SemaDecl.cpp revision dcde115dc2e9c21a295200c3129619e4bea15924
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
45                 isa<ObjCInterfaceDecl>(IIDecl) ||
46                 isa<TagDecl>(IIDecl) ||
47		 isa<TemplateTypeParmDecl>(IIDecl)))
48    return IIDecl;
49  return 0;
50}
51
52DeclContext *Sema::getContainingDC(DeclContext *DC) {
53  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
54    // A C++ out-of-line method will return to the file declaration context.
55    if (MD->isOutOfLineDefinition())
56      return MD->getLexicalDeclContext();
57
58    // A C++ inline method is parsed *after* the topmost class it was declared in
59    // is fully parsed (it's "complete").
60    // The parsing of a C++ inline method happens at the declaration context of
61    // the topmost (non-nested) class it is lexically declared in.
62    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
63    DC = MD->getParent();
64    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
65      DC = RD;
66
67    // Return the declaration context of the topmost class the inline method is
68    // declared in.
69    return DC;
70  }
71
72  if (isa<ObjCMethodDecl>(DC))
73    return Context.getTranslationUnitDecl();
74
75  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
76    return SD->getLexicalDeclContext();
77
78  return DC->getLexicalParent();
79}
80
81void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
82  assert(getContainingDC(DC) == CurContext &&
83      "The next DeclContext should be lexically contained in the current one.");
84  CurContext = DC;
85  S->setEntity(DC);
86}
87
88void Sema::PopDeclContext() {
89  assert(CurContext && "DeclContext imbalance!");
90
91  CurContext = getContainingDC(CurContext);
92}
93
94/// Add this decl to the scope shadowed decl chains.
95void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
96  // Move up the scope chain until we find the nearest enclosing
97  // non-transparent context. The declaration will be introduced into this
98  // scope.
99  while (S->getEntity() &&
100         ((DeclContext *)S->getEntity())->isTransparentContext())
101    S = S->getParent();
102
103  S->AddDecl(D);
104
105  // Add scoped declarations into their context, so that they can be
106  // found later. Declarations without a context won't be inserted
107  // into any context.
108  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
109    CurContext->addDecl(Context, SD);
110
111  // C++ [basic.scope]p4:
112  //   -- exactly one declaration shall declare a class name or
113  //   enumeration name that is not a typedef name and the other
114  //   declarations shall all refer to the same object or
115  //   enumerator, or all refer to functions and function templates;
116  //   in this case the class name or enumeration name is hidden.
117  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
118    // We are pushing the name of a tag (enum or class).
119    if (CurContext->getLookupContext()
120          == TD->getDeclContext()->getLookupContext()) {
121      // We're pushing the tag into the current context, which might
122      // require some reshuffling in the identifier resolver.
123      IdentifierResolver::iterator
124        I = IdResolver.begin(TD->getDeclName(), CurContext,
125                             false/*LookInParentCtx*/),
126        IEnd = IdResolver.end();
127      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
128        NamedDecl *PrevDecl = *I;
129        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
130             PrevDecl = *I, ++I) {
131          if (TD->declarationReplaces(*I)) {
132            // This is a redeclaration. Remove it from the chain and
133            // break out, so that we'll add in the shadowed
134            // declaration.
135            S->RemoveDecl(*I);
136            if (PrevDecl == *I) {
137              IdResolver.RemoveDecl(*I);
138              IdResolver.AddDecl(TD);
139              return;
140            } else {
141              IdResolver.RemoveDecl(*I);
142              break;
143            }
144          }
145        }
146
147        // There is already a declaration with the same name in the same
148        // scope, which is not a tag declaration. It must be found
149        // before we find the new declaration, so insert the new
150        // declaration at the end of the chain.
151        IdResolver.AddShadowedDecl(TD, PrevDecl);
152
153        return;
154      }
155    }
156  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
157    // We are pushing the name of a function, which might be an
158    // overloaded name.
159    FunctionDecl *FD = cast<FunctionDecl>(D);
160    DeclContext *DC = FD->getDeclContext()->getLookupContext();
161    IdentifierResolver::iterator Redecl
162      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
163                                      false/*LookInParentCtx*/),
164                     IdResolver.end(),
165                     std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
166                                  FD));
167    if (Redecl != IdResolver.end()) {
168      // There is already a declaration of a function on our
169      // IdResolver chain. Replace it with this declaration.
170      S->RemoveDecl(*Redecl);
171      IdResolver.RemoveDecl(*Redecl);
172    }
173  }
174
175  IdResolver.AddDecl(D);
176}
177
178void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
179  if (S->decl_empty()) return;
180  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
181	 "Scope shouldn't contain decls!");
182
183  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
184       I != E; ++I) {
185    Decl *TmpD = static_cast<Decl*>(*I);
186    assert(TmpD && "This decl didn't get pushed??");
187
188    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
189    NamedDecl *D = cast<NamedDecl>(TmpD);
190
191    if (!D->getDeclName()) continue;
192
193    // Remove this name from our lexical scope.
194    IdResolver.RemoveDecl(D);
195  }
196}
197
198/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
199/// return 0 if one not found.
200ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
201  // The third "scope" argument is 0 since we aren't enabling lazy built-in
202  // creation from this context.
203  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
204
205  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
206}
207
208/// MaybeConstructOverloadSet - Name lookup has determined that the
209/// elements in [I, IEnd) have the name that we are looking for, and
210/// *I is a match for the namespace. This routine returns an
211/// appropriate Decl for name lookup, which may either be *I or an
212/// OverloadeFunctionDecl that represents the overloaded functions in
213/// [I, IEnd).
214///
215/// The existance of this routine is temporary; LookupDecl should
216/// probably be able to return multiple results, to deal with cases of
217/// ambiguity and overloaded functions without needing to create a
218/// Decl node.
219template<typename DeclIterator>
220static Decl *
221MaybeConstructOverloadSet(ASTContext &Context,
222                          DeclIterator I, DeclIterator IEnd) {
223  assert(I != IEnd && "Iterator range cannot be empty");
224  assert(!isa<OverloadedFunctionDecl>(*I) &&
225         "Cannot have an overloaded function");
226
227  if (isa<FunctionDecl>(*I)) {
228    // If we found a function, there might be more functions. If
229    // so, collect them into an overload set.
230    DeclIterator Last = I;
231    OverloadedFunctionDecl *Ovl = 0;
232    for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
233      if (!Ovl) {
234        // FIXME: We leak this overload set. Eventually, we want to
235        // stop building the declarations for these overload sets, so
236        // there will be nothing to leak.
237        Ovl = OverloadedFunctionDecl::Create(Context,
238                                         cast<ScopedDecl>(*I)->getDeclContext(),
239                                             (*I)->getDeclName());
240        Ovl->addOverload(cast<FunctionDecl>(*I));
241      }
242      Ovl->addOverload(cast<FunctionDecl>(*Last));
243    }
244
245    // If we had more than one function, we built an overload
246    // set. Return it.
247    if (Ovl)
248      return Ovl;
249  }
250
251  return *I;
252}
253
254/// LookupDecl - Look up the inner-most declaration in the specified
255/// namespace. NamespaceNameOnly - during lookup only namespace names
256/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
257/// 'When looking up a namespace-name in a using-directive or
258/// namespace-alias-definition, only namespace names are considered.'
259Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
260                       const DeclContext *LookupCtx,
261                       bool enableLazyBuiltinCreation,
262                       bool LookInParent,
263                       bool NamespaceNameOnly) {
264  if (!Name) return 0;
265  unsigned NS = NSI;
266
267  // In C++, ordinary and member lookup will always find all
268  // kinds of names.
269  if (getLangOptions().CPlusPlus &&
270      (NS & (Decl::IDNS_Ordinary | Decl::IDNS_Member)))
271    NS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Ordinary;
272
273  if (LookupCtx == 0 && !getLangOptions().CPlusPlus) {
274    // Unqualified name lookup in C/Objective-C is purely lexical, so
275    // search in the declarations attached to the name.
276    assert(!LookupCtx && "Can't perform qualified name lookup here");
277    assert(!NamespaceNameOnly && "Can't perform namespace name lookup here");
278
279    // For the purposes of unqualified name lookup, structs and unions
280    // don't have scopes at all. For example:
281    //
282    //   struct X {
283    //     struct T { int i; } x;
284    //   };
285    //
286    //   void f() {
287    //     struct T t; // okay: T is defined lexically within X, but
288    //                 // semantically at global scope
289    //   };
290    //
291    // FIXME: Is there a better way to deal with this?
292    DeclContext *SearchCtx = CurContext;
293    while (isa<RecordDecl>(SearchCtx) || isa<EnumDecl>(SearchCtx))
294      SearchCtx = SearchCtx->getParent();
295    IdentifierResolver::iterator I
296      = IdResolver.begin(Name, SearchCtx, LookInParent);
297
298    // Scan up the scope chain looking for a decl that matches this
299    // identifier that is in the appropriate namespace.  This search
300    // should not take long, as shadowing of names is uncommon, and
301    // deep shadowing is extremely uncommon.
302    for (; I != IdResolver.end(); ++I)
303      if ((*I)->isInIdentifierNamespace(NS))
304        return *I;
305  } else if (LookupCtx) {
306    // If we're performing qualified name lookup (e.g., lookup into a
307    // struct), find fields as part of ordinary name lookup.
308    if (NS & Decl::IDNS_Ordinary)
309      NS |= Decl::IDNS_Member;
310
311    // Perform qualified name lookup into the LookupCtx.
312    // FIXME: Will need to look into base classes and such.
313    DeclContext::lookup_const_iterator I, E;
314    for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I)
315      if ((*I)->isInIdentifierNamespace(NS)) {
316        // Ignore non-namespace names if we're only looking for namespaces.
317        if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) continue;
318
319        return MaybeConstructOverloadSet(Context, I, E);
320      }
321  } else {
322    // Name lookup for ordinary names and tag names in C++ requires
323    // looking into scopes that aren't strictly lexical, and
324    // therefore we walk through the context as well as walking
325    // through the scopes.
326    IdentifierResolver::iterator
327      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
328      IEnd = IdResolver.end();
329    for (; S; S = S->getParent()) {
330      // Check whether the IdResolver has anything in this scope.
331      // FIXME: The isDeclScope check could be expensive. Can we do better?
332      for (; I != IEnd && S->isDeclScope(*I); ++I) {
333        if ((*I)->isInIdentifierNamespace(NS)) {
334          // Ignore non-namespace names if we're only looking for namespaces.
335          if (NamespaceNameOnly && !isa<NamespaceDecl>(*I))
336            continue;
337
338          // We found something.  Look for anything else in our scope
339          // with this same name and in an acceptable identifier
340          // namespace, so that we can construct an overload set if we
341          // need to.
342          IdentifierResolver::iterator LastI = I;
343          for (++LastI; LastI != IEnd; ++LastI) {
344            if (!(*LastI)->isInIdentifierNamespace(NS) ||
345                !S->isDeclScope(*LastI))
346              break;
347          }
348          return MaybeConstructOverloadSet(Context, I, LastI);
349        }
350      }
351
352      // If there is an entity associated with this scope, it's a
353      // DeclContext. We might need to perform qualified lookup into
354      // it.
355      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
356      while (Ctx && Ctx->isFunctionOrMethod())
357        Ctx = Ctx->getParent();
358      while (Ctx && (Ctx->isNamespace() || Ctx->isRecord())) {
359        // Look for declarations of this name in this scope.
360        DeclContext::lookup_const_iterator I, E;
361        for (llvm::tie(I, E) = Ctx->lookup(Name); I != E; ++I) {
362          // FIXME: Cache this result in the IdResolver
363          if ((*I)->isInIdentifierNamespace(NS)) {
364            if (NamespaceNameOnly && !isa<NamespaceDecl>(*I))
365              continue;
366            return MaybeConstructOverloadSet(Context, I, E);
367          }
368        }
369
370        if (!LookInParent && !Ctx->isTransparentContext())
371          return 0;
372
373        Ctx = Ctx->getParent();
374      }
375    }
376  }
377
378  // If we didn't find a use of this identifier, and if the identifier
379  // corresponds to a compiler builtin, create the decl object for the builtin
380  // now, injecting it into translation unit scope, and return it.
381  if (NS & Decl::IDNS_Ordinary) {
382    IdentifierInfo *II = Name.getAsIdentifierInfo();
383    if (enableLazyBuiltinCreation && II &&
384        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
385      // If this is a builtin on this (or all) targets, create the decl.
386      if (unsigned BuiltinID = II->getBuiltinID())
387        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
388    }
389    if (getLangOptions().ObjC1 && II) {
390      // @interface and @compatibility_alias introduce typedef-like names.
391      // Unlike typedef's, they can only be introduced at file-scope (and are
392      // therefore not scoped decls). They can, however, be shadowed by
393      // other names in IDNS_Ordinary.
394      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
395      if (IDI != ObjCInterfaceDecls.end())
396        return IDI->second;
397      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
398      if (I != ObjCAliasDecls.end())
399        return I->second->getClassInterface();
400    }
401  }
402  return 0;
403}
404
405void Sema::InitBuiltinVaListType() {
406  if (!Context.getBuiltinVaListType().isNull())
407    return;
408
409  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
410  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
411  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
412  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
413}
414
415/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
416/// lazily create a decl for it.
417ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
418                                      Scope *S) {
419  Builtin::ID BID = (Builtin::ID)bid;
420
421  if (Context.BuiltinInfo.hasVAListUse(BID))
422    InitBuiltinVaListType();
423
424  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
425  FunctionDecl *New = FunctionDecl::Create(Context,
426                                           Context.getTranslationUnitDecl(),
427                                           SourceLocation(), II, R,
428                                           FunctionDecl::Extern, false, 0);
429
430  // Create Decl objects for each parameter, adding them to the
431  // FunctionDecl.
432  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
433    llvm::SmallVector<ParmVarDecl*, 16> Params;
434    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
435      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
436                                           FT->getArgType(i), VarDecl::None, 0,
437                                           0));
438    New->setParams(&Params[0], Params.size());
439  }
440
441
442
443  // TUScope is the translation-unit scope to insert this function into.
444  // FIXME: This is hideous. We need to teach PushOnScopeChains to
445  // relate Scopes to DeclContexts, and probably eliminate CurContext
446  // entirely, but we're not there yet.
447  DeclContext *SavedContext = CurContext;
448  CurContext = Context.getTranslationUnitDecl();
449  PushOnScopeChains(New, TUScope);
450  CurContext = SavedContext;
451  return New;
452}
453
454/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
455/// everything from the standard library is defined.
456NamespaceDecl *Sema::GetStdNamespace() {
457  if (!StdNamespace) {
458    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
459    DeclContext *Global = Context.getTranslationUnitDecl();
460    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
461                           0, Global, /*enableLazyBuiltinCreation=*/false);
462    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
463  }
464  return StdNamespace;
465}
466
467/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
468/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
469/// situation, merging decls or emitting diagnostics as appropriate.
470///
471TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
472  // Allow multiple definitions for ObjC built-in typedefs.
473  // FIXME: Verify the underlying types are equivalent!
474  if (getLangOptions().ObjC1) {
475    const IdentifierInfo *TypeID = New->getIdentifier();
476    switch (TypeID->getLength()) {
477    default: break;
478    case 2:
479      if (!TypeID->isStr("id"))
480        break;
481      Context.setObjCIdType(New);
482      return New;
483    case 5:
484      if (!TypeID->isStr("Class"))
485        break;
486      Context.setObjCClassType(New);
487      return New;
488    case 3:
489      if (!TypeID->isStr("SEL"))
490        break;
491      Context.setObjCSelType(New);
492      return New;
493    case 8:
494      if (!TypeID->isStr("Protocol"))
495        break;
496      Context.setObjCProtoType(New->getUnderlyingType());
497      return New;
498    }
499    // Fall through - the typedef name was not a builtin type.
500  }
501  // Verify the old decl was also a typedef.
502  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
503  if (!Old) {
504    Diag(New->getLocation(), diag::err_redefinition_different_kind)
505      << New->getDeclName();
506    Diag(OldD->getLocation(), diag::note_previous_definition);
507    return New;
508  }
509
510  // If the typedef types are not identical, reject them in all languages and
511  // with any extensions enabled.
512  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
513      Context.getCanonicalType(Old->getUnderlyingType()) !=
514      Context.getCanonicalType(New->getUnderlyingType())) {
515    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
516      << New->getUnderlyingType() << Old->getUnderlyingType();
517    Diag(Old->getLocation(), diag::note_previous_definition);
518    return New;
519  }
520
521  if (getLangOptions().Microsoft) return New;
522
523  // C++ [dcl.typedef]p2:
524  //   In a given non-class scope, a typedef specifier can be used to
525  //   redefine the name of any type declared in that scope to refer
526  //   to the type to which it already refers.
527  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
528    return New;
529
530  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
531  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
532  // *either* declaration is in a system header. The code below implements
533  // this adhoc compatibility rule. FIXME: The following code will not
534  // work properly when compiling ".i" files (containing preprocessed output).
535  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
536    SourceManager &SrcMgr = Context.getSourceManager();
537    if (SrcMgr.isInSystemHeader(Old->getLocation()))
538      return New;
539    if (SrcMgr.isInSystemHeader(New->getLocation()))
540      return New;
541  }
542
543  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
544  Diag(Old->getLocation(), diag::note_previous_definition);
545  return New;
546}
547
548/// DeclhasAttr - returns true if decl Declaration already has the target
549/// attribute.
550static bool DeclHasAttr(const Decl *decl, const Attr *target) {
551  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
552    if (attr->getKind() == target->getKind())
553      return true;
554
555  return false;
556}
557
558/// MergeAttributes - append attributes from the Old decl to the New one.
559static void MergeAttributes(Decl *New, Decl *Old) {
560  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
561
562  while (attr) {
563     tmp = attr;
564     attr = attr->getNext();
565
566    if (!DeclHasAttr(New, tmp)) {
567       tmp->setInherited(true);
568       New->addAttr(tmp);
569    } else {
570       tmp->setNext(0);
571       delete(tmp);
572    }
573  }
574
575  Old->invalidateAttrs();
576}
577
578/// MergeFunctionDecl - We just parsed a function 'New' from
579/// declarator D which has the same name and scope as a previous
580/// declaration 'Old'.  Figure out how to resolve this situation,
581/// merging decls or emitting diagnostics as appropriate.
582/// Redeclaration will be set true if this New is a redeclaration OldD.
583///
584/// In C++, New and Old must be declarations that are not
585/// overloaded. Use IsOverload to determine whether New and Old are
586/// overloaded, and to select the Old declaration that New should be
587/// merged with.
588FunctionDecl *
589Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
590  assert(!isa<OverloadedFunctionDecl>(OldD) &&
591         "Cannot merge with an overloaded function declaration");
592
593  Redeclaration = false;
594  // Verify the old decl was also a function.
595  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
596  if (!Old) {
597    Diag(New->getLocation(), diag::err_redefinition_different_kind)
598      << New->getDeclName();
599    Diag(OldD->getLocation(), diag::note_previous_definition);
600    return New;
601  }
602
603  // Determine whether the previous declaration was a definition,
604  // implicit declaration, or a declaration.
605  diag::kind PrevDiag;
606  if (Old->isThisDeclarationADefinition())
607    PrevDiag = diag::note_previous_definition;
608  else if (Old->isImplicit())
609    PrevDiag = diag::note_previous_implicit_declaration;
610  else
611    PrevDiag = diag::note_previous_declaration;
612
613  QualType OldQType = Context.getCanonicalType(Old->getType());
614  QualType NewQType = Context.getCanonicalType(New->getType());
615
616  if (getLangOptions().CPlusPlus) {
617    // (C++98 13.1p2):
618    //   Certain function declarations cannot be overloaded:
619    //     -- Function declarations that differ only in the return type
620    //        cannot be overloaded.
621    QualType OldReturnType
622      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
623    QualType NewReturnType
624      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
625    if (OldReturnType != NewReturnType) {
626      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
627      Diag(Old->getLocation(), PrevDiag);
628      Redeclaration = true;
629      return New;
630    }
631
632    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
633    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
634    if (OldMethod && NewMethod) {
635      //    -- Member function declarations with the same name and the
636      //       same parameter types cannot be overloaded if any of them
637      //       is a static member function declaration.
638      if (OldMethod->isStatic() || NewMethod->isStatic()) {
639        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
640        Diag(Old->getLocation(), PrevDiag);
641        return New;
642      }
643
644      // C++ [class.mem]p1:
645      //   [...] A member shall not be declared twice in the
646      //   member-specification, except that a nested class or member
647      //   class template can be declared and then later defined.
648      if (OldMethod->getLexicalDeclContext() ==
649            NewMethod->getLexicalDeclContext()) {
650        unsigned NewDiag;
651        if (isa<CXXConstructorDecl>(OldMethod))
652          NewDiag = diag::err_constructor_redeclared;
653        else if (isa<CXXDestructorDecl>(NewMethod))
654          NewDiag = diag::err_destructor_redeclared;
655        else if (isa<CXXConversionDecl>(NewMethod))
656          NewDiag = diag::err_conv_function_redeclared;
657        else
658          NewDiag = diag::err_member_redeclared;
659
660        Diag(New->getLocation(), NewDiag);
661        Diag(Old->getLocation(), PrevDiag);
662      }
663    }
664
665    // (C++98 8.3.5p3):
666    //   All declarations for a function shall agree exactly in both the
667    //   return type and the parameter-type-list.
668    if (OldQType == NewQType) {
669      // We have a redeclaration.
670      MergeAttributes(New, Old);
671      Redeclaration = true;
672      return MergeCXXFunctionDecl(New, Old);
673    }
674
675    // Fall through for conflicting redeclarations and redefinitions.
676  }
677
678  // C: Function types need to be compatible, not identical. This handles
679  // duplicate function decls like "void f(int); void f(enum X);" properly.
680  if (!getLangOptions().CPlusPlus &&
681      Context.typesAreCompatible(OldQType, NewQType)) {
682    MergeAttributes(New, Old);
683    Redeclaration = true;
684    return New;
685  }
686
687  // A function that has already been declared has been redeclared or defined
688  // with a different type- show appropriate diagnostic
689
690  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
691  // TODO: This is totally simplistic.  It should handle merging functions
692  // together etc, merging extern int X; int X; ...
693  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
694  Diag(Old->getLocation(), PrevDiag);
695  return New;
696}
697
698/// Predicate for C "tentative" external object definitions (C99 6.9.2).
699static bool isTentativeDefinition(VarDecl *VD) {
700  if (VD->isFileVarDecl())
701    return (!VD->getInit() &&
702            (VD->getStorageClass() == VarDecl::None ||
703             VD->getStorageClass() == VarDecl::Static));
704  return false;
705}
706
707/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
708/// when dealing with C "tentative" external object definitions (C99 6.9.2).
709void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
710  bool VDIsTentative = isTentativeDefinition(VD);
711  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
712
713  // FIXME: I don't think this will actually see all of the
714  // redefinitions. Can't we check this property on-the-fly?
715  for (IdentifierResolver::iterator
716       I = IdResolver.begin(VD->getIdentifier(),
717                            VD->getDeclContext(), false/*LookInParentCtx*/),
718       E = IdResolver.end(); I != E; ++I) {
719    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
720      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
721
722      // Handle the following case:
723      //   int a[10];
724      //   int a[];   - the code below makes sure we set the correct type.
725      //   int a[11]; - this is an error, size isn't 10.
726      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
727          OldDecl->getType()->isConstantArrayType())
728        VD->setType(OldDecl->getType());
729
730      // Check for "tentative" definitions. We can't accomplish this in
731      // MergeVarDecl since the initializer hasn't been attached.
732      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
733        continue;
734
735      // Handle __private_extern__ just like extern.
736      if (OldDecl->getStorageClass() != VarDecl::Extern &&
737          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
738          VD->getStorageClass() != VarDecl::Extern &&
739          VD->getStorageClass() != VarDecl::PrivateExtern) {
740        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
741        Diag(OldDecl->getLocation(), diag::note_previous_definition);
742      }
743    }
744  }
745}
746
747/// MergeVarDecl - We just parsed a variable 'New' which has the same name
748/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
749/// situation, merging decls or emitting diagnostics as appropriate.
750///
751/// Tentative definition rules (C99 6.9.2p2) are checked by
752/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
753/// definitions here, since the initializer hasn't been attached.
754///
755VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
756  // Verify the old decl was also a variable.
757  VarDecl *Old = dyn_cast<VarDecl>(OldD);
758  if (!Old) {
759    Diag(New->getLocation(), diag::err_redefinition_different_kind)
760      << New->getDeclName();
761    Diag(OldD->getLocation(), diag::note_previous_definition);
762    return New;
763  }
764
765  MergeAttributes(New, Old);
766
767  // Verify the types match.
768  QualType OldCType = Context.getCanonicalType(Old->getType());
769  QualType NewCType = Context.getCanonicalType(New->getType());
770  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
771    Diag(New->getLocation(), diag::err_redefinition_different_type)
772      << New->getDeclName();
773    Diag(Old->getLocation(), diag::note_previous_definition);
774    return New;
775  }
776  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
777  if (New->getStorageClass() == VarDecl::Static &&
778      (Old->getStorageClass() == VarDecl::None ||
779       Old->getStorageClass() == VarDecl::Extern)) {
780    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
781    Diag(Old->getLocation(), diag::note_previous_definition);
782    return New;
783  }
784  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
785  if (New->getStorageClass() != VarDecl::Static &&
786      Old->getStorageClass() == VarDecl::Static) {
787    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
788    Diag(Old->getLocation(), diag::note_previous_definition);
789    return New;
790  }
791  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
792  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
793    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
794    Diag(Old->getLocation(), diag::note_previous_definition);
795  }
796  return New;
797}
798
799/// CheckParmsForFunctionDef - Check that the parameters of the given
800/// function are appropriate for the definition of a function. This
801/// takes care of any checks that cannot be performed on the
802/// declaration itself, e.g., that the types of each of the function
803/// parameters are complete.
804bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
805  bool HasInvalidParm = false;
806  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
807    ParmVarDecl *Param = FD->getParamDecl(p);
808
809    // C99 6.7.5.3p4: the parameters in a parameter type list in a
810    // function declarator that is part of a function definition of
811    // that function shall not have incomplete type.
812    if (Param->getType()->isIncompleteType() &&
813        !Param->isInvalidDecl()) {
814      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
815        << Param->getType();
816      Param->setInvalidDecl();
817      HasInvalidParm = true;
818    }
819
820    // C99 6.9.1p5: If the declarator includes a parameter type list, the
821    // declaration of each parameter shall include an identifier.
822    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
823      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
824  }
825
826  return HasInvalidParm;
827}
828
829/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
830/// no declarator (e.g. "struct foo;") is parsed.
831Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
832  // FIXME: Isn't that more of a parser diagnostic than a sema diagnostic?
833  if (!DS.isMissingDeclaratorOk()) {
834    // FIXME: This diagnostic is emitted even when various previous
835    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
836    // DeclSpec has no means of communicating this information, and the
837    // responsible parser functions are quite far apart.
838    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
839      << DS.getSourceRange();
840    return 0;
841  }
842
843  TagDecl *Tag
844    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
845  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
846    if (!Record->getDeclName() && Record->isDefinition() &&
847        !Record->isInvalidDecl())
848      return BuildAnonymousStructOrUnion(S, DS, Record);
849  }
850
851  return Tag;
852}
853
854/// InjectAnonymousStructOrUnionMembers - Inject the members of the
855/// anonymous struct or union AnonRecord into the owning context Owner
856/// and scope S. This routine will be invoked just after we realize
857/// that an unnamed union or struct is actually an anonymous union or
858/// struct, e.g.,
859///
860/// @code
861/// union {
862///   int i;
863///   float f;
864/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
865///    // f into the surrounding scope.x
866/// @endcode
867///
868/// This routine is recursive, injecting the names of nested anonymous
869/// structs/unions into the owning context and scope as well.
870bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
871                                               RecordDecl *AnonRecord) {
872  bool Invalid = false;
873  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
874                               FEnd = AnonRecord->field_end();
875       F != FEnd; ++F) {
876    if ((*F)->getDeclName()) {
877      Decl *PrevDecl = LookupDecl((*F)->getDeclName(), Decl::IDNS_Ordinary,
878                                  S, Owner, false, false, false);
879      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
880        // C++ [class.union]p2:
881        //   The names of the members of an anonymous union shall be
882        //   distinct from the names of any other entity in the
883        //   scope in which the anonymous union is declared.
884        unsigned diagKind
885          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
886                                 : diag::err_anonymous_struct_member_redecl;
887        Diag((*F)->getLocation(), diagKind)
888          << (*F)->getDeclName();
889        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
890        Invalid = true;
891      } else {
892        // C++ [class.union]p2:
893        //   For the purpose of name lookup, after the anonymous union
894        //   definition, the members of the anonymous union are
895        //   considered to have been defined in the scope in which the
896        //   anonymous union is declared.
897        Owner->insert(Context, *F);
898        S->AddDecl(*F);
899        IdResolver.AddDecl(*F);
900      }
901    } else if (const RecordType *InnerRecordType
902                 = (*F)->getType()->getAsRecordType()) {
903      RecordDecl *InnerRecord = InnerRecordType->getDecl();
904      if (InnerRecord->isAnonymousStructOrUnion())
905        Invalid = Invalid ||
906          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
907    }
908  }
909
910  return Invalid;
911}
912
913/// ActOnAnonymousStructOrUnion - Handle the declaration of an
914/// anonymous structure or union. Anonymous unions are a C++ feature
915/// (C++ [class.union]) and a GNU C extension; anonymous structures
916/// are a GNU C and GNU C++ extension.
917Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
918                                                RecordDecl *Record) {
919  DeclContext *Owner = Record->getDeclContext();
920
921  // Diagnose whether this anonymous struct/union is an extension.
922  if (Record->isUnion() && !getLangOptions().CPlusPlus)
923    Diag(Record->getLocation(), diag::ext_anonymous_union);
924  else if (!Record->isUnion())
925    Diag(Record->getLocation(), diag::ext_anonymous_struct);
926
927  // C and C++ require different kinds of checks for anonymous
928  // structs/unions.
929  bool Invalid = false;
930  if (getLangOptions().CPlusPlus) {
931    const char* PrevSpec = 0;
932    // C++ [class.union]p3:
933    //   Anonymous unions declared in a named namespace or in the
934    //   global namespace shall be declared static.
935    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
936        (isa<TranslationUnitDecl>(Owner) ||
937         (isa<NamespaceDecl>(Owner) &&
938          cast<NamespaceDecl>(Owner)->getDeclName()))) {
939      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
940      Invalid = true;
941
942      // Recover by adding 'static'.
943      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
944    }
945    // C++ [class.union]p3:
946    //   A storage class is not allowed in a declaration of an
947    //   anonymous union in a class scope.
948    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
949             isa<RecordDecl>(Owner)) {
950      Diag(DS.getStorageClassSpecLoc(),
951           diag::err_anonymous_union_with_storage_spec);
952      Invalid = true;
953
954      // Recover by removing the storage specifier.
955      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
956                             PrevSpec);
957    }
958
959    // C++ [class.union]p2:
960    //   The member-specification of an anonymous union shall only
961    //   define non-static data members. [Note: nested types and
962    //   functions cannot be declared within an anonymous union. ]
963    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
964                                 MemEnd = Record->decls_end();
965         Mem != MemEnd; ++Mem) {
966      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
967        // C++ [class.union]p3:
968        //   An anonymous union shall not have private or protected
969        //   members (clause 11).
970        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
971          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
972            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
973          Invalid = true;
974        }
975      } else if ((*Mem)->isImplicit()) {
976        // Any implicit members are fine.
977      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
978        if (!MemRecord->isAnonymousStructOrUnion() &&
979            MemRecord->getDeclName()) {
980          // This is a nested type declaration.
981          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
982            << (int)Record->isUnion();
983          Invalid = true;
984        }
985      } else {
986        // We have something that isn't a non-static data
987        // member. Complain about it.
988        unsigned DK = diag::err_anonymous_record_bad_member;
989        if (isa<TypeDecl>(*Mem))
990          DK = diag::err_anonymous_record_with_type;
991        else if (isa<FunctionDecl>(*Mem))
992          DK = diag::err_anonymous_record_with_function;
993        else if (isa<VarDecl>(*Mem))
994          DK = diag::err_anonymous_record_with_static;
995        Diag((*Mem)->getLocation(), DK)
996            << (int)Record->isUnion();
997          Invalid = true;
998      }
999    }
1000  } else {
1001    // FIXME: Check GNU C semantics
1002  }
1003
1004  if (!Record->isUnion() && !Owner->isRecord()) {
1005    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member);
1006    Invalid = true;
1007  }
1008
1009  // Create a declaration for this anonymous struct/union.
1010  ScopedDecl *Anon = 0;
1011  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1012    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1013                             /*IdentifierInfo=*/0,
1014                             Context.getTypeDeclType(Record),
1015                             /*BitWidth=*/0, /*Mutable=*/false,
1016                             /*PrevDecl=*/0);
1017    Anon->setAccess(AS_public);
1018    if (getLangOptions().CPlusPlus)
1019      FieldCollector->Add(cast<FieldDecl>(Anon));
1020  } else {
1021    VarDecl::StorageClass SC;
1022    switch (DS.getStorageClassSpec()) {
1023    default: assert(0 && "Unknown storage class!");
1024    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1025    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1026    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1027    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1028    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1029    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1030    case DeclSpec::SCS_mutable:
1031      // mutable can only appear on non-static class members, so it's always
1032      // an error here
1033      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1034      Invalid = true;
1035      SC = VarDecl::None;
1036      break;
1037    }
1038
1039    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1040                           /*IdentifierInfo=*/0,
1041                           Context.getTypeDeclType(Record),
1042                           SC, /*FIXME:LastDeclarator=*/0,
1043                           DS.getSourceRange().getBegin());
1044  }
1045  Anon->setImplicit();
1046
1047  // Add the anonymous struct/union object to the current
1048  // context. We'll be referencing this object when we refer to one of
1049  // its members.
1050  Owner->addDecl(Context, Anon);
1051
1052  // Inject the members of the anonymous struct/union into the owning
1053  // context and into the identifier resolver chain for name lookup
1054  // purposes.
1055  Invalid = Invalid || InjectAnonymousStructOrUnionMembers(S, Owner, Record);
1056
1057  // Mark this as an anonymous struct/union type. Note that we do not
1058  // do this until after we have already checked and injected the
1059  // members of this anonymous struct/union type, because otherwise
1060  // the members could be injected twice: once by DeclContext when it
1061  // builds its lookup table, and once by
1062  // InjectAnonymousStructOrUnionMembers.
1063  Record->setAnonymousStructOrUnion(true);
1064
1065  if (Invalid)
1066    Anon->setInvalidDecl();
1067
1068  return Anon;
1069}
1070
1071bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
1072  // Get the type before calling CheckSingleAssignmentConstraints(), since
1073  // it can promote the expression.
1074  QualType InitType = Init->getType();
1075
1076  if (getLangOptions().CPlusPlus)
1077    return PerformCopyInitialization(Init, DeclType, "initializing");
1078
1079  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1080  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1081                                  InitType, Init, "initializing");
1082}
1083
1084bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1085  const ArrayType *AT = Context.getAsArrayType(DeclT);
1086
1087  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1088    // C99 6.7.8p14. We have an array of character type with unknown size
1089    // being initialized to a string literal.
1090    llvm::APSInt ConstVal(32);
1091    ConstVal = strLiteral->getByteLength() + 1;
1092    // Return a new array type (C99 6.7.8p22).
1093    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1094                                         ArrayType::Normal, 0);
1095  } else {
1096    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1097    // C99 6.7.8p14. We have an array of character type with known size.
1098    // FIXME: Avoid truncation for 64-bit length strings.
1099    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1100      Diag(strLiteral->getSourceRange().getBegin(),
1101           diag::warn_initializer_string_for_char_array_too_long)
1102        << strLiteral->getSourceRange();
1103  }
1104  // Set type from "char *" to "constant array of char".
1105  strLiteral->setType(DeclT);
1106  // For now, we always return false (meaning success).
1107  return false;
1108}
1109
1110StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1111  const ArrayType *AT = Context.getAsArrayType(DeclType);
1112  if (AT && AT->getElementType()->isCharType()) {
1113    return dyn_cast<StringLiteral>(Init);
1114  }
1115  return 0;
1116}
1117
1118bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1119                                 SourceLocation InitLoc,
1120                                 DeclarationName InitEntity) {
1121  if (DeclType->isDependentType() || Init->isTypeDependent())
1122    return false;
1123
1124  // C++ [dcl.init.ref]p1:
1125  //   A variable declared to be a T&, that is "reference to type T"
1126  //   (8.3.2), shall be initialized by an object, or function, of
1127  //   type T or by an object that can be converted into a T.
1128  if (DeclType->isReferenceType())
1129    return CheckReferenceInit(Init, DeclType);
1130
1131  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1132  // of unknown size ("[]") or an object type that is not a variable array type.
1133  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1134    return Diag(InitLoc,  diag::err_variable_object_no_init)
1135      << VAT->getSizeExpr()->getSourceRange();
1136
1137  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1138  if (!InitList) {
1139    // FIXME: Handle wide strings
1140    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1141      return CheckStringLiteralInit(strLiteral, DeclType);
1142
1143    // C++ [dcl.init]p14:
1144    //   -- If the destination type is a (possibly cv-qualified) class
1145    //      type:
1146    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1147      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1148      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1149
1150      //   -- If the initialization is direct-initialization, or if it is
1151      //      copy-initialization where the cv-unqualified version of the
1152      //      source type is the same class as, or a derived class of, the
1153      //      class of the destination, constructors are considered.
1154      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1155          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1156        CXXConstructorDecl *Constructor
1157          = PerformInitializationByConstructor(DeclType, &Init, 1,
1158                                               InitLoc, Init->getSourceRange(),
1159                                               InitEntity, IK_Copy);
1160        return Constructor == 0;
1161      }
1162
1163      //   -- Otherwise (i.e., for the remaining copy-initialization
1164      //      cases), user-defined conversion sequences that can
1165      //      convert from the source type to the destination type or
1166      //      (when a conversion function is used) to a derived class
1167      //      thereof are enumerated as described in 13.3.1.4, and the
1168      //      best one is chosen through overload resolution
1169      //      (13.3). If the conversion cannot be done or is
1170      //      ambiguous, the initialization is ill-formed. The
1171      //      function selected is called with the initializer
1172      //      expression as its argument; if the function is a
1173      //      constructor, the call initializes a temporary of the
1174      //      destination type.
1175      // FIXME: We're pretending to do copy elision here; return to
1176      // this when we have ASTs for such things.
1177      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1178        return false;
1179
1180      if (InitEntity)
1181        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1182          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1183          << Init->getType() << Init->getSourceRange();
1184      else
1185        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1186          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1187          << Init->getType() << Init->getSourceRange();
1188    }
1189
1190    // C99 6.7.8p16.
1191    if (DeclType->isArrayType())
1192      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1193        << Init->getSourceRange();
1194
1195    return CheckSingleInitializer(Init, DeclType);
1196  } else if (getLangOptions().CPlusPlus) {
1197    // C++ [dcl.init]p14:
1198    //   [...] If the class is an aggregate (8.5.1), and the initializer
1199    //   is a brace-enclosed list, see 8.5.1.
1200    //
1201    // Note: 8.5.1 is handled below; here, we diagnose the case where
1202    // we have an initializer list and a destination type that is not
1203    // an aggregate.
1204    // FIXME: In C++0x, this is yet another form of initialization.
1205    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1206      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1207      if (!ClassDecl->isAggregate())
1208        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1209           << DeclType << Init->getSourceRange();
1210    }
1211  }
1212
1213  InitListChecker CheckInitList(this, InitList, DeclType);
1214  return CheckInitList.HadError();
1215}
1216
1217/// GetNameForDeclarator - Determine the full declaration name for the
1218/// given Declarator.
1219DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1220  switch (D.getKind()) {
1221  case Declarator::DK_Abstract:
1222    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1223    return DeclarationName();
1224
1225  case Declarator::DK_Normal:
1226    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1227    return DeclarationName(D.getIdentifier());
1228
1229  case Declarator::DK_Constructor: {
1230    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1231    Ty = Context.getCanonicalType(Ty);
1232    return Context.DeclarationNames.getCXXConstructorName(Ty);
1233  }
1234
1235  case Declarator::DK_Destructor: {
1236    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1237    Ty = Context.getCanonicalType(Ty);
1238    return Context.DeclarationNames.getCXXDestructorName(Ty);
1239  }
1240
1241  case Declarator::DK_Conversion: {
1242    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1243    Ty = Context.getCanonicalType(Ty);
1244    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1245  }
1246
1247  case Declarator::DK_Operator:
1248    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1249    return Context.DeclarationNames.getCXXOperatorName(
1250                                                D.getOverloadedOperator());
1251  }
1252
1253  assert(false && "Unknown name kind");
1254  return DeclarationName();
1255}
1256
1257/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1258/// functions Declaration and Definition are "nearly" matching. This
1259/// heuristic is used to improve diagnostics in the case where an
1260/// out-of-line member function definition doesn't match any
1261/// declaration within the class.
1262static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1263                                           FunctionDecl *Declaration,
1264                                           FunctionDecl *Definition) {
1265  if (Declaration->param_size() != Definition->param_size())
1266    return false;
1267  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1268    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1269    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1270
1271    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1272    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1273    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1274      return false;
1275  }
1276
1277  return true;
1278}
1279
1280Sema::DeclTy *
1281Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1282                      bool IsFunctionDefinition) {
1283  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
1284  DeclarationName Name = GetNameForDeclarator(D);
1285
1286  // All of these full declarators require an identifier.  If it doesn't have
1287  // one, the ParsedFreeStandingDeclSpec action should be used.
1288  if (!Name) {
1289    if (!D.getInvalidType())  // Reject this if we think it is valid.
1290      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1291           diag::err_declarator_need_ident)
1292        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1293    return 0;
1294  }
1295
1296  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1297  // we find one that is.
1298  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1299        (S->getFlags() & Scope::TemplateParamScope) != 0)
1300    S = S->getParent();
1301
1302  DeclContext *DC;
1303  Decl *PrevDecl;
1304  ScopedDecl *New;
1305  bool InvalidDecl = false;
1306
1307  // See if this is a redefinition of a variable in the same scope.
1308  if (!D.getCXXScopeSpec().isSet()) {
1309    DC = CurContext;
1310    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1311  } else { // Something like "int foo::x;"
1312    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1313    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1314
1315    // C++ 7.3.1.2p2:
1316    // Members (including explicit specializations of templates) of a named
1317    // namespace can also be defined outside that namespace by explicit
1318    // qualification of the name being defined, provided that the entity being
1319    // defined was already declared in the namespace and the definition appears
1320    // after the point of declaration in a namespace that encloses the
1321    // declarations namespace.
1322    //
1323    // Note that we only check the context at this point. We don't yet
1324    // have enough information to make sure that PrevDecl is actually
1325    // the declaration we want to match. For example, given:
1326    //
1327    //   class X {
1328    //     void f();
1329    //     void f(float);
1330    //   };
1331    //
1332    //   void X::f(int) { } // ill-formed
1333    //
1334    // In this case, PrevDecl will point to the overload set
1335    // containing the two f's declared in X, but neither of them
1336    // matches.
1337    if (!CurContext->Encloses(DC)) {
1338      // The qualifying scope doesn't enclose the original declaration.
1339      // Emit diagnostic based on current scope.
1340      SourceLocation L = D.getIdentifierLoc();
1341      SourceRange R = D.getCXXScopeSpec().getRange();
1342      if (isa<FunctionDecl>(CurContext)) {
1343        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1344      } else {
1345        Diag(L, diag::err_invalid_declarator_scope)
1346          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1347      }
1348      InvalidDecl = true;
1349    }
1350  }
1351
1352  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1353    // Maybe we will complain about the shadowed template parameter.
1354    InvalidDecl = InvalidDecl
1355      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1356    // Just pretend that we didn't see the previous declaration.
1357    PrevDecl = 0;
1358  }
1359
1360  // In C++, the previous declaration we find might be a tag type
1361  // (class or enum). In this case, the new declaration will hide the
1362  // tag type.
1363  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1364    PrevDecl = 0;
1365
1366  QualType R = GetTypeForDeclarator(D, S);
1367  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1368
1369  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1370    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1371    if (D.getCXXScopeSpec().isSet()) {
1372      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1373        << D.getCXXScopeSpec().getRange();
1374      InvalidDecl = true;
1375      // Pretend we didn't see the scope specifier.
1376      DC = 0;
1377    }
1378
1379    // Check that there are no default arguments (C++ only).
1380    if (getLangOptions().CPlusPlus)
1381      CheckExtraCXXDefaultArguments(D);
1382
1383    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1384    if (!NewTD) return 0;
1385
1386    // Handle attributes prior to checking for duplicates in MergeVarDecl
1387    ProcessDeclAttributes(NewTD, D);
1388    // Merge the decl with the existing one if appropriate. If the decl is
1389    // in an outer scope, it isn't the same thing.
1390    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1391      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1392      if (NewTD == 0) return 0;
1393    }
1394    New = NewTD;
1395    if (S->getFnParent() == 0) {
1396      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1397      // then it shall have block scope.
1398      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1399        if (NewTD->getUnderlyingType()->isVariableArrayType())
1400          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1401        else
1402          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1403
1404        InvalidDecl = true;
1405      }
1406    }
1407  } else if (R.getTypePtr()->isFunctionType()) {
1408    FunctionDecl::StorageClass SC = FunctionDecl::None;
1409    switch (D.getDeclSpec().getStorageClassSpec()) {
1410      default: assert(0 && "Unknown storage class!");
1411      case DeclSpec::SCS_auto:
1412      case DeclSpec::SCS_register:
1413      case DeclSpec::SCS_mutable:
1414        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1415        InvalidDecl = true;
1416        break;
1417      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1418      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1419      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1420      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1421    }
1422
1423    bool isInline = D.getDeclSpec().isInlineSpecified();
1424    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1425    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1426
1427    FunctionDecl *NewFD;
1428    if (D.getKind() == Declarator::DK_Constructor) {
1429      // This is a C++ constructor declaration.
1430      assert(DC->isRecord() &&
1431             "Constructors can only be declared in a member context");
1432
1433      InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1434
1435      // Create the new declaration
1436      NewFD = CXXConstructorDecl::Create(Context,
1437                                         cast<CXXRecordDecl>(DC),
1438                                         D.getIdentifierLoc(), Name, R,
1439                                         isExplicit, isInline,
1440                                         /*isImplicitlyDeclared=*/false);
1441
1442      if (InvalidDecl)
1443        NewFD->setInvalidDecl();
1444    } else if (D.getKind() == Declarator::DK_Destructor) {
1445      // This is a C++ destructor declaration.
1446      if (DC->isRecord()) {
1447        InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1448
1449        NewFD = CXXDestructorDecl::Create(Context,
1450                                          cast<CXXRecordDecl>(DC),
1451                                          D.getIdentifierLoc(), Name, R,
1452                                          isInline,
1453                                          /*isImplicitlyDeclared=*/false);
1454
1455        if (InvalidDecl)
1456          NewFD->setInvalidDecl();
1457      } else {
1458        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1459
1460        // Create a FunctionDecl to satisfy the function definition parsing
1461        // code path.
1462        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1463                                     Name, R, SC, isInline, LastDeclarator,
1464                                     // FIXME: Move to DeclGroup...
1465                                   D.getDeclSpec().getSourceRange().getBegin());
1466        InvalidDecl = true;
1467        NewFD->setInvalidDecl();
1468      }
1469    } else if (D.getKind() == Declarator::DK_Conversion) {
1470      if (!DC->isRecord()) {
1471        Diag(D.getIdentifierLoc(),
1472             diag::err_conv_function_not_member);
1473        return 0;
1474      } else {
1475        InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1476
1477        NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1478                                          D.getIdentifierLoc(), Name, R,
1479                                          isInline, isExplicit);
1480
1481        if (InvalidDecl)
1482          NewFD->setInvalidDecl();
1483      }
1484    } else if (DC->isRecord()) {
1485      // This is a C++ method declaration.
1486      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1487                                    D.getIdentifierLoc(), Name, R,
1488                                    (SC == FunctionDecl::Static), isInline,
1489                                    LastDeclarator);
1490    } else {
1491      NewFD = FunctionDecl::Create(Context, DC,
1492                                   D.getIdentifierLoc(),
1493                                   Name, R, SC, isInline, LastDeclarator,
1494                                   // FIXME: Move to DeclGroup...
1495                                   D.getDeclSpec().getSourceRange().getBegin());
1496    }
1497
1498    // Set the lexical context. If the declarator has a C++
1499    // scope specifier, the lexical context will be different
1500    // from the semantic context.
1501    NewFD->setLexicalDeclContext(CurContext);
1502
1503    // Handle GNU asm-label extension (encoded as an attribute).
1504    if (Expr *E = (Expr*) D.getAsmLabel()) {
1505      // The parser guarantees this is a string.
1506      StringLiteral *SE = cast<StringLiteral>(E);
1507      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1508                                                  SE->getByteLength())));
1509    }
1510
1511    // Copy the parameter declarations from the declarator D to
1512    // the function declaration NewFD, if they are available.
1513    if (D.getNumTypeObjects() > 0) {
1514      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1515
1516      // Create Decl objects for each parameter, adding them to the
1517      // FunctionDecl.
1518      llvm::SmallVector<ParmVarDecl*, 16> Params;
1519
1520      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1521      // function that takes no arguments, not a function that takes a
1522      // single void argument.
1523      // We let through "const void" here because Sema::GetTypeForDeclarator
1524      // already checks for that case.
1525      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1526          FTI.ArgInfo[0].Param &&
1527          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1528        // empty arg list, don't push any params.
1529        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1530
1531        // In C++, the empty parameter-type-list must be spelled "void"; a
1532        // typedef of void is not permitted.
1533        if (getLangOptions().CPlusPlus &&
1534            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1535          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1536        }
1537      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1538        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1539          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1540      }
1541
1542      NewFD->setParams(&Params[0], Params.size());
1543    } else if (R->getAsTypedefType()) {
1544      // When we're declaring a function with a typedef, as in the
1545      // following example, we'll need to synthesize (unnamed)
1546      // parameters for use in the declaration.
1547      //
1548      // @code
1549      // typedef void fn(int);
1550      // fn f;
1551      // @endcode
1552      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1553      if (!FT) {
1554        // This is a typedef of a function with no prototype, so we
1555        // don't need to do anything.
1556      } else if ((FT->getNumArgs() == 0) ||
1557          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1558           FT->getArgType(0)->isVoidType())) {
1559        // This is a zero-argument function. We don't need to do anything.
1560      } else {
1561        // Synthesize a parameter for each argument type.
1562        llvm::SmallVector<ParmVarDecl*, 16> Params;
1563        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1564             ArgType != FT->arg_type_end(); ++ArgType) {
1565          Params.push_back(ParmVarDecl::Create(Context, DC,
1566                                               SourceLocation(), 0,
1567                                               *ArgType, VarDecl::None,
1568                                               0, 0));
1569        }
1570
1571        NewFD->setParams(&Params[0], Params.size());
1572      }
1573    }
1574
1575    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1576      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1577    else if (isa<CXXDestructorDecl>(NewFD)) {
1578      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1579      Record->setUserDeclaredDestructor(true);
1580      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1581      // user-defined destructor.
1582      Record->setPOD(false);
1583    } else if (CXXConversionDecl *Conversion =
1584               dyn_cast<CXXConversionDecl>(NewFD))
1585      ActOnConversionDeclarator(Conversion);
1586
1587    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1588    if (NewFD->isOverloadedOperator() &&
1589        CheckOverloadedOperatorDeclaration(NewFD))
1590      NewFD->setInvalidDecl();
1591
1592    // Merge the decl with the existing one if appropriate. Since C functions
1593    // are in a flat namespace, make sure we consider decls in outer scopes.
1594    if (PrevDecl &&
1595        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1596      bool Redeclaration = false;
1597
1598      // If C++, determine whether NewFD is an overload of PrevDecl or
1599      // a declaration that requires merging. If it's an overload,
1600      // there's no more work to do here; we'll just add the new
1601      // function to the scope.
1602      OverloadedFunctionDecl::function_iterator MatchedDecl;
1603      if (!getLangOptions().CPlusPlus ||
1604          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1605        Decl *OldDecl = PrevDecl;
1606
1607        // If PrevDecl was an overloaded function, extract the
1608        // FunctionDecl that matched.
1609        if (isa<OverloadedFunctionDecl>(PrevDecl))
1610          OldDecl = *MatchedDecl;
1611
1612        // NewFD and PrevDecl represent declarations that need to be
1613        // merged.
1614        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1615
1616        if (NewFD == 0) return 0;
1617        if (Redeclaration) {
1618          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1619
1620          // An out-of-line member function declaration must also be a
1621          // definition (C++ [dcl.meaning]p1).
1622          if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1623              !InvalidDecl) {
1624            Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1625              << D.getCXXScopeSpec().getRange();
1626            NewFD->setInvalidDecl();
1627          }
1628        }
1629      }
1630
1631      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1632        // The user tried to provide an out-of-line definition for a
1633        // member function, but there was no such member function
1634        // declared (C++ [class.mfct]p2). For example:
1635        //
1636        // class X {
1637        //   void f() const;
1638        // };
1639        //
1640        // void X::f() { } // ill-formed
1641        //
1642        // Complain about this problem, and attempt to suggest close
1643        // matches (e.g., those that differ only in cv-qualifiers and
1644        // whether the parameter types are references).
1645        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1646          << cast<CXXRecordDecl>(DC)->getDeclName()
1647          << D.getCXXScopeSpec().getRange();
1648        InvalidDecl = true;
1649
1650        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1651        if (!PrevDecl) {
1652          // Nothing to suggest.
1653        } else if (OverloadedFunctionDecl *Ovl
1654                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1655          for (OverloadedFunctionDecl::function_iterator
1656                 Func = Ovl->function_begin(),
1657                 FuncEnd = Ovl->function_end();
1658               Func != FuncEnd; ++Func) {
1659            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1660              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1661
1662          }
1663        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1664          // Suggest this no matter how mismatched it is; it's the only
1665          // thing we have.
1666          unsigned diag;
1667          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1668            diag = diag::note_member_def_close_match;
1669          else if (Method->getBody())
1670            diag = diag::note_previous_definition;
1671          else
1672            diag = diag::note_previous_declaration;
1673          Diag(Method->getLocation(), diag);
1674        }
1675
1676        PrevDecl = 0;
1677      }
1678    }
1679    // Handle attributes. We need to have merged decls when handling attributes
1680    // (for example to check for conflicts, etc).
1681    ProcessDeclAttributes(NewFD, D);
1682    New = NewFD;
1683
1684    if (getLangOptions().CPlusPlus) {
1685      // In C++, check default arguments now that we have merged decls.
1686      CheckCXXDefaultArguments(NewFD);
1687
1688      // An out-of-line member function declaration must also be a
1689      // definition (C++ [dcl.meaning]p1).
1690      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1691        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1692          << D.getCXXScopeSpec().getRange();
1693        InvalidDecl = true;
1694      }
1695    }
1696  } else {
1697    // Check that there are no default arguments (C++ only).
1698    if (getLangOptions().CPlusPlus)
1699      CheckExtraCXXDefaultArguments(D);
1700
1701    if (R.getTypePtr()->isObjCInterfaceType()) {
1702      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1703        << D.getIdentifier();
1704      InvalidDecl = true;
1705    }
1706
1707    VarDecl *NewVD;
1708    VarDecl::StorageClass SC;
1709    switch (D.getDeclSpec().getStorageClassSpec()) {
1710    default: assert(0 && "Unknown storage class!");
1711    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1712    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1713    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1714    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1715    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1716    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1717    case DeclSpec::SCS_mutable:
1718      // mutable can only appear on non-static class members, so it's always
1719      // an error here
1720      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1721      InvalidDecl = true;
1722      SC = VarDecl::None;
1723      break;
1724    }
1725
1726    IdentifierInfo *II = Name.getAsIdentifierInfo();
1727    if (!II) {
1728      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1729       << Name.getAsString();
1730      return 0;
1731    }
1732
1733    if (DC->isRecord()) {
1734      // This is a static data member for a C++ class.
1735      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1736                                      D.getIdentifierLoc(), II,
1737                                      R, LastDeclarator);
1738    } else {
1739      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1740      if (S->getFnParent() == 0) {
1741        // C99 6.9p2: The storage-class specifiers auto and register shall not
1742        // appear in the declaration specifiers in an external declaration.
1743        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1744          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1745          InvalidDecl = true;
1746        }
1747      }
1748      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1749                              II, R, SC, LastDeclarator,
1750                              // FIXME: Move to DeclGroup...
1751                              D.getDeclSpec().getSourceRange().getBegin());
1752      NewVD->setThreadSpecified(ThreadSpecified);
1753    }
1754    // Handle attributes prior to checking for duplicates in MergeVarDecl
1755    ProcessDeclAttributes(NewVD, D);
1756
1757    // Handle GNU asm-label extension (encoded as an attribute).
1758    if (Expr *E = (Expr*) D.getAsmLabel()) {
1759      // The parser guarantees this is a string.
1760      StringLiteral *SE = cast<StringLiteral>(E);
1761      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1762                                                  SE->getByteLength())));
1763    }
1764
1765    // Emit an error if an address space was applied to decl with local storage.
1766    // This includes arrays of objects with address space qualifiers, but not
1767    // automatic variables that point to other address spaces.
1768    // ISO/IEC TR 18037 S5.1.2
1769    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1770      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1771      InvalidDecl = true;
1772    }
1773    // Merge the decl with the existing one if appropriate. If the decl is
1774    // in an outer scope, it isn't the same thing.
1775    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1776      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1777        // The user tried to define a non-static data member
1778        // out-of-line (C++ [dcl.meaning]p1).
1779        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1780          << D.getCXXScopeSpec().getRange();
1781        NewVD->Destroy(Context);
1782        return 0;
1783      }
1784
1785      NewVD = MergeVarDecl(NewVD, PrevDecl);
1786      if (NewVD == 0) return 0;
1787
1788      if (D.getCXXScopeSpec().isSet()) {
1789        // No previous declaration in the qualifying scope.
1790        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1791          << Name << D.getCXXScopeSpec().getRange();
1792        InvalidDecl = true;
1793      }
1794    }
1795    New = NewVD;
1796  }
1797
1798  // Set the lexical context. If the declarator has a C++ scope specifier, the
1799  // lexical context will be different from the semantic context.
1800  New->setLexicalDeclContext(CurContext);
1801
1802  // If this has an identifier, add it to the scope stack.
1803  if (Name)
1804    PushOnScopeChains(New, S);
1805  // If any semantic error occurred, mark the decl as invalid.
1806  if (D.getInvalidType() || InvalidDecl)
1807    New->setInvalidDecl();
1808
1809  return New;
1810}
1811
1812void Sema::InitializerElementNotConstant(const Expr *Init) {
1813  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1814    << Init->getSourceRange();
1815}
1816
1817bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1818  switch (Init->getStmtClass()) {
1819  default:
1820    InitializerElementNotConstant(Init);
1821    return true;
1822  case Expr::ParenExprClass: {
1823    const ParenExpr* PE = cast<ParenExpr>(Init);
1824    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1825  }
1826  case Expr::CompoundLiteralExprClass:
1827    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1828  case Expr::DeclRefExprClass:
1829  case Expr::QualifiedDeclRefExprClass: {
1830    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1831    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1832      if (VD->hasGlobalStorage())
1833        return false;
1834      InitializerElementNotConstant(Init);
1835      return true;
1836    }
1837    if (isa<FunctionDecl>(D))
1838      return false;
1839    InitializerElementNotConstant(Init);
1840    return true;
1841  }
1842  case Expr::MemberExprClass: {
1843    const MemberExpr *M = cast<MemberExpr>(Init);
1844    if (M->isArrow())
1845      return CheckAddressConstantExpression(M->getBase());
1846    return CheckAddressConstantExpressionLValue(M->getBase());
1847  }
1848  case Expr::ArraySubscriptExprClass: {
1849    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1850    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1851    return CheckAddressConstantExpression(ASE->getBase()) ||
1852           CheckArithmeticConstantExpression(ASE->getIdx());
1853  }
1854  case Expr::StringLiteralClass:
1855  case Expr::PredefinedExprClass:
1856    return false;
1857  case Expr::UnaryOperatorClass: {
1858    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1859
1860    // C99 6.6p9
1861    if (Exp->getOpcode() == UnaryOperator::Deref)
1862      return CheckAddressConstantExpression(Exp->getSubExpr());
1863
1864    InitializerElementNotConstant(Init);
1865    return true;
1866  }
1867  }
1868}
1869
1870bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1871  switch (Init->getStmtClass()) {
1872  default:
1873    InitializerElementNotConstant(Init);
1874    return true;
1875  case Expr::ParenExprClass:
1876    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1877  case Expr::StringLiteralClass:
1878  case Expr::ObjCStringLiteralClass:
1879    return false;
1880  case Expr::CallExprClass:
1881  case Expr::CXXOperatorCallExprClass:
1882    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1883    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1884           Builtin::BI__builtin___CFStringMakeConstantString)
1885      return false;
1886
1887    InitializerElementNotConstant(Init);
1888    return true;
1889
1890  case Expr::UnaryOperatorClass: {
1891    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1892
1893    // C99 6.6p9
1894    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1895      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1896
1897    if (Exp->getOpcode() == UnaryOperator::Extension)
1898      return CheckAddressConstantExpression(Exp->getSubExpr());
1899
1900    InitializerElementNotConstant(Init);
1901    return true;
1902  }
1903  case Expr::BinaryOperatorClass: {
1904    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1905    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1906
1907    Expr *PExp = Exp->getLHS();
1908    Expr *IExp = Exp->getRHS();
1909    if (IExp->getType()->isPointerType())
1910      std::swap(PExp, IExp);
1911
1912    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1913    return CheckAddressConstantExpression(PExp) ||
1914           CheckArithmeticConstantExpression(IExp);
1915  }
1916  case Expr::ImplicitCastExprClass:
1917  case Expr::CStyleCastExprClass: {
1918    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1919    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1920      // Check for implicit promotion
1921      if (SubExpr->getType()->isFunctionType() ||
1922          SubExpr->getType()->isArrayType())
1923        return CheckAddressConstantExpressionLValue(SubExpr);
1924    }
1925
1926    // Check for pointer->pointer cast
1927    if (SubExpr->getType()->isPointerType())
1928      return CheckAddressConstantExpression(SubExpr);
1929
1930    if (SubExpr->getType()->isIntegralType()) {
1931      // Check for the special-case of a pointer->int->pointer cast;
1932      // this isn't standard, but some code requires it. See
1933      // PR2720 for an example.
1934      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1935        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1936          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1937          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1938          if (IntWidth >= PointerWidth) {
1939            return CheckAddressConstantExpression(SubCast->getSubExpr());
1940          }
1941        }
1942      }
1943    }
1944    if (SubExpr->getType()->isArithmeticType()) {
1945      return CheckArithmeticConstantExpression(SubExpr);
1946    }
1947
1948    InitializerElementNotConstant(Init);
1949    return true;
1950  }
1951  case Expr::ConditionalOperatorClass: {
1952    // FIXME: Should we pedwarn here?
1953    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1954    if (!Exp->getCond()->getType()->isArithmeticType()) {
1955      InitializerElementNotConstant(Init);
1956      return true;
1957    }
1958    if (CheckArithmeticConstantExpression(Exp->getCond()))
1959      return true;
1960    if (Exp->getLHS() &&
1961        CheckAddressConstantExpression(Exp->getLHS()))
1962      return true;
1963    return CheckAddressConstantExpression(Exp->getRHS());
1964  }
1965  case Expr::AddrLabelExprClass:
1966    return false;
1967  }
1968}
1969
1970static const Expr* FindExpressionBaseAddress(const Expr* E);
1971
1972static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1973  switch (E->getStmtClass()) {
1974  default:
1975    return E;
1976  case Expr::ParenExprClass: {
1977    const ParenExpr* PE = cast<ParenExpr>(E);
1978    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1979  }
1980  case Expr::MemberExprClass: {
1981    const MemberExpr *M = cast<MemberExpr>(E);
1982    if (M->isArrow())
1983      return FindExpressionBaseAddress(M->getBase());
1984    return FindExpressionBaseAddressLValue(M->getBase());
1985  }
1986  case Expr::ArraySubscriptExprClass: {
1987    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1988    return FindExpressionBaseAddress(ASE->getBase());
1989  }
1990  case Expr::UnaryOperatorClass: {
1991    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1992
1993    if (Exp->getOpcode() == UnaryOperator::Deref)
1994      return FindExpressionBaseAddress(Exp->getSubExpr());
1995
1996    return E;
1997  }
1998  }
1999}
2000
2001static const Expr* FindExpressionBaseAddress(const Expr* E) {
2002  switch (E->getStmtClass()) {
2003  default:
2004    return E;
2005  case Expr::ParenExprClass: {
2006    const ParenExpr* PE = cast<ParenExpr>(E);
2007    return FindExpressionBaseAddress(PE->getSubExpr());
2008  }
2009  case Expr::UnaryOperatorClass: {
2010    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2011
2012    // C99 6.6p9
2013    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2014      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2015
2016    if (Exp->getOpcode() == UnaryOperator::Extension)
2017      return FindExpressionBaseAddress(Exp->getSubExpr());
2018
2019    return E;
2020  }
2021  case Expr::BinaryOperatorClass: {
2022    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2023
2024    Expr *PExp = Exp->getLHS();
2025    Expr *IExp = Exp->getRHS();
2026    if (IExp->getType()->isPointerType())
2027      std::swap(PExp, IExp);
2028
2029    return FindExpressionBaseAddress(PExp);
2030  }
2031  case Expr::ImplicitCastExprClass: {
2032    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2033
2034    // Check for implicit promotion
2035    if (SubExpr->getType()->isFunctionType() ||
2036        SubExpr->getType()->isArrayType())
2037      return FindExpressionBaseAddressLValue(SubExpr);
2038
2039    // Check for pointer->pointer cast
2040    if (SubExpr->getType()->isPointerType())
2041      return FindExpressionBaseAddress(SubExpr);
2042
2043    // We assume that we have an arithmetic expression here;
2044    // if we don't, we'll figure it out later
2045    return 0;
2046  }
2047  case Expr::CStyleCastExprClass: {
2048    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2049
2050    // Check for pointer->pointer cast
2051    if (SubExpr->getType()->isPointerType())
2052      return FindExpressionBaseAddress(SubExpr);
2053
2054    // We assume that we have an arithmetic expression here;
2055    // if we don't, we'll figure it out later
2056    return 0;
2057  }
2058  }
2059}
2060
2061bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2062  switch (Init->getStmtClass()) {
2063  default:
2064    InitializerElementNotConstant(Init);
2065    return true;
2066  case Expr::ParenExprClass: {
2067    const ParenExpr* PE = cast<ParenExpr>(Init);
2068    return CheckArithmeticConstantExpression(PE->getSubExpr());
2069  }
2070  case Expr::FloatingLiteralClass:
2071  case Expr::IntegerLiteralClass:
2072  case Expr::CharacterLiteralClass:
2073  case Expr::ImaginaryLiteralClass:
2074  case Expr::TypesCompatibleExprClass:
2075  case Expr::CXXBoolLiteralExprClass:
2076    return false;
2077  case Expr::CallExprClass:
2078  case Expr::CXXOperatorCallExprClass: {
2079    const CallExpr *CE = cast<CallExpr>(Init);
2080
2081    // Allow any constant foldable calls to builtins.
2082    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2083      return false;
2084
2085    InitializerElementNotConstant(Init);
2086    return true;
2087  }
2088  case Expr::DeclRefExprClass:
2089  case Expr::QualifiedDeclRefExprClass: {
2090    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2091    if (isa<EnumConstantDecl>(D))
2092      return false;
2093    InitializerElementNotConstant(Init);
2094    return true;
2095  }
2096  case Expr::CompoundLiteralExprClass:
2097    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2098    // but vectors are allowed to be magic.
2099    if (Init->getType()->isVectorType())
2100      return false;
2101    InitializerElementNotConstant(Init);
2102    return true;
2103  case Expr::UnaryOperatorClass: {
2104    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2105
2106    switch (Exp->getOpcode()) {
2107    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2108    // See C99 6.6p3.
2109    default:
2110      InitializerElementNotConstant(Init);
2111      return true;
2112    case UnaryOperator::OffsetOf:
2113      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2114        return false;
2115      InitializerElementNotConstant(Init);
2116      return true;
2117    case UnaryOperator::Extension:
2118    case UnaryOperator::LNot:
2119    case UnaryOperator::Plus:
2120    case UnaryOperator::Minus:
2121    case UnaryOperator::Not:
2122      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2123    }
2124  }
2125  case Expr::SizeOfAlignOfExprClass: {
2126    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2127    // Special check for void types, which are allowed as an extension
2128    if (Exp->getTypeOfArgument()->isVoidType())
2129      return false;
2130    // alignof always evaluates to a constant.
2131    // FIXME: is sizeof(int[3.0]) a constant expression?
2132    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2133      InitializerElementNotConstant(Init);
2134      return true;
2135    }
2136    return false;
2137  }
2138  case Expr::BinaryOperatorClass: {
2139    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2140
2141    if (Exp->getLHS()->getType()->isArithmeticType() &&
2142        Exp->getRHS()->getType()->isArithmeticType()) {
2143      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2144             CheckArithmeticConstantExpression(Exp->getRHS());
2145    }
2146
2147    if (Exp->getLHS()->getType()->isPointerType() &&
2148        Exp->getRHS()->getType()->isPointerType()) {
2149      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2150      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2151
2152      // Only allow a null (constant integer) base; we could
2153      // allow some additional cases if necessary, but this
2154      // is sufficient to cover offsetof-like constructs.
2155      if (!LHSBase && !RHSBase) {
2156        return CheckAddressConstantExpression(Exp->getLHS()) ||
2157               CheckAddressConstantExpression(Exp->getRHS());
2158      }
2159    }
2160
2161    InitializerElementNotConstant(Init);
2162    return true;
2163  }
2164  case Expr::ImplicitCastExprClass:
2165  case Expr::CStyleCastExprClass: {
2166    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2167    if (SubExpr->getType()->isArithmeticType())
2168      return CheckArithmeticConstantExpression(SubExpr);
2169
2170    if (SubExpr->getType()->isPointerType()) {
2171      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2172      // If the pointer has a null base, this is an offsetof-like construct
2173      if (!Base)
2174        return CheckAddressConstantExpression(SubExpr);
2175    }
2176
2177    InitializerElementNotConstant(Init);
2178    return true;
2179  }
2180  case Expr::ConditionalOperatorClass: {
2181    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2182
2183    // If GNU extensions are disabled, we require all operands to be arithmetic
2184    // constant expressions.
2185    if (getLangOptions().NoExtensions) {
2186      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2187          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2188             CheckArithmeticConstantExpression(Exp->getRHS());
2189    }
2190
2191    // Otherwise, we have to emulate some of the behavior of fold here.
2192    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2193    // because it can constant fold things away.  To retain compatibility with
2194    // GCC code, we see if we can fold the condition to a constant (which we
2195    // should always be able to do in theory).  If so, we only require the
2196    // specified arm of the conditional to be a constant.  This is a horrible
2197    // hack, but is require by real world code that uses __builtin_constant_p.
2198    Expr::EvalResult EvalResult;
2199    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2200        EvalResult.HasSideEffects) {
2201      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2202      // won't be able to either.  Use it to emit the diagnostic though.
2203      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2204      assert(Res && "Evaluate couldn't evaluate this constant?");
2205      return Res;
2206    }
2207
2208    // Verify that the side following the condition is also a constant.
2209    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2210    if (EvalResult.Val.getInt() == 0)
2211      std::swap(TrueSide, FalseSide);
2212
2213    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2214      return true;
2215
2216    // Okay, the evaluated side evaluates to a constant, so we accept this.
2217    // Check to see if the other side is obviously not a constant.  If so,
2218    // emit a warning that this is a GNU extension.
2219    if (FalseSide && !FalseSide->isEvaluatable(Context))
2220      Diag(Init->getExprLoc(),
2221           diag::ext_typecheck_expression_not_constant_but_accepted)
2222        << FalseSide->getSourceRange();
2223    return false;
2224  }
2225  }
2226}
2227
2228bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2229  Expr::EvalResult Result;
2230
2231  Init = Init->IgnoreParens();
2232
2233  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
2234    return false;
2235
2236  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2237  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2238    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2239
2240  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2241    return CheckForConstantInitializer(e->getInitializer(), DclT);
2242
2243  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2244    unsigned numInits = Exp->getNumInits();
2245    for (unsigned i = 0; i < numInits; i++) {
2246      // FIXME: Need to get the type of the declaration for C++,
2247      // because it could be a reference?
2248      if (CheckForConstantInitializer(Exp->getInit(i),
2249                                      Exp->getInit(i)->getType()))
2250        return true;
2251    }
2252    return false;
2253  }
2254
2255  // FIXME: We can probably remove some of this code below, now that
2256  // Expr::Evaluate is doing the heavy lifting for scalars.
2257
2258  if (Init->isNullPointerConstant(Context))
2259    return false;
2260  if (Init->getType()->isArithmeticType()) {
2261    QualType InitTy = Context.getCanonicalType(Init->getType())
2262                             .getUnqualifiedType();
2263    if (InitTy == Context.BoolTy) {
2264      // Special handling for pointers implicitly cast to bool;
2265      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2266      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2267        Expr* SubE = ICE->getSubExpr();
2268        if (SubE->getType()->isPointerType() ||
2269            SubE->getType()->isArrayType() ||
2270            SubE->getType()->isFunctionType()) {
2271          return CheckAddressConstantExpression(Init);
2272        }
2273      }
2274    } else if (InitTy->isIntegralType()) {
2275      Expr* SubE = 0;
2276      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2277        SubE = CE->getSubExpr();
2278      // Special check for pointer cast to int; we allow as an extension
2279      // an address constant cast to an integer if the integer
2280      // is of an appropriate width (this sort of code is apparently used
2281      // in some places).
2282      // FIXME: Add pedwarn?
2283      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2284      if (SubE && (SubE->getType()->isPointerType() ||
2285                   SubE->getType()->isArrayType() ||
2286                   SubE->getType()->isFunctionType())) {
2287        unsigned IntWidth = Context.getTypeSize(Init->getType());
2288        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2289        if (IntWidth >= PointerWidth)
2290          return CheckAddressConstantExpression(Init);
2291      }
2292    }
2293
2294    return CheckArithmeticConstantExpression(Init);
2295  }
2296
2297  if (Init->getType()->isPointerType())
2298    return CheckAddressConstantExpression(Init);
2299
2300  // An array type at the top level that isn't an init-list must
2301  // be a string literal
2302  if (Init->getType()->isArrayType())
2303    return false;
2304
2305  if (Init->getType()->isFunctionType())
2306    return false;
2307
2308  // Allow block exprs at top level.
2309  if (Init->getType()->isBlockPointerType())
2310    return false;
2311
2312  InitializerElementNotConstant(Init);
2313  return true;
2314}
2315
2316void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2317  Decl *RealDecl = static_cast<Decl *>(dcl);
2318  Expr *Init = static_cast<Expr *>(init.release());
2319  assert(Init && "missing initializer");
2320
2321  // If there is no declaration, there was an error parsing it.  Just ignore
2322  // the initializer.
2323  if (RealDecl == 0) {
2324    delete Init;
2325    return;
2326  }
2327
2328  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2329  if (!VDecl) {
2330    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2331         diag::err_illegal_initializer);
2332    RealDecl->setInvalidDecl();
2333    return;
2334  }
2335  // Get the decls type and save a reference for later, since
2336  // CheckInitializerTypes may change it.
2337  QualType DclT = VDecl->getType(), SavT = DclT;
2338  if (VDecl->isBlockVarDecl()) {
2339    VarDecl::StorageClass SC = VDecl->getStorageClass();
2340    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2341      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2342      VDecl->setInvalidDecl();
2343    } else if (!VDecl->isInvalidDecl()) {
2344      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2345                                VDecl->getDeclName()))
2346        VDecl->setInvalidDecl();
2347
2348      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2349      if (!getLangOptions().CPlusPlus) {
2350        if (SC == VarDecl::Static) // C99 6.7.8p4.
2351          CheckForConstantInitializer(Init, DclT);
2352      }
2353    }
2354  } else if (VDecl->isFileVarDecl()) {
2355    if (VDecl->getStorageClass() == VarDecl::Extern)
2356      Diag(VDecl->getLocation(), diag::warn_extern_init);
2357    if (!VDecl->isInvalidDecl())
2358      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2359                                VDecl->getDeclName()))
2360        VDecl->setInvalidDecl();
2361
2362    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2363    if (!getLangOptions().CPlusPlus) {
2364      // C99 6.7.8p4. All file scoped initializers need to be constant.
2365      CheckForConstantInitializer(Init, DclT);
2366    }
2367  }
2368  // If the type changed, it means we had an incomplete type that was
2369  // completed by the initializer. For example:
2370  //   int ary[] = { 1, 3, 5 };
2371  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2372  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2373    VDecl->setType(DclT);
2374    Init->setType(DclT);
2375  }
2376
2377  // Attach the initializer to the decl.
2378  VDecl->setInit(Init);
2379  return;
2380}
2381
2382void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2383  Decl *RealDecl = static_cast<Decl *>(dcl);
2384
2385  // If there is no declaration, there was an error parsing it. Just ignore it.
2386  if (RealDecl == 0)
2387    return;
2388
2389  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2390    QualType Type = Var->getType();
2391    // C++ [dcl.init.ref]p3:
2392    //   The initializer can be omitted for a reference only in a
2393    //   parameter declaration (8.3.5), in the declaration of a
2394    //   function return type, in the declaration of a class member
2395    //   within its class declaration (9.2), and where the extern
2396    //   specifier is explicitly used.
2397    if (Type->isReferenceType() &&
2398        Var->getStorageClass() != VarDecl::Extern &&
2399        Var->getStorageClass() != VarDecl::PrivateExtern) {
2400      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2401        << Var->getDeclName()
2402        << SourceRange(Var->getLocation(), Var->getLocation());
2403      Var->setInvalidDecl();
2404      return;
2405    }
2406
2407    // C++ [dcl.init]p9:
2408    //
2409    //   If no initializer is specified for an object, and the object
2410    //   is of (possibly cv-qualified) non-POD class type (or array
2411    //   thereof), the object shall be default-initialized; if the
2412    //   object is of const-qualified type, the underlying class type
2413    //   shall have a user-declared default constructor.
2414    if (getLangOptions().CPlusPlus) {
2415      QualType InitType = Type;
2416      if (const ArrayType *Array = Context.getAsArrayType(Type))
2417        InitType = Array->getElementType();
2418      if (Var->getStorageClass() != VarDecl::Extern &&
2419          Var->getStorageClass() != VarDecl::PrivateExtern &&
2420          InitType->isRecordType()) {
2421        const CXXConstructorDecl *Constructor
2422          = PerformInitializationByConstructor(InitType, 0, 0,
2423                                               Var->getLocation(),
2424                                               SourceRange(Var->getLocation(),
2425                                                           Var->getLocation()),
2426                                               Var->getDeclName(),
2427                                               IK_Default);
2428        if (!Constructor)
2429          Var->setInvalidDecl();
2430      }
2431    }
2432
2433#if 0
2434    // FIXME: Temporarily disabled because we are not properly parsing
2435    // linkage specifications on declarations, e.g.,
2436    //
2437    //   extern "C" const CGPoint CGPointerZero;
2438    //
2439    // C++ [dcl.init]p9:
2440    //
2441    //     If no initializer is specified for an object, and the
2442    //     object is of (possibly cv-qualified) non-POD class type (or
2443    //     array thereof), the object shall be default-initialized; if
2444    //     the object is of const-qualified type, the underlying class
2445    //     type shall have a user-declared default
2446    //     constructor. Otherwise, if no initializer is specified for
2447    //     an object, the object and its subobjects, if any, have an
2448    //     indeterminate initial value; if the object or any of its
2449    //     subobjects are of const-qualified type, the program is
2450    //     ill-formed.
2451    //
2452    // This isn't technically an error in C, so we don't diagnose it.
2453    //
2454    // FIXME: Actually perform the POD/user-defined default
2455    // constructor check.
2456    if (getLangOptions().CPlusPlus &&
2457        Context.getCanonicalType(Type).isConstQualified() &&
2458        Var->getStorageClass() != VarDecl::Extern)
2459      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2460        << Var->getName()
2461        << SourceRange(Var->getLocation(), Var->getLocation());
2462#endif
2463  }
2464}
2465
2466/// The declarators are chained together backwards, reverse the list.
2467Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2468  // Often we have single declarators, handle them quickly.
2469  Decl *GroupDecl = static_cast<Decl*>(group);
2470  if (GroupDecl == 0)
2471    return 0;
2472
2473  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2474  ScopedDecl *NewGroup = 0;
2475  if (Group->getNextDeclarator() == 0)
2476    NewGroup = Group;
2477  else { // reverse the list.
2478    while (Group) {
2479      ScopedDecl *Next = Group->getNextDeclarator();
2480      Group->setNextDeclarator(NewGroup);
2481      NewGroup = Group;
2482      Group = Next;
2483    }
2484  }
2485  // Perform semantic analysis that depends on having fully processed both
2486  // the declarator and initializer.
2487  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2488    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2489    if (!IDecl)
2490      continue;
2491    QualType T = IDecl->getType();
2492
2493    if (T->isVariableArrayType()) {
2494      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2495
2496      // FIXME: This won't give the correct result for
2497      // int a[10][n];
2498      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2499      if (IDecl->isFileVarDecl()) {
2500        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2501          SizeRange;
2502
2503        IDecl->setInvalidDecl();
2504      } else {
2505        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2506        // static storage duration, it shall not have a variable length array.
2507        if (IDecl->getStorageClass() == VarDecl::Static) {
2508          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2509            << SizeRange;
2510          IDecl->setInvalidDecl();
2511        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2512          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2513            << SizeRange;
2514          IDecl->setInvalidDecl();
2515        }
2516      }
2517    } else if (T->isVariablyModifiedType()) {
2518      if (IDecl->isFileVarDecl()) {
2519        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2520        IDecl->setInvalidDecl();
2521      } else {
2522        if (IDecl->getStorageClass() == VarDecl::Extern) {
2523          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2524          IDecl->setInvalidDecl();
2525        }
2526      }
2527    }
2528
2529    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2530    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2531    if (IDecl->isBlockVarDecl() &&
2532        IDecl->getStorageClass() != VarDecl::Extern) {
2533      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2534        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2535        IDecl->setInvalidDecl();
2536      }
2537    }
2538    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2539    // object that has file scope without an initializer, and without a
2540    // storage-class specifier or with the storage-class specifier "static",
2541    // constitutes a tentative definition. Note: A tentative definition with
2542    // external linkage is valid (C99 6.2.2p5).
2543    if (isTentativeDefinition(IDecl)) {
2544      if (T->isIncompleteArrayType()) {
2545        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2546        // array to be completed. Don't issue a diagnostic.
2547      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2548        // C99 6.9.2p3: If the declaration of an identifier for an object is
2549        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2550        // declared type shall not be an incomplete type.
2551        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2552        IDecl->setInvalidDecl();
2553      }
2554    }
2555    if (IDecl->isFileVarDecl())
2556      CheckForFileScopedRedefinitions(S, IDecl);
2557  }
2558  return NewGroup;
2559}
2560
2561/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2562/// to introduce parameters into function prototype scope.
2563Sema::DeclTy *
2564Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2565  const DeclSpec &DS = D.getDeclSpec();
2566
2567  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2568  VarDecl::StorageClass StorageClass = VarDecl::None;
2569  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2570    StorageClass = VarDecl::Register;
2571  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2572    Diag(DS.getStorageClassSpecLoc(),
2573         diag::err_invalid_storage_class_in_func_decl);
2574    D.getMutableDeclSpec().ClearStorageClassSpecs();
2575  }
2576  if (DS.isThreadSpecified()) {
2577    Diag(DS.getThreadSpecLoc(),
2578         diag::err_invalid_storage_class_in_func_decl);
2579    D.getMutableDeclSpec().ClearStorageClassSpecs();
2580  }
2581
2582  // Check that there are no default arguments inside the type of this
2583  // parameter (C++ only).
2584  if (getLangOptions().CPlusPlus)
2585    CheckExtraCXXDefaultArguments(D);
2586
2587  // In this context, we *do not* check D.getInvalidType(). If the declarator
2588  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2589  // though it will not reflect the user specified type.
2590  QualType parmDeclType = GetTypeForDeclarator(D, S);
2591
2592  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2593
2594  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2595  // Can this happen for params?  We already checked that they don't conflict
2596  // among each other.  Here they can only shadow globals, which is ok.
2597  IdentifierInfo *II = D.getIdentifier();
2598  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2599    if (PrevDecl->isTemplateParameter()) {
2600      // Maybe we will complain about the shadowed template parameter.
2601      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2602      // Just pretend that we didn't see the previous declaration.
2603      PrevDecl = 0;
2604    } else if (S->isDeclScope(PrevDecl)) {
2605      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2606
2607      // Recover by removing the name
2608      II = 0;
2609      D.SetIdentifier(0, D.getIdentifierLoc());
2610    }
2611  }
2612
2613  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2614  // Doing the promotion here has a win and a loss. The win is the type for
2615  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2616  // code generator). The loss is the orginal type isn't preserved. For example:
2617  //
2618  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2619  //    int blockvardecl[5];
2620  //    sizeof(parmvardecl);  // size == 4
2621  //    sizeof(blockvardecl); // size == 20
2622  // }
2623  //
2624  // For expressions, all implicit conversions are captured using the
2625  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2626  //
2627  // FIXME: If a source translation tool needs to see the original type, then
2628  // we need to consider storing both types (in ParmVarDecl)...
2629  //
2630  if (parmDeclType->isArrayType()) {
2631    // int x[restrict 4] ->  int *restrict
2632    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2633  } else if (parmDeclType->isFunctionType())
2634    parmDeclType = Context.getPointerType(parmDeclType);
2635
2636  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2637                                         D.getIdentifierLoc(), II,
2638                                         parmDeclType, StorageClass,
2639                                         0, 0);
2640
2641  if (D.getInvalidType())
2642    New->setInvalidDecl();
2643
2644  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2645  if (D.getCXXScopeSpec().isSet()) {
2646    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2647      << D.getCXXScopeSpec().getRange();
2648    New->setInvalidDecl();
2649  }
2650
2651  // Add the parameter declaration into this scope.
2652  S->AddDecl(New);
2653  if (II)
2654    IdResolver.AddDecl(New);
2655
2656  ProcessDeclAttributes(New, D);
2657  return New;
2658
2659}
2660
2661Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2662  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2663  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2664         "Not a function declarator!");
2665  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2666
2667  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2668  // for a K&R function.
2669  if (!FTI.hasPrototype) {
2670    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2671      if (FTI.ArgInfo[i].Param == 0) {
2672        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2673          << FTI.ArgInfo[i].Ident;
2674        // Implicitly declare the argument as type 'int' for lack of a better
2675        // type.
2676        DeclSpec DS;
2677        const char* PrevSpec; // unused
2678        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2679                           PrevSpec);
2680        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2681        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2682        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2683      }
2684    }
2685  } else {
2686    // FIXME: Diagnose arguments without names in C.
2687  }
2688
2689  Scope *ParentScope = FnBodyScope->getParent();
2690
2691  return ActOnStartOfFunctionDef(FnBodyScope,
2692                                 ActOnDeclarator(ParentScope, D, 0,
2693                                                 /*IsFunctionDefinition=*/true));
2694}
2695
2696Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2697  Decl *decl = static_cast<Decl*>(D);
2698  FunctionDecl *FD = cast<FunctionDecl>(decl);
2699
2700  // See if this is a redefinition.
2701  const FunctionDecl *Definition;
2702  if (FD->getBody(Definition)) {
2703    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2704    Diag(Definition->getLocation(), diag::note_previous_definition);
2705  }
2706
2707  PushDeclContext(FnBodyScope, FD);
2708
2709  // Check the validity of our function parameters
2710  CheckParmsForFunctionDef(FD);
2711
2712  // Introduce our parameters into the function scope
2713  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2714    ParmVarDecl *Param = FD->getParamDecl(p);
2715    Param->setOwningFunction(FD);
2716
2717    // If this has an identifier, add it to the scope stack.
2718    if (Param->getIdentifier())
2719      PushOnScopeChains(Param, FnBodyScope);
2720  }
2721
2722  // Checking attributes of current function definition
2723  // dllimport attribute.
2724  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2725    // dllimport attribute cannot be applied to definition.
2726    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2727      Diag(FD->getLocation(),
2728           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2729        << "dllimport";
2730      FD->setInvalidDecl();
2731      return FD;
2732    } else {
2733      // If a symbol previously declared dllimport is later defined, the
2734      // attribute is ignored in subsequent references, and a warning is
2735      // emitted.
2736      Diag(FD->getLocation(),
2737           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2738        << FD->getNameAsCString() << "dllimport";
2739    }
2740  }
2741  return FD;
2742}
2743
2744Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2745  Decl *dcl = static_cast<Decl *>(D);
2746  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2747  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2748    FD->setBody(Body);
2749    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2750  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2751    MD->setBody((Stmt*)Body);
2752  } else
2753    return 0;
2754  PopDeclContext();
2755  // Verify and clean out per-function state.
2756
2757  // Check goto/label use.
2758  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2759       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2760    // Verify that we have no forward references left.  If so, there was a goto
2761    // or address of a label taken, but no definition of it.  Label fwd
2762    // definitions are indicated with a null substmt.
2763    if (I->second->getSubStmt() == 0) {
2764      LabelStmt *L = I->second;
2765      // Emit error.
2766      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2767
2768      // At this point, we have gotos that use the bogus label.  Stitch it into
2769      // the function body so that they aren't leaked and that the AST is well
2770      // formed.
2771      if (Body) {
2772        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2773        cast<CompoundStmt>(Body)->push_back(L);
2774      } else {
2775        // The whole function wasn't parsed correctly, just delete this.
2776        delete L;
2777      }
2778    }
2779  }
2780  LabelMap.clear();
2781
2782  return D;
2783}
2784
2785/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2786/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2787ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2788                                           IdentifierInfo &II, Scope *S) {
2789  // Extension in C99.  Legal in C90, but warn about it.
2790  if (getLangOptions().C99)
2791    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2792  else
2793    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2794
2795  // FIXME: handle stuff like:
2796  // void foo() { extern float X(); }
2797  // void bar() { X(); }  <-- implicit decl for X in another scope.
2798
2799  // Set a Declarator for the implicit definition: int foo();
2800  const char *Dummy;
2801  DeclSpec DS;
2802  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2803  Error = Error; // Silence warning.
2804  assert(!Error && "Error setting up implicit decl!");
2805  Declarator D(DS, Declarator::BlockContext);
2806  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2807  D.SetIdentifier(&II, Loc);
2808
2809  // Insert this function into translation-unit scope.
2810
2811  DeclContext *PrevDC = CurContext;
2812  CurContext = Context.getTranslationUnitDecl();
2813
2814  FunctionDecl *FD =
2815    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2816  FD->setImplicit();
2817
2818  CurContext = PrevDC;
2819
2820  return FD;
2821}
2822
2823
2824TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2825                                    ScopedDecl *LastDeclarator) {
2826  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2827  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2828
2829  // Scope manipulation handled by caller.
2830  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2831                                           D.getIdentifierLoc(),
2832                                           D.getIdentifier(),
2833                                           T, LastDeclarator);
2834  if (D.getInvalidType())
2835    NewTD->setInvalidDecl();
2836  return NewTD;
2837}
2838
2839/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2840/// former case, Name will be non-null.  In the later case, Name will be null.
2841/// TagType indicates what kind of tag this is. TK indicates whether this is a
2842/// reference/declaration/definition of a tag.
2843Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2844                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2845                             IdentifierInfo *Name, SourceLocation NameLoc,
2846                             AttributeList *Attr,
2847                             MultiTemplateParamsArg TemplateParameterLists) {
2848  // If this is not a definition, it must have a name.
2849  assert((Name != 0 || TK == TK_Definition) &&
2850         "Nameless record must be a definition!");
2851
2852  TagDecl::TagKind Kind;
2853  switch (TagType) {
2854  default: assert(0 && "Unknown tag type!");
2855  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2856  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2857  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2858  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2859  }
2860
2861  DeclContext *DC = CurContext;
2862  DeclContext *LexicalContext = CurContext;
2863  ScopedDecl *PrevDecl = 0;
2864
2865  if (Name && SS.isNotEmpty()) {
2866    // We have a nested-name tag ('struct foo::bar').
2867
2868    // Check for invalid 'foo::'.
2869    if (SS.isInvalid()) {
2870      Name = 0;
2871      goto CreateNewDecl;
2872    }
2873
2874    DC = static_cast<DeclContext*>(SS.getScopeRep());
2875    // Look-up name inside 'foo::'.
2876    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2877
2878    // A tag 'foo::bar' must already exist.
2879    if (PrevDecl == 0) {
2880      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2881      Name = 0;
2882      goto CreateNewDecl;
2883    }
2884  } else {
2885    // If this is a named struct, check to see if there was a previous forward
2886    // declaration or definition.
2887    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2888    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2889
2890    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2891      // FIXME: This makes sure that we ignore the contexts associated
2892      // with C structs, unions, and enums when looking for a matching
2893      // tag declaration or definition. See the similar lookup tweak
2894      // in Sema::LookupDecl; is there a better way to deal with this?
2895      while (isa<RecordDecl>(DC) || isa<EnumDecl>(DC))
2896        DC = DC->getParent();
2897    }
2898  }
2899
2900  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2901    // Maybe we will complain about the shadowed template parameter.
2902    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2903    // Just pretend that we didn't see the previous declaration.
2904    PrevDecl = 0;
2905  }
2906
2907  if (PrevDecl) {
2908    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2909            "unexpected Decl type");
2910    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2911      // If this is a use of a previous tag, or if the tag is already declared
2912      // in the same scope (so that the definition/declaration completes or
2913      // rementions the tag), reuse the decl.
2914      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2915        // Make sure that this wasn't declared as an enum and now used as a
2916        // struct or something similar.
2917        if (PrevTagDecl->getTagKind() != Kind) {
2918          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2919          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2920          // Recover by making this an anonymous redefinition.
2921          Name = 0;
2922          PrevDecl = 0;
2923        } else {
2924          // If this is a use, just return the declaration we found.
2925
2926          // FIXME: In the future, return a variant or some other clue
2927          // for the consumer of this Decl to know it doesn't own it.
2928          // For our current ASTs this shouldn't be a problem, but will
2929          // need to be changed with DeclGroups.
2930          if (TK == TK_Reference)
2931            return PrevDecl;
2932
2933          // Diagnose attempts to redefine a tag.
2934          if (TK == TK_Definition) {
2935            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2936              Diag(NameLoc, diag::err_redefinition) << Name;
2937              Diag(Def->getLocation(), diag::note_previous_definition);
2938              // If this is a redefinition, recover by making this struct be
2939              // anonymous, which will make any later references get the previous
2940              // definition.
2941              Name = 0;
2942              PrevDecl = 0;
2943            }
2944            // Okay, this is definition of a previously declared or referenced
2945            // tag PrevDecl. We're going to create a new Decl for it.
2946          }
2947        }
2948        // If we get here we have (another) forward declaration or we
2949        // have a definition.  Just create a new decl.
2950      } else {
2951        // If we get here, this is a definition of a new tag type in a nested
2952        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2953        // new decl/type.  We set PrevDecl to NULL so that the entities
2954        // have distinct types.
2955        PrevDecl = 0;
2956      }
2957      // If we get here, we're going to create a new Decl. If PrevDecl
2958      // is non-NULL, it's a definition of the tag declared by
2959      // PrevDecl. If it's NULL, we have a new definition.
2960    } else {
2961      // PrevDecl is a namespace.
2962      if (isDeclInScope(PrevDecl, DC, S)) {
2963        // The tag name clashes with a namespace name, issue an error and
2964        // recover by making this tag be anonymous.
2965        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2966        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2967        Name = 0;
2968        PrevDecl = 0;
2969      } else {
2970        // The existing declaration isn't relevant to us; we're in a
2971        // new scope, so clear out the previous declaration.
2972        PrevDecl = 0;
2973      }
2974    }
2975  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2976             (Kind != TagDecl::TK_enum))  {
2977    // C++ [basic.scope.pdecl]p5:
2978    //   -- for an elaborated-type-specifier of the form
2979    //
2980    //          class-key identifier
2981    //
2982    //      if the elaborated-type-specifier is used in the
2983    //      decl-specifier-seq or parameter-declaration-clause of a
2984    //      function defined in namespace scope, the identifier is
2985    //      declared as a class-name in the namespace that contains
2986    //      the declaration; otherwise, except as a friend
2987    //      declaration, the identifier is declared in the smallest
2988    //      non-class, non-function-prototype scope that contains the
2989    //      declaration.
2990    //
2991    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2992    // C structs and unions.
2993
2994    // Find the context where we'll be declaring the tag.
2995    while (DC->isRecord())
2996      DC = DC->getParent();
2997    LexicalContext = DC;
2998
2999    // Find the scope where we'll be declaring the tag.
3000    while (S->isClassScope() ||
3001           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3002           (S->getFlags() & Scope::DeclScope == 0))
3003      S = S->getParent();
3004  }
3005
3006CreateNewDecl:
3007
3008  // If there is an identifier, use the location of the identifier as the
3009  // location of the decl, otherwise use the location of the struct/union
3010  // keyword.
3011  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3012
3013  // Otherwise, create a new declaration. If there is a previous
3014  // declaration of the same entity, the two will be linked via
3015  // PrevDecl.
3016  TagDecl *New;
3017
3018  if (Kind == TagDecl::TK_enum) {
3019    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3020    // enum X { A, B, C } D;    D should chain to X.
3021    New = EnumDecl::Create(Context, DC, Loc, Name,
3022                           cast_or_null<EnumDecl>(PrevDecl));
3023    // If this is an undefined enum, warn.
3024    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3025  } else {
3026    // struct/union/class
3027
3028    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3029    // struct X { int A; } D;    D should chain to X.
3030    if (getLangOptions().CPlusPlus)
3031      // FIXME: Look for a way to use RecordDecl for simple structs.
3032      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3033                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3034    else
3035      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3036                               cast_or_null<RecordDecl>(PrevDecl));
3037  }
3038
3039  if (Kind != TagDecl::TK_enum) {
3040    // Handle #pragma pack: if the #pragma pack stack has non-default
3041    // alignment, make up a packed attribute for this decl. These
3042    // attributes are checked when the ASTContext lays out the
3043    // structure.
3044    //
3045    // It is important for implementing the correct semantics that this
3046    // happen here (in act on tag decl). The #pragma pack stack is
3047    // maintained as a result of parser callbacks which can occur at
3048    // many points during the parsing of a struct declaration (because
3049    // the #pragma tokens are effectively skipped over during the
3050    // parsing of the struct).
3051    if (unsigned Alignment = PackContext.getAlignment())
3052      New->addAttr(new PackedAttr(Alignment * 8));
3053  }
3054
3055  if (Attr)
3056    ProcessDeclAttributeList(New, Attr);
3057
3058  // If we're declaring or defining
3059  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3060    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3061
3062  // Set the lexical context. If the tag has a C++ scope specifier, the
3063  // lexical context will be different from the semantic context.
3064  New->setLexicalDeclContext(LexicalContext);
3065
3066  // If this has an identifier, add it to the scope stack.
3067  if (Name) {
3068    // The scope passed in may not be a decl scope.  Zip up the scope tree until
3069    // we find one that is.
3070    while ((S->getFlags() & Scope::DeclScope) == 0)
3071      S = S->getParent();
3072
3073    // Add it to the decl chain.
3074    if (LexicalContext != CurContext) {
3075      // FIXME: PushOnScopeChains should not rely on CurContext!
3076      DeclContext *OldContext = CurContext;
3077      CurContext = LexicalContext;
3078      PushOnScopeChains(New, S);
3079      CurContext = OldContext;
3080    } else
3081      PushOnScopeChains(New, S);
3082  } else if (getLangOptions().CPlusPlus) {
3083    // FIXME: We also want to do this for C, but if this tag is
3084    // defined within a structure CurContext will point to the context
3085    // enclosing the structure, and we would end up inserting the tag
3086    // type into the wrong place.
3087    LexicalContext->addDecl(Context, New);
3088  }
3089
3090  return New;
3091}
3092
3093void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3094  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3095
3096  // Enter the tag context.
3097  PushDeclContext(S, Tag);
3098
3099  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3100    FieldCollector->StartClass();
3101
3102    if (Record->getIdentifier()) {
3103      // C++ [class]p2:
3104      //   [...] The class-name is also inserted into the scope of the
3105      //   class itself; this is known as the injected-class-name. For
3106      //   purposes of access checking, the injected-class-name is treated
3107      //   as if it were a public member name.
3108      RecordDecl *InjectedClassName
3109        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3110                                CurContext, Record->getLocation(),
3111                                Record->getIdentifier(), Record);
3112      InjectedClassName->setImplicit();
3113      PushOnScopeChains(InjectedClassName, S);
3114    }
3115  }
3116}
3117
3118void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3119  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3120
3121  if (isa<CXXRecordDecl>(Tag))
3122    FieldCollector->FinishClass();
3123
3124  // Exit this scope of this tag's definition.
3125  PopDeclContext();
3126
3127  // Notify the consumer that we've defined a tag.
3128  Consumer.HandleTagDeclDefinition(Tag);
3129}
3130
3131/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3132/// types into constant array types in certain situations which would otherwise
3133/// be errors (for GCC compatibility).
3134static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3135                                                    ASTContext &Context) {
3136  // This method tries to turn a variable array into a constant
3137  // array even when the size isn't an ICE.  This is necessary
3138  // for compatibility with code that depends on gcc's buggy
3139  // constant expression folding, like struct {char x[(int)(char*)2];}
3140  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3141  if (!VLATy) return QualType();
3142
3143  Expr::EvalResult EvalResult;
3144  if (!VLATy->getSizeExpr() ||
3145      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3146    return QualType();
3147
3148  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3149  llvm::APSInt &Res = EvalResult.Val.getInt();
3150  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3151    return Context.getConstantArrayType(VLATy->getElementType(),
3152                                        Res, ArrayType::Normal, 0);
3153  return QualType();
3154}
3155
3156bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3157                          QualType FieldTy, const Expr *BitWidth) {
3158  // FIXME: 6.7.2.1p4 - verify the field type.
3159
3160  llvm::APSInt Value;
3161  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3162    return true;
3163
3164  // Zero-width bitfield is ok for anonymous field.
3165  if (Value == 0 && FieldName)
3166    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3167
3168  if (Value.isNegative())
3169    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3170
3171  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3172  // FIXME: We won't need the 0 size once we check that the field type is valid.
3173  if (TypeSize && Value.getZExtValue() > TypeSize)
3174    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3175       << FieldName << (unsigned)TypeSize;
3176
3177  return false;
3178}
3179
3180/// ActOnField - Each field of a struct/union/class is passed into this in order
3181/// to create a FieldDecl object for it.
3182Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3183                               SourceLocation DeclStart,
3184                               Declarator &D, ExprTy *BitfieldWidth) {
3185  IdentifierInfo *II = D.getIdentifier();
3186  Expr *BitWidth = (Expr*)BitfieldWidth;
3187  SourceLocation Loc = DeclStart;
3188  RecordDecl *Record = (RecordDecl *)TagD;
3189  if (II) Loc = D.getIdentifierLoc();
3190
3191  // FIXME: Unnamed fields can be handled in various different ways, for
3192  // example, unnamed unions inject all members into the struct namespace!
3193
3194  QualType T = GetTypeForDeclarator(D, S);
3195  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3196  bool InvalidDecl = false;
3197
3198  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3199  // than a variably modified type.
3200  if (T->isVariablyModifiedType()) {
3201    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3202    if (!FixedTy.isNull()) {
3203      Diag(Loc, diag::warn_illegal_constant_array_size);
3204      T = FixedTy;
3205    } else {
3206      Diag(Loc, diag::err_typecheck_field_variable_size);
3207      T = Context.IntTy;
3208      InvalidDecl = true;
3209    }
3210  }
3211
3212  if (BitWidth) {
3213    if (VerifyBitField(Loc, II, T, BitWidth))
3214      InvalidDecl = true;
3215  } else {
3216    // Not a bitfield.
3217
3218    // validate II.
3219
3220  }
3221
3222  // FIXME: Chain fielddecls together.
3223  FieldDecl *NewFD;
3224
3225  NewFD = FieldDecl::Create(Context, Record,
3226                            Loc, II, T, BitWidth,
3227                            D.getDeclSpec().getStorageClassSpec() ==
3228                              DeclSpec::SCS_mutable,
3229                            /*PrevDecl=*/0);
3230
3231  if (II) {
3232    Decl *PrevDecl
3233      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3234    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3235        && !isa<TagDecl>(PrevDecl)) {
3236      Diag(Loc, diag::err_duplicate_member) << II;
3237      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3238      NewFD->setInvalidDecl();
3239      Record->setInvalidDecl();
3240    }
3241  }
3242
3243  if (getLangOptions().CPlusPlus) {
3244    CheckExtraCXXDefaultArguments(D);
3245    if (!T->isPODType())
3246      cast<CXXRecordDecl>(Record)->setPOD(false);
3247  }
3248
3249  ProcessDeclAttributes(NewFD, D);
3250
3251  if (D.getInvalidType() || InvalidDecl)
3252    NewFD->setInvalidDecl();
3253
3254  if (II) {
3255    PushOnScopeChains(NewFD, S);
3256  } else
3257    Record->addDecl(Context, NewFD);
3258
3259  return NewFD;
3260}
3261
3262/// TranslateIvarVisibility - Translate visibility from a token ID to an
3263///  AST enum value.
3264static ObjCIvarDecl::AccessControl
3265TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3266  switch (ivarVisibility) {
3267  default: assert(0 && "Unknown visitibility kind");
3268  case tok::objc_private: return ObjCIvarDecl::Private;
3269  case tok::objc_public: return ObjCIvarDecl::Public;
3270  case tok::objc_protected: return ObjCIvarDecl::Protected;
3271  case tok::objc_package: return ObjCIvarDecl::Package;
3272  }
3273}
3274
3275/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3276/// in order to create an IvarDecl object for it.
3277Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3278                              SourceLocation DeclStart,
3279                              Declarator &D, ExprTy *BitfieldWidth,
3280                              tok::ObjCKeywordKind Visibility) {
3281
3282  IdentifierInfo *II = D.getIdentifier();
3283  Expr *BitWidth = (Expr*)BitfieldWidth;
3284  SourceLocation Loc = DeclStart;
3285  if (II) Loc = D.getIdentifierLoc();
3286
3287  // FIXME: Unnamed fields can be handled in various different ways, for
3288  // example, unnamed unions inject all members into the struct namespace!
3289
3290  QualType T = GetTypeForDeclarator(D, S);
3291  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3292  bool InvalidDecl = false;
3293
3294  if (BitWidth) {
3295    // TODO: Validate.
3296    //printf("WARNING: BITFIELDS IGNORED!\n");
3297
3298    // 6.7.2.1p3
3299    // 6.7.2.1p4
3300
3301  } else {
3302    // Not a bitfield.
3303
3304    // validate II.
3305
3306  }
3307
3308  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3309  // than a variably modified type.
3310  if (T->isVariablyModifiedType()) {
3311    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3312    InvalidDecl = true;
3313  }
3314
3315  // Get the visibility (access control) for this ivar.
3316  ObjCIvarDecl::AccessControl ac =
3317    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3318                                        : ObjCIvarDecl::None;
3319
3320  // Construct the decl.
3321  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3322                                             (Expr *)BitfieldWidth);
3323
3324  if (II) {
3325    Decl *PrevDecl
3326      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3327    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3328        && !isa<TagDecl>(PrevDecl)) {
3329      Diag(Loc, diag::err_duplicate_member) << II;
3330      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3331      NewID->setInvalidDecl();
3332    }
3333  }
3334
3335  // Process attributes attached to the ivar.
3336  ProcessDeclAttributes(NewID, D);
3337
3338  if (D.getInvalidType() || InvalidDecl)
3339    NewID->setInvalidDecl();
3340
3341  if (II) {
3342    // FIXME: When interfaces are DeclContexts, we'll need to add
3343    // these to the interface.
3344    S->AddDecl(NewID);
3345    IdResolver.AddDecl(NewID);
3346  }
3347
3348  return NewID;
3349}
3350
3351void Sema::ActOnFields(Scope* S,
3352                       SourceLocation RecLoc, DeclTy *RecDecl,
3353                       DeclTy **Fields, unsigned NumFields,
3354                       SourceLocation LBrac, SourceLocation RBrac,
3355                       AttributeList *Attr) {
3356  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3357  assert(EnclosingDecl && "missing record or interface decl");
3358  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3359
3360  if (Record) {
3361    QualType RecordType = Context.getTypeDeclType(Record);
3362    if (RecordType->getAsRecordType()->getDecl()->isDefinition()) {
3363      RecordDecl *Def = RecordType->getAsRecordType()->getDecl();
3364      // Diagnose code like:
3365      //     struct S { struct S {} X; };
3366      // We discover this when we complete the outer S.  Reject and ignore the
3367      // outer S.
3368      Diag(Def->getLocation(), diag::err_nested_redefinition)
3369        << Def->getDeclName();
3370      Diag(RecLoc, diag::note_previous_definition);
3371      Record->setInvalidDecl();
3372      return;
3373    }
3374  }
3375
3376  // Verify that all the fields are okay.
3377  unsigned NumNamedMembers = 0;
3378  llvm::SmallVector<FieldDecl*, 32> RecFields;
3379
3380  for (unsigned i = 0; i != NumFields; ++i) {
3381    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3382    assert(FD && "missing field decl");
3383
3384    // Get the type for the field.
3385    Type *FDTy = FD->getType().getTypePtr();
3386
3387    if (!FD->isAnonymousStructOrUnion()) {
3388      // Remember all fields written by the user.
3389      RecFields.push_back(FD);
3390    }
3391
3392    // C99 6.7.2.1p2 - A field may not be a function type.
3393    if (FDTy->isFunctionType()) {
3394      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3395        << FD->getDeclName();
3396      FD->setInvalidDecl();
3397      EnclosingDecl->setInvalidDecl();
3398      continue;
3399    }
3400    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3401    if (FDTy->isIncompleteType()) {
3402      if (!Record) {  // Incomplete ivar type is always an error.
3403        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3404        FD->setInvalidDecl();
3405        EnclosingDecl->setInvalidDecl();
3406        continue;
3407      }
3408      if (i != NumFields-1 ||                   // ... that the last member ...
3409          !Record->isStruct() ||  // ... of a structure ...
3410          !FDTy->isArrayType()) {         //... may have incomplete array type.
3411        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3412        FD->setInvalidDecl();
3413        EnclosingDecl->setInvalidDecl();
3414        continue;
3415      }
3416      if (NumNamedMembers < 1) {  //... must have more than named member ...
3417        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3418          << FD->getDeclName();
3419        FD->setInvalidDecl();
3420        EnclosingDecl->setInvalidDecl();
3421        continue;
3422      }
3423      // Okay, we have a legal flexible array member at the end of the struct.
3424      if (Record)
3425        Record->setHasFlexibleArrayMember(true);
3426    }
3427    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3428    /// field of another structure or the element of an array.
3429    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3430      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3431        // If this is a member of a union, then entire union becomes "flexible".
3432        if (Record && Record->isUnion()) {
3433          Record->setHasFlexibleArrayMember(true);
3434        } else {
3435          // If this is a struct/class and this is not the last element, reject
3436          // it.  Note that GCC supports variable sized arrays in the middle of
3437          // structures.
3438          if (i != NumFields-1) {
3439            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3440              << FD->getDeclName();
3441            FD->setInvalidDecl();
3442            EnclosingDecl->setInvalidDecl();
3443            continue;
3444          }
3445          // We support flexible arrays at the end of structs in other structs
3446          // as an extension.
3447          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3448            << FD->getDeclName();
3449          if (Record)
3450            Record->setHasFlexibleArrayMember(true);
3451        }
3452      }
3453    }
3454    /// A field cannot be an Objective-c object
3455    if (FDTy->isObjCInterfaceType()) {
3456      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3457        << FD->getDeclName();
3458      FD->setInvalidDecl();
3459      EnclosingDecl->setInvalidDecl();
3460      continue;
3461    }
3462    // Keep track of the number of named members.
3463    if (FD->getIdentifier())
3464      ++NumNamedMembers;
3465  }
3466
3467  // Okay, we successfully defined 'Record'.
3468  if (Record) {
3469    Record->completeDefinition(Context);
3470  } else {
3471    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3472    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3473      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3474      // Must enforce the rule that ivars in the base classes may not be
3475      // duplicates.
3476      if (ID->getSuperClass()) {
3477        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3478             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3479          ObjCIvarDecl* Ivar = (*IVI);
3480          IdentifierInfo *II = Ivar->getIdentifier();
3481          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3482          if (prevIvar) {
3483            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3484            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3485          }
3486        }
3487      }
3488    }
3489    else if (ObjCImplementationDecl *IMPDecl =
3490               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3491      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3492      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3493      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3494    }
3495  }
3496
3497  if (Attr)
3498    ProcessDeclAttributeList(Record, Attr);
3499}
3500
3501Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3502                                      DeclTy *lastEnumConst,
3503                                      SourceLocation IdLoc, IdentifierInfo *Id,
3504                                      SourceLocation EqualLoc, ExprTy *val) {
3505  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3506  EnumConstantDecl *LastEnumConst =
3507    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3508  Expr *Val = static_cast<Expr*>(val);
3509
3510  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3511  // we find one that is.
3512  while ((S->getFlags() & Scope::DeclScope) == 0)
3513    S = S->getParent();
3514
3515  // Verify that there isn't already something declared with this name in this
3516  // scope.
3517  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3518  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3519    // Maybe we will complain about the shadowed template parameter.
3520    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3521    // Just pretend that we didn't see the previous declaration.
3522    PrevDecl = 0;
3523  }
3524
3525  if (PrevDecl) {
3526    // When in C++, we may get a TagDecl with the same name; in this case the
3527    // enum constant will 'hide' the tag.
3528    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3529           "Received TagDecl when not in C++!");
3530    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3531      if (isa<EnumConstantDecl>(PrevDecl))
3532        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3533      else
3534        Diag(IdLoc, diag::err_redefinition) << Id;
3535      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3536      delete Val;
3537      return 0;
3538    }
3539  }
3540
3541  llvm::APSInt EnumVal(32);
3542  QualType EltTy;
3543  if (Val) {
3544    // Make sure to promote the operand type to int.
3545    UsualUnaryConversions(Val);
3546
3547    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3548    SourceLocation ExpLoc;
3549    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3550      delete Val;
3551      Val = 0;  // Just forget about it.
3552    } else {
3553      EltTy = Val->getType();
3554    }
3555  }
3556
3557  if (!Val) {
3558    if (LastEnumConst) {
3559      // Assign the last value + 1.
3560      EnumVal = LastEnumConst->getInitVal();
3561      ++EnumVal;
3562
3563      // Check for overflow on increment.
3564      if (EnumVal < LastEnumConst->getInitVal())
3565        Diag(IdLoc, diag::warn_enum_value_overflow);
3566
3567      EltTy = LastEnumConst->getType();
3568    } else {
3569      // First value, set to zero.
3570      EltTy = Context.IntTy;
3571      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3572    }
3573  }
3574
3575  EnumConstantDecl *New =
3576    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3577                             Val, EnumVal,
3578                             LastEnumConst);
3579
3580  // Register this decl in the current scope stack.
3581  PushOnScopeChains(New, S);
3582
3583  return New;
3584}
3585
3586// FIXME: For consistency with ActOnFields(), we should have the parser
3587// pass in the source location for the left/right braces.
3588void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3589                         DeclTy **Elements, unsigned NumElements) {
3590  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3591  QualType EnumType = Context.getTypeDeclType(Enum);
3592
3593  if (EnumType->getAsEnumType()->getDecl()->isDefinition()) {
3594    EnumDecl *Def = EnumType->getAsEnumType()->getDecl();
3595    // Diagnose code like:
3596    //   enum e0 {
3597    //     E0 = sizeof(enum e0 { E1 })
3598    //   };
3599    Diag(Def->getLocation(), diag::err_nested_redefinition)
3600      << Enum->getDeclName();
3601    Diag(Enum->getLocation(), diag::note_previous_definition);
3602    Enum->setInvalidDecl();
3603    return;
3604  }
3605
3606  // TODO: If the result value doesn't fit in an int, it must be a long or long
3607  // long value.  ISO C does not support this, but GCC does as an extension,
3608  // emit a warning.
3609  unsigned IntWidth = Context.Target.getIntWidth();
3610
3611  // Verify that all the values are okay, compute the size of the values, and
3612  // reverse the list.
3613  unsigned NumNegativeBits = 0;
3614  unsigned NumPositiveBits = 0;
3615
3616  // Keep track of whether all elements have type int.
3617  bool AllElementsInt = true;
3618
3619  for (unsigned i = 0; i != NumElements; ++i) {
3620    EnumConstantDecl *ECD =
3621      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3622    if (!ECD) continue;  // Already issued a diagnostic.
3623
3624    // If the enum value doesn't fit in an int, emit an extension warning.
3625    const llvm::APSInt &InitVal = ECD->getInitVal();
3626    assert(InitVal.getBitWidth() >= IntWidth &&
3627           "Should have promoted value to int");
3628    if (InitVal.getBitWidth() > IntWidth) {
3629      llvm::APSInt V(InitVal);
3630      V.trunc(IntWidth);
3631      V.extend(InitVal.getBitWidth());
3632      if (V != InitVal)
3633        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3634          << InitVal.toString(10);
3635    }
3636
3637    // Keep track of the size of positive and negative values.
3638    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3639      NumPositiveBits = std::max(NumPositiveBits,
3640                                 (unsigned)InitVal.getActiveBits());
3641    else
3642      NumNegativeBits = std::max(NumNegativeBits,
3643                                 (unsigned)InitVal.getMinSignedBits());
3644
3645    // Keep track of whether every enum element has type int (very commmon).
3646    if (AllElementsInt)
3647      AllElementsInt = ECD->getType() == Context.IntTy;
3648  }
3649
3650  // Figure out the type that should be used for this enum.
3651  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3652  QualType BestType;
3653  unsigned BestWidth;
3654
3655  if (NumNegativeBits) {
3656    // If there is a negative value, figure out the smallest integer type (of
3657    // int/long/longlong) that fits.
3658    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3659      BestType = Context.IntTy;
3660      BestWidth = IntWidth;
3661    } else {
3662      BestWidth = Context.Target.getLongWidth();
3663
3664      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3665        BestType = Context.LongTy;
3666      else {
3667        BestWidth = Context.Target.getLongLongWidth();
3668
3669        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3670          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3671        BestType = Context.LongLongTy;
3672      }
3673    }
3674  } else {
3675    // If there is no negative value, figure out which of uint, ulong, ulonglong
3676    // fits.
3677    if (NumPositiveBits <= IntWidth) {
3678      BestType = Context.UnsignedIntTy;
3679      BestWidth = IntWidth;
3680    } else if (NumPositiveBits <=
3681               (BestWidth = Context.Target.getLongWidth())) {
3682      BestType = Context.UnsignedLongTy;
3683    } else {
3684      BestWidth = Context.Target.getLongLongWidth();
3685      assert(NumPositiveBits <= BestWidth &&
3686             "How could an initializer get larger than ULL?");
3687      BestType = Context.UnsignedLongLongTy;
3688    }
3689  }
3690
3691  // Loop over all of the enumerator constants, changing their types to match
3692  // the type of the enum if needed.
3693  for (unsigned i = 0; i != NumElements; ++i) {
3694    EnumConstantDecl *ECD =
3695      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3696    if (!ECD) continue;  // Already issued a diagnostic.
3697
3698    // Standard C says the enumerators have int type, but we allow, as an
3699    // extension, the enumerators to be larger than int size.  If each
3700    // enumerator value fits in an int, type it as an int, otherwise type it the
3701    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3702    // that X has type 'int', not 'unsigned'.
3703    if (ECD->getType() == Context.IntTy) {
3704      // Make sure the init value is signed.
3705      llvm::APSInt IV = ECD->getInitVal();
3706      IV.setIsSigned(true);
3707      ECD->setInitVal(IV);
3708
3709      if (getLangOptions().CPlusPlus)
3710        // C++ [dcl.enum]p4: Following the closing brace of an
3711        // enum-specifier, each enumerator has the type of its
3712        // enumeration.
3713        ECD->setType(EnumType);
3714      continue;  // Already int type.
3715    }
3716
3717    // Determine whether the value fits into an int.
3718    llvm::APSInt InitVal = ECD->getInitVal();
3719    bool FitsInInt;
3720    if (InitVal.isUnsigned() || !InitVal.isNegative())
3721      FitsInInt = InitVal.getActiveBits() < IntWidth;
3722    else
3723      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3724
3725    // If it fits into an integer type, force it.  Otherwise force it to match
3726    // the enum decl type.
3727    QualType NewTy;
3728    unsigned NewWidth;
3729    bool NewSign;
3730    if (FitsInInt) {
3731      NewTy = Context.IntTy;
3732      NewWidth = IntWidth;
3733      NewSign = true;
3734    } else if (ECD->getType() == BestType) {
3735      // Already the right type!
3736      if (getLangOptions().CPlusPlus)
3737        // C++ [dcl.enum]p4: Following the closing brace of an
3738        // enum-specifier, each enumerator has the type of its
3739        // enumeration.
3740        ECD->setType(EnumType);
3741      continue;
3742    } else {
3743      NewTy = BestType;
3744      NewWidth = BestWidth;
3745      NewSign = BestType->isSignedIntegerType();
3746    }
3747
3748    // Adjust the APSInt value.
3749    InitVal.extOrTrunc(NewWidth);
3750    InitVal.setIsSigned(NewSign);
3751    ECD->setInitVal(InitVal);
3752
3753    // Adjust the Expr initializer and type.
3754    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3755                                          /*isLvalue=*/false));
3756    if (getLangOptions().CPlusPlus)
3757      // C++ [dcl.enum]p4: Following the closing brace of an
3758      // enum-specifier, each enumerator has the type of its
3759      // enumeration.
3760      ECD->setType(EnumType);
3761    else
3762      ECD->setType(NewTy);
3763  }
3764
3765  Enum->completeDefinition(Context, BestType);
3766}
3767
3768Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3769                                          ExprArg expr) {
3770  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3771
3772  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3773}
3774
3775
3776void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3777                           ExprTy *alignment, SourceLocation PragmaLoc,
3778                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3779  Expr *Alignment = static_cast<Expr *>(alignment);
3780
3781  // If specified then alignment must be a "small" power of two.
3782  unsigned AlignmentVal = 0;
3783  if (Alignment) {
3784    llvm::APSInt Val;
3785    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3786        !Val.isPowerOf2() ||
3787        Val.getZExtValue() > 16) {
3788      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3789      delete Alignment;
3790      return; // Ignore
3791    }
3792
3793    AlignmentVal = (unsigned) Val.getZExtValue();
3794  }
3795
3796  switch (Kind) {
3797  case Action::PPK_Default: // pack([n])
3798    PackContext.setAlignment(AlignmentVal);
3799    break;
3800
3801  case Action::PPK_Show: // pack(show)
3802    // Show the current alignment, making sure to show the right value
3803    // for the default.
3804    AlignmentVal = PackContext.getAlignment();
3805    // FIXME: This should come from the target.
3806    if (AlignmentVal == 0)
3807      AlignmentVal = 8;
3808    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3809    break;
3810
3811  case Action::PPK_Push: // pack(push [, id] [, [n])
3812    PackContext.push(Name);
3813    // Set the new alignment if specified.
3814    if (Alignment)
3815      PackContext.setAlignment(AlignmentVal);
3816    break;
3817
3818  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3819    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3820    // "#pragma pack(pop, identifier, n) is undefined"
3821    if (Alignment && Name)
3822      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3823
3824    // Do the pop.
3825    if (!PackContext.pop(Name)) {
3826      // If a name was specified then failure indicates the name
3827      // wasn't found. Otherwise failure indicates the stack was
3828      // empty.
3829      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3830        << (Name ? "no record matching name" : "stack empty");
3831
3832      // FIXME: Warn about popping named records as MSVC does.
3833    } else {
3834      // Pop succeeded, set the new alignment if specified.
3835      if (Alignment)
3836        PackContext.setAlignment(AlignmentVal);
3837    }
3838    break;
3839
3840  default:
3841    assert(0 && "Invalid #pragma pack kind.");
3842  }
3843}
3844
3845bool PragmaPackStack::pop(IdentifierInfo *Name) {
3846  if (Stack.empty())
3847    return false;
3848
3849  // If name is empty just pop top.
3850  if (!Name) {
3851    Alignment = Stack.back().first;
3852    Stack.pop_back();
3853    return true;
3854  }
3855
3856  // Otherwise, find the named record.
3857  for (unsigned i = Stack.size(); i != 0; ) {
3858    --i;
3859    if (Stack[i].second == Name) {
3860      // Found it, pop up to and including this record.
3861      Alignment = Stack[i].first;
3862      Stack.erase(Stack.begin() + i, Stack.end());
3863      return true;
3864    }
3865  }
3866
3867  return false;
3868}
3869