SemaDecl.cpp revision dd8e0065207e953bb28b95ad9cb6b2c13f56b3b8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // Check whether we can use this type
68      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // Check whether we can use this interface.
75      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  return DC->getLexicalParent();
109}
110
111void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
112  assert(getContainingDC(DC) == CurContext &&
113      "The next DeclContext should be lexically contained in the current one.");
114  CurContext = DC;
115  S->setEntity(DC);
116}
117
118void Sema::PopDeclContext() {
119  assert(CurContext && "DeclContext imbalance!");
120
121  CurContext = getContainingDC(CurContext);
122}
123
124/// \brief Determine whether we allow overloading of the function
125/// PrevDecl with another declaration.
126///
127/// This routine determines whether overloading is possible, not
128/// whether some new function is actually an overload. It will return
129/// true in C++ (where we can always provide overloads) or, as an
130/// extension, in C when the previous function is already an
131/// overloaded function declaration or has the "overloadable"
132/// attribute.
133static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
134  if (Context.getLangOptions().CPlusPlus)
135    return true;
136
137  if (isa<OverloadedFunctionDecl>(PrevDecl))
138    return true;
139
140  return PrevDecl->getAttr<OverloadableAttr>() != 0;
141}
142
143/// Add this decl to the scope shadowed decl chains.
144void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
145  // Move up the scope chain until we find the nearest enclosing
146  // non-transparent context. The declaration will be introduced into this
147  // scope.
148  while (S->getEntity() &&
149         ((DeclContext *)S->getEntity())->isTransparentContext())
150    S = S->getParent();
151
152  S->AddDecl(D);
153
154  // Add scoped declarations into their context, so that they can be
155  // found later. Declarations without a context won't be inserted
156  // into any context.
157  CurContext->addDecl(D);
158
159  // C++ [basic.scope]p4:
160  //   -- exactly one declaration shall declare a class name or
161  //   enumeration name that is not a typedef name and the other
162  //   declarations shall all refer to the same object or
163  //   enumerator, or all refer to functions and function templates;
164  //   in this case the class name or enumeration name is hidden.
165  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
166    // We are pushing the name of a tag (enum or class).
167    if (CurContext->getLookupContext()
168          == TD->getDeclContext()->getLookupContext()) {
169      // We're pushing the tag into the current context, which might
170      // require some reshuffling in the identifier resolver.
171      IdentifierResolver::iterator
172        I = IdResolver.begin(TD->getDeclName()),
173        IEnd = IdResolver.end();
174      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
175        NamedDecl *PrevDecl = *I;
176        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
177             PrevDecl = *I, ++I) {
178          if (TD->declarationReplaces(*I)) {
179            // This is a redeclaration. Remove it from the chain and
180            // break out, so that we'll add in the shadowed
181            // declaration.
182            S->RemoveDecl(*I);
183            if (PrevDecl == *I) {
184              IdResolver.RemoveDecl(*I);
185              IdResolver.AddDecl(TD);
186              return;
187            } else {
188              IdResolver.RemoveDecl(*I);
189              break;
190            }
191          }
192        }
193
194        // There is already a declaration with the same name in the same
195        // scope, which is not a tag declaration. It must be found
196        // before we find the new declaration, so insert the new
197        // declaration at the end of the chain.
198        IdResolver.AddShadowedDecl(TD, PrevDecl);
199
200        return;
201      }
202    }
203  } else if (isa<FunctionDecl>(D) &&
204             AllowOverloadingOfFunction(D, Context)) {
205    // We are pushing the name of a function, which might be an
206    // overloaded name.
207    FunctionDecl *FD = cast<FunctionDecl>(D);
208    IdentifierResolver::iterator Redecl
209      = std::find_if(IdResolver.begin(FD->getDeclName()),
210                     IdResolver.end(),
211                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
212                                  FD));
213    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
214      // There is already a declaration of a function on our
215      // IdResolver chain. Replace it with this declaration.
216      S->RemoveDecl(*Redecl);
217      IdResolver.RemoveDecl(*Redecl);
218    }
219  }
220
221  IdResolver.AddDecl(D);
222}
223
224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
225  if (S->decl_empty()) return;
226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
227	 "Scope shouldn't contain decls!");
228
229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
230       I != E; ++I) {
231    Decl *TmpD = static_cast<Decl*>(*I);
232    assert(TmpD && "This decl didn't get pushed??");
233
234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
235    NamedDecl *D = cast<NamedDecl>(TmpD);
236
237    if (!D->getDeclName()) continue;
238
239    // Remove this name from our lexical scope.
240    IdResolver.RemoveDecl(D);
241  }
242}
243
244/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
245/// return 0 if one not found.
246ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
247  // The third "scope" argument is 0 since we aren't enabling lazy built-in
248  // creation from this context.
249  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
250
251  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
252}
253
254/// getNonFieldDeclScope - Retrieves the innermost scope, starting
255/// from S, where a non-field would be declared. This routine copes
256/// with the difference between C and C++ scoping rules in structs and
257/// unions. For example, the following code is well-formed in C but
258/// ill-formed in C++:
259/// @code
260/// struct S6 {
261///   enum { BAR } e;
262/// };
263///
264/// void test_S6() {
265///   struct S6 a;
266///   a.e = BAR;
267/// }
268/// @endcode
269/// For the declaration of BAR, this routine will return a different
270/// scope. The scope S will be the scope of the unnamed enumeration
271/// within S6. In C++, this routine will return the scope associated
272/// with S6, because the enumeration's scope is a transparent
273/// context but structures can contain non-field names. In C, this
274/// routine will return the translation unit scope, since the
275/// enumeration's scope is a transparent context and structures cannot
276/// contain non-field names.
277Scope *Sema::getNonFieldDeclScope(Scope *S) {
278  while (((S->getFlags() & Scope::DeclScope) == 0) ||
279         (S->getEntity() &&
280          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
281         (S->isClassScope() && !getLangOptions().CPlusPlus))
282    S = S->getParent();
283  return S;
284}
285
286void Sema::InitBuiltinVaListType() {
287  if (!Context.getBuiltinVaListType().isNull())
288    return;
289
290  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
291  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
292  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
293  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
294}
295
296/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
297/// file scope.  lazily create a decl for it. ForRedeclaration is true
298/// if we're creating this built-in in anticipation of redeclaring the
299/// built-in.
300NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
301                                     Scope *S, bool ForRedeclaration,
302                                     SourceLocation Loc) {
303  Builtin::ID BID = (Builtin::ID)bid;
304
305  if (Context.BuiltinInfo.hasVAListUse(BID))
306    InitBuiltinVaListType();
307
308  Builtin::Context::GetBuiltinTypeError Error;
309  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
310  switch (Error) {
311  case Builtin::Context::GE_None:
312    // Okay
313    break;
314
315  case Builtin::Context::GE_Missing_FILE:
316    if (ForRedeclaration)
317      Diag(Loc, diag::err_implicit_decl_requires_stdio)
318        << Context.BuiltinInfo.GetName(BID);
319    return 0;
320  }
321
322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
323    Diag(Loc, diag::ext_implicit_lib_function_decl)
324      << Context.BuiltinInfo.GetName(BID)
325      << R;
326    if (Context.BuiltinInfo.getHeaderName(BID) &&
327        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
328          != diag::MAP_IGNORE)
329      Diag(Loc, diag::note_please_include_header)
330        << Context.BuiltinInfo.getHeaderName(BID)
331        << Context.BuiltinInfo.GetName(BID);
332  }
333
334  FunctionDecl *New = FunctionDecl::Create(Context,
335                                           Context.getTranslationUnitDecl(),
336                                           Loc, II, R,
337                                           FunctionDecl::Extern, false);
338  New->setImplicit();
339
340  // Create Decl objects for each parameter, adding them to the
341  // FunctionDecl.
342  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
343    llvm::SmallVector<ParmVarDecl*, 16> Params;
344    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
345      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
346                                           FT->getArgType(i), VarDecl::None, 0));
347    New->setParams(Context, &Params[0], Params.size());
348  }
349
350  AddKnownFunctionAttributes(New);
351
352  // TUScope is the translation-unit scope to insert this function into.
353  // FIXME: This is hideous. We need to teach PushOnScopeChains to
354  // relate Scopes to DeclContexts, and probably eliminate CurContext
355  // entirely, but we're not there yet.
356  DeclContext *SavedContext = CurContext;
357  CurContext = Context.getTranslationUnitDecl();
358  PushOnScopeChains(New, TUScope);
359  CurContext = SavedContext;
360  return New;
361}
362
363/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
364/// everything from the standard library is defined.
365NamespaceDecl *Sema::GetStdNamespace() {
366  if (!StdNamespace) {
367    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
368    DeclContext *Global = Context.getTranslationUnitDecl();
369    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
370    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
371  }
372  return StdNamespace;
373}
374
375/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
376/// same name and scope as a previous declaration 'Old'.  Figure out
377/// how to resolve this situation, merging decls or emitting
378/// diagnostics as appropriate. Returns true if there was an error,
379/// false otherwise.
380///
381bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
382  bool objc_types = false;
383  // Allow multiple definitions for ObjC built-in typedefs.
384  // FIXME: Verify the underlying types are equivalent!
385  if (getLangOptions().ObjC1) {
386    const IdentifierInfo *TypeID = New->getIdentifier();
387    switch (TypeID->getLength()) {
388    default: break;
389    case 2:
390      if (!TypeID->isStr("id"))
391        break;
392      Context.setObjCIdType(New);
393      objc_types = true;
394      break;
395    case 5:
396      if (!TypeID->isStr("Class"))
397        break;
398      Context.setObjCClassType(New);
399      objc_types = true;
400      return false;
401    case 3:
402      if (!TypeID->isStr("SEL"))
403        break;
404      Context.setObjCSelType(New);
405      objc_types = true;
406      return false;
407    case 8:
408      if (!TypeID->isStr("Protocol"))
409        break;
410      Context.setObjCProtoType(New->getUnderlyingType());
411      objc_types = true;
412      return false;
413    }
414    // Fall through - the typedef name was not a builtin type.
415  }
416  // Verify the old decl was also a type.
417  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
418  if (!Old) {
419    Diag(New->getLocation(), diag::err_redefinition_different_kind)
420      << New->getDeclName();
421    if (!objc_types)
422      Diag(OldD->getLocation(), diag::note_previous_definition);
423    return true;
424  }
425
426  // Determine the "old" type we'll use for checking and diagnostics.
427  QualType OldType;
428  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
429    OldType = OldTypedef->getUnderlyingType();
430  else
431    OldType = Context.getTypeDeclType(Old);
432
433  // If the typedef types are not identical, reject them in all languages and
434  // with any extensions enabled.
435
436  if (OldType != New->getUnderlyingType() &&
437      Context.getCanonicalType(OldType) !=
438      Context.getCanonicalType(New->getUnderlyingType())) {
439    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
440      << New->getUnderlyingType() << OldType;
441    if (!objc_types)
442      Diag(Old->getLocation(), diag::note_previous_definition);
443    return true;
444  }
445  if (objc_types) return false;
446  if (getLangOptions().Microsoft) return false;
447
448  // C++ [dcl.typedef]p2:
449  //   In a given non-class scope, a typedef specifier can be used to
450  //   redefine the name of any type declared in that scope to refer
451  //   to the type to which it already refers.
452  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
453    return false;
454
455  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
456  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
457  // *either* declaration is in a system header. The code below implements
458  // this adhoc compatibility rule. FIXME: The following code will not
459  // work properly when compiling ".i" files (containing preprocessed output).
460  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
461    SourceManager &SrcMgr = Context.getSourceManager();
462    if (SrcMgr.isInSystemHeader(Old->getLocation()))
463      return false;
464    if (SrcMgr.isInSystemHeader(New->getLocation()))
465      return false;
466  }
467
468  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
469  Diag(Old->getLocation(), diag::note_previous_definition);
470  return true;
471}
472
473/// DeclhasAttr - returns true if decl Declaration already has the target
474/// attribute.
475static bool DeclHasAttr(const Decl *decl, const Attr *target) {
476  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
477    if (attr->getKind() == target->getKind())
478      return true;
479
480  return false;
481}
482
483/// MergeAttributes - append attributes from the Old decl to the New one.
484static void MergeAttributes(Decl *New, Decl *Old) {
485  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
486
487  while (attr) {
488    tmp = attr;
489    attr = attr->getNext();
490
491    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
492      tmp->setInherited(true);
493      New->addAttr(tmp);
494    } else {
495      tmp->setNext(0);
496      delete(tmp);
497    }
498  }
499
500  Old->invalidateAttrs();
501}
502
503/// MergeFunctionDecl - We just parsed a function 'New' from
504/// declarator D which has the same name and scope as a previous
505/// declaration 'Old'.  Figure out how to resolve this situation,
506/// merging decls or emitting diagnostics as appropriate.
507///
508/// In C++, New and Old must be declarations that are not
509/// overloaded. Use IsOverload to determine whether New and Old are
510/// overloaded, and to select the Old declaration that New should be
511/// merged with.
512///
513/// Returns true if there was an error, false otherwise.
514bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
515  assert(!isa<OverloadedFunctionDecl>(OldD) &&
516         "Cannot merge with an overloaded function declaration");
517
518  // Verify the old decl was also a function.
519  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
520  if (!Old) {
521    Diag(New->getLocation(), diag::err_redefinition_different_kind)
522      << New->getDeclName();
523    Diag(OldD->getLocation(), diag::note_previous_definition);
524    return true;
525  }
526
527  // Determine whether the previous declaration was a definition,
528  // implicit declaration, or a declaration.
529  diag::kind PrevDiag;
530  if (Old->isThisDeclarationADefinition())
531    PrevDiag = diag::note_previous_definition;
532  else if (Old->isImplicit())
533    PrevDiag = diag::note_previous_implicit_declaration;
534  else
535    PrevDiag = diag::note_previous_declaration;
536
537  QualType OldQType = Context.getCanonicalType(Old->getType());
538  QualType NewQType = Context.getCanonicalType(New->getType());
539
540  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
541      New->getStorageClass() == FunctionDecl::Static &&
542      Old->getStorageClass() != FunctionDecl::Static) {
543    Diag(New->getLocation(), diag::err_static_non_static)
544      << New;
545    Diag(Old->getLocation(), PrevDiag);
546    return true;
547  }
548
549  if (getLangOptions().CPlusPlus) {
550    // (C++98 13.1p2):
551    //   Certain function declarations cannot be overloaded:
552    //     -- Function declarations that differ only in the return type
553    //        cannot be overloaded.
554    QualType OldReturnType
555      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
556    QualType NewReturnType
557      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
558    if (OldReturnType != NewReturnType) {
559      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
560      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
561      return true;
562    }
563
564    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
565    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
566    if (OldMethod && NewMethod) {
567      //    -- Member function declarations with the same name and the
568      //       same parameter types cannot be overloaded if any of them
569      //       is a static member function declaration.
570      if (OldMethod->isStatic() || NewMethod->isStatic()) {
571        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
572        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
573        return true;
574      }
575
576      // C++ [class.mem]p1:
577      //   [...] A member shall not be declared twice in the
578      //   member-specification, except that a nested class or member
579      //   class template can be declared and then later defined.
580      if (OldMethod->getLexicalDeclContext() ==
581            NewMethod->getLexicalDeclContext()) {
582        unsigned NewDiag;
583        if (isa<CXXConstructorDecl>(OldMethod))
584          NewDiag = diag::err_constructor_redeclared;
585        else if (isa<CXXDestructorDecl>(NewMethod))
586          NewDiag = diag::err_destructor_redeclared;
587        else if (isa<CXXConversionDecl>(NewMethod))
588          NewDiag = diag::err_conv_function_redeclared;
589        else
590          NewDiag = diag::err_member_redeclared;
591
592        Diag(New->getLocation(), NewDiag);
593        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
594      }
595    }
596
597    // (C++98 8.3.5p3):
598    //   All declarations for a function shall agree exactly in both the
599    //   return type and the parameter-type-list.
600    if (OldQType == NewQType)
601      return MergeCompatibleFunctionDecls(New, Old);
602
603    // Fall through for conflicting redeclarations and redefinitions.
604  }
605
606  // C: Function types need to be compatible, not identical. This handles
607  // duplicate function decls like "void f(int); void f(enum X);" properly.
608  if (!getLangOptions().CPlusPlus &&
609      Context.typesAreCompatible(OldQType, NewQType)) {
610    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
611    const FunctionTypeProto *OldProto = 0;
612    if (isa<FunctionTypeNoProto>(NewFuncType) &&
613        (OldProto = OldQType->getAsFunctionTypeProto())) {
614      // The old declaration provided a function prototype, but the
615      // new declaration does not. Merge in the prototype.
616      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
617                                                 OldProto->arg_type_end());
618      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
619                                         &ParamTypes[0], ParamTypes.size(),
620                                         OldProto->isVariadic(),
621                                         OldProto->getTypeQuals());
622      New->setType(NewQType);
623      New->setInheritedPrototype();
624
625      // Synthesize a parameter for each argument type.
626      llvm::SmallVector<ParmVarDecl*, 16> Params;
627      for (FunctionTypeProto::arg_type_iterator
628             ParamType = OldProto->arg_type_begin(),
629             ParamEnd = OldProto->arg_type_end();
630           ParamType != ParamEnd; ++ParamType) {
631        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
632                                                 SourceLocation(), 0,
633                                                 *ParamType, VarDecl::None,
634                                                 0);
635        Param->setImplicit();
636        Params.push_back(Param);
637      }
638
639      New->setParams(Context, &Params[0], Params.size());
640
641    }
642
643    return MergeCompatibleFunctionDecls(New, Old);
644  }
645
646  // A function that has already been declared has been redeclared or defined
647  // with a different type- show appropriate diagnostic
648  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
649    // The user has declared a builtin function with an incompatible
650    // signature.
651    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
652      // The function the user is redeclaring is a library-defined
653      // function like 'malloc' or 'printf'. Warn about the
654      // redeclaration, then ignore it.
655      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
656      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
657        << Old << Old->getType();
658      return true;
659    }
660
661    PrevDiag = diag::note_previous_builtin_declaration;
662  }
663
664  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
665  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
666  return true;
667}
668
669/// \brief Completes the merge of two function declarations that are
670/// known to be compatible.
671///
672/// This routine handles the merging of attributes and other
673/// properties of function declarations form the old declaration to
674/// the new declaration, once we know that New is in fact a
675/// redeclaration of Old.
676///
677/// \returns false
678bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
679  // Merge the attributes
680  MergeAttributes(New, Old);
681
682  // Merge the storage class.
683  New->setStorageClass(Old->getStorageClass());
684
685  // FIXME: need to implement inline semantics
686
687  // Merge "pure" flag.
688  if (Old->isPure())
689    New->setPure();
690
691  // Merge the "deleted" flag.
692  if (Old->isDeleted())
693    New->setDeleted();
694
695  if (getLangOptions().CPlusPlus)
696    return MergeCXXFunctionDecl(New, Old);
697
698  return false;
699}
700
701/// Predicate for C "tentative" external object definitions (C99 6.9.2).
702static bool isTentativeDefinition(VarDecl *VD) {
703  if (VD->isFileVarDecl())
704    return (!VD->getInit() &&
705            (VD->getStorageClass() == VarDecl::None ||
706             VD->getStorageClass() == VarDecl::Static));
707  return false;
708}
709
710/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
711/// when dealing with C "tentative" external object definitions (C99 6.9.2).
712void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
713  bool VDIsTentative = isTentativeDefinition(VD);
714  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
715
716  // FIXME: I don't think this will actually see all of the
717  // redefinitions. Can't we check this property on-the-fly?
718  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
719                                    E = IdResolver.end();
720       I != E; ++I) {
721    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
722      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
723
724      // Handle the following case:
725      //   int a[10];
726      //   int a[];   - the code below makes sure we set the correct type.
727      //   int a[11]; - this is an error, size isn't 10.
728      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
729          OldDecl->getType()->isConstantArrayType())
730        VD->setType(OldDecl->getType());
731
732      // Check for "tentative" definitions. We can't accomplish this in
733      // MergeVarDecl since the initializer hasn't been attached.
734      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
735        continue;
736
737      // Handle __private_extern__ just like extern.
738      if (OldDecl->getStorageClass() != VarDecl::Extern &&
739          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
740          VD->getStorageClass() != VarDecl::Extern &&
741          VD->getStorageClass() != VarDecl::PrivateExtern) {
742        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
743        Diag(OldDecl->getLocation(), diag::note_previous_definition);
744        // One redefinition error is enough.
745        break;
746      }
747    }
748  }
749}
750
751/// MergeVarDecl - We just parsed a variable 'New' which has the same name
752/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
753/// situation, merging decls or emitting diagnostics as appropriate.
754///
755/// Tentative definition rules (C99 6.9.2p2) are checked by
756/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
757/// definitions here, since the initializer hasn't been attached.
758///
759bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
760  // Verify the old decl was also a variable.
761  VarDecl *Old = dyn_cast<VarDecl>(OldD);
762  if (!Old) {
763    Diag(New->getLocation(), diag::err_redefinition_different_kind)
764      << New->getDeclName();
765    Diag(OldD->getLocation(), diag::note_previous_definition);
766    return true;
767  }
768
769  MergeAttributes(New, Old);
770
771  // Merge the types
772  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
773  if (MergedT.isNull()) {
774    Diag(New->getLocation(), diag::err_redefinition_different_type)
775      << New->getDeclName();
776    Diag(Old->getLocation(), diag::note_previous_definition);
777    return true;
778  }
779  New->setType(MergedT);
780  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
781  if (New->getStorageClass() == VarDecl::Static &&
782      (Old->getStorageClass() == VarDecl::None ||
783       Old->getStorageClass() == VarDecl::Extern)) {
784    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
785    Diag(Old->getLocation(), diag::note_previous_definition);
786    return true;
787  }
788  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
789  if (New->getStorageClass() != VarDecl::Static &&
790      Old->getStorageClass() == VarDecl::Static) {
791    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
792    Diag(Old->getLocation(), diag::note_previous_definition);
793    return true;
794  }
795  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
796  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
797    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
798    Diag(Old->getLocation(), diag::note_previous_definition);
799    return true;
800  }
801  return false;
802}
803
804/// CheckParmsForFunctionDef - Check that the parameters of the given
805/// function are appropriate for the definition of a function. This
806/// takes care of any checks that cannot be performed on the
807/// declaration itself, e.g., that the types of each of the function
808/// parameters are complete.
809bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
810  bool HasInvalidParm = false;
811  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
812    ParmVarDecl *Param = FD->getParamDecl(p);
813
814    // C99 6.7.5.3p4: the parameters in a parameter type list in a
815    // function declarator that is part of a function definition of
816    // that function shall not have incomplete type.
817    if (!Param->isInvalidDecl() &&
818        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
819                               diag::err_typecheck_decl_incomplete_type)) {
820      Param->setInvalidDecl();
821      HasInvalidParm = true;
822    }
823
824    // C99 6.9.1p5: If the declarator includes a parameter type list, the
825    // declaration of each parameter shall include an identifier.
826    if (Param->getIdentifier() == 0 &&
827        !Param->isImplicit() &&
828        !getLangOptions().CPlusPlus)
829      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
830  }
831
832  return HasInvalidParm;
833}
834
835/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
836/// no declarator (e.g. "struct foo;") is parsed.
837Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
838  TagDecl *Tag = 0;
839  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
840      DS.getTypeSpecType() == DeclSpec::TST_struct ||
841      DS.getTypeSpecType() == DeclSpec::TST_union ||
842      DS.getTypeSpecType() == DeclSpec::TST_enum)
843    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
844
845  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
846    if (!Record->getDeclName() && Record->isDefinition() &&
847        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
848      return BuildAnonymousStructOrUnion(S, DS, Record);
849
850    // Microsoft allows unnamed struct/union fields. Don't complain
851    // about them.
852    // FIXME: Should we support Microsoft's extensions in this area?
853    if (Record->getDeclName() && getLangOptions().Microsoft)
854      return Tag;
855  }
856
857  if (!DS.isMissingDeclaratorOk() &&
858      DS.getTypeSpecType() != DeclSpec::TST_error) {
859    // Warn about typedefs of enums without names, since this is an
860    // extension in both Microsoft an GNU.
861    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
862        Tag && isa<EnumDecl>(Tag)) {
863      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
864        << DS.getSourceRange();
865      return Tag;
866    }
867
868    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
869      << DS.getSourceRange();
870    return 0;
871  }
872
873  return Tag;
874}
875
876/// InjectAnonymousStructOrUnionMembers - Inject the members of the
877/// anonymous struct or union AnonRecord into the owning context Owner
878/// and scope S. This routine will be invoked just after we realize
879/// that an unnamed union or struct is actually an anonymous union or
880/// struct, e.g.,
881///
882/// @code
883/// union {
884///   int i;
885///   float f;
886/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
887///    // f into the surrounding scope.x
888/// @endcode
889///
890/// This routine is recursive, injecting the names of nested anonymous
891/// structs/unions into the owning context and scope as well.
892bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
893                                               RecordDecl *AnonRecord) {
894  bool Invalid = false;
895  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
896                               FEnd = AnonRecord->field_end();
897       F != FEnd; ++F) {
898    if ((*F)->getDeclName()) {
899      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
900                                                LookupOrdinaryName, true);
901      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
902        // C++ [class.union]p2:
903        //   The names of the members of an anonymous union shall be
904        //   distinct from the names of any other entity in the
905        //   scope in which the anonymous union is declared.
906        unsigned diagKind
907          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
908                                 : diag::err_anonymous_struct_member_redecl;
909        Diag((*F)->getLocation(), diagKind)
910          << (*F)->getDeclName();
911        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
912        Invalid = true;
913      } else {
914        // C++ [class.union]p2:
915        //   For the purpose of name lookup, after the anonymous union
916        //   definition, the members of the anonymous union are
917        //   considered to have been defined in the scope in which the
918        //   anonymous union is declared.
919        Owner->makeDeclVisibleInContext(*F);
920        S->AddDecl(*F);
921        IdResolver.AddDecl(*F);
922      }
923    } else if (const RecordType *InnerRecordType
924                 = (*F)->getType()->getAsRecordType()) {
925      RecordDecl *InnerRecord = InnerRecordType->getDecl();
926      if (InnerRecord->isAnonymousStructOrUnion())
927        Invalid = Invalid ||
928          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
929    }
930  }
931
932  return Invalid;
933}
934
935/// ActOnAnonymousStructOrUnion - Handle the declaration of an
936/// anonymous structure or union. Anonymous unions are a C++ feature
937/// (C++ [class.union]) and a GNU C extension; anonymous structures
938/// are a GNU C and GNU C++ extension.
939Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
940                                                RecordDecl *Record) {
941  DeclContext *Owner = Record->getDeclContext();
942
943  // Diagnose whether this anonymous struct/union is an extension.
944  if (Record->isUnion() && !getLangOptions().CPlusPlus)
945    Diag(Record->getLocation(), diag::ext_anonymous_union);
946  else if (!Record->isUnion())
947    Diag(Record->getLocation(), diag::ext_anonymous_struct);
948
949  // C and C++ require different kinds of checks for anonymous
950  // structs/unions.
951  bool Invalid = false;
952  if (getLangOptions().CPlusPlus) {
953    const char* PrevSpec = 0;
954    // C++ [class.union]p3:
955    //   Anonymous unions declared in a named namespace or in the
956    //   global namespace shall be declared static.
957    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
958        (isa<TranslationUnitDecl>(Owner) ||
959         (isa<NamespaceDecl>(Owner) &&
960          cast<NamespaceDecl>(Owner)->getDeclName()))) {
961      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
962      Invalid = true;
963
964      // Recover by adding 'static'.
965      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
966    }
967    // C++ [class.union]p3:
968    //   A storage class is not allowed in a declaration of an
969    //   anonymous union in a class scope.
970    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
971             isa<RecordDecl>(Owner)) {
972      Diag(DS.getStorageClassSpecLoc(),
973           diag::err_anonymous_union_with_storage_spec);
974      Invalid = true;
975
976      // Recover by removing the storage specifier.
977      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
978                             PrevSpec);
979    }
980
981    // C++ [class.union]p2:
982    //   The member-specification of an anonymous union shall only
983    //   define non-static data members. [Note: nested types and
984    //   functions cannot be declared within an anonymous union. ]
985    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
986                                 MemEnd = Record->decls_end();
987         Mem != MemEnd; ++Mem) {
988      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
989        // C++ [class.union]p3:
990        //   An anonymous union shall not have private or protected
991        //   members (clause 11).
992        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
993          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
994            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
995          Invalid = true;
996        }
997      } else if ((*Mem)->isImplicit()) {
998        // Any implicit members are fine.
999      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1000        // This is a type that showed up in an
1001        // elaborated-type-specifier inside the anonymous struct or
1002        // union, but which actually declares a type outside of the
1003        // anonymous struct or union. It's okay.
1004      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1005        if (!MemRecord->isAnonymousStructOrUnion() &&
1006            MemRecord->getDeclName()) {
1007          // This is a nested type declaration.
1008          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1009            << (int)Record->isUnion();
1010          Invalid = true;
1011        }
1012      } else {
1013        // We have something that isn't a non-static data
1014        // member. Complain about it.
1015        unsigned DK = diag::err_anonymous_record_bad_member;
1016        if (isa<TypeDecl>(*Mem))
1017          DK = diag::err_anonymous_record_with_type;
1018        else if (isa<FunctionDecl>(*Mem))
1019          DK = diag::err_anonymous_record_with_function;
1020        else if (isa<VarDecl>(*Mem))
1021          DK = diag::err_anonymous_record_with_static;
1022        Diag((*Mem)->getLocation(), DK)
1023            << (int)Record->isUnion();
1024          Invalid = true;
1025      }
1026    }
1027  } else {
1028    // FIXME: Check GNU C semantics
1029    if (Record->isUnion() && !Owner->isRecord()) {
1030      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1031        << (int)getLangOptions().CPlusPlus;
1032      Invalid = true;
1033    }
1034  }
1035
1036  if (!Record->isUnion() && !Owner->isRecord()) {
1037    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1038      << (int)getLangOptions().CPlusPlus;
1039    Invalid = true;
1040  }
1041
1042  // Create a declaration for this anonymous struct/union.
1043  NamedDecl *Anon = 0;
1044  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1045    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1046                             /*IdentifierInfo=*/0,
1047                             Context.getTypeDeclType(Record),
1048                             /*BitWidth=*/0, /*Mutable=*/false);
1049    Anon->setAccess(AS_public);
1050    if (getLangOptions().CPlusPlus)
1051      FieldCollector->Add(cast<FieldDecl>(Anon));
1052  } else {
1053    VarDecl::StorageClass SC;
1054    switch (DS.getStorageClassSpec()) {
1055    default: assert(0 && "Unknown storage class!");
1056    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1057    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1058    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1059    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1060    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1061    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1062    case DeclSpec::SCS_mutable:
1063      // mutable can only appear on non-static class members, so it's always
1064      // an error here
1065      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1066      Invalid = true;
1067      SC = VarDecl::None;
1068      break;
1069    }
1070
1071    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1072                           /*IdentifierInfo=*/0,
1073                           Context.getTypeDeclType(Record),
1074                           SC, DS.getSourceRange().getBegin());
1075  }
1076  Anon->setImplicit();
1077
1078  // Add the anonymous struct/union object to the current
1079  // context. We'll be referencing this object when we refer to one of
1080  // its members.
1081  Owner->addDecl(Anon);
1082
1083  // Inject the members of the anonymous struct/union into the owning
1084  // context and into the identifier resolver chain for name lookup
1085  // purposes.
1086  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1087    Invalid = true;
1088
1089  // Mark this as an anonymous struct/union type. Note that we do not
1090  // do this until after we have already checked and injected the
1091  // members of this anonymous struct/union type, because otherwise
1092  // the members could be injected twice: once by DeclContext when it
1093  // builds its lookup table, and once by
1094  // InjectAnonymousStructOrUnionMembers.
1095  Record->setAnonymousStructOrUnion(true);
1096
1097  if (Invalid)
1098    Anon->setInvalidDecl();
1099
1100  return Anon;
1101}
1102
1103
1104/// GetNameForDeclarator - Determine the full declaration name for the
1105/// given Declarator.
1106DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1107  switch (D.getKind()) {
1108  case Declarator::DK_Abstract:
1109    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1110    return DeclarationName();
1111
1112  case Declarator::DK_Normal:
1113    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1114    return DeclarationName(D.getIdentifier());
1115
1116  case Declarator::DK_Constructor: {
1117    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1118    Ty = Context.getCanonicalType(Ty);
1119    return Context.DeclarationNames.getCXXConstructorName(Ty);
1120  }
1121
1122  case Declarator::DK_Destructor: {
1123    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1124    Ty = Context.getCanonicalType(Ty);
1125    return Context.DeclarationNames.getCXXDestructorName(Ty);
1126  }
1127
1128  case Declarator::DK_Conversion: {
1129    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1130    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1131    Ty = Context.getCanonicalType(Ty);
1132    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1133  }
1134
1135  case Declarator::DK_Operator:
1136    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1137    return Context.DeclarationNames.getCXXOperatorName(
1138                                                D.getOverloadedOperator());
1139  }
1140
1141  assert(false && "Unknown name kind");
1142  return DeclarationName();
1143}
1144
1145/// isNearlyMatchingFunction - Determine whether the C++ functions
1146/// Declaration and Definition are "nearly" matching. This heuristic
1147/// is used to improve diagnostics in the case where an out-of-line
1148/// function definition doesn't match any declaration within
1149/// the class or namespace.
1150static bool isNearlyMatchingFunction(ASTContext &Context,
1151                                     FunctionDecl *Declaration,
1152                                     FunctionDecl *Definition) {
1153  if (Declaration->param_size() != Definition->param_size())
1154    return false;
1155  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1156    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1157    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1158
1159    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1160    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1161    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1162      return false;
1163  }
1164
1165  return true;
1166}
1167
1168Sema::DeclTy *
1169Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1170                      bool IsFunctionDefinition) {
1171  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1172  DeclarationName Name = GetNameForDeclarator(D);
1173
1174  // All of these full declarators require an identifier.  If it doesn't have
1175  // one, the ParsedFreeStandingDeclSpec action should be used.
1176  if (!Name) {
1177    if (!D.getInvalidType())  // Reject this if we think it is valid.
1178      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1179           diag::err_declarator_need_ident)
1180        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1181    return 0;
1182  }
1183
1184  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1185  // we find one that is.
1186  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1187         (S->getFlags() & Scope::TemplateParamScope) != 0)
1188    S = S->getParent();
1189
1190  DeclContext *DC;
1191  NamedDecl *PrevDecl;
1192  NamedDecl *New;
1193  bool InvalidDecl = false;
1194
1195  QualType R = GetTypeForDeclarator(D, S);
1196  if (R.isNull()) {
1197    InvalidDecl = true;
1198    R = Context.IntTy;
1199  }
1200
1201  // See if this is a redefinition of a variable in the same scope.
1202  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1203    LookupNameKind NameKind = LookupOrdinaryName;
1204
1205    // If the declaration we're planning to build will be a function
1206    // or object with linkage, then look for another declaration with
1207    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1208    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1209      /* Do nothing*/;
1210    else if (R->isFunctionType()) {
1211      if (CurContext->isFunctionOrMethod())
1212        NameKind = LookupRedeclarationWithLinkage;
1213    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1214      NameKind = LookupRedeclarationWithLinkage;
1215
1216    DC = CurContext;
1217    PrevDecl = LookupName(S, Name, NameKind, true,
1218                          D.getDeclSpec().getStorageClassSpec() !=
1219                            DeclSpec::SCS_static,
1220                          D.getIdentifierLoc());
1221  } else { // Something like "int foo::x;"
1222    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1223    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1224
1225    // C++ 7.3.1.2p2:
1226    // Members (including explicit specializations of templates) of a named
1227    // namespace can also be defined outside that namespace by explicit
1228    // qualification of the name being defined, provided that the entity being
1229    // defined was already declared in the namespace and the definition appears
1230    // after the point of declaration in a namespace that encloses the
1231    // declarations namespace.
1232    //
1233    // Note that we only check the context at this point. We don't yet
1234    // have enough information to make sure that PrevDecl is actually
1235    // the declaration we want to match. For example, given:
1236    //
1237    //   class X {
1238    //     void f();
1239    //     void f(float);
1240    //   };
1241    //
1242    //   void X::f(int) { } // ill-formed
1243    //
1244    // In this case, PrevDecl will point to the overload set
1245    // containing the two f's declared in X, but neither of them
1246    // matches.
1247
1248    // First check whether we named the global scope.
1249    if (isa<TranslationUnitDecl>(DC)) {
1250      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1251        << Name << D.getCXXScopeSpec().getRange();
1252    } else if (!CurContext->Encloses(DC)) {
1253      // The qualifying scope doesn't enclose the original declaration.
1254      // Emit diagnostic based on current scope.
1255      SourceLocation L = D.getIdentifierLoc();
1256      SourceRange R = D.getCXXScopeSpec().getRange();
1257      if (isa<FunctionDecl>(CurContext))
1258        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1259      else
1260        Diag(L, diag::err_invalid_declarator_scope)
1261          << Name << cast<NamedDecl>(DC) << R;
1262      InvalidDecl = true;
1263    }
1264  }
1265
1266  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1267    // Maybe we will complain about the shadowed template parameter.
1268    InvalidDecl = InvalidDecl
1269      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1270    // Just pretend that we didn't see the previous declaration.
1271    PrevDecl = 0;
1272  }
1273
1274  // In C++, the previous declaration we find might be a tag type
1275  // (class or enum). In this case, the new declaration will hide the
1276  // tag type. Note that this does does not apply if we're declaring a
1277  // typedef (C++ [dcl.typedef]p4).
1278  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1279      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1280    PrevDecl = 0;
1281
1282  bool Redeclaration = false;
1283  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1284    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1285                                 InvalidDecl, Redeclaration);
1286  } else if (R->isFunctionType()) {
1287    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1288                                  IsFunctionDefinition, InvalidDecl,
1289                                  Redeclaration);
1290  } else {
1291    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1292                                  InvalidDecl, Redeclaration);
1293  }
1294
1295  if (New == 0)
1296    return 0;
1297
1298  // Set the lexical context. If the declarator has a C++ scope specifier, the
1299  // lexical context will be different from the semantic context.
1300  New->setLexicalDeclContext(CurContext);
1301
1302  // If this has an identifier and is not an invalid redeclaration,
1303  // add it to the scope stack.
1304  if (Name && !(Redeclaration && InvalidDecl))
1305    PushOnScopeChains(New, S);
1306  // If any semantic error occurred, mark the decl as invalid.
1307  if (D.getInvalidType() || InvalidDecl)
1308    New->setInvalidDecl();
1309
1310  return New;
1311}
1312
1313/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1314/// types into constant array types in certain situations which would otherwise
1315/// be errors (for GCC compatibility).
1316static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1317                                                    ASTContext &Context,
1318                                                    bool &SizeIsNegative) {
1319  // This method tries to turn a variable array into a constant
1320  // array even when the size isn't an ICE.  This is necessary
1321  // for compatibility with code that depends on gcc's buggy
1322  // constant expression folding, like struct {char x[(int)(char*)2];}
1323  SizeIsNegative = false;
1324
1325  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1326    QualType Pointee = PTy->getPointeeType();
1327    QualType FixedType =
1328        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1329    if (FixedType.isNull()) return FixedType;
1330    FixedType = Context.getPointerType(FixedType);
1331    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1332    return FixedType;
1333  }
1334
1335  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1336  if (!VLATy) return QualType();
1337
1338  Expr::EvalResult EvalResult;
1339  if (!VLATy->getSizeExpr() ||
1340      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
1341    return QualType();
1342
1343  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
1344  llvm::APSInt &Res = EvalResult.Val.getInt();
1345  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1346    return Context.getConstantArrayType(VLATy->getElementType(),
1347                                        Res, ArrayType::Normal, 0);
1348
1349  SizeIsNegative = true;
1350  return QualType();
1351}
1352
1353NamedDecl*
1354Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1355                             QualType R, Decl* LastDeclarator,
1356                             Decl* PrevDecl, bool& InvalidDecl,
1357                             bool &Redeclaration) {
1358  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1359  if (D.getCXXScopeSpec().isSet()) {
1360    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1361      << D.getCXXScopeSpec().getRange();
1362    InvalidDecl = true;
1363    // Pretend we didn't see the scope specifier.
1364    DC = 0;
1365  }
1366
1367  // Check that there are no default arguments (C++ only).
1368  if (getLangOptions().CPlusPlus)
1369    CheckExtraCXXDefaultArguments(D);
1370
1371  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1372  if (!NewTD) return 0;
1373
1374  // Handle attributes prior to checking for duplicates in MergeVarDecl
1375  ProcessDeclAttributes(NewTD, D);
1376  // Merge the decl with the existing one if appropriate. If the decl is
1377  // in an outer scope, it isn't the same thing.
1378  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1379    Redeclaration = true;
1380    if (MergeTypeDefDecl(NewTD, PrevDecl))
1381      InvalidDecl = true;
1382  }
1383
1384  if (S->getFnParent() == 0) {
1385    QualType T = NewTD->getUnderlyingType();
1386    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1387    // then it shall have block scope.
1388    if (T->isVariablyModifiedType()) {
1389      bool SizeIsNegative;
1390      QualType FixedTy =
1391          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1392      if (!FixedTy.isNull()) {
1393        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1394        NewTD->setUnderlyingType(FixedTy);
1395      } else {
1396        if (SizeIsNegative)
1397          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1398        else if (T->isVariableArrayType())
1399          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1400        else
1401          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1402        InvalidDecl = true;
1403      }
1404    }
1405  }
1406  return NewTD;
1407}
1408
1409/// \brief Determines whether the given declaration is an out-of-scope
1410/// previous declaration.
1411///
1412/// This routine should be invoked when name lookup has found a
1413/// previous declaration (PrevDecl) that is not in the scope where a
1414/// new declaration by the same name is being introduced. If the new
1415/// declaration occurs in a local scope, previous declarations with
1416/// linkage may still be considered previous declarations (C99
1417/// 6.2.2p4-5, C++ [basic.link]p6).
1418///
1419/// \param PrevDecl the previous declaration found by name
1420/// lookup
1421///
1422/// \param DC the context in which the new declaration is being
1423/// declared.
1424///
1425/// \returns true if PrevDecl is an out-of-scope previous declaration
1426/// for a new delcaration with the same name.
1427static bool
1428isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1429                                ASTContext &Context) {
1430  if (!PrevDecl)
1431    return 0;
1432
1433  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1434  // case we need to check each of the overloaded functions.
1435  if (!PrevDecl->hasLinkage())
1436    return false;
1437
1438  if (Context.getLangOptions().CPlusPlus) {
1439    // C++ [basic.link]p6:
1440    //   If there is a visible declaration of an entity with linkage
1441    //   having the same name and type, ignoring entities declared
1442    //   outside the innermost enclosing namespace scope, the block
1443    //   scope declaration declares that same entity and receives the
1444    //   linkage of the previous declaration.
1445    DeclContext *OuterContext = DC->getLookupContext();
1446    if (!OuterContext->isFunctionOrMethod())
1447      // This rule only applies to block-scope declarations.
1448      return false;
1449    else {
1450      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1451      if (PrevOuterContext->isRecord())
1452        // We found a member function: ignore it.
1453        return false;
1454      else {
1455        // Find the innermost enclosing namespace for the new and
1456        // previous declarations.
1457        while (!OuterContext->isFileContext())
1458          OuterContext = OuterContext->getParent();
1459        while (!PrevOuterContext->isFileContext())
1460          PrevOuterContext = PrevOuterContext->getParent();
1461
1462        // The previous declaration is in a different namespace, so it
1463        // isn't the same function.
1464        if (OuterContext->getPrimaryContext() !=
1465            PrevOuterContext->getPrimaryContext())
1466          return false;
1467      }
1468    }
1469  }
1470
1471  return true;
1472}
1473
1474/// \brief Inject a locally-scoped declaration with external linkage
1475/// into the appropriate namespace scope.
1476///
1477/// Given a declaration of an entity with linkage that occurs within a
1478/// local scope, this routine inject that declaration into top-level
1479/// scope so that it will be visible for later uses and declarations
1480/// of the same entity.
1481void Sema::InjectLocallyScopedExternalDeclaration(ValueDecl *VD) {
1482  // FIXME: We don't do this in C++ because, although we would like
1483  // to get the extra checking that this operation implies,
1484  // the declaration itself is not visible according to C++'s rules.
1485  assert(!getLangOptions().CPlusPlus &&
1486         "Can't inject locally-scoped declarations in C++");
1487  IdentifierResolver::iterator I = IdResolver.begin(VD->getDeclName()),
1488                            IEnd = IdResolver.end();
1489  NamedDecl *PrevDecl = 0;
1490  while (I != IEnd && !isa<TranslationUnitDecl>((*I)->getDeclContext())) {
1491    PrevDecl = *I;
1492    ++I;
1493  }
1494
1495  if (I == IEnd) {
1496    // No name with this identifier has been declared at translation
1497    // unit scope. Add this name into the appropriate scope.
1498    if (PrevDecl)
1499      IdResolver.AddShadowedDecl(VD, PrevDecl);
1500    else
1501      IdResolver.AddDecl(VD);
1502    TUScope->AddDecl(VD);
1503    return;
1504  }
1505
1506  if (isa<TagDecl>(*I)) {
1507    // The first thing we found was a tag declaration, so insert
1508    // this function so that it will be found before the tag
1509    // declaration.
1510    if (PrevDecl)
1511      IdResolver.AddShadowedDecl(VD, PrevDecl);
1512    else
1513      IdResolver.AddDecl(VD);
1514    TUScope->AddDecl(VD);
1515    return;
1516  }
1517
1518  if (VD->declarationReplaces(*I)) {
1519    // We found a previous declaration of the same entity. Replace
1520    // that declaration with this one.
1521    TUScope->RemoveDecl(*I);
1522    TUScope->AddDecl(VD);
1523    IdResolver.RemoveDecl(*I);
1524    if (PrevDecl)
1525      IdResolver.AddShadowedDecl(VD, PrevDecl);
1526    else
1527      IdResolver.AddDecl(VD);
1528  }
1529}
1530
1531NamedDecl*
1532Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1533                              QualType R, Decl* LastDeclarator,
1534                              NamedDecl* PrevDecl, bool& InvalidDecl,
1535                              bool &Redeclaration) {
1536  DeclarationName Name = GetNameForDeclarator(D);
1537
1538  // Check that there are no default arguments (C++ only).
1539  if (getLangOptions().CPlusPlus)
1540    CheckExtraCXXDefaultArguments(D);
1541
1542  if (R.getTypePtr()->isObjCInterfaceType()) {
1543    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1544    InvalidDecl = true;
1545  }
1546
1547  VarDecl *NewVD;
1548  VarDecl::StorageClass SC;
1549  switch (D.getDeclSpec().getStorageClassSpec()) {
1550  default: assert(0 && "Unknown storage class!");
1551  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1552  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1553  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1554  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1555  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1556  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1557  case DeclSpec::SCS_mutable:
1558    // mutable can only appear on non-static class members, so it's always
1559    // an error here
1560    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1561    InvalidDecl = true;
1562    SC = VarDecl::None;
1563    break;
1564  }
1565
1566  IdentifierInfo *II = Name.getAsIdentifierInfo();
1567  if (!II) {
1568    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1569      << Name.getAsString();
1570    return 0;
1571  }
1572
1573  if (DC->isRecord()) {
1574    // This is a static data member for a C++ class.
1575    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1576                                    D.getIdentifierLoc(), II,
1577                                    R);
1578  } else {
1579    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1580    if (S->getFnParent() == 0) {
1581      // C99 6.9p2: The storage-class specifiers auto and register shall not
1582      // appear in the declaration specifiers in an external declaration.
1583      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1584        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1585        InvalidDecl = true;
1586      }
1587    }
1588    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1589                            II, R, SC,
1590                            // FIXME: Move to DeclGroup...
1591                            D.getDeclSpec().getSourceRange().getBegin());
1592    NewVD->setThreadSpecified(ThreadSpecified);
1593  }
1594  NewVD->setNextDeclarator(LastDeclarator);
1595
1596  // Handle attributes prior to checking for duplicates in MergeVarDecl
1597  ProcessDeclAttributes(NewVD, D);
1598
1599  // Handle GNU asm-label extension (encoded as an attribute).
1600  if (Expr *E = (Expr*) D.getAsmLabel()) {
1601    // The parser guarantees this is a string.
1602    StringLiteral *SE = cast<StringLiteral>(E);
1603    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1604                                                SE->getByteLength())));
1605  }
1606
1607  // Emit an error if an address space was applied to decl with local storage.
1608  // This includes arrays of objects with address space qualifiers, but not
1609  // automatic variables that point to other address spaces.
1610  // ISO/IEC TR 18037 S5.1.2
1611  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1612    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1613    InvalidDecl = true;
1614  }
1615
1616  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1617    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1618  }
1619
1620  // If name lookup finds a previous declaration that is not in the
1621  // same scope as the new declaration, this may still be an
1622  // acceptable redeclaration.
1623  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1624      !(NewVD->hasLinkage() &&
1625        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1626    PrevDecl = 0;
1627
1628  // Merge the decl with the existing one if appropriate.
1629  if (PrevDecl) {
1630    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1631      // The user tried to define a non-static data member
1632      // out-of-line (C++ [dcl.meaning]p1).
1633      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1634        << D.getCXXScopeSpec().getRange();
1635      NewVD->Destroy(Context);
1636      return 0;
1637    }
1638
1639    Redeclaration = true;
1640    if (MergeVarDecl(NewVD, PrevDecl))
1641      InvalidDecl = true;
1642
1643    if (D.getCXXScopeSpec().isSet()) {
1644      // No previous declaration in the qualifying scope.
1645      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1646        << Name << D.getCXXScopeSpec().getRange();
1647      InvalidDecl = true;
1648    }
1649  }
1650
1651  // If this is a locally-scoped extern variable in C, inject a
1652  // declaration into translation unit scope so that all external
1653  // declarations are visible.
1654  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod() &&
1655      NewVD->hasLinkage())
1656    InjectLocallyScopedExternalDeclaration(NewVD);
1657
1658  return NewVD;
1659}
1660
1661NamedDecl*
1662Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1663                              QualType R, Decl *LastDeclarator,
1664                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1665                              bool& InvalidDecl, bool &Redeclaration) {
1666  assert(R.getTypePtr()->isFunctionType());
1667
1668  DeclarationName Name = GetNameForDeclarator(D);
1669  FunctionDecl::StorageClass SC = FunctionDecl::None;
1670  switch (D.getDeclSpec().getStorageClassSpec()) {
1671  default: assert(0 && "Unknown storage class!");
1672  case DeclSpec::SCS_auto:
1673  case DeclSpec::SCS_register:
1674  case DeclSpec::SCS_mutable:
1675    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1676         diag::err_typecheck_sclass_func);
1677    InvalidDecl = true;
1678    break;
1679  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1680  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1681  case DeclSpec::SCS_static: {
1682    if (DC->getLookupContext()->isFunctionOrMethod()) {
1683      // C99 6.7.1p5:
1684      //   The declaration of an identifier for a function that has
1685      //   block scope shall have no explicit storage-class specifier
1686      //   other than extern
1687      // See also (C++ [dcl.stc]p4).
1688      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1689           diag::err_static_block_func);
1690      SC = FunctionDecl::None;
1691    } else
1692      SC = FunctionDecl::Static;
1693    break;
1694  }
1695  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1696  }
1697
1698  bool isInline = D.getDeclSpec().isInlineSpecified();
1699  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1700  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1701
1702  FunctionDecl *NewFD;
1703  if (D.getKind() == Declarator::DK_Constructor) {
1704    // This is a C++ constructor declaration.
1705    assert(DC->isRecord() &&
1706           "Constructors can only be declared in a member context");
1707
1708    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1709
1710    // Create the new declaration
1711    NewFD = CXXConstructorDecl::Create(Context,
1712                                       cast<CXXRecordDecl>(DC),
1713                                       D.getIdentifierLoc(), Name, R,
1714                                       isExplicit, isInline,
1715                                       /*isImplicitlyDeclared=*/false);
1716
1717    if (InvalidDecl)
1718      NewFD->setInvalidDecl();
1719  } else if (D.getKind() == Declarator::DK_Destructor) {
1720    // This is a C++ destructor declaration.
1721    if (DC->isRecord()) {
1722      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1723
1724      NewFD = CXXDestructorDecl::Create(Context,
1725                                        cast<CXXRecordDecl>(DC),
1726                                        D.getIdentifierLoc(), Name, R,
1727                                        isInline,
1728                                        /*isImplicitlyDeclared=*/false);
1729
1730      if (InvalidDecl)
1731        NewFD->setInvalidDecl();
1732    } else {
1733      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1734
1735      // Create a FunctionDecl to satisfy the function definition parsing
1736      // code path.
1737      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1738                                   Name, R, SC, isInline,
1739                                   // FIXME: Move to DeclGroup...
1740                                   D.getDeclSpec().getSourceRange().getBegin());
1741      InvalidDecl = true;
1742      NewFD->setInvalidDecl();
1743    }
1744  } else if (D.getKind() == Declarator::DK_Conversion) {
1745    if (!DC->isRecord()) {
1746      Diag(D.getIdentifierLoc(),
1747           diag::err_conv_function_not_member);
1748      return 0;
1749    } else {
1750      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1751
1752      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1753                                        D.getIdentifierLoc(), Name, R,
1754                                        isInline, isExplicit);
1755
1756      if (InvalidDecl)
1757        NewFD->setInvalidDecl();
1758    }
1759  } else if (DC->isRecord()) {
1760    // This is a C++ method declaration.
1761    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1762                                  D.getIdentifierLoc(), Name, R,
1763                                  (SC == FunctionDecl::Static), isInline);
1764  } else {
1765    NewFD = FunctionDecl::Create(Context, DC,
1766                                 D.getIdentifierLoc(),
1767                                 Name, R, SC, isInline,
1768                                 // FIXME: Move to DeclGroup...
1769                                 D.getDeclSpec().getSourceRange().getBegin());
1770  }
1771  NewFD->setNextDeclarator(LastDeclarator);
1772
1773  // Set the lexical context. If the declarator has a C++
1774  // scope specifier, the lexical context will be different
1775  // from the semantic context.
1776  NewFD->setLexicalDeclContext(CurContext);
1777
1778  // Handle GNU asm-label extension (encoded as an attribute).
1779  if (Expr *E = (Expr*) D.getAsmLabel()) {
1780    // The parser guarantees this is a string.
1781    StringLiteral *SE = cast<StringLiteral>(E);
1782    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1783                                                SE->getByteLength())));
1784  }
1785
1786  // Copy the parameter declarations from the declarator D to
1787  // the function declaration NewFD, if they are available.
1788  if (D.getNumTypeObjects() > 0) {
1789    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1790
1791    // Create Decl objects for each parameter, adding them to the
1792    // FunctionDecl.
1793    llvm::SmallVector<ParmVarDecl*, 16> Params;
1794
1795    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1796    // function that takes no arguments, not a function that takes a
1797    // single void argument.
1798    // We let through "const void" here because Sema::GetTypeForDeclarator
1799    // already checks for that case.
1800    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1801        FTI.ArgInfo[0].Param &&
1802        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1803      // empty arg list, don't push any params.
1804      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1805
1806      // In C++, the empty parameter-type-list must be spelled "void"; a
1807      // typedef of void is not permitted.
1808      if (getLangOptions().CPlusPlus &&
1809          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1810        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1811      }
1812    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1813      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1814        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1815    }
1816
1817    NewFD->setParams(Context, &Params[0], Params.size());
1818  } else if (R->getAsTypedefType()) {
1819    // When we're declaring a function with a typedef, as in the
1820    // following example, we'll need to synthesize (unnamed)
1821    // parameters for use in the declaration.
1822    //
1823    // @code
1824    // typedef void fn(int);
1825    // fn f;
1826    // @endcode
1827    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1828    if (!FT) {
1829      // This is a typedef of a function with no prototype, so we
1830      // don't need to do anything.
1831    } else if ((FT->getNumArgs() == 0) ||
1832               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1833                FT->getArgType(0)->isVoidType())) {
1834      // This is a zero-argument function. We don't need to do anything.
1835    } else {
1836      // Synthesize a parameter for each argument type.
1837      llvm::SmallVector<ParmVarDecl*, 16> Params;
1838      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1839           ArgType != FT->arg_type_end(); ++ArgType) {
1840        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1841                                                 SourceLocation(), 0,
1842                                                 *ArgType, VarDecl::None,
1843                                                 0);
1844        Param->setImplicit();
1845        Params.push_back(Param);
1846      }
1847
1848      NewFD->setParams(Context, &Params[0], Params.size());
1849    }
1850  }
1851
1852  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1853    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1854  else if (isa<CXXDestructorDecl>(NewFD)) {
1855    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1856    Record->setUserDeclaredDestructor(true);
1857    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1858    // user-defined destructor.
1859    Record->setPOD(false);
1860  } else if (CXXConversionDecl *Conversion =
1861             dyn_cast<CXXConversionDecl>(NewFD))
1862    ActOnConversionDeclarator(Conversion);
1863
1864  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1865  if (NewFD->isOverloadedOperator() &&
1866      CheckOverloadedOperatorDeclaration(NewFD))
1867    NewFD->setInvalidDecl();
1868
1869  // If name lookup finds a previous declaration that is not in the
1870  // same scope as the new declaration, this may still be an
1871  // acceptable redeclaration.
1872  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1873      !(NewFD->hasLinkage() &&
1874        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1875    PrevDecl = 0;
1876
1877  // Merge or overload the declaration with an existing declaration of
1878  // the same name, if appropriate.
1879  bool OverloadableAttrRequired = false;
1880  if (PrevDecl) {
1881    // Determine whether NewFD is an overload of PrevDecl or
1882    // a declaration that requires merging. If it's an overload,
1883    // there's no more work to do here; we'll just add the new
1884    // function to the scope.
1885    OverloadedFunctionDecl::function_iterator MatchedDecl;
1886
1887    if (!getLangOptions().CPlusPlus &&
1888        AllowOverloadingOfFunction(PrevDecl, Context)) {
1889      OverloadableAttrRequired = true;
1890
1891      // Functions marked "overloadable" must have a prototype (that
1892      // we can't get through declaration merging).
1893      if (!R->getAsFunctionTypeProto()) {
1894        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1895          << NewFD;
1896        InvalidDecl = true;
1897        Redeclaration = true;
1898
1899        // Turn this into a variadic function with no parameters.
1900        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1901                                    0, 0, true, 0);
1902        NewFD->setType(R);
1903      }
1904    }
1905
1906    if (PrevDecl &&
1907        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1908         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1909      Redeclaration = true;
1910      Decl *OldDecl = PrevDecl;
1911
1912      // If PrevDecl was an overloaded function, extract the
1913      // FunctionDecl that matched.
1914      if (isa<OverloadedFunctionDecl>(PrevDecl))
1915        OldDecl = *MatchedDecl;
1916
1917      // NewFD and PrevDecl represent declarations that need to be
1918      // merged.
1919      if (MergeFunctionDecl(NewFD, OldDecl))
1920        InvalidDecl = true;
1921
1922      if (!InvalidDecl) {
1923        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1924
1925        // An out-of-line member function declaration must also be a
1926        // definition (C++ [dcl.meaning]p1).
1927        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1928            !InvalidDecl) {
1929          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1930            << D.getCXXScopeSpec().getRange();
1931          NewFD->setInvalidDecl();
1932        }
1933      }
1934    }
1935  }
1936
1937  if (D.getCXXScopeSpec().isSet() &&
1938      (!PrevDecl || !Redeclaration)) {
1939    // The user tried to provide an out-of-line definition for a
1940    // function that is a member of a class or namespace, but there
1941    // was no such member function declared (C++ [class.mfct]p2,
1942    // C++ [namespace.memdef]p2). For example:
1943    //
1944    // class X {
1945    //   void f() const;
1946    // };
1947    //
1948    // void X::f() { } // ill-formed
1949    //
1950    // Complain about this problem, and attempt to suggest close
1951    // matches (e.g., those that differ only in cv-qualifiers and
1952    // whether the parameter types are references).
1953    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1954      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1955    InvalidDecl = true;
1956
1957    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1958                                            true);
1959    assert(!Prev.isAmbiguous() &&
1960           "Cannot have an ambiguity in previous-declaration lookup");
1961    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1962         Func != FuncEnd; ++Func) {
1963      if (isa<FunctionDecl>(*Func) &&
1964          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1965        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1966    }
1967
1968    PrevDecl = 0;
1969  }
1970
1971  // Handle attributes. We need to have merged decls when handling attributes
1972  // (for example to check for conflicts, etc).
1973  ProcessDeclAttributes(NewFD, D);
1974  AddKnownFunctionAttributes(NewFD);
1975
1976  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1977    // If a function name is overloadable in C, then every function
1978    // with that name must be marked "overloadable".
1979    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1980      << Redeclaration << NewFD;
1981    if (PrevDecl)
1982      Diag(PrevDecl->getLocation(),
1983           diag::note_attribute_overloadable_prev_overload);
1984    NewFD->addAttr(new OverloadableAttr);
1985  }
1986
1987  if (getLangOptions().CPlusPlus) {
1988    // In C++, check default arguments now that we have merged decls. Unless
1989    // the lexical context is the class, because in this case this is done
1990    // during delayed parsing anyway.
1991    if (!CurContext->isRecord())
1992      CheckCXXDefaultArguments(NewFD);
1993
1994    // An out-of-line member function declaration must also be a
1995    // definition (C++ [dcl.meaning]p1).
1996    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1997      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1998        << D.getCXXScopeSpec().getRange();
1999      InvalidDecl = true;
2000    }
2001  }
2002
2003  // If this is a locally-scoped function in C, inject a declaration
2004  // into translation unit scope so that all external declarations are
2005  // visible.
2006  if (!getLangOptions().CPlusPlus && CurContext->isFunctionOrMethod())
2007    InjectLocallyScopedExternalDeclaration(NewFD);
2008
2009  return NewFD;
2010}
2011
2012void Sema::InitializerElementNotConstant(const Expr *Init) {
2013  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2014    << Init->getSourceRange();
2015}
2016
2017bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
2018  switch (Init->getStmtClass()) {
2019  default:
2020    InitializerElementNotConstant(Init);
2021    return true;
2022  case Expr::ParenExprClass: {
2023    const ParenExpr* PE = cast<ParenExpr>(Init);
2024    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
2025  }
2026  case Expr::CompoundLiteralExprClass:
2027    return cast<CompoundLiteralExpr>(Init)->isFileScope();
2028  case Expr::DeclRefExprClass:
2029  case Expr::QualifiedDeclRefExprClass: {
2030    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2031    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2032      if (VD->hasGlobalStorage())
2033        return false;
2034      InitializerElementNotConstant(Init);
2035      return true;
2036    }
2037    if (isa<FunctionDecl>(D))
2038      return false;
2039    InitializerElementNotConstant(Init);
2040    return true;
2041  }
2042  case Expr::MemberExprClass: {
2043    const MemberExpr *M = cast<MemberExpr>(Init);
2044    if (M->isArrow())
2045      return CheckAddressConstantExpression(M->getBase());
2046    return CheckAddressConstantExpressionLValue(M->getBase());
2047  }
2048  case Expr::ArraySubscriptExprClass: {
2049    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
2050    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
2051    return CheckAddressConstantExpression(ASE->getBase()) ||
2052           CheckArithmeticConstantExpression(ASE->getIdx());
2053  }
2054  case Expr::StringLiteralClass:
2055  case Expr::ObjCEncodeExprClass:
2056  case Expr::PredefinedExprClass:
2057    return false;
2058  case Expr::UnaryOperatorClass: {
2059    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2060
2061    // C99 6.6p9
2062    if (Exp->getOpcode() == UnaryOperator::Deref)
2063      return CheckAddressConstantExpression(Exp->getSubExpr());
2064
2065    InitializerElementNotConstant(Init);
2066    return true;
2067  }
2068  }
2069}
2070
2071bool Sema::CheckAddressConstantExpression(const Expr* Init) {
2072  switch (Init->getStmtClass()) {
2073  default:
2074    InitializerElementNotConstant(Init);
2075    return true;
2076  case Expr::ParenExprClass:
2077    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
2078  case Expr::StringLiteralClass:
2079  case Expr::ObjCEncodeExprClass:
2080  case Expr::ObjCStringLiteralClass:
2081    return false;
2082  case Expr::CallExprClass:
2083  case Expr::CXXOperatorCallExprClass:
2084    // __builtin___CFStringMakeConstantString is a valid constant l-value.
2085    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
2086           Builtin::BI__builtin___CFStringMakeConstantString)
2087      return false;
2088
2089    InitializerElementNotConstant(Init);
2090    return true;
2091
2092  case Expr::UnaryOperatorClass: {
2093    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2094
2095    // C99 6.6p9
2096    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2097      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
2098
2099    if (Exp->getOpcode() == UnaryOperator::Extension)
2100      return CheckAddressConstantExpression(Exp->getSubExpr());
2101
2102    InitializerElementNotConstant(Init);
2103    return true;
2104  }
2105  case Expr::BinaryOperatorClass: {
2106    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
2107    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2108
2109    Expr *PExp = Exp->getLHS();
2110    Expr *IExp = Exp->getRHS();
2111    if (IExp->getType()->isPointerType())
2112      std::swap(PExp, IExp);
2113
2114    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
2115    return CheckAddressConstantExpression(PExp) ||
2116           CheckArithmeticConstantExpression(IExp);
2117  }
2118  case Expr::ImplicitCastExprClass:
2119  case Expr::CStyleCastExprClass: {
2120    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
2121    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
2122      // Check for implicit promotion
2123      if (SubExpr->getType()->isFunctionType() ||
2124          SubExpr->getType()->isArrayType())
2125        return CheckAddressConstantExpressionLValue(SubExpr);
2126    }
2127
2128    // Check for pointer->pointer cast
2129    if (SubExpr->getType()->isPointerType())
2130      return CheckAddressConstantExpression(SubExpr);
2131
2132    if (SubExpr->getType()->isIntegralType()) {
2133      // Check for the special-case of a pointer->int->pointer cast;
2134      // this isn't standard, but some code requires it. See
2135      // PR2720 for an example.
2136      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
2137        if (SubCast->getSubExpr()->getType()->isPointerType()) {
2138          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
2139          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2140          if (IntWidth >= PointerWidth) {
2141            return CheckAddressConstantExpression(SubCast->getSubExpr());
2142          }
2143        }
2144      }
2145    }
2146    if (SubExpr->getType()->isArithmeticType()) {
2147      return CheckArithmeticConstantExpression(SubExpr);
2148    }
2149
2150    InitializerElementNotConstant(Init);
2151    return true;
2152  }
2153  case Expr::ConditionalOperatorClass: {
2154    // FIXME: Should we pedwarn here?
2155    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2156    if (!Exp->getCond()->getType()->isArithmeticType()) {
2157      InitializerElementNotConstant(Init);
2158      return true;
2159    }
2160    if (CheckArithmeticConstantExpression(Exp->getCond()))
2161      return true;
2162    if (Exp->getLHS() &&
2163        CheckAddressConstantExpression(Exp->getLHS()))
2164      return true;
2165    return CheckAddressConstantExpression(Exp->getRHS());
2166  }
2167  case Expr::AddrLabelExprClass:
2168    return false;
2169  }
2170}
2171
2172static const Expr* FindExpressionBaseAddress(const Expr* E);
2173
2174static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2175  switch (E->getStmtClass()) {
2176  default:
2177    return E;
2178  case Expr::ParenExprClass: {
2179    const ParenExpr* PE = cast<ParenExpr>(E);
2180    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2181  }
2182  case Expr::MemberExprClass: {
2183    const MemberExpr *M = cast<MemberExpr>(E);
2184    if (M->isArrow())
2185      return FindExpressionBaseAddress(M->getBase());
2186    return FindExpressionBaseAddressLValue(M->getBase());
2187  }
2188  case Expr::ArraySubscriptExprClass: {
2189    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2190    return FindExpressionBaseAddress(ASE->getBase());
2191  }
2192  case Expr::UnaryOperatorClass: {
2193    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2194
2195    if (Exp->getOpcode() == UnaryOperator::Deref)
2196      return FindExpressionBaseAddress(Exp->getSubExpr());
2197
2198    return E;
2199  }
2200  }
2201}
2202
2203static const Expr* FindExpressionBaseAddress(const Expr* E) {
2204  switch (E->getStmtClass()) {
2205  default:
2206    return E;
2207  case Expr::ParenExprClass: {
2208    const ParenExpr* PE = cast<ParenExpr>(E);
2209    return FindExpressionBaseAddress(PE->getSubExpr());
2210  }
2211  case Expr::UnaryOperatorClass: {
2212    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2213
2214    // C99 6.6p9
2215    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2216      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2217
2218    if (Exp->getOpcode() == UnaryOperator::Extension)
2219      return FindExpressionBaseAddress(Exp->getSubExpr());
2220
2221    return E;
2222  }
2223  case Expr::BinaryOperatorClass: {
2224    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2225
2226    Expr *PExp = Exp->getLHS();
2227    Expr *IExp = Exp->getRHS();
2228    if (IExp->getType()->isPointerType())
2229      std::swap(PExp, IExp);
2230
2231    return FindExpressionBaseAddress(PExp);
2232  }
2233  case Expr::ImplicitCastExprClass: {
2234    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2235
2236    // Check for implicit promotion
2237    if (SubExpr->getType()->isFunctionType() ||
2238        SubExpr->getType()->isArrayType())
2239      return FindExpressionBaseAddressLValue(SubExpr);
2240
2241    // Check for pointer->pointer cast
2242    if (SubExpr->getType()->isPointerType())
2243      return FindExpressionBaseAddress(SubExpr);
2244
2245    // We assume that we have an arithmetic expression here;
2246    // if we don't, we'll figure it out later
2247    return 0;
2248  }
2249  case Expr::CStyleCastExprClass: {
2250    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2251
2252    // Check for pointer->pointer cast
2253    if (SubExpr->getType()->isPointerType())
2254      return FindExpressionBaseAddress(SubExpr);
2255
2256    // We assume that we have an arithmetic expression here;
2257    // if we don't, we'll figure it out later
2258    return 0;
2259  }
2260  }
2261}
2262
2263bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2264  switch (Init->getStmtClass()) {
2265  default:
2266    InitializerElementNotConstant(Init);
2267    return true;
2268  case Expr::ParenExprClass: {
2269    const ParenExpr* PE = cast<ParenExpr>(Init);
2270    return CheckArithmeticConstantExpression(PE->getSubExpr());
2271  }
2272  case Expr::FloatingLiteralClass:
2273  case Expr::IntegerLiteralClass:
2274  case Expr::CharacterLiteralClass:
2275  case Expr::ImaginaryLiteralClass:
2276  case Expr::TypesCompatibleExprClass:
2277  case Expr::CXXBoolLiteralExprClass:
2278    return false;
2279  case Expr::CallExprClass:
2280  case Expr::CXXOperatorCallExprClass: {
2281    const CallExpr *CE = cast<CallExpr>(Init);
2282
2283    // Allow any constant foldable calls to builtins.
2284    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2285      return false;
2286
2287    InitializerElementNotConstant(Init);
2288    return true;
2289  }
2290  case Expr::DeclRefExprClass:
2291  case Expr::QualifiedDeclRefExprClass: {
2292    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2293    if (isa<EnumConstantDecl>(D))
2294      return false;
2295    InitializerElementNotConstant(Init);
2296    return true;
2297  }
2298  case Expr::CompoundLiteralExprClass:
2299    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2300    // but vectors are allowed to be magic.
2301    if (Init->getType()->isVectorType())
2302      return false;
2303    InitializerElementNotConstant(Init);
2304    return true;
2305  case Expr::UnaryOperatorClass: {
2306    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2307
2308    switch (Exp->getOpcode()) {
2309    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2310    // See C99 6.6p3.
2311    default:
2312      InitializerElementNotConstant(Init);
2313      return true;
2314    case UnaryOperator::OffsetOf:
2315      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2316        return false;
2317      InitializerElementNotConstant(Init);
2318      return true;
2319    case UnaryOperator::Extension:
2320    case UnaryOperator::LNot:
2321    case UnaryOperator::Plus:
2322    case UnaryOperator::Minus:
2323    case UnaryOperator::Not:
2324      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2325    }
2326  }
2327  case Expr::SizeOfAlignOfExprClass: {
2328    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2329    // Special check for void types, which are allowed as an extension
2330    if (Exp->getTypeOfArgument()->isVoidType())
2331      return false;
2332    // alignof always evaluates to a constant.
2333    // FIXME: is sizeof(int[3.0]) a constant expression?
2334    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2335      InitializerElementNotConstant(Init);
2336      return true;
2337    }
2338    return false;
2339  }
2340  case Expr::BinaryOperatorClass: {
2341    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2342
2343    if (Exp->getLHS()->getType()->isArithmeticType() &&
2344        Exp->getRHS()->getType()->isArithmeticType()) {
2345      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2346             CheckArithmeticConstantExpression(Exp->getRHS());
2347    }
2348
2349    if (Exp->getLHS()->getType()->isPointerType() &&
2350        Exp->getRHS()->getType()->isPointerType()) {
2351      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2352      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2353
2354      // Only allow a null (constant integer) base; we could
2355      // allow some additional cases if necessary, but this
2356      // is sufficient to cover offsetof-like constructs.
2357      if (!LHSBase && !RHSBase) {
2358        return CheckAddressConstantExpression(Exp->getLHS()) ||
2359               CheckAddressConstantExpression(Exp->getRHS());
2360      }
2361    }
2362
2363    InitializerElementNotConstant(Init);
2364    return true;
2365  }
2366  case Expr::ImplicitCastExprClass:
2367  case Expr::CStyleCastExprClass: {
2368    const CastExpr *CE = cast<CastExpr>(Init);
2369    const Expr *SubExpr = CE->getSubExpr();
2370
2371    if (SubExpr->getType()->isArithmeticType())
2372      return CheckArithmeticConstantExpression(SubExpr);
2373
2374    if (SubExpr->getType()->isPointerType()) {
2375      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2376      if (Base) {
2377        // the cast is only valid if done to a wide enough type
2378        if (Context.getTypeSize(CE->getType()) >=
2379            Context.getTypeSize(SubExpr->getType()))
2380          return false;
2381      } else {
2382        // If the pointer has a null base, this is an offsetof-like construct
2383        return CheckAddressConstantExpression(SubExpr);
2384      }
2385    }
2386
2387    InitializerElementNotConstant(Init);
2388    return true;
2389  }
2390  case Expr::ConditionalOperatorClass: {
2391    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2392
2393    // If GNU extensions are disabled, we require all operands to be arithmetic
2394    // constant expressions.
2395    if (getLangOptions().NoExtensions) {
2396      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2397          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2398             CheckArithmeticConstantExpression(Exp->getRHS());
2399    }
2400
2401    // Otherwise, we have to emulate some of the behavior of fold here.
2402    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2403    // because it can constant fold things away.  To retain compatibility with
2404    // GCC code, we see if we can fold the condition to a constant (which we
2405    // should always be able to do in theory).  If so, we only require the
2406    // specified arm of the conditional to be a constant.  This is a horrible
2407    // hack, but is require by real world code that uses __builtin_constant_p.
2408    Expr::EvalResult EvalResult;
2409    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2410        EvalResult.HasSideEffects) {
2411      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2412      // won't be able to either.  Use it to emit the diagnostic though.
2413      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2414      assert(Res && "Evaluate couldn't evaluate this constant?");
2415      return Res;
2416    }
2417
2418    // Verify that the side following the condition is also a constant.
2419    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2420    if (EvalResult.Val.getInt() == 0)
2421      std::swap(TrueSide, FalseSide);
2422
2423    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2424      return true;
2425
2426    // Okay, the evaluated side evaluates to a constant, so we accept this.
2427    // Check to see if the other side is obviously not a constant.  If so,
2428    // emit a warning that this is a GNU extension.
2429    if (FalseSide && !FalseSide->isEvaluatable(Context))
2430      Diag(Init->getExprLoc(),
2431           diag::ext_typecheck_expression_not_constant_but_accepted)
2432        << FalseSide->getSourceRange();
2433    return false;
2434  }
2435  }
2436}
2437
2438bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2439  if (Init->isConstantInitializer(Context))
2440    return false;
2441  InitializerElementNotConstant(Init);
2442  return true;
2443
2444  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2445    Init = DIE->getInit();
2446
2447  Init = Init->IgnoreParens();
2448
2449  if (Init->isEvaluatable(Context))
2450    return false;
2451
2452  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2453  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2454    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2455
2456  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2457    return CheckForConstantInitializer(e->getInitializer(), DclT);
2458
2459  if (isa<ImplicitValueInitExpr>(Init)) {
2460    // FIXME: In C++, check for non-POD types.
2461    return false;
2462  }
2463
2464  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2465    unsigned numInits = Exp->getNumInits();
2466    for (unsigned i = 0; i < numInits; i++) {
2467      // FIXME: Need to get the type of the declaration for C++,
2468      // because it could be a reference?
2469
2470      if (CheckForConstantInitializer(Exp->getInit(i),
2471                                      Exp->getInit(i)->getType()))
2472        return true;
2473    }
2474    return false;
2475  }
2476
2477  // FIXME: We can probably remove some of this code below, now that
2478  // Expr::Evaluate is doing the heavy lifting for scalars.
2479
2480  if (Init->isNullPointerConstant(Context))
2481    return false;
2482  if (Init->getType()->isArithmeticType()) {
2483    QualType InitTy = Context.getCanonicalType(Init->getType())
2484                             .getUnqualifiedType();
2485    if (InitTy == Context.BoolTy) {
2486      // Special handling for pointers implicitly cast to bool;
2487      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2488      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2489        Expr* SubE = ICE->getSubExpr();
2490        if (SubE->getType()->isPointerType() ||
2491            SubE->getType()->isArrayType() ||
2492            SubE->getType()->isFunctionType()) {
2493          return CheckAddressConstantExpression(Init);
2494        }
2495      }
2496    } else if (InitTy->isIntegralType()) {
2497      Expr* SubE = 0;
2498      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2499        SubE = CE->getSubExpr();
2500      // Special check for pointer cast to int; we allow as an extension
2501      // an address constant cast to an integer if the integer
2502      // is of an appropriate width (this sort of code is apparently used
2503      // in some places).
2504      // FIXME: Add pedwarn?
2505      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2506      if (SubE && (SubE->getType()->isPointerType() ||
2507                   SubE->getType()->isArrayType() ||
2508                   SubE->getType()->isFunctionType())) {
2509        unsigned IntWidth = Context.getTypeSize(Init->getType());
2510        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2511        if (IntWidth >= PointerWidth)
2512          return CheckAddressConstantExpression(Init);
2513      }
2514    }
2515
2516    return CheckArithmeticConstantExpression(Init);
2517  }
2518
2519  if (Init->getType()->isPointerType())
2520    return CheckAddressConstantExpression(Init);
2521
2522  // An array type at the top level that isn't an init-list must
2523  // be a string literal
2524  if (Init->getType()->isArrayType())
2525    return false;
2526
2527  if (Init->getType()->isFunctionType())
2528    return false;
2529
2530  // Allow block exprs at top level.
2531  if (Init->getType()->isBlockPointerType())
2532    return false;
2533
2534  // GCC cast to union extension
2535  // note: the validity of the cast expr is checked by CheckCastTypes()
2536  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2537    QualType T = C->getType();
2538    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2539  }
2540
2541  InitializerElementNotConstant(Init);
2542  return true;
2543}
2544
2545void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2546  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2547}
2548
2549/// AddInitializerToDecl - Adds the initializer Init to the
2550/// declaration dcl. If DirectInit is true, this is C++ direct
2551/// initialization rather than copy initialization.
2552void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2553  Decl *RealDecl = static_cast<Decl *>(dcl);
2554  Expr *Init = static_cast<Expr *>(init.release());
2555  assert(Init && "missing initializer");
2556
2557  // If there is no declaration, there was an error parsing it.  Just ignore
2558  // the initializer.
2559  if (RealDecl == 0) {
2560    Init->Destroy(Context);
2561    return;
2562  }
2563
2564  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2565  if (!VDecl) {
2566    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2567    RealDecl->setInvalidDecl();
2568    return;
2569  }
2570  // Get the decls type and save a reference for later, since
2571  // CheckInitializerTypes may change it.
2572  QualType DclT = VDecl->getType(), SavT = DclT;
2573  if (VDecl->isBlockVarDecl()) {
2574    VarDecl::StorageClass SC = VDecl->getStorageClass();
2575    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2576      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2577      VDecl->setInvalidDecl();
2578    } else if (!VDecl->isInvalidDecl()) {
2579      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2580                                VDecl->getDeclName(), DirectInit))
2581        VDecl->setInvalidDecl();
2582
2583      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2584      // Don't check invalid declarations to avoid emitting useless diagnostics.
2585      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2586        if (SC == VarDecl::Static) // C99 6.7.8p4.
2587          CheckForConstantInitializer(Init, DclT);
2588      }
2589    }
2590  } else if (VDecl->isFileVarDecl()) {
2591    if (VDecl->getStorageClass() == VarDecl::Extern)
2592      Diag(VDecl->getLocation(), diag::warn_extern_init);
2593    if (!VDecl->isInvalidDecl())
2594      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2595                                VDecl->getDeclName(), DirectInit))
2596        VDecl->setInvalidDecl();
2597
2598    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2599    // Don't check invalid declarations to avoid emitting useless diagnostics.
2600    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2601      // C99 6.7.8p4. All file scoped initializers need to be constant.
2602      CheckForConstantInitializer(Init, DclT);
2603    }
2604  }
2605  // If the type changed, it means we had an incomplete type that was
2606  // completed by the initializer. For example:
2607  //   int ary[] = { 1, 3, 5 };
2608  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2609  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2610    VDecl->setType(DclT);
2611    Init->setType(DclT);
2612  }
2613
2614  // Attach the initializer to the decl.
2615  VDecl->setInit(Init);
2616  return;
2617}
2618
2619void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2620  Decl *RealDecl = static_cast<Decl *>(dcl);
2621
2622  // If there is no declaration, there was an error parsing it. Just ignore it.
2623  if (RealDecl == 0)
2624    return;
2625
2626  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2627    QualType Type = Var->getType();
2628    // C++ [dcl.init.ref]p3:
2629    //   The initializer can be omitted for a reference only in a
2630    //   parameter declaration (8.3.5), in the declaration of a
2631    //   function return type, in the declaration of a class member
2632    //   within its class declaration (9.2), and where the extern
2633    //   specifier is explicitly used.
2634    if (Type->isReferenceType() &&
2635        Var->getStorageClass() != VarDecl::Extern &&
2636        Var->getStorageClass() != VarDecl::PrivateExtern) {
2637      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2638        << Var->getDeclName()
2639        << SourceRange(Var->getLocation(), Var->getLocation());
2640      Var->setInvalidDecl();
2641      return;
2642    }
2643
2644    // C++ [dcl.init]p9:
2645    //
2646    //   If no initializer is specified for an object, and the object
2647    //   is of (possibly cv-qualified) non-POD class type (or array
2648    //   thereof), the object shall be default-initialized; if the
2649    //   object is of const-qualified type, the underlying class type
2650    //   shall have a user-declared default constructor.
2651    if (getLangOptions().CPlusPlus) {
2652      QualType InitType = Type;
2653      if (const ArrayType *Array = Context.getAsArrayType(Type))
2654        InitType = Array->getElementType();
2655      if (Var->getStorageClass() != VarDecl::Extern &&
2656          Var->getStorageClass() != VarDecl::PrivateExtern &&
2657          InitType->isRecordType()) {
2658        const CXXConstructorDecl *Constructor
2659          = PerformInitializationByConstructor(InitType, 0, 0,
2660                                               Var->getLocation(),
2661                                               SourceRange(Var->getLocation(),
2662                                                           Var->getLocation()),
2663                                               Var->getDeclName(),
2664                                               IK_Default);
2665        if (!Constructor)
2666          Var->setInvalidDecl();
2667      }
2668    }
2669
2670#if 0
2671    // FIXME: Temporarily disabled because we are not properly parsing
2672    // linkage specifications on declarations, e.g.,
2673    //
2674    //   extern "C" const CGPoint CGPointerZero;
2675    //
2676    // C++ [dcl.init]p9:
2677    //
2678    //     If no initializer is specified for an object, and the
2679    //     object is of (possibly cv-qualified) non-POD class type (or
2680    //     array thereof), the object shall be default-initialized; if
2681    //     the object is of const-qualified type, the underlying class
2682    //     type shall have a user-declared default
2683    //     constructor. Otherwise, if no initializer is specified for
2684    //     an object, the object and its subobjects, if any, have an
2685    //     indeterminate initial value; if the object or any of its
2686    //     subobjects are of const-qualified type, the program is
2687    //     ill-formed.
2688    //
2689    // This isn't technically an error in C, so we don't diagnose it.
2690    //
2691    // FIXME: Actually perform the POD/user-defined default
2692    // constructor check.
2693    if (getLangOptions().CPlusPlus &&
2694        Context.getCanonicalType(Type).isConstQualified() &&
2695        Var->getStorageClass() != VarDecl::Extern)
2696      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2697        << Var->getName()
2698        << SourceRange(Var->getLocation(), Var->getLocation());
2699#endif
2700  }
2701}
2702
2703/// The declarators are chained together backwards, reverse the list.
2704Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2705  // Often we have single declarators, handle them quickly.
2706  Decl *Group = static_cast<Decl*>(group);
2707  if (Group == 0)
2708    return 0;
2709
2710  Decl *NewGroup = 0;
2711  if (Group->getNextDeclarator() == 0)
2712    NewGroup = Group;
2713  else { // reverse the list.
2714    while (Group) {
2715      Decl *Next = Group->getNextDeclarator();
2716      Group->setNextDeclarator(NewGroup);
2717      NewGroup = Group;
2718      Group = Next;
2719    }
2720  }
2721  // Perform semantic analysis that depends on having fully processed both
2722  // the declarator and initializer.
2723  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2724    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2725    if (!IDecl)
2726      continue;
2727    QualType T = IDecl->getType();
2728
2729    if (T->isVariableArrayType()) {
2730      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2731
2732      // FIXME: This won't give the correct result for
2733      // int a[10][n];
2734      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2735      if (IDecl->isFileVarDecl()) {
2736        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2737          SizeRange;
2738
2739        IDecl->setInvalidDecl();
2740      } else {
2741        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2742        // static storage duration, it shall not have a variable length array.
2743        if (IDecl->getStorageClass() == VarDecl::Static) {
2744          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2745            << SizeRange;
2746          IDecl->setInvalidDecl();
2747        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2748          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2749            << SizeRange;
2750          IDecl->setInvalidDecl();
2751        }
2752      }
2753    } else if (T->isVariablyModifiedType()) {
2754      if (IDecl->isFileVarDecl()) {
2755        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2756        IDecl->setInvalidDecl();
2757      } else {
2758        if (IDecl->getStorageClass() == VarDecl::Extern) {
2759          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2760          IDecl->setInvalidDecl();
2761        }
2762      }
2763    }
2764
2765    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2766    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2767    if (IDecl->isBlockVarDecl() &&
2768        IDecl->getStorageClass() != VarDecl::Extern) {
2769      if (!IDecl->isInvalidDecl() &&
2770          DiagnoseIncompleteType(IDecl->getLocation(), T,
2771                                 diag::err_typecheck_decl_incomplete_type))
2772        IDecl->setInvalidDecl();
2773    }
2774    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2775    // object that has file scope without an initializer, and without a
2776    // storage-class specifier or with the storage-class specifier "static",
2777    // constitutes a tentative definition. Note: A tentative definition with
2778    // external linkage is valid (C99 6.2.2p5).
2779    if (isTentativeDefinition(IDecl)) {
2780      if (T->isIncompleteArrayType()) {
2781        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2782        // array to be completed. Don't issue a diagnostic.
2783      } else if (!IDecl->isInvalidDecl() &&
2784                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2785                                        diag::err_typecheck_decl_incomplete_type))
2786        // C99 6.9.2p3: If the declaration of an identifier for an object is
2787        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2788        // declared type shall not be an incomplete type.
2789        IDecl->setInvalidDecl();
2790    }
2791    if (IDecl->isFileVarDecl())
2792      CheckForFileScopedRedefinitions(S, IDecl);
2793  }
2794  return NewGroup;
2795}
2796
2797/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2798/// to introduce parameters into function prototype scope.
2799Sema::DeclTy *
2800Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2801  const DeclSpec &DS = D.getDeclSpec();
2802
2803  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2804  VarDecl::StorageClass StorageClass = VarDecl::None;
2805  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2806    StorageClass = VarDecl::Register;
2807  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2808    Diag(DS.getStorageClassSpecLoc(),
2809         diag::err_invalid_storage_class_in_func_decl);
2810    D.getMutableDeclSpec().ClearStorageClassSpecs();
2811  }
2812  if (DS.isThreadSpecified()) {
2813    Diag(DS.getThreadSpecLoc(),
2814         diag::err_invalid_storage_class_in_func_decl);
2815    D.getMutableDeclSpec().ClearStorageClassSpecs();
2816  }
2817
2818  // Check that there are no default arguments inside the type of this
2819  // parameter (C++ only).
2820  if (getLangOptions().CPlusPlus)
2821    CheckExtraCXXDefaultArguments(D);
2822
2823  // In this context, we *do not* check D.getInvalidType(). If the declarator
2824  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2825  // though it will not reflect the user specified type.
2826  QualType parmDeclType = GetTypeForDeclarator(D, S);
2827
2828  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2829
2830  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2831  // Can this happen for params?  We already checked that they don't conflict
2832  // among each other.  Here they can only shadow globals, which is ok.
2833  IdentifierInfo *II = D.getIdentifier();
2834  if (II) {
2835    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2836      if (PrevDecl->isTemplateParameter()) {
2837        // Maybe we will complain about the shadowed template parameter.
2838        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2839        // Just pretend that we didn't see the previous declaration.
2840        PrevDecl = 0;
2841      } else if (S->isDeclScope(PrevDecl)) {
2842        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2843
2844        // Recover by removing the name
2845        II = 0;
2846        D.SetIdentifier(0, D.getIdentifierLoc());
2847      }
2848    }
2849  }
2850
2851  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2852  // Doing the promotion here has a win and a loss. The win is the type for
2853  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2854  // code generator). The loss is the orginal type isn't preserved. For example:
2855  //
2856  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2857  //    int blockvardecl[5];
2858  //    sizeof(parmvardecl);  // size == 4
2859  //    sizeof(blockvardecl); // size == 20
2860  // }
2861  //
2862  // For expressions, all implicit conversions are captured using the
2863  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2864  //
2865  // FIXME: If a source translation tool needs to see the original type, then
2866  // we need to consider storing both types (in ParmVarDecl)...
2867  //
2868  if (parmDeclType->isArrayType()) {
2869    // int x[restrict 4] ->  int *restrict
2870    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2871  } else if (parmDeclType->isFunctionType())
2872    parmDeclType = Context.getPointerType(parmDeclType);
2873
2874  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2875                                         D.getIdentifierLoc(), II,
2876                                         parmDeclType, StorageClass,
2877                                         0);
2878
2879  if (D.getInvalidType())
2880    New->setInvalidDecl();
2881
2882  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2883  if (D.getCXXScopeSpec().isSet()) {
2884    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2885      << D.getCXXScopeSpec().getRange();
2886    New->setInvalidDecl();
2887  }
2888  // Parameter declarators cannot be interface types. All ObjC objects are
2889  // passed by reference.
2890  if (parmDeclType->isObjCInterfaceType()) {
2891    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2892         << "passed";
2893    New->setInvalidDecl();
2894  }
2895
2896  // Add the parameter declaration into this scope.
2897  S->AddDecl(New);
2898  if (II)
2899    IdResolver.AddDecl(New);
2900
2901  ProcessDeclAttributes(New, D);
2902  return New;
2903
2904}
2905
2906void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2907  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2908         "Not a function declarator!");
2909  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2910
2911  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2912  // for a K&R function.
2913  if (!FTI.hasPrototype) {
2914    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2915      if (FTI.ArgInfo[i].Param == 0) {
2916        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2917          << FTI.ArgInfo[i].Ident;
2918        // Implicitly declare the argument as type 'int' for lack of a better
2919        // type.
2920        DeclSpec DS;
2921        const char* PrevSpec; // unused
2922        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2923                           PrevSpec);
2924        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2925        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2926        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2927      }
2928    }
2929  }
2930}
2931
2932Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2933  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2934  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2935         "Not a function declarator!");
2936  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2937
2938  if (FTI.hasPrototype) {
2939    // FIXME: Diagnose arguments without names in C.
2940  }
2941
2942  Scope *ParentScope = FnBodyScope->getParent();
2943
2944  return ActOnStartOfFunctionDef(FnBodyScope,
2945                                 ActOnDeclarator(ParentScope, D, 0,
2946                                                 /*IsFunctionDefinition=*/true));
2947}
2948
2949Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2950  Decl *decl = static_cast<Decl*>(D);
2951  FunctionDecl *FD = cast<FunctionDecl>(decl);
2952
2953  // See if this is a redefinition.
2954  const FunctionDecl *Definition;
2955  if (FD->getBody(Definition)) {
2956    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2957    Diag(Definition->getLocation(), diag::note_previous_definition);
2958  }
2959
2960  // Builtin functions cannot be defined.
2961  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2962    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2963      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2964      FD->setInvalidDecl();
2965    }
2966  }
2967
2968  PushDeclContext(FnBodyScope, FD);
2969
2970  // Check the validity of our function parameters
2971  CheckParmsForFunctionDef(FD);
2972
2973  // Introduce our parameters into the function scope
2974  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2975    ParmVarDecl *Param = FD->getParamDecl(p);
2976    Param->setOwningFunction(FD);
2977
2978    // If this has an identifier, add it to the scope stack.
2979    if (Param->getIdentifier())
2980      PushOnScopeChains(Param, FnBodyScope);
2981  }
2982
2983  // Checking attributes of current function definition
2984  // dllimport attribute.
2985  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2986    // dllimport attribute cannot be applied to definition.
2987    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2988      Diag(FD->getLocation(),
2989           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2990        << "dllimport";
2991      FD->setInvalidDecl();
2992      return FD;
2993    } else {
2994      // If a symbol previously declared dllimport is later defined, the
2995      // attribute is ignored in subsequent references, and a warning is
2996      // emitted.
2997      Diag(FD->getLocation(),
2998           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2999        << FD->getNameAsCString() << "dllimport";
3000    }
3001  }
3002  return FD;
3003}
3004
3005Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
3006  Decl *dcl = static_cast<Decl *>(D);
3007  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
3008  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3009    FD->setBody(Body);
3010    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3011  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3012    assert(MD == getCurMethodDecl() && "Method parsing confused");
3013    MD->setBody((Stmt*)Body);
3014  } else {
3015    Body->Destroy(Context);
3016    return 0;
3017  }
3018  PopDeclContext();
3019  // Verify and clean out per-function state.
3020
3021  // Check goto/label use.
3022  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3023       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
3024    // Verify that we have no forward references left.  If so, there was a goto
3025    // or address of a label taken, but no definition of it.  Label fwd
3026    // definitions are indicated with a null substmt.
3027    if (I->second->getSubStmt() == 0) {
3028      LabelStmt *L = I->second;
3029      // Emit error.
3030      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3031
3032      // At this point, we have gotos that use the bogus label.  Stitch it into
3033      // the function body so that they aren't leaked and that the AST is well
3034      // formed.
3035      if (Body) {
3036#if 0
3037        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
3038        // and the AST is malformed anyway.  We should just blow away 'L'.
3039        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3040        cast<CompoundStmt>(Body)->push_back(L);
3041#else
3042        L->Destroy(Context);
3043#endif
3044      } else {
3045        // The whole function wasn't parsed correctly, just delete this.
3046        L->Destroy(Context);
3047      }
3048    }
3049  }
3050  LabelMap.clear();
3051
3052  return D;
3053}
3054
3055/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3056/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3057NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3058                                          IdentifierInfo &II, Scope *S) {
3059  // Extension in C99.  Legal in C90, but warn about it.
3060  if (getLangOptions().C99)
3061    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3062  else
3063    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3064
3065  // FIXME: handle stuff like:
3066  // void foo() { extern float X(); }
3067  // void bar() { X(); }  <-- implicit decl for X in another scope.
3068
3069  // Set a Declarator for the implicit definition: int foo();
3070  const char *Dummy;
3071  DeclSpec DS;
3072  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3073  Error = Error; // Silence warning.
3074  assert(!Error && "Error setting up implicit decl!");
3075  Declarator D(DS, Declarator::BlockContext);
3076  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3077                                             0, 0, 0, Loc, D),
3078                SourceLocation());
3079  D.SetIdentifier(&II, Loc);
3080
3081  // Insert this function into translation-unit scope.
3082
3083  DeclContext *PrevDC = CurContext;
3084  CurContext = Context.getTranslationUnitDecl();
3085
3086  FunctionDecl *FD =
3087    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
3088  FD->setImplicit();
3089
3090  CurContext = PrevDC;
3091
3092  AddKnownFunctionAttributes(FD);
3093
3094  return FD;
3095}
3096
3097/// \brief Adds any function attributes that we know a priori based on
3098/// the declaration of this function.
3099///
3100/// These attributes can apply both to implicitly-declared builtins
3101/// (like __builtin___printf_chk) or to library-declared functions
3102/// like NSLog or printf.
3103void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3104  if (FD->isInvalidDecl())
3105    return;
3106
3107  // If this is a built-in function, map its builtin attributes to
3108  // actual attributes.
3109  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3110    // Handle printf-formatting attributes.
3111    unsigned FormatIdx;
3112    bool HasVAListArg;
3113    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3114      if (!FD->getAttr<FormatAttr>())
3115        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
3116    }
3117
3118    // Mark const if we don't care about errno and that is the only
3119    // thing preventing the function from being const. This allows
3120    // IRgen to use LLVM intrinsics for such functions.
3121    if (!getLangOptions().MathErrno &&
3122        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3123      if (!FD->getAttr<ConstAttr>())
3124        FD->addAttr(new ConstAttr());
3125    }
3126  }
3127
3128  IdentifierInfo *Name = FD->getIdentifier();
3129  if (!Name)
3130    return;
3131  if ((!getLangOptions().CPlusPlus &&
3132       FD->getDeclContext()->isTranslationUnit()) ||
3133      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3134       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3135       LinkageSpecDecl::lang_c)) {
3136    // Okay: this could be a libc/libm/Objective-C function we know
3137    // about.
3138  } else
3139    return;
3140
3141  unsigned KnownID;
3142  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3143    if (KnownFunctionIDs[KnownID] == Name)
3144      break;
3145
3146  switch (KnownID) {
3147  case id_NSLog:
3148  case id_NSLogv:
3149    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3150      // FIXME: We known better than our headers.
3151      const_cast<FormatAttr *>(Format)->setType("printf");
3152    } else
3153      FD->addAttr(new FormatAttr("printf", 1, 2));
3154    break;
3155
3156  case id_asprintf:
3157  case id_vasprintf:
3158    if (!FD->getAttr<FormatAttr>())
3159      FD->addAttr(new FormatAttr("printf", 2, 3));
3160    break;
3161
3162  default:
3163    // Unknown function or known function without any attributes to
3164    // add. Do nothing.
3165    break;
3166  }
3167}
3168
3169TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3170                                    Decl *LastDeclarator) {
3171  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3172  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3173
3174  // Scope manipulation handled by caller.
3175  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3176                                           D.getIdentifierLoc(),
3177                                           D.getIdentifier(),
3178                                           T);
3179  NewTD->setNextDeclarator(LastDeclarator);
3180  if (D.getInvalidType())
3181    NewTD->setInvalidDecl();
3182  return NewTD;
3183}
3184
3185/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3186/// former case, Name will be non-null.  In the later case, Name will be null.
3187/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3188/// reference/declaration/definition of a tag.
3189Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3190                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3191                             IdentifierInfo *Name, SourceLocation NameLoc,
3192                             AttributeList *Attr) {
3193  // If this is not a definition, it must have a name.
3194  assert((Name != 0 || TK == TK_Definition) &&
3195         "Nameless record must be a definition!");
3196
3197  TagDecl::TagKind Kind;
3198  switch (TagSpec) {
3199  default: assert(0 && "Unknown tag type!");
3200  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3201  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3202  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3203  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3204  }
3205
3206  DeclContext *SearchDC = CurContext;
3207  DeclContext *DC = CurContext;
3208  NamedDecl *PrevDecl = 0;
3209
3210  bool Invalid = false;
3211
3212  if (Name && SS.isNotEmpty()) {
3213    // We have a nested-name tag ('struct foo::bar').
3214
3215    // Check for invalid 'foo::'.
3216    if (SS.isInvalid()) {
3217      Name = 0;
3218      goto CreateNewDecl;
3219    }
3220
3221    DC = static_cast<DeclContext*>(SS.getScopeRep());
3222    SearchDC = DC;
3223    // Look-up name inside 'foo::'.
3224    PrevDecl = dyn_cast_or_null<TagDecl>(
3225                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3226
3227    // A tag 'foo::bar' must already exist.
3228    if (PrevDecl == 0) {
3229      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3230      Name = 0;
3231      goto CreateNewDecl;
3232    }
3233  } else if (Name) {
3234    // If this is a named struct, check to see if there was a previous forward
3235    // declaration or definition.
3236    // FIXME: We're looking into outer scopes here, even when we
3237    // shouldn't be. Doing so can result in ambiguities that we
3238    // shouldn't be diagnosing.
3239    LookupResult R = LookupName(S, Name, LookupTagName,
3240                                /*RedeclarationOnly=*/(TK != TK_Reference));
3241    if (R.isAmbiguous()) {
3242      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3243      // FIXME: This is not best way to recover from case like:
3244      //
3245      // struct S s;
3246      //
3247      // causes needless err_ovl_no_viable_function_in_init latter.
3248      Name = 0;
3249      PrevDecl = 0;
3250      Invalid = true;
3251    }
3252    else
3253      PrevDecl = R;
3254
3255    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3256      // FIXME: This makes sure that we ignore the contexts associated
3257      // with C structs, unions, and enums when looking for a matching
3258      // tag declaration or definition. See the similar lookup tweak
3259      // in Sema::LookupName; is there a better way to deal with this?
3260      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3261        SearchDC = SearchDC->getParent();
3262    }
3263  }
3264
3265  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3266    // Maybe we will complain about the shadowed template parameter.
3267    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3268    // Just pretend that we didn't see the previous declaration.
3269    PrevDecl = 0;
3270  }
3271
3272  if (PrevDecl) {
3273    // Check whether the previous declaration is usable.
3274    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3275
3276    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3277      // If this is a use of a previous tag, or if the tag is already declared
3278      // in the same scope (so that the definition/declaration completes or
3279      // rementions the tag), reuse the decl.
3280      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3281        // Make sure that this wasn't declared as an enum and now used as a
3282        // struct or something similar.
3283        if (PrevTagDecl->getTagKind() != Kind) {
3284          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3285          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3286          // Recover by making this an anonymous redefinition.
3287          Name = 0;
3288          PrevDecl = 0;
3289          Invalid = true;
3290        } else {
3291          // If this is a use, just return the declaration we found.
3292
3293          // FIXME: In the future, return a variant or some other clue
3294          // for the consumer of this Decl to know it doesn't own it.
3295          // For our current ASTs this shouldn't be a problem, but will
3296          // need to be changed with DeclGroups.
3297          if (TK == TK_Reference)
3298            return PrevDecl;
3299
3300          // Diagnose attempts to redefine a tag.
3301          if (TK == TK_Definition) {
3302            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3303              Diag(NameLoc, diag::err_redefinition) << Name;
3304              Diag(Def->getLocation(), diag::note_previous_definition);
3305              // If this is a redefinition, recover by making this
3306              // struct be anonymous, which will make any later
3307              // references get the previous definition.
3308              Name = 0;
3309              PrevDecl = 0;
3310              Invalid = true;
3311            } else {
3312              // If the type is currently being defined, complain
3313              // about a nested redefinition.
3314              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3315              if (Tag->isBeingDefined()) {
3316                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3317                Diag(PrevTagDecl->getLocation(),
3318                     diag::note_previous_definition);
3319                Name = 0;
3320                PrevDecl = 0;
3321                Invalid = true;
3322              }
3323            }
3324
3325            // Okay, this is definition of a previously declared or referenced
3326            // tag PrevDecl. We're going to create a new Decl for it.
3327          }
3328        }
3329        // If we get here we have (another) forward declaration or we
3330        // have a definition.  Just create a new decl.
3331      } else {
3332        // If we get here, this is a definition of a new tag type in a nested
3333        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3334        // new decl/type.  We set PrevDecl to NULL so that the entities
3335        // have distinct types.
3336        PrevDecl = 0;
3337      }
3338      // If we get here, we're going to create a new Decl. If PrevDecl
3339      // is non-NULL, it's a definition of the tag declared by
3340      // PrevDecl. If it's NULL, we have a new definition.
3341    } else {
3342      // PrevDecl is a namespace, template, or anything else
3343      // that lives in the IDNS_Tag identifier namespace.
3344      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3345        // The tag name clashes with a namespace name, issue an error and
3346        // recover by making this tag be anonymous.
3347        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3348        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3349        Name = 0;
3350        PrevDecl = 0;
3351        Invalid = true;
3352      } else {
3353        // The existing declaration isn't relevant to us; we're in a
3354        // new scope, so clear out the previous declaration.
3355        PrevDecl = 0;
3356      }
3357    }
3358  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3359             (Kind != TagDecl::TK_enum))  {
3360    // C++ [basic.scope.pdecl]p5:
3361    //   -- for an elaborated-type-specifier of the form
3362    //
3363    //          class-key identifier
3364    //
3365    //      if the elaborated-type-specifier is used in the
3366    //      decl-specifier-seq or parameter-declaration-clause of a
3367    //      function defined in namespace scope, the identifier is
3368    //      declared as a class-name in the namespace that contains
3369    //      the declaration; otherwise, except as a friend
3370    //      declaration, the identifier is declared in the smallest
3371    //      non-class, non-function-prototype scope that contains the
3372    //      declaration.
3373    //
3374    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3375    // C structs and unions.
3376
3377    // Find the context where we'll be declaring the tag.
3378    // FIXME: We would like to maintain the current DeclContext as the
3379    // lexical context,
3380    while (SearchDC->isRecord())
3381      SearchDC = SearchDC->getParent();
3382
3383    // Find the scope where we'll be declaring the tag.
3384    while (S->isClassScope() ||
3385           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3386           ((S->getFlags() & Scope::DeclScope) == 0) ||
3387           (S->getEntity() &&
3388            ((DeclContext *)S->getEntity())->isTransparentContext()))
3389      S = S->getParent();
3390  }
3391
3392CreateNewDecl:
3393
3394  // If there is an identifier, use the location of the identifier as the
3395  // location of the decl, otherwise use the location of the struct/union
3396  // keyword.
3397  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3398
3399  // Otherwise, create a new declaration. If there is a previous
3400  // declaration of the same entity, the two will be linked via
3401  // PrevDecl.
3402  TagDecl *New;
3403
3404  if (Kind == TagDecl::TK_enum) {
3405    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3406    // enum X { A, B, C } D;    D should chain to X.
3407    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3408                           cast_or_null<EnumDecl>(PrevDecl));
3409    // If this is an undefined enum, warn.
3410    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3411  } else {
3412    // struct/union/class
3413
3414    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3415    // struct X { int A; } D;    D should chain to X.
3416    if (getLangOptions().CPlusPlus)
3417      // FIXME: Look for a way to use RecordDecl for simple structs.
3418      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3419                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3420    else
3421      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3422                               cast_or_null<RecordDecl>(PrevDecl));
3423  }
3424
3425  if (Kind != TagDecl::TK_enum) {
3426    // Handle #pragma pack: if the #pragma pack stack has non-default
3427    // alignment, make up a packed attribute for this decl. These
3428    // attributes are checked when the ASTContext lays out the
3429    // structure.
3430    //
3431    // It is important for implementing the correct semantics that this
3432    // happen here (in act on tag decl). The #pragma pack stack is
3433    // maintained as a result of parser callbacks which can occur at
3434    // many points during the parsing of a struct declaration (because
3435    // the #pragma tokens are effectively skipped over during the
3436    // parsing of the struct).
3437    if (unsigned Alignment = getPragmaPackAlignment())
3438      New->addAttr(new PackedAttr(Alignment * 8));
3439  }
3440
3441  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3442    // C++ [dcl.typedef]p3:
3443    //   [...] Similarly, in a given scope, a class or enumeration
3444    //   shall not be declared with the same name as a typedef-name
3445    //   that is declared in that scope and refers to a type other
3446    //   than the class or enumeration itself.
3447    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3448    TypedefDecl *PrevTypedef = 0;
3449    if (Lookup.getKind() == LookupResult::Found)
3450      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3451
3452    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3453        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3454          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3455      Diag(Loc, diag::err_tag_definition_of_typedef)
3456        << Context.getTypeDeclType(New)
3457        << PrevTypedef->getUnderlyingType();
3458      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3459      Invalid = true;
3460    }
3461  }
3462
3463  if (Invalid)
3464    New->setInvalidDecl();
3465
3466  if (Attr)
3467    ProcessDeclAttributeList(New, Attr);
3468
3469  // If we're declaring or defining a tag in function prototype scope
3470  // in C, note that this type can only be used within the function.
3471  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3472    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3473
3474  // Set the lexical context. If the tag has a C++ scope specifier, the
3475  // lexical context will be different from the semantic context.
3476  New->setLexicalDeclContext(CurContext);
3477
3478  if (TK == TK_Definition)
3479    New->startDefinition();
3480
3481  // If this has an identifier, add it to the scope stack.
3482  if (Name) {
3483    S = getNonFieldDeclScope(S);
3484    PushOnScopeChains(New, S);
3485  } else {
3486    CurContext->addDecl(New);
3487  }
3488
3489  return New;
3490}
3491
3492void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3493  AdjustDeclIfTemplate(TagD);
3494  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3495
3496  // Enter the tag context.
3497  PushDeclContext(S, Tag);
3498
3499  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3500    FieldCollector->StartClass();
3501
3502    if (Record->getIdentifier()) {
3503      // C++ [class]p2:
3504      //   [...] The class-name is also inserted into the scope of the
3505      //   class itself; this is known as the injected-class-name. For
3506      //   purposes of access checking, the injected-class-name is treated
3507      //   as if it were a public member name.
3508      RecordDecl *InjectedClassName
3509        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3510                                CurContext, Record->getLocation(),
3511                                Record->getIdentifier(), Record);
3512      InjectedClassName->setImplicit();
3513      PushOnScopeChains(InjectedClassName, S);
3514    }
3515  }
3516}
3517
3518void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3519  AdjustDeclIfTemplate(TagD);
3520  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3521
3522  if (isa<CXXRecordDecl>(Tag))
3523    FieldCollector->FinishClass();
3524
3525  // Exit this scope of this tag's definition.
3526  PopDeclContext();
3527
3528  // Notify the consumer that we've defined a tag.
3529  Consumer.HandleTagDeclDefinition(Tag);
3530}
3531
3532bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3533                          QualType FieldTy, const Expr *BitWidth) {
3534  // FIXME: 6.7.2.1p4 - verify the field type.
3535
3536  llvm::APSInt Value;
3537  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3538    return true;
3539
3540  // Zero-width bitfield is ok for anonymous field.
3541  if (Value == 0 && FieldName)
3542    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3543
3544  if (Value.isNegative())
3545    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3546
3547  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3548  // FIXME: We won't need the 0 size once we check that the field type is valid.
3549  if (TypeSize && Value.getZExtValue() > TypeSize)
3550    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3551       << FieldName << (unsigned)TypeSize;
3552
3553  return false;
3554}
3555
3556/// ActOnField - Each field of a struct/union/class is passed into this in order
3557/// to create a FieldDecl object for it.
3558Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3559                               SourceLocation DeclStart,
3560                               Declarator &D, ExprTy *BitfieldWidth) {
3561  IdentifierInfo *II = D.getIdentifier();
3562  Expr *BitWidth = (Expr*)BitfieldWidth;
3563  SourceLocation Loc = DeclStart;
3564  RecordDecl *Record = (RecordDecl *)TagD;
3565  if (II) Loc = D.getIdentifierLoc();
3566
3567  // FIXME: Unnamed fields can be handled in various different ways, for
3568  // example, unnamed unions inject all members into the struct namespace!
3569
3570  QualType T = GetTypeForDeclarator(D, S);
3571  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3572  bool InvalidDecl = false;
3573
3574  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3575  // than a variably modified type.
3576  if (T->isVariablyModifiedType()) {
3577    bool SizeIsNegative;
3578    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3579                                                           SizeIsNegative);
3580    if (!FixedTy.isNull()) {
3581      Diag(Loc, diag::warn_illegal_constant_array_size);
3582      T = FixedTy;
3583    } else {
3584      if (SizeIsNegative)
3585        Diag(Loc, diag::err_typecheck_negative_array_size);
3586      else
3587        Diag(Loc, diag::err_typecheck_field_variable_size);
3588      T = Context.IntTy;
3589      InvalidDecl = true;
3590    }
3591  }
3592
3593  if (BitWidth) {
3594    if (VerifyBitField(Loc, II, T, BitWidth))
3595      InvalidDecl = true;
3596  } else {
3597    // Not a bitfield.
3598
3599    // validate II.
3600
3601  }
3602
3603  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3604                                       Loc, II, T, BitWidth,
3605                                       D.getDeclSpec().getStorageClassSpec() ==
3606                                       DeclSpec::SCS_mutable);
3607
3608  if (II) {
3609    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3610    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3611        && !isa<TagDecl>(PrevDecl)) {
3612      Diag(Loc, diag::err_duplicate_member) << II;
3613      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3614      NewFD->setInvalidDecl();
3615      Record->setInvalidDecl();
3616    }
3617  }
3618
3619  if (getLangOptions().CPlusPlus) {
3620    CheckExtraCXXDefaultArguments(D);
3621    if (!T->isPODType())
3622      cast<CXXRecordDecl>(Record)->setPOD(false);
3623  }
3624
3625  ProcessDeclAttributes(NewFD, D);
3626  if (T.isObjCGCWeak())
3627    Diag(Loc, diag::warn_attribute_weak_on_field);
3628
3629  if (D.getInvalidType() || InvalidDecl)
3630    NewFD->setInvalidDecl();
3631
3632  if (II) {
3633    PushOnScopeChains(NewFD, S);
3634  } else
3635    Record->addDecl(NewFD);
3636
3637  return NewFD;
3638}
3639
3640/// TranslateIvarVisibility - Translate visibility from a token ID to an
3641///  AST enum value.
3642static ObjCIvarDecl::AccessControl
3643TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3644  switch (ivarVisibility) {
3645  default: assert(0 && "Unknown visitibility kind");
3646  case tok::objc_private: return ObjCIvarDecl::Private;
3647  case tok::objc_public: return ObjCIvarDecl::Public;
3648  case tok::objc_protected: return ObjCIvarDecl::Protected;
3649  case tok::objc_package: return ObjCIvarDecl::Package;
3650  }
3651}
3652
3653/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3654/// in order to create an IvarDecl object for it.
3655Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3656                              SourceLocation DeclStart,
3657                              Declarator &D, ExprTy *BitfieldWidth,
3658                              tok::ObjCKeywordKind Visibility) {
3659
3660  IdentifierInfo *II = D.getIdentifier();
3661  Expr *BitWidth = (Expr*)BitfieldWidth;
3662  SourceLocation Loc = DeclStart;
3663  if (II) Loc = D.getIdentifierLoc();
3664
3665  // FIXME: Unnamed fields can be handled in various different ways, for
3666  // example, unnamed unions inject all members into the struct namespace!
3667
3668  QualType T = GetTypeForDeclarator(D, S);
3669  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3670  bool InvalidDecl = false;
3671
3672  if (BitWidth) {
3673    // 6.7.2.1p3, 6.7.2.1p4
3674    if (VerifyBitField(Loc, II, T, BitWidth))
3675      InvalidDecl = true;
3676  } else {
3677    // Not a bitfield.
3678
3679    // validate II.
3680
3681  }
3682
3683  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3684  // than a variably modified type.
3685  if (T->isVariablyModifiedType()) {
3686    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3687    InvalidDecl = true;
3688  }
3689
3690  // Get the visibility (access control) for this ivar.
3691  ObjCIvarDecl::AccessControl ac =
3692    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3693                                        : ObjCIvarDecl::None;
3694
3695  // Construct the decl.
3696  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3697                                             (Expr *)BitfieldWidth);
3698
3699  if (II) {
3700    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3701    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3702        && !isa<TagDecl>(PrevDecl)) {
3703      Diag(Loc, diag::err_duplicate_member) << II;
3704      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3705      NewID->setInvalidDecl();
3706    }
3707  }
3708
3709  // Process attributes attached to the ivar.
3710  ProcessDeclAttributes(NewID, D);
3711
3712  if (D.getInvalidType() || InvalidDecl)
3713    NewID->setInvalidDecl();
3714
3715  if (II) {
3716    // FIXME: When interfaces are DeclContexts, we'll need to add
3717    // these to the interface.
3718    S->AddDecl(NewID);
3719    IdResolver.AddDecl(NewID);
3720  }
3721
3722  return NewID;
3723}
3724
3725void Sema::ActOnFields(Scope* S,
3726                       SourceLocation RecLoc, DeclTy *RecDecl,
3727                       DeclTy **Fields, unsigned NumFields,
3728                       SourceLocation LBrac, SourceLocation RBrac,
3729                       AttributeList *Attr) {
3730  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3731  assert(EnclosingDecl && "missing record or interface decl");
3732
3733  // If the decl this is being inserted into is invalid, then it may be a
3734  // redeclaration or some other bogus case.  Don't try to add fields to it.
3735  if (EnclosingDecl->isInvalidDecl()) {
3736    // FIXME: Deallocate fields?
3737    return;
3738  }
3739
3740
3741  // Verify that all the fields are okay.
3742  unsigned NumNamedMembers = 0;
3743  llvm::SmallVector<FieldDecl*, 32> RecFields;
3744
3745  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3746  for (unsigned i = 0; i != NumFields; ++i) {
3747    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3748    assert(FD && "missing field decl");
3749
3750    // Get the type for the field.
3751    Type *FDTy = FD->getType().getTypePtr();
3752
3753    if (!FD->isAnonymousStructOrUnion()) {
3754      // Remember all fields written by the user.
3755      RecFields.push_back(FD);
3756    }
3757
3758    // C99 6.7.2.1p2 - A field may not be a function type.
3759    if (FDTy->isFunctionType()) {
3760      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3761        << FD->getDeclName();
3762      FD->setInvalidDecl();
3763      EnclosingDecl->setInvalidDecl();
3764      continue;
3765    }
3766    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3767    if (FDTy->isIncompleteType()) {
3768      if (!Record) {  // Incomplete ivar type is always an error.
3769        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3770                               diag::err_field_incomplete);
3771        FD->setInvalidDecl();
3772        EnclosingDecl->setInvalidDecl();
3773        continue;
3774      }
3775      if (i != NumFields-1 ||                   // ... that the last member ...
3776          !Record->isStruct() ||  // ... of a structure ...
3777          !FDTy->isArrayType()) {         //... may have incomplete array type.
3778        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3779                               diag::err_field_incomplete);
3780        FD->setInvalidDecl();
3781        EnclosingDecl->setInvalidDecl();
3782        continue;
3783      }
3784      if (NumNamedMembers < 1) {  //... must have more than named member ...
3785        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3786          << FD->getDeclName();
3787        FD->setInvalidDecl();
3788        EnclosingDecl->setInvalidDecl();
3789        continue;
3790      }
3791      // Okay, we have a legal flexible array member at the end of the struct.
3792      if (Record)
3793        Record->setHasFlexibleArrayMember(true);
3794    }
3795    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3796    /// field of another structure or the element of an array.
3797    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3798      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3799        // If this is a member of a union, then entire union becomes "flexible".
3800        if (Record && Record->isUnion()) {
3801          Record->setHasFlexibleArrayMember(true);
3802        } else {
3803          // If this is a struct/class and this is not the last element, reject
3804          // it.  Note that GCC supports variable sized arrays in the middle of
3805          // structures.
3806          if (i != NumFields-1) {
3807            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3808              << FD->getDeclName();
3809            FD->setInvalidDecl();
3810            EnclosingDecl->setInvalidDecl();
3811            continue;
3812          }
3813          // We support flexible arrays at the end of structs in other structs
3814          // as an extension.
3815          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3816            << FD->getDeclName();
3817          if (Record)
3818            Record->setHasFlexibleArrayMember(true);
3819        }
3820      }
3821    }
3822    /// A field cannot be an Objective-c object
3823    if (FDTy->isObjCInterfaceType()) {
3824      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3825      FD->setInvalidDecl();
3826      EnclosingDecl->setInvalidDecl();
3827      continue;
3828    }
3829    // Keep track of the number of named members.
3830    if (FD->getIdentifier())
3831      ++NumNamedMembers;
3832  }
3833
3834  // Okay, we successfully defined 'Record'.
3835  if (Record) {
3836    Record->completeDefinition(Context);
3837  } else {
3838    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3839    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3840      ID->setIVarList(ClsFields, RecFields.size(), Context);
3841      ID->setLocEnd(RBrac);
3842
3843      // Must enforce the rule that ivars in the base classes may not be
3844      // duplicates.
3845      if (ID->getSuperClass()) {
3846        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3847             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3848          ObjCIvarDecl* Ivar = (*IVI);
3849          IdentifierInfo *II = Ivar->getIdentifier();
3850          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3851          if (prevIvar) {
3852            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3853            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3854          }
3855        }
3856      }
3857    } else if (ObjCImplementationDecl *IMPDecl =
3858                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3859      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3860      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3861      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3862    }
3863  }
3864
3865  if (Attr)
3866    ProcessDeclAttributeList(Record, Attr);
3867}
3868
3869Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3870                                      DeclTy *lastEnumConst,
3871                                      SourceLocation IdLoc, IdentifierInfo *Id,
3872                                      SourceLocation EqualLoc, ExprTy *val) {
3873  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3874  EnumConstantDecl *LastEnumConst =
3875    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3876  Expr *Val = static_cast<Expr*>(val);
3877
3878  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3879  // we find one that is.
3880  S = getNonFieldDeclScope(S);
3881
3882  // Verify that there isn't already something declared with this name in this
3883  // scope.
3884  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3885  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3886    // Maybe we will complain about the shadowed template parameter.
3887    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3888    // Just pretend that we didn't see the previous declaration.
3889    PrevDecl = 0;
3890  }
3891
3892  if (PrevDecl) {
3893    // When in C++, we may get a TagDecl with the same name; in this case the
3894    // enum constant will 'hide' the tag.
3895    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3896           "Received TagDecl when not in C++!");
3897    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3898      if (isa<EnumConstantDecl>(PrevDecl))
3899        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3900      else
3901        Diag(IdLoc, diag::err_redefinition) << Id;
3902      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3903      Val->Destroy(Context);
3904      return 0;
3905    }
3906  }
3907
3908  llvm::APSInt EnumVal(32);
3909  QualType EltTy;
3910  if (Val) {
3911    // Make sure to promote the operand type to int.
3912    UsualUnaryConversions(Val);
3913
3914    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3915    SourceLocation ExpLoc;
3916    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3917      Val->Destroy(Context);
3918      Val = 0;  // Just forget about it.
3919    } else {
3920      EltTy = Val->getType();
3921    }
3922  }
3923
3924  if (!Val) {
3925    if (LastEnumConst) {
3926      // Assign the last value + 1.
3927      EnumVal = LastEnumConst->getInitVal();
3928      ++EnumVal;
3929
3930      // Check for overflow on increment.
3931      if (EnumVal < LastEnumConst->getInitVal())
3932        Diag(IdLoc, diag::warn_enum_value_overflow);
3933
3934      EltTy = LastEnumConst->getType();
3935    } else {
3936      // First value, set to zero.
3937      EltTy = Context.IntTy;
3938      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3939    }
3940  }
3941
3942  EnumConstantDecl *New =
3943    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3944                             Val, EnumVal);
3945
3946  // Register this decl in the current scope stack.
3947  PushOnScopeChains(New, S);
3948
3949  return New;
3950}
3951
3952// FIXME: For consistency with ActOnFields(), we should have the parser
3953// pass in the source location for the left/right braces.
3954void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3955                         DeclTy **Elements, unsigned NumElements) {
3956  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3957  QualType EnumType = Context.getTypeDeclType(Enum);
3958
3959  // TODO: If the result value doesn't fit in an int, it must be a long or long
3960  // long value.  ISO C does not support this, but GCC does as an extension,
3961  // emit a warning.
3962  unsigned IntWidth = Context.Target.getIntWidth();
3963
3964  // Verify that all the values are okay, compute the size of the values, and
3965  // reverse the list.
3966  unsigned NumNegativeBits = 0;
3967  unsigned NumPositiveBits = 0;
3968
3969  // Keep track of whether all elements have type int.
3970  bool AllElementsInt = true;
3971
3972  for (unsigned i = 0; i != NumElements; ++i) {
3973    EnumConstantDecl *ECD =
3974      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3975    if (!ECD) continue;  // Already issued a diagnostic.
3976
3977    // If the enum value doesn't fit in an int, emit an extension warning.
3978    const llvm::APSInt &InitVal = ECD->getInitVal();
3979    assert(InitVal.getBitWidth() >= IntWidth &&
3980           "Should have promoted value to int");
3981    if (InitVal.getBitWidth() > IntWidth) {
3982      llvm::APSInt V(InitVal);
3983      V.trunc(IntWidth);
3984      V.extend(InitVal.getBitWidth());
3985      if (V != InitVal)
3986        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3987          << InitVal.toString(10);
3988    }
3989
3990    // Keep track of the size of positive and negative values.
3991    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3992      NumPositiveBits = std::max(NumPositiveBits,
3993                                 (unsigned)InitVal.getActiveBits());
3994    else
3995      NumNegativeBits = std::max(NumNegativeBits,
3996                                 (unsigned)InitVal.getMinSignedBits());
3997
3998    // Keep track of whether every enum element has type int (very commmon).
3999    if (AllElementsInt)
4000      AllElementsInt = ECD->getType() == Context.IntTy;
4001  }
4002
4003  // Figure out the type that should be used for this enum.
4004  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4005  QualType BestType;
4006  unsigned BestWidth;
4007
4008  if (NumNegativeBits) {
4009    // If there is a negative value, figure out the smallest integer type (of
4010    // int/long/longlong) that fits.
4011    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4012      BestType = Context.IntTy;
4013      BestWidth = IntWidth;
4014    } else {
4015      BestWidth = Context.Target.getLongWidth();
4016
4017      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4018        BestType = Context.LongTy;
4019      else {
4020        BestWidth = Context.Target.getLongLongWidth();
4021
4022        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4023          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4024        BestType = Context.LongLongTy;
4025      }
4026    }
4027  } else {
4028    // If there is no negative value, figure out which of uint, ulong, ulonglong
4029    // fits.
4030    if (NumPositiveBits <= IntWidth) {
4031      BestType = Context.UnsignedIntTy;
4032      BestWidth = IntWidth;
4033    } else if (NumPositiveBits <=
4034               (BestWidth = Context.Target.getLongWidth())) {
4035      BestType = Context.UnsignedLongTy;
4036    } else {
4037      BestWidth = Context.Target.getLongLongWidth();
4038      assert(NumPositiveBits <= BestWidth &&
4039             "How could an initializer get larger than ULL?");
4040      BestType = Context.UnsignedLongLongTy;
4041    }
4042  }
4043
4044  // Loop over all of the enumerator constants, changing their types to match
4045  // the type of the enum if needed.
4046  for (unsigned i = 0; i != NumElements; ++i) {
4047    EnumConstantDecl *ECD =
4048      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
4049    if (!ECD) continue;  // Already issued a diagnostic.
4050
4051    // Standard C says the enumerators have int type, but we allow, as an
4052    // extension, the enumerators to be larger than int size.  If each
4053    // enumerator value fits in an int, type it as an int, otherwise type it the
4054    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4055    // that X has type 'int', not 'unsigned'.
4056    if (ECD->getType() == Context.IntTy) {
4057      // Make sure the init value is signed.
4058      llvm::APSInt IV = ECD->getInitVal();
4059      IV.setIsSigned(true);
4060      ECD->setInitVal(IV);
4061
4062      if (getLangOptions().CPlusPlus)
4063        // C++ [dcl.enum]p4: Following the closing brace of an
4064        // enum-specifier, each enumerator has the type of its
4065        // enumeration.
4066        ECD->setType(EnumType);
4067      continue;  // Already int type.
4068    }
4069
4070    // Determine whether the value fits into an int.
4071    llvm::APSInt InitVal = ECD->getInitVal();
4072    bool FitsInInt;
4073    if (InitVal.isUnsigned() || !InitVal.isNegative())
4074      FitsInInt = InitVal.getActiveBits() < IntWidth;
4075    else
4076      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4077
4078    // If it fits into an integer type, force it.  Otherwise force it to match
4079    // the enum decl type.
4080    QualType NewTy;
4081    unsigned NewWidth;
4082    bool NewSign;
4083    if (FitsInInt) {
4084      NewTy = Context.IntTy;
4085      NewWidth = IntWidth;
4086      NewSign = true;
4087    } else if (ECD->getType() == BestType) {
4088      // Already the right type!
4089      if (getLangOptions().CPlusPlus)
4090        // C++ [dcl.enum]p4: Following the closing brace of an
4091        // enum-specifier, each enumerator has the type of its
4092        // enumeration.
4093        ECD->setType(EnumType);
4094      continue;
4095    } else {
4096      NewTy = BestType;
4097      NewWidth = BestWidth;
4098      NewSign = BestType->isSignedIntegerType();
4099    }
4100
4101    // Adjust the APSInt value.
4102    InitVal.extOrTrunc(NewWidth);
4103    InitVal.setIsSigned(NewSign);
4104    ECD->setInitVal(InitVal);
4105
4106    // Adjust the Expr initializer and type.
4107    if (ECD->getInitExpr())
4108      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4109                                                      /*isLvalue=*/false));
4110    if (getLangOptions().CPlusPlus)
4111      // C++ [dcl.enum]p4: Following the closing brace of an
4112      // enum-specifier, each enumerator has the type of its
4113      // enumeration.
4114      ECD->setType(EnumType);
4115    else
4116      ECD->setType(NewTy);
4117  }
4118
4119  Enum->completeDefinition(Context, BestType);
4120}
4121
4122Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4123                                          ExprArg expr) {
4124  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4125
4126  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
4127}
4128
4129