.
2579    // We also want to respect all the extended bits except noreturn.
2580
2581    // noreturn should now match unless the old type info didn't have it.
2582    QualType OldQTypeForComparison = OldQType;
2583    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2584      assert(OldQType == QualType(OldType, 0));
2585      const FunctionType *OldTypeForComparison
2586        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2587      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2588      assert(OldQTypeForComparison.isCanonical());
2589    }
2590
2591    if (haveIncompatibleLanguageLinkages(Old, New)) {
2592      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2593      Diag(Old->getLocation(), PrevDiag);
2594      return true;
2595    }
2596
2597    if (OldQTypeForComparison == NewQType)
2598      return MergeCompatibleFunctionDecls(New, Old, S);
2599
2600    // Fall through for conflicting redeclarations and redefinitions.
2601  }
2602
2603  // C: Function types need to be compatible, not identical. This handles
2604  // duplicate function decls like "void f(int); void f(enum X);" properly.
2605  if (!getLangOpts().CPlusPlus &&
2606      Context.typesAreCompatible(OldQType, NewQType)) {
2607    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2608    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2609    const FunctionProtoType *OldProto = 0;
2610    if (isa<FunctionNoProtoType>(NewFuncType) &&
2611        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2612      // The old declaration provided a function prototype, but the
2613      // new declaration does not. Merge in the prototype.
2614      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2615      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2616                                                 OldProto->arg_type_end());
2617      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2618                                         ParamTypes,
2619                                         OldProto->getExtProtoInfo());
2620      New->setType(NewQType);
2621      New->setHasInheritedPrototype();
2622
2623      // Synthesize a parameter for each argument type.
2624      SmallVector<ParmVarDecl*, 16> Params;
2625      for (FunctionProtoType::arg_type_iterator
2626             ParamType = OldProto->arg_type_begin(),
2627             ParamEnd = OldProto->arg_type_end();
2628           ParamType != ParamEnd; ++ParamType) {
2629        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2630                                                 SourceLocation(),
2631                                                 SourceLocation(), 0,
2632                                                 *ParamType, /*TInfo=*/0,
2633                                                 SC_None,
2634                                                 0);
2635        Param->setScopeInfo(0, Params.size());
2636        Param->setImplicit();
2637        Params.push_back(Param);
2638      }
2639
2640      New->setParams(Params);
2641    }
2642
2643    return MergeCompatibleFunctionDecls(New, Old, S);
2644  }
2645
2646  // GNU C permits a K&R definition to follow a prototype declaration
2647  // if the declared types of the parameters in the K&R definition
2648  // match the types in the prototype declaration, even when the
2649  // promoted types of the parameters from the K&R definition differ
2650  // from the types in the prototype. GCC then keeps the types from
2651  // the prototype.
2652  //
2653  // If a variadic prototype is followed by a non-variadic K&R definition,
2654  // the K&R definition becomes variadic.  This is sort of an edge case, but
2655  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2656  // C99 6.9.1p8.
2657  if (!getLangOpts().CPlusPlus &&
2658      Old->hasPrototype() && !New->hasPrototype() &&
2659      New->getType()->getAs<FunctionProtoType>() &&
2660      Old->getNumParams() == New->getNumParams()) {
2661    SmallVector<QualType, 16> ArgTypes;
2662    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2663    const FunctionProtoType *OldProto
2664      = Old->getType()->getAs<FunctionProtoType>();
2665    const FunctionProtoType *NewProto
2666      = New->getType()->getAs<FunctionProtoType>();
2667
2668    // Determine whether this is the GNU C extension.
2669    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2670                                               NewProto->getResultType());
2671    bool LooseCompatible = !MergedReturn.isNull();
2672    for (unsigned Idx = 0, End = Old->getNumParams();
2673         LooseCompatible && Idx != End; ++Idx) {
2674      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2675      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2676      if (Context.typesAreCompatible(OldParm->getType(),
2677                                     NewProto->getArgType(Idx))) {
2678        ArgTypes.push_back(NewParm->getType());
2679      } else if (Context.typesAreCompatible(OldParm->getType(),
2680                                            NewParm->getType(),
2681                                            /*CompareUnqualified=*/true)) {
2682        GNUCompatibleParamWarning Warn
2683          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2684        Warnings.push_back(Warn);
2685        ArgTypes.push_back(NewParm->getType());
2686      } else
2687        LooseCompatible = false;
2688    }
2689
2690    if (LooseCompatible) {
2691      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2692        Diag(Warnings[Warn].NewParm->getLocation(),
2693             diag::ext_param_promoted_not_compatible_with_prototype)
2694          << Warnings[Warn].PromotedType
2695          << Warnings[Warn].OldParm->getType();
2696        if (Warnings[Warn].OldParm->getLocation().isValid())
2697          Diag(Warnings[Warn].OldParm->getLocation(),
2698               diag::note_previous_declaration);
2699      }
2700
2701      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2702                                           OldProto->getExtProtoInfo()));
2703      return MergeCompatibleFunctionDecls(New, Old, S);
2704    }
2705
2706    // Fall through to diagnose conflicting types.
2707  }
2708
2709  // A function that has already been declared has been redeclared or
2710  // defined with a different type; show an appropriate diagnostic.
2711
2712  // If the previous declaration was an implicitly-generated builtin
2713  // declaration, then at the very least we should use a specialized note.
2714  unsigned BuiltinID;
2715  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2716    // If it's actually a library-defined builtin function like 'malloc'
2717    // or 'printf', just warn about the incompatible redeclaration.
2718    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2719      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2720      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2721        << Old << Old->getType();
2722
2723      // If this is a global redeclaration, just forget hereafter
2724      // about the "builtin-ness" of the function.
2725      //
2726      // Doing this for local extern declarations is problematic.  If
2727      // the builtin declaration remains visible, a second invalid
2728      // local declaration will produce a hard error; if it doesn't
2729      // remain visible, a single bogus local redeclaration (which is
2730      // actually only a warning) could break all the downstream code.
2731      if (!New->getDeclContext()->isFunctionOrMethod())
2732        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2733
2734      return false;
2735    }
2736
2737    PrevDiag = diag::note_previous_builtin_declaration;
2738  }
2739
2740  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2741  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2742  return true;
2743}
2744
2745/// \brief Completes the merge of two function declarations that are
2746/// known to be compatible.
2747///
2748/// This routine handles the merging of attributes and other
2749/// properties of function declarations form the old declaration to
2750/// the new declaration, once we know that New is in fact a
2751/// redeclaration of Old.
2752///
2753/// \returns false
2754bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2755                                        Scope *S) {
2756  // Merge the attributes
2757  mergeDeclAttributes(New, Old);
2758
2759  // Merge "pure" flag.
2760  if (Old->isPure())
2761    New->setPure();
2762
2763  // Merge "used" flag.
2764  if (Old->isUsed(false))
2765    New->setUsed();
2766
2767  // Merge attributes from the parameters.  These can mismatch with K&R
2768  // declarations.
2769  if (New->getNumParams() == Old->getNumParams())
2770    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2771      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2772                               *this);
2773
2774  if (getLangOpts().CPlusPlus)
2775    return MergeCXXFunctionDecl(New, Old, S);
2776
2777  // Merge the function types so the we get the composite types for the return
2778  // and argument types.
2779  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2780  if (!Merged.isNull())
2781    New->setType(Merged);
2782
2783  return false;
2784}
2785
2786
2787void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2788                                ObjCMethodDecl *oldMethod) {
2789
2790  // Merge the attributes, including deprecated/unavailable
2791  AvailabilityMergeKind MergeKind =
2792    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2793                                                   : AMK_Override;
2794  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2795
2796  // Merge attributes from the parameters.
2797  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2798                                       oe = oldMethod->param_end();
2799  for (ObjCMethodDecl::param_iterator
2800         ni = newMethod->param_begin(), ne = newMethod->param_end();
2801       ni != ne && oi != oe; ++ni, ++oi)
2802    mergeParamDeclAttributes(*ni, *oi, *this);
2803
2804  CheckObjCMethodOverride(newMethod, oldMethod);
2805}
2806
2807/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2808/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2809/// emitting diagnostics as appropriate.
2810///
2811/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2812/// to here in AddInitializerToDecl. We can't check them before the initializer
2813/// is attached.
2814void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2815  if (New->isInvalidDecl() || Old->isInvalidDecl())
2816    return;
2817
2818  QualType MergedT;
2819  if (getLangOpts().CPlusPlus) {
2820    if (New->getType()->isUndeducedType()) {
2821      // We don't know what the new type is until the initializer is attached.
2822      return;
2823    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2824      // These could still be something that needs exception specs checked.
2825      return MergeVarDeclExceptionSpecs(New, Old);
2826    }
2827    // C++ [basic.link]p10:
2828    //   [...] the types specified by all declarations referring to a given
2829    //   object or function shall be identical, except that declarations for an
2830    //   array object can specify array types that differ by the presence or
2831    //   absence of a major array bound (8.3.4).
2832    else if (Old->getType()->isIncompleteArrayType() &&
2833             New->getType()->isArrayType()) {
2834      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2835      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2836      if (Context.hasSameType(OldArray->getElementType(),
2837                              NewArray->getElementType()))
2838        MergedT = New->getType();
2839    } else if (Old->getType()->isArrayType() &&
2840             New->getType()->isIncompleteArrayType()) {
2841      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2842      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2843      if (Context.hasSameType(OldArray->getElementType(),
2844                              NewArray->getElementType()))
2845        MergedT = Old->getType();
2846    } else if (New->getType()->isObjCObjectPointerType()
2847               && Old->getType()->isObjCObjectPointerType()) {
2848        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2849                                                        Old->getType());
2850    }
2851  } else {
2852    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2853  }
2854  if (MergedT.isNull()) {
2855    Diag(New->getLocation(), diag::err_redefinition_different_type)
2856      << New->getDeclName() << New->getType() << Old->getType();
2857    Diag(Old->getLocation(), diag::note_previous_definition);
2858    return New->setInvalidDecl();
2859  }
2860
2861  // Don't actually update the type on the new declaration if the old
2862  // declaration was a extern declaration in a different scope.
2863  if (!OldWasHidden)
2864    New->setType(MergedT);
2865}
2866
2867/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2868/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2869/// situation, merging decls or emitting diagnostics as appropriate.
2870///
2871/// Tentative definition rules (C99 6.9.2p2) are checked by
2872/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2873/// definitions here, since the initializer hasn't been attached.
2874///
2875void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2876                        bool PreviousWasHidden) {
2877  // If the new decl is already invalid, don't do any other checking.
2878  if (New->isInvalidDecl())
2879    return;
2880
2881  // Verify the old decl was also a variable.
2882  VarDecl *Old = 0;
2883  if (!Previous.isSingleResult() ||
2884      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2885    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2886      << New->getDeclName();
2887    Diag(Previous.getRepresentativeDecl()->getLocation(),
2888         diag::note_previous_definition);
2889    return New->setInvalidDecl();
2890  }
2891
2892  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2893    return;
2894
2895  // C++ [class.mem]p1:
2896  //   A member shall not be declared twice in the member-specification [...]
2897  //
2898  // Here, we need only consider static data members.
2899  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2900    Diag(New->getLocation(), diag::err_duplicate_member)
2901      << New->getIdentifier();
2902    Diag(Old->getLocation(), diag::note_previous_declaration);
2903    New->setInvalidDecl();
2904  }
2905
2906  mergeDeclAttributes(New, Old);
2907  // Warn if an already-declared variable is made a weak_import in a subsequent
2908  // declaration
2909  if (New->getAttr<WeakImportAttr>() &&
2910      Old->getStorageClass() == SC_None &&
2911      !Old->getAttr<WeakImportAttr>()) {
2912    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914    // Remove weak_import attribute on new declaration.
2915    New->dropAttr<WeakImportAttr>();
2916  }
2917
2918  // Merge the types.
2919  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2920  if (New->isInvalidDecl())
2921    return;
2922
2923  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2924  if (New->getStorageClass() == SC_Static &&
2925      !New->isStaticDataMember() &&
2926      Old->hasExternalFormalLinkage()) {
2927    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2928    Diag(Old->getLocation(), diag::note_previous_definition);
2929    return New->setInvalidDecl();
2930  }
2931  // C99 6.2.2p4:
2932  //   For an identifier declared with the storage-class specifier
2933  //   extern in a scope in which a prior declaration of that
2934  //   identifier is visible,23) if the prior declaration specifies
2935  //   internal or external linkage, the linkage of the identifier at
2936  //   the later declaration is the same as the linkage specified at
2937  //   the prior declaration. If no prior declaration is visible, or
2938  //   if the prior declaration specifies no linkage, then the
2939  //   identifier has external linkage.
2940  if (New->hasExternalStorage() && Old->hasLinkage())
2941    /* Okay */;
2942  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2943           !New->isStaticDataMember() &&
2944           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2945    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2946    Diag(Old->getLocation(), diag::note_previous_definition);
2947    return New->setInvalidDecl();
2948  }
2949
2950  // Check if extern is followed by non-extern and vice-versa.
2951  if (New->hasExternalStorage() &&
2952      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2953    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2954    Diag(Old->getLocation(), diag::note_previous_definition);
2955    return New->setInvalidDecl();
2956  }
2957  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2958      !New->hasExternalStorage()) {
2959    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2960    Diag(Old->getLocation(), diag::note_previous_definition);
2961    return New->setInvalidDecl();
2962  }
2963
2964  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2965
2966  // FIXME: The test for external storage here seems wrong? We still
2967  // need to check for mismatches.
2968  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2969      // Don't complain about out-of-line definitions of static members.
2970      !(Old->getLexicalDeclContext()->isRecord() &&
2971        !New->getLexicalDeclContext()->isRecord())) {
2972    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2973    Diag(Old->getLocation(), diag::note_previous_definition);
2974    return New->setInvalidDecl();
2975  }
2976
2977  if (New->getTLSKind() != Old->getTLSKind()) {
2978    if (!Old->getTLSKind()) {
2979      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2980      Diag(Old->getLocation(), diag::note_previous_declaration);
2981    } else if (!New->getTLSKind()) {
2982      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2983      Diag(Old->getLocation(), diag::note_previous_declaration);
2984    } else {
2985      // Do not allow redeclaration to change the variable between requiring
2986      // static and dynamic initialization.
2987      // FIXME: GCC allows this, but uses the TLS keyword on the first
2988      // declaration to determine the kind. Do we need to be compatible here?
2989      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
2990        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
2991      Diag(Old->getLocation(), diag::note_previous_declaration);
2992    }
2993  }
2994
2995  // C++ doesn't have tentative definitions, so go right ahead and check here.
2996  const VarDecl *Def;
2997  if (getLangOpts().CPlusPlus &&
2998      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2999      (Def = Old->getDefinition())) {
3000    Diag(New->getLocation(), diag::err_redefinition)
3001      << New->getDeclName();
3002    Diag(Def->getLocation(), diag::note_previous_definition);
3003    New->setInvalidDecl();
3004    return;
3005  }
3006
3007  if (haveIncompatibleLanguageLinkages(Old, New)) {
3008    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3009    Diag(Old->getLocation(), diag::note_previous_definition);
3010    New->setInvalidDecl();
3011    return;
3012  }
3013
3014  // Merge "used" flag.
3015  if (Old->isUsed(false))
3016    New->setUsed();
3017
3018  // Keep a chain of previous declarations.
3019  New->setPreviousDeclaration(Old);
3020
3021  // Inherit access appropriately.
3022  New->setAccess(Old->getAccess());
3023}
3024
3025/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3026/// no declarator (e.g. "struct foo;") is parsed.
3027Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3028                                       DeclSpec &DS) {
3029  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3030}
3031
3032/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3033/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3034/// parameters to cope with template friend declarations.
3035Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3036                                       DeclSpec &DS,
3037                                       MultiTemplateParamsArg TemplateParams,
3038                                       bool IsExplicitInstantiation) {
3039  Decl *TagD = 0;
3040  TagDecl *Tag = 0;
3041  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3042      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3043      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3044      DS.getTypeSpecType() == DeclSpec::TST_union ||
3045      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3046    TagD = DS.getRepAsDecl();
3047
3048    if (!TagD) // We probably had an error
3049      return 0;
3050
3051    // Note that the above type specs guarantee that the
3052    // type rep is a Decl, whereas in many of the others
3053    // it's a Type.
3054    if (isa<TagDecl>(TagD))
3055      Tag = cast<TagDecl>(TagD);
3056    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3057      Tag = CTD->getTemplatedDecl();
3058  }
3059
3060  if (Tag) {
3061    getASTContext().addUnnamedTag(Tag);
3062    Tag->setFreeStanding();
3063    if (Tag->isInvalidDecl())
3064      return Tag;
3065  }
3066
3067  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3068    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3069    // or incomplete types shall not be restrict-qualified."
3070    if (TypeQuals & DeclSpec::TQ_restrict)
3071      Diag(DS.getRestrictSpecLoc(),
3072           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3073           << DS.getSourceRange();
3074  }
3075
3076  if (DS.isConstexprSpecified()) {
3077    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3078    // and definitions of functions and variables.
3079    if (Tag)
3080      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3081        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3082            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3083            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3084            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3085    else
3086      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3087    // Don't emit warnings after this error.
3088    return TagD;
3089  }
3090
3091  DiagnoseFunctionSpecifiers(DS);
3092
3093  if (DS.isFriendSpecified()) {
3094    // If we're dealing with a decl but not a TagDecl, assume that
3095    // whatever routines created it handled the friendship aspect.
3096    if (TagD && !Tag)
3097      return 0;
3098    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3099  }
3100
3101  CXXScopeSpec &SS = DS.getTypeSpecScope();
3102  bool IsExplicitSpecialization =
3103    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3104  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3105      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3106    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3107    // nested-name-specifier unless it is an explicit instantiation
3108    // or an explicit specialization.
3109    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3110    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3111      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3112          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3113          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3114          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3115      << SS.getRange();
3116    return 0;
3117  }
3118
3119  // Track whether this decl-specifier declares anything.
3120  bool DeclaresAnything = true;
3121
3122  // Handle anonymous struct definitions.
3123  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3124    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3125        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3126      if (getLangOpts().CPlusPlus ||
3127          Record->getDeclContext()->isRecord())
3128        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3129
3130      DeclaresAnything = false;
3131    }
3132  }
3133
3134  // Check for Microsoft C extension: anonymous struct member.
3135  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3136      CurContext->isRecord() &&
3137      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3138    // Handle 2 kinds of anonymous struct:
3139    //   struct STRUCT;
3140    // and
3141    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3142    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3143    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3144        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3145         DS.getRepAsType().get()->isStructureType())) {
3146      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3147        << DS.getSourceRange();
3148      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3149    }
3150  }
3151
3152  // Skip all the checks below if we have a type error.
3153  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3154      (TagD && TagD->isInvalidDecl()))
3155    return TagD;
3156
3157  if (getLangOpts().CPlusPlus &&
3158      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3159    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3160      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3161          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3162        DeclaresAnything = false;
3163
3164  if (!DS.isMissingDeclaratorOk()) {
3165    // Customize diagnostic for a typedef missing a name.
3166    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3167      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3168        << DS.getSourceRange();
3169    else
3170      DeclaresAnything = false;
3171  }
3172
3173  if (DS.isModulePrivateSpecified() &&
3174      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3175    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3176      << Tag->getTagKind()
3177      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3178
3179  ActOnDocumentableDecl(TagD);
3180
3181  // C 6.7/2:
3182  //   A declaration [...] shall declare at least a declarator [...], a tag,
3183  //   or the members of an enumeration.
3184  // C++ [dcl.dcl]p3:
3185  //   [If there are no declarators], and except for the declaration of an
3186  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3187  //   names into the program, or shall redeclare a name introduced by a
3188  //   previous declaration.
3189  if (!DeclaresAnything) {
3190    // In C, we allow this as a (popular) extension / bug. Don't bother
3191    // producing further diagnostics for redundant qualifiers after this.
3192    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3193    return TagD;
3194  }
3195
3196  // C++ [dcl.stc]p1:
3197  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3198  //   init-declarator-list of the declaration shall not be empty.
3199  // C++ [dcl.fct.spec]p1:
3200  //   If a cv-qualifier appears in a decl-specifier-seq, the
3201  //   init-declarator-list of the declaration shall not be empty.
3202  //
3203  // Spurious qualifiers here appear to be valid in C.
3204  unsigned DiagID = diag::warn_standalone_specifier;
3205  if (getLangOpts().CPlusPlus)
3206    DiagID = diag::ext_standalone_specifier;
3207
3208  // Note that a linkage-specification sets a storage class, but
3209  // 'extern "C" struct foo;' is actually valid and not theoretically
3210  // useless.
3211  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3212    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3213      Diag(DS.getStorageClassSpecLoc(), DiagID)
3214        << DeclSpec::getSpecifierName(SCS);
3215
3216  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3217    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3218      << DeclSpec::getSpecifierName(TSCS);
3219  if (DS.getTypeQualifiers()) {
3220    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3221      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3222    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3223      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3224    // Restrict is covered above.
3225    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3226      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3227  }
3228
3229  // Warn about ignored type attributes, for example:
3230  // __attribute__((aligned)) struct A;
3231  // Attributes should be placed after tag to apply to type declaration.
3232  if (!DS.getAttributes().empty()) {
3233    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3234    if (TypeSpecType == DeclSpec::TST_class ||
3235        TypeSpecType == DeclSpec::TST_struct ||
3236        TypeSpecType == DeclSpec::TST_interface ||
3237        TypeSpecType == DeclSpec::TST_union ||
3238        TypeSpecType == DeclSpec::TST_enum) {
3239      AttributeList* attrs = DS.getAttributes().getList();
3240      while (attrs) {
3241        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3242        << attrs->getName()
3243        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3244            TypeSpecType == DeclSpec::TST_struct ? 1 :
3245            TypeSpecType == DeclSpec::TST_union ? 2 :
3246            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3247        attrs = attrs->getNext();
3248      }
3249    }
3250  }
3251
3252  return TagD;
3253}
3254
3255/// We are trying to inject an anonymous member into the given scope;
3256/// check if there's an existing declaration that can't be overloaded.
3257///
3258/// \return true if this is a forbidden redeclaration
3259static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3260                                         Scope *S,
3261                                         DeclContext *Owner,
3262                                         DeclarationName Name,
3263                                         SourceLocation NameLoc,
3264                                         unsigned diagnostic) {
3265  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3266                 Sema::ForRedeclaration);
3267  if (!SemaRef.LookupName(R, S)) return false;
3268
3269  if (R.getAsSingle<TagDecl>())
3270    return false;
3271
3272  // Pick a representative declaration.
3273  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3274  assert(PrevDecl && "Expected a non-null Decl");
3275
3276  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3277    return false;
3278
3279  SemaRef.Diag(NameLoc, diagnostic) << Name;
3280  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3281
3282  return true;
3283}
3284
3285/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3286/// anonymous struct or union AnonRecord into the owning context Owner
3287/// and scope S. This routine will be invoked just after we realize
3288/// that an unnamed union or struct is actually an anonymous union or
3289/// struct, e.g.,
3290///
3291/// @code
3292/// union {
3293///   int i;
3294///   float f;
3295/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3296///    // f into the surrounding scope.x
3297/// @endcode
3298///
3299/// This routine is recursive, injecting the names of nested anonymous
3300/// structs/unions into the owning context and scope as well.
3301static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3302                                                DeclContext *Owner,
3303                                                RecordDecl *AnonRecord,
3304                                                AccessSpecifier AS,
3305                              SmallVector<NamedDecl*, 2> &Chaining,
3306                                                      bool MSAnonStruct) {
3307  unsigned diagKind
3308    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3309                            : diag::err_anonymous_struct_member_redecl;
3310
3311  bool Invalid = false;
3312
3313  // Look every FieldDecl and IndirectFieldDecl with a name.
3314  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3315                               DEnd = AnonRecord->decls_end();
3316       D != DEnd; ++D) {
3317    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3318        cast<NamedDecl>(*D)->getDeclName()) {
3319      ValueDecl *VD = cast<ValueDecl>(*D);
3320      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3321                                       VD->getLocation(), diagKind)) {
3322        // C++ [class.union]p2:
3323        //   The names of the members of an anonymous union shall be
3324        //   distinct from the names of any other entity in the
3325        //   scope in which the anonymous union is declared.
3326        Invalid = true;
3327      } else {
3328        // C++ [class.union]p2:
3329        //   For the purpose of name lookup, after the anonymous union
3330        //   definition, the members of the anonymous union are
3331        //   considered to have been defined in the scope in which the
3332        //   anonymous union is declared.
3333        unsigned OldChainingSize = Chaining.size();
3334        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3335          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3336               PE = IF->chain_end(); PI != PE; ++PI)
3337            Chaining.push_back(*PI);
3338        else
3339          Chaining.push_back(VD);
3340
3341        assert(Chaining.size() >= 2);
3342        NamedDecl **NamedChain =
3343          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3344        for (unsigned i = 0; i < Chaining.size(); i++)
3345          NamedChain[i] = Chaining[i];
3346
3347        IndirectFieldDecl* IndirectField =
3348          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3349                                    VD->getIdentifier(), VD->getType(),
3350                                    NamedChain, Chaining.size());
3351
3352        IndirectField->setAccess(AS);
3353        IndirectField->setImplicit();
3354        SemaRef.PushOnScopeChains(IndirectField, S);
3355
3356        // That includes picking up the appropriate access specifier.
3357        if (AS != AS_none) IndirectField->setAccess(AS);
3358
3359        Chaining.resize(OldChainingSize);
3360      }
3361    }
3362  }
3363
3364  return Invalid;
3365}
3366
3367/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3368/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3369/// illegal input values are mapped to SC_None.
3370static StorageClass
3371StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3372  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3373  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3374         "Parser allowed 'typedef' as storage class VarDecl.");
3375  switch (StorageClassSpec) {
3376  case DeclSpec::SCS_unspecified:    return SC_None;
3377  case DeclSpec::SCS_extern:
3378    if (DS.isExternInLinkageSpec())
3379      return SC_None;
3380    return SC_Extern;
3381  case DeclSpec::SCS_static:         return SC_Static;
3382  case DeclSpec::SCS_auto:           return SC_Auto;
3383  case DeclSpec::SCS_register:       return SC_Register;
3384  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3385    // Illegal SCSs map to None: error reporting is up to the caller.
3386  case DeclSpec::SCS_mutable:        // Fall through.
3387  case DeclSpec::SCS_typedef:        return SC_None;
3388  }
3389  llvm_unreachable("unknown storage class specifier");
3390}
3391
3392/// BuildAnonymousStructOrUnion - Handle the declaration of an
3393/// anonymous structure or union. Anonymous unions are a C++ feature
3394/// (C++ [class.union]) and a C11 feature; anonymous structures
3395/// are a C11 feature and GNU C++ extension.
3396Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3397                                             AccessSpecifier AS,
3398                                             RecordDecl *Record) {
3399  DeclContext *Owner = Record->getDeclContext();
3400
3401  // Diagnose whether this anonymous struct/union is an extension.
3402  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3403    Diag(Record->getLocation(), diag::ext_anonymous_union);
3404  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3405    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3406  else if (!Record->isUnion() && !getLangOpts().C11)
3407    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3408
3409  // C and C++ require different kinds of checks for anonymous
3410  // structs/unions.
3411  bool Invalid = false;
3412  if (getLangOpts().CPlusPlus) {
3413    const char* PrevSpec = 0;
3414    unsigned DiagID;
3415    if (Record->isUnion()) {
3416      // C++ [class.union]p6:
3417      //   Anonymous unions declared in a named namespace or in the
3418      //   global namespace shall be declared static.
3419      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3420          (isa<TranslationUnitDecl>(Owner) ||
3421           (isa<NamespaceDecl>(Owner) &&
3422            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3423        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3424          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3425
3426        // Recover by adding 'static'.
3427        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3428                               PrevSpec, DiagID);
3429      }
3430      // C++ [class.union]p6:
3431      //   A storage class is not allowed in a declaration of an
3432      //   anonymous union in a class scope.
3433      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3434               isa<RecordDecl>(Owner)) {
3435        Diag(DS.getStorageClassSpecLoc(),
3436             diag::err_anonymous_union_with_storage_spec)
3437          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3438
3439        // Recover by removing the storage specifier.
3440        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3441                               SourceLocation(),
3442                               PrevSpec, DiagID);
3443      }
3444    }
3445
3446    // Ignore const/volatile/restrict qualifiers.
3447    if (DS.getTypeQualifiers()) {
3448      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3449        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3450          << Record->isUnion() << "const"
3451          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3452      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3453        Diag(DS.getVolatileSpecLoc(),
3454             diag::ext_anonymous_struct_union_qualified)
3455          << Record->isUnion() << "volatile"
3456          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3457      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3458        Diag(DS.getRestrictSpecLoc(),
3459             diag::ext_anonymous_struct_union_qualified)
3460          << Record->isUnion() << "restrict"
3461          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3462      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3463        Diag(DS.getAtomicSpecLoc(),
3464             diag::ext_anonymous_struct_union_qualified)
3465          << Record->isUnion() << "_Atomic"
3466          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3467
3468      DS.ClearTypeQualifiers();
3469    }
3470
3471    // C++ [class.union]p2:
3472    //   The member-specification of an anonymous union shall only
3473    //   define non-static data members. [Note: nested types and
3474    //   functions cannot be declared within an anonymous union. ]
3475    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3476                                 MemEnd = Record->decls_end();
3477         Mem != MemEnd; ++Mem) {
3478      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3479        // C++ [class.union]p3:
3480        //   An anonymous union shall not have private or protected
3481        //   members (clause 11).
3482        assert(FD->getAccess() != AS_none);
3483        if (FD->getAccess() != AS_public) {
3484          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3485            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3486          Invalid = true;
3487        }
3488
3489        // C++ [class.union]p1
3490        //   An object of a class with a non-trivial constructor, a non-trivial
3491        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3492        //   assignment operator cannot be a member of a union, nor can an
3493        //   array of such objects.
3494        if (CheckNontrivialField(FD))
3495          Invalid = true;
3496      } else if ((*Mem)->isImplicit()) {
3497        // Any implicit members are fine.
3498      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3499        // This is a type that showed up in an
3500        // elaborated-type-specifier inside the anonymous struct or
3501        // union, but which actually declares a type outside of the
3502        // anonymous struct or union. It's okay.
3503      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3504        if (!MemRecord->isAnonymousStructOrUnion() &&
3505            MemRecord->getDeclName()) {
3506          // Visual C++ allows type definition in anonymous struct or union.
3507          if (getLangOpts().MicrosoftExt)
3508            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3509              << (int)Record->isUnion();
3510          else {
3511            // This is a nested type declaration.
3512            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3513              << (int)Record->isUnion();
3514            Invalid = true;
3515          }
3516        } else {
3517          // This is an anonymous type definition within another anonymous type.
3518          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3519          // not part of standard C++.
3520          Diag(MemRecord->getLocation(),
3521               diag::ext_anonymous_record_with_anonymous_type)
3522            << (int)Record->isUnion();
3523        }
3524      } else if (isa<AccessSpecDecl>(*Mem)) {
3525        // Any access specifier is fine.
3526      } else {
3527        // We have something that isn't a non-static data
3528        // member. Complain about it.
3529        unsigned DK = diag::err_anonymous_record_bad_member;
3530        if (isa<TypeDecl>(*Mem))
3531          DK = diag::err_anonymous_record_with_type;
3532        else if (isa<FunctionDecl>(*Mem))
3533          DK = diag::err_anonymous_record_with_function;
3534        else if (isa<VarDecl>(*Mem))
3535          DK = diag::err_anonymous_record_with_static;
3536
3537        // Visual C++ allows type definition in anonymous struct or union.
3538        if (getLangOpts().MicrosoftExt &&
3539            DK == diag::err_anonymous_record_with_type)
3540          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3541            << (int)Record->isUnion();
3542        else {
3543          Diag((*Mem)->getLocation(), DK)
3544              << (int)Record->isUnion();
3545          Invalid = true;
3546        }
3547      }
3548    }
3549  }
3550
3551  if (!Record->isUnion() && !Owner->isRecord()) {
3552    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3553      << (int)getLangOpts().CPlusPlus;
3554    Invalid = true;
3555  }
3556
3557  // Mock up a declarator.
3558  Declarator Dc(DS, Declarator::MemberContext);
3559  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3560  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3561
3562  // Create a declaration for this anonymous struct/union.
3563  NamedDecl *Anon = 0;
3564  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3565    Anon = FieldDecl::Create(Context, OwningClass,
3566                             DS.getLocStart(),
3567                             Record->getLocation(),
3568                             /*IdentifierInfo=*/0,
3569                             Context.getTypeDeclType(Record),
3570                             TInfo,
3571                             /*BitWidth=*/0, /*Mutable=*/false,
3572                             /*InitStyle=*/ICIS_NoInit);
3573    Anon->setAccess(AS);
3574    if (getLangOpts().CPlusPlus)
3575      FieldCollector->Add(cast<FieldDecl>(Anon));
3576  } else {
3577    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3578    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3579    if (SCSpec == DeclSpec::SCS_mutable) {
3580      // mutable can only appear on non-static class members, so it's always
3581      // an error here
3582      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3583      Invalid = true;
3584      SC = SC_None;
3585    }
3586
3587    Anon = VarDecl::Create(Context, Owner,
3588                           DS.getLocStart(),
3589                           Record->getLocation(), /*IdentifierInfo=*/0,
3590                           Context.getTypeDeclType(Record),
3591                           TInfo, SC);
3592
3593    // Default-initialize the implicit variable. This initialization will be
3594    // trivial in almost all cases, except if a union member has an in-class
3595    // initializer:
3596    //   union { int n = 0; };
3597    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3598  }
3599  Anon->setImplicit();
3600
3601  // Add the anonymous struct/union object to the current
3602  // context. We'll be referencing this object when we refer to one of
3603  // its members.
3604  Owner->addDecl(Anon);
3605
3606  // Inject the members of the anonymous struct/union into the owning
3607  // context and into the identifier resolver chain for name lookup
3608  // purposes.
3609  SmallVector<NamedDecl*, 2> Chain;
3610  Chain.push_back(Anon);
3611
3612  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3613                                          Chain, false))
3614    Invalid = true;
3615
3616  // Mark this as an anonymous struct/union type. Note that we do not
3617  // do this until after we have already checked and injected the
3618  // members of this anonymous struct/union type, because otherwise
3619  // the members could be injected twice: once by DeclContext when it
3620  // builds its lookup table, and once by
3621  // InjectAnonymousStructOrUnionMembers.
3622  Record->setAnonymousStructOrUnion(true);
3623
3624  if (Invalid)
3625    Anon->setInvalidDecl();
3626
3627  return Anon;
3628}
3629
3630/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3631/// Microsoft C anonymous structure.
3632/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3633/// Example:
3634///
3635/// struct A { int a; };
3636/// struct B { struct A; int b; };
3637///
3638/// void foo() {
3639///   B var;
3640///   var.a = 3;
3641/// }
3642///
3643Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3644                                           RecordDecl *Record) {
3645
3646  // If there is no Record, get the record via the typedef.
3647  if (!Record)
3648    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3649
3650  // Mock up a declarator.
3651  Declarator Dc(DS, Declarator::TypeNameContext);
3652  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3653  assert(TInfo && "couldn't build declarator info for anonymous struct");
3654
3655  // Create a declaration for this anonymous struct.
3656  NamedDecl* Anon = FieldDecl::Create(Context,
3657                             cast<RecordDecl>(CurContext),
3658                             DS.getLocStart(),
3659                             DS.getLocStart(),
3660                             /*IdentifierInfo=*/0,
3661                             Context.getTypeDeclType(Record),
3662                             TInfo,
3663                             /*BitWidth=*/0, /*Mutable=*/false,
3664                             /*InitStyle=*/ICIS_NoInit);
3665  Anon->setImplicit();
3666
3667  // Add the anonymous struct object to the current context.
3668  CurContext->addDecl(Anon);
3669
3670  // Inject the members of the anonymous struct into the current
3671  // context and into the identifier resolver chain for name lookup
3672  // purposes.
3673  SmallVector<NamedDecl*, 2> Chain;
3674  Chain.push_back(Anon);
3675
3676  RecordDecl *RecordDef = Record->getDefinition();
3677  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3678                                                        RecordDef, AS_none,
3679                                                        Chain, true))
3680    Anon->setInvalidDecl();
3681
3682  return Anon;
3683}
3684
3685/// GetNameForDeclarator - Determine the full declaration name for the
3686/// given Declarator.
3687DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3688  return GetNameFromUnqualifiedId(D.getName());
3689}
3690
3691/// \brief Retrieves the declaration name from a parsed unqualified-id.
3692DeclarationNameInfo
3693Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3694  DeclarationNameInfo NameInfo;
3695  NameInfo.setLoc(Name.StartLocation);
3696
3697  switch (Name.getKind()) {
3698
3699  case UnqualifiedId::IK_ImplicitSelfParam:
3700  case UnqualifiedId::IK_Identifier:
3701    NameInfo.setName(Name.Identifier);
3702    NameInfo.setLoc(Name.StartLocation);
3703    return NameInfo;
3704
3705  case UnqualifiedId::IK_OperatorFunctionId:
3706    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3707                                           Name.OperatorFunctionId.Operator));
3708    NameInfo.setLoc(Name.StartLocation);
3709    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3710      = Name.OperatorFunctionId.SymbolLocations[0];
3711    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3712      = Name.EndLocation.getRawEncoding();
3713    return NameInfo;
3714
3715  case UnqualifiedId::IK_LiteralOperatorId:
3716    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3717                                                           Name.Identifier));
3718    NameInfo.setLoc(Name.StartLocation);
3719    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3720    return NameInfo;
3721
3722  case UnqualifiedId::IK_ConversionFunctionId: {
3723    TypeSourceInfo *TInfo;
3724    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3725    if (Ty.isNull())
3726      return DeclarationNameInfo();
3727    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3728                                               Context.getCanonicalType(Ty)));
3729    NameInfo.setLoc(Name.StartLocation);
3730    NameInfo.setNamedTypeInfo(TInfo);
3731    return NameInfo;
3732  }
3733
3734  case UnqualifiedId::IK_ConstructorName: {
3735    TypeSourceInfo *TInfo;
3736    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3737    if (Ty.isNull())
3738      return DeclarationNameInfo();
3739    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3740                                              Context.getCanonicalType(Ty)));
3741    NameInfo.setLoc(Name.StartLocation);
3742    NameInfo.setNamedTypeInfo(TInfo);
3743    return NameInfo;
3744  }
3745
3746  case UnqualifiedId::IK_ConstructorTemplateId: {
3747    // In well-formed code, we can only have a constructor
3748    // template-id that refers to the current context, so go there
3749    // to find the actual type being constructed.
3750    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3751    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3752      return DeclarationNameInfo();
3753
3754    // Determine the type of the class being constructed.
3755    QualType CurClassType = Context.getTypeDeclType(CurClass);
3756
3757    // FIXME: Check two things: that the template-id names the same type as
3758    // CurClassType, and that the template-id does not occur when the name
3759    // was qualified.
3760
3761    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3762                                    Context.getCanonicalType(CurClassType)));
3763    NameInfo.setLoc(Name.StartLocation);
3764    // FIXME: should we retrieve TypeSourceInfo?
3765    NameInfo.setNamedTypeInfo(0);
3766    return NameInfo;
3767  }
3768
3769  case UnqualifiedId::IK_DestructorName: {
3770    TypeSourceInfo *TInfo;
3771    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3772    if (Ty.isNull())
3773      return DeclarationNameInfo();
3774    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3775                                              Context.getCanonicalType(Ty)));
3776    NameInfo.setLoc(Name.StartLocation);
3777    NameInfo.setNamedTypeInfo(TInfo);
3778    return NameInfo;
3779  }
3780
3781  case UnqualifiedId::IK_TemplateId: {
3782    TemplateName TName = Name.TemplateId->Template.get();
3783    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3784    return Context.getNameForTemplate(TName, TNameLoc);
3785  }
3786
3787  } // switch (Name.getKind())
3788
3789  llvm_unreachable("Unknown name kind");
3790}
3791
3792static QualType getCoreType(QualType Ty) {
3793  do {
3794    if (Ty->isPointerType() || Ty->isReferenceType())
3795      Ty = Ty->getPointeeType();
3796    else if (Ty->isArrayType())
3797      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3798    else
3799      return Ty.withoutLocalFastQualifiers();
3800  } while (true);
3801}
3802
3803/// hasSimilarParameters - Determine whether the C++ functions Declaration
3804/// and Definition have "nearly" matching parameters. This heuristic is
3805/// used to improve diagnostics in the case where an out-of-line function
3806/// definition doesn't match any declaration within the class or namespace.
3807/// Also sets Params to the list of indices to the parameters that differ
3808/// between the declaration and the definition. If hasSimilarParameters
3809/// returns true and Params is empty, then all of the parameters match.
3810static bool hasSimilarParameters(ASTContext &Context,
3811                                     FunctionDecl *Declaration,
3812                                     FunctionDecl *Definition,
3813                                     SmallVectorImpl<unsigned> &Params) {
3814  Params.clear();
3815  if (Declaration->param_size() != Definition->param_size())
3816    return false;
3817  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3818    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3819    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3820
3821    // The parameter types are identical
3822    if (Context.hasSameType(DefParamTy, DeclParamTy))
3823      continue;
3824
3825    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3826    QualType DefParamBaseTy = getCoreType(DefParamTy);
3827    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3828    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3829
3830    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3831        (DeclTyName && DeclTyName == DefTyName))
3832      Params.push_back(Idx);
3833    else  // The two parameters aren't even close
3834      return false;
3835  }
3836
3837  return true;
3838}
3839
3840/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3841/// declarator needs to be rebuilt in the current instantiation.
3842/// Any bits of declarator which appear before the name are valid for
3843/// consideration here.  That's specifically the type in the decl spec
3844/// and the base type in any member-pointer chunks.
3845static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3846                                                    DeclarationName Name) {
3847  // The types we specifically need to rebuild are:
3848  //   - typenames, typeofs, and decltypes
3849  //   - types which will become injected class names
3850  // Of course, we also need to rebuild any type referencing such a
3851  // type.  It's safest to just say "dependent", but we call out a
3852  // few cases here.
3853
3854  DeclSpec &DS = D.getMutableDeclSpec();
3855  switch (DS.getTypeSpecType()) {
3856  case DeclSpec::TST_typename:
3857  case DeclSpec::TST_typeofType:
3858  case DeclSpec::TST_underlyingType:
3859  case DeclSpec::TST_atomic: {
3860    // Grab the type from the parser.
3861    TypeSourceInfo *TSI = 0;
3862    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3863    if (T.isNull() || !T->isDependentType()) break;
3864
3865    // Make sure there's a type source info.  This isn't really much
3866    // of a waste; most dependent types should have type source info
3867    // attached already.
3868    if (!TSI)
3869      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3870
3871    // Rebuild the type in the current instantiation.
3872    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3873    if (!TSI) return true;
3874
3875    // Store the new type back in the decl spec.
3876    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3877    DS.UpdateTypeRep(LocType);
3878    break;
3879  }
3880
3881  case DeclSpec::TST_decltype:
3882  case DeclSpec::TST_typeofExpr: {
3883    Expr *E = DS.getRepAsExpr();
3884    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3885    if (Result.isInvalid()) return true;
3886    DS.UpdateExprRep(Result.get());
3887    break;
3888  }
3889
3890  default:
3891    // Nothing to do for these decl specs.
3892    break;
3893  }
3894
3895  // It doesn't matter what order we do this in.
3896  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3897    DeclaratorChunk &Chunk = D.getTypeObject(I);
3898
3899    // The only type information in the declarator which can come
3900    // before the declaration name is the base type of a member
3901    // pointer.
3902    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3903      continue;
3904
3905    // Rebuild the scope specifier in-place.
3906    CXXScopeSpec &SS = Chunk.Mem.Scope();
3907    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3908      return true;
3909  }
3910
3911  return false;
3912}
3913
3914Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3915  D.setFunctionDefinitionKind(FDK_Declaration);
3916  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3917
3918  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3919      Dcl && Dcl->getDeclContext()->isFileContext())
3920    Dcl->setTopLevelDeclInObjCContainer();
3921
3922  return Dcl;
3923}
3924
3925/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3926///   If T is the name of a class, then each of the following shall have a
3927///   name different from T:
3928///     - every static data member of class T;
3929///     - every member function of class T
3930///     - every member of class T that is itself a type;
3931/// \returns true if the declaration name violates these rules.
3932bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3933                                   DeclarationNameInfo NameInfo) {
3934  DeclarationName Name = NameInfo.getName();
3935
3936  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3937    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3938      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3939      return true;
3940    }
3941
3942  return false;
3943}
3944
3945/// \brief Diagnose a declaration whose declarator-id has the given
3946/// nested-name-specifier.
3947///
3948/// \param SS The nested-name-specifier of the declarator-id.
3949///
3950/// \param DC The declaration context to which the nested-name-specifier
3951/// resolves.
3952///
3953/// \param Name The name of the entity being declared.
3954///
3955/// \param Loc The location of the name of the entity being declared.
3956///
3957/// \returns true if we cannot safely recover from this error, false otherwise.
3958bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3959                                        DeclarationName Name,
3960                                      SourceLocation Loc) {
3961  DeclContext *Cur = CurContext;
3962  while (isa<LinkageSpecDecl>(Cur))
3963    Cur = Cur->getParent();
3964
3965  // C++ [dcl.meaning]p1:
3966  //   A declarator-id shall not be qualified except for the definition
3967  //   of a member function (9.3) or static data member (9.4) outside of
3968  //   its class, the definition or explicit instantiation of a function
3969  //   or variable member of a namespace outside of its namespace, or the
3970  //   definition of an explicit specialization outside of its namespace,
3971  //   or the declaration of a friend function that is a member of
3972  //   another class or namespace (11.3). [...]
3973
3974  // The user provided a superfluous scope specifier that refers back to the
3975  // class or namespaces in which the entity is already declared.
3976  //
3977  // class X {
3978  //   void X::f();
3979  // };
3980  if (Cur->Equals(DC)) {
3981    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3982                                   : diag::err_member_extra_qualification)
3983      << Name << FixItHint::CreateRemoval(SS.getRange());
3984    SS.clear();
3985    return false;
3986  }
3987
3988  // Check whether the qualifying scope encloses the scope of the original
3989  // declaration.
3990  if (!Cur->Encloses(DC)) {
3991    if (Cur->isRecord())
3992      Diag(Loc, diag::err_member_qualification)
3993        << Name << SS.getRange();
3994    else if (isa<TranslationUnitDecl>(DC))
3995      Diag(Loc, diag::err_invalid_declarator_global_scope)
3996        << Name << SS.getRange();
3997    else if (isa<FunctionDecl>(Cur))
3998      Diag(Loc, diag::err_invalid_declarator_in_function)
3999        << Name << SS.getRange();
4000    else
4001      Diag(Loc, diag::err_invalid_declarator_scope)
4002      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4003
4004    return true;
4005  }
4006
4007  if (Cur->isRecord()) {
4008    // Cannot qualify members within a class.
4009    Diag(Loc, diag::err_member_qualification)
4010      << Name << SS.getRange();
4011    SS.clear();
4012
4013    // C++ constructors and destructors with incorrect scopes can break
4014    // our AST invariants by having the wrong underlying types. If
4015    // that's the case, then drop this declaration entirely.
4016    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4017         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4018        !Context.hasSameType(Name.getCXXNameType(),
4019                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4020      return true;
4021
4022    return false;
4023  }
4024
4025  // C++11 [dcl.meaning]p1:
4026  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4027  //   not begin with a decltype-specifer"
4028  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4029  while (SpecLoc.getPrefix())
4030    SpecLoc = SpecLoc.getPrefix();
4031  if (dyn_cast_or_null<DecltypeType>(
4032        SpecLoc.getNestedNameSpecifier()->getAsType()))
4033    Diag(Loc, diag::err_decltype_in_declarator)
4034      << SpecLoc.getTypeLoc().getSourceRange();
4035
4036  return false;
4037}
4038
4039NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4040                                  MultiTemplateParamsArg TemplateParamLists) {
4041  // TODO: consider using NameInfo for diagnostic.
4042  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4043  DeclarationName Name = NameInfo.getName();
4044
4045  // All of these full declarators require an identifier.  If it doesn't have
4046  // one, the ParsedFreeStandingDeclSpec action should be used.
4047  if (!Name) {
4048    if (!D.isInvalidType())  // Reject this if we think it is valid.
4049      Diag(D.getDeclSpec().getLocStart(),
4050           diag::err_declarator_need_ident)
4051        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4052    return 0;
4053  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4054    return 0;
4055
4056  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4057  // we find one that is.
4058  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4059         (S->getFlags() & Scope::TemplateParamScope) != 0)
4060    S = S->getParent();
4061
4062  DeclContext *DC = CurContext;
4063  if (D.getCXXScopeSpec().isInvalid())
4064    D.setInvalidType();
4065  else if (D.getCXXScopeSpec().isSet()) {
4066    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4067                                        UPPC_DeclarationQualifier))
4068      return 0;
4069
4070    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4071    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4072    if (!DC) {
4073      // If we could not compute the declaration context, it's because the
4074      // declaration context is dependent but does not refer to a class,
4075      // class template, or class template partial specialization. Complain
4076      // and return early, to avoid the coming semantic disaster.
4077      Diag(D.getIdentifierLoc(),
4078           diag::err_template_qualified_declarator_no_match)
4079        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4080        << D.getCXXScopeSpec().getRange();
4081      return 0;
4082    }
4083    bool IsDependentContext = DC->isDependentContext();
4084
4085    if (!IsDependentContext &&
4086        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4087      return 0;
4088
4089    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4090      Diag(D.getIdentifierLoc(),
4091           diag::err_member_def_undefined_record)
4092        << Name << DC << D.getCXXScopeSpec().getRange();
4093      D.setInvalidType();
4094    } else if (!D.getDeclSpec().isFriendSpecified()) {
4095      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4096                                      Name, D.getIdentifierLoc())) {
4097        if (DC->isRecord())
4098          return 0;
4099
4100        D.setInvalidType();
4101      }
4102    }
4103
4104    // Check whether we need to rebuild the type of the given
4105    // declaration in the current instantiation.
4106    if (EnteringContext && IsDependentContext &&
4107        TemplateParamLists.size() != 0) {
4108      ContextRAII SavedContext(*this, DC);
4109      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4110        D.setInvalidType();
4111    }
4112  }
4113
4114  if (DiagnoseClassNameShadow(DC, NameInfo))
4115    // If this is a typedef, we'll end up spewing multiple diagnostics.
4116    // Just return early; it's safer.
4117    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4118      return 0;
4119
4120  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4121  QualType R = TInfo->getType();
4122
4123  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4124                                      UPPC_DeclarationType))
4125    D.setInvalidType();
4126
4127  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4128                        ForRedeclaration);
4129
4130  // See if this is a redefinition of a variable in the same scope.
4131  if (!D.getCXXScopeSpec().isSet()) {
4132    bool IsLinkageLookup = false;
4133
4134    // If the declaration we're planning to build will be a function
4135    // or object with linkage, then look for another declaration with
4136    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4137    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4138      /* Do nothing*/;
4139    else if (R->isFunctionType()) {
4140      if (CurContext->isFunctionOrMethod() ||
4141          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4142        IsLinkageLookup = true;
4143    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4144      IsLinkageLookup = true;
4145    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4146             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4147      IsLinkageLookup = true;
4148
4149    if (IsLinkageLookup)
4150      Previous.clear(LookupRedeclarationWithLinkage);
4151
4152    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4153  } else { // Something like "int foo::x;"
4154    LookupQualifiedName(Previous, DC);
4155
4156    // C++ [dcl.meaning]p1:
4157    //   When the declarator-id is qualified, the declaration shall refer to a
4158    //  previously declared member of the class or namespace to which the
4159    //  qualifier refers (or, in the case of a namespace, of an element of the
4160    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4161    //  thereof; [...]
4162    //
4163    // Note that we already checked the context above, and that we do not have
4164    // enough information to make sure that Previous contains the declaration
4165    // we want to match. For example, given:
4166    //
4167    //   class X {
4168    //     void f();
4169    //     void f(float);
4170    //   };
4171    //
4172    //   void X::f(int) { } // ill-formed
4173    //
4174    // In this case, Previous will point to the overload set
4175    // containing the two f's declared in X, but neither of them
4176    // matches.
4177
4178    // C++ [dcl.meaning]p1:
4179    //   [...] the member shall not merely have been introduced by a
4180    //   using-declaration in the scope of the class or namespace nominated by
4181    //   the nested-name-specifier of the declarator-id.
4182    RemoveUsingDecls(Previous);
4183  }
4184
4185  if (Previous.isSingleResult() &&
4186      Previous.getFoundDecl()->isTemplateParameter()) {
4187    // Maybe we will complain about the shadowed template parameter.
4188    if (!D.isInvalidType())
4189      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4190                                      Previous.getFoundDecl());
4191
4192    // Just pretend that we didn't see the previous declaration.
4193    Previous.clear();
4194  }
4195
4196  // In C++, the previous declaration we find might be a tag type
4197  // (class or enum). In this case, the new declaration will hide the
4198  // tag type. Note that this does does not apply if we're declaring a
4199  // typedef (C++ [dcl.typedef]p4).
4200  if (Previous.isSingleTagDecl() &&
4201      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4202    Previous.clear();
4203
4204  // Check that there are no default arguments other than in the parameters
4205  // of a function declaration (C++ only).
4206  if (getLangOpts().CPlusPlus)
4207    CheckExtraCXXDefaultArguments(D);
4208
4209  NamedDecl *New;
4210
4211  bool AddToScope = true;
4212  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4213    if (TemplateParamLists.size()) {
4214      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4215      return 0;
4216    }
4217
4218    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4219  } else if (R->isFunctionType()) {
4220    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4221                                  TemplateParamLists,
4222                                  AddToScope);
4223  } else {
4224    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4225                                  TemplateParamLists);
4226  }
4227
4228  if (New == 0)
4229    return 0;
4230
4231  // If this has an identifier and is not an invalid redeclaration or
4232  // function template specialization, add it to the scope stack.
4233  if (New->getDeclName() && AddToScope &&
4234       !(D.isRedeclaration() && New->isInvalidDecl()))
4235    PushOnScopeChains(New, S);
4236
4237  return New;
4238}
4239
4240/// Helper method to turn variable array types into constant array
4241/// types in certain situations which would otherwise be errors (for
4242/// GCC compatibility).
4243static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4244                                                    ASTContext &Context,
4245                                                    bool &SizeIsNegative,
4246                                                    llvm::APSInt &Oversized) {
4247  // This method tries to turn a variable array into a constant
4248  // array even when the size isn't an ICE.  This is necessary
4249  // for compatibility with code that depends on gcc's buggy
4250  // constant expression folding, like struct {char x[(int)(char*)2];}
4251  SizeIsNegative = false;
4252  Oversized = 0;
4253
4254  if (T->isDependentType())
4255    return QualType();
4256
4257  QualifierCollector Qs;
4258  const Type *Ty = Qs.strip(T);
4259
4260  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4261    QualType Pointee = PTy->getPointeeType();
4262    QualType FixedType =
4263        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4264                                            Oversized);
4265    if (FixedType.isNull()) return FixedType;
4266    FixedType = Context.getPointerType(FixedType);
4267    return Qs.apply(Context, FixedType);
4268  }
4269  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4270    QualType Inner = PTy->getInnerType();
4271    QualType FixedType =
4272        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4273                                            Oversized);
4274    if (FixedType.isNull()) return FixedType;
4275    FixedType = Context.getParenType(FixedType);
4276    return Qs.apply(Context, FixedType);
4277  }
4278
4279  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4280  if (!VLATy)
4281    return QualType();
4282  // FIXME: We should probably handle this case
4283  if (VLATy->getElementType()->isVariablyModifiedType())
4284    return QualType();
4285
4286  llvm::APSInt Res;
4287  if (!VLATy->getSizeExpr() ||
4288      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4289    return QualType();
4290
4291  // Check whether the array size is negative.
4292  if (Res.isSigned() && Res.isNegative()) {
4293    SizeIsNegative = true;
4294    return QualType();
4295  }
4296
4297  // Check whether the array is too large to be addressed.
4298  unsigned ActiveSizeBits
4299    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4300                                              Res);
4301  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4302    Oversized = Res;
4303    return QualType();
4304  }
4305
4306  return Context.getConstantArrayType(VLATy->getElementType(),
4307                                      Res, ArrayType::Normal, 0);
4308}
4309
4310static void
4311FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4312  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4313    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4314    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4315                                      DstPTL.getPointeeLoc());
4316    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4317    return;
4318  }
4319  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4320    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4321    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4322                                      DstPTL.getInnerLoc());
4323    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4324    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4325    return;
4326  }
4327  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4328  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4329  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4330  TypeLoc DstElemTL = DstATL.getElementLoc();
4331  DstElemTL.initializeFullCopy(SrcElemTL);
4332  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4333  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4334  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4335}
4336
4337/// Helper method to turn variable array types into constant array
4338/// types in certain situations which would otherwise be errors (for
4339/// GCC compatibility).
4340static TypeSourceInfo*
4341TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4342                                              ASTContext &Context,
4343                                              bool &SizeIsNegative,
4344                                              llvm::APSInt &Oversized) {
4345  QualType FixedTy
4346    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4347                                          SizeIsNegative, Oversized);
4348  if (FixedTy.isNull())
4349    return 0;
4350  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4351  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4352                                    FixedTInfo->getTypeLoc());
4353  return FixedTInfo;
4354}
4355
4356/// \brief Register the given locally-scoped extern "C" declaration so
4357/// that it can be found later for redeclarations. We include any extern "C"
4358/// declaration that is not visible in the translation unit here, not just
4359/// function-scope declarations.
4360void
4361Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4362  assert(
4363      !ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit() &&
4364      "Decl is not a locally-scoped decl!");
4365  // Note that we have a locally-scoped external with this name.
4366  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4367}
4368
4369NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4370  if (ExternalSource) {
4371    // Load locally-scoped external decls from the external source.
4372    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4373    SmallVector<NamedDecl *, 4> Decls;
4374    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4375    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4376      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4377        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4378      if (Pos == LocallyScopedExternCDecls.end())
4379        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4380    }
4381  }
4382
4383  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4384  return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4385}
4386
4387/// \brief Diagnose function specifiers on a declaration of an identifier that
4388/// does not identify a function.
4389void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4390  // FIXME: We should probably indicate the identifier in question to avoid
4391  // confusion for constructs like "inline int a(), b;"
4392  if (DS.isInlineSpecified())
4393    Diag(DS.getInlineSpecLoc(),
4394         diag::err_inline_non_function);
4395
4396  if (DS.isVirtualSpecified())
4397    Diag(DS.getVirtualSpecLoc(),
4398         diag::err_virtual_non_function);
4399
4400  if (DS.isExplicitSpecified())
4401    Diag(DS.getExplicitSpecLoc(),
4402         diag::err_explicit_non_function);
4403
4404  if (DS.isNoreturnSpecified())
4405    Diag(DS.getNoreturnSpecLoc(),
4406         diag::err_noreturn_non_function);
4407}
4408
4409NamedDecl*
4410Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4411                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4412  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4413  if (D.getCXXScopeSpec().isSet()) {
4414    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4415      << D.getCXXScopeSpec().getRange();
4416    D.setInvalidType();
4417    // Pretend we didn't see the scope specifier.
4418    DC = CurContext;
4419    Previous.clear();
4420  }
4421
4422  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4423
4424  if (D.getDeclSpec().isConstexprSpecified())
4425    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4426      << 1;
4427
4428  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4429    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4430      << D.getName().getSourceRange();
4431    return 0;
4432  }
4433
4434  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4435  if (!NewTD) return 0;
4436
4437  // Handle attributes prior to checking for duplicates in MergeVarDecl
4438  ProcessDeclAttributes(S, NewTD, D);
4439
4440  CheckTypedefForVariablyModifiedType(S, NewTD);
4441
4442  bool Redeclaration = D.isRedeclaration();
4443  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4444  D.setRedeclaration(Redeclaration);
4445  return ND;
4446}
4447
4448void
4449Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4450  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4451  // then it shall have block scope.
4452  // Note that variably modified types must be fixed before merging the decl so
4453  // that redeclarations will match.
4454  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4455  QualType T = TInfo->getType();
4456  if (T->isVariablyModifiedType()) {
4457    getCurFunction()->setHasBranchProtectedScope();
4458
4459    if (S->getFnParent() == 0) {
4460      bool SizeIsNegative;
4461      llvm::APSInt Oversized;
4462      TypeSourceInfo *FixedTInfo =
4463        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4464                                                      SizeIsNegative,
4465                                                      Oversized);
4466      if (FixedTInfo) {
4467        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4468        NewTD->setTypeSourceInfo(FixedTInfo);
4469      } else {
4470        if (SizeIsNegative)
4471          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4472        else if (T->isVariableArrayType())
4473          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4474        else if (Oversized.getBoolValue())
4475          Diag(NewTD->getLocation(), diag::err_array_too_large)
4476            << Oversized.toString(10);
4477        else
4478          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4479        NewTD->setInvalidDecl();
4480      }
4481    }
4482  }
4483}
4484
4485
4486/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4487/// declares a typedef-name, either using the 'typedef' type specifier or via
4488/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4489NamedDecl*
4490Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4491                           LookupResult &Previous, bool &Redeclaration) {
4492  // Merge the decl with the existing one if appropriate. If the decl is
4493  // in an outer scope, it isn't the same thing.
4494  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4495                       /*ExplicitInstantiationOrSpecialization=*/false);
4496  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4497  if (!Previous.empty()) {
4498    Redeclaration = true;
4499    MergeTypedefNameDecl(NewTD, Previous);
4500  }
4501
4502  // If this is the C FILE type, notify the AST context.
4503  if (IdentifierInfo *II = NewTD->getIdentifier())
4504    if (!NewTD->isInvalidDecl() &&
4505        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4506      if (II->isStr("FILE"))
4507        Context.setFILEDecl(NewTD);
4508      else if (II->isStr("jmp_buf"))
4509        Context.setjmp_bufDecl(NewTD);
4510      else if (II->isStr("sigjmp_buf"))
4511        Context.setsigjmp_bufDecl(NewTD);
4512      else if (II->isStr("ucontext_t"))
4513        Context.setucontext_tDecl(NewTD);
4514    }
4515
4516  return NewTD;
4517}
4518
4519/// \brief Determines whether the given declaration is an out-of-scope
4520/// previous declaration.
4521///
4522/// This routine should be invoked when name lookup has found a
4523/// previous declaration (PrevDecl) that is not in the scope where a
4524/// new declaration by the same name is being introduced. If the new
4525/// declaration occurs in a local scope, previous declarations with
4526/// linkage may still be considered previous declarations (C99
4527/// 6.2.2p4-5, C++ [basic.link]p6).
4528///
4529/// \param PrevDecl the previous declaration found by name
4530/// lookup
4531///
4532/// \param DC the context in which the new declaration is being
4533/// declared.
4534///
4535/// \returns true if PrevDecl is an out-of-scope previous declaration
4536/// for a new delcaration with the same name.
4537static bool
4538isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4539                                ASTContext &Context) {
4540  if (!PrevDecl)
4541    return false;
4542
4543  if (!PrevDecl->hasLinkage())
4544    return false;
4545
4546  if (Context.getLangOpts().CPlusPlus) {
4547    // C++ [basic.link]p6:
4548    //   If there is a visible declaration of an entity with linkage
4549    //   having the same name and type, ignoring entities declared
4550    //   outside the innermost enclosing namespace scope, the block
4551    //   scope declaration declares that same entity and receives the
4552    //   linkage of the previous declaration.
4553    DeclContext *OuterContext = DC->getRedeclContext();
4554    if (!OuterContext->isFunctionOrMethod())
4555      // This rule only applies to block-scope declarations.
4556      return false;
4557
4558    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4559    if (PrevOuterContext->isRecord())
4560      // We found a member function: ignore it.
4561      return false;
4562
4563    // Find the innermost enclosing namespace for the new and
4564    // previous declarations.
4565    OuterContext = OuterContext->getEnclosingNamespaceContext();
4566    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4567
4568    // The previous declaration is in a different namespace, so it
4569    // isn't the same function.
4570    if (!OuterContext->Equals(PrevOuterContext))
4571      return false;
4572  }
4573
4574  return true;
4575}
4576
4577static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4578  CXXScopeSpec &SS = D.getCXXScopeSpec();
4579  if (!SS.isSet()) return;
4580  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4581}
4582
4583bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4584  QualType type = decl->getType();
4585  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4586  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4587    // Various kinds of declaration aren't allowed to be __autoreleasing.
4588    unsigned kind = -1U;
4589    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4590      if (var->hasAttr<BlocksAttr>())
4591        kind = 0; // __block
4592      else if (!var->hasLocalStorage())
4593        kind = 1; // global
4594    } else if (isa<ObjCIvarDecl>(decl)) {
4595      kind = 3; // ivar
4596    } else if (isa<FieldDecl>(decl)) {
4597      kind = 2; // field
4598    }
4599
4600    if (kind != -1U) {
4601      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4602        << kind;
4603    }
4604  } else if (lifetime == Qualifiers::OCL_None) {
4605    // Try to infer lifetime.
4606    if (!type->isObjCLifetimeType())
4607      return false;
4608
4609    lifetime = type->getObjCARCImplicitLifetime();
4610    type = Context.getLifetimeQualifiedType(type, lifetime);
4611    decl->setType(type);
4612  }
4613
4614  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4615    // Thread-local variables cannot have lifetime.
4616    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4617        var->getTLSKind()) {
4618      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4619        << var->getType();
4620      return true;
4621    }
4622  }
4623
4624  return false;
4625}
4626
4627static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4628  // 'weak' only applies to declarations with external linkage.
4629  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4630    if (!ND.isExternallyVisible()) {
4631      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4632      ND.dropAttr<WeakAttr>();
4633    }
4634  }
4635  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4636    if (ND.isExternallyVisible()) {
4637      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4638      ND.dropAttr<WeakRefAttr>();
4639    }
4640  }
4641
4642  // 'selectany' only applies to externally visible varable declarations.
4643  // It does not apply to functions.
4644  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4645    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4646      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4647      ND.dropAttr<SelectAnyAttr>();
4648    }
4649  }
4650}
4651
4652/// Given that we are within the definition of the given function,
4653/// will that definition behave like C99's 'inline', where the
4654/// definition is discarded except for optimization purposes?
4655static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4656  // Try to avoid calling GetGVALinkageForFunction.
4657
4658  // All cases of this require the 'inline' keyword.
4659  if (!FD->isInlined()) return false;
4660
4661  // This is only possible in C++ with the gnu_inline attribute.
4662  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4663    return false;
4664
4665  // Okay, go ahead and call the relatively-more-expensive function.
4666
4667#ifndef NDEBUG
4668  // AST quite reasonably asserts that it's working on a function
4669  // definition.  We don't really have a way to tell it that we're
4670  // currently defining the function, so just lie to it in +Asserts
4671  // builds.  This is an awful hack.
4672  FD->setLazyBody(1);
4673#endif
4674
4675  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4676
4677#ifndef NDEBUG
4678  FD->setLazyBody(0);
4679#endif
4680
4681  return isC99Inline;
4682}
4683
4684static bool shouldConsiderLinkage(const VarDecl *VD) {
4685  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4686  if (DC->isFunctionOrMethod())
4687    return VD->hasExternalStorage();
4688  if (DC->isFileContext())
4689    return true;
4690  if (DC->isRecord())
4691    return false;
4692  llvm_unreachable("Unexpected context");
4693}
4694
4695static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4696  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4697  if (DC->isFileContext() || DC->isFunctionOrMethod())
4698    return true;
4699  if (DC->isRecord())
4700    return false;
4701  llvm_unreachable("Unexpected context");
4702}
4703
4704NamedDecl*
4705Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4706                              TypeSourceInfo *TInfo, LookupResult &Previous,
4707                              MultiTemplateParamsArg TemplateParamLists) {
4708  QualType R = TInfo->getType();
4709  DeclarationName Name = GetNameForDeclarator(D).getName();
4710
4711  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4712  VarDecl::StorageClass SC =
4713    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4714
4715  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4716    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4717    // half array type (unless the cl_khr_fp16 extension is enabled).
4718    if (Context.getBaseElementType(R)->isHalfType()) {
4719      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4720      D.setInvalidType();
4721    }
4722  }
4723
4724  if (SCSpec == DeclSpec::SCS_mutable) {
4725    // mutable can only appear on non-static class members, so it's always
4726    // an error here
4727    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4728    D.setInvalidType();
4729    SC = SC_None;
4730  }
4731
4732  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4733      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4734                              D.getDeclSpec().getStorageClassSpecLoc())) {
4735    // In C++11, the 'register' storage class specifier is deprecated.
4736    // Suppress the warning in system macros, it's used in macros in some
4737    // popular C system headers, such as in glibc's htonl() macro.
4738    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4739         diag::warn_deprecated_register)
4740      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4741  }
4742
4743  IdentifierInfo *II = Name.getAsIdentifierInfo();
4744  if (!II) {
4745    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4746      << Name;
4747    return 0;
4748  }
4749
4750  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4751
4752  if (!DC->isRecord() && S->getFnParent() == 0) {
4753    // C99 6.9p2: The storage-class specifiers auto and register shall not
4754    // appear in the declaration specifiers in an external declaration.
4755    if (SC == SC_Auto || SC == SC_Register) {
4756      // If this is a register variable with an asm label specified, then this
4757      // is a GNU extension.
4758      if (SC == SC_Register && D.getAsmLabel())
4759        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4760      else
4761        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4762      D.setInvalidType();
4763    }
4764  }
4765
4766  if (getLangOpts().OpenCL) {
4767    // Set up the special work-group-local storage class for variables in the
4768    // OpenCL __local address space.
4769    if (R.getAddressSpace() == LangAS::opencl_local) {
4770      SC = SC_OpenCLWorkGroupLocal;
4771    }
4772
4773    // OpenCL v1.2 s6.9.b p4:
4774    // The sampler type cannot be used with the __local and __global address
4775    // space qualifiers.
4776    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4777      R.getAddressSpace() == LangAS::opencl_global)) {
4778      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4779    }
4780
4781    // OpenCL 1.2 spec, p6.9 r:
4782    // The event type cannot be used to declare a program scope variable.
4783    // The event type cannot be used with the __local, __constant and __global
4784    // address space qualifiers.
4785    if (R->isEventT()) {
4786      if (S->getParent() == 0) {
4787        Diag(D.getLocStart(), diag::err_event_t_global_var);
4788        D.setInvalidType();
4789      }
4790
4791      if (R.getAddressSpace()) {
4792        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4793        D.setInvalidType();
4794      }
4795    }
4796  }
4797
4798  bool isExplicitSpecialization = false;
4799  VarDecl *NewVD;
4800  if (!getLangOpts().CPlusPlus) {
4801    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4802                            D.getIdentifierLoc(), II,
4803                            R, TInfo, SC);
4804
4805    if (D.isInvalidType())
4806      NewVD->setInvalidDecl();
4807  } else {
4808    if (DC->isRecord() && !CurContext->isRecord()) {
4809      // This is an out-of-line definition of a static data member.
4810      switch (SC) {
4811      case SC_None:
4812        break;
4813      case SC_Static:
4814        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4815             diag::err_static_out_of_line)
4816          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4817        break;
4818      case SC_Auto:
4819      case SC_Register:
4820      case SC_Extern:
4821        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4822        // to names of variables declared in a block or to function parameters.
4823        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4824        // of class members
4825
4826        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4827             diag::err_storage_class_for_static_member)
4828          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4829        break;
4830      case SC_PrivateExtern:
4831        llvm_unreachable("C storage class in c++!");
4832      case SC_OpenCLWorkGroupLocal:
4833        llvm_unreachable("OpenCL storage class in c++!");
4834      }
4835    }
4836    if (SC == SC_Static && CurContext->isRecord()) {
4837      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4838        if (RD->isLocalClass())
4839          Diag(D.getIdentifierLoc(),
4840               diag::err_static_data_member_not_allowed_in_local_class)
4841            << Name << RD->getDeclName();
4842
4843        // C++98 [class.union]p1: If a union contains a static data member,
4844        // the program is ill-formed. C++11 drops this restriction.
4845        if (RD->isUnion())
4846          Diag(D.getIdentifierLoc(),
4847               getLangOpts().CPlusPlus11
4848                 ? diag::warn_cxx98_compat_static_data_member_in_union
4849                 : diag::ext_static_data_member_in_union) << Name;
4850        // We conservatively disallow static data members in anonymous structs.
4851        else if (!RD->getDeclName())
4852          Diag(D.getIdentifierLoc(),
4853               diag::err_static_data_member_not_allowed_in_anon_struct)
4854            << Name << RD->isUnion();
4855      }
4856    }
4857
4858    // Match up the template parameter lists with the scope specifier, then
4859    // determine whether we have a template or a template specialization.
4860    isExplicitSpecialization = false;
4861    bool Invalid = false;
4862    if (TemplateParameterList *TemplateParams
4863        = MatchTemplateParametersToScopeSpecifier(
4864                                  D.getDeclSpec().getLocStart(),
4865                                                  D.getIdentifierLoc(),
4866                                                  D.getCXXScopeSpec(),
4867                                                  TemplateParamLists.data(),
4868                                                  TemplateParamLists.size(),
4869                                                  /*never a friend*/ false,
4870                                                  isExplicitSpecialization,
4871                                                  Invalid)) {
4872      if (TemplateParams->size() > 0) {
4873        // There is no such thing as a variable template.
4874        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4875          << II
4876          << SourceRange(TemplateParams->getTemplateLoc(),
4877                         TemplateParams->getRAngleLoc());
4878        return 0;
4879      } else {
4880        // There is an extraneous 'template<>' for this variable. Complain
4881        // about it, but allow the declaration of the variable.
4882        Diag(TemplateParams->getTemplateLoc(),
4883             diag::err_template_variable_noparams)
4884          << II
4885          << SourceRange(TemplateParams->getTemplateLoc(),
4886                         TemplateParams->getRAngleLoc());
4887      }
4888    }
4889
4890    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4891                            D.getIdentifierLoc(), II,
4892                            R, TInfo, SC);
4893
4894    // If this decl has an auto type in need of deduction, make a note of the
4895    // Decl so we can diagnose uses of it in its own initializer.
4896    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
4897      ParsingInitForAutoVars.insert(NewVD);
4898
4899    if (D.isInvalidType() || Invalid)
4900      NewVD->setInvalidDecl();
4901
4902    SetNestedNameSpecifier(NewVD, D);
4903
4904    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4905      NewVD->setTemplateParameterListsInfo(Context,
4906                                           TemplateParamLists.size(),
4907                                           TemplateParamLists.data());
4908    }
4909
4910    if (D.getDeclSpec().isConstexprSpecified())
4911      NewVD->setConstexpr(true);
4912  }
4913
4914  // Set the lexical context. If the declarator has a C++ scope specifier, the
4915  // lexical context will be different from the semantic context.
4916  NewVD->setLexicalDeclContext(CurContext);
4917
4918  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
4919    if (NewVD->hasLocalStorage()) {
4920      // C++11 [dcl.stc]p4:
4921      //   When thread_local is applied to a variable of block scope the
4922      //   storage-class-specifier static is implied if it does not appear
4923      //   explicitly.
4924      // Core issue: 'static' is not implied if the variable is declared
4925      //   'extern'.
4926      if (SCSpec == DeclSpec::SCS_unspecified &&
4927          TSCS == DeclSpec::TSCS_thread_local &&
4928          DC->isFunctionOrMethod())
4929        NewVD->setTSCSpec(TSCS);
4930      else
4931        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4932             diag::err_thread_non_global)
4933          << DeclSpec::getSpecifierName(TSCS);
4934    } else if (!Context.getTargetInfo().isTLSSupported())
4935      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4936           diag::err_thread_unsupported);
4937    else
4938      NewVD->setTSCSpec(TSCS);
4939  }
4940
4941  // C99 6.7.4p3
4942  //   An inline definition of a function with external linkage shall
4943  //   not contain a definition of a modifiable object with static or
4944  //   thread storage duration...
4945  // We only apply this when the function is required to be defined
4946  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4947  // that a local variable with thread storage duration still has to
4948  // be marked 'static'.  Also note that it's possible to get these
4949  // semantics in C++ using __attribute__((gnu_inline)).
4950  if (SC == SC_Static && S->getFnParent() != 0 &&
4951      !NewVD->getType().isConstQualified()) {
4952    FunctionDecl *CurFD = getCurFunctionDecl();
4953    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4954      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4955           diag::warn_static_local_in_extern_inline);
4956      MaybeSuggestAddingStaticToDecl(CurFD);
4957    }
4958  }
4959
4960  if (D.getDeclSpec().isModulePrivateSpecified()) {
4961    if (isExplicitSpecialization)
4962      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4963        << 2
4964        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4965    else if (NewVD->hasLocalStorage())
4966      Diag(NewVD->getLocation(), diag::err_module_private_local)
4967        << 0 << NewVD->getDeclName()
4968        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4969        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4970    else
4971      NewVD->setModulePrivate();
4972  }
4973
4974  // Handle attributes prior to checking for duplicates in MergeVarDecl
4975  ProcessDeclAttributes(S, NewVD, D);
4976
4977  if (NewVD->hasAttrs())
4978    CheckAlignasUnderalignment(NewVD);
4979
4980  if (getLangOpts().CUDA) {
4981    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4982    // storage [duration]."
4983    if (SC == SC_None && S->getFnParent() != 0 &&
4984        (NewVD->hasAttr<CUDASharedAttr>() ||
4985         NewVD->hasAttr<CUDAConstantAttr>())) {
4986      NewVD->setStorageClass(SC_Static);
4987    }
4988  }
4989
4990  // In auto-retain/release, infer strong retension for variables of
4991  // retainable type.
4992  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4993    NewVD->setInvalidDecl();
4994
4995  // Handle GNU asm-label extension (encoded as an attribute).
4996  if (Expr *E = (Expr*)D.getAsmLabel()) {
4997    // The parser guarantees this is a string.
4998    StringLiteral *SE = cast<StringLiteral>(E);
4999    StringRef Label = SE->getString();
5000    if (S->getFnParent() != 0) {
5001      switch (SC) {
5002      case SC_None:
5003      case SC_Auto:
5004        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5005        break;
5006      case SC_Register:
5007        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5008          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5009        break;
5010      case SC_Static:
5011      case SC_Extern:
5012      case SC_PrivateExtern:
5013      case SC_OpenCLWorkGroupLocal:
5014        break;
5015      }
5016    }
5017
5018    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5019                                                Context, Label));
5020  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5021    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5022      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5023    if (I != ExtnameUndeclaredIdentifiers.end()) {
5024      NewVD->addAttr(I->second);
5025      ExtnameUndeclaredIdentifiers.erase(I);
5026    }
5027  }
5028
5029  // Diagnose shadowed variables before filtering for scope.
5030  if (!D.getCXXScopeSpec().isSet())
5031    CheckShadow(S, NewVD, Previous);
5032
5033  // Don't consider existing declarations that are in a different
5034  // scope and are out-of-semantic-context declarations (if the new
5035  // declaration has linkage).
5036  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
5037                       isExplicitSpecialization);
5038
5039  if (!getLangOpts().CPlusPlus) {
5040    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5041  } else {
5042    // Merge the decl with the existing one if appropriate.
5043    if (!Previous.empty()) {
5044      if (Previous.isSingleResult() &&
5045          isa<FieldDecl>(Previous.getFoundDecl()) &&
5046          D.getCXXScopeSpec().isSet()) {
5047        // The user tried to define a non-static data member
5048        // out-of-line (C++ [dcl.meaning]p1).
5049        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5050          << D.getCXXScopeSpec().getRange();
5051        Previous.clear();
5052        NewVD->setInvalidDecl();
5053      }
5054    } else if (D.getCXXScopeSpec().isSet()) {
5055      // No previous declaration in the qualifying scope.
5056      Diag(D.getIdentifierLoc(), diag::err_no_member)
5057        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5058        << D.getCXXScopeSpec().getRange();
5059      NewVD->setInvalidDecl();
5060    }
5061
5062    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5063
5064    // This is an explicit specialization of a static data member. Check it.
5065    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5066        CheckMemberSpecialization(NewVD, Previous))
5067      NewVD->setInvalidDecl();
5068  }
5069
5070  ProcessPragmaWeak(S, NewVD);
5071  checkAttributesAfterMerging(*this, *NewVD);
5072
5073  // If this is the first declaration of an extern C variable that is not
5074  // declared directly in the translation unit, update the map of such
5075  // variables.
5076  if (!CurContext->getRedeclContext()->isTranslationUnit() &&
5077      !NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5078      // FIXME: We only check isExternC if we're in an extern C context,
5079      // to avoid computing and caching an 'externally visible' flag which
5080      // could change if the variable's type is not visible.
5081      (!getLangOpts().CPlusPlus || NewVD->isInExternCContext()) &&
5082      NewVD->isExternC())
5083    RegisterLocallyScopedExternCDecl(NewVD, S);
5084
5085  return NewVD;
5086}
5087
5088/// \brief Diagnose variable or built-in function shadowing.  Implements
5089/// -Wshadow.
5090///
5091/// This method is called whenever a VarDecl is added to a "useful"
5092/// scope.
5093///
5094/// \param S the scope in which the shadowing name is being declared
5095/// \param R the lookup of the name
5096///
5097void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5098  // Return if warning is ignored.
5099  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5100        DiagnosticsEngine::Ignored)
5101    return;
5102
5103  // Don't diagnose declarations at file scope.
5104  if (D->hasGlobalStorage())
5105    return;
5106
5107  DeclContext *NewDC = D->getDeclContext();
5108
5109  // Only diagnose if we're shadowing an unambiguous field or variable.
5110  if (R.getResultKind() != LookupResult::Found)
5111    return;
5112
5113  NamedDecl* ShadowedDecl = R.getFoundDecl();
5114  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5115    return;
5116
5117  // Fields are not shadowed by variables in C++ static methods.
5118  if (isa<FieldDecl>(ShadowedDecl))
5119    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5120      if (MD->isStatic())
5121        return;
5122
5123  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5124    if (shadowedVar->isExternC()) {
5125      // For shadowing external vars, make sure that we point to the global
5126      // declaration, not a locally scoped extern declaration.
5127      for (VarDecl::redecl_iterator
5128             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5129           I != E; ++I)
5130        if (I->isFileVarDecl()) {
5131          ShadowedDecl = *I;
5132          break;
5133        }
5134    }
5135
5136  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5137
5138  // Only warn about certain kinds of shadowing for class members.
5139  if (NewDC && NewDC->isRecord()) {
5140    // In particular, don't warn about shadowing non-class members.
5141    if (!OldDC->isRecord())
5142      return;
5143
5144    // TODO: should we warn about static data members shadowing
5145    // static data members from base classes?
5146
5147    // TODO: don't diagnose for inaccessible shadowed members.
5148    // This is hard to do perfectly because we might friend the
5149    // shadowing context, but that's just a false negative.
5150  }
5151
5152  // Determine what kind of declaration we're shadowing.
5153  unsigned Kind;
5154  if (isa<RecordDecl>(OldDC)) {
5155    if (isa<FieldDecl>(ShadowedDecl))
5156      Kind = 3; // field
5157    else
5158      Kind = 2; // static data member
5159  } else if (OldDC->isFileContext())
5160    Kind = 1; // global
5161  else
5162    Kind = 0; // local
5163
5164  DeclarationName Name = R.getLookupName();
5165
5166  // Emit warning and note.
5167  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5168  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5169}
5170
5171/// \brief Check -Wshadow without the advantage of a previous lookup.
5172void Sema::CheckShadow(Scope *S, VarDecl *D) {
5173  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5174        DiagnosticsEngine::Ignored)
5175    return;
5176
5177  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5178                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5179  LookupName(R, S);
5180  CheckShadow(S, D, R);
5181}
5182
5183template<typename T>
5184static bool mayConflictWithNonVisibleExternC(const T *ND) {
5185  const DeclContext *DC = ND->getDeclContext();
5186  if (DC->getRedeclContext()->isTranslationUnit())
5187    return true;
5188
5189  // We know that is the first decl we see, other than function local
5190  // extern C ones. If this is C++ and the decl is not in a extern C context
5191  // it cannot have C language linkage. Avoid calling isExternC in that case.
5192  // We need to this because of code like
5193  //
5194  // namespace { struct bar {}; }
5195  // auto foo = bar();
5196  //
5197  // This code runs before the init of foo is set, and therefore before
5198  // the type of foo is known. Not knowing the type we cannot know its linkage
5199  // unless it is in an extern C block.
5200  if (!ND->isInExternCContext()) {
5201    const ASTContext &Context = ND->getASTContext();
5202    if (Context.getLangOpts().CPlusPlus)
5203      return false;
5204  }
5205
5206  return ND->isExternC();
5207}
5208
5209void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5210  // If the decl is already known invalid, don't check it.
5211  if (NewVD->isInvalidDecl())
5212    return;
5213
5214  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5215  QualType T = TInfo->getType();
5216
5217  // Defer checking an 'auto' type until its initializer is attached.
5218  if (T->isUndeducedType())
5219    return;
5220
5221  if (T->isObjCObjectType()) {
5222    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5223      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5224    T = Context.getObjCObjectPointerType(T);
5225    NewVD->setType(T);
5226  }
5227
5228  // Emit an error if an address space was applied to decl with local storage.
5229  // This includes arrays of objects with address space qualifiers, but not
5230  // automatic variables that point to other address spaces.
5231  // ISO/IEC TR 18037 S5.1.2
5232  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5233    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5234    NewVD->setInvalidDecl();
5235    return;
5236  }
5237
5238  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5239  // __constant address space.
5240  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5241      && T.getAddressSpace() != LangAS::opencl_constant
5242      && !T->isSamplerT()){
5243    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5244    NewVD->setInvalidDecl();
5245    return;
5246  }
5247
5248  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5249  // scope.
5250  if ((getLangOpts().OpenCLVersion >= 120)
5251      && NewVD->isStaticLocal()) {
5252    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5253    NewVD->setInvalidDecl();
5254    return;
5255  }
5256
5257  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5258      && !NewVD->hasAttr<BlocksAttr>()) {
5259    if (getLangOpts().getGC() != LangOptions::NonGC)
5260      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5261    else {
5262      assert(!getLangOpts().ObjCAutoRefCount);
5263      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5264    }
5265  }
5266
5267  bool isVM = T->isVariablyModifiedType();
5268  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5269      NewVD->hasAttr<BlocksAttr>())
5270    getCurFunction()->setHasBranchProtectedScope();
5271
5272  if ((isVM && NewVD->hasLinkage()) ||
5273      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5274    bool SizeIsNegative;
5275    llvm::APSInt Oversized;
5276    TypeSourceInfo *FixedTInfo =
5277      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5278                                                    SizeIsNegative, Oversized);
5279    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5280      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5281      // FIXME: This won't give the correct result for
5282      // int a[10][n];
5283      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5284
5285      if (NewVD->isFileVarDecl())
5286        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5287        << SizeRange;
5288      else if (NewVD->isStaticLocal())
5289        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5290        << SizeRange;
5291      else
5292        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5293        << SizeRange;
5294      NewVD->setInvalidDecl();
5295      return;
5296    }
5297
5298    if (FixedTInfo == 0) {
5299      if (NewVD->isFileVarDecl())
5300        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5301      else
5302        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5303      NewVD->setInvalidDecl();
5304      return;
5305    }
5306
5307    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5308    NewVD->setType(FixedTInfo->getType());
5309    NewVD->setTypeSourceInfo(FixedTInfo);
5310  }
5311
5312  if (T->isVoidType()) {
5313    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5314    //                    of objects and functions.
5315    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5316      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5317        << T;
5318      NewVD->setInvalidDecl();
5319      return;
5320    }
5321  }
5322
5323  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5324    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5325    NewVD->setInvalidDecl();
5326    return;
5327  }
5328
5329  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5330    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5331    NewVD->setInvalidDecl();
5332    return;
5333  }
5334
5335  if (NewVD->isConstexpr() && !T->isDependentType() &&
5336      RequireLiteralType(NewVD->getLocation(), T,
5337                         diag::err_constexpr_var_non_literal)) {
5338    // Can't perform this check until the type is deduced.
5339    NewVD->setInvalidDecl();
5340    return;
5341  }
5342}
5343
5344/// \brief Perform semantic checking on a newly-created variable
5345/// declaration.
5346///
5347/// This routine performs all of the type-checking required for a
5348/// variable declaration once it has been built. It is used both to
5349/// check variables after they have been parsed and their declarators
5350/// have been translated into a declaration, and to check variables
5351/// that have been instantiated from a template.
5352///
5353/// Sets NewVD->isInvalidDecl() if an error was encountered.
5354///
5355/// Returns true if the variable declaration is a redeclaration.
5356bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5357                                    LookupResult &Previous) {
5358  CheckVariableDeclarationType(NewVD);
5359
5360  // If the decl is already known invalid, don't check it.
5361  if (NewVD->isInvalidDecl())
5362    return false;
5363
5364  // If we did not find anything by this name, look for a non-visible
5365  // extern "C" declaration with the same name.
5366  //
5367  // Clang has a lot of problems with extern local declarations.
5368  // The actual standards text here is:
5369  //
5370  // C++11 [basic.link]p6:
5371  //   The name of a function declared in block scope and the name
5372  //   of a variable declared by a block scope extern declaration
5373  //   have linkage. If there is a visible declaration of an entity
5374  //   with linkage having the same name and type, ignoring entities
5375  //   declared outside the innermost enclosing namespace scope, the
5376  //   block scope declaration declares that same entity and
5377  //   receives the linkage of the previous declaration.
5378  //
5379  // C11 6.2.7p4:
5380  //   For an identifier with internal or external linkage declared
5381  //   in a scope in which a prior declaration of that identifier is
5382  //   visible, if the prior declaration specifies internal or
5383  //   external linkage, the type of the identifier at the later
5384  //   declaration becomes the composite type.
5385  //
5386  // The most important point here is that we're not allowed to
5387  // update our understanding of the type according to declarations
5388  // not in scope.
5389  bool PreviousWasHidden = false;
5390  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5391    if (NamedDecl *ExternCPrev =
5392            findLocallyScopedExternCDecl(NewVD->getDeclName())) {
5393      Previous.addDecl(ExternCPrev);
5394      PreviousWasHidden = true;
5395    }
5396  }
5397
5398  // Filter out any non-conflicting previous declarations.
5399  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5400
5401  if (!Previous.empty()) {
5402    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5403    return true;
5404  }
5405  return false;
5406}
5407
5408/// \brief Data used with FindOverriddenMethod
5409struct FindOverriddenMethodData {
5410  Sema *S;
5411  CXXMethodDecl *Method;
5412};
5413
5414/// \brief Member lookup function that determines whether a given C++
5415/// method overrides a method in a base class, to be used with
5416/// CXXRecordDecl::lookupInBases().
5417static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5418                                 CXXBasePath &Path,
5419                                 void *UserData) {
5420  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5421
5422  FindOverriddenMethodData *Data
5423    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5424
5425  DeclarationName Name = Data->Method->getDeclName();
5426
5427  // FIXME: Do we care about other names here too?
5428  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5429    // We really want to find the base class destructor here.
5430    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5431    CanQualType CT = Data->S->Context.getCanonicalType(T);
5432
5433    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5434  }
5435
5436  for (Path.Decls = BaseRecord->lookup(Name);
5437       !Path.Decls.empty();
5438       Path.Decls = Path.Decls.slice(1)) {
5439    NamedDecl *D = Path.Decls.front();
5440    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5441      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5442        return true;
5443    }
5444  }
5445
5446  return false;
5447}
5448
5449namespace {
5450  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5451}
5452/// \brief Report an error regarding overriding, along with any relevant
5453/// overriden methods.
5454///
5455/// \param DiagID the primary error to report.
5456/// \param MD the overriding method.
5457/// \param OEK which overrides to include as notes.
5458static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5459                            OverrideErrorKind OEK = OEK_All) {
5460  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5461  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5462                                      E = MD->end_overridden_methods();
5463       I != E; ++I) {
5464    // This check (& the OEK parameter) could be replaced by a predicate, but
5465    // without lambdas that would be overkill. This is still nicer than writing
5466    // out the diag loop 3 times.
5467    if ((OEK == OEK_All) ||
5468        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5469        (OEK == OEK_Deleted && (*I)->isDeleted()))
5470      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5471  }
5472}
5473
5474/// AddOverriddenMethods - See if a method overrides any in the base classes,
5475/// and if so, check that it's a valid override and remember it.
5476bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5477  // Look for virtual methods in base classes that this method might override.
5478  CXXBasePaths Paths;
5479  FindOverriddenMethodData Data;
5480  Data.Method = MD;
5481  Data.S = this;
5482  bool hasDeletedOverridenMethods = false;
5483  bool hasNonDeletedOverridenMethods = false;
5484  bool AddedAny = false;
5485  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5486    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5487         E = Paths.found_decls_end(); I != E; ++I) {
5488      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5489        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5490        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5491            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5492            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5493            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5494          hasDeletedOverridenMethods |= OldMD->isDeleted();
5495          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5496          AddedAny = true;
5497        }
5498      }
5499    }
5500  }
5501
5502  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5503    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5504  }
5505  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5506    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5507  }
5508
5509  return AddedAny;
5510}
5511
5512namespace {
5513  // Struct for holding all of the extra arguments needed by
5514  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5515  struct ActOnFDArgs {
5516    Scope *S;
5517    Declarator &D;
5518    MultiTemplateParamsArg TemplateParamLists;
5519    bool AddToScope;
5520  };
5521}
5522
5523namespace {
5524
5525// Callback to only accept typo corrections that have a non-zero edit distance.
5526// Also only accept corrections that have the same parent decl.
5527class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5528 public:
5529  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5530                            CXXRecordDecl *Parent)
5531      : Context(Context), OriginalFD(TypoFD),
5532        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5533
5534  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5535    if (candidate.getEditDistance() == 0)
5536      return false;
5537
5538    SmallVector<unsigned, 1> MismatchedParams;
5539    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5540                                          CDeclEnd = candidate.end();
5541         CDecl != CDeclEnd; ++CDecl) {
5542      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5543
5544      if (FD && !FD->hasBody() &&
5545          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5546        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5547          CXXRecordDecl *Parent = MD->getParent();
5548          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5549            return true;
5550        } else if (!ExpectedParent) {
5551          return true;
5552        }
5553      }
5554    }
5555
5556    return false;
5557  }
5558
5559 private:
5560  ASTContext &Context;
5561  FunctionDecl *OriginalFD;
5562  CXXRecordDecl *ExpectedParent;
5563};
5564
5565}
5566
5567/// \brief Generate diagnostics for an invalid function redeclaration.
5568///
5569/// This routine handles generating the diagnostic messages for an invalid
5570/// function redeclaration, including finding possible similar declarations
5571/// or performing typo correction if there are no previous declarations with
5572/// the same name.
5573///
5574/// Returns a NamedDecl iff typo correction was performed and substituting in
5575/// the new declaration name does not cause new errors.
5576static NamedDecl* DiagnoseInvalidRedeclaration(
5577    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5578    ActOnFDArgs &ExtraArgs) {
5579  NamedDecl *Result = NULL;
5580  DeclarationName Name = NewFD->getDeclName();
5581  DeclContext *NewDC = NewFD->getDeclContext();
5582  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5583                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5584  SmallVector<unsigned, 1> MismatchedParams;
5585  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5586  TypoCorrection Correction;
5587  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5588                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5589  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5590                                  : diag::err_member_def_does_not_match;
5591
5592  NewFD->setInvalidDecl();
5593  SemaRef.LookupQualifiedName(Prev, NewDC);
5594  assert(!Prev.isAmbiguous() &&
5595         "Cannot have an ambiguity in previous-declaration lookup");
5596  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5597  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5598                                      MD ? MD->getParent() : 0);
5599  if (!Prev.empty()) {
5600    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5601         Func != FuncEnd; ++Func) {
5602      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5603      if (FD &&
5604          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5605        // Add 1 to the index so that 0 can mean the mismatch didn't
5606        // involve a parameter
5607        unsigned ParamNum =
5608            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5609        NearMatches.push_back(std::make_pair(FD, ParamNum));
5610      }
5611    }
5612  // If the qualified name lookup yielded nothing, try typo correction
5613  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5614                                         Prev.getLookupKind(), 0, 0,
5615                                         Validator, NewDC))) {
5616    // Trap errors.
5617    Sema::SFINAETrap Trap(SemaRef);
5618
5619    // Set up everything for the call to ActOnFunctionDeclarator
5620    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5621                              ExtraArgs.D.getIdentifierLoc());
5622    Previous.clear();
5623    Previous.setLookupName(Correction.getCorrection());
5624    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5625                                    CDeclEnd = Correction.end();
5626         CDecl != CDeclEnd; ++CDecl) {
5627      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5628      if (FD && !FD->hasBody() &&
5629          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5630        Previous.addDecl(FD);
5631      }
5632    }
5633    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5634    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5635    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5636    // eliminate the need for the parameter pack ExtraArgs.
5637    Result = SemaRef.ActOnFunctionDeclarator(
5638        ExtraArgs.S, ExtraArgs.D,
5639        Correction.getCorrectionDecl()->getDeclContext(),
5640        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5641        ExtraArgs.AddToScope);
5642    if (Trap.hasErrorOccurred()) {
5643      // Pretend the typo correction never occurred
5644      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5645                                ExtraArgs.D.getIdentifierLoc());
5646      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5647      Previous.clear();
5648      Previous.setLookupName(Name);
5649      Result = NULL;
5650    } else {
5651      for (LookupResult::iterator Func = Previous.begin(),
5652                               FuncEnd = Previous.end();
5653           Func != FuncEnd; ++Func) {
5654        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5655          NearMatches.push_back(std::make_pair(FD, 0));
5656      }
5657    }
5658    if (NearMatches.empty()) {
5659      // Ignore the correction if it didn't yield any close FunctionDecl matches
5660      Correction = TypoCorrection();
5661    } else {
5662      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5663                             : diag::err_member_def_does_not_match_suggest;
5664    }
5665  }
5666
5667  if (Correction) {
5668    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5669    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5670    // turn causes the correction to fully qualify the name. If we fix
5671    // CorrectTypo to minimally qualify then this change should be good.
5672    SourceRange FixItLoc(NewFD->getLocation());
5673    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5674    if (Correction.getCorrectionSpecifier() && SS.isValid())
5675      FixItLoc.setBegin(SS.getBeginLoc());
5676    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5677        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5678        << FixItHint::CreateReplacement(
5679            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5680  } else {
5681    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5682        << Name << NewDC << NewFD->getLocation();
5683  }
5684
5685  bool NewFDisConst = false;
5686  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5687    NewFDisConst = NewMD->isConst();
5688
5689  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5690       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5691       NearMatch != NearMatchEnd; ++NearMatch) {
5692    FunctionDecl *FD = NearMatch->first;
5693    bool FDisConst = false;
5694    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5695      FDisConst = MD->isConst();
5696
5697    if (unsigned Idx = NearMatch->second) {
5698      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5699      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5700      if (Loc.isInvalid()) Loc = FD->getLocation();
5701      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5702          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5703    } else if (Correction) {
5704      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5705          << Correction.getQuoted(SemaRef.getLangOpts());
5706    } else if (FDisConst != NewFDisConst) {
5707      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5708          << NewFDisConst << FD->getSourceRange().getEnd();
5709    } else
5710      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5711  }
5712  return Result;
5713}
5714
5715static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5716                                                          Declarator &D) {
5717  switch (D.getDeclSpec().getStorageClassSpec()) {
5718  default: llvm_unreachable("Unknown storage class!");
5719  case DeclSpec::SCS_auto:
5720  case DeclSpec::SCS_register:
5721  case DeclSpec::SCS_mutable:
5722    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5723                 diag::err_typecheck_sclass_func);
5724    D.setInvalidType();
5725    break;
5726  case DeclSpec::SCS_unspecified: break;
5727  case DeclSpec::SCS_extern:
5728    if (D.getDeclSpec().isExternInLinkageSpec())
5729      return SC_None;
5730    return SC_Extern;
5731  case DeclSpec::SCS_static: {
5732    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5733      // C99 6.7.1p5:
5734      //   The declaration of an identifier for a function that has
5735      //   block scope shall have no explicit storage-class specifier
5736      //   other than extern
5737      // See also (C++ [dcl.stc]p4).
5738      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5739                   diag::err_static_block_func);
5740      break;
5741    } else
5742      return SC_Static;
5743  }
5744  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5745  }
5746
5747  // No explicit storage class has already been returned
5748  return SC_None;
5749}
5750
5751static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5752                                           DeclContext *DC, QualType &R,
5753                                           TypeSourceInfo *TInfo,
5754                                           FunctionDecl::StorageClass SC,
5755                                           bool &IsVirtualOkay) {
5756  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5757  DeclarationName Name = NameInfo.getName();
5758
5759  FunctionDecl *NewFD = 0;
5760  bool isInline = D.getDeclSpec().isInlineSpecified();
5761
5762  if (!SemaRef.getLangOpts().CPlusPlus) {
5763    // Determine whether the function was written with a
5764    // prototype. This true when:
5765    //   - there is a prototype in the declarator, or
5766    //   - the type R of the function is some kind of typedef or other reference
5767    //     to a type name (which eventually refers to a function type).
5768    bool HasPrototype =
5769      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5770      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5771
5772    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5773                                 D.getLocStart(), NameInfo, R,
5774                                 TInfo, SC, isInline,
5775                                 HasPrototype, false);
5776    if (D.isInvalidType())
5777      NewFD->setInvalidDecl();
5778
5779    // Set the lexical context.
5780    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5781
5782    return NewFD;
5783  }
5784
5785  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5786  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5787
5788  // Check that the return type is not an abstract class type.
5789  // For record types, this is done by the AbstractClassUsageDiagnoser once
5790  // the class has been completely parsed.
5791  if (!DC->isRecord() &&
5792      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5793                                     R->getAs<FunctionType>()->getResultType(),
5794                                     diag::err_abstract_type_in_decl,
5795                                     SemaRef.AbstractReturnType))
5796    D.setInvalidType();
5797
5798  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5799    // This is a C++ constructor declaration.
5800    assert(DC->isRecord() &&
5801           "Constructors can only be declared in a member context");
5802
5803    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5804    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5805                                      D.getLocStart(), NameInfo,
5806                                      R, TInfo, isExplicit, isInline,
5807                                      /*isImplicitlyDeclared=*/false,
5808                                      isConstexpr);
5809
5810  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5811    // This is a C++ destructor declaration.
5812    if (DC->isRecord()) {
5813      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5814      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5815      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5816                                        SemaRef.Context, Record,
5817                                        D.getLocStart(),
5818                                        NameInfo, R, TInfo, isInline,
5819                                        /*isImplicitlyDeclared=*/false);
5820
5821      // If the class is complete, then we now create the implicit exception
5822      // specification. If the class is incomplete or dependent, we can't do
5823      // it yet.
5824      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5825          Record->getDefinition() && !Record->isBeingDefined() &&
5826          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5827        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5828      }
5829
5830      // The Microsoft ABI requires that we perform the destructor body
5831      // checks (i.e. operator delete() lookup) at every declaration, as
5832      // any translation unit may need to emit a deleting destructor.
5833      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5834          !Record->isDependentType() && Record->getDefinition() &&
5835          !Record->isBeingDefined()) {
5836        SemaRef.CheckDestructor(NewDD);
5837      }
5838
5839      IsVirtualOkay = true;
5840      return NewDD;
5841
5842    } else {
5843      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5844      D.setInvalidType();
5845
5846      // Create a FunctionDecl to satisfy the function definition parsing
5847      // code path.
5848      return FunctionDecl::Create(SemaRef.Context, DC,
5849                                  D.getLocStart(),
5850                                  D.getIdentifierLoc(), Name, R, TInfo,
5851                                  SC, isInline,
5852                                  /*hasPrototype=*/true, isConstexpr);
5853    }
5854
5855  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5856    if (!DC->isRecord()) {
5857      SemaRef.Diag(D.getIdentifierLoc(),
5858           diag::err_conv_function_not_member);
5859      return 0;
5860    }
5861
5862    SemaRef.CheckConversionDeclarator(D, R, SC);
5863    IsVirtualOkay = true;
5864    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5865                                     D.getLocStart(), NameInfo,
5866                                     R, TInfo, isInline, isExplicit,
5867                                     isConstexpr, SourceLocation());
5868
5869  } else if (DC->isRecord()) {
5870    // If the name of the function is the same as the name of the record,
5871    // then this must be an invalid constructor that has a return type.
5872    // (The parser checks for a return type and makes the declarator a
5873    // constructor if it has no return type).
5874    if (Name.getAsIdentifierInfo() &&
5875        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5876      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5877        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5878        << SourceRange(D.getIdentifierLoc());
5879      return 0;
5880    }
5881
5882    // This is a C++ method declaration.
5883    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5884                                               cast<CXXRecordDecl>(DC),
5885                                               D.getLocStart(), NameInfo, R,
5886                                               TInfo, SC, isInline,
5887                                               isConstexpr, SourceLocation());
5888    IsVirtualOkay = !Ret->isStatic();
5889    return Ret;
5890  } else {
5891    // Determine whether the function was written with a
5892    // prototype. This true when:
5893    //   - we're in C++ (where every function has a prototype),
5894    return FunctionDecl::Create(SemaRef.Context, DC,
5895                                D.getLocStart(),
5896                                NameInfo, R, TInfo, SC, isInline,
5897                                true/*HasPrototype*/, isConstexpr);
5898  }
5899}
5900
5901void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5902  // In C++, the empty parameter-type-list must be spelled "void"; a
5903  // typedef of void is not permitted.
5904  if (getLangOpts().CPlusPlus &&
5905      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5906    bool IsTypeAlias = false;
5907    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5908      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5909    else if (const TemplateSpecializationType *TST =
5910               Param->getType()->getAs<TemplateSpecializationType>())
5911      IsTypeAlias = TST->isTypeAlias();
5912    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5913      << IsTypeAlias;
5914  }
5915}
5916
5917NamedDecl*
5918Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5919                              TypeSourceInfo *TInfo, LookupResult &Previous,
5920                              MultiTemplateParamsArg TemplateParamLists,
5921                              bool &AddToScope) {
5922  QualType R = TInfo->getType();
5923
5924  assert(R.getTypePtr()->isFunctionType());
5925
5926  // TODO: consider using NameInfo for diagnostic.
5927  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5928  DeclarationName Name = NameInfo.getName();
5929  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5930
5931  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5932    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5933         diag::err_invalid_thread)
5934      << DeclSpec::getSpecifierName(TSCS);
5935
5936  bool isFriend = false;
5937  FunctionTemplateDecl *FunctionTemplate = 0;
5938  bool isExplicitSpecialization = false;
5939  bool isFunctionTemplateSpecialization = false;
5940
5941  bool isDependentClassScopeExplicitSpecialization = false;
5942  bool HasExplicitTemplateArgs = false;
5943  TemplateArgumentListInfo TemplateArgs;
5944
5945  bool isVirtualOkay = false;
5946
5947  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5948                                              isVirtualOkay);
5949  if (!NewFD) return 0;
5950
5951  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5952    NewFD->setTopLevelDeclInObjCContainer();
5953
5954  if (getLangOpts().CPlusPlus) {
5955    bool isInline = D.getDeclSpec().isInlineSpecified();
5956    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5957    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5958    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5959    isFriend = D.getDeclSpec().isFriendSpecified();
5960    if (isFriend && !isInline && D.isFunctionDefinition()) {
5961      // C++ [class.friend]p5
5962      //   A function can be defined in a friend declaration of a
5963      //   class . . . . Such a function is implicitly inline.
5964      NewFD->setImplicitlyInline();
5965    }
5966
5967    // If this is a method defined in an __interface, and is not a constructor
5968    // or an overloaded operator, then set the pure flag (isVirtual will already
5969    // return true).
5970    if (const CXXRecordDecl *Parent =
5971          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5972      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5973        NewFD->setPure(true);
5974    }
5975
5976    SetNestedNameSpecifier(NewFD, D);
5977    isExplicitSpecialization = false;
5978    isFunctionTemplateSpecialization = false;
5979    if (D.isInvalidType())
5980      NewFD->setInvalidDecl();
5981
5982    // Set the lexical context. If the declarator has a C++
5983    // scope specifier, or is the object of a friend declaration, the
5984    // lexical context will be different from the semantic context.
5985    NewFD->setLexicalDeclContext(CurContext);
5986
5987    // Match up the template parameter lists with the scope specifier, then
5988    // determine whether we have a template or a template specialization.
5989    bool Invalid = false;
5990    if (TemplateParameterList *TemplateParams
5991          = MatchTemplateParametersToScopeSpecifier(
5992                                  D.getDeclSpec().getLocStart(),
5993                                  D.getIdentifierLoc(),
5994                                  D.getCXXScopeSpec(),
5995                                  TemplateParamLists.data(),
5996                                  TemplateParamLists.size(),
5997                                  isFriend,
5998                                  isExplicitSpecialization,
5999                                  Invalid)) {
6000      if (TemplateParams->size() > 0) {
6001        // This is a function template
6002
6003        // Check that we can declare a template here.
6004        if (CheckTemplateDeclScope(S, TemplateParams))
6005          return 0;
6006
6007        // A destructor cannot be a template.
6008        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6009          Diag(NewFD->getLocation(), diag::err_destructor_template);
6010          return 0;
6011        }
6012
6013        // If we're adding a template to a dependent context, we may need to
6014        // rebuilding some of the types used within the template parameter list,
6015        // now that we know what the current instantiation is.
6016        if (DC->isDependentContext()) {
6017          ContextRAII SavedContext(*this, DC);
6018          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6019            Invalid = true;
6020        }
6021
6022
6023        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6024                                                        NewFD->getLocation(),
6025                                                        Name, TemplateParams,
6026                                                        NewFD);
6027        FunctionTemplate->setLexicalDeclContext(CurContext);
6028        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6029
6030        // For source fidelity, store the other template param lists.
6031        if (TemplateParamLists.size() > 1) {
6032          NewFD->setTemplateParameterListsInfo(Context,
6033                                               TemplateParamLists.size() - 1,
6034                                               TemplateParamLists.data());
6035        }
6036      } else {
6037        // This is a function template specialization.
6038        isFunctionTemplateSpecialization = true;
6039        // For source fidelity, store all the template param lists.
6040        NewFD->setTemplateParameterListsInfo(Context,
6041                                             TemplateParamLists.size(),
6042                                             TemplateParamLists.data());
6043
6044        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6045        if (isFriend) {
6046          // We want to remove the "template<>", found here.
6047          SourceRange RemoveRange = TemplateParams->getSourceRange();
6048
6049          // If we remove the template<> and the name is not a
6050          // template-id, we're actually silently creating a problem:
6051          // the friend declaration will refer to an untemplated decl,
6052          // and clearly the user wants a template specialization.  So
6053          // we need to insert '<>' after the name.
6054          SourceLocation InsertLoc;
6055          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6056            InsertLoc = D.getName().getSourceRange().getEnd();
6057            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6058          }
6059
6060          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6061            << Name << RemoveRange
6062            << FixItHint::CreateRemoval(RemoveRange)
6063            << FixItHint::CreateInsertion(InsertLoc, "<>");
6064        }
6065      }
6066    }
6067    else {
6068      // All template param lists were matched against the scope specifier:
6069      // this is NOT (an explicit specialization of) a template.
6070      if (TemplateParamLists.size() > 0)
6071        // For source fidelity, store all the template param lists.
6072        NewFD->setTemplateParameterListsInfo(Context,
6073                                             TemplateParamLists.size(),
6074                                             TemplateParamLists.data());
6075    }
6076
6077    if (Invalid) {
6078      NewFD->setInvalidDecl();
6079      if (FunctionTemplate)
6080        FunctionTemplate->setInvalidDecl();
6081    }
6082
6083    // C++ [dcl.fct.spec]p5:
6084    //   The virtual specifier shall only be used in declarations of
6085    //   nonstatic class member functions that appear within a
6086    //   member-specification of a class declaration; see 10.3.
6087    //
6088    if (isVirtual && !NewFD->isInvalidDecl()) {
6089      if (!isVirtualOkay) {
6090        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6091             diag::err_virtual_non_function);
6092      } else if (!CurContext->isRecord()) {
6093        // 'virtual' was specified outside of the class.
6094        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6095             diag::err_virtual_out_of_class)
6096          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6097      } else if (NewFD->getDescribedFunctionTemplate()) {
6098        // C++ [temp.mem]p3:
6099        //  A member function template shall not be virtual.
6100        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6101             diag::err_virtual_member_function_template)
6102          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6103      } else {
6104        // Okay: Add virtual to the method.
6105        NewFD->setVirtualAsWritten(true);
6106      }
6107
6108      if (getLangOpts().CPlusPlus1y &&
6109          NewFD->getResultType()->isUndeducedType())
6110        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6111    }
6112
6113    // C++ [dcl.fct.spec]p3:
6114    //  The inline specifier shall not appear on a block scope function
6115    //  declaration.
6116    if (isInline && !NewFD->isInvalidDecl()) {
6117      if (CurContext->isFunctionOrMethod()) {
6118        // 'inline' is not allowed on block scope function declaration.
6119        Diag(D.getDeclSpec().getInlineSpecLoc(),
6120             diag::err_inline_declaration_block_scope) << Name
6121          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6122      }
6123    }
6124
6125    // C++ [dcl.fct.spec]p6:
6126    //  The explicit specifier shall be used only in the declaration of a
6127    //  constructor or conversion function within its class definition;
6128    //  see 12.3.1 and 12.3.2.
6129    if (isExplicit && !NewFD->isInvalidDecl()) {
6130      if (!CurContext->isRecord()) {
6131        // 'explicit' was specified outside of the class.
6132        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6133             diag::err_explicit_out_of_class)
6134          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6135      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6136                 !isa<CXXConversionDecl>(NewFD)) {
6137        // 'explicit' was specified on a function that wasn't a constructor
6138        // or conversion function.
6139        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6140             diag::err_explicit_non_ctor_or_conv_function)
6141          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6142      }
6143    }
6144
6145    if (isConstexpr) {
6146      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6147      // are implicitly inline.
6148      NewFD->setImplicitlyInline();
6149
6150      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6151      // be either constructors or to return a literal type. Therefore,
6152      // destructors cannot be declared constexpr.
6153      if (isa<CXXDestructorDecl>(NewFD))
6154        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6155    }
6156
6157    // If __module_private__ was specified, mark the function accordingly.
6158    if (D.getDeclSpec().isModulePrivateSpecified()) {
6159      if (isFunctionTemplateSpecialization) {
6160        SourceLocation ModulePrivateLoc
6161          = D.getDeclSpec().getModulePrivateSpecLoc();
6162        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6163          << 0
6164          << FixItHint::CreateRemoval(ModulePrivateLoc);
6165      } else {
6166        NewFD->setModulePrivate();
6167        if (FunctionTemplate)
6168          FunctionTemplate->setModulePrivate();
6169      }
6170    }
6171
6172    if (isFriend) {
6173      // For now, claim that the objects have no previous declaration.
6174      if (FunctionTemplate) {
6175        FunctionTemplate->setObjectOfFriendDecl(false);
6176        FunctionTemplate->setAccess(AS_public);
6177      }
6178      NewFD->setObjectOfFriendDecl(false);
6179      NewFD->setAccess(AS_public);
6180    }
6181
6182    // If a function is defined as defaulted or deleted, mark it as such now.
6183    switch (D.getFunctionDefinitionKind()) {
6184      case FDK_Declaration:
6185      case FDK_Definition:
6186        break;
6187
6188      case FDK_Defaulted:
6189        NewFD->setDefaulted();
6190        break;
6191
6192      case FDK_Deleted:
6193        NewFD->setDeletedAsWritten();
6194        break;
6195    }
6196
6197    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6198        D.isFunctionDefinition()) {
6199      // C++ [class.mfct]p2:
6200      //   A member function may be defined (8.4) in its class definition, in
6201      //   which case it is an inline member function (7.1.2)
6202      NewFD->setImplicitlyInline();
6203    }
6204
6205    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6206        !CurContext->isRecord()) {
6207      // C++ [class.static]p1:
6208      //   A data or function member of a class may be declared static
6209      //   in a class definition, in which case it is a static member of
6210      //   the class.
6211
6212      // Complain about the 'static' specifier if it's on an out-of-line
6213      // member function definition.
6214      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6215           diag::err_static_out_of_line)
6216        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6217    }
6218
6219    // C++11 [except.spec]p15:
6220    //   A deallocation function with no exception-specification is treated
6221    //   as if it were specified with noexcept(true).
6222    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6223    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6224         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6225        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6226      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6227      EPI.ExceptionSpecType = EST_BasicNoexcept;
6228      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6229                                             FPT->getArgTypes(), EPI));
6230    }
6231  }
6232
6233  // Filter out previous declarations that don't match the scope.
6234  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6235                       isExplicitSpecialization ||
6236                       isFunctionTemplateSpecialization);
6237
6238  // Handle GNU asm-label extension (encoded as an attribute).
6239  if (Expr *E = (Expr*) D.getAsmLabel()) {
6240    // The parser guarantees this is a string.
6241    StringLiteral *SE = cast<StringLiteral>(E);
6242    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6243                                                SE->getString()));
6244  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6245    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6246      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6247    if (I != ExtnameUndeclaredIdentifiers.end()) {
6248      NewFD->addAttr(I->second);
6249      ExtnameUndeclaredIdentifiers.erase(I);
6250    }
6251  }
6252
6253  // Copy the parameter declarations from the declarator D to the function
6254  // declaration NewFD, if they are available.  First scavenge them into Params.
6255  SmallVector<ParmVarDecl*, 16> Params;
6256  if (D.isFunctionDeclarator()) {
6257    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6258
6259    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6260    // function that takes no arguments, not a function that takes a
6261    // single void argument.
6262    // We let through "const void" here because Sema::GetTypeForDeclarator
6263    // already checks for that case.
6264    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6265        FTI.ArgInfo[0].Param &&
6266        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6267      // Empty arg list, don't push any params.
6268      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6269    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6270      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6271        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6272        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6273        Param->setDeclContext(NewFD);
6274        Params.push_back(Param);
6275
6276        if (Param->isInvalidDecl())
6277          NewFD->setInvalidDecl();
6278      }
6279    }
6280
6281  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6282    // When we're declaring a function with a typedef, typeof, etc as in the
6283    // following example, we'll need to synthesize (unnamed)
6284    // parameters for use in the declaration.
6285    //
6286    // @code
6287    // typedef void fn(int);
6288    // fn f;
6289    // @endcode
6290
6291    // Synthesize a parameter for each argument type.
6292    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6293         AE = FT->arg_type_end(); AI != AE; ++AI) {
6294      ParmVarDecl *Param =
6295        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6296      Param->setScopeInfo(0, Params.size());
6297      Params.push_back(Param);
6298    }
6299  } else {
6300    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6301           "Should not need args for typedef of non-prototype fn");
6302  }
6303
6304  // Finally, we know we have the right number of parameters, install them.
6305  NewFD->setParams(Params);
6306
6307  // Find all anonymous symbols defined during the declaration of this function
6308  // and add to NewFD. This lets us track decls such 'enum Y' in:
6309  //
6310  //   void f(enum Y {AA} x) {}
6311  //
6312  // which would otherwise incorrectly end up in the translation unit scope.
6313  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6314  DeclsInPrototypeScope.clear();
6315
6316  if (D.getDeclSpec().isNoreturnSpecified())
6317    NewFD->addAttr(
6318        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6319                                       Context));
6320
6321  // Process the non-inheritable attributes on this declaration.
6322  ProcessDeclAttributes(S, NewFD, D,
6323                        /*NonInheritable=*/true, /*Inheritable=*/false);
6324
6325  // Functions returning a variably modified type violate C99 6.7.5.2p2
6326  // because all functions have linkage.
6327  if (!NewFD->isInvalidDecl() &&
6328      NewFD->getResultType()->isVariablyModifiedType()) {
6329    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6330    NewFD->setInvalidDecl();
6331  }
6332
6333  // Handle attributes.
6334  ProcessDeclAttributes(S, NewFD, D,
6335                        /*NonInheritable=*/false, /*Inheritable=*/true);
6336
6337  QualType RetType = NewFD->getResultType();
6338  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6339      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6340  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6341      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6342    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6343    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6344      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6345                                                        Context));
6346    }
6347  }
6348
6349  if (!getLangOpts().CPlusPlus) {
6350    // Perform semantic checking on the function declaration.
6351    bool isExplicitSpecialization=false;
6352    if (!NewFD->isInvalidDecl()) {
6353      if (NewFD->isMain())
6354        CheckMain(NewFD, D.getDeclSpec());
6355      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6356                                                  isExplicitSpecialization));
6357    }
6358    // Make graceful recovery from an invalid redeclaration.
6359    else if (!Previous.empty())
6360           D.setRedeclaration(true);
6361    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6362            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6363           "previous declaration set still overloaded");
6364  } else {
6365    // If the declarator is a template-id, translate the parser's template
6366    // argument list into our AST format.
6367    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6368      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6369      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6370      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6371      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6372                                         TemplateId->NumArgs);
6373      translateTemplateArguments(TemplateArgsPtr,
6374                                 TemplateArgs);
6375
6376      HasExplicitTemplateArgs = true;
6377
6378      if (NewFD->isInvalidDecl()) {
6379        HasExplicitTemplateArgs = false;
6380      } else if (FunctionTemplate) {
6381        // Function template with explicit template arguments.
6382        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6383          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6384
6385        HasExplicitTemplateArgs = false;
6386      } else if (!isFunctionTemplateSpecialization &&
6387                 !D.getDeclSpec().isFriendSpecified()) {
6388        // We have encountered something that the user meant to be a
6389        // specialization (because it has explicitly-specified template
6390        // arguments) but that was not introduced with a "template<>" (or had
6391        // too few of them).
6392        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6393          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6394          << FixItHint::CreateInsertion(
6395                                    D.getDeclSpec().getLocStart(),
6396                                        "template<> ");
6397        isFunctionTemplateSpecialization = true;
6398      } else {
6399        // "friend void foo<>(int);" is an implicit specialization decl.
6400        isFunctionTemplateSpecialization = true;
6401      }
6402    } else if (isFriend && isFunctionTemplateSpecialization) {
6403      // This combination is only possible in a recovery case;  the user
6404      // wrote something like:
6405      //   template <> friend void foo(int);
6406      // which we're recovering from as if the user had written:
6407      //   friend void foo<>(int);
6408      // Go ahead and fake up a template id.
6409      HasExplicitTemplateArgs = true;
6410        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6411      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6412    }
6413
6414    // If it's a friend (and only if it's a friend), it's possible
6415    // that either the specialized function type or the specialized
6416    // template is dependent, and therefore matching will fail.  In
6417    // this case, don't check the specialization yet.
6418    bool InstantiationDependent = false;
6419    if (isFunctionTemplateSpecialization && isFriend &&
6420        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6421         TemplateSpecializationType::anyDependentTemplateArguments(
6422            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6423            InstantiationDependent))) {
6424      assert(HasExplicitTemplateArgs &&
6425             "friend function specialization without template args");
6426      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6427                                                       Previous))
6428        NewFD->setInvalidDecl();
6429    } else if (isFunctionTemplateSpecialization) {
6430      if (CurContext->isDependentContext() && CurContext->isRecord()
6431          && !isFriend) {
6432        isDependentClassScopeExplicitSpecialization = true;
6433        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6434          diag::ext_function_specialization_in_class :
6435          diag::err_function_specialization_in_class)
6436          << NewFD->getDeclName();
6437      } else if (CheckFunctionTemplateSpecialization(NewFD,
6438                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6439                                                     Previous))
6440        NewFD->setInvalidDecl();
6441
6442      // C++ [dcl.stc]p1:
6443      //   A storage-class-specifier shall not be specified in an explicit
6444      //   specialization (14.7.3)
6445      FunctionTemplateSpecializationInfo *Info =
6446          NewFD->getTemplateSpecializationInfo();
6447      if (Info && SC != SC_None) {
6448        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
6449          Diag(NewFD->getLocation(),
6450               diag::err_explicit_specialization_inconsistent_storage_class)
6451            << SC
6452            << FixItHint::CreateRemoval(
6453                                      D.getDeclSpec().getStorageClassSpecLoc());
6454
6455        else
6456          Diag(NewFD->getLocation(),
6457               diag::ext_explicit_specialization_storage_class)
6458            << FixItHint::CreateRemoval(
6459                                      D.getDeclSpec().getStorageClassSpecLoc());
6460      }
6461
6462    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6463      if (CheckMemberSpecialization(NewFD, Previous))
6464          NewFD->setInvalidDecl();
6465    }
6466
6467    // Perform semantic checking on the function declaration.
6468    if (!isDependentClassScopeExplicitSpecialization) {
6469      if (NewFD->isInvalidDecl()) {
6470        // If this is a class member, mark the class invalid immediately.
6471        // This avoids some consistency errors later.
6472        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6473          methodDecl->getParent()->setInvalidDecl();
6474      } else {
6475        if (NewFD->isMain())
6476          CheckMain(NewFD, D.getDeclSpec());
6477        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6478                                                    isExplicitSpecialization));
6479      }
6480    }
6481
6482    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6483            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6484           "previous declaration set still overloaded");
6485
6486    NamedDecl *PrincipalDecl = (FunctionTemplate
6487                                ? cast<NamedDecl>(FunctionTemplate)
6488                                : NewFD);
6489
6490    if (isFriend && D.isRedeclaration()) {
6491      AccessSpecifier Access = AS_public;
6492      if (!NewFD->isInvalidDecl())
6493        Access = NewFD->getPreviousDecl()->getAccess();
6494
6495      NewFD->setAccess(Access);
6496      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6497
6498      PrincipalDecl->setObjectOfFriendDecl(true);
6499    }
6500
6501    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6502        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6503      PrincipalDecl->setNonMemberOperator();
6504
6505    // If we have a function template, check the template parameter
6506    // list. This will check and merge default template arguments.
6507    if (FunctionTemplate) {
6508      FunctionTemplateDecl *PrevTemplate =
6509                                     FunctionTemplate->getPreviousDecl();
6510      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6511                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6512                            D.getDeclSpec().isFriendSpecified()
6513                              ? (D.isFunctionDefinition()
6514                                   ? TPC_FriendFunctionTemplateDefinition
6515                                   : TPC_FriendFunctionTemplate)
6516                              : (D.getCXXScopeSpec().isSet() &&
6517                                 DC && DC->isRecord() &&
6518                                 DC->isDependentContext())
6519                                  ? TPC_ClassTemplateMember
6520                                  : TPC_FunctionTemplate);
6521    }
6522
6523    if (NewFD->isInvalidDecl()) {
6524      // Ignore all the rest of this.
6525    } else if (!D.isRedeclaration()) {
6526      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6527                                       AddToScope };
6528      // Fake up an access specifier if it's supposed to be a class member.
6529      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6530        NewFD->setAccess(AS_public);
6531
6532      // Qualified decls generally require a previous declaration.
6533      if (D.getCXXScopeSpec().isSet()) {
6534        // ...with the major exception of templated-scope or
6535        // dependent-scope friend declarations.
6536
6537        // TODO: we currently also suppress this check in dependent
6538        // contexts because (1) the parameter depth will be off when
6539        // matching friend templates and (2) we might actually be
6540        // selecting a friend based on a dependent factor.  But there
6541        // are situations where these conditions don't apply and we
6542        // can actually do this check immediately.
6543        if (isFriend &&
6544            (TemplateParamLists.size() ||
6545             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6546             CurContext->isDependentContext())) {
6547          // ignore these
6548        } else {
6549          // The user tried to provide an out-of-line definition for a
6550          // function that is a member of a class or namespace, but there
6551          // was no such member function declared (C++ [class.mfct]p2,
6552          // C++ [namespace.memdef]p2). For example:
6553          //
6554          // class X {
6555          //   void f() const;
6556          // };
6557          //
6558          // void X::f() { } // ill-formed
6559          //
6560          // Complain about this problem, and attempt to suggest close
6561          // matches (e.g., those that differ only in cv-qualifiers and
6562          // whether the parameter types are references).
6563
6564          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6565                                                               NewFD,
6566                                                               ExtraArgs)) {
6567            AddToScope = ExtraArgs.AddToScope;
6568            return Result;
6569          }
6570        }
6571
6572        // Unqualified local friend declarations are required to resolve
6573        // to something.
6574      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6575        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6576                                                             NewFD,
6577                                                             ExtraArgs)) {
6578          AddToScope = ExtraArgs.AddToScope;
6579          return Result;
6580        }
6581      }
6582
6583    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6584               !isFriend && !isFunctionTemplateSpecialization &&
6585               !isExplicitSpecialization) {
6586      // An out-of-line member function declaration must also be a
6587      // definition (C++ [dcl.meaning]p1).
6588      // Note that this is not the case for explicit specializations of
6589      // function templates or member functions of class templates, per
6590      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6591      // extension for compatibility with old SWIG code which likes to
6592      // generate them.
6593      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6594        << D.getCXXScopeSpec().getRange();
6595    }
6596  }
6597
6598  ProcessPragmaWeak(S, NewFD);
6599  checkAttributesAfterMerging(*this, *NewFD);
6600
6601  AddKnownFunctionAttributes(NewFD);
6602
6603  if (NewFD->hasAttr<OverloadableAttr>() &&
6604      !NewFD->getType()->getAs<FunctionProtoType>()) {
6605    Diag(NewFD->getLocation(),
6606         diag::err_attribute_overloadable_no_prototype)
6607      << NewFD;
6608
6609    // Turn this into a variadic function with no parameters.
6610    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6611    FunctionProtoType::ExtProtoInfo EPI;
6612    EPI.Variadic = true;
6613    EPI.ExtInfo = FT->getExtInfo();
6614
6615    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
6616    NewFD->setType(R);
6617  }
6618
6619  // If there's a #pragma GCC visibility in scope, and this isn't a class
6620  // member, set the visibility of this function.
6621  if (!DC->isRecord() && NewFD->isExternallyVisible())
6622    AddPushedVisibilityAttribute(NewFD);
6623
6624  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6625  // marking the function.
6626  AddCFAuditedAttribute(NewFD);
6627
6628  // If this is the first declaration of an extern C variable that is not
6629  // declared directly in the translation unit, update the map of such
6630  // variables.
6631  if (!CurContext->getRedeclContext()->isTranslationUnit() &&
6632      !NewFD->getPreviousDecl() && NewFD->isExternC() &&
6633      !NewFD->isInvalidDecl())
6634    RegisterLocallyScopedExternCDecl(NewFD, S);
6635
6636  // Set this FunctionDecl's range up to the right paren.
6637  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6638
6639  if (getLangOpts().CPlusPlus) {
6640    if (FunctionTemplate) {
6641      if (NewFD->isInvalidDecl())
6642        FunctionTemplate->setInvalidDecl();
6643      return FunctionTemplate;
6644    }
6645  }
6646
6647  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6648    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6649    if ((getLangOpts().OpenCLVersion >= 120)
6650        && (SC == SC_Static)) {
6651      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6652      D.setInvalidType();
6653    }
6654
6655    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6656    if (!NewFD->getResultType()->isVoidType()) {
6657      Diag(D.getIdentifierLoc(),
6658           diag::err_expected_kernel_void_return_type);
6659      D.setInvalidType();
6660    }
6661
6662    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6663         PE = NewFD->param_end(); PI != PE; ++PI) {
6664      ParmVarDecl *Param = *PI;
6665      QualType PT = Param->getType();
6666
6667      // OpenCL v1.2 s6.9.a:
6668      // A kernel function argument cannot be declared as a
6669      // pointer to a pointer type.
6670      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6671        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6672        D.setInvalidType();
6673      }
6674
6675      // OpenCL v1.2 s6.8 n:
6676      // A kernel function argument cannot be declared
6677      // of event_t type.
6678      if (PT->isEventT()) {
6679        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6680        D.setInvalidType();
6681      }
6682    }
6683  }
6684
6685  MarkUnusedFileScopedDecl(NewFD);
6686
6687  if (getLangOpts().CUDA)
6688    if (IdentifierInfo *II = NewFD->getIdentifier())
6689      if (!NewFD->isInvalidDecl() &&
6690          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6691        if (II->isStr("cudaConfigureCall")) {
6692          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6693            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6694
6695          Context.setcudaConfigureCallDecl(NewFD);
6696        }
6697      }
6698
6699  // Here we have an function template explicit specialization at class scope.
6700  // The actually specialization will be postponed to template instatiation
6701  // time via the ClassScopeFunctionSpecializationDecl node.
6702  if (isDependentClassScopeExplicitSpecialization) {
6703    ClassScopeFunctionSpecializationDecl *NewSpec =
6704                         ClassScopeFunctionSpecializationDecl::Create(
6705                                Context, CurContext, SourceLocation(),
6706                                cast<CXXMethodDecl>(NewFD),
6707                                HasExplicitTemplateArgs, TemplateArgs);
6708    CurContext->addDecl(NewSpec);
6709    AddToScope = false;
6710  }
6711
6712  return NewFD;
6713}
6714
6715/// \brief Perform semantic checking of a new function declaration.
6716///
6717/// Performs semantic analysis of the new function declaration
6718/// NewFD. This routine performs all semantic checking that does not
6719/// require the actual declarator involved in the declaration, and is
6720/// used both for the declaration of functions as they are parsed
6721/// (called via ActOnDeclarator) and for the declaration of functions
6722/// that have been instantiated via C++ template instantiation (called
6723/// via InstantiateDecl).
6724///
6725/// \param IsExplicitSpecialization whether this new function declaration is
6726/// an explicit specialization of the previous declaration.
6727///
6728/// This sets NewFD->isInvalidDecl() to true if there was an error.
6729///
6730/// \returns true if the function declaration is a redeclaration.
6731bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6732                                    LookupResult &Previous,
6733                                    bool IsExplicitSpecialization) {
6734  assert(!NewFD->getResultType()->isVariablyModifiedType()
6735         && "Variably modified return types are not handled here");
6736
6737  // Check for a previous declaration of this name.
6738  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6739    // Since we did not find anything by this name, look for a non-visible
6740    // extern "C" declaration with the same name.
6741    if (NamedDecl *ExternCPrev =
6742            findLocallyScopedExternCDecl(NewFD->getDeclName()))
6743      Previous.addDecl(ExternCPrev);
6744  }
6745
6746  // Filter out any non-conflicting previous declarations.
6747  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6748
6749  bool Redeclaration = false;
6750  NamedDecl *OldDecl = 0;
6751
6752  // Merge or overload the declaration with an existing declaration of
6753  // the same name, if appropriate.
6754  if (!Previous.empty()) {
6755    // Determine whether NewFD is an overload of PrevDecl or
6756    // a declaration that requires merging. If it's an overload,
6757    // there's no more work to do here; we'll just add the new
6758    // function to the scope.
6759    if (!AllowOverloadingOfFunction(Previous, Context)) {
6760      NamedDecl *Candidate = Previous.getFoundDecl();
6761      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
6762        Redeclaration = true;
6763        OldDecl = Candidate;
6764      }
6765    } else {
6766      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6767                            /*NewIsUsingDecl*/ false)) {
6768      case Ovl_Match:
6769        Redeclaration = true;
6770        break;
6771
6772      case Ovl_NonFunction:
6773        Redeclaration = true;
6774        break;
6775
6776      case Ovl_Overload:
6777        Redeclaration = false;
6778        break;
6779      }
6780
6781      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6782        // If a function name is overloadable in C, then every function
6783        // with that name must be marked "overloadable".
6784        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6785          << Redeclaration << NewFD;
6786        NamedDecl *OverloadedDecl = 0;
6787        if (Redeclaration)
6788          OverloadedDecl = OldDecl;
6789        else if (!Previous.empty())
6790          OverloadedDecl = Previous.getRepresentativeDecl();
6791        if (OverloadedDecl)
6792          Diag(OverloadedDecl->getLocation(),
6793               diag::note_attribute_overloadable_prev_overload);
6794        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6795                                                        Context));
6796      }
6797    }
6798  }
6799
6800  // C++11 [dcl.constexpr]p8:
6801  //   A constexpr specifier for a non-static member function that is not
6802  //   a constructor declares that member function to be const.
6803  //
6804  // This needs to be delayed until we know whether this is an out-of-line
6805  // definition of a static member function.
6806  //
6807  // This rule is not present in C++1y, so we produce a backwards
6808  // compatibility warning whenever it happens in C++11.
6809  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6810  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
6811      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
6812      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6813    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6814    if (FunctionTemplateDecl *OldTD =
6815          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6816      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6817    if (!OldMD || !OldMD->isStatic()) {
6818      const FunctionProtoType *FPT =
6819        MD->getType()->castAs<FunctionProtoType>();
6820      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6821      EPI.TypeQuals |= Qualifiers::Const;
6822      MD->setType(Context.getFunctionType(FPT->getResultType(),
6823                                          FPT->getArgTypes(), EPI));
6824
6825      // Warn that we did this, if we're not performing template instantiation.
6826      // In that case, we'll have warned already when the template was defined.
6827      if (ActiveTemplateInstantiations.empty()) {
6828        SourceLocation AddConstLoc;
6829        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
6830                .IgnoreParens().getAs<FunctionTypeLoc>())
6831          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
6832
6833        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
6834          << FixItHint::CreateInsertion(AddConstLoc, " const");
6835      }
6836    }
6837  }
6838
6839  if (Redeclaration) {
6840    // NewFD and OldDecl represent declarations that need to be
6841    // merged.
6842    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6843      NewFD->setInvalidDecl();
6844      return Redeclaration;
6845    }
6846
6847    Previous.clear();
6848    Previous.addDecl(OldDecl);
6849
6850    if (FunctionTemplateDecl *OldTemplateDecl
6851                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6852      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6853      FunctionTemplateDecl *NewTemplateDecl
6854        = NewFD->getDescribedFunctionTemplate();
6855      assert(NewTemplateDecl && "Template/non-template mismatch");
6856      if (CXXMethodDecl *Method
6857            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6858        Method->setAccess(OldTemplateDecl->getAccess());
6859        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6860      }
6861
6862      // If this is an explicit specialization of a member that is a function
6863      // template, mark it as a member specialization.
6864      if (IsExplicitSpecialization &&
6865          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6866        NewTemplateDecl->setMemberSpecialization();
6867        assert(OldTemplateDecl->isMemberSpecialization());
6868      }
6869
6870    } else {
6871      // This needs to happen first so that 'inline' propagates.
6872      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6873
6874      if (isa<CXXMethodDecl>(NewFD)) {
6875        // A valid redeclaration of a C++ method must be out-of-line,
6876        // but (unfortunately) it's not necessarily a definition
6877        // because of templates, which means that the previous
6878        // declaration is not necessarily from the class definition.
6879
6880        // For just setting the access, that doesn't matter.
6881        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6882        NewFD->setAccess(oldMethod->getAccess());
6883
6884        // Update the key-function state if necessary for this ABI.
6885        if (NewFD->isInlined() &&
6886            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6887          // setNonKeyFunction needs to work with the original
6888          // declaration from the class definition, and isVirtual() is
6889          // just faster in that case, so map back to that now.
6890          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6891          if (oldMethod->isVirtual()) {
6892            Context.setNonKeyFunction(oldMethod);
6893          }
6894        }
6895      }
6896    }
6897  }
6898
6899  // Semantic checking for this function declaration (in isolation).
6900  if (getLangOpts().CPlusPlus) {
6901    // C++-specific checks.
6902    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6903      CheckConstructor(Constructor);
6904    } else if (CXXDestructorDecl *Destructor =
6905                dyn_cast<CXXDestructorDecl>(NewFD)) {
6906      CXXRecordDecl *Record = Destructor->getParent();
6907      QualType ClassType = Context.getTypeDeclType(Record);
6908
6909      // FIXME: Shouldn't we be able to perform this check even when the class
6910      // type is dependent? Both gcc and edg can handle that.
6911      if (!ClassType->isDependentType()) {
6912        DeclarationName Name
6913          = Context.DeclarationNames.getCXXDestructorName(
6914                                        Context.getCanonicalType(ClassType));
6915        if (NewFD->getDeclName() != Name) {
6916          Diag(NewFD->getLocation(), diag::err_destructor_name);
6917          NewFD->setInvalidDecl();
6918          return Redeclaration;
6919        }
6920      }
6921    } else if (CXXConversionDecl *Conversion
6922               = dyn_cast<CXXConversionDecl>(NewFD)) {
6923      ActOnConversionDeclarator(Conversion);
6924    }
6925
6926    // Find any virtual functions that this function overrides.
6927    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6928      if (!Method->isFunctionTemplateSpecialization() &&
6929          !Method->getDescribedFunctionTemplate() &&
6930          Method->isCanonicalDecl()) {
6931        if (AddOverriddenMethods(Method->getParent(), Method)) {
6932          // If the function was marked as "static", we have a problem.
6933          if (NewFD->getStorageClass() == SC_Static) {
6934            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6935          }
6936        }
6937      }
6938
6939      if (Method->isStatic())
6940        checkThisInStaticMemberFunctionType(Method);
6941    }
6942
6943    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6944    if (NewFD->isOverloadedOperator() &&
6945        CheckOverloadedOperatorDeclaration(NewFD)) {
6946      NewFD->setInvalidDecl();
6947      return Redeclaration;
6948    }
6949
6950    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6951    if (NewFD->getLiteralIdentifier() &&
6952        CheckLiteralOperatorDeclaration(NewFD)) {
6953      NewFD->setInvalidDecl();
6954      return Redeclaration;
6955    }
6956
6957    // In C++, check default arguments now that we have merged decls. Unless
6958    // the lexical context is the class, because in this case this is done
6959    // during delayed parsing anyway.
6960    if (!CurContext->isRecord())
6961      CheckCXXDefaultArguments(NewFD);
6962
6963    // If this function declares a builtin function, check the type of this
6964    // declaration against the expected type for the builtin.
6965    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6966      ASTContext::GetBuiltinTypeError Error;
6967      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6968      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6969      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6970        // The type of this function differs from the type of the builtin,
6971        // so forget about the builtin entirely.
6972        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6973      }
6974    }
6975
6976    // If this function is declared as being extern "C", then check to see if
6977    // the function returns a UDT (class, struct, or union type) that is not C
6978    // compatible, and if it does, warn the user.
6979    // But, issue any diagnostic on the first declaration only.
6980    if (NewFD->isExternC() && Previous.empty()) {
6981      QualType R = NewFD->getResultType();
6982      if (R->isIncompleteType() && !R->isVoidType())
6983        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6984            << NewFD << R;
6985      else if (!R.isPODType(Context) && !R->isVoidType() &&
6986               !R->isObjCObjectPointerType())
6987        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6988    }
6989  }
6990  return Redeclaration;
6991}
6992
6993static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6994  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6995  if (!TSI)
6996    return SourceRange();
6997
6998  TypeLoc TL = TSI->getTypeLoc();
6999  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7000  if (!FunctionTL)
7001    return SourceRange();
7002
7003  TypeLoc ResultTL = FunctionTL.getResultLoc();
7004  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7005    return ResultTL.getSourceRange();
7006
7007  return SourceRange();
7008}
7009
7010void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7011  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7012  //   static or constexpr is ill-formed.
7013  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7014  //   appear in a declaration of main.
7015  // static main is not an error under C99, but we should warn about it.
7016  // We accept _Noreturn main as an extension.
7017  if (FD->getStorageClass() == SC_Static)
7018    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7019         ? diag::err_static_main : diag::warn_static_main)
7020      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7021  if (FD->isInlineSpecified())
7022    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7023      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7024  if (DS.isNoreturnSpecified()) {
7025    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7026    SourceRange NoreturnRange(NoreturnLoc,
7027                              PP.getLocForEndOfToken(NoreturnLoc));
7028    Diag(NoreturnLoc, diag::ext_noreturn_main);
7029    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7030      << FixItHint::CreateRemoval(NoreturnRange);
7031  }
7032  if (FD->isConstexpr()) {
7033    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7034      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7035    FD->setConstexpr(false);
7036  }
7037
7038  QualType T = FD->getType();
7039  assert(T->isFunctionType() && "function decl is not of function type");
7040  const FunctionType* FT = T->castAs<FunctionType>();
7041
7042  // All the standards say that main() should should return 'int'.
7043  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7044    // In C and C++, main magically returns 0 if you fall off the end;
7045    // set the flag which tells us that.
7046    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7047    FD->setHasImplicitReturnZero(true);
7048
7049  // In C with GNU extensions we allow main() to have non-integer return
7050  // type, but we should warn about the extension, and we disable the
7051  // implicit-return-zero rule.
7052  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7053    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7054
7055    SourceRange ResultRange = getResultSourceRange(FD);
7056    if (ResultRange.isValid())
7057      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7058          << FixItHint::CreateReplacement(ResultRange, "int");
7059
7060  // Otherwise, this is just a flat-out error.
7061  } else {
7062    SourceRange ResultRange = getResultSourceRange(FD);
7063    if (ResultRange.isValid())
7064      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7065          << FixItHint::CreateReplacement(ResultRange, "int");
7066    else
7067      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7068
7069    FD->setInvalidDecl(true);
7070  }
7071
7072  // Treat protoless main() as nullary.
7073  if (isa<FunctionNoProtoType>(FT)) return;
7074
7075  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7076  unsigned nparams = FTP->getNumArgs();
7077  assert(FD->getNumParams() == nparams);
7078
7079  bool HasExtraParameters = (nparams > 3);
7080
7081  // Darwin passes an undocumented fourth argument of type char**.  If
7082  // other platforms start sprouting these, the logic below will start
7083  // getting shifty.
7084  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7085    HasExtraParameters = false;
7086
7087  if (HasExtraParameters) {
7088    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7089    FD->setInvalidDecl(true);
7090    nparams = 3;
7091  }
7092
7093  // FIXME: a lot of the following diagnostics would be improved
7094  // if we had some location information about types.
7095
7096  QualType CharPP =
7097    Context.getPointerType(Context.getPointerType(Context.CharTy));
7098  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7099
7100  for (unsigned i = 0; i < nparams; ++i) {
7101    QualType AT = FTP->getArgType(i);
7102
7103    bool mismatch = true;
7104
7105    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7106      mismatch = false;
7107    else if (Expected[i] == CharPP) {
7108      // As an extension, the following forms are okay:
7109      //   char const **
7110      //   char const * const *
7111      //   char * const *
7112
7113      QualifierCollector qs;
7114      const PointerType* PT;
7115      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7116          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7117          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7118                              Context.CharTy)) {
7119        qs.removeConst();
7120        mismatch = !qs.empty();
7121      }
7122    }
7123
7124    if (mismatch) {
7125      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7126      // TODO: suggest replacing given type with expected type
7127      FD->setInvalidDecl(true);
7128    }
7129  }
7130
7131  if (nparams == 1 && !FD->isInvalidDecl()) {
7132    Diag(FD->getLocation(), diag::warn_main_one_arg);
7133  }
7134
7135  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7136    Diag(FD->getLocation(), diag::err_main_template_decl);
7137    FD->setInvalidDecl();
7138  }
7139}
7140
7141bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7142  // FIXME: Need strict checking.  In C89, we need to check for
7143  // any assignment, increment, decrement, function-calls, or
7144  // commas outside of a sizeof.  In C99, it's the same list,
7145  // except that the aforementioned are allowed in unevaluated
7146  // expressions.  Everything else falls under the
7147  // "may accept other forms of constant expressions" exception.
7148  // (We never end up here for C++, so the constant expression
7149  // rules there don't matter.)
7150  if (Init->isConstantInitializer(Context, false))
7151    return false;
7152  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7153    << Init->getSourceRange();
7154  return true;
7155}
7156
7157namespace {
7158  // Visits an initialization expression to see if OrigDecl is evaluated in
7159  // its own initialization and throws a warning if it does.
7160  class SelfReferenceChecker
7161      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7162    Sema &S;
7163    Decl *OrigDecl;
7164    bool isRecordType;
7165    bool isPODType;
7166    bool isReferenceType;
7167
7168  public:
7169    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7170
7171    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7172                                                    S(S), OrigDecl(OrigDecl) {
7173      isPODType = false;
7174      isRecordType = false;
7175      isReferenceType = false;
7176      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7177        isPODType = VD->getType().isPODType(S.Context);
7178        isRecordType = VD->getType()->isRecordType();
7179        isReferenceType = VD->getType()->isReferenceType();
7180      }
7181    }
7182
7183    // For most expressions, the cast is directly above the DeclRefExpr.
7184    // For conditional operators, the cast can be outside the conditional
7185    // operator if both expressions are DeclRefExpr's.
7186    void HandleValue(Expr *E) {
7187      if (isReferenceType)
7188        return;
7189      E = E->IgnoreParenImpCasts();
7190      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7191        HandleDeclRefExpr(DRE);
7192        return;
7193      }
7194
7195      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7196        HandleValue(CO->getTrueExpr());
7197        HandleValue(CO->getFalseExpr());
7198        return;
7199      }
7200
7201      if (isa<MemberExpr>(E)) {
7202        Expr *Base = E->IgnoreParenImpCasts();
7203        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7204          // Check for static member variables and don't warn on them.
7205          if (!isa<FieldDecl>(ME->getMemberDecl()))
7206            return;
7207          Base = ME->getBase()->IgnoreParenImpCasts();
7208        }
7209        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7210          HandleDeclRefExpr(DRE);
7211        return;
7212      }
7213    }
7214
7215    // Reference types are handled here since all uses of references are
7216    // bad, not just r-value uses.
7217    void VisitDeclRefExpr(DeclRefExpr *E) {
7218      if (isReferenceType)
7219        HandleDeclRefExpr(E);
7220    }
7221
7222    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7223      if (E->getCastKind() == CK_LValueToRValue ||
7224          (isRecordType && E->getCastKind() == CK_NoOp))
7225        HandleValue(E->getSubExpr());
7226
7227      Inherited::VisitImplicitCastExpr(E);
7228    }
7229
7230    void VisitMemberExpr(MemberExpr *E) {
7231      // Don't warn on arrays since they can be treated as pointers.
7232      if (E->getType()->canDecayToPointerType()) return;
7233
7234      // Warn when a non-static method call is followed by non-static member
7235      // field accesses, which is followed by a DeclRefExpr.
7236      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7237      bool Warn = (MD && !MD->isStatic());
7238      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7239      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7240        if (!isa<FieldDecl>(ME->getMemberDecl()))
7241          Warn = false;
7242        Base = ME->getBase()->IgnoreParenImpCasts();
7243      }
7244
7245      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7246        if (Warn)
7247          HandleDeclRefExpr(DRE);
7248        return;
7249      }
7250
7251      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7252      // Visit that expression.
7253      Visit(Base);
7254    }
7255
7256    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7257      if (E->getNumArgs() > 0)
7258        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7259          HandleDeclRefExpr(DRE);
7260
7261      Inherited::VisitCXXOperatorCallExpr(E);
7262    }
7263
7264    void VisitUnaryOperator(UnaryOperator *E) {
7265      // For POD record types, addresses of its own members are well-defined.
7266      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7267          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7268        if (!isPODType)
7269          HandleValue(E->getSubExpr());
7270        return;
7271      }
7272      Inherited::VisitUnaryOperator(E);
7273    }
7274
7275    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7276
7277    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7278      Decl* ReferenceDecl = DRE->getDecl();
7279      if (OrigDecl != ReferenceDecl) return;
7280      unsigned diag;
7281      if (isReferenceType) {
7282        diag = diag::warn_uninit_self_reference_in_reference_init;
7283      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7284        diag = diag::warn_static_self_reference_in_init;
7285      } else {
7286        diag = diag::warn_uninit_self_reference_in_init;
7287      }
7288
7289      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7290                            S.PDiag(diag)
7291                              << DRE->getNameInfo().getName()
7292                              << OrigDecl->getLocation()
7293                              << DRE->getSourceRange());
7294    }
7295  };
7296
7297  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7298  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7299                                 bool DirectInit) {
7300    // Parameters arguments are occassionially constructed with itself,
7301    // for instance, in recursive functions.  Skip them.
7302    if (isa<ParmVarDecl>(OrigDecl))
7303      return;
7304
7305    E = E->IgnoreParens();
7306
7307    // Skip checking T a = a where T is not a record or reference type.
7308    // Doing so is a way to silence uninitialized warnings.
7309    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7310      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7311        if (ICE->getCastKind() == CK_LValueToRValue)
7312          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7313            if (DRE->getDecl() == OrigDecl)
7314              return;
7315
7316    SelfReferenceChecker(S, OrigDecl).Visit(E);
7317  }
7318}
7319
7320/// AddInitializerToDecl - Adds the initializer Init to the
7321/// declaration dcl. If DirectInit is true, this is C++ direct
7322/// initialization rather than copy initialization.
7323void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7324                                bool DirectInit, bool TypeMayContainAuto) {
7325  // If there is no declaration, there was an error parsing it.  Just ignore
7326  // the initializer.
7327  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7328    return;
7329
7330  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7331    // With declarators parsed the way they are, the parser cannot
7332    // distinguish between a normal initializer and a pure-specifier.
7333    // Thus this grotesque test.
7334    IntegerLiteral *IL;
7335    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7336        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7337      CheckPureMethod(Method, Init->getSourceRange());
7338    else {
7339      Diag(Method->getLocation(), diag::err_member_function_initialization)
7340        << Method->getDeclName() << Init->getSourceRange();
7341      Method->setInvalidDecl();
7342    }
7343    return;
7344  }
7345
7346  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7347  if (!VDecl) {
7348    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7349    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7350    RealDecl->setInvalidDecl();
7351    return;
7352  }
7353
7354  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7355
7356  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7357  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7358    Expr *DeduceInit = Init;
7359    // Initializer could be a C++ direct-initializer. Deduction only works if it
7360    // contains exactly one expression.
7361    if (CXXDirectInit) {
7362      if (CXXDirectInit->getNumExprs() == 0) {
7363        // It isn't possible to write this directly, but it is possible to
7364        // end up in this situation with "auto x(some_pack...);"
7365        Diag(CXXDirectInit->getLocStart(),
7366             diag::err_auto_var_init_no_expression)
7367          << VDecl->getDeclName() << VDecl->getType()
7368          << VDecl->getSourceRange();
7369        RealDecl->setInvalidDecl();
7370        return;
7371      } else if (CXXDirectInit->getNumExprs() > 1) {
7372        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7373             diag::err_auto_var_init_multiple_expressions)
7374          << VDecl->getDeclName() << VDecl->getType()
7375          << VDecl->getSourceRange();
7376        RealDecl->setInvalidDecl();
7377        return;
7378      } else {
7379        DeduceInit = CXXDirectInit->getExpr(0);
7380      }
7381    }
7382
7383    // Expressions default to 'id' when we're in a debugger.
7384    bool DefaultedToAuto = false;
7385    if (getLangOpts().DebuggerCastResultToId &&
7386        Init->getType() == Context.UnknownAnyTy) {
7387      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7388      if (Result.isInvalid()) {
7389        VDecl->setInvalidDecl();
7390        return;
7391      }
7392      Init = Result.take();
7393      DefaultedToAuto = true;
7394    }
7395
7396    QualType DeducedType;
7397    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7398            DAR_Failed)
7399      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7400    if (DeducedType.isNull()) {
7401      RealDecl->setInvalidDecl();
7402      return;
7403    }
7404    VDecl->setType(DeducedType);
7405    assert(VDecl->isLinkageValid());
7406
7407    // In ARC, infer lifetime.
7408    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7409      VDecl->setInvalidDecl();
7410
7411    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7412    // 'id' instead of a specific object type prevents most of our usual checks.
7413    // We only want to warn outside of template instantiations, though:
7414    // inside a template, the 'id' could have come from a parameter.
7415    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7416        DeducedType->isObjCIdType()) {
7417      SourceLocation Loc =
7418          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7419      Diag(Loc, diag::warn_auto_var_is_id)
7420        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7421    }
7422
7423    // If this is a redeclaration, check that the type we just deduced matches
7424    // the previously declared type.
7425    if (VarDecl *Old = VDecl->getPreviousDecl())
7426      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7427
7428    // Check the deduced type is valid for a variable declaration.
7429    CheckVariableDeclarationType(VDecl);
7430    if (VDecl->isInvalidDecl())
7431      return;
7432  }
7433
7434  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7435    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7436    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7437    VDecl->setInvalidDecl();
7438    return;
7439  }
7440
7441  if (!VDecl->getType()->isDependentType()) {
7442    // A definition must end up with a complete type, which means it must be
7443    // complete with the restriction that an array type might be completed by
7444    // the initializer; note that later code assumes this restriction.
7445    QualType BaseDeclType = VDecl->getType();
7446    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7447      BaseDeclType = Array->getElementType();
7448    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7449                            diag::err_typecheck_decl_incomplete_type)) {
7450      RealDecl->setInvalidDecl();
7451      return;
7452    }
7453
7454    // The variable can not have an abstract class type.
7455    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7456                               diag::err_abstract_type_in_decl,
7457                               AbstractVariableType))
7458      VDecl->setInvalidDecl();
7459  }
7460
7461  const VarDecl *Def;
7462  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7463    Diag(VDecl->getLocation(), diag::err_redefinition)
7464      << VDecl->getDeclName();
7465    Diag(Def->getLocation(), diag::note_previous_definition);
7466    VDecl->setInvalidDecl();
7467    return;
7468  }
7469
7470  const VarDecl* PrevInit = 0;
7471  if (getLangOpts().CPlusPlus) {
7472    // C++ [class.static.data]p4
7473    //   If a static data member is of const integral or const
7474    //   enumeration type, its declaration in the class definition can
7475    //   specify a constant-initializer which shall be an integral
7476    //   constant expression (5.19). In that case, the member can appear
7477    //   in integral constant expressions. The member shall still be
7478    //   defined in a namespace scope if it is used in the program and the
7479    //   namespace scope definition shall not contain an initializer.
7480    //
7481    // We already performed a redefinition check above, but for static
7482    // data members we also need to check whether there was an in-class
7483    // declaration with an initializer.
7484    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7485      Diag(VDecl->getLocation(), diag::err_redefinition)
7486        << VDecl->getDeclName();
7487      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7488      return;
7489    }
7490
7491    if (VDecl->hasLocalStorage())
7492      getCurFunction()->setHasBranchProtectedScope();
7493
7494    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7495      VDecl->setInvalidDecl();
7496      return;
7497    }
7498  }
7499
7500  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7501  // a kernel function cannot be initialized."
7502  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7503    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7504    VDecl->setInvalidDecl();
7505    return;
7506  }
7507
7508  // Get the decls type and save a reference for later, since
7509  // CheckInitializerTypes may change it.
7510  QualType DclT = VDecl->getType(), SavT = DclT;
7511
7512  // Expressions default to 'id' when we're in a debugger
7513  // and we are assigning it to a variable of Objective-C pointer type.
7514  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7515      Init->getType() == Context.UnknownAnyTy) {
7516    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7517    if (Result.isInvalid()) {
7518      VDecl->setInvalidDecl();
7519      return;
7520    }
7521    Init = Result.take();
7522  }
7523
7524  // Perform the initialization.
7525  if (!VDecl->isInvalidDecl()) {
7526    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7527    InitializationKind Kind
7528      = DirectInit ?
7529          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7530                                                           Init->getLocStart(),
7531                                                           Init->getLocEnd())
7532                        : InitializationKind::CreateDirectList(
7533                                                          VDecl->getLocation())
7534                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7535                                                    Init->getLocStart());
7536
7537    MultiExprArg Args = Init;
7538    if (CXXDirectInit)
7539      Args = MultiExprArg(CXXDirectInit->getExprs(),
7540                          CXXDirectInit->getNumExprs());
7541
7542    InitializationSequence InitSeq(*this, Entity, Kind, Args);
7543    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
7544    if (Result.isInvalid()) {
7545      VDecl->setInvalidDecl();
7546      return;
7547    }
7548
7549    Init = Result.takeAs<Expr>();
7550  }
7551
7552  // Check for self-references within variable initializers.
7553  // Variables declared within a function/method body (except for references)
7554  // are handled by a dataflow analysis.
7555  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7556      VDecl->getType()->isReferenceType()) {
7557    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7558  }
7559
7560  // If the type changed, it means we had an incomplete type that was
7561  // completed by the initializer. For example:
7562  //   int ary[] = { 1, 3, 5 };
7563  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7564  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7565    VDecl->setType(DclT);
7566
7567  if (!VDecl->isInvalidDecl()) {
7568    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7569
7570    if (VDecl->hasAttr<BlocksAttr>())
7571      checkRetainCycles(VDecl, Init);
7572
7573    // It is safe to assign a weak reference into a strong variable.
7574    // Although this code can still have problems:
7575    //   id x = self.weakProp;
7576    //   id y = self.weakProp;
7577    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7578    // paths through the function. This should be revisited if
7579    // -Wrepeated-use-of-weak is made flow-sensitive.
7580    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7581      DiagnosticsEngine::Level Level =
7582        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7583                                 Init->getLocStart());
7584      if (Level != DiagnosticsEngine::Ignored)
7585        getCurFunction()->markSafeWeakUse(Init);
7586    }
7587  }
7588
7589  // The initialization is usually a full-expression.
7590  //
7591  // FIXME: If this is a braced initialization of an aggregate, it is not
7592  // an expression, and each individual field initializer is a separate
7593  // full-expression. For instance, in:
7594  //
7595  //   struct Temp { ~Temp(); };
7596  //   struct S { S(Temp); };
7597  //   struct T { S a, b; } t = { Temp(), Temp() }
7598  //
7599  // we should destroy the first Temp before constructing the second.
7600  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7601                                          false,
7602                                          VDecl->isConstexpr());
7603  if (Result.isInvalid()) {
7604    VDecl->setInvalidDecl();
7605    return;
7606  }
7607  Init = Result.take();
7608
7609  // Attach the initializer to the decl.
7610  VDecl->setInit(Init);
7611
7612  if (VDecl->isLocalVarDecl()) {
7613    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7614    // static storage duration shall be constant expressions or string literals.
7615    // C++ does not have this restriction.
7616    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7617        VDecl->getStorageClass() == SC_Static)
7618      CheckForConstantInitializer(Init, DclT);
7619  } else if (VDecl->isStaticDataMember() &&
7620             VDecl->getLexicalDeclContext()->isRecord()) {
7621    // This is an in-class initialization for a static data member, e.g.,
7622    //
7623    // struct S {
7624    //   static const int value = 17;
7625    // };
7626
7627    // C++ [class.mem]p4:
7628    //   A member-declarator can contain a constant-initializer only
7629    //   if it declares a static member (9.4) of const integral or
7630    //   const enumeration type, see 9.4.2.
7631    //
7632    // C++11 [class.static.data]p3:
7633    //   If a non-volatile const static data member is of integral or
7634    //   enumeration type, its declaration in the class definition can
7635    //   specify a brace-or-equal-initializer in which every initalizer-clause
7636    //   that is an assignment-expression is a constant expression. A static
7637    //   data member of literal type can be declared in the class definition
7638    //   with the constexpr specifier; if so, its declaration shall specify a
7639    //   brace-or-equal-initializer in which every initializer-clause that is
7640    //   an assignment-expression is a constant expression.
7641
7642    // Do nothing on dependent types.
7643    if (DclT->isDependentType()) {
7644
7645    // Allow any 'static constexpr' members, whether or not they are of literal
7646    // type. We separately check that every constexpr variable is of literal
7647    // type.
7648    } else if (VDecl->isConstexpr()) {
7649
7650    // Require constness.
7651    } else if (!DclT.isConstQualified()) {
7652      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7653        << Init->getSourceRange();
7654      VDecl->setInvalidDecl();
7655
7656    // We allow integer constant expressions in all cases.
7657    } else if (DclT->isIntegralOrEnumerationType()) {
7658      // Check whether the expression is a constant expression.
7659      SourceLocation Loc;
7660      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7661        // In C++11, a non-constexpr const static data member with an
7662        // in-class initializer cannot be volatile.
7663        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7664      else if (Init->isValueDependent())
7665        ; // Nothing to check.
7666      else if (Init->isIntegerConstantExpr(Context, &Loc))
7667        ; // Ok, it's an ICE!
7668      else if (Init->isEvaluatable(Context)) {
7669        // If we can constant fold the initializer through heroics, accept it,
7670        // but report this as a use of an extension for -pedantic.
7671        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7672          << Init->getSourceRange();
7673      } else {
7674        // Otherwise, this is some crazy unknown case.  Report the issue at the
7675        // location provided by the isIntegerConstantExpr failed check.
7676        Diag(Loc, diag::err_in_class_initializer_non_constant)
7677          << Init->getSourceRange();
7678        VDecl->setInvalidDecl();
7679      }
7680
7681    // We allow foldable floating-point constants as an extension.
7682    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7683      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7684      // it anyway and provide a fixit to add the 'constexpr'.
7685      if (getLangOpts().CPlusPlus11) {
7686        Diag(VDecl->getLocation(),
7687             diag::ext_in_class_initializer_float_type_cxx11)
7688            << DclT << Init->getSourceRange();
7689        Diag(VDecl->getLocStart(),
7690             diag::note_in_class_initializer_float_type_cxx11)
7691            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7692      } else {
7693        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7694          << DclT << Init->getSourceRange();
7695
7696        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7697          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7698            << Init->getSourceRange();
7699          VDecl->setInvalidDecl();
7700        }
7701      }
7702
7703    // Suggest adding 'constexpr' in C++11 for literal types.
7704    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
7705      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7706        << DclT << Init->getSourceRange()
7707        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7708      VDecl->setConstexpr(true);
7709
7710    } else {
7711      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7712        << DclT << Init->getSourceRange();
7713      VDecl->setInvalidDecl();
7714    }
7715  } else if (VDecl->isFileVarDecl()) {
7716    if (VDecl->getStorageClass() == SC_Extern &&
7717        (!getLangOpts().CPlusPlus ||
7718         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7719           VDecl->isExternC())))
7720      Diag(VDecl->getLocation(), diag::warn_extern_init);
7721
7722    // C99 6.7.8p4. All file scoped initializers need to be constant.
7723    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7724      CheckForConstantInitializer(Init, DclT);
7725    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
7726             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
7727             !Init->isValueDependent() && !VDecl->isConstexpr() &&
7728             !Init->isConstantInitializer(
7729                 Context, VDecl->getType()->isReferenceType())) {
7730      // GNU C++98 edits for __thread, [basic.start.init]p4:
7731      //   An object of thread storage duration shall not require dynamic
7732      //   initialization.
7733      // FIXME: Need strict checking here.
7734      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
7735      if (getLangOpts().CPlusPlus11)
7736        Diag(VDecl->getLocation(), diag::note_use_thread_local);
7737    }
7738  }
7739
7740  // We will represent direct-initialization similarly to copy-initialization:
7741  //    int x(1);  -as-> int x = 1;
7742  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7743  //
7744  // Clients that want to distinguish between the two forms, can check for
7745  // direct initializer using VarDecl::getInitStyle().
7746  // A major benefit is that clients that don't particularly care about which
7747  // exactly form was it (like the CodeGen) can handle both cases without
7748  // special case code.
7749
7750  // C++ 8.5p11:
7751  // The form of initialization (using parentheses or '=') is generally
7752  // insignificant, but does matter when the entity being initialized has a
7753  // class type.
7754  if (CXXDirectInit) {
7755    assert(DirectInit && "Call-style initializer must be direct init.");
7756    VDecl->setInitStyle(VarDecl::CallInit);
7757  } else if (DirectInit) {
7758    // This must be list-initialization. No other way is direct-initialization.
7759    VDecl->setInitStyle(VarDecl::ListInit);
7760  }
7761
7762  CheckCompleteVariableDeclaration(VDecl);
7763}
7764
7765/// ActOnInitializerError - Given that there was an error parsing an
7766/// initializer for the given declaration, try to return to some form
7767/// of sanity.
7768void Sema::ActOnInitializerError(Decl *D) {
7769  // Our main concern here is re-establishing invariants like "a
7770  // variable's type is either dependent or complete".
7771  if (!D || D->isInvalidDecl()) return;
7772
7773  VarDecl *VD = dyn_cast<VarDecl>(D);
7774  if (!VD) return;
7775
7776  // Auto types are meaningless if we can't make sense of the initializer.
7777  if (ParsingInitForAutoVars.count(D)) {
7778    D->setInvalidDecl();
7779    return;
7780  }
7781
7782  QualType Ty = VD->getType();
7783  if (Ty->isDependentType()) return;
7784
7785  // Require a complete type.
7786  if (RequireCompleteType(VD->getLocation(),
7787                          Context.getBaseElementType(Ty),
7788                          diag::err_typecheck_decl_incomplete_type)) {
7789    VD->setInvalidDecl();
7790    return;
7791  }
7792
7793  // Require an abstract type.
7794  if (RequireNonAbstractType(VD->getLocation(), Ty,
7795                             diag::err_abstract_type_in_decl,
7796                             AbstractVariableType)) {
7797    VD->setInvalidDecl();
7798    return;
7799  }
7800
7801  // Don't bother complaining about constructors or destructors,
7802  // though.
7803}
7804
7805void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7806                                  bool TypeMayContainAuto) {
7807  // If there is no declaration, there was an error parsing it. Just ignore it.
7808  if (RealDecl == 0)
7809    return;
7810
7811  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7812    QualType Type = Var->getType();
7813
7814    // C++11 [dcl.spec.auto]p3
7815    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7816      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7817        << Var->getDeclName() << Type;
7818      Var->setInvalidDecl();
7819      return;
7820    }
7821
7822    // C++11 [class.static.data]p3: A static data member can be declared with
7823    // the constexpr specifier; if so, its declaration shall specify
7824    // a brace-or-equal-initializer.
7825    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7826    // the definition of a variable [...] or the declaration of a static data
7827    // member.
7828    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7829      if (Var->isStaticDataMember())
7830        Diag(Var->getLocation(),
7831             diag::err_constexpr_static_mem_var_requires_init)
7832          << Var->getDeclName();
7833      else
7834        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7835      Var->setInvalidDecl();
7836      return;
7837    }
7838
7839    switch (Var->isThisDeclarationADefinition()) {
7840    case VarDecl::Definition:
7841      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7842        break;
7843
7844      // We have an out-of-line definition of a static data member
7845      // that has an in-class initializer, so we type-check this like
7846      // a declaration.
7847      //
7848      // Fall through
7849
7850    case VarDecl::DeclarationOnly:
7851      // It's only a declaration.
7852
7853      // Block scope. C99 6.7p7: If an identifier for an object is
7854      // declared with no linkage (C99 6.2.2p6), the type for the
7855      // object shall be complete.
7856      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7857          !Var->hasLinkage() && !Var->isInvalidDecl() &&
7858          RequireCompleteType(Var->getLocation(), Type,
7859                              diag::err_typecheck_decl_incomplete_type))
7860        Var->setInvalidDecl();
7861
7862      // Make sure that the type is not abstract.
7863      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7864          RequireNonAbstractType(Var->getLocation(), Type,
7865                                 diag::err_abstract_type_in_decl,
7866                                 AbstractVariableType))
7867        Var->setInvalidDecl();
7868      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7869          Var->getStorageClass() == SC_PrivateExtern) {
7870        Diag(Var->getLocation(), diag::warn_private_extern);
7871        Diag(Var->getLocation(), diag::note_private_extern);
7872      }
7873
7874      return;
7875
7876    case VarDecl::TentativeDefinition:
7877      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7878      // object that has file scope without an initializer, and without a
7879      // storage-class specifier or with the storage-class specifier "static",
7880      // constitutes a tentative definition. Note: A tentative definition with
7881      // external linkage is valid (C99 6.2.2p5).
7882      if (!Var->isInvalidDecl()) {
7883        if (const IncompleteArrayType *ArrayT
7884                                    = Context.getAsIncompleteArrayType(Type)) {
7885          if (RequireCompleteType(Var->getLocation(),
7886                                  ArrayT->getElementType(),
7887                                  diag::err_illegal_decl_array_incomplete_type))
7888            Var->setInvalidDecl();
7889        } else if (Var->getStorageClass() == SC_Static) {
7890          // C99 6.9.2p3: If the declaration of an identifier for an object is
7891          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7892          // declared type shall not be an incomplete type.
7893          // NOTE: code such as the following
7894          //     static struct s;
7895          //     struct s { int a; };
7896          // is accepted by gcc. Hence here we issue a warning instead of
7897          // an error and we do not invalidate the static declaration.
7898          // NOTE: to avoid multiple warnings, only check the first declaration.
7899          if (Var->getPreviousDecl() == 0)
7900            RequireCompleteType(Var->getLocation(), Type,
7901                                diag::ext_typecheck_decl_incomplete_type);
7902        }
7903      }
7904
7905      // Record the tentative definition; we're done.
7906      if (!Var->isInvalidDecl())
7907        TentativeDefinitions.push_back(Var);
7908      return;
7909    }
7910
7911    // Provide a specific diagnostic for uninitialized variable
7912    // definitions with incomplete array type.
7913    if (Type->isIncompleteArrayType()) {
7914      Diag(Var->getLocation(),
7915           diag::err_typecheck_incomplete_array_needs_initializer);
7916      Var->setInvalidDecl();
7917      return;
7918    }
7919
7920    // Provide a specific diagnostic for uninitialized variable
7921    // definitions with reference type.
7922    if (Type->isReferenceType()) {
7923      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7924        << Var->getDeclName()
7925        << SourceRange(Var->getLocation(), Var->getLocation());
7926      Var->setInvalidDecl();
7927      return;
7928    }
7929
7930    // Do not attempt to type-check the default initializer for a
7931    // variable with dependent type.
7932    if (Type->isDependentType())
7933      return;
7934
7935    if (Var->isInvalidDecl())
7936      return;
7937
7938    if (RequireCompleteType(Var->getLocation(),
7939                            Context.getBaseElementType(Type),
7940                            diag::err_typecheck_decl_incomplete_type)) {
7941      Var->setInvalidDecl();
7942      return;
7943    }
7944
7945    // The variable can not have an abstract class type.
7946    if (RequireNonAbstractType(Var->getLocation(), Type,
7947                               diag::err_abstract_type_in_decl,
7948                               AbstractVariableType)) {
7949      Var->setInvalidDecl();
7950      return;
7951    }
7952
7953    // Check for jumps past the implicit initializer.  C++0x
7954    // clarifies that this applies to a "variable with automatic
7955    // storage duration", not a "local variable".
7956    // C++11 [stmt.dcl]p3
7957    //   A program that jumps from a point where a variable with automatic
7958    //   storage duration is not in scope to a point where it is in scope is
7959    //   ill-formed unless the variable has scalar type, class type with a
7960    //   trivial default constructor and a trivial destructor, a cv-qualified
7961    //   version of one of these types, or an array of one of the preceding
7962    //   types and is declared without an initializer.
7963    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7964      if (const RecordType *Record
7965            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7966        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7967        // Mark the function for further checking even if the looser rules of
7968        // C++11 do not require such checks, so that we can diagnose
7969        // incompatibilities with C++98.
7970        if (!CXXRecord->isPOD())
7971          getCurFunction()->setHasBranchProtectedScope();
7972      }
7973    }
7974
7975    // C++03 [dcl.init]p9:
7976    //   If no initializer is specified for an object, and the
7977    //   object is of (possibly cv-qualified) non-POD class type (or
7978    //   array thereof), the object shall be default-initialized; if
7979    //   the object is of const-qualified type, the underlying class
7980    //   type shall have a user-declared default
7981    //   constructor. Otherwise, if no initializer is specified for
7982    //   a non- static object, the object and its subobjects, if
7983    //   any, have an indeterminate initial value); if the object
7984    //   or any of its subobjects are of const-qualified type, the
7985    //   program is ill-formed.
7986    // C++0x [dcl.init]p11:
7987    //   If no initializer is specified for an object, the object is
7988    //   default-initialized; [...].
7989    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7990    InitializationKind Kind
7991      = InitializationKind::CreateDefault(Var->getLocation());
7992
7993    InitializationSequence InitSeq(*this, Entity, Kind, None);
7994    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
7995    if (Init.isInvalid())
7996      Var->setInvalidDecl();
7997    else if (Init.get()) {
7998      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7999      // This is important for template substitution.
8000      Var->setInitStyle(VarDecl::CallInit);
8001    }
8002
8003    CheckCompleteVariableDeclaration(Var);
8004  }
8005}
8006
8007void Sema::ActOnCXXForRangeDecl(Decl *D) {
8008  VarDecl *VD = dyn_cast<VarDecl>(D);
8009  if (!VD) {
8010    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8011    D->setInvalidDecl();
8012    return;
8013  }
8014
8015  VD->setCXXForRangeDecl(true);
8016
8017  // for-range-declaration cannot be given a storage class specifier.
8018  int Error = -1;
8019  switch (VD->getStorageClass()) {
8020  case SC_None:
8021    break;
8022  case SC_Extern:
8023    Error = 0;
8024    break;
8025  case SC_Static:
8026    Error = 1;
8027    break;
8028  case SC_PrivateExtern:
8029    Error = 2;
8030    break;
8031  case SC_Auto:
8032    Error = 3;
8033    break;
8034  case SC_Register:
8035    Error = 4;
8036    break;
8037  case SC_OpenCLWorkGroupLocal:
8038    llvm_unreachable("Unexpected storage class");
8039  }
8040  if (VD->isConstexpr())
8041    Error = 5;
8042  if (Error != -1) {
8043    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8044      << VD->getDeclName() << Error;
8045    D->setInvalidDecl();
8046  }
8047}
8048
8049void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8050  if (var->isInvalidDecl()) return;
8051
8052  // In ARC, don't allow jumps past the implicit initialization of a
8053  // local retaining variable.
8054  if (getLangOpts().ObjCAutoRefCount &&
8055      var->hasLocalStorage()) {
8056    switch (var->getType().getObjCLifetime()) {
8057    case Qualifiers::OCL_None:
8058    case Qualifiers::OCL_ExplicitNone:
8059    case Qualifiers::OCL_Autoreleasing:
8060      break;
8061
8062    case Qualifiers::OCL_Weak:
8063    case Qualifiers::OCL_Strong:
8064      getCurFunction()->setHasBranchProtectedScope();
8065      break;
8066    }
8067  }
8068
8069  if (var->isThisDeclarationADefinition() &&
8070      var->isExternallyVisible() &&
8071      getDiagnostics().getDiagnosticLevel(
8072                       diag::warn_missing_variable_declarations,
8073                       var->getLocation())) {
8074    // Find a previous declaration that's not a definition.
8075    VarDecl *prev = var->getPreviousDecl();
8076    while (prev && prev->isThisDeclarationADefinition())
8077      prev = prev->getPreviousDecl();
8078
8079    if (!prev)
8080      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8081  }
8082
8083  if (var->getTLSKind() == VarDecl::TLS_Static &&
8084      var->getType().isDestructedType()) {
8085    // GNU C++98 edits for __thread, [basic.start.term]p3:
8086    //   The type of an object with thread storage duration shall not
8087    //   have a non-trivial destructor.
8088    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8089    if (getLangOpts().CPlusPlus11)
8090      Diag(var->getLocation(), diag::note_use_thread_local);
8091  }
8092
8093  // All the following checks are C++ only.
8094  if (!getLangOpts().CPlusPlus) return;
8095
8096  QualType type = var->getType();
8097  if (type->isDependentType()) return;
8098
8099  // __block variables might require us to capture a copy-initializer.
8100  if (var->hasAttr<BlocksAttr>()) {
8101    // It's currently invalid to ever have a __block variable with an
8102    // array type; should we diagnose that here?
8103
8104    // Regardless, we don't want to ignore array nesting when
8105    // constructing this copy.
8106    if (type->isStructureOrClassType()) {
8107      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8108      SourceLocation poi = var->getLocation();
8109      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8110      ExprResult result
8111        = PerformMoveOrCopyInitialization(
8112            InitializedEntity::InitializeBlock(poi, type, false),
8113            var, var->getType(), varRef, /*AllowNRVO=*/true);
8114      if (!result.isInvalid()) {
8115        result = MaybeCreateExprWithCleanups(result);
8116        Expr *init = result.takeAs<Expr>();
8117        Context.setBlockVarCopyInits(var, init);
8118      }
8119    }
8120  }
8121
8122  Expr *Init = var->getInit();
8123  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8124  QualType baseType = Context.getBaseElementType(type);
8125
8126  if (!var->getDeclContext()->isDependentContext() &&
8127      Init && !Init->isValueDependent()) {
8128    if (IsGlobal && !var->isConstexpr() &&
8129        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8130                                            var->getLocation())
8131          != DiagnosticsEngine::Ignored &&
8132        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8133      Diag(var->getLocation(), diag::warn_global_constructor)
8134        << Init->getSourceRange();
8135
8136    if (var->isConstexpr()) {
8137      SmallVector<PartialDiagnosticAt, 8> Notes;
8138      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8139        SourceLocation DiagLoc = var->getLocation();
8140        // If the note doesn't add any useful information other than a source
8141        // location, fold it into the primary diagnostic.
8142        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8143              diag::note_invalid_subexpr_in_const_expr) {
8144          DiagLoc = Notes[0].first;
8145          Notes.clear();
8146        }
8147        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8148          << var << Init->getSourceRange();
8149        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8150          Diag(Notes[I].first, Notes[I].second);
8151      }
8152    } else if (var->isUsableInConstantExpressions(Context)) {
8153      // Check whether the initializer of a const variable of integral or
8154      // enumeration type is an ICE now, since we can't tell whether it was
8155      // initialized by a constant expression if we check later.
8156      var->checkInitIsICE();
8157    }
8158  }
8159
8160  // Require the destructor.
8161  if (const RecordType *recordType = baseType->getAs<RecordType>())
8162    FinalizeVarWithDestructor(var, recordType);
8163}
8164
8165/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8166/// any semantic actions necessary after any initializer has been attached.
8167void
8168Sema::FinalizeDeclaration(Decl *ThisDecl) {
8169  // Note that we are no longer parsing the initializer for this declaration.
8170  ParsingInitForAutoVars.erase(ThisDecl);
8171
8172  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8173  if (!VD)
8174    return;
8175
8176  const DeclContext *DC = VD->getDeclContext();
8177  // If there's a #pragma GCC visibility in scope, and this isn't a class
8178  // member, set the visibility of this variable.
8179  if (!DC->isRecord() && VD->isExternallyVisible())
8180    AddPushedVisibilityAttribute(VD);
8181
8182  if (VD->isFileVarDecl())
8183    MarkUnusedFileScopedDecl(VD);
8184
8185  // Now we have parsed the initializer and can update the table of magic
8186  // tag values.
8187  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8188      !VD->getType()->isIntegralOrEnumerationType())
8189    return;
8190
8191  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8192         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8193         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8194       I != E; ++I) {
8195    const Expr *MagicValueExpr = VD->getInit();
8196    if (!MagicValueExpr) {
8197      continue;
8198    }
8199    llvm::APSInt MagicValueInt;
8200    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8201      Diag(I->getRange().getBegin(),
8202           diag::err_type_tag_for_datatype_not_ice)
8203        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8204      continue;
8205    }
8206    if (MagicValueInt.getActiveBits() > 64) {
8207      Diag(I->getRange().getBegin(),
8208           diag::err_type_tag_for_datatype_too_large)
8209        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8210      continue;
8211    }
8212    uint64_t MagicValue = MagicValueInt.getZExtValue();
8213    RegisterTypeTagForDatatype(I->getArgumentKind(),
8214                               MagicValue,
8215                               I->getMatchingCType(),
8216                               I->getLayoutCompatible(),
8217                               I->getMustBeNull());
8218  }
8219}
8220
8221Sema::DeclGroupPtrTy
8222Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8223                              Decl **Group, unsigned NumDecls) {
8224  SmallVector<Decl*, 8> Decls;
8225
8226  if (DS.isTypeSpecOwned())
8227    Decls.push_back(DS.getRepAsDecl());
8228
8229  for (unsigned i = 0; i != NumDecls; ++i)
8230    if (Decl *D = Group[i])
8231      Decls.push_back(D);
8232
8233  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8234    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8235      getASTContext().addUnnamedTag(Tag);
8236
8237  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8238                              DS.containsPlaceholderType());
8239}
8240
8241/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8242/// group, performing any necessary semantic checking.
8243Sema::DeclGroupPtrTy
8244Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8245                           bool TypeMayContainAuto) {
8246  // C++0x [dcl.spec.auto]p7:
8247  //   If the type deduced for the template parameter U is not the same in each
8248  //   deduction, the program is ill-formed.
8249  // FIXME: When initializer-list support is added, a distinction is needed
8250  // between the deduced type U and the deduced type which 'auto' stands for.
8251  //   auto a = 0, b = { 1, 2, 3 };
8252  // is legal because the deduced type U is 'int' in both cases.
8253  if (TypeMayContainAuto && NumDecls > 1) {
8254    QualType Deduced;
8255    CanQualType DeducedCanon;
8256    VarDecl *DeducedDecl = 0;
8257    for (unsigned i = 0; i != NumDecls; ++i) {
8258      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8259        AutoType *AT = D->getType()->getContainedAutoType();
8260        // Don't reissue diagnostics when instantiating a template.
8261        if (AT && D->isInvalidDecl())
8262          break;
8263        QualType U = AT ? AT->getDeducedType() : QualType();
8264        if (!U.isNull()) {
8265          CanQualType UCanon = Context.getCanonicalType(U);
8266          if (Deduced.isNull()) {
8267            Deduced = U;
8268            DeducedCanon = UCanon;
8269            DeducedDecl = D;
8270          } else if (DeducedCanon != UCanon) {
8271            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8272                 diag::err_auto_different_deductions)
8273              << (AT->isDecltypeAuto() ? 1 : 0)
8274              << Deduced << DeducedDecl->getDeclName()
8275              << U << D->getDeclName()
8276              << DeducedDecl->getInit()->getSourceRange()
8277              << D->getInit()->getSourceRange();
8278            D->setInvalidDecl();
8279            break;
8280          }
8281        }
8282      }
8283    }
8284  }
8285
8286  ActOnDocumentableDecls(Group, NumDecls);
8287
8288  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8289}
8290
8291void Sema::ActOnDocumentableDecl(Decl *D) {
8292  ActOnDocumentableDecls(&D, 1);
8293}
8294
8295void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8296  // Don't parse the comment if Doxygen diagnostics are ignored.
8297  if (NumDecls == 0 || !Group[0])
8298   return;
8299
8300  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8301                               Group[0]->getLocation())
8302        == DiagnosticsEngine::Ignored)
8303    return;
8304
8305  if (NumDecls >= 2) {
8306    // This is a decl group.  Normally it will contain only declarations
8307    // procuded from declarator list.  But in case we have any definitions or
8308    // additional declaration references:
8309    //   'typedef struct S {} S;'
8310    //   'typedef struct S *S;'
8311    //   'struct S *pS;'
8312    // FinalizeDeclaratorGroup adds these as separate declarations.
8313    Decl *MaybeTagDecl = Group[0];
8314    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8315      Group++;
8316      NumDecls--;
8317    }
8318  }
8319
8320  // See if there are any new comments that are not attached to a decl.
8321  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8322  if (!Comments.empty() &&
8323      !Comments.back()->isAttached()) {
8324    // There is at least one comment that not attached to a decl.
8325    // Maybe it should be attached to one of these decls?
8326    //
8327    // Note that this way we pick up not only comments that precede the
8328    // declaration, but also comments that *follow* the declaration -- thanks to
8329    // the lookahead in the lexer: we've consumed the semicolon and looked
8330    // ahead through comments.
8331    for (unsigned i = 0; i != NumDecls; ++i)
8332      Context.getCommentForDecl(Group[i], &PP);
8333  }
8334}
8335
8336/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8337/// to introduce parameters into function prototype scope.
8338Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8339  const DeclSpec &DS = D.getDeclSpec();
8340
8341  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8342  // C++03 [dcl.stc]p2 also permits 'auto'.
8343  VarDecl::StorageClass StorageClass = SC_None;
8344  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8345    StorageClass = SC_Register;
8346  } else if (getLangOpts().CPlusPlus &&
8347             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8348    StorageClass = SC_Auto;
8349  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8350    Diag(DS.getStorageClassSpecLoc(),
8351         diag::err_invalid_storage_class_in_func_decl);
8352    D.getMutableDeclSpec().ClearStorageClassSpecs();
8353  }
8354
8355  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8356    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8357      << DeclSpec::getSpecifierName(TSCS);
8358  if (DS.isConstexprSpecified())
8359    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8360      << 0;
8361
8362  DiagnoseFunctionSpecifiers(DS);
8363
8364  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8365  QualType parmDeclType = TInfo->getType();
8366
8367  if (getLangOpts().CPlusPlus) {
8368    // Check that there are no default arguments inside the type of this
8369    // parameter.
8370    CheckExtraCXXDefaultArguments(D);
8371
8372    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8373    if (D.getCXXScopeSpec().isSet()) {
8374      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8375        << D.getCXXScopeSpec().getRange();
8376      D.getCXXScopeSpec().clear();
8377    }
8378  }
8379
8380  // Ensure we have a valid name
8381  IdentifierInfo *II = 0;
8382  if (D.hasName()) {
8383    II = D.getIdentifier();
8384    if (!II) {
8385      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8386        << GetNameForDeclarator(D).getName().getAsString();
8387      D.setInvalidType(true);
8388    }
8389  }
8390
8391  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8392  if (II) {
8393    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8394                   ForRedeclaration);
8395    LookupName(R, S);
8396    if (R.isSingleResult()) {
8397      NamedDecl *PrevDecl = R.getFoundDecl();
8398      if (PrevDecl->isTemplateParameter()) {
8399        // Maybe we will complain about the shadowed template parameter.
8400        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8401        // Just pretend that we didn't see the previous declaration.
8402        PrevDecl = 0;
8403      } else if (S->isDeclScope(PrevDecl)) {
8404        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8405        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8406
8407        // Recover by removing the name
8408        II = 0;
8409        D.SetIdentifier(0, D.getIdentifierLoc());
8410        D.setInvalidType(true);
8411      }
8412    }
8413  }
8414
8415  // Temporarily put parameter variables in the translation unit, not
8416  // the enclosing context.  This prevents them from accidentally
8417  // looking like class members in C++.
8418  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8419                                    D.getLocStart(),
8420                                    D.getIdentifierLoc(), II,
8421                                    parmDeclType, TInfo,
8422                                    StorageClass);
8423
8424  if (D.isInvalidType())
8425    New->setInvalidDecl();
8426
8427  assert(S->isFunctionPrototypeScope());
8428  assert(S->getFunctionPrototypeDepth() >= 1);
8429  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8430                    S->getNextFunctionPrototypeIndex());
8431
8432  // Add the parameter declaration into this scope.
8433  S->AddDecl(New);
8434  if (II)
8435    IdResolver.AddDecl(New);
8436
8437  ProcessDeclAttributes(S, New, D);
8438
8439  if (D.getDeclSpec().isModulePrivateSpecified())
8440    Diag(New->getLocation(), diag::err_module_private_local)
8441      << 1 << New->getDeclName()
8442      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8443      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8444
8445  if (New->hasAttr<BlocksAttr>()) {
8446    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8447  }
8448  return New;
8449}
8450
8451/// \brief Synthesizes a variable for a parameter arising from a
8452/// typedef.
8453ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8454                                              SourceLocation Loc,
8455                                              QualType T) {
8456  /* FIXME: setting StartLoc == Loc.
8457     Would it be worth to modify callers so as to provide proper source
8458     location for the unnamed parameters, embedding the parameter's type? */
8459  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8460                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8461                                           SC_None, 0);
8462  Param->setImplicit();
8463  return Param;
8464}
8465
8466void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8467                                    ParmVarDecl * const *ParamEnd) {
8468  // Don't diagnose unused-parameter errors in template instantiations; we
8469  // will already have done so in the template itself.
8470  if (!ActiveTemplateInstantiations.empty())
8471    return;
8472
8473  for (; Param != ParamEnd; ++Param) {
8474    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8475        !(*Param)->hasAttr<UnusedAttr>()) {
8476      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8477        << (*Param)->getDeclName();
8478    }
8479  }
8480}
8481
8482void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8483                                                  ParmVarDecl * const *ParamEnd,
8484                                                  QualType ReturnTy,
8485                                                  NamedDecl *D) {
8486  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8487    return;
8488
8489  // Warn if the return value is pass-by-value and larger than the specified
8490  // threshold.
8491  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8492    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8493    if (Size > LangOpts.NumLargeByValueCopy)
8494      Diag(D->getLocation(), diag::warn_return_value_size)
8495          << D->getDeclName() << Size;
8496  }
8497
8498  // Warn if any parameter is pass-by-value and larger than the specified
8499  // threshold.
8500  for (; Param != ParamEnd; ++Param) {
8501    QualType T = (*Param)->getType();
8502    if (T->isDependentType() || !T.isPODType(Context))
8503      continue;
8504    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8505    if (Size > LangOpts.NumLargeByValueCopy)
8506      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8507          << (*Param)->getDeclName() << Size;
8508  }
8509}
8510
8511ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8512                                  SourceLocation NameLoc, IdentifierInfo *Name,
8513                                  QualType T, TypeSourceInfo *TSInfo,
8514                                  VarDecl::StorageClass StorageClass) {
8515  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8516  if (getLangOpts().ObjCAutoRefCount &&
8517      T.getObjCLifetime() == Qualifiers::OCL_None &&
8518      T->isObjCLifetimeType()) {
8519
8520    Qualifiers::ObjCLifetime lifetime;
8521
8522    // Special cases for arrays:
8523    //   - if it's const, use __unsafe_unretained
8524    //   - otherwise, it's an error
8525    if (T->isArrayType()) {
8526      if (!T.isConstQualified()) {
8527        DelayedDiagnostics.add(
8528            sema::DelayedDiagnostic::makeForbiddenType(
8529            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8530      }
8531      lifetime = Qualifiers::OCL_ExplicitNone;
8532    } else {
8533      lifetime = T->getObjCARCImplicitLifetime();
8534    }
8535    T = Context.getLifetimeQualifiedType(T, lifetime);
8536  }
8537
8538  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8539                                         Context.getAdjustedParameterType(T),
8540                                         TSInfo,
8541                                         StorageClass, 0);
8542
8543  // Parameters can not be abstract class types.
8544  // For record types, this is done by the AbstractClassUsageDiagnoser once
8545  // the class has been completely parsed.
8546  if (!CurContext->isRecord() &&
8547      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8548                             AbstractParamType))
8549    New->setInvalidDecl();
8550
8551  // Parameter declarators cannot be interface types. All ObjC objects are
8552  // passed by reference.
8553  if (T->isObjCObjectType()) {
8554    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8555    Diag(NameLoc,
8556         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8557      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8558    T = Context.getObjCObjectPointerType(T);
8559    New->setType(T);
8560  }
8561
8562  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8563  // duration shall not be qualified by an address-space qualifier."
8564  // Since all parameters have automatic store duration, they can not have
8565  // an address space.
8566  if (T.getAddressSpace() != 0) {
8567    Diag(NameLoc, diag::err_arg_with_address_space);
8568    New->setInvalidDecl();
8569  }
8570
8571  return New;
8572}
8573
8574void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8575                                           SourceLocation LocAfterDecls) {
8576  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8577
8578  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8579  // for a K&R function.
8580  if (!FTI.hasPrototype) {
8581    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8582      --i;
8583      if (FTI.ArgInfo[i].Param == 0) {
8584        SmallString<256> Code;
8585        llvm::raw_svector_ostream(Code) << "  int "
8586                                        << FTI.ArgInfo[i].Ident->getName()
8587                                        << ";\n";
8588        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8589          << FTI.ArgInfo[i].Ident
8590          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8591
8592        // Implicitly declare the argument as type 'int' for lack of a better
8593        // type.
8594        AttributeFactory attrs;
8595        DeclSpec DS(attrs);
8596        const char* PrevSpec; // unused
8597        unsigned DiagID; // unused
8598        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8599                           PrevSpec, DiagID);
8600        // Use the identifier location for the type source range.
8601        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8602        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8603        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8604        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8605        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8606      }
8607    }
8608  }
8609}
8610
8611Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8612  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8613  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8614  Scope *ParentScope = FnBodyScope->getParent();
8615
8616  D.setFunctionDefinitionKind(FDK_Definition);
8617  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8618  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8619}
8620
8621static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8622                             const FunctionDecl*& PossibleZeroParamPrototype) {
8623  // Don't warn about invalid declarations.
8624  if (FD->isInvalidDecl())
8625    return false;
8626
8627  // Or declarations that aren't global.
8628  if (!FD->isGlobal())
8629    return false;
8630
8631  // Don't warn about C++ member functions.
8632  if (isa<CXXMethodDecl>(FD))
8633    return false;
8634
8635  // Don't warn about 'main'.
8636  if (FD->isMain())
8637    return false;
8638
8639  // Don't warn about inline functions.
8640  if (FD->isInlined())
8641    return false;
8642
8643  // Don't warn about function templates.
8644  if (FD->getDescribedFunctionTemplate())
8645    return false;
8646
8647  // Don't warn about function template specializations.
8648  if (FD->isFunctionTemplateSpecialization())
8649    return false;
8650
8651  // Don't warn for OpenCL kernels.
8652  if (FD->hasAttr<OpenCLKernelAttr>())
8653    return false;
8654
8655  bool MissingPrototype = true;
8656  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8657       Prev; Prev = Prev->getPreviousDecl()) {
8658    // Ignore any declarations that occur in function or method
8659    // scope, because they aren't visible from the header.
8660    if (Prev->getDeclContext()->isFunctionOrMethod())
8661      continue;
8662
8663    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8664    if (FD->getNumParams() == 0)
8665      PossibleZeroParamPrototype = Prev;
8666    break;
8667  }
8668
8669  return MissingPrototype;
8670}
8671
8672void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8673  // Don't complain if we're in GNU89 mode and the previous definition
8674  // was an extern inline function.
8675  const FunctionDecl *Definition;
8676  if (FD->isDefined(Definition) &&
8677      !canRedefineFunction(Definition, getLangOpts())) {
8678    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8679        Definition->getStorageClass() == SC_Extern)
8680      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8681        << FD->getDeclName() << getLangOpts().CPlusPlus;
8682    else
8683      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8684    Diag(Definition->getLocation(), diag::note_previous_definition);
8685    FD->setInvalidDecl();
8686  }
8687}
8688
8689Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8690  // Clear the last template instantiation error context.
8691  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8692
8693  if (!D)
8694    return D;
8695  FunctionDecl *FD = 0;
8696
8697  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8698    FD = FunTmpl->getTemplatedDecl();
8699  else
8700    FD = cast<FunctionDecl>(D);
8701
8702  // Enter a new function scope
8703  PushFunctionScope();
8704
8705  // See if this is a redefinition.
8706  if (!FD->isLateTemplateParsed())
8707    CheckForFunctionRedefinition(FD);
8708
8709  // Builtin functions cannot be defined.
8710  if (unsigned BuiltinID = FD->getBuiltinID()) {
8711    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
8712        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
8713      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8714      FD->setInvalidDecl();
8715    }
8716  }
8717
8718  // The return type of a function definition must be complete
8719  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8720  QualType ResultType = FD->getResultType();
8721  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8722      !FD->isInvalidDecl() &&
8723      RequireCompleteType(FD->getLocation(), ResultType,
8724                          diag::err_func_def_incomplete_result))
8725    FD->setInvalidDecl();
8726
8727  // GNU warning -Wmissing-prototypes:
8728  //   Warn if a global function is defined without a previous
8729  //   prototype declaration. This warning is issued even if the
8730  //   definition itself provides a prototype. The aim is to detect
8731  //   global functions that fail to be declared in header files.
8732  const FunctionDecl *PossibleZeroParamPrototype = 0;
8733  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8734    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8735
8736    if (PossibleZeroParamPrototype) {
8737      // We found a declaration that is not a prototype,
8738      // but that could be a zero-parameter prototype
8739      if (TypeSourceInfo *TI =
8740              PossibleZeroParamPrototype->getTypeSourceInfo()) {
8741        TypeLoc TL = TI->getTypeLoc();
8742        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8743          Diag(PossibleZeroParamPrototype->getLocation(),
8744               diag::note_declaration_not_a_prototype)
8745            << PossibleZeroParamPrototype
8746            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8747      }
8748    }
8749  }
8750
8751  if (FnBodyScope)
8752    PushDeclContext(FnBodyScope, FD);
8753
8754  // Check the validity of our function parameters
8755  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8756                           /*CheckParameterNames=*/true);
8757
8758  // Introduce our parameters into the function scope
8759  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8760    ParmVarDecl *Param = FD->getParamDecl(p);
8761    Param->setOwningFunction(FD);
8762
8763    // If this has an identifier, add it to the scope stack.
8764    if (Param->getIdentifier() && FnBodyScope) {
8765      CheckShadow(FnBodyScope, Param);
8766
8767      PushOnScopeChains(Param, FnBodyScope);
8768    }
8769  }
8770
8771  // If we had any tags defined in the function prototype,
8772  // introduce them into the function scope.
8773  if (FnBodyScope) {
8774    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8775           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8776      NamedDecl *D = *I;
8777
8778      // Some of these decls (like enums) may have been pinned to the translation unit
8779      // for lack of a real context earlier. If so, remove from the translation unit
8780      // and reattach to the current context.
8781      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8782        // Is the decl actually in the context?
8783        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8784               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8785          if (*DI == D) {
8786            Context.getTranslationUnitDecl()->removeDecl(D);
8787            break;
8788          }
8789        }
8790        // Either way, reassign the lexical decl context to our FunctionDecl.
8791        D->setLexicalDeclContext(CurContext);
8792      }
8793
8794      // If the decl has a non-null name, make accessible in the current scope.
8795      if (!D->getName().empty())
8796        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8797
8798      // Similarly, dive into enums and fish their constants out, making them
8799      // accessible in this scope.
8800      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8801        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8802               EE = ED->enumerator_end(); EI != EE; ++EI)
8803          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8804      }
8805    }
8806  }
8807
8808  // Ensure that the function's exception specification is instantiated.
8809  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8810    ResolveExceptionSpec(D->getLocation(), FPT);
8811
8812  // Checking attributes of current function definition
8813  // dllimport attribute.
8814  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8815  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8816    // dllimport attribute cannot be directly applied to definition.
8817    // Microsoft accepts dllimport for functions defined within class scope.
8818    if (!DA->isInherited() &&
8819        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8820      Diag(FD->getLocation(),
8821           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8822        << "dllimport";
8823      FD->setInvalidDecl();
8824      return D;
8825    }
8826
8827    // Visual C++ appears to not think this is an issue, so only issue
8828    // a warning when Microsoft extensions are disabled.
8829    if (!LangOpts.MicrosoftExt) {
8830      // If a symbol previously declared dllimport is later defined, the
8831      // attribute is ignored in subsequent references, and a warning is
8832      // emitted.
8833      Diag(FD->getLocation(),
8834           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8835        << FD->getName() << "dllimport";
8836    }
8837  }
8838  // We want to attach documentation to original Decl (which might be
8839  // a function template).
8840  ActOnDocumentableDecl(D);
8841  return D;
8842}
8843
8844/// \brief Given the set of return statements within a function body,
8845/// compute the variables that are subject to the named return value
8846/// optimization.
8847///
8848/// Each of the variables that is subject to the named return value
8849/// optimization will be marked as NRVO variables in the AST, and any
8850/// return statement that has a marked NRVO variable as its NRVO candidate can
8851/// use the named return value optimization.
8852///
8853/// This function applies a very simplistic algorithm for NRVO: if every return
8854/// statement in the function has the same NRVO candidate, that candidate is
8855/// the NRVO variable.
8856///
8857/// FIXME: Employ a smarter algorithm that accounts for multiple return
8858/// statements and the lifetimes of the NRVO candidates. We should be able to
8859/// find a maximal set of NRVO variables.
8860void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8861  ReturnStmt **Returns = Scope->Returns.data();
8862
8863  const VarDecl *NRVOCandidate = 0;
8864  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8865    if (!Returns[I]->getNRVOCandidate())
8866      return;
8867
8868    if (!NRVOCandidate)
8869      NRVOCandidate = Returns[I]->getNRVOCandidate();
8870    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8871      return;
8872  }
8873
8874  if (NRVOCandidate)
8875    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8876}
8877
8878bool Sema::canSkipFunctionBody(Decl *D) {
8879  if (!Consumer.shouldSkipFunctionBody(D))
8880    return false;
8881
8882  if (isa<ObjCMethodDecl>(D))
8883    return true;
8884
8885  FunctionDecl *FD = 0;
8886  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8887    FD = FTD->getTemplatedDecl();
8888  else
8889    FD = cast<FunctionDecl>(D);
8890
8891  // We cannot skip the body of a function (or function template) which is
8892  // constexpr, since we may need to evaluate its body in order to parse the
8893  // rest of the file.
8894  // We cannot skip the body of a function with an undeduced return type,
8895  // because any callers of that function need to know the type.
8896  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
8897}
8898
8899Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8900  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8901    FD->setHasSkippedBody();
8902  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8903    MD->setHasSkippedBody();
8904  return ActOnFinishFunctionBody(Decl, 0);
8905}
8906
8907Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8908  return ActOnFinishFunctionBody(D, BodyArg, false);
8909}
8910
8911Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8912                                    bool IsInstantiation) {
8913  FunctionDecl *FD = 0;
8914  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8915  if (FunTmpl)
8916    FD = FunTmpl->getTemplatedDecl();
8917  else
8918    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8919
8920  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8921  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8922
8923  if (FD) {
8924    FD->setBody(Body);
8925
8926    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
8927        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
8928      // If the function has a deduced result type but contains no 'return'
8929      // statements, the result type as written must be exactly 'auto', and
8930      // the deduced result type is 'void'.
8931      if (!FD->getResultType()->getAs<AutoType>()) {
8932        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
8933          << FD->getResultType();
8934        FD->setInvalidDecl();
8935      } else {
8936        // Substitute 'void' for the 'auto' in the type.
8937        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
8938            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
8939        Context.adjustDeducedFunctionResultType(
8940            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
8941      }
8942    }
8943
8944    // The only way to be included in UndefinedButUsed is if there is an
8945    // ODR use before the definition. Avoid the expensive map lookup if this
8946    // is the first declaration.
8947    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8948      if (!FD->isExternallyVisible())
8949        UndefinedButUsed.erase(FD);
8950      else if (FD->isInlined() &&
8951               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8952               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8953        UndefinedButUsed.erase(FD);
8954    }
8955
8956    // If the function implicitly returns zero (like 'main') or is naked,
8957    // don't complain about missing return statements.
8958    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8959      WP.disableCheckFallThrough();
8960
8961    // MSVC permits the use of pure specifier (=0) on function definition,
8962    // defined at class scope, warn about this non standard construct.
8963    if (getLangOpts().MicrosoftExt && FD->isPure())
8964      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8965
8966    if (!FD->isInvalidDecl()) {
8967      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8968      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8969                                             FD->getResultType(), FD);
8970
8971      // If this is a constructor, we need a vtable.
8972      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8973        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8974
8975      // Try to apply the named return value optimization. We have to check
8976      // if we can do this here because lambdas keep return statements around
8977      // to deduce an implicit return type.
8978      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8979          !FD->isDependentContext())
8980        computeNRVO(Body, getCurFunction());
8981    }
8982
8983    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8984           "Function parsing confused");
8985  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8986    assert(MD == getCurMethodDecl() && "Method parsing confused");
8987    MD->setBody(Body);
8988    if (!MD->isInvalidDecl()) {
8989      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8990      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8991                                             MD->getResultType(), MD);
8992
8993      if (Body)
8994        computeNRVO(Body, getCurFunction());
8995    }
8996    if (getCurFunction()->ObjCShouldCallSuper) {
8997      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8998        << MD->getSelector().getAsString();
8999      getCurFunction()->ObjCShouldCallSuper = false;
9000    }
9001  } else {
9002    return 0;
9003  }
9004
9005  assert(!getCurFunction()->ObjCShouldCallSuper &&
9006         "This should only be set for ObjC methods, which should have been "
9007         "handled in the block above.");
9008
9009  // Verify and clean out per-function state.
9010  if (Body) {
9011    // C++ constructors that have function-try-blocks can't have return
9012    // statements in the handlers of that block. (C++ [except.handle]p14)
9013    // Verify this.
9014    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9015      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9016
9017    // Verify that gotos and switch cases don't jump into scopes illegally.
9018    if (getCurFunction()->NeedsScopeChecking() &&
9019        !dcl->isInvalidDecl() &&
9020        !hasAnyUnrecoverableErrorsInThisFunction() &&
9021        !PP.isCodeCompletionEnabled())
9022      DiagnoseInvalidJumps(Body);
9023
9024    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9025      if (!Destructor->getParent()->isDependentType())
9026        CheckDestructor(Destructor);
9027
9028      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9029                                             Destructor->getParent());
9030    }
9031
9032    // If any errors have occurred, clear out any temporaries that may have
9033    // been leftover. This ensures that these temporaries won't be picked up for
9034    // deletion in some later function.
9035    if (PP.getDiagnostics().hasErrorOccurred() ||
9036        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9037      DiscardCleanupsInEvaluationContext();
9038    }
9039    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9040        !isa<FunctionTemplateDecl>(dcl)) {
9041      // Since the body is valid, issue any analysis-based warnings that are
9042      // enabled.
9043      ActivePolicy = &WP;
9044    }
9045
9046    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9047        (!CheckConstexprFunctionDecl(FD) ||
9048         !CheckConstexprFunctionBody(FD, Body)))
9049      FD->setInvalidDecl();
9050
9051    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9052    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9053    assert(MaybeODRUseExprs.empty() &&
9054           "Leftover expressions for odr-use checking");
9055  }
9056
9057  if (!IsInstantiation)
9058    PopDeclContext();
9059
9060  PopFunctionScopeInfo(ActivePolicy, dcl);
9061
9062  // If any errors have occurred, clear out any temporaries that may have
9063  // been leftover. This ensures that these temporaries won't be picked up for
9064  // deletion in some later function.
9065  if (getDiagnostics().hasErrorOccurred()) {
9066    DiscardCleanupsInEvaluationContext();
9067  }
9068
9069  return dcl;
9070}
9071
9072
9073/// When we finish delayed parsing of an attribute, we must attach it to the
9074/// relevant Decl.
9075void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9076                                       ParsedAttributes &Attrs) {
9077  // Always attach attributes to the underlying decl.
9078  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9079    D = TD->getTemplatedDecl();
9080  ProcessDeclAttributeList(S, D, Attrs.getList());
9081
9082  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9083    if (Method->isStatic())
9084      checkThisInStaticMemberFunctionAttributes(Method);
9085}
9086
9087
9088/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9089/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9090NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9091                                          IdentifierInfo &II, Scope *S) {
9092  // Before we produce a declaration for an implicitly defined
9093  // function, see whether there was a locally-scoped declaration of
9094  // this name as a function or variable. If so, use that
9095  // (non-visible) declaration, and complain about it.
9096  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9097    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9098    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9099    return ExternCPrev;
9100  }
9101
9102  // Extension in C99.  Legal in C90, but warn about it.
9103  unsigned diag_id;
9104  if (II.getName().startswith("__builtin_"))
9105    diag_id = diag::warn_builtin_unknown;
9106  else if (getLangOpts().C99)
9107    diag_id = diag::ext_implicit_function_decl;
9108  else
9109    diag_id = diag::warn_implicit_function_decl;
9110  Diag(Loc, diag_id) << &II;
9111
9112  // Because typo correction is expensive, only do it if the implicit
9113  // function declaration is going to be treated as an error.
9114  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9115    TypoCorrection Corrected;
9116    DeclFilterCCC<FunctionDecl> Validator;
9117    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9118                                      LookupOrdinaryName, S, 0, Validator))) {
9119      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9120      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9121      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9122
9123      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9124          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9125
9126      if (Func->getLocation().isValid()
9127          && !II.getName().startswith("__builtin_"))
9128        Diag(Func->getLocation(), diag::note_previous_decl)
9129            << CorrectedQuotedStr;
9130    }
9131  }
9132
9133  // Set a Declarator for the implicit definition: int foo();
9134  const char *Dummy;
9135  AttributeFactory attrFactory;
9136  DeclSpec DS(attrFactory);
9137  unsigned DiagID;
9138  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9139  (void)Error; // Silence warning.
9140  assert(!Error && "Error setting up implicit decl!");
9141  SourceLocation NoLoc;
9142  Declarator D(DS, Declarator::BlockContext);
9143  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9144                                             /*IsAmbiguous=*/false,
9145                                             /*RParenLoc=*/NoLoc,
9146                                             /*ArgInfo=*/0,
9147                                             /*NumArgs=*/0,
9148                                             /*EllipsisLoc=*/NoLoc,
9149                                             /*RParenLoc=*/NoLoc,
9150                                             /*TypeQuals=*/0,
9151                                             /*RefQualifierIsLvalueRef=*/true,
9152                                             /*RefQualifierLoc=*/NoLoc,
9153                                             /*ConstQualifierLoc=*/NoLoc,
9154                                             /*VolatileQualifierLoc=*/NoLoc,
9155                                             /*MutableLoc=*/NoLoc,
9156                                             EST_None,
9157                                             /*ESpecLoc=*/NoLoc,
9158                                             /*Exceptions=*/0,
9159                                             /*ExceptionRanges=*/0,
9160                                             /*NumExceptions=*/0,
9161                                             /*NoexceptExpr=*/0,
9162                                             Loc, Loc, D),
9163                DS.getAttributes(),
9164                SourceLocation());
9165  D.SetIdentifier(&II, Loc);
9166
9167  // Insert this function into translation-unit scope.
9168
9169  DeclContext *PrevDC = CurContext;
9170  CurContext = Context.getTranslationUnitDecl();
9171
9172  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9173  FD->setImplicit();
9174
9175  CurContext = PrevDC;
9176
9177  AddKnownFunctionAttributes(FD);
9178
9179  return FD;
9180}
9181
9182/// \brief Adds any function attributes that we know a priori based on
9183/// the declaration of this function.
9184///
9185/// These attributes can apply both to implicitly-declared builtins
9186/// (like __builtin___printf_chk) or to library-declared functions
9187/// like NSLog or printf.
9188///
9189/// We need to check for duplicate attributes both here and where user-written
9190/// attributes are applied to declarations.
9191void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9192  if (FD->isInvalidDecl())
9193    return;
9194
9195  // If this is a built-in function, map its builtin attributes to
9196  // actual attributes.
9197  if (unsigned BuiltinID = FD->getBuiltinID()) {
9198    // Handle printf-formatting attributes.
9199    unsigned FormatIdx;
9200    bool HasVAListArg;
9201    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9202      if (!FD->getAttr<FormatAttr>()) {
9203        const char *fmt = "printf";
9204        unsigned int NumParams = FD->getNumParams();
9205        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9206            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9207          fmt = "NSString";
9208        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9209                                               fmt, FormatIdx+1,
9210                                               HasVAListArg ? 0 : FormatIdx+2));
9211      }
9212    }
9213    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9214                                             HasVAListArg)) {
9215     if (!FD->getAttr<FormatAttr>())
9216       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9217                                              "scanf", FormatIdx+1,
9218                                              HasVAListArg ? 0 : FormatIdx+2));
9219    }
9220
9221    // Mark const if we don't care about errno and that is the only
9222    // thing preventing the function from being const. This allows
9223    // IRgen to use LLVM intrinsics for such functions.
9224    if (!getLangOpts().MathErrno &&
9225        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9226      if (!FD->getAttr<ConstAttr>())
9227        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9228    }
9229
9230    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9231        !FD->getAttr<ReturnsTwiceAttr>())
9232      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9233    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9234      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9235    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9236      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9237  }
9238
9239  IdentifierInfo *Name = FD->getIdentifier();
9240  if (!Name)
9241    return;
9242  if ((!getLangOpts().CPlusPlus &&
9243       FD->getDeclContext()->isTranslationUnit()) ||
9244      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9245       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9246       LinkageSpecDecl::lang_c)) {
9247    // Okay: this could be a libc/libm/Objective-C function we know
9248    // about.
9249  } else
9250    return;
9251
9252  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9253    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9254    // target-specific builtins, perhaps?
9255    if (!FD->getAttr<FormatAttr>())
9256      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9257                                             "printf", 2,
9258                                             Name->isStr("vasprintf") ? 0 : 3));
9259  }
9260
9261  if (Name->isStr("__CFStringMakeConstantString")) {
9262    // We already have a __builtin___CFStringMakeConstantString,
9263    // but builds that use -fno-constant-cfstrings don't go through that.
9264    if (!FD->getAttr<FormatArgAttr>())
9265      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9266  }
9267}
9268
9269TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9270                                    TypeSourceInfo *TInfo) {
9271  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9272  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9273
9274  if (!TInfo) {
9275    assert(D.isInvalidType() && "no declarator info for valid type");
9276    TInfo = Context.getTrivialTypeSourceInfo(T);
9277  }
9278
9279  // Scope manipulation handled by caller.
9280  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9281                                           D.getLocStart(),
9282                                           D.getIdentifierLoc(),
9283                                           D.getIdentifier(),
9284                                           TInfo);
9285
9286  // Bail out immediately if we have an invalid declaration.
9287  if (D.isInvalidType()) {
9288    NewTD->setInvalidDecl();
9289    return NewTD;
9290  }
9291
9292  if (D.getDeclSpec().isModulePrivateSpecified()) {
9293    if (CurContext->isFunctionOrMethod())
9294      Diag(NewTD->getLocation(), diag::err_module_private_local)
9295        << 2 << NewTD->getDeclName()
9296        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9297        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9298    else
9299      NewTD->setModulePrivate();
9300  }
9301
9302  // C++ [dcl.typedef]p8:
9303  //   If the typedef declaration defines an unnamed class (or
9304  //   enum), the first typedef-name declared by the declaration
9305  //   to be that class type (or enum type) is used to denote the
9306  //   class type (or enum type) for linkage purposes only.
9307  // We need to check whether the type was declared in the declaration.
9308  switch (D.getDeclSpec().getTypeSpecType()) {
9309  case TST_enum:
9310  case TST_struct:
9311  case TST_interface:
9312  case TST_union:
9313  case TST_class: {
9314    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9315
9316    // Do nothing if the tag is not anonymous or already has an
9317    // associated typedef (from an earlier typedef in this decl group).
9318    if (tagFromDeclSpec->getIdentifier()) break;
9319    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9320
9321    // A well-formed anonymous tag must always be a TUK_Definition.
9322    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9323
9324    // The type must match the tag exactly;  no qualifiers allowed.
9325    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9326      break;
9327
9328    // Otherwise, set this is the anon-decl typedef for the tag.
9329    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9330    break;
9331  }
9332
9333  default:
9334    break;
9335  }
9336
9337  return NewTD;
9338}
9339
9340
9341/// \brief Check that this is a valid underlying type for an enum declaration.
9342bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9343  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9344  QualType T = TI->getType();
9345
9346  if (T->isDependentType())
9347    return false;
9348
9349  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9350    if (BT->isInteger())
9351      return false;
9352
9353  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9354  return true;
9355}
9356
9357/// Check whether this is a valid redeclaration of a previous enumeration.
9358/// \return true if the redeclaration was invalid.
9359bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9360                                  QualType EnumUnderlyingTy,
9361                                  const EnumDecl *Prev) {
9362  bool IsFixed = !EnumUnderlyingTy.isNull();
9363
9364  if (IsScoped != Prev->isScoped()) {
9365    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9366      << Prev->isScoped();
9367    Diag(Prev->getLocation(), diag::note_previous_use);
9368    return true;
9369  }
9370
9371  if (IsFixed && Prev->isFixed()) {
9372    if (!EnumUnderlyingTy->isDependentType() &&
9373        !Prev->getIntegerType()->isDependentType() &&
9374        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9375                                        Prev->getIntegerType())) {
9376      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9377        << EnumUnderlyingTy << Prev->getIntegerType();
9378      Diag(Prev->getLocation(), diag::note_previous_use);
9379      return true;
9380    }
9381  } else if (IsFixed != Prev->isFixed()) {
9382    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9383      << Prev->isFixed();
9384    Diag(Prev->getLocation(), diag::note_previous_use);
9385    return true;
9386  }
9387
9388  return false;
9389}
9390
9391/// \brief Get diagnostic %select index for tag kind for
9392/// redeclaration diagnostic message.
9393/// WARNING: Indexes apply to particular diagnostics only!
9394///
9395/// \returns diagnostic %select index.
9396static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9397  switch (Tag) {
9398  case TTK_Struct: return 0;
9399  case TTK_Interface: return 1;
9400  case TTK_Class:  return 2;
9401  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9402  }
9403}
9404
9405/// \brief Determine if tag kind is a class-key compatible with
9406/// class for redeclaration (class, struct, or __interface).
9407///
9408/// \returns true iff the tag kind is compatible.
9409static bool isClassCompatTagKind(TagTypeKind Tag)
9410{
9411  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9412}
9413
9414/// \brief Determine whether a tag with a given kind is acceptable
9415/// as a redeclaration of the given tag declaration.
9416///
9417/// \returns true if the new tag kind is acceptable, false otherwise.
9418bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9419                                        TagTypeKind NewTag, bool isDefinition,
9420                                        SourceLocation NewTagLoc,
9421                                        const IdentifierInfo &Name) {
9422  // C++ [dcl.type.elab]p3:
9423  //   The class-key or enum keyword present in the
9424  //   elaborated-type-specifier shall agree in kind with the
9425  //   declaration to which the name in the elaborated-type-specifier
9426  //   refers. This rule also applies to the form of
9427  //   elaborated-type-specifier that declares a class-name or
9428  //   friend class since it can be construed as referring to the
9429  //   definition of the class. Thus, in any
9430  //   elaborated-type-specifier, the enum keyword shall be used to
9431  //   refer to an enumeration (7.2), the union class-key shall be
9432  //   used to refer to a union (clause 9), and either the class or
9433  //   struct class-key shall be used to refer to a class (clause 9)
9434  //   declared using the class or struct class-key.
9435  TagTypeKind OldTag = Previous->getTagKind();
9436  if (!isDefinition || !isClassCompatTagKind(NewTag))
9437    if (OldTag == NewTag)
9438      return true;
9439
9440  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9441    // Warn about the struct/class tag mismatch.
9442    bool isTemplate = false;
9443    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9444      isTemplate = Record->getDescribedClassTemplate();
9445
9446    if (!ActiveTemplateInstantiations.empty()) {
9447      // In a template instantiation, do not offer fix-its for tag mismatches
9448      // since they usually mess up the template instead of fixing the problem.
9449      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9450        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9451        << getRedeclDiagFromTagKind(OldTag);
9452      return true;
9453    }
9454
9455    if (isDefinition) {
9456      // On definitions, check previous tags and issue a fix-it for each
9457      // one that doesn't match the current tag.
9458      if (Previous->getDefinition()) {
9459        // Don't suggest fix-its for redefinitions.
9460        return true;
9461      }
9462
9463      bool previousMismatch = false;
9464      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9465           E(Previous->redecls_end()); I != E; ++I) {
9466        if (I->getTagKind() != NewTag) {
9467          if (!previousMismatch) {
9468            previousMismatch = true;
9469            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9470              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9471              << getRedeclDiagFromTagKind(I->getTagKind());
9472          }
9473          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9474            << getRedeclDiagFromTagKind(NewTag)
9475            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9476                 TypeWithKeyword::getTagTypeKindName(NewTag));
9477        }
9478      }
9479      return true;
9480    }
9481
9482    // Check for a previous definition.  If current tag and definition
9483    // are same type, do nothing.  If no definition, but disagree with
9484    // with previous tag type, give a warning, but no fix-it.
9485    const TagDecl *Redecl = Previous->getDefinition() ?
9486                            Previous->getDefinition() : Previous;
9487    if (Redecl->getTagKind() == NewTag) {
9488      return true;
9489    }
9490
9491    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9492      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9493      << getRedeclDiagFromTagKind(OldTag);
9494    Diag(Redecl->getLocation(), diag::note_previous_use);
9495
9496    // If there is a previous defintion, suggest a fix-it.
9497    if (Previous->getDefinition()) {
9498        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9499          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9500          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9501               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9502    }
9503
9504    return true;
9505  }
9506  return false;
9507}
9508
9509/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9510/// former case, Name will be non-null.  In the later case, Name will be null.
9511/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9512/// reference/declaration/definition of a tag.
9513Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9514                     SourceLocation KWLoc, CXXScopeSpec &SS,
9515                     IdentifierInfo *Name, SourceLocation NameLoc,
9516                     AttributeList *Attr, AccessSpecifier AS,
9517                     SourceLocation ModulePrivateLoc,
9518                     MultiTemplateParamsArg TemplateParameterLists,
9519                     bool &OwnedDecl, bool &IsDependent,
9520                     SourceLocation ScopedEnumKWLoc,
9521                     bool ScopedEnumUsesClassTag,
9522                     TypeResult UnderlyingType) {
9523  // If this is not a definition, it must have a name.
9524  IdentifierInfo *OrigName = Name;
9525  assert((Name != 0 || TUK == TUK_Definition) &&
9526         "Nameless record must be a definition!");
9527  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9528
9529  OwnedDecl = false;
9530  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9531  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9532
9533  // FIXME: Check explicit specializations more carefully.
9534  bool isExplicitSpecialization = false;
9535  bool Invalid = false;
9536
9537  // We only need to do this matching if we have template parameters
9538  // or a scope specifier, which also conveniently avoids this work
9539  // for non-C++ cases.
9540  if (TemplateParameterLists.size() > 0 ||
9541      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9542    if (TemplateParameterList *TemplateParams
9543          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9544                                                TemplateParameterLists.data(),
9545                                                TemplateParameterLists.size(),
9546                                                    TUK == TUK_Friend,
9547                                                    isExplicitSpecialization,
9548                                                    Invalid)) {
9549      if (Kind == TTK_Enum) {
9550        Diag(KWLoc, diag::err_enum_template);
9551        return 0;
9552      }
9553
9554      if (TemplateParams->size() > 0) {
9555        // This is a declaration or definition of a class template (which may
9556        // be a member of another template).
9557
9558        if (Invalid)
9559          return 0;
9560
9561        OwnedDecl = false;
9562        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9563                                               SS, Name, NameLoc, Attr,
9564                                               TemplateParams, AS,
9565                                               ModulePrivateLoc,
9566                                               TemplateParameterLists.size()-1,
9567                                               TemplateParameterLists.data());
9568        return Result.get();
9569      } else {
9570        // The "template<>" header is extraneous.
9571        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9572          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9573        isExplicitSpecialization = true;
9574      }
9575    }
9576  }
9577
9578  // Figure out the underlying type if this a enum declaration. We need to do
9579  // this early, because it's needed to detect if this is an incompatible
9580  // redeclaration.
9581  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9582
9583  if (Kind == TTK_Enum) {
9584    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9585      // No underlying type explicitly specified, or we failed to parse the
9586      // type, default to int.
9587      EnumUnderlying = Context.IntTy.getTypePtr();
9588    else if (UnderlyingType.get()) {
9589      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9590      // integral type; any cv-qualification is ignored.
9591      TypeSourceInfo *TI = 0;
9592      GetTypeFromParser(UnderlyingType.get(), &TI);
9593      EnumUnderlying = TI;
9594
9595      if (CheckEnumUnderlyingType(TI))
9596        // Recover by falling back to int.
9597        EnumUnderlying = Context.IntTy.getTypePtr();
9598
9599      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9600                                          UPPC_FixedUnderlyingType))
9601        EnumUnderlying = Context.IntTy.getTypePtr();
9602
9603    } else if (getLangOpts().MicrosoftMode)
9604      // Microsoft enums are always of int type.
9605      EnumUnderlying = Context.IntTy.getTypePtr();
9606  }
9607
9608  DeclContext *SearchDC = CurContext;
9609  DeclContext *DC = CurContext;
9610  bool isStdBadAlloc = false;
9611
9612  RedeclarationKind Redecl = ForRedeclaration;
9613  if (TUK == TUK_Friend || TUK == TUK_Reference)
9614    Redecl = NotForRedeclaration;
9615
9616  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9617
9618  if (Name && SS.isNotEmpty()) {
9619    // We have a nested-name tag ('struct foo::bar').
9620
9621    // Check for invalid 'foo::'.
9622    if (SS.isInvalid()) {
9623      Name = 0;
9624      goto CreateNewDecl;
9625    }
9626
9627    // If this is a friend or a reference to a class in a dependent
9628    // context, don't try to make a decl for it.
9629    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9630      DC = computeDeclContext(SS, false);
9631      if (!DC) {
9632        IsDependent = true;
9633        return 0;
9634      }
9635    } else {
9636      DC = computeDeclContext(SS, true);
9637      if (!DC) {
9638        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9639          << SS.getRange();
9640        return 0;
9641      }
9642    }
9643
9644    if (RequireCompleteDeclContext(SS, DC))
9645      return 0;
9646
9647    SearchDC = DC;
9648    // Look-up name inside 'foo::'.
9649    LookupQualifiedName(Previous, DC);
9650
9651    if (Previous.isAmbiguous())
9652      return 0;
9653
9654    if (Previous.empty()) {
9655      // Name lookup did not find anything. However, if the
9656      // nested-name-specifier refers to the current instantiation,
9657      // and that current instantiation has any dependent base
9658      // classes, we might find something at instantiation time: treat
9659      // this as a dependent elaborated-type-specifier.
9660      // But this only makes any sense for reference-like lookups.
9661      if (Previous.wasNotFoundInCurrentInstantiation() &&
9662          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9663        IsDependent = true;
9664        return 0;
9665      }
9666
9667      // A tag 'foo::bar' must already exist.
9668      Diag(NameLoc, diag::err_not_tag_in_scope)
9669        << Kind << Name << DC << SS.getRange();
9670      Name = 0;
9671      Invalid = true;
9672      goto CreateNewDecl;
9673    }
9674  } else if (Name) {
9675    // If this is a named struct, check to see if there was a previous forward
9676    // declaration or definition.
9677    // FIXME: We're looking into outer scopes here, even when we
9678    // shouldn't be. Doing so can result in ambiguities that we
9679    // shouldn't be diagnosing.
9680    LookupName(Previous, S);
9681
9682    // When declaring or defining a tag, ignore ambiguities introduced
9683    // by types using'ed into this scope.
9684    if (Previous.isAmbiguous() &&
9685        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9686      LookupResult::Filter F = Previous.makeFilter();
9687      while (F.hasNext()) {
9688        NamedDecl *ND = F.next();
9689        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9690          F.erase();
9691      }
9692      F.done();
9693    }
9694
9695    // C++11 [namespace.memdef]p3:
9696    //   If the name in a friend declaration is neither qualified nor
9697    //   a template-id and the declaration is a function or an
9698    //   elaborated-type-specifier, the lookup to determine whether
9699    //   the entity has been previously declared shall not consider
9700    //   any scopes outside the innermost enclosing namespace.
9701    //
9702    // Does it matter that this should be by scope instead of by
9703    // semantic context?
9704    if (!Previous.empty() && TUK == TUK_Friend) {
9705      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9706      LookupResult::Filter F = Previous.makeFilter();
9707      while (F.hasNext()) {
9708        NamedDecl *ND = F.next();
9709        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9710        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9711          F.erase();
9712      }
9713      F.done();
9714    }
9715
9716    // Note:  there used to be some attempt at recovery here.
9717    if (Previous.isAmbiguous())
9718      return 0;
9719
9720    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9721      // FIXME: This makes sure that we ignore the contexts associated
9722      // with C structs, unions, and enums when looking for a matching
9723      // tag declaration or definition. See the similar lookup tweak
9724      // in Sema::LookupName; is there a better way to deal with this?
9725      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9726        SearchDC = SearchDC->getParent();
9727    }
9728  } else if (S->isFunctionPrototypeScope()) {
9729    // If this is an enum declaration in function prototype scope, set its
9730    // initial context to the translation unit.
9731    // FIXME: [citation needed]
9732    SearchDC = Context.getTranslationUnitDecl();
9733  }
9734
9735  if (Previous.isSingleResult() &&
9736      Previous.getFoundDecl()->isTemplateParameter()) {
9737    // Maybe we will complain about the shadowed template parameter.
9738    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9739    // Just pretend that we didn't see the previous declaration.
9740    Previous.clear();
9741  }
9742
9743  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9744      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9745    // This is a declaration of or a reference to "std::bad_alloc".
9746    isStdBadAlloc = true;
9747
9748    if (Previous.empty() && StdBadAlloc) {
9749      // std::bad_alloc has been implicitly declared (but made invisible to
9750      // name lookup). Fill in this implicit declaration as the previous
9751      // declaration, so that the declarations get chained appropriately.
9752      Previous.addDecl(getStdBadAlloc());
9753    }
9754  }
9755
9756  // If we didn't find a previous declaration, and this is a reference
9757  // (or friend reference), move to the correct scope.  In C++, we
9758  // also need to do a redeclaration lookup there, just in case
9759  // there's a shadow friend decl.
9760  if (Name && Previous.empty() &&
9761      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9762    if (Invalid) goto CreateNewDecl;
9763    assert(SS.isEmpty());
9764
9765    if (TUK == TUK_Reference) {
9766      // C++ [basic.scope.pdecl]p5:
9767      //   -- for an elaborated-type-specifier of the form
9768      //
9769      //          class-key identifier
9770      //
9771      //      if the elaborated-type-specifier is used in the
9772      //      decl-specifier-seq or parameter-declaration-clause of a
9773      //      function defined in namespace scope, the identifier is
9774      //      declared as a class-name in the namespace that contains
9775      //      the declaration; otherwise, except as a friend
9776      //      declaration, the identifier is declared in the smallest
9777      //      non-class, non-function-prototype scope that contains the
9778      //      declaration.
9779      //
9780      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9781      // C structs and unions.
9782      //
9783      // It is an error in C++ to declare (rather than define) an enum
9784      // type, including via an elaborated type specifier.  We'll
9785      // diagnose that later; for now, declare the enum in the same
9786      // scope as we would have picked for any other tag type.
9787      //
9788      // GNU C also supports this behavior as part of its incomplete
9789      // enum types extension, while GNU C++ does not.
9790      //
9791      // Find the context where we'll be declaring the tag.
9792      // FIXME: We would like to maintain the current DeclContext as the
9793      // lexical context,
9794      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9795        SearchDC = SearchDC->getParent();
9796
9797      // Find the scope where we'll be declaring the tag.
9798      while (S->isClassScope() ||
9799             (getLangOpts().CPlusPlus &&
9800              S->isFunctionPrototypeScope()) ||
9801             ((S->getFlags() & Scope::DeclScope) == 0) ||
9802             (S->getEntity() &&
9803              ((DeclContext *)S->getEntity())->isTransparentContext()))
9804        S = S->getParent();
9805    } else {
9806      assert(TUK == TUK_Friend);
9807      // C++ [namespace.memdef]p3:
9808      //   If a friend declaration in a non-local class first declares a
9809      //   class or function, the friend class or function is a member of
9810      //   the innermost enclosing namespace.
9811      SearchDC = SearchDC->getEnclosingNamespaceContext();
9812    }
9813
9814    // In C++, we need to do a redeclaration lookup to properly
9815    // diagnose some problems.
9816    if (getLangOpts().CPlusPlus) {
9817      Previous.setRedeclarationKind(ForRedeclaration);
9818      LookupQualifiedName(Previous, SearchDC);
9819    }
9820  }
9821
9822  if (!Previous.empty()) {
9823    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9824
9825    // It's okay to have a tag decl in the same scope as a typedef
9826    // which hides a tag decl in the same scope.  Finding this
9827    // insanity with a redeclaration lookup can only actually happen
9828    // in C++.
9829    //
9830    // This is also okay for elaborated-type-specifiers, which is
9831    // technically forbidden by the current standard but which is
9832    // okay according to the likely resolution of an open issue;
9833    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9834    if (getLangOpts().CPlusPlus) {
9835      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9836        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9837          TagDecl *Tag = TT->getDecl();
9838          if (Tag->getDeclName() == Name &&
9839              Tag->getDeclContext()->getRedeclContext()
9840                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9841            PrevDecl = Tag;
9842            Previous.clear();
9843            Previous.addDecl(Tag);
9844            Previous.resolveKind();
9845          }
9846        }
9847      }
9848    }
9849
9850    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9851      // If this is a use of a previous tag, or if the tag is already declared
9852      // in the same scope (so that the definition/declaration completes or
9853      // rementions the tag), reuse the decl.
9854      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9855          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9856        // Make sure that this wasn't declared as an enum and now used as a
9857        // struct or something similar.
9858        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9859                                          TUK == TUK_Definition, KWLoc,
9860                                          *Name)) {
9861          bool SafeToContinue
9862            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9863               Kind != TTK_Enum);
9864          if (SafeToContinue)
9865            Diag(KWLoc, diag::err_use_with_wrong_tag)
9866              << Name
9867              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9868                                              PrevTagDecl->getKindName());
9869          else
9870            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9871          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9872
9873          if (SafeToContinue)
9874            Kind = PrevTagDecl->getTagKind();
9875          else {
9876            // Recover by making this an anonymous redefinition.
9877            Name = 0;
9878            Previous.clear();
9879            Invalid = true;
9880          }
9881        }
9882
9883        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9884          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9885
9886          // If this is an elaborated-type-specifier for a scoped enumeration,
9887          // the 'class' keyword is not necessary and not permitted.
9888          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9889            if (ScopedEnum)
9890              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9891                << PrevEnum->isScoped()
9892                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9893            return PrevTagDecl;
9894          }
9895
9896          QualType EnumUnderlyingTy;
9897          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9898            EnumUnderlyingTy = TI->getType();
9899          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9900            EnumUnderlyingTy = QualType(T, 0);
9901
9902          // All conflicts with previous declarations are recovered by
9903          // returning the previous declaration, unless this is a definition,
9904          // in which case we want the caller to bail out.
9905          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9906                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9907            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9908        }
9909
9910        // C++11 [class.mem]p1:
9911        //   A member shall not be declared twice in the member-specification,
9912        //   except that a nested class or member class template can be declared
9913        //   and then later defined.
9914        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
9915            S->isDeclScope(PrevDecl)) {
9916          Diag(NameLoc, diag::ext_member_redeclared);
9917          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
9918        }
9919
9920        if (!Invalid) {
9921          // If this is a use, just return the declaration we found.
9922
9923          // FIXME: In the future, return a variant or some other clue
9924          // for the consumer of this Decl to know it doesn't own it.
9925          // For our current ASTs this shouldn't be a problem, but will
9926          // need to be changed with DeclGroups.
9927          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9928               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9929            return PrevTagDecl;
9930
9931          // Diagnose attempts to redefine a tag.
9932          if (TUK == TUK_Definition) {
9933            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9934              // If we're defining a specialization and the previous definition
9935              // is from an implicit instantiation, don't emit an error
9936              // here; we'll catch this in the general case below.
9937              bool IsExplicitSpecializationAfterInstantiation = false;
9938              if (isExplicitSpecialization) {
9939                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9940                  IsExplicitSpecializationAfterInstantiation =
9941                    RD->getTemplateSpecializationKind() !=
9942                    TSK_ExplicitSpecialization;
9943                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9944                  IsExplicitSpecializationAfterInstantiation =
9945                    ED->getTemplateSpecializationKind() !=
9946                    TSK_ExplicitSpecialization;
9947              }
9948
9949              if (!IsExplicitSpecializationAfterInstantiation) {
9950                // A redeclaration in function prototype scope in C isn't
9951                // visible elsewhere, so merely issue a warning.
9952                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9953                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9954                else
9955                  Diag(NameLoc, diag::err_redefinition) << Name;
9956                Diag(Def->getLocation(), diag::note_previous_definition);
9957                // If this is a redefinition, recover by making this
9958                // struct be anonymous, which will make any later
9959                // references get the previous definition.
9960                Name = 0;
9961                Previous.clear();
9962                Invalid = true;
9963              }
9964            } else {
9965              // If the type is currently being defined, complain
9966              // about a nested redefinition.
9967              const TagType *Tag
9968                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9969              if (Tag->isBeingDefined()) {
9970                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9971                Diag(PrevTagDecl->getLocation(),
9972                     diag::note_previous_definition);
9973                Name = 0;
9974                Previous.clear();
9975                Invalid = true;
9976              }
9977            }
9978
9979            // Okay, this is definition of a previously declared or referenced
9980            // tag PrevDecl. We're going to create a new Decl for it.
9981          }
9982        }
9983        // If we get here we have (another) forward declaration or we
9984        // have a definition.  Just create a new decl.
9985
9986      } else {
9987        // If we get here, this is a definition of a new tag type in a nested
9988        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9989        // new decl/type.  We set PrevDecl to NULL so that the entities
9990        // have distinct types.
9991        Previous.clear();
9992      }
9993      // If we get here, we're going to create a new Decl. If PrevDecl
9994      // is non-NULL, it's a definition of the tag declared by
9995      // PrevDecl. If it's NULL, we have a new definition.
9996
9997
9998    // Otherwise, PrevDecl is not a tag, but was found with tag
9999    // lookup.  This is only actually possible in C++, where a few
10000    // things like templates still live in the tag namespace.
10001    } else {
10002      // Use a better diagnostic if an elaborated-type-specifier
10003      // found the wrong kind of type on the first
10004      // (non-redeclaration) lookup.
10005      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10006          !Previous.isForRedeclaration()) {
10007        unsigned Kind = 0;
10008        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10009        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10010        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10011        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10012        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10013        Invalid = true;
10014
10015      // Otherwise, only diagnose if the declaration is in scope.
10016      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10017                                isExplicitSpecialization)) {
10018        // do nothing
10019
10020      // Diagnose implicit declarations introduced by elaborated types.
10021      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10022        unsigned Kind = 0;
10023        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10024        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10025        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10026        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10027        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10028        Invalid = true;
10029
10030      // Otherwise it's a declaration.  Call out a particularly common
10031      // case here.
10032      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10033        unsigned Kind = 0;
10034        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10035        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10036          << Name << Kind << TND->getUnderlyingType();
10037        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10038        Invalid = true;
10039
10040      // Otherwise, diagnose.
10041      } else {
10042        // The tag name clashes with something else in the target scope,
10043        // issue an error and recover by making this tag be anonymous.
10044        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10045        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10046        Name = 0;
10047        Invalid = true;
10048      }
10049
10050      // The existing declaration isn't relevant to us; we're in a
10051      // new scope, so clear out the previous declaration.
10052      Previous.clear();
10053    }
10054  }
10055
10056CreateNewDecl:
10057
10058  TagDecl *PrevDecl = 0;
10059  if (Previous.isSingleResult())
10060    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10061
10062  // If there is an identifier, use the location of the identifier as the
10063  // location of the decl, otherwise use the location of the struct/union
10064  // keyword.
10065  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10066
10067  // Otherwise, create a new declaration. If there is a previous
10068  // declaration of the same entity, the two will be linked via
10069  // PrevDecl.
10070  TagDecl *New;
10071
10072  bool IsForwardReference = false;
10073  if (Kind == TTK_Enum) {
10074    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10075    // enum X { A, B, C } D;    D should chain to X.
10076    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10077                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10078                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10079    // If this is an undefined enum, warn.
10080    if (TUK != TUK_Definition && !Invalid) {
10081      TagDecl *Def;
10082      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10083          cast<EnumDecl>(New)->isFixed()) {
10084        // C++0x: 7.2p2: opaque-enum-declaration.
10085        // Conflicts are diagnosed above. Do nothing.
10086      }
10087      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10088        Diag(Loc, diag::ext_forward_ref_enum_def)
10089          << New;
10090        Diag(Def->getLocation(), diag::note_previous_definition);
10091      } else {
10092        unsigned DiagID = diag::ext_forward_ref_enum;
10093        if (getLangOpts().MicrosoftMode)
10094          DiagID = diag::ext_ms_forward_ref_enum;
10095        else if (getLangOpts().CPlusPlus)
10096          DiagID = diag::err_forward_ref_enum;
10097        Diag(Loc, DiagID);
10098
10099        // If this is a forward-declared reference to an enumeration, make a
10100        // note of it; we won't actually be introducing the declaration into
10101        // the declaration context.
10102        if (TUK == TUK_Reference)
10103          IsForwardReference = true;
10104      }
10105    }
10106
10107    if (EnumUnderlying) {
10108      EnumDecl *ED = cast<EnumDecl>(New);
10109      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10110        ED->setIntegerTypeSourceInfo(TI);
10111      else
10112        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10113      ED->setPromotionType(ED->getIntegerType());
10114    }
10115
10116  } else {
10117    // struct/union/class
10118
10119    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10120    // struct X { int A; } D;    D should chain to X.
10121    if (getLangOpts().CPlusPlus) {
10122      // FIXME: Look for a way to use RecordDecl for simple structs.
10123      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10124                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10125
10126      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10127        StdBadAlloc = cast<CXXRecordDecl>(New);
10128    } else
10129      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10130                               cast_or_null<RecordDecl>(PrevDecl));
10131  }
10132
10133  // Maybe add qualifier info.
10134  if (SS.isNotEmpty()) {
10135    if (SS.isSet()) {
10136      // If this is either a declaration or a definition, check the
10137      // nested-name-specifier against the current context. We don't do this
10138      // for explicit specializations, because they have similar checking
10139      // (with more specific diagnostics) in the call to
10140      // CheckMemberSpecialization, below.
10141      if (!isExplicitSpecialization &&
10142          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10143          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10144        Invalid = true;
10145
10146      New->setQualifierInfo(SS.getWithLocInContext(Context));
10147      if (TemplateParameterLists.size() > 0) {
10148        New->setTemplateParameterListsInfo(Context,
10149                                           TemplateParameterLists.size(),
10150                                           TemplateParameterLists.data());
10151      }
10152    }
10153    else
10154      Invalid = true;
10155  }
10156
10157  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10158    // Add alignment attributes if necessary; these attributes are checked when
10159    // the ASTContext lays out the structure.
10160    //
10161    // It is important for implementing the correct semantics that this
10162    // happen here (in act on tag decl). The #pragma pack stack is
10163    // maintained as a result of parser callbacks which can occur at
10164    // many points during the parsing of a struct declaration (because
10165    // the #pragma tokens are effectively skipped over during the
10166    // parsing of the struct).
10167    if (TUK == TUK_Definition) {
10168      AddAlignmentAttributesForRecord(RD);
10169      AddMsStructLayoutForRecord(RD);
10170    }
10171  }
10172
10173  if (ModulePrivateLoc.isValid()) {
10174    if (isExplicitSpecialization)
10175      Diag(New->getLocation(), diag::err_module_private_specialization)
10176        << 2
10177        << FixItHint::CreateRemoval(ModulePrivateLoc);
10178    // __module_private__ does not apply to local classes. However, we only
10179    // diagnose this as an error when the declaration specifiers are
10180    // freestanding. Here, we just ignore the __module_private__.
10181    else if (!SearchDC->isFunctionOrMethod())
10182      New->setModulePrivate();
10183  }
10184
10185  // If this is a specialization of a member class (of a class template),
10186  // check the specialization.
10187  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10188    Invalid = true;
10189
10190  if (Invalid)
10191    New->setInvalidDecl();
10192
10193  if (Attr)
10194    ProcessDeclAttributeList(S, New, Attr);
10195
10196  // If we're declaring or defining a tag in function prototype scope
10197  // in C, note that this type can only be used within the function.
10198  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10199    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10200
10201  // Set the lexical context. If the tag has a C++ scope specifier, the
10202  // lexical context will be different from the semantic context.
10203  New->setLexicalDeclContext(CurContext);
10204
10205  // Mark this as a friend decl if applicable.
10206  // In Microsoft mode, a friend declaration also acts as a forward
10207  // declaration so we always pass true to setObjectOfFriendDecl to make
10208  // the tag name visible.
10209  if (TUK == TUK_Friend)
10210    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10211                               getLangOpts().MicrosoftExt);
10212
10213  // Set the access specifier.
10214  if (!Invalid && SearchDC->isRecord())
10215    SetMemberAccessSpecifier(New, PrevDecl, AS);
10216
10217  if (TUK == TUK_Definition)
10218    New->startDefinition();
10219
10220  // If this has an identifier, add it to the scope stack.
10221  if (TUK == TUK_Friend) {
10222    // We might be replacing an existing declaration in the lookup tables;
10223    // if so, borrow its access specifier.
10224    if (PrevDecl)
10225      New->setAccess(PrevDecl->getAccess());
10226
10227    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10228    DC->makeDeclVisibleInContext(New);
10229    if (Name) // can be null along some error paths
10230      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10231        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10232  } else if (Name) {
10233    S = getNonFieldDeclScope(S);
10234    PushOnScopeChains(New, S, !IsForwardReference);
10235    if (IsForwardReference)
10236      SearchDC->makeDeclVisibleInContext(New);
10237
10238  } else {
10239    CurContext->addDecl(New);
10240  }
10241
10242  // If this is the C FILE type, notify the AST context.
10243  if (IdentifierInfo *II = New->getIdentifier())
10244    if (!New->isInvalidDecl() &&
10245        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10246        II->isStr("FILE"))
10247      Context.setFILEDecl(New);
10248
10249  // If we were in function prototype scope (and not in C++ mode), add this
10250  // tag to the list of decls to inject into the function definition scope.
10251  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10252      InFunctionDeclarator && Name)
10253    DeclsInPrototypeScope.push_back(New);
10254
10255  if (PrevDecl)
10256    mergeDeclAttributes(New, PrevDecl);
10257
10258  // If there's a #pragma GCC visibility in scope, set the visibility of this
10259  // record.
10260  AddPushedVisibilityAttribute(New);
10261
10262  OwnedDecl = true;
10263  // In C++, don't return an invalid declaration. We can't recover well from
10264  // the cases where we make the type anonymous.
10265  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10266}
10267
10268void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10269  AdjustDeclIfTemplate(TagD);
10270  TagDecl *Tag = cast<TagDecl>(TagD);
10271
10272  // Enter the tag context.
10273  PushDeclContext(S, Tag);
10274
10275  ActOnDocumentableDecl(TagD);
10276
10277  // If there's a #pragma GCC visibility in scope, set the visibility of this
10278  // record.
10279  AddPushedVisibilityAttribute(Tag);
10280}
10281
10282Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10283  assert(isa<ObjCContainerDecl>(IDecl) &&
10284         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10285  DeclContext *OCD = cast<DeclContext>(IDecl);
10286  assert(getContainingDC(OCD) == CurContext &&
10287      "The next DeclContext should be lexically contained in the current one.");
10288  CurContext = OCD;
10289  return IDecl;
10290}
10291
10292void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10293                                           SourceLocation FinalLoc,
10294                                           SourceLocation LBraceLoc) {
10295  AdjustDeclIfTemplate(TagD);
10296  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10297
10298  FieldCollector->StartClass();
10299
10300  if (!Record->getIdentifier())
10301    return;
10302
10303  if (FinalLoc.isValid())
10304    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10305
10306  // C++ [class]p2:
10307  //   [...] The class-name is also inserted into the scope of the
10308  //   class itself; this is known as the injected-class-name. For
10309  //   purposes of access checking, the injected-class-name is treated
10310  //   as if it were a public member name.
10311  CXXRecordDecl *InjectedClassName
10312    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10313                            Record->getLocStart(), Record->getLocation(),
10314                            Record->getIdentifier(),
10315                            /*PrevDecl=*/0,
10316                            /*DelayTypeCreation=*/true);
10317  Context.getTypeDeclType(InjectedClassName, Record);
10318  InjectedClassName->setImplicit();
10319  InjectedClassName->setAccess(AS_public);
10320  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10321      InjectedClassName->setDescribedClassTemplate(Template);
10322  PushOnScopeChains(InjectedClassName, S);
10323  assert(InjectedClassName->isInjectedClassName() &&
10324         "Broken injected-class-name");
10325}
10326
10327void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10328                                    SourceLocation RBraceLoc) {
10329  AdjustDeclIfTemplate(TagD);
10330  TagDecl *Tag = cast<TagDecl>(TagD);
10331  Tag->setRBraceLoc(RBraceLoc);
10332
10333  // Make sure we "complete" the definition even it is invalid.
10334  if (Tag->isBeingDefined()) {
10335    assert(Tag->isInvalidDecl() && "We should already have completed it");
10336    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10337      RD->completeDefinition();
10338  }
10339
10340  if (isa<CXXRecordDecl>(Tag))
10341    FieldCollector->FinishClass();
10342
10343  // Exit this scope of this tag's definition.
10344  PopDeclContext();
10345
10346  if (getCurLexicalContext()->isObjCContainer() &&
10347      Tag->getDeclContext()->isFileContext())
10348    Tag->setTopLevelDeclInObjCContainer();
10349
10350  // Notify the consumer that we've defined a tag.
10351  Consumer.HandleTagDeclDefinition(Tag);
10352}
10353
10354void Sema::ActOnObjCContainerFinishDefinition() {
10355  // Exit this scope of this interface definition.
10356  PopDeclContext();
10357}
10358
10359void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10360  assert(DC == CurContext && "Mismatch of container contexts");
10361  OriginalLexicalContext = DC;
10362  ActOnObjCContainerFinishDefinition();
10363}
10364
10365void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10366  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10367  OriginalLexicalContext = 0;
10368}
10369
10370void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10371  AdjustDeclIfTemplate(TagD);
10372  TagDecl *Tag = cast<TagDecl>(TagD);
10373  Tag->setInvalidDecl();
10374
10375  // Make sure we "complete" the definition even it is invalid.
10376  if (Tag->isBeingDefined()) {
10377    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10378      RD->completeDefinition();
10379  }
10380
10381  // We're undoing ActOnTagStartDefinition here, not
10382  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10383  // the FieldCollector.
10384
10385  PopDeclContext();
10386}
10387
10388// Note that FieldName may be null for anonymous bitfields.
10389ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10390                                IdentifierInfo *FieldName,
10391                                QualType FieldTy, Expr *BitWidth,
10392                                bool *ZeroWidth) {
10393  // Default to true; that shouldn't confuse checks for emptiness
10394  if (ZeroWidth)
10395    *ZeroWidth = true;
10396
10397  // C99 6.7.2.1p4 - verify the field type.
10398  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10399  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10400    // Handle incomplete types with specific error.
10401    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10402      return ExprError();
10403    if (FieldName)
10404      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10405        << FieldName << FieldTy << BitWidth->getSourceRange();
10406    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10407      << FieldTy << BitWidth->getSourceRange();
10408  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10409                                             UPPC_BitFieldWidth))
10410    return ExprError();
10411
10412  // If the bit-width is type- or value-dependent, don't try to check
10413  // it now.
10414  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10415    return Owned(BitWidth);
10416
10417  llvm::APSInt Value;
10418  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10419  if (ICE.isInvalid())
10420    return ICE;
10421  BitWidth = ICE.take();
10422
10423  if (Value != 0 && ZeroWidth)
10424    *ZeroWidth = false;
10425
10426  // Zero-width bitfield is ok for anonymous field.
10427  if (Value == 0 && FieldName)
10428    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10429
10430  if (Value.isSigned() && Value.isNegative()) {
10431    if (FieldName)
10432      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10433               << FieldName << Value.toString(10);
10434    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10435      << Value.toString(10);
10436  }
10437
10438  if (!FieldTy->isDependentType()) {
10439    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10440    if (Value.getZExtValue() > TypeSize) {
10441      if (!getLangOpts().CPlusPlus) {
10442        if (FieldName)
10443          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10444            << FieldName << (unsigned)Value.getZExtValue()
10445            << (unsigned)TypeSize;
10446
10447        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10448          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10449      }
10450
10451      if (FieldName)
10452        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10453          << FieldName << (unsigned)Value.getZExtValue()
10454          << (unsigned)TypeSize;
10455      else
10456        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10457          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10458    }
10459  }
10460
10461  return Owned(BitWidth);
10462}
10463
10464/// ActOnField - Each field of a C struct/union is passed into this in order
10465/// to create a FieldDecl object for it.
10466Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10467                       Declarator &D, Expr *BitfieldWidth) {
10468  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10469                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10470                               /*InitStyle=*/ICIS_NoInit, AS_public);
10471  return Res;
10472}
10473
10474/// HandleField - Analyze a field of a C struct or a C++ data member.
10475///
10476FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10477                             SourceLocation DeclStart,
10478                             Declarator &D, Expr *BitWidth,
10479                             InClassInitStyle InitStyle,
10480                             AccessSpecifier AS) {
10481  IdentifierInfo *II = D.getIdentifier();
10482  SourceLocation Loc = DeclStart;
10483  if (II) Loc = D.getIdentifierLoc();
10484
10485  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10486  QualType T = TInfo->getType();
10487  if (getLangOpts().CPlusPlus) {
10488    CheckExtraCXXDefaultArguments(D);
10489
10490    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10491                                        UPPC_DataMemberType)) {
10492      D.setInvalidType();
10493      T = Context.IntTy;
10494      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10495    }
10496  }
10497
10498  // TR 18037 does not allow fields to be declared with address spaces.
10499  if (T.getQualifiers().hasAddressSpace()) {
10500    Diag(Loc, diag::err_field_with_address_space);
10501    D.setInvalidType();
10502  }
10503
10504  // OpenCL 1.2 spec, s6.9 r:
10505  // The event type cannot be used to declare a structure or union field.
10506  if (LangOpts.OpenCL && T->isEventT()) {
10507    Diag(Loc, diag::err_event_t_struct_field);
10508    D.setInvalidType();
10509  }
10510
10511  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10512
10513  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10514    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
10515         diag::err_invalid_thread)
10516      << DeclSpec::getSpecifierName(TSCS);
10517
10518  // Check to see if this name was declared as a member previously
10519  NamedDecl *PrevDecl = 0;
10520  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10521  LookupName(Previous, S);
10522  switch (Previous.getResultKind()) {
10523    case LookupResult::Found:
10524    case LookupResult::FoundUnresolvedValue:
10525      PrevDecl = Previous.getAsSingle<NamedDecl>();
10526      break;
10527
10528    case LookupResult::FoundOverloaded:
10529      PrevDecl = Previous.getRepresentativeDecl();
10530      break;
10531
10532    case LookupResult::NotFound:
10533    case LookupResult::NotFoundInCurrentInstantiation:
10534    case LookupResult::Ambiguous:
10535      break;
10536  }
10537  Previous.suppressDiagnostics();
10538
10539  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10540    // Maybe we will complain about the shadowed template parameter.
10541    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10542    // Just pretend that we didn't see the previous declaration.
10543    PrevDecl = 0;
10544  }
10545
10546  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10547    PrevDecl = 0;
10548
10549  bool Mutable
10550    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10551  SourceLocation TSSL = D.getLocStart();
10552  FieldDecl *NewFD
10553    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10554                     TSSL, AS, PrevDecl, &D);
10555
10556  if (NewFD->isInvalidDecl())
10557    Record->setInvalidDecl();
10558
10559  if (D.getDeclSpec().isModulePrivateSpecified())
10560    NewFD->setModulePrivate();
10561
10562  if (NewFD->isInvalidDecl() && PrevDecl) {
10563    // Don't introduce NewFD into scope; there's already something
10564    // with the same name in the same scope.
10565  } else if (II) {
10566    PushOnScopeChains(NewFD, S);
10567  } else
10568    Record->addDecl(NewFD);
10569
10570  return NewFD;
10571}
10572
10573/// \brief Build a new FieldDecl and check its well-formedness.
10574///
10575/// This routine builds a new FieldDecl given the fields name, type,
10576/// record, etc. \p PrevDecl should refer to any previous declaration
10577/// with the same name and in the same scope as the field to be
10578/// created.
10579///
10580/// \returns a new FieldDecl.
10581///
10582/// \todo The Declarator argument is a hack. It will be removed once
10583FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10584                                TypeSourceInfo *TInfo,
10585                                RecordDecl *Record, SourceLocation Loc,
10586                                bool Mutable, Expr *BitWidth,
10587                                InClassInitStyle InitStyle,
10588                                SourceLocation TSSL,
10589                                AccessSpecifier AS, NamedDecl *PrevDecl,
10590                                Declarator *D) {
10591  IdentifierInfo *II = Name.getAsIdentifierInfo();
10592  bool InvalidDecl = false;
10593  if (D) InvalidDecl = D->isInvalidType();
10594
10595  // If we receive a broken type, recover by assuming 'int' and
10596  // marking this declaration as invalid.
10597  if (T.isNull()) {
10598    InvalidDecl = true;
10599    T = Context.IntTy;
10600  }
10601
10602  QualType EltTy = Context.getBaseElementType(T);
10603  if (!EltTy->isDependentType()) {
10604    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10605      // Fields of incomplete type force their record to be invalid.
10606      Record->setInvalidDecl();
10607      InvalidDecl = true;
10608    } else {
10609      NamedDecl *Def;
10610      EltTy->isIncompleteType(&Def);
10611      if (Def && Def->isInvalidDecl()) {
10612        Record->setInvalidDecl();
10613        InvalidDecl = true;
10614      }
10615    }
10616  }
10617
10618  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10619  if (BitWidth && getLangOpts().OpenCL) {
10620    Diag(Loc, diag::err_opencl_bitfields);
10621    InvalidDecl = true;
10622  }
10623
10624  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10625  // than a variably modified type.
10626  if (!InvalidDecl && T->isVariablyModifiedType()) {
10627    bool SizeIsNegative;
10628    llvm::APSInt Oversized;
10629
10630    TypeSourceInfo *FixedTInfo =
10631      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10632                                                    SizeIsNegative,
10633                                                    Oversized);
10634    if (FixedTInfo) {
10635      Diag(Loc, diag::warn_illegal_constant_array_size);
10636      TInfo = FixedTInfo;
10637      T = FixedTInfo->getType();
10638    } else {
10639      if (SizeIsNegative)
10640        Diag(Loc, diag::err_typecheck_negative_array_size);
10641      else if (Oversized.getBoolValue())
10642        Diag(Loc, diag::err_array_too_large)
10643          << Oversized.toString(10);
10644      else
10645        Diag(Loc, diag::err_typecheck_field_variable_size);
10646      InvalidDecl = true;
10647    }
10648  }
10649
10650  // Fields can not have abstract class types
10651  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10652                                             diag::err_abstract_type_in_decl,
10653                                             AbstractFieldType))
10654    InvalidDecl = true;
10655
10656  bool ZeroWidth = false;
10657  // If this is declared as a bit-field, check the bit-field.
10658  if (!InvalidDecl && BitWidth) {
10659    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10660    if (!BitWidth) {
10661      InvalidDecl = true;
10662      BitWidth = 0;
10663      ZeroWidth = false;
10664    }
10665  }
10666
10667  // Check that 'mutable' is consistent with the type of the declaration.
10668  if (!InvalidDecl && Mutable) {
10669    unsigned DiagID = 0;
10670    if (T->isReferenceType())
10671      DiagID = diag::err_mutable_reference;
10672    else if (T.isConstQualified())
10673      DiagID = diag::err_mutable_const;
10674
10675    if (DiagID) {
10676      SourceLocation ErrLoc = Loc;
10677      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10678        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10679      Diag(ErrLoc, DiagID);
10680      Mutable = false;
10681      InvalidDecl = true;
10682    }
10683  }
10684
10685  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10686                                       BitWidth, Mutable, InitStyle);
10687  if (InvalidDecl)
10688    NewFD->setInvalidDecl();
10689
10690  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10691    Diag(Loc, diag::err_duplicate_member) << II;
10692    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10693    NewFD->setInvalidDecl();
10694  }
10695
10696  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10697    if (Record->isUnion()) {
10698      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10699        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10700        if (RDecl->getDefinition()) {
10701          // C++ [class.union]p1: An object of a class with a non-trivial
10702          // constructor, a non-trivial copy constructor, a non-trivial
10703          // destructor, or a non-trivial copy assignment operator
10704          // cannot be a member of a union, nor can an array of such
10705          // objects.
10706          if (CheckNontrivialField(NewFD))
10707            NewFD->setInvalidDecl();
10708        }
10709      }
10710
10711      // C++ [class.union]p1: If a union contains a member of reference type,
10712      // the program is ill-formed, except when compiling with MSVC extensions
10713      // enabled.
10714      if (EltTy->isReferenceType()) {
10715        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
10716                                    diag::ext_union_member_of_reference_type :
10717                                    diag::err_union_member_of_reference_type)
10718          << NewFD->getDeclName() << EltTy;
10719        if (!getLangOpts().MicrosoftExt)
10720          NewFD->setInvalidDecl();
10721      }
10722    }
10723  }
10724
10725  // FIXME: We need to pass in the attributes given an AST
10726  // representation, not a parser representation.
10727  if (D) {
10728    // FIXME: The current scope is almost... but not entirely... correct here.
10729    ProcessDeclAttributes(getCurScope(), NewFD, *D);
10730
10731    if (NewFD->hasAttrs())
10732      CheckAlignasUnderalignment(NewFD);
10733  }
10734
10735  // In auto-retain/release, infer strong retension for fields of
10736  // retainable type.
10737  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10738    NewFD->setInvalidDecl();
10739
10740  if (T.isObjCGCWeak())
10741    Diag(Loc, diag::warn_attribute_weak_on_field);
10742
10743  NewFD->setAccess(AS);
10744  return NewFD;
10745}
10746
10747bool Sema::CheckNontrivialField(FieldDecl *FD) {
10748  assert(FD);
10749  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10750
10751  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
10752    return false;
10753
10754  QualType EltTy = Context.getBaseElementType(FD->getType());
10755  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10756    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10757    if (RDecl->getDefinition()) {
10758      // We check for copy constructors before constructors
10759      // because otherwise we'll never get complaints about
10760      // copy constructors.
10761
10762      CXXSpecialMember member = CXXInvalid;
10763      // We're required to check for any non-trivial constructors. Since the
10764      // implicit default constructor is suppressed if there are any
10765      // user-declared constructors, we just need to check that there is a
10766      // trivial default constructor and a trivial copy constructor. (We don't
10767      // worry about move constructors here, since this is a C++98 check.)
10768      if (RDecl->hasNonTrivialCopyConstructor())
10769        member = CXXCopyConstructor;
10770      else if (!RDecl->hasTrivialDefaultConstructor())
10771        member = CXXDefaultConstructor;
10772      else if (RDecl->hasNonTrivialCopyAssignment())
10773        member = CXXCopyAssignment;
10774      else if (RDecl->hasNonTrivialDestructor())
10775        member = CXXDestructor;
10776
10777      if (member != CXXInvalid) {
10778        if (!getLangOpts().CPlusPlus11 &&
10779            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10780          // Objective-C++ ARC: it is an error to have a non-trivial field of
10781          // a union. However, system headers in Objective-C programs
10782          // occasionally have Objective-C lifetime objects within unions,
10783          // and rather than cause the program to fail, we make those
10784          // members unavailable.
10785          SourceLocation Loc = FD->getLocation();
10786          if (getSourceManager().isInSystemHeader(Loc)) {
10787            if (!FD->hasAttr<UnavailableAttr>())
10788              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10789                                  "this system field has retaining ownership"));
10790            return false;
10791          }
10792        }
10793
10794        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10795               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10796               diag::err_illegal_union_or_anon_struct_member)
10797          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10798        DiagnoseNontrivial(RDecl, member);
10799        return !getLangOpts().CPlusPlus11;
10800      }
10801    }
10802  }
10803
10804  return false;
10805}
10806
10807/// TranslateIvarVisibility - Translate visibility from a token ID to an
10808///  AST enum value.
10809static ObjCIvarDecl::AccessControl
10810TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10811  switch (ivarVisibility) {
10812  default: llvm_unreachable("Unknown visitibility kind");
10813  case tok::objc_private: return ObjCIvarDecl::Private;
10814  case tok::objc_public: return ObjCIvarDecl::Public;
10815  case tok::objc_protected: return ObjCIvarDecl::Protected;
10816  case tok::objc_package: return ObjCIvarDecl::Package;
10817  }
10818}
10819
10820/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10821/// in order to create an IvarDecl object for it.
10822Decl *Sema::ActOnIvar(Scope *S,
10823                                SourceLocation DeclStart,
10824                                Declarator &D, Expr *BitfieldWidth,
10825                                tok::ObjCKeywordKind Visibility) {
10826
10827  IdentifierInfo *II = D.getIdentifier();
10828  Expr *BitWidth = (Expr*)BitfieldWidth;
10829  SourceLocation Loc = DeclStart;
10830  if (II) Loc = D.getIdentifierLoc();
10831
10832  // FIXME: Unnamed fields can be handled in various different ways, for
10833  // example, unnamed unions inject all members into the struct namespace!
10834
10835  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10836  QualType T = TInfo->getType();
10837
10838  if (BitWidth) {
10839    // 6.7.2.1p3, 6.7.2.1p4
10840    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10841    if (!BitWidth)
10842      D.setInvalidType();
10843  } else {
10844    // Not a bitfield.
10845
10846    // validate II.
10847
10848  }
10849  if (T->isReferenceType()) {
10850    Diag(Loc, diag::err_ivar_reference_type);
10851    D.setInvalidType();
10852  }
10853  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10854  // than a variably modified type.
10855  else if (T->isVariablyModifiedType()) {
10856    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10857    D.setInvalidType();
10858  }
10859
10860  // Get the visibility (access control) for this ivar.
10861  ObjCIvarDecl::AccessControl ac =
10862    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10863                                        : ObjCIvarDecl::None;
10864  // Must set ivar's DeclContext to its enclosing interface.
10865  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10866  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10867    return 0;
10868  ObjCContainerDecl *EnclosingContext;
10869  if (ObjCImplementationDecl *IMPDecl =
10870      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10871    if (LangOpts.ObjCRuntime.isFragile()) {
10872    // Case of ivar declared in an implementation. Context is that of its class.
10873      EnclosingContext = IMPDecl->getClassInterface();
10874      assert(EnclosingContext && "Implementation has no class interface!");
10875    }
10876    else
10877      EnclosingContext = EnclosingDecl;
10878  } else {
10879    if (ObjCCategoryDecl *CDecl =
10880        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10881      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10882        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10883        return 0;
10884      }
10885    }
10886    EnclosingContext = EnclosingDecl;
10887  }
10888
10889  // Construct the decl.
10890  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10891                                             DeclStart, Loc, II, T,
10892                                             TInfo, ac, (Expr *)BitfieldWidth);
10893
10894  if (II) {
10895    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10896                                           ForRedeclaration);
10897    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10898        && !isa<TagDecl>(PrevDecl)) {
10899      Diag(Loc, diag::err_duplicate_member) << II;
10900      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10901      NewID->setInvalidDecl();
10902    }
10903  }
10904
10905  // Process attributes attached to the ivar.
10906  ProcessDeclAttributes(S, NewID, D);
10907
10908  if (D.isInvalidType())
10909    NewID->setInvalidDecl();
10910
10911  // In ARC, infer 'retaining' for ivars of retainable type.
10912  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10913    NewID->setInvalidDecl();
10914
10915  if (D.getDeclSpec().isModulePrivateSpecified())
10916    NewID->setModulePrivate();
10917
10918  if (II) {
10919    // FIXME: When interfaces are DeclContexts, we'll need to add
10920    // these to the interface.
10921    S->AddDecl(NewID);
10922    IdResolver.AddDecl(NewID);
10923  }
10924
10925  if (LangOpts.ObjCRuntime.isNonFragile() &&
10926      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10927    Diag(Loc, diag::warn_ivars_in_interface);
10928
10929  return NewID;
10930}
10931
10932/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10933/// class and class extensions. For every class \@interface and class
10934/// extension \@interface, if the last ivar is a bitfield of any type,
10935/// then add an implicit `char :0` ivar to the end of that interface.
10936void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10937                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10938  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10939    return;
10940
10941  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10942  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10943
10944  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10945    return;
10946  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10947  if (!ID) {
10948    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10949      if (!CD->IsClassExtension())
10950        return;
10951    }
10952    // No need to add this to end of @implementation.
10953    else
10954      return;
10955  }
10956  // All conditions are met. Add a new bitfield to the tail end of ivars.
10957  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10958  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10959
10960  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10961                              DeclLoc, DeclLoc, 0,
10962                              Context.CharTy,
10963                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10964                                                               DeclLoc),
10965                              ObjCIvarDecl::Private, BW,
10966                              true);
10967  AllIvarDecls.push_back(Ivar);
10968}
10969
10970void Sema::ActOnFields(Scope* S,
10971                       SourceLocation RecLoc, Decl *EnclosingDecl,
10972                       llvm::ArrayRef<Decl *> Fields,
10973                       SourceLocation LBrac, SourceLocation RBrac,
10974                       AttributeList *Attr) {
10975  assert(EnclosingDecl && "missing record or interface decl");
10976
10977  // If this is an Objective-C @implementation or category and we have
10978  // new fields here we should reset the layout of the interface since
10979  // it will now change.
10980  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10981    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10982    switch (DC->getKind()) {
10983    default: break;
10984    case Decl::ObjCCategory:
10985      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10986      break;
10987    case Decl::ObjCImplementation:
10988      Context.
10989        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10990      break;
10991    }
10992  }
10993
10994  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10995
10996  // Start counting up the number of named members; make sure to include
10997  // members of anonymous structs and unions in the total.
10998  unsigned NumNamedMembers = 0;
10999  if (Record) {
11000    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11001                                   e = Record->decls_end(); i != e; i++) {
11002      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11003        if (IFD->getDeclName())
11004          ++NumNamedMembers;
11005    }
11006  }
11007
11008  // Verify that all the fields are okay.
11009  SmallVector<FieldDecl*, 32> RecFields;
11010
11011  bool ARCErrReported = false;
11012  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11013       i != end; ++i) {
11014    FieldDecl *FD = cast<FieldDecl>(*i);
11015
11016    // Get the type for the field.
11017    const Type *FDTy = FD->getType().getTypePtr();
11018
11019    if (!FD->isAnonymousStructOrUnion()) {
11020      // Remember all fields written by the user.
11021      RecFields.push_back(FD);
11022    }
11023
11024    // If the field is already invalid for some reason, don't emit more
11025    // diagnostics about it.
11026    if (FD->isInvalidDecl()) {
11027      EnclosingDecl->setInvalidDecl();
11028      continue;
11029    }
11030
11031    // C99 6.7.2.1p2:
11032    //   A structure or union shall not contain a member with
11033    //   incomplete or function type (hence, a structure shall not
11034    //   contain an instance of itself, but may contain a pointer to
11035    //   an instance of itself), except that the last member of a
11036    //   structure with more than one named member may have incomplete
11037    //   array type; such a structure (and any union containing,
11038    //   possibly recursively, a member that is such a structure)
11039    //   shall not be a member of a structure or an element of an
11040    //   array.
11041    if (FDTy->isFunctionType()) {
11042      // Field declared as a function.
11043      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11044        << FD->getDeclName();
11045      FD->setInvalidDecl();
11046      EnclosingDecl->setInvalidDecl();
11047      continue;
11048    } else if (FDTy->isIncompleteArrayType() && Record &&
11049               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11050                ((getLangOpts().MicrosoftExt ||
11051                  getLangOpts().CPlusPlus) &&
11052                 (i + 1 == Fields.end() || Record->isUnion())))) {
11053      // Flexible array member.
11054      // Microsoft and g++ is more permissive regarding flexible array.
11055      // It will accept flexible array in union and also
11056      // as the sole element of a struct/class.
11057      if (getLangOpts().MicrosoftExt) {
11058        if (Record->isUnion())
11059          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11060            << FD->getDeclName();
11061        else if (Fields.size() == 1)
11062          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11063            << FD->getDeclName() << Record->getTagKind();
11064      } else if (getLangOpts().CPlusPlus) {
11065        if (Record->isUnion())
11066          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11067            << FD->getDeclName();
11068        else if (Fields.size() == 1)
11069          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11070            << FD->getDeclName() << Record->getTagKind();
11071      } else if (!getLangOpts().C99) {
11072      if (Record->isUnion())
11073        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11074          << FD->getDeclName();
11075      else
11076        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11077          << FD->getDeclName() << Record->getTagKind();
11078      } else if (NumNamedMembers < 1) {
11079        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11080          << FD->getDeclName();
11081        FD->setInvalidDecl();
11082        EnclosingDecl->setInvalidDecl();
11083        continue;
11084      }
11085      if (!FD->getType()->isDependentType() &&
11086          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11087        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11088          << FD->getDeclName() << FD->getType();
11089        FD->setInvalidDecl();
11090        EnclosingDecl->setInvalidDecl();
11091        continue;
11092      }
11093      // Okay, we have a legal flexible array member at the end of the struct.
11094      if (Record)
11095        Record->setHasFlexibleArrayMember(true);
11096    } else if (!FDTy->isDependentType() &&
11097               RequireCompleteType(FD->getLocation(), FD->getType(),
11098                                   diag::err_field_incomplete)) {
11099      // Incomplete type
11100      FD->setInvalidDecl();
11101      EnclosingDecl->setInvalidDecl();
11102      continue;
11103    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11104      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11105        // If this is a member of a union, then entire union becomes "flexible".
11106        if (Record && Record->isUnion()) {
11107          Record->setHasFlexibleArrayMember(true);
11108        } else {
11109          // If this is a struct/class and this is not the last element, reject
11110          // it.  Note that GCC supports variable sized arrays in the middle of
11111          // structures.
11112          if (i + 1 != Fields.end())
11113            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11114              << FD->getDeclName() << FD->getType();
11115          else {
11116            // We support flexible arrays at the end of structs in
11117            // other structs as an extension.
11118            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11119              << FD->getDeclName();
11120            if (Record)
11121              Record->setHasFlexibleArrayMember(true);
11122          }
11123        }
11124      }
11125      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11126          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11127                                 diag::err_abstract_type_in_decl,
11128                                 AbstractIvarType)) {
11129        // Ivars can not have abstract class types
11130        FD->setInvalidDecl();
11131      }
11132      if (Record && FDTTy->getDecl()->hasObjectMember())
11133        Record->setHasObjectMember(true);
11134      if (Record && FDTTy->getDecl()->hasVolatileMember())
11135        Record->setHasVolatileMember(true);
11136    } else if (FDTy->isObjCObjectType()) {
11137      /// A field cannot be an Objective-c object
11138      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11139        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11140      QualType T = Context.getObjCObjectPointerType(FD->getType());
11141      FD->setType(T);
11142    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11143               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11144      // It's an error in ARC if a field has lifetime.
11145      // We don't want to report this in a system header, though,
11146      // so we just make the field unavailable.
11147      // FIXME: that's really not sufficient; we need to make the type
11148      // itself invalid to, say, initialize or copy.
11149      QualType T = FD->getType();
11150      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11151      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11152        SourceLocation loc = FD->getLocation();
11153        if (getSourceManager().isInSystemHeader(loc)) {
11154          if (!FD->hasAttr<UnavailableAttr>()) {
11155            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11156                              "this system field has retaining ownership"));
11157          }
11158        } else {
11159          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11160            << T->isBlockPointerType() << Record->getTagKind();
11161        }
11162        ARCErrReported = true;
11163      }
11164    } else if (getLangOpts().ObjC1 &&
11165               getLangOpts().getGC() != LangOptions::NonGC &&
11166               Record && !Record->hasObjectMember()) {
11167      if (FD->getType()->isObjCObjectPointerType() ||
11168          FD->getType().isObjCGCStrong())
11169        Record->setHasObjectMember(true);
11170      else if (Context.getAsArrayType(FD->getType())) {
11171        QualType BaseType = Context.getBaseElementType(FD->getType());
11172        if (BaseType->isRecordType() &&
11173            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11174          Record->setHasObjectMember(true);
11175        else if (BaseType->isObjCObjectPointerType() ||
11176                 BaseType.isObjCGCStrong())
11177               Record->setHasObjectMember(true);
11178      }
11179    }
11180    if (Record && FD->getType().isVolatileQualified())
11181      Record->setHasVolatileMember(true);
11182    // Keep track of the number of named members.
11183    if (FD->getIdentifier())
11184      ++NumNamedMembers;
11185  }
11186
11187  // Okay, we successfully defined 'Record'.
11188  if (Record) {
11189    bool Completed = false;
11190    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11191      if (!CXXRecord->isInvalidDecl()) {
11192        // Set access bits correctly on the directly-declared conversions.
11193        for (CXXRecordDecl::conversion_iterator
11194               I = CXXRecord->conversion_begin(),
11195               E = CXXRecord->conversion_end(); I != E; ++I)
11196          I.setAccess((*I)->getAccess());
11197
11198        if (!CXXRecord->isDependentType()) {
11199          if (CXXRecord->hasUserDeclaredDestructor()) {
11200            // Adjust user-defined destructor exception spec.
11201            if (getLangOpts().CPlusPlus11)
11202              AdjustDestructorExceptionSpec(CXXRecord,
11203                                            CXXRecord->getDestructor());
11204
11205            // The Microsoft ABI requires that we perform the destructor body
11206            // checks (i.e. operator delete() lookup) at every declaration, as
11207            // any translation unit may need to emit a deleting destructor.
11208            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11209              CheckDestructor(CXXRecord->getDestructor());
11210          }
11211
11212          // Add any implicitly-declared members to this class.
11213          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11214
11215          // If we have virtual base classes, we may end up finding multiple
11216          // final overriders for a given virtual function. Check for this
11217          // problem now.
11218          if (CXXRecord->getNumVBases()) {
11219            CXXFinalOverriderMap FinalOverriders;
11220            CXXRecord->getFinalOverriders(FinalOverriders);
11221
11222            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11223                                             MEnd = FinalOverriders.end();
11224                 M != MEnd; ++M) {
11225              for (OverridingMethods::iterator SO = M->second.begin(),
11226                                            SOEnd = M->second.end();
11227                   SO != SOEnd; ++SO) {
11228                assert(SO->second.size() > 0 &&
11229                       "Virtual function without overridding functions?");
11230                if (SO->second.size() == 1)
11231                  continue;
11232
11233                // C++ [class.virtual]p2:
11234                //   In a derived class, if a virtual member function of a base
11235                //   class subobject has more than one final overrider the
11236                //   program is ill-formed.
11237                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11238                  << (const NamedDecl *)M->first << Record;
11239                Diag(M->first->getLocation(),
11240                     diag::note_overridden_virtual_function);
11241                for (OverridingMethods::overriding_iterator
11242                          OM = SO->second.begin(),
11243                       OMEnd = SO->second.end();
11244                     OM != OMEnd; ++OM)
11245                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11246                    << (const NamedDecl *)M->first << OM->Method->getParent();
11247
11248                Record->setInvalidDecl();
11249              }
11250            }
11251            CXXRecord->completeDefinition(&FinalOverriders);
11252            Completed = true;
11253          }
11254        }
11255      }
11256    }
11257
11258    if (!Completed)
11259      Record->completeDefinition();
11260
11261    if (Record->hasAttrs())
11262      CheckAlignasUnderalignment(Record);
11263
11264    // Check if the structure/union declaration is a language extension.
11265    if (!getLangOpts().CPlusPlus) {
11266      bool ZeroSize = true;
11267      bool IsEmpty = true;
11268      unsigned NonBitFields = 0;
11269      for (RecordDecl::field_iterator I = Record->field_begin(),
11270                                      E = Record->field_end();
11271           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11272        IsEmpty = false;
11273        if (I->isUnnamedBitfield()) {
11274          if (I->getBitWidthValue(Context) > 0)
11275            ZeroSize = false;
11276        } else {
11277          ++NonBitFields;
11278          QualType FieldType = I->getType();
11279          if (FieldType->isIncompleteType() ||
11280              !Context.getTypeSizeInChars(FieldType).isZero())
11281            ZeroSize = false;
11282        }
11283      }
11284
11285      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11286      // C++.
11287      if (ZeroSize)
11288        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11289            << Record->isUnion() << (NonBitFields > 1);
11290
11291      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11292      // are accepted by GCC.
11293      if (NonBitFields == 0) {
11294        if (IsEmpty)
11295          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11296        else
11297          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11298      }
11299    }
11300  } else {
11301    ObjCIvarDecl **ClsFields =
11302      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11303    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11304      ID->setEndOfDefinitionLoc(RBrac);
11305      // Add ivar's to class's DeclContext.
11306      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11307        ClsFields[i]->setLexicalDeclContext(ID);
11308        ID->addDecl(ClsFields[i]);
11309      }
11310      // Must enforce the rule that ivars in the base classes may not be
11311      // duplicates.
11312      if (ID->getSuperClass())
11313        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11314    } else if (ObjCImplementationDecl *IMPDecl =
11315                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11316      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11317      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11318        // Ivar declared in @implementation never belongs to the implementation.
11319        // Only it is in implementation's lexical context.
11320        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11321      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11322      IMPDecl->setIvarLBraceLoc(LBrac);
11323      IMPDecl->setIvarRBraceLoc(RBrac);
11324    } else if (ObjCCategoryDecl *CDecl =
11325                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11326      // case of ivars in class extension; all other cases have been
11327      // reported as errors elsewhere.
11328      // FIXME. Class extension does not have a LocEnd field.
11329      // CDecl->setLocEnd(RBrac);
11330      // Add ivar's to class extension's DeclContext.
11331      // Diagnose redeclaration of private ivars.
11332      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11333      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11334        if (IDecl) {
11335          if (const ObjCIvarDecl *ClsIvar =
11336              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11337            Diag(ClsFields[i]->getLocation(),
11338                 diag::err_duplicate_ivar_declaration);
11339            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11340            continue;
11341          }
11342          for (ObjCInterfaceDecl::known_extensions_iterator
11343                 Ext = IDecl->known_extensions_begin(),
11344                 ExtEnd = IDecl->known_extensions_end();
11345               Ext != ExtEnd; ++Ext) {
11346            if (const ObjCIvarDecl *ClsExtIvar
11347                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11348              Diag(ClsFields[i]->getLocation(),
11349                   diag::err_duplicate_ivar_declaration);
11350              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11351              continue;
11352            }
11353          }
11354        }
11355        ClsFields[i]->setLexicalDeclContext(CDecl);
11356        CDecl->addDecl(ClsFields[i]);
11357      }
11358      CDecl->setIvarLBraceLoc(LBrac);
11359      CDecl->setIvarRBraceLoc(RBrac);
11360    }
11361  }
11362
11363  if (Attr)
11364    ProcessDeclAttributeList(S, Record, Attr);
11365}
11366
11367/// \brief Determine whether the given integral value is representable within
11368/// the given type T.
11369static bool isRepresentableIntegerValue(ASTContext &Context,
11370                                        llvm::APSInt &Value,
11371                                        QualType T) {
11372  assert(T->isIntegralType(Context) && "Integral type required!");
11373  unsigned BitWidth = Context.getIntWidth(T);
11374
11375  if (Value.isUnsigned() || Value.isNonNegative()) {
11376    if (T->isSignedIntegerOrEnumerationType())
11377      --BitWidth;
11378    return Value.getActiveBits() <= BitWidth;
11379  }
11380  return Value.getMinSignedBits() <= BitWidth;
11381}
11382
11383// \brief Given an integral type, return the next larger integral type
11384// (or a NULL type of no such type exists).
11385static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11386  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11387  // enum checking below.
11388  assert(T->isIntegralType(Context) && "Integral type required!");
11389  const unsigned NumTypes = 4;
11390  QualType SignedIntegralTypes[NumTypes] = {
11391    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11392  };
11393  QualType UnsignedIntegralTypes[NumTypes] = {
11394    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11395    Context.UnsignedLongLongTy
11396  };
11397
11398  unsigned BitWidth = Context.getTypeSize(T);
11399  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11400                                                        : UnsignedIntegralTypes;
11401  for (unsigned I = 0; I != NumTypes; ++I)
11402    if (Context.getTypeSize(Types[I]) > BitWidth)
11403      return Types[I];
11404
11405  return QualType();
11406}
11407
11408EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11409                                          EnumConstantDecl *LastEnumConst,
11410                                          SourceLocation IdLoc,
11411                                          IdentifierInfo *Id,
11412                                          Expr *Val) {
11413  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11414  llvm::APSInt EnumVal(IntWidth);
11415  QualType EltTy;
11416
11417  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11418    Val = 0;
11419
11420  if (Val)
11421    Val = DefaultLvalueConversion(Val).take();
11422
11423  if (Val) {
11424    if (Enum->isDependentType() || Val->isTypeDependent())
11425      EltTy = Context.DependentTy;
11426    else {
11427      SourceLocation ExpLoc;
11428      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11429          !getLangOpts().MicrosoftMode) {
11430        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11431        // constant-expression in the enumerator-definition shall be a converted
11432        // constant expression of the underlying type.
11433        EltTy = Enum->getIntegerType();
11434        ExprResult Converted =
11435          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11436                                           CCEK_Enumerator);
11437        if (Converted.isInvalid())
11438          Val = 0;
11439        else
11440          Val = Converted.take();
11441      } else if (!Val->isValueDependent() &&
11442                 !(Val = VerifyIntegerConstantExpression(Val,
11443                                                         &EnumVal).take())) {
11444        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11445      } else {
11446        if (Enum->isFixed()) {
11447          EltTy = Enum->getIntegerType();
11448
11449          // In Obj-C and Microsoft mode, require the enumeration value to be
11450          // representable in the underlying type of the enumeration. In C++11,
11451          // we perform a non-narrowing conversion as part of converted constant
11452          // expression checking.
11453          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11454            if (getLangOpts().MicrosoftMode) {
11455              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11456              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11457            } else
11458              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11459          } else
11460            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11461        } else if (getLangOpts().CPlusPlus) {
11462          // C++11 [dcl.enum]p5:
11463          //   If the underlying type is not fixed, the type of each enumerator
11464          //   is the type of its initializing value:
11465          //     - If an initializer is specified for an enumerator, the
11466          //       initializing value has the same type as the expression.
11467          EltTy = Val->getType();
11468        } else {
11469          // C99 6.7.2.2p2:
11470          //   The expression that defines the value of an enumeration constant
11471          //   shall be an integer constant expression that has a value
11472          //   representable as an int.
11473
11474          // Complain if the value is not representable in an int.
11475          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11476            Diag(IdLoc, diag::ext_enum_value_not_int)
11477              << EnumVal.toString(10) << Val->getSourceRange()
11478              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11479          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11480            // Force the type of the expression to 'int'.
11481            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11482          }
11483          EltTy = Val->getType();
11484        }
11485      }
11486    }
11487  }
11488
11489  if (!Val) {
11490    if (Enum->isDependentType())
11491      EltTy = Context.DependentTy;
11492    else if (!LastEnumConst) {
11493      // C++0x [dcl.enum]p5:
11494      //   If the underlying type is not fixed, the type of each enumerator
11495      //   is the type of its initializing value:
11496      //     - If no initializer is specified for the first enumerator, the
11497      //       initializing value has an unspecified integral type.
11498      //
11499      // GCC uses 'int' for its unspecified integral type, as does
11500      // C99 6.7.2.2p3.
11501      if (Enum->isFixed()) {
11502        EltTy = Enum->getIntegerType();
11503      }
11504      else {
11505        EltTy = Context.IntTy;
11506      }
11507    } else {
11508      // Assign the last value + 1.
11509      EnumVal = LastEnumConst->getInitVal();
11510      ++EnumVal;
11511      EltTy = LastEnumConst->getType();
11512
11513      // Check for overflow on increment.
11514      if (EnumVal < LastEnumConst->getInitVal()) {
11515        // C++0x [dcl.enum]p5:
11516        //   If the underlying type is not fixed, the type of each enumerator
11517        //   is the type of its initializing value:
11518        //
11519        //     - Otherwise the type of the initializing value is the same as
11520        //       the type of the initializing value of the preceding enumerator
11521        //       unless the incremented value is not representable in that type,
11522        //       in which case the type is an unspecified integral type
11523        //       sufficient to contain the incremented value. If no such type
11524        //       exists, the program is ill-formed.
11525        QualType T = getNextLargerIntegralType(Context, EltTy);
11526        if (T.isNull() || Enum->isFixed()) {
11527          // There is no integral type larger enough to represent this
11528          // value. Complain, then allow the value to wrap around.
11529          EnumVal = LastEnumConst->getInitVal();
11530          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11531          ++EnumVal;
11532          if (Enum->isFixed())
11533            // When the underlying type is fixed, this is ill-formed.
11534            Diag(IdLoc, diag::err_enumerator_wrapped)
11535              << EnumVal.toString(10)
11536              << EltTy;
11537          else
11538            Diag(IdLoc, diag::warn_enumerator_too_large)
11539              << EnumVal.toString(10);
11540        } else {
11541          EltTy = T;
11542        }
11543
11544        // Retrieve the last enumerator's value, extent that type to the
11545        // type that is supposed to be large enough to represent the incremented
11546        // value, then increment.
11547        EnumVal = LastEnumConst->getInitVal();
11548        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11549        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11550        ++EnumVal;
11551
11552        // If we're not in C++, diagnose the overflow of enumerator values,
11553        // which in C99 means that the enumerator value is not representable in
11554        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11555        // permits enumerator values that are representable in some larger
11556        // integral type.
11557        if (!getLangOpts().CPlusPlus && !T.isNull())
11558          Diag(IdLoc, diag::warn_enum_value_overflow);
11559      } else if (!getLangOpts().CPlusPlus &&
11560                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11561        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11562        Diag(IdLoc, diag::ext_enum_value_not_int)
11563          << EnumVal.toString(10) << 1;
11564      }
11565    }
11566  }
11567
11568  if (!EltTy->isDependentType()) {
11569    // Make the enumerator value match the signedness and size of the
11570    // enumerator's type.
11571    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11572    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11573  }
11574
11575  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11576                                  Val, EnumVal);
11577}
11578
11579
11580Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11581                              SourceLocation IdLoc, IdentifierInfo *Id,
11582                              AttributeList *Attr,
11583                              SourceLocation EqualLoc, Expr *Val) {
11584  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11585  EnumConstantDecl *LastEnumConst =
11586    cast_or_null<EnumConstantDecl>(lastEnumConst);
11587
11588  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11589  // we find one that is.
11590  S = getNonFieldDeclScope(S);
11591
11592  // Verify that there isn't already something declared with this name in this
11593  // scope.
11594  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11595                                         ForRedeclaration);
11596  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11597    // Maybe we will complain about the shadowed template parameter.
11598    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11599    // Just pretend that we didn't see the previous declaration.
11600    PrevDecl = 0;
11601  }
11602
11603  if (PrevDecl) {
11604    // When in C++, we may get a TagDecl with the same name; in this case the
11605    // enum constant will 'hide' the tag.
11606    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11607           "Received TagDecl when not in C++!");
11608    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11609      if (isa<EnumConstantDecl>(PrevDecl))
11610        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11611      else
11612        Diag(IdLoc, diag::err_redefinition) << Id;
11613      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11614      return 0;
11615    }
11616  }
11617
11618  // C++ [class.mem]p15:
11619  // If T is the name of a class, then each of the following shall have a name
11620  // different from T:
11621  // - every enumerator of every member of class T that is an unscoped
11622  // enumerated type
11623  if (CXXRecordDecl *Record
11624                      = dyn_cast<CXXRecordDecl>(
11625                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11626    if (!TheEnumDecl->isScoped() &&
11627        Record->getIdentifier() && Record->getIdentifier() == Id)
11628      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11629
11630  EnumConstantDecl *New =
11631    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11632
11633  if (New) {
11634    // Process attributes.
11635    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11636
11637    // Register this decl in the current scope stack.
11638    New->setAccess(TheEnumDecl->getAccess());
11639    PushOnScopeChains(New, S);
11640  }
11641
11642  ActOnDocumentableDecl(New);
11643
11644  return New;
11645}
11646
11647// Returns true when the enum initial expression does not trigger the
11648// duplicate enum warning.  A few common cases are exempted as follows:
11649// Element2 = Element1
11650// Element2 = Element1 + 1
11651// Element2 = Element1 - 1
11652// Where Element2 and Element1 are from the same enum.
11653static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11654  Expr *InitExpr = ECD->getInitExpr();
11655  if (!InitExpr)
11656    return true;
11657  InitExpr = InitExpr->IgnoreImpCasts();
11658
11659  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11660    if (!BO->isAdditiveOp())
11661      return true;
11662    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11663    if (!IL)
11664      return true;
11665    if (IL->getValue() != 1)
11666      return true;
11667
11668    InitExpr = BO->getLHS();
11669  }
11670
11671  // This checks if the elements are from the same enum.
11672  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11673  if (!DRE)
11674    return true;
11675
11676  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11677  if (!EnumConstant)
11678    return true;
11679
11680  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11681      Enum)
11682    return true;
11683
11684  return false;
11685}
11686
11687struct DupKey {
11688  int64_t val;
11689  bool isTombstoneOrEmptyKey;
11690  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11691    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11692};
11693
11694static DupKey GetDupKey(const llvm::APSInt& Val) {
11695  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11696                false);
11697}
11698
11699struct DenseMapInfoDupKey {
11700  static DupKey getEmptyKey() { return DupKey(0, true); }
11701  static DupKey getTombstoneKey() { return DupKey(1, true); }
11702  static unsigned getHashValue(const DupKey Key) {
11703    return (unsigned)(Key.val * 37);
11704  }
11705  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11706    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11707           LHS.val == RHS.val;
11708  }
11709};
11710
11711// Emits a warning when an element is implicitly set a value that
11712// a previous element has already been set to.
11713static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
11714                                        EnumDecl *Enum,
11715                                        QualType EnumType) {
11716  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11717                                 Enum->getLocation()) ==
11718      DiagnosticsEngine::Ignored)
11719    return;
11720  // Avoid anonymous enums
11721  if (!Enum->getIdentifier())
11722    return;
11723
11724  // Only check for small enums.
11725  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11726    return;
11727
11728  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11729  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11730
11731  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11732  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11733          ValueToVectorMap;
11734
11735  DuplicatesVector DupVector;
11736  ValueToVectorMap EnumMap;
11737
11738  // Populate the EnumMap with all values represented by enum constants without
11739  // an initialier.
11740  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11741    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11742
11743    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11744    // this constant.  Skip this enum since it may be ill-formed.
11745    if (!ECD) {
11746      return;
11747    }
11748
11749    if (ECD->getInitExpr())
11750      continue;
11751
11752    DupKey Key = GetDupKey(ECD->getInitVal());
11753    DeclOrVector &Entry = EnumMap[Key];
11754
11755    // First time encountering this value.
11756    if (Entry.isNull())
11757      Entry = ECD;
11758  }
11759
11760  // Create vectors for any values that has duplicates.
11761  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11762    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11763    if (!ValidDuplicateEnum(ECD, Enum))
11764      continue;
11765
11766    DupKey Key = GetDupKey(ECD->getInitVal());
11767
11768    DeclOrVector& Entry = EnumMap[Key];
11769    if (Entry.isNull())
11770      continue;
11771
11772    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11773      // Ensure constants are different.
11774      if (D == ECD)
11775        continue;
11776
11777      // Create new vector and push values onto it.
11778      ECDVector *Vec = new ECDVector();
11779      Vec->push_back(D);
11780      Vec->push_back(ECD);
11781
11782      // Update entry to point to the duplicates vector.
11783      Entry = Vec;
11784
11785      // Store the vector somewhere we can consult later for quick emission of
11786      // diagnostics.
11787      DupVector.push_back(Vec);
11788      continue;
11789    }
11790
11791    ECDVector *Vec = Entry.get<ECDVector*>();
11792    // Make sure constants are not added more than once.
11793    if (*Vec->begin() == ECD)
11794      continue;
11795
11796    Vec->push_back(ECD);
11797  }
11798
11799  // Emit diagnostics.
11800  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11801                                  DupVectorEnd = DupVector.end();
11802       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11803    ECDVector *Vec = *DupVectorIter;
11804    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11805
11806    // Emit warning for one enum constant.
11807    ECDVector::iterator I = Vec->begin();
11808    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11809      << (*I)->getName() << (*I)->getInitVal().toString(10)
11810      << (*I)->getSourceRange();
11811    ++I;
11812
11813    // Emit one note for each of the remaining enum constants with
11814    // the same value.
11815    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11816      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11817        << (*I)->getName() << (*I)->getInitVal().toString(10)
11818        << (*I)->getSourceRange();
11819    delete Vec;
11820  }
11821}
11822
11823void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11824                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11825                         ArrayRef<Decl *> Elements,
11826                         Scope *S, AttributeList *Attr) {
11827  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11828  QualType EnumType = Context.getTypeDeclType(Enum);
11829
11830  if (Attr)
11831    ProcessDeclAttributeList(S, Enum, Attr);
11832
11833  if (Enum->isDependentType()) {
11834    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11835      EnumConstantDecl *ECD =
11836        cast_or_null<EnumConstantDecl>(Elements[i]);
11837      if (!ECD) continue;
11838
11839      ECD->setType(EnumType);
11840    }
11841
11842    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11843    return;
11844  }
11845
11846  // TODO: If the result value doesn't fit in an int, it must be a long or long
11847  // long value.  ISO C does not support this, but GCC does as an extension,
11848  // emit a warning.
11849  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11850  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11851  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11852
11853  // Verify that all the values are okay, compute the size of the values, and
11854  // reverse the list.
11855  unsigned NumNegativeBits = 0;
11856  unsigned NumPositiveBits = 0;
11857
11858  // Keep track of whether all elements have type int.
11859  bool AllElementsInt = true;
11860
11861  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11862    EnumConstantDecl *ECD =
11863      cast_or_null<EnumConstantDecl>(Elements[i]);
11864    if (!ECD) continue;  // Already issued a diagnostic.
11865
11866    const llvm::APSInt &InitVal = ECD->getInitVal();
11867
11868    // Keep track of the size of positive and negative values.
11869    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11870      NumPositiveBits = std::max(NumPositiveBits,
11871                                 (unsigned)InitVal.getActiveBits());
11872    else
11873      NumNegativeBits = std::max(NumNegativeBits,
11874                                 (unsigned)InitVal.getMinSignedBits());
11875
11876    // Keep track of whether every enum element has type int (very commmon).
11877    if (AllElementsInt)
11878      AllElementsInt = ECD->getType() == Context.IntTy;
11879  }
11880
11881  // Figure out the type that should be used for this enum.
11882  QualType BestType;
11883  unsigned BestWidth;
11884
11885  // C++0x N3000 [conv.prom]p3:
11886  //   An rvalue of an unscoped enumeration type whose underlying
11887  //   type is not fixed can be converted to an rvalue of the first
11888  //   of the following types that can represent all the values of
11889  //   the enumeration: int, unsigned int, long int, unsigned long
11890  //   int, long long int, or unsigned long long int.
11891  // C99 6.4.4.3p2:
11892  //   An identifier declared as an enumeration constant has type int.
11893  // The C99 rule is modified by a gcc extension
11894  QualType BestPromotionType;
11895
11896  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11897  // -fshort-enums is the equivalent to specifying the packed attribute on all
11898  // enum definitions.
11899  if (LangOpts.ShortEnums)
11900    Packed = true;
11901
11902  if (Enum->isFixed()) {
11903    BestType = Enum->getIntegerType();
11904    if (BestType->isPromotableIntegerType())
11905      BestPromotionType = Context.getPromotedIntegerType(BestType);
11906    else
11907      BestPromotionType = BestType;
11908    // We don't need to set BestWidth, because BestType is going to be the type
11909    // of the enumerators, but we do anyway because otherwise some compilers
11910    // warn that it might be used uninitialized.
11911    BestWidth = CharWidth;
11912  }
11913  else if (NumNegativeBits) {
11914    // If there is a negative value, figure out the smallest integer type (of
11915    // int/long/longlong) that fits.
11916    // If it's packed, check also if it fits a char or a short.
11917    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11918      BestType = Context.SignedCharTy;
11919      BestWidth = CharWidth;
11920    } else if (Packed && NumNegativeBits <= ShortWidth &&
11921               NumPositiveBits < ShortWidth) {
11922      BestType = Context.ShortTy;
11923      BestWidth = ShortWidth;
11924    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11925      BestType = Context.IntTy;
11926      BestWidth = IntWidth;
11927    } else {
11928      BestWidth = Context.getTargetInfo().getLongWidth();
11929
11930      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11931        BestType = Context.LongTy;
11932      } else {
11933        BestWidth = Context.getTargetInfo().getLongLongWidth();
11934
11935        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11936          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11937        BestType = Context.LongLongTy;
11938      }
11939    }
11940    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11941  } else {
11942    // If there is no negative value, figure out the smallest type that fits
11943    // all of the enumerator values.
11944    // If it's packed, check also if it fits a char or a short.
11945    if (Packed && NumPositiveBits <= CharWidth) {
11946      BestType = Context.UnsignedCharTy;
11947      BestPromotionType = Context.IntTy;
11948      BestWidth = CharWidth;
11949    } else if (Packed && NumPositiveBits <= ShortWidth) {
11950      BestType = Context.UnsignedShortTy;
11951      BestPromotionType = Context.IntTy;
11952      BestWidth = ShortWidth;
11953    } else if (NumPositiveBits <= IntWidth) {
11954      BestType = Context.UnsignedIntTy;
11955      BestWidth = IntWidth;
11956      BestPromotionType
11957        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11958                           ? Context.UnsignedIntTy : Context.IntTy;
11959    } else if (NumPositiveBits <=
11960               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11961      BestType = Context.UnsignedLongTy;
11962      BestPromotionType
11963        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11964                           ? Context.UnsignedLongTy : Context.LongTy;
11965    } else {
11966      BestWidth = Context.getTargetInfo().getLongLongWidth();
11967      assert(NumPositiveBits <= BestWidth &&
11968             "How could an initializer get larger than ULL?");
11969      BestType = Context.UnsignedLongLongTy;
11970      BestPromotionType
11971        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11972                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11973    }
11974  }
11975
11976  // Loop over all of the enumerator constants, changing their types to match
11977  // the type of the enum if needed.
11978  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11979    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11980    if (!ECD) continue;  // Already issued a diagnostic.
11981
11982    // Standard C says the enumerators have int type, but we allow, as an
11983    // extension, the enumerators to be larger than int size.  If each
11984    // enumerator value fits in an int, type it as an int, otherwise type it the
11985    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11986    // that X has type 'int', not 'unsigned'.
11987
11988    // Determine whether the value fits into an int.
11989    llvm::APSInt InitVal = ECD->getInitVal();
11990
11991    // If it fits into an integer type, force it.  Otherwise force it to match
11992    // the enum decl type.
11993    QualType NewTy;
11994    unsigned NewWidth;
11995    bool NewSign;
11996    if (!getLangOpts().CPlusPlus &&
11997        !Enum->isFixed() &&
11998        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11999      NewTy = Context.IntTy;
12000      NewWidth = IntWidth;
12001      NewSign = true;
12002    } else if (ECD->getType() == BestType) {
12003      // Already the right type!
12004      if (getLangOpts().CPlusPlus)
12005        // C++ [dcl.enum]p4: Following the closing brace of an
12006        // enum-specifier, each enumerator has the type of its
12007        // enumeration.
12008        ECD->setType(EnumType);
12009      continue;
12010    } else {
12011      NewTy = BestType;
12012      NewWidth = BestWidth;
12013      NewSign = BestType->isSignedIntegerOrEnumerationType();
12014    }
12015
12016    // Adjust the APSInt value.
12017    InitVal = InitVal.extOrTrunc(NewWidth);
12018    InitVal.setIsSigned(NewSign);
12019    ECD->setInitVal(InitVal);
12020
12021    // Adjust the Expr initializer and type.
12022    if (ECD->getInitExpr() &&
12023        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12024      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12025                                                CK_IntegralCast,
12026                                                ECD->getInitExpr(),
12027                                                /*base paths*/ 0,
12028                                                VK_RValue));
12029    if (getLangOpts().CPlusPlus)
12030      // C++ [dcl.enum]p4: Following the closing brace of an
12031      // enum-specifier, each enumerator has the type of its
12032      // enumeration.
12033      ECD->setType(EnumType);
12034    else
12035      ECD->setType(NewTy);
12036  }
12037
12038  Enum->completeDefinition(BestType, BestPromotionType,
12039                           NumPositiveBits, NumNegativeBits);
12040
12041  // If we're declaring a function, ensure this decl isn't forgotten about -
12042  // it needs to go into the function scope.
12043  if (InFunctionDeclarator)
12044    DeclsInPrototypeScope.push_back(Enum);
12045
12046  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12047
12048  // Now that the enum type is defined, ensure it's not been underaligned.
12049  if (Enum->hasAttrs())
12050    CheckAlignasUnderalignment(Enum);
12051}
12052
12053Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12054                                  SourceLocation StartLoc,
12055                                  SourceLocation EndLoc) {
12056  StringLiteral *AsmString = cast<StringLiteral>(expr);
12057
12058  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12059                                                   AsmString, StartLoc,
12060                                                   EndLoc);
12061  CurContext->addDecl(New);
12062  return New;
12063}
12064
12065DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12066                                   SourceLocation ImportLoc,
12067                                   ModuleIdPath Path) {
12068  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12069                                                Module::AllVisible,
12070                                                /*IsIncludeDirective=*/false);
12071  if (!Mod)
12072    return true;
12073
12074  SmallVector<SourceLocation, 2> IdentifierLocs;
12075  Module *ModCheck = Mod;
12076  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12077    // If we've run out of module parents, just drop the remaining identifiers.
12078    // We need the length to be consistent.
12079    if (!ModCheck)
12080      break;
12081    ModCheck = ModCheck->Parent;
12082
12083    IdentifierLocs.push_back(Path[I].second);
12084  }
12085
12086  ImportDecl *Import = ImportDecl::Create(Context,
12087                                          Context.getTranslationUnitDecl(),
12088                                          AtLoc.isValid()? AtLoc : ImportLoc,
12089                                          Mod, IdentifierLocs);
12090  Context.getTranslationUnitDecl()->addDecl(Import);
12091  return Import;
12092}
12093
12094void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12095  // Create the implicit import declaration.
12096  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12097  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12098                                                   Loc, Mod, Loc);
12099  TU->addDecl(ImportD);
12100  Consumer.HandleImplicitImportDecl(ImportD);
12101
12102  // Make the module visible.
12103  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12104                                         /*Complain=*/false);
12105}
12106
12107void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12108                                      IdentifierInfo* AliasName,
12109                                      SourceLocation PragmaLoc,
12110                                      SourceLocation NameLoc,
12111                                      SourceLocation AliasNameLoc) {
12112  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12113                                    LookupOrdinaryName);
12114  AsmLabelAttr *Attr =
12115     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12116
12117  if (PrevDecl)
12118    PrevDecl->addAttr(Attr);
12119  else
12120    (void)ExtnameUndeclaredIdentifiers.insert(
12121      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12122}
12123
12124void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12125                             SourceLocation PragmaLoc,
12126                             SourceLocation NameLoc) {
12127  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12128
12129  if (PrevDecl) {
12130    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12131  } else {
12132    (void)WeakUndeclaredIdentifiers.insert(
12133      std::pair<IdentifierInfo*,WeakInfo>
12134        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12135  }
12136}
12137
12138void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12139                                IdentifierInfo* AliasName,
12140                                SourceLocation PragmaLoc,
12141                                SourceLocation NameLoc,
12142                                SourceLocation AliasNameLoc) {
12143  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12144                                    LookupOrdinaryName);
12145  WeakInfo W = WeakInfo(Name, NameLoc);
12146
12147  if (PrevDecl) {
12148    if (!PrevDecl->hasAttr<AliasAttr>())
12149      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12150        DeclApplyPragmaWeak(TUScope, ND, W);
12151  } else {
12152    (void)WeakUndeclaredIdentifiers.insert(
12153      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12154  }
12155}
12156
12157Decl *Sema::getObjCDeclContext() const {
12158  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12159}
12160
12161AvailabilityResult Sema::getCurContextAvailability() const {
12162  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12163  return D->getAvailability();
12164}
12165